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ABSTRACT 

 

In mathematics there is a conceptual shift from additive to multiplicative reasoning that 

learners in the Intermediate Phase (Grades 4 to 6) need to make to understand more 

complex mathematical concepts in secondary school.  The aim of this study was to 

explore and describe the multiplicative proficiency of Grade 6 learners with learning 

difficulties by exploring the current status of their conceptual knowledge of 

multiplication, as well as their level of procedural fluency and the nature of their 

strategic competence. A single-case study design was used, with fifteen Grade 6 

learners selected from three special needs schools in Pretoria, South Africa, forming 

together a group as the unit of analysis.  During individualised task-based interviews, 

participants were required to solve ten classes of multiplication problems.  They were 

further required to solve the problems by using different representations, namely 

abstract, semi-concrete and concrete representations for a multi-dimensional 

approach that allowed for in-depth understanding of their reasoning.   

 

The findings of this study indicated that only a few participants made the conceptual 

shift from additive to multiplicative reasoning, mainly when answering the less 

cognitively complex questions, since they showed conceptual understanding of and 

procedural fluency in the way they dealt with those questions.  However, only two of 

the participants answered the less cognitively complex questions in a way that 

demonstrated proficiency in multiplicative reasoning and showed conceptual 

understanding, procedural fluency and strategic competence.  The majority of the 

participants were not proficient in multiplicative reasoning and did not make the shift 

from additive to multiplicative reasoning, especially for the more cognitively complex 

questions.  They still thought in additive terms and struggled to solve cognitively 

complex multiplication problems. However, some of the participants could solve these 

problems with either semi-concrete or concrete representations, but not with abstract 

representations.  More participants showed procedural fluency in solving classes of 

problems they had already learned to solve, even if they were cognitively more 

complex.  The three main reasons identified for this lack of proficiency were 

misconceptions, misrepresentations and calculation errors, which could inform 
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mathematics teachers’ instructional practice to help learners make the shift from 

additive to multiplicative reasoning. 
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INTRODUCTION AND CONTEXTUALISATION 

 

1.1 Background to the study 

A major conceptual shift that needs to take place during the Intermediate Phase 

(Grades 4 to 6) is the shift from additive to multiplicative reasoning (Hurst, 2015; Hurst 

& Hurrell, 2014; Tzur, Xin, Si, Kenney, & Guebert, 2010).  If learners are unable to 

make this conceptual shift they will struggle with mathematics in the Senior Phase 

(Grades 7 to 9) and Further Education and Training (FET) Phase (Grades 10 to 12), 

as multiplicative reasoning is seen by many authors as the foundation and a pre-

requisite for most mathematics learned in primary and secondary school (Brown, 

Kuchemann, & Hodgen, 2010; Hurst & Hurrell, 2014; 2015; 2016; Vergnaud, 1983).  

This may be one of the reasons why the results of the Annual National Assessments 

(ANA) are so poor.  The most recent ANA report revealed a bleak picture of 

mathematics proficiency in South Africa (DBE, 2014).  The pass rate for Grade 3, 

Grade 6 and Grade 9 mathematics in mainstream schools were 56%, 43% and 11% 

respectively.  In special needs schools the pass rate for mathematics were 53% in 

Grade 3 and 37% in Grade 6, with no statistics available for Grade 9.  This clearly 

shows a decline in the pass rate from Grade 3 to Grade 9 in both mainstream and 

special needs schools.   

 

Mathematical content presented in the Intermediate Phase plays a vital role in 

learners’ ability to successfully learn mathematical concepts in subsequent phases 

(Brown et al., 2010; Hurst & Hurrell, 2014; 2015; 2016).  During this phase, learners 

need to make a conceptual shift from additive to multiplicative reasoning, which is an 

important step in their cognitive development and enables them to understand more 

abstract and complex mathematical content, such as proportional and algebraic 

reasoning.  However, learners with learning difficulties do not necessarily make this 

shift.  Society expects the government to provide every learner with the best 

opportunity to develop to his or her full potential.  In 2001, the United States of America 

(USA) introduced the No Child Left Behind Act, which was later changed to become 

the Every Student Succeeds Act of 2015 and essentially entails that all learners, 
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including those with disabilities, must receive high-quality education (US Department 

of Education, n.d.).  Unfortunately, no such legislation exists in South Africa.  In 2017, 

there were 461 special needs schools and 848 full-service or inclusive schools in 

South Africa (DBE, 2018).  The Human Rights Watch (HRW) estimates that over half 

a million, or 70 per cent of learners with special needs of school-going age, are not yet 

attending any type of school (Fortune, 2017; HRW, 2016).  The goal of the Department 

of Basic Education is to integrate learners with special needs into mainstream schools 

(DoE, 2001).  In 2007, South Africa was one of the first countries that adopted the 

United Nations Disability Rights Treaty, which requires governments to promote 

inclusive education in their countries.  However, the large number of learners with 

special needs who are still not attending schools shows that the government is not yet 

doing enough in this regard. Fortune (2017) speculates that one reason for the 

problem is that there is a gap between written policy and its implementation.  

 

To ensure that learners with special needs are not left behind, policies should be 

effectively implemented and teachers should receive appropriate training for teaching 

learners with special needs.  In 2015, HRW found that teachers lack the training 

required to understand learners’ disabilities and how they should be taught.  

Furthermore, learners with special needs start school later than other learners and 

many leave schools before completing Grade 12 (HRW, 2015).  Therefore, they do 

not reach their full potential and are often left behind.  Effective teacher training is 

particularly important in the case of mathematics education in South Africa.  For this 

reason, my research focused on a specific category of special needs, namely learners 

with learning difficulties.  Learning difficulties is a broad concept that implies that 

although learners are capable of learning, they experience various barriers to learning 

that can range from mild to severe (Mercer, Mercer, & Pullen, 2014).  This study 

focused on barriers to learning that include difficulty with memorisation, limited 

attention span, processing of information and language, abstract thinking and 

metacognitive thinking (Allsopp, Kyger, & Lovin, 2007; Dednam, 2011; Miller & Mercer, 

1997). 
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1.2 Multiplicative reasoning 

In order to assess the proficiency of learners, the teacher should focus on the mental 

activities of learners (the cognitive processes) and not only on the answer (the product) 

(Vergnaud, 2013a).  Vergnaud (1982), who coined the term conceptual field, defined 

and classified these cognitive processes into classes of multiplication problems, the 

mastering of which requires different concepts, calculation techniques and symbolic 

representations which are intricately connected with one another.  Based on the work 

of Vergnaud, the authors Siemon, Breed and Virgona (2010, p. 2) identify the following 

three characteristics of multiplicative reasoning: The “capacity to work flexibly and 

efficiently with an extended range of numbers”, which includes whole numbers, 

decimals, fractions, ratio and percentages; the “ability to recognise and solve a range 

of problems involving multiplication or division including direct and indirect proportion”; 

and “the means to communicate this effectively in a variety of ways”, and concisely 

define multiplicative reasoning as “the capacity to work flexibly with the concept, 

techniques and representations of multiplication (and division) as they occur in a wide 

range of contexts”.   

 

This definition, which I appropriated for my own purposes as I feel that it complements 

current methodologies that largely focused on procedural fluency, acknowledges three 

components of mathematical proficiency (Kilpatrick, Swafford, & Findell, 2001), 

namely conceptual understanding, procedural fluency and strategic competence.  I 

combined the definition of multiplicative reasoning and three components of 

mathematical proficiency to formulate my research questions (section 1.5 of this 

chapter).  The National Research Council (NRC) changed the way mathematical 

proficiency was defined (Kilpatrick et al., 2001).  Before the reconceptualisation of 

proficiency in 2001, the emphasis was on subject knowledge.  However, the emphasis 

changed from being one-dimensional, with the focus on subject knowledge, to being 

multi-dimensional, which incorporates different types of skills together with subject 

knowledge (Kilpatrick et al., 2001; Schoenfeld, 2007).  According to Kilpatrick et al. 

(2001) the multi-dimensional view of mathematical proficiency includes five 

components, namely conceptual understanding, procedural fluency, strategic 

competence, adaptive reasoning and productive disposition.  Table 1.1 provides a 
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parallel between the components of mathematical proficiency, the definition of 

multiplicative reasoning and my study.   

Table 1.1: Parallel between mathematical proficiency, multiplicative reasoning 
and my study 
Definition of 
multiplicative 
reasoning (Siemon et 
al., 2010) 

Components of 
mathematical proficiency 
(Kilpatrick et al., 2001) 

My study 

• Identifies concept 
(multiplication) in a 
wide range of 
contexts 

• Flexible use of 
representations 

• Conceptual 
understanding 
– knowledge of 
concepts, operations, 
and relations 

• Conceptual 
understanding 
– abstract, semi-concrete, 
concrete representations 
– misrepresentations 
– misconceptions 

• Flexible use of 
calculation 
techniques 

• Procedural fluency 
– skill to use procedures 
flexibly, correctly, and 
efficiently 

• Procedural fluency 
– calculation technique 
levels 
– calculation errors 

• Work flexibly with 
representations and 
calculation 
techniques in a 
specific context 

• Strategic competence 
– being able to represent 
and solve mathematical 
problems effectively and 
efficiently 

• Strategic competence 
– effective and efficient 
use of abstract, semi-
concrete and concrete 
representations 
– calculation technique 
types 

 

According to Kilpatrick et al. (2001), the first component, i.e. conceptual 

understanding, emphasises knowledge of concepts, operations and relations.  

Multiplicative reasoning includes the concepts of both multiplication and division.  

However, my study focused only on learners’ misconceptions and misrepresentations 

regarding the concept of multiplication.  This links to Siemon et al.’s (2010) definition 

of the ability to identify the concept of multiplication in different real-life contexts, as 

well as the ability to present multiplication in different ways to demonstrate 

understanding.   

 

For the purpose of this study, I required a better understanding of learners’ conceptual 

understanding by using concrete, semi-concrete and abstract representations.  

Therefore, I also focused on learners’ reasoning by asking for explanations and 

explored the reasons for their misconceptions of multiplication with whole numbers.   

 

The second component, procedural fluency, links with the flexible use of calculation 

techniques, as stated in the definition of multiplicative reasoning.  Procedural fluency 
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is the skill that enables us to use calculation techniques to solve mathematical 

problems flexibly, correctly and efficiently (Kilpatrick et al., 2001).  For the purpose of 

this study, procedural fluency included the calculation technique levels, as well as the 

calculation errors that they made.   

 

Kilpatrick et al. (2001) define strategic competence, the third proficiency component, 

as the ability to represent and solve mathematical problems effectively and efficiently.  

This links with the definition of multiplicative reasoning, which requires learners to work 

flexibly with representations and calculation techniques in a specific context.  For my 

study, I inferred strategic competence in how effectively and efficiently learners used 

the three types of representations (abstract, semi-concrete and concrete) to represent 

a specific multiplication problem concept in context.  Furthermore, I inferred strategic 

competence in how effectively and efficiently learners used calculation technique 

types to solve multiplication problems.   

 

The last two components of mathematical competence are adaptive reasoning and 

productive disposition (Kilpatrick et al., 2001).  Adaptive reasoning is the ability to think 

logically, reflect, explain and justify your reasoning.  In my study, I did not consider 

adaptive reasoning as a separate component but integrated it under the conceptual 

understanding component.   

 

From experience, I have observed that many learners with learning difficulties have 

problems with language and with expressing their thoughts.  I used learners’ 

explanations and reasoning in conjunction with their representations to get a better 

understanding of their conceptual understanding.  Productive disposition refers to 

learners’ positive attitude towards mathematics and their confidence in their ability to 

solve mathematical problems.  This component falls outside the scope of my study as 

I explored learners’ cognitive processes, and not their attitudes towards mathematics.  

The connectedness of these components and the fact that they interlink with one 

another to create a multi-dimensional view of proficiency are the indicators that can 

determine proficiency in multiplicative reasoning. 

 

An assessment of the proficiency of learners requires more than merely evaluating the 

answers that they provide to given multiplication problems (the product); it requires an 
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exploration of the cognitive thinking processes of learners, which are multi-

dimensional and complex in nature.  Vergnaud (2013a) suggests that in order to 

assess the proficiency of learners, one should focus on the cognitive activity (i.e. the 

cognitive processes) and not only on the answer (the product).  The various cognitive 

thinking processes that encompass proficiency and were the focus of this study are: 

First, the conceptual understanding of multiplication, for which I explored the abstract, 

semi-concrete and concrete representations as a multi-dimensional approach to 

evaluate learners’ conceptual understanding of multiplication and their misconceptions 

and misrepresentations; hence, how they used these external representations, as well 

as how they reasoned while solving multiplication problems.  For the second, 

procedural fluency, I explored the level of calculation techniques that learners used to 

solve the multiplication problems and the errors they made.  Finally, I looked at 

strategic competence, which relates to how effectively and efficiently learners solved 

multiplication problems within a specific real-life context.  I explored the efficiency of 

their external representations, which represented their conceptual understanding 

within the given context.  Furthermore, I determined which calculation techniques 

learners used and how effective and efficient they were.      

 

1.3 Rationale of the study 

In my experience we only require learners in the South African school context to show 

their procedural fluency of mathematical calculation techniques.  We seldom focus on 

the development of conceptual understanding.  By focusing on understanding their 

learners’ thinking processes, or the lack thereof, and on the interplay between internal 

and external representations when they solve mathematical problems, teachers can 

meaningfully enhance the quality of teaching and learning.  Studying the interplay 

between internal and external representations might serve as a bridge between 

research on learning and on teaching (Lamon, 1994).  For this reason, this study 

focused on the multiplicative reasoning proficiency of Grade 6 learners with learning 

difficulties by using multiple external representations.  An attempt to determine these 

learners’ use of external representations in a real-life context, and the reasons for 

misconceptions and calculation errors, can further shed light on their multiplicative 

reasoning proficiency.     
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I chose Grade 6 learners for my study because the Intermediate Phase (Grades 4 to 

6) is important as learners are required to understand more abstract concepts than 

those dealt with in the Foundation Phase (Grades R to 3).  The Foundation Phase 

focuses, for example, on addition and subtraction.  In the Intermediate Phase they are 

expected to think more abstractly when they learn to multiply and divide.  During the 

early 1980s, Vergnaud (1989) showed how mathematical concepts become more 

abstract because of the developmental nature of mathematical content.  He developed 

a cognitive developmental theory about conceptual fields of which multiplicative 

reasoning (multiplication and division) and additive reasoning (addition and 

subtraction) are two examples (Vergnaud, 1989; 2013a).  Other authors who 

subsequently conducted research on multiplicative reasoning agree on the importance 

of multiplicative reasoning during the primary school years, especially during the 

Intermediate Phase (Baturo, 1997; Brown et al., 2010; Carrier, 2014; Clark & Kamii, 

1996; Hurst & Hurrell, 2015; McClintock, Tzur, Xin, & Si, 2011; Tzur et al., 2010; 2013).   

 

Multiplicative reasoning as a field of study is important for the following reasons: First, 

researchers agree that multiplicative reasoning form the foundation and is a pre-

requisite for much of the mathematics that is learned in primary and secondary school, 

such as fractions, proportional reasoning and algebraic reasoning (Brown et al., 2010; 

Hurst & Hurrell, 2014; 2015; 2016; Vergnaud, 1983).  Second, a major conceptual shift 

takes place when learners progress from additive to multiplicative reasoning, with a 

reconceptualisation that needs to take place (Hurst, 2015; Hurst & Hurrell, 2014; Tzur 

et al., 2013). 

 

Since multiplicative reasoning is such an important conceptual field in mathematics, it 

is interesting to note that the first research on multiplicative reasoning was only 

conducted as late as in the 1980s.  Vergnaud, a French mathematician, philosopher, 

educator and psychologist, developed the idea of conceptual fields in mathematics, of 

which multiplicative reasoning is one (Grenier, 2007; Vergnaud, 1982).  Most of the 

research on multiplicative reasoning was conducted in the USA (Caddle & Brizuela, 

2011; Carrier, 2014; Clark & Kamii, 1996; Empson & Turner, 2006; Kouba, 1989; 

McClintock, et al., 2011; Tzur et al., 2010; Tzur, Johnson, McClintock, Kenny, Xin, Si, 

Woordward, Hord, & Jin, 2013; Zhang, Xin, & Si, 2011) and Australia (Baturo, 1997; 

Hurst & Hurrell, 2015, 2016; Mulligan, 1992; Siemon et al., 2010).  Similar studies were 
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also conducted in England (Brown et al., 2010; Nunes et al., 2008), the Netherlands 

(Bakker, Van den Heuvel-Panhuizen, & Robitzsch, 2014) and Canada (Agostino et al., 

2010).  Only two research studies in this field (for a master’s and a PhD degree) could 

be found in South Africa (Mofu, 2014; Long, 2011).  Of a total of 21 studies found on 

the Eric database, sixteen had been conducted in mainstream schools.  Only five of 

the 21 studies conducted in the USA focused on learners with special needs 

(McClintock et al., 2011; Nunes et al., 2008; Zhang et al., 2011; Tzur et al., 2010, 

2013), and only four required learners to explain or justify their thinking (Baturo, 1997; 

Hurst & Hurrell, 2015, 2016; Siemon et al., 2010).  One study required learners to 

show their understanding by making use of calculations, for which they could use 

bundling sticks to help them solve the problem (Hurst & Hurrell, 2016).  However, none 

of those studies investigated the level of understanding in multi-representational 

forms, such as with the use of abstract symbols, the drawing of pictures and using 

concrete objects, thus a multi-dimensional approach.   This study represents an 

attempt to address this gap in the literature. 

 

1.4 Problem statement 

For many learners the transition from additive to multiplicative reasoning is one of the 

key hurdles to be overcome (Ell, 2001; Tzur et al., 2010).  Multiplicative reasoning is 

a major feat for learners in the Intermediate Phase, which is when the transition from 

additive reasoning should take place (Long & Dunne, 2014), and even more so for 

learners with learning difficulties (McClintock et al., 2011; Tzur et al., 2010).  

 

Even though authors agree on the importance for studying multiplicative reasoning, 

research studies on multiplicative reasoning are one-dimensional in nature.  In six of 

the studies that were reviewed, the focus was on the calculation techniques used by 

learners to solve multiplicative problems (Carrier, 2014; Clark & Kamii, 1996; Jacob & 

Willis, 2003; Kouba, 1989; Mulligan, 1992; Zhang et al., 2011), while a further seven 

investigated the reasons why learners struggle to think multiplicatively (Agostino, 

Johnson, & Pascual-Leone, 2010; Bakker et al., 2014; Brown et al., 2010; McClintock 

et al., 2011; Nunes, Bryant, Burman, Bell, Evans, & Hallett, 2008; Tzur et al., 2010; 

2013).  I believe that this one-dimensional focus does not give a complete picture of 

the proficiency of learners, especially those experiencing difficulties with multiplicative 
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reasoning.  For this reason, I used a multi-dimensional approach to explore the 

multiplicative reasoning proficiency of Grade 6 learners with learning difficulties.  

Learners with learning difficulties struggle more with abstract thinking than other 

learners (Allsopp et al., 2007; Dednam, 2011; Miller & Mercer, 1997), and if research 

is one-dimensional it will give an inaccurate view of their proficiency in multiplicative 

reasoning.  A multi-dimensional approach can shed light on where the problem lies in 

their thinking process, which is the focus of my study.   

 

1.5 Research questions 

Since the proficiency in multiplicative reasoning is multi-dimensional, I followed a multi-

dimensional approach.  As explained in section 1.2 of this chapter, I formulated my 

research question by using three of the strands of mathematical proficiency, as 

identified by Kilpatrick et al. (2001), in conjunction with Siemon et al.’s (2010) 

definition.     

 

I interviewed Grade 6 learners with learning difficulties.  I chose Grade 6 learners as 

they are in the last grade of the Intermediate Phase which, as explained, is an 

important phase for the development of multiplicative reasoning.   

 

Primary research question 

How proficient are Grade 6 learners with learning difficulties in multiplicative 

reasoning?  

 

Secondary research questions 

All the questions required multiplication of whole numbers.  The secondary research 

questions were: 

 

1. What is the status of the learners’ conceptual understanding of multiplication?  

2. What is the level of the learners’ procedural fluency related to multiplication?     

3. What is the nature of the learners’ strategic competence when solving multiplication 

problems?  
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1.6 Purpose of my study 

Research in the field of multiplicative reasoning only started in the 1980s, with authors 

using various research methods.  A search on the Eric database produced 21 research 

studies dealing with multiplicative reasoning.  Twelve of the 21 studies were qualitative 

in nature and used interviews as research method; six were quantitative using tests; 

three were mixed-method studies using both tests and interviews for data collection.  

The number of participants varied greatly, with the number involved in quantitative 

studies ranging from 155 to 7000 (Agostino et al., 2010; Siemon et al., 2010), while 

the qualitative studies involved between one and 336 participants (Clark & Kamii, 

1996; McClintock et al., 2011).  Only four of the 21 research studies focused on 

learners with special needs.  Three of those studies used quantitative research 

methods and involved between one and twelve participants (McClintock et al., 2011; 

Tzur et al., 2010; Zhang et al., 2011).  Furthermore, the participants were primary 

school learners (Grades 1 to 7), except in the case of the studies by Long (2011) and 

Brown et al. (2010), which focused on the Senior Phase (Grades 7 to 9).  Just over 

half of the studies (thirteen) included participants from different grades.  To date, no 

studies have been undertaken in LSEN schools in South Africa to determine learners’ 

thinking process during multiplicative reasoning.  This is what I attempted to do with 

this study.   

 

Learners with learning difficulties often do not make the conceptual shift from additive 

to multiplicative reasoning.  To make this shift learners need to be proficient in 

multiplicative reasoning.  Therefore, the purpose of this study was to determine the 

multiplicative reasoning proficiency of Grade 6 learners with learning difficulties 

through a multi-dimensional approach that included various cognitive thinking 

processes with abstract, semi-concrete and concrete representations.  This study, 

consequently, explored the cognitive thinking processes of conceptual understanding 

(conceptions, misconceptions and misrepresentations), procedural fluency 

(calculation technique levels and calculation errors) and the strategic competence 

(conceptions and calculation technique types) when solving multiplication problems.  
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1.7 Methodological considerations 

As stated above, my study focused on the multiplicative reasoning proficiency of 

Grade 6 learners with learning difficulties.  I chose a convenient sample of fifteen 

Grade 6 learners with learning difficulties (numbered from Learner 3 to Learner 17) 

from three learners with special educational needs (LSEN) public schools in Pretoria.  

The first two learners (Learner 1 and Learner 2) formed part of my pilot study.  I 

followed a qualitative research approach, with my study grounded in the critical realism 

philosophy, which focuses strongly on ontology to identify interactions with our reality.  

I chose a single-case study design to obtain an in-depth understanding of Grade 6 

learners’ proficiency in multiplicative reasoning and collected the data through one-on-

one task-based interviews.  During the task-based interviews, I asked each participant 

to solve ten multiplication problems within a specific context.  These problems were 

based on specific classes of multiplication problems (see Chapter 2).  Furthermore, I 

required participants to solve each of the problems using three types of 

representations: Using symbols (abstract), then drawing a picture (semi-concrete), 

and finally using 3D material (concrete).  During these task-based interviews, I asked 

participants to explain the decisions they had made during problem solving.   

 

I deductive and inductive reasoning to analyse my data according to the task-based 

questions.  I did this to determine the level of abstractness at which they were most 

proficient.  Under each representation I chose categories with my secondary research 

questions in mind, namely operation type, operation concept, misconceptions, 

misrepresentations, verbal explanations, calculation technique levels and types, and 

calculation errors.  Thereafter, I used these categories as headings and using my 

transcribed and picture data, I placed the relevant data under appropriate headings.  I 

then used deductive and inductive reasoning to highlight phrases from the data that I 

could use as indicators to identify subcategories under each of the chosen categories.  

Since my study was qualitative in nature, I used tables to summarise and compare the 

data and rich description to analyse, describe and interpret the data.   

 

1.8 Possible contribution of my study 

I hope that my research will make a contribution by empowering mathematics 

teachers, tutors and learning-support therapists who teach learners with learning 
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difficulties to help their learners to make the transition from additive reasoning to 

multiplicative reasoning so as to enable them to reach their full potential in 

mathematics.  Furthermore, I hope that it will shed light on how learners with learning 

difficulties reason when solving multiplication problems, their conceptions and 

misconceptions, the calculation techniques they use to solve them, and common 

calculation errors.   

 

1.9 Structure of my thesis 

The thesis consists of six chapters.  Chapter 1 contains the introduction and a 

background to the study, which explains what is meant by multiplicative reasoning 

proficiency.  It furthermore presents the rationale for this study, the problem statement, 

research questions and the purpose of this study.  The methodology applied is 

explained, the important concepts are clarified and the possible contribution of the 

study is discussed.  Chapter 2 includes the literature review and an in-depth exposition 

of the cognitive thinking processes, the interplay between internal and external 

representations, and how this relates to multiplicative reasoning.  Furthermore, it offers 

an in-depth discussion of how multiplicative reasoning develops and an explanation 

and discussion of each component, which includes the external representations, the 

classes of multiplication problems and the calculation techniques.  I set out my 

conceptual framework and explained the relationship between the components.  

Chapter 3 contains the methodological considerations, an explanation of why my study 

was underpinned by critical realism, and a discussion of the research design and how 

the participants were selected.  It also offers an explanation of how I collected the data 

by conducting one-on-one task-based interviews.  I explain how I analysed the data 

and what quality measures I took to ensure that my study would be credible and 

reliable.  I end with details of the ethical principles I considered to ensure the anonymity 

and confidentiality of the participants.  Chapter 4 consists of the analysis of the data.  

The analysis of each question is dealt with separately.  Under each question I analysed 

all three representations together under pre-determined subcategories.  This is 

followed by the interpretation and discussion of the data.  Chapter 5 contains a 

discussion and interpretation of the data to answer each of my three secondary 

research questions, as well as the conclusions and the implications of my study.  
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Moreover, it includes a reflection on this study, a discussion of its limitations and 

recommendations for further related research.   
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LITERATURE REVIEW AND CONCEPTUAL 

FRAMEWORK 

 

2.1 Introduction 

Long and Dunne (2014) believe that mathematical knowledge can be classified either 

by topics or by conceptual fields.  The South African Curriculum and Assessment 

Policy Statement (CAPS) follows a topic approach, with the result that learners study 

topics in isolation. For instance, multiplication and division of whole numbers, fractions, 

decimal numbers, area and volume are different topics that learners study separately, 

with the result that there is limited integration between the different topics.  In contrast, 

conceptual fields group similar concepts together, so that learners develop one big 

idea, or schema, connecting different topics.  For example, multiplication and division 

of whole numbers, decimal numbers and fractions, as well as area and volume are 

grouped under multiplicative reasoning; thus making connections between different 

topics but using the same concept of multiplication and division (Siemon et al., 2010; 

Vergnaud, 1983; 1992).  As a result, learners will develop a better conceptual 

understanding as they will form more and a stronger network of concepts, schemas 

and schemes.    

 

This chapter starts with a discussion about conceptual fields as a field of study and 

the internal and external representations that form part of conceptual fields.  I then 

discuss in-depth multiplicative reasoning as a conceptual field and how it develops.  

Furthermore, I explain what the classes of multiplication problems entails, how 

calculation techniques develop and what the different levels under each calculation 

technique are.  Lastly, I discuss the conceptual framework and how the above-

mentioned aspects relate to one another.   

 

2.2 Conceptual fields as a field of study 

In the early 1980s, Vergnaud did a study of cognitive development and the learning of 

mathematical knowledge and coined the term conceptual fields (Grenier, 2007; 
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Vergnaud, 1989; 2011; 2013b).  Therefore, the study of a specific conceptual field, 

such as multiplicative reasoning, can be used to explore how proficient learners are in 

that specific field.  At first, Vergnaud (1982, p. 36; 1983; 1986) defined a conceptual 

field as “a set of situations the mastering of which requires a variety of concepts, 

procedures and symbolic representations tightly connected with one another”.  

Moreover, he believed that a conceptual field is a set of situations, rather than a set of 

concepts (Vergnaud, 1982).  Later in his career, Vergnaud (1992) came to believe that 

one can view conceptual fields from two complementary perspectives, namely as a 

set of situations and as a set of concepts, or a set of situations for which the 

“progressive mastery calls for a variety of interconnected concepts, schemes and 

symbolic representations” and “a set of concepts, whose meaning and explanatory 

power stem from their joint intervention in the same situations and schemes” 

(Vergnaud, 1992, p. 289; 2013b).  Hence, a conceptual field is by definition a set of 

concepts (schemas and conceptualisations) through which adaptation operates, and 

at the same time a structured set of situations (Vergnaud, 2007; 2013a).  Vergnaud’s 

(2013b) latter view of conceptual fields implies that a set of concepts contribute to the 

mastery of a set of situations, just as the mastery of a set of situations requires a 

variety of concepts, schemes and representations that are closely connected.  The 

various concepts that make up a conceptual field form a hierachical structure of which 

the organisation is progressive, becoming increasingly more complex throughout a 

persons’s life.  In order to study a conceptual field over a short period, a study has to 

be defined in narrower terms, for instance as a specific activity, which involves the risk 

of losing the organisational process of the development of proficiency (Vergnaud, 

2013b).  This study focused on the developmental aspect of one concept, namely the 

multiplication of whole numbers, within a specific time during the cognitive 

development of Grade 6 learners.    

 

As a set of situations and a set of concepts, conceptual fields have two aims.  The first 

aim is to describe and analyse the progressive complexity of concepts in a specific 

conceptual field.  This process of describing and analysing the progressive complexity 

of concepts differs from Piaget’s cognitive developmental levels which he logically 

ordered in the following stages according to learners’ ages: Sensorimotor (birth to two 

years), preoperational (two to seven years), concrete operational (seven to eleven 

years) and formal operational (eleven to fifteen years) (Miller, 2011).  According to 
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Vergnaud (2009; 2013a) Piaget reduced the progressive complexity of cognitive 

development to logical processes involving the age of learners.  In contrast, the theory 

of conceptual fields focuses on conceptual processes, as conceptualisation is always 

taking place in cognitive development and integrates the organisation of any activity, 

regardless of the learners’ ages (Vergnaud, 2013a; 2013b).   

 

The second aim is to establish better connections between the operational and 

predicative forms of knowledge (Vergnaud, 2009). The operational form of knowledge 

focuses on actions, i.e. on what you do in a situation to show what you know.  The 

predicative form of knowledge is your explanation of what you know, i.e. what you say 

or your linguistic and symbolic expressions of knowledge (Vergnaud, 2009; 2013b). 

Your actions (operational knowledge) and linguistic and symbolic explanations 

(predicative knowledge) are therefore external representations to show what you know 

internally.   

 

2.2.1 Internal representations 

The term representation can be defined as a configuration of signs, characters, or 

objects that as a whole, or part by part, correspond to, stand for, symbolise, mean, 

refer to, embody, resemble, represent, or stand in place of something else (Godino & 

Font, 2010; Goldin & Kaput, 1996; Pape & Tchoshanov, 2001).  Representations can 

be either internal (which means that they are in your mind and are non-observable) or 

external (they can be observed or heard).  Internal representations may or may not 

share structural similarities with external representations (Godino & Font, 2010; Goldin 

& Kaput, 1996).  To explore what learners know (internal representations) about a 

particular concept such as multiplication, teachers can at best make inferences based 

on learners’ verbal and written (external) representations.  

 

Panasuk (2010) loosely defines internal representations as mental images, while other 

authors define them as internal abstractions of complex cognitive schemas to establish 

an internal network through experience (Godino & Font, 2010; Lesser & Tchoshanov, 

2005; Panasuk, 2010; Pape & Tchoshanov, 2001).  From a mathematical perspecitive, 

Ayub, Ghazali, and Othman (2013) define internal representations as a cognitive 

configuration that is inferred from learners’ verbal or written responses, which are the 



17 
 

result of mathematical thinking and problem solving.  Internal representations can only 

be inferred through external representations as they are mentally configured and 

therefore cannot be directly observed (Ayub et al., 2013; Debrenti, 2013; Godino & 

Font, 2010; Goldin & Kaput, 1996).  Learners’ pre-existing mental images, language, 

ability to solve problems and attitude toward mathematics influence the way they form 

their internal representations (Lesser & Tchoshanov, 2005; Panasuk, 2010; Pape & 

Tchoshanov, 2001).   

 

According to the theory of conceptual fields, internal representations consist of pre-

existing concepts, schemas and schemes.  Learners use internal representations to 

organise mathematical concepts into schemas and to solve problems, and pre-existing 

schemes to form new schemes (Pape & Tchoshanov, 2001).  Learners who use the 

various types of internal representations, gradually build more complex mental images 

of concepts (Pape & Tchoshanov, 2001).  Cognitive development occurs through the 

use of different internal representations that create strong interrelated networks or 

schemas (Goldin & Kaput, 1996).  Learners therefore solve problems by using existing 

schemes, transforming old schemes, or forming new ones.   

 

This study focused on the conceptual field of multiplicative reasoning.  Examples of 

concepts in the multiplicative conceptual field include the multiplication and division of 

whole numbers, fractions and decimal numbers, area and volume.  Vergnaud (1982; 

2011; 2013b) provides an operational definition of a concept.  He defines a concept 

as three distinct interdependent sets.  First, a concept is a set of situations that 

promote an understanding of that concept.  Second, it is a set of operational invariants 

(schemes) that relies on the organisation of activities (see this chapter, section 2.2.2). 

Last, it is a set of symbolic forms and language, which allows us to represent the 

concepts and their relationship to the action, and as a result also the situation and the 

schemes (operational thoughts) they evoke.  A concept is, therefore, a product of 

various experiences (Vergnaud, 2013b).  Concepts are internal representations, 

constructed by internalising actions and perceptions.    

 

Related concepts clustered together can form a schema.  Feldman (2007) explains 

that according to Piaget, schemas contain stabilised information about the features or 

characteristics of objects, while Siraj-Blatchford (2002) maintains that schemas are 
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figurative thinking.  Schemas are essentially building blocks of knowledge that form 

high-level internal (mental) representations.  Schemas are therefore the result of prior 

experiences which can facilitate the interpretation of new information in relation to prior 

knowledge (Colman, 2015; McLeod, 2015; Skemp, 1987).    Since concepts and 

schemas are internal representations, the only way that teachers can evaluate 

learners’ knowledge of a conceptual field is through schemes, which represent 

operational thought (Siraj-Blatchford, 2002).  This points to an interplay between 

internal and external cognitive processes.    

 

2.2.2 Interplay between internal and external cognitive processing   

Representations do not exist in isolation, since they belong to highly structured 

schemas and schemes within a particular context (Goldin & Kaput, 1996).  Both 

internal and external representations are fundamental to mathematics as 

mathematical thinking is abstract and hence requires external representations to 

communicate and learn mathematical concepts, and to internalise and create mental 

abstractions of those concepts (Lesser & Tchoshanov, 2005; Panasuk, 2010; Panasuk 

& Beyranevand, 2011).  External representations can influence internal 

representations, and vice versa.  Since they are connected and interrelated, 

inferences can be made about internal representations by studying external 

representations (Ayub et al., 2013; Debrenti, 2013; Godino & Font, 2010; Pape & 

Tchoshanov, 2001).  Since schemes and schemas change whenever one is asked to 

solve a problem, a mental transformation takes place when such an interplay occurs 

between internal and external representations.  This interplay is important as it 

develops conceptual understanding in mathematics and is seen as a broad definition 

of mathematics learning (Ayub et al., 2013; Lingefjard & Ghosh, 2016; Panasuk & 

Beyranevand, 2011; Pape & Tchoshanov, 2001).  Although Lingefjard and Ghosh 

(2016) are of the opinion that it is still unclear how mental transformation takes place, 

Vergnaud maintains that this process takes place by means of schemes.        

 

When learners have to solve a mathematical problem, they make use of both internal 

and external mental processes.  The internal mental process, as discussed earlier, 

consists of consulting existing internal representations (mental images) of concepts 

and schemas.  The decision about how to solve a given mathematical problem 
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requires that learners consult pre-existing schemes, change a pre-existing scheme, or 

form a new scheme (internal representations).  The external process takes place when 

learners represent their thinking externally by verbally expressing their thoughts and/or 

using symbols or drawings, or manipulating 3D material.  Schemes are operational 

thought or thoughts in action and connect the internal and external cognitive 

processes.  Therefore, when teachers want to evaluate learners’ understanding of a 

mathematical concept, they should evaluate their schemes, i.e. their external 

representations. 

   

2.2.2.1 Schemes 

Some authors use schemes and schemas interchangeably and Siraj-Blatchford (2002) 

even suggests that a distinction between schemes and schemas is unnecessary as 

schemas determines schemes.  However, I do not agree with this view since in my 

opinion schemes, which consist of operational thought, make schemas visible, which 

are the building blocks of knowledge.  Schemes and schemas are therefore different 

and have different functions.  

   

Some authors, including Piaget (1970) and Vergnaud (1994; 2013a), distinguish 

between schemas and schemes.  Piaget (1970) suggests that schemes are 

operational thought that is repeatable and generalisable in an activity.  Furthermore, 

we use a scheme as a mental tool to gather and interpret information on known and 

new situations (Siraj-Blatchford, 2002; Steffe, 1994; Vergnaud, 1994).  Vergnaud 

(1994; 2013a) generally agrees with Piaget and defines schemes as a fixed 

organisation of action to solve a specific set of situations in context by means of 

sensory-motor skills and intellectual skills.  Schemes therefore generate various 

actions which depend on the context and as the context changes (Vergnaud, 2013b).  

This implies that each time learners are asked to solve problems in new situations they 

need to either utilise or adapt old schemes, or form a new scheme for the new 

situation.      

 

However Vergnaud, who was a PhD student supervised by Piaget, not only defined 

schemes in general terms, but elaborated on Piaget’s definition of schemes to use it 

in his research (Vergnaud, 2011; 2013a).  He further defines a scheme as “a mapping 

from a multi-dimensional space of information variables onto a multi-dimensional 
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space of action variables” (Vergnaud, 2013a, p. 47).  For example, by mapping classes 

of multiplication problems onto the possible sequence of steps that can lead to their 

solutions.  In his most elaborate definition of a scheme, Vergnaud (1998; 2013a; 

2013b) states that it contains operational invariants (concepts-in-action and theorems-

in-action).  Operational invariants play an important role in problem solving as learners 

use them as mental tools to select relevant information, to infer the consequences of 

the selected action taken and to select subsequent information (Vergnaud, 2007; 

2013b).  Operational invariants consist of two interrelated components, namely 

concepts-in-action and theorems-in-action, each of which has an internal and an 

external component.     

 

Internal representations, as previously discussed, consist of concepts, schemas and 

pre-formed schemes that learners formed when learning about a specific concept such 

as multiplication, and when previously asked to solve for example multiplication 

problems.  However, we cannot research concepts and theorems as they are not 

observable.  For example, we cannot observe whether learners understand the 

concept multiplication as it exists only inside their heads, or whether they can solve a 

multiplication problem.  It is for this reason that Vergnaud (1998; 2013a; 2013b) coined 

the terms concepts-in-action and theorems-in-action, which we can observe, for 

example, when learners demonstrate their understanding of multiplication by using 

external representations, such as drawing pictures or explaining their methods when 

solving multiplication problems.  Concepts-in-action are the building blocks for 

theorems-in-action as they help with the identification of the relevant information from 

the context and the selection or forming of theorems-in-action, from which procedures 

can be organised to calculate the answer (Vergnaud, 2013b).  One concept-in-action 

always has more than one theorem-in-action, which learners gain and learn through 

experience in solving many different problems in various contexts, and throughout 

their lives as cognitive development takes place (Vergnaud, 2007).  In turn, the 

theorems-in-action leads to external representations for learners to demonstrate their 

knowledge of a concept.   

 

Since schemes generate both mental and external actions, they can be regarded as 

the foundation of external representations.  Schemes which include concepts-in-action 

and theorems-in-action, play an important role in the analysis of operational 
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knowledge, which demonstrates what learners know when they solve problems 

(Vergnaud, 2009).  Any action that learners take to solve a problem is possible only 

because of schemes that enable them to analyse information and then decide what to 

do with it (Vergnaud, 1994).  Whenever learners are required to solve a mathematical 

problem in a new context, they adapt existing schemes or create new ones.  This 

creates a scheme-context pair, which is central to learning and cognitive development 

(Vergnaud, 2013a).  Learners use schemes to make schemas explicit.  They do this 

by selecting relevant information through concepts-in-action, which in turn select 

relevant theorems-in-action and are then made explicit through verbal explanation, 

writing of symbols, drawing, or manipulating 3D material (Vergnaud, 1994). 

 

2.2.3 External representations 

Actions that are physically observable actions, such as words, pictures, graphs, 

numerals, equations, tables, diagrams and charts are external representations of 

internal mental concepts (Barmby, Harries, Higgins, & Suggate, 2007; Goldin & Kaput, 

1996; Panasuk, 2010; Pape & Tchoshanov, 2001).  The various external 

representations can be categorised in different ways, as shown in Table 2.1. 

  



22 
 

Table 2.1: Summary of the divisions of external representations 

Allsopp et al. 
(2007); Van de 

Walle et al. 
(2015) 

Bruner 
(1963) 

Skemp 
(1987) 

Panasuk 
(2010); 

Panasuk & 
Beyranevand 

(2011) 

Ayub et al. 
(2013); Lesh 
et al. (1987) 

Barmby et al. 
(2007); Hiebert 

& Carpenter 
(1992); Pape & 
Tchoshanov 

(2001) 

Concrete 
Enactive 
(knowing 
by doing) 

  Manipulatives Physical objects 

Semi-concrete / 
representational 

Iconic 
(images / 
pictures) 

Visual 
symbols 

(diagrams) 

Visual 
(diagrams, 
pictures, 
graphs) 

Pictures or 
diagrams 

Pictures 

Abstract 

Symbolic 
(words and 
mathematic
al symbols) 

Verbal 
symbols 
(spoken, 
written 

language 
and 

mathematical 
symbols) 

Verbal (written 
and spoken 
language) 

Spoken 
symbols 

Verbal / spoken 
symbols 

Symbolic 
(numbers and 

letters) 

Written 
symbols 

Written symbol 
(words or 
numbers) 

    

Real-world 
situation or 
experience-

based ‘scripts’ 

 

 

Bruner (1963) was the first to categorise external representations.  His categories 

consisted of enactive (e.g. physical actions and objects), iconic (e.g. images or 

pictures) and symbolic (e.g. words or mathematical symbols) representations.  Some 

researchers (Allsopp et al., 2007; Van de Walle, Karp, & Bay-Williams, 2015) agree 

with this division and attach the same meaning to each category, however they label 

enactive representations as concrete, iconic representations as semi-concrete or 

representational, and symbolic representations as abstract (see Table 2.1). 

 

In contrast, Skemp (1987) postulates that, from a cognitive point of view, external 

representations should be divided into two rather than three main categories, namely 

verbal and visual symbols (Skemp, 1987).  Verbal symbols include both written and 

spoken words and mathematical symbols, whereas visual symbols include diagrams.  

Skemp (1987) does not include concrete or semi-concrete representations under any 

of his categories.  Panasuk (2010), like Skemp (1987), also includes visual symbols 

and exclude concrete representation.  Panasuk (2010) divided verbal symbols into two 

categories, namely verbal and symbolic representations, which include abstract 

representations.  In my opinion this is unnecessary as written and spoken language 
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can both be grouped under verbal or abstract representations as suggested by both 

Skemp (1987) and Allsopp et al. (2007).   

 

Some researchers (Barmby et al., 2007; Hiebert & Carpenter, 1992; Pape & 

Tchoshanov, 2001) classify representations into four categories, namely physical 

objects, pictures, verbal/spoken and written symbols.  These categories are the same 

as those proposed by Lesh, Post, and Behr (1987), who added a fifth category, namely 

real-world situations or experience-based ‘scripts’.  Knowledge is organised around 

real-world situations that serve as the context for solving other similar problem 

situations.  Hiebert and Carpenter’s (1992) first two categories of representations are 

the same as those of Bruner (1963) and Allsopp et al. (2007), namely 

objects/manipulatives and pictures.  However, like Panasuk (2010), they added the 

extra category of real-world situations and split Bruner (1963) and Allsopp et al.’s 

(2007) abstract/symbolic category into verbal/spoken symbols and written symbols.   

 

For my study, I adopted Allsopp et al.’s (2007) and Van de Walle et al.’s (2015) division 

of external representations, namely concrete, semi-concrete and abstract 

representations as the other divisions can all be categorised under these main 

categories.   

 

2.2.3.1 Concrete, semi-concrete and abstract representations 

Concrete, semi-concrete, abstract (CSA) sequencing as a teaching technique is well 

documented in literature (Allsopp et al., 2007; Bruner, 1963; Debrenti, 2013; Hoong, 

Kin, & Pien, 2015; Hui et al., 2017; Lesser & Tchoshanov, 2005; Pape & Tchoshanov, 

2001; Post, 1981), but very little information are available on the use of concrete, semi-

concrete and abstract representations as an assessment tool (Allsopp et al., 2007; 

Ayub et al., 2013; Barmby et al., 2007; Panasuk, 2010).  Mercer et al. (2014) and Van 

de Walle et al. (2015) view CSA sequencing as effective in teaching learners with 

learning difficulties, which should inadvertently imply that teachers need to use various 

representations to evaluate and develop the conceptual understanding of learners with 

learning difficulties.  Teachers should not rely on only a single response to a task (such 

as giving the answer) when assessing the extent of learners’ conceptual 

understanding of a mathematical concept, but should rather infer understanding from 

learners’ use of multiple representations (Ayub et al., 2013; Barmby et al., 2007; 
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Lesser & Tchoshanov, 2005; Panasuk, 2010; Panasuk & Beyranevand, 2011; Pape & 

Tchoshanov, 2001).  According to Panasuk (2010), each representation (CSA) 

provides a specific meaning to a mathematical concept (Panasuk & Beyranevand, 

2011).  For example, a picture or the use of 3D material could shed light on the 

conceptual understanding of a concept, for example multiplication, whereas the use 

of abstract symbols shed light on the procedural fluency of such a concept.  

Furthermore, when learners can use the different external representations for a 

concept in a flexible and fluent manner, it indicates deep conceptual understanding 

(Ayub et al., 2013; Panasuk & Beyranevand, 2011).    If learners use only one type of 

representation, it indicates that they have made only limited connections and probably 

memorised the technique, rather than understood the concept (Ayub et al., 2013).  

Since understanding is a complex network of schemas, a combination of these 

external representations is necessary to evaluate learners’ level of conceptual 

understanding.   

  

Vergnaud (2009; 2013b) states that expressing your understanding is an essential part 

to conceptualise a concept and that many people have difficulty explaining their 

understanding.  Furthermore, learners with learning difficulties struggle with abstract 

thinking (Allsopp et al., 2007), which include expressing themselves with language 

and symbols as shown in Table 2.1.     Thus, one of the ways teachers could evaluate 

how well learners with learning difficulties understand a certain concept in 

mathematics, is to ask them to represent their thinking in various ways, for example 

by making use of concrete objects, semi-concrete representations (drawings or 

pictures) and abstract symbols (Allsopp, Kyger, Lovin, Gerretson, Carson, & Ray, 

2008).  It is possible for learners to have a limited understanding of a concept that is 

restricted to one representation.  It may also appear as if learners have knowledge of 

a particular concept when they use abstract representations, when in fact they may be 

demonstrating only procedural fluency.  The opposite may also be true, in other words, 

they may know how to solve a problem with semi-concrete representations, but not by 

using abstract representations (Allsopp, Kyger, & Ingram, n.d.).  Therefore, requiring 

learners to solve a problem with concrete, semi-concrete and abstract representations 

can shed light on their schemas (Allsopp et al., 2007).   Learners’ understanding of a 

mathematical concept is determined by the amount and strength of the connections 

between the different types of representation (Hiebert & Carpenter, 1992).  The more 
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connections there are, the better the understanding.  Teachers often require learners 

to only solve a problem on the abstract level, which may not provide a true reflection 

of their understanding.  Concrete representations are especially useful in the lower 

grades, and much is written on the importance of using concrete material to develop 

and represent mathematical concepts (Goldsby, 2009; Lerner & Johns, 2012; Marshall 

& Swan, 2008; Mercer et al., 2014; Van de Walle et al., 2015).   

 

i. Concrete representations 

Concrete representations are defined as objects that appeal to different senses that 

learners can touch, move, arrange, or rearrange (Goldsby, 2009).  Concrete objects, 

which are three-dimensional, viewed by Allsopp et al. (2007) as the most basic level 

and also the most crucial level for developing conceptual understanding.  Concrete 

representations support and enhances learners’ understanding of the essence of a 

concept (Debrenti, 2013).  Concrete objects are useful when solving mathematical 

problems as learners can manipulate physical objects by moving and touching them, 

which involves more than one sensory organ.  However, for the use of concrete objects 

to be beneficial, the manipulatives should represent the conceptual understanding 

behind the mathematical problem (Pennsylvania Department of Education, 2017). 

 

Allsopp et al. (2007) classify concrete representations into two classes, namely 

discrete and continuous representations.  Discrete concrete representations can be 

counted individually, for example base-ten or pattern blocks, unifix cubes, beans, 

marbles, plastic pieces, poker chips, place-glue sticks, people, cookies, and so forth 

(Allsopp et al., 2007; Lerner & Kline, 2006; Pennsylvania Department of Education, 

2017).  Continuous concrete representations are not used for counting but are used 

when solving problems of measurement and can include items such as rulers, weight 

scales and measuring cups (Allsopp et al., 2007). 

 

ii. Semi-concrete representations 

Semi-concrete representations are two-dimensional and are seen as an intermediate 

step between concrete and abstract representations (Allsopp et al., 2007).  Semi-

concrete means that instead of manipulating real objects to solve a problem, learners 

draw pictures, dots, tallies, lines, or circles that represent the actual objects (Allsopp 

et al., 2007; Lerner & Johns, 2012; Pennsylvania Department of Education, 2017).  As 
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concrete representations, semi-concrete representations support and enhance 

learners’ understanding of mathematical concepts (Debrenti, 2013).     

 

iii. Abstract representations 

Symbolic or abstract representations are the most compact and abstract 

representations of a concept (Debrenti, 2013).  Mathematical content includes a highly 

complex process of abstraction (Panasuk, 2010).  The term reflective abstraction is 

used to explain the process of developing conceptual understanding (Panasuk, 2010).  

Through abstract representations, learners utilise numbers, notation and 

mathematical symbols to solve mathematical problems without using real objects or 

drawing pictures (Allsopp et al., 2007; Lerner & Johns, 2012; Pennsylvania 

Department of Education, 2017).  However, learners with learning difficulties 

experience problems with abstract thinking and might benefit from using concrete 

objects and/or semi-concrete representations to understand and solve mathematical 

problems (Allsopp et al., 2007). 

 

My study focused on the conceptual field of multiplicative reasoning (discussed in the 

next section), and specifically on the multiplication of whole numbers.  Each 

conceptual field consists of many concepts, schemas and schemes, a set of 

operational invariants and a set of symbolic and language representations.  

Multiplication is classified into various classes of problems (discussed in section 2.3.2, 

of this chapter), calculation techniques to solve those problems (discussed in section 

2.4 of this chapter), and different representations, as discussed above.  The schemas 

formed by these different concepts can be explored by means of schemes, which 

consist of operational invariants (concepts-in-action and theorems-in-action).  

Learners were required to represents the various classes of multiplication problems 

by using different representations and a calculation technique to solve a problem. 

 

2.3 Multiplicative reasoning as a conceptual field 

Brown et al. (2010) acknowledge that the delineation of multiplicative reasoning is 

complex, since mathematical content is developmental (concepts become more 

abstract and complex) (Agosino et al., 2010; Geary, 2004).  Multiplicative reasoning 

as a conceptual field consists of numerous interconnected concepts represented in 
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various forms.  Siemon et al. (2010, p. 2) identify three characteristics of multiplicative 

reasoning.  First, they suggest that it is the “capacity to work flexibly and efficiently 

with an extended range of numbers”, which includes whole numbers, decimals, 

fractions, ratios and percentages.  Second, it is the “ability to recognise and solve a 

range of problems involving multiplication or division, including direct and indirect 

proportion”.  Third, it is “the means to communicate effectively in a variety of ways”.  

The various ways of communication that they suggest are through external 

representations and include the use of words, writing, diagrams and symbolic 

expressions.  Siemon et al. (2010, p. 2) summarise this as the “capacity to work flexibly 

with the concept, techniques and representations of multiplication (and division) as 

they occur in a wide range of contexts”. 

 

2.3.1 Developmental nature of conceptual fields 

Mathematical content is developmental, since additive reasoning requires lower-order 

reasoning, whereas multiplicative reasoning requires higher-order reasoning and 

proportional reasoning requires even more complex reasoning that combines 

numerous ideas and techniques (Ernst, 2004; Hart, 1981).  Multiplicative reasoning is 

also a developmental theory as it deals with the progression in the complexity of 

mathematical knowledge and calculation techniques over an extended period 

(Vergnaud, 1982; 2009; 2013a).  For example, according to the CAPS followed in 

South Africa, learners solve multiplication problems with whole numbers from Grade 

2 onwards (DBE 2011a).  The multiplication of fractions and decimal numbers is 

introduced in Grade 5 and 6 respectively (DBE, 2011b).  Consequently, the 

understanding of the multiplication of decimals is more complex than the 

understanding of the previously learnt concepts (multiplication of whole numbers and 

fractions).     

 

The developmental nature of mathematical content is evident in the difference in 

complexity of additive, multiplicative and proportional reasoning.  Since learners need 

to make a cognitive shift from additive to multiplicative and then to proportional 

reasoning, it is important to understand the difference between these conceptual 

fields.  Table 2.2 contains a summary of the differences between the various types of 

reasoning, which are subsequenlty explained.   
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Table 2.2: The difference between additive, multiplicative and proportional 

reasoning 

Additive reasoning Multiplicative reasoning Proportional reasoning 

Numerical / single-unit 
reasoning  

Quantitative / equal-group 
reasoning (composite 
structure) 

Comparative / Part-whole 
and part-part reasoning 

Preserving composition  Transforming composition    Transforming composition 

Absolute reasoning Relative reasoning  Relative reasoning  

Part-part-whole 
reasoning / additive 
partitioning 

Factor-factor-product 
reasoning   

Factor-factor-product 
reasoning 

Lower-order reasoning 
Higher-order of abstract 
reasoning  

A complex form of reasoning 

 

To indicate the differences between these three types of conceptual fields, additive, 

multiplicative and proportional reasoning are explained in the next section. 

 

i. Additive reasoning 

Additive reasoning includes the operations addition and subtraction, and learners are 

required to think of numbers as a unit (e.g. 1, 2, 3 each is a unit on its own), which 

involves lower-order reasoning  (Tobias & Andreason, 2013; Tzur et al., 2013).  

Additive reasoning requires part-part-whole reasoning, which implies adding or 

subtracting numbers of the same unit, in other words, the composition is preserved 

(see Table 2.2) (Hurst & Hurrell, 2014; Siemon et al., 2010; Tzur et al., 2010; 2013).  

For example, if there are five apples and you add three apples you have eight apples 

in total.  Hence, the answer is given in the unit that you have added (apples, in this 

case).  Furthermore, when reasoning additively you reason in an absolute manner, 

which implies that you make comparisons in additive terms.  For example, if Sue has 

five apples and John has seven apples, John will have two more apples than Sue 

(Reynolds,  2013b).   

 

ii. Multiplicative reasoning 

Multiplicative reasoning consists of multiplication and division and calculations are 

done in equal groups (composite structures).  This is also known as quantitative 

reasoning.  For example, to calculate 4 × 2, learners count in 2s four times: 2, 4, 6, 8 
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(Ell, 2001; Siemon et al., 2010).  They need to count in groups and keep track of how 

many times they need to count in a particular group, which demands a higher order of 

abstract reasoning than that required for additive reasoning (see Table 2.2) (Clark & 

Kamii, 1996).  Multiplicative reasoning requires factor-factor-product reasoning, rather 

than the part-part-whole reasoning used as in additive reasoning.  For example, 5 dogs 

× 4 legs per dog = 20 legs altogether (Siemon et al., 2010; Tzur et al., 2010).  

Therefore, when multiplying with different units (dog × legs per dog = legs), the 

composition is transformed and requires relative reasoning (Tzur et al., 2010). The 

legs per dog is relative to how many dogs there are, therefore, multiplicative reasoning 

requires learners to recognise the relationships between quantities (Luneta, 2013; 

Tobias & Andreason, 2013; Zhang et al., 2011).  

 

What makes multiplicative reasoning more abstract than additive reasoning is the 

ability to unitise, in other words, to construct a reference or composite unit, and then 

use it to reinterpret a problem in terms of that unit (e.g. thinking in terms of 2s or 3s, 

instead of one object at a time) (Lamon, 1994).  Moreover, learners are required to 

combine two magnitudes with different units of measurements to produce a quantity 

whose unit of measurement is different from those that are combined (e.g. h × km/h = 

km), or to produce an intensive quantity that is a new unit of measurement (e.g. km ÷ 

h = km/h) (Lamon, 1994).  Learners therefore have to make a shift to more abstract 

thinking in order to reconceptualise their thinking and form a new schema.  This 

conceptual shift needs to take place during the Intermediate Phase (Grades 4 to 6) to 

enable them to understand more complex and even more abstract mathematical 

content such as proportional and algebraic reasoning during the Senior Phase 

(Grades 7 to 9).   

 

iii. Proportional reasoning 

As shown in Table 2.2 and discussed under the heading multiplicative reasoning, 

proportional reasoning also requires relative reasoning and the transformation of the 

composition of a problem.  This contrasts with absolute reasoning, in additive 

reasoning, where the composition is preserved.  Proportional reasoning is an 

extension of, and is more abstract than multiplicative reasoning in that it demands a 

complex form of reasoning including many interconnected ideas and techniques (Hurst 

& Hurrell, 2014; Luneta, 2013).  In the case of proportional reasoning, learners no 
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longer need to recognise relationships between quantities as in multiplicative 

reasoning, but have to recognise relationships between relationships (Luneta, 2013).  

For example, the ratio of apples to cost is 1:3.  If I buy ten apples, how much will they 

cost?  Moreover, learners need to compare part to whole (e.g. fractions, percentages) 

or part to part (e.g. ratios) in proportional reasoning (Tobias & Andreason, 2013).    In 

other words, when learners reason proportionally, they can calculate the multiplicative 

relationship between a base ratio (e.g. double, half, four times greater/smaller) and 

the proportional context to which it applies (Reynolds, 2013a; 2013c).  For example, if 

the ratio of boys to girls is 2:4, the number of girls is double that of the boys, or the 

number of boys is half that of the girls.  The base ratio in this instance is then either 

double or half. 

 

To summarise, it can be said that additive, multiplicative and proportional reasoning 

demonstrate the developmemental nature of mathematical content.  Each of the three 

types of reasoning requires more complex and more abstract reasoning than the 

previous one, and an understanding of proportional reasoning depends to an extent 

on multiplicative reasoning, which in turn depends to an extent on an understanding 

of additive reasoning.  Additive, multiplicative and proportional reasoning are all 

examples of conceptual fields.  Problems that require multiplicative reasoning, on 

which my study focused, include different situations or contexts that clarify 

multiplication.  For the purpose of this study, these different situations or contexts are 

called classes of multiplication problems, which will now be discussed.  

 

2.3.2 Classes of multiplication problems 

Multiplication problems can be categorised into various classes based on the different 

levels of abstraction.   These classes of problems are developmental as the level of 

abstraction differs from one problem to the next (Greer, 1992; Vergnaud, 1983).  

Different authors categorise the classes of multiplication problems differently, however 

all the authors that are discussed use Vergnaud’s categorisation as their basis for 

identifying the different classes of multiplication problems, as summarised in Table 

2.3.  
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Table 2.3: Classes of multiplication problems for whole numbers according to 
different authors 

Vergnaud (1983) 

Siemon 
(2005), 

Siemon et al. 
(2010) 

Greer (1992) 
Mulligan 

(1992) 

Isomorphism of 
measures / 
simple proportion 

- Equal sharing 
- constant price 
- uniform speed 
- constant density 
on a line 

- groups of 
- partitioning / 
sharing 

- equal groups 
- equivalent 
groups 

 
- multiplicative 
comparison 
 

- comparison 

Product of 
measures 

- area 
- volume 

- arrays / 
regions - area 

- rectangular 
area or arrays 

- arrays 

- Cartesian 
product 

- Cartesian 
product / for 
each 

- Cartesian 
product 

- Cartesian 
product 

Multiple 
proportion 
 

- consumption 
- production 
- expense 

 
 

  

 

Vergnaud (1982; 1983) points out the importance of the various classes of problems 

relating to multiplication and division and categorises multiplication problems into three 

broad classes: Isomorphism of measures/simple proportion; product of measures; and 

multiple proportion.  The first class of multiplication problems is isomorphism of 

measures, which includes simple, direct proportion.  The word isomorphism refers to 

a one-to-one correspondence where the relationship between the two numbers 

remains the same (Hosch, 2016).  This one-to-one correspondence can be 

represented by a linear function of one variable with a constant.  For example, 5 groups 

× 4 boys = 20 boys, with 5 being the variable and 4 boys the constant coefficient 

(Vergnaud, 2009).  The second class of multiplication problems, product of measures, 

includes the Cartesian product.  It is the product of two variables that changes into a 

third variable with a different unit (e.g. 1 m × 1 m = 1 m2).  The last class of 

multiplication problems is multiple proportion, where the product is proportional to the 

two variables (Vergnaud, 1983).  However, in the case of multiple proportion the 

variables cannot be reduced to a product of the others, for example: persons × weeks 

= expense.   

 

Vergnaud (1983) further refines the above-mentioned classes of problems by using 

specific situations where they are likely to be frequently found.  During my literature 

search, I found that Greer (1992), Mulligan (1992), Mulligan and Mitchelmore (1997), 
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and Siemon et al. (2010) based their categorisation of the classes of multiplication 

problem on Vergnaud’s (1983) work, with slight differences (see Table 2.3).  According 

to Siemon et al. (2010), the classes of multiplication problems are developmental in 

nature, which in this context, means that the various classes of multiplication problems 

have different degrees of difficulty or complexity and some require more abstract 

thinking than others.  Greer (1992), Mulligan (1992), Mulligan and Mitchelmore (1997), 

and Siemon et al.’s (2010) categorisation of the classes of multiplication problems is 

less comprehensive than that of Vergnaud (1983).  Greer (1992), Mulligan (1992) and 

Mulligan and Mitchelmore (1997) added multiplicative comparison and arrays, but did 

not include multiplicative proportion.  The various classes of multiplication problems 

will now be discussed in more detail by using Vergnaud’s (1983) main classes of 

multiplication problems. 

 

2.3.2.1 Isomorphism of measures 

Many multiplication problems encountered in everyday life can be categorised as 

isomorphism of measures.  According to Vergnaud (1983), isomorphism of measures 

has a structure that can be seen as direct proportion between two measure-spaces, 

M1 (measure-space 1) and M2 (measure-space 2), and can be represented by a simple 

correspondence table (see Table 2.4).  For example: If one sweet costs R7, how much 

will nine sweets cost? In this case the correspondence table will look as follows. 

 

Table 2.4: Example of isomorphism of measures 

 

 

In general, these multiplication problems have two numbers (e.g. 9 sweets × R7 per 

sweet) that must be multiplied.  However, these two numbers have different roles.  The 

one number is the multiplier (9 sweets) and the other the multiplicand (R7), with the 

multiplier operating on the multiplicand (Greer, 1992).  Vergnaud (1983) refines this 

idea by explaining that learners can conceptualise these problems in two different 

ways: Seeing it as either a binary law of composition or as a unary operation.  If, on 

the one hand, they conceptualise it as a binary law of composition, learners view the 

two numbers that need to be multiplied as plain numbers with no magnitude connected 

M1 (Sweets) M2 (Rand) 

1 R7 

9 ? 
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to them (e.g. 9 × 7 or 7 × 9).  On the other hand, they could conceptualise it as a unary 

operation, which implies that they will utilise one number as a scalar operator with no 

magnitude (see Table 2.5).   

 

Table 2.5: Using a scalar operator 

M1 (Sweets) M2 (Rand) 

1 R7 

× 9                     × 9 

9 ? 

 

Alternately, learners may use it as a function operator, which implies a coefficient of a 

linear function from M1 to M2.  Its unit is the quotient of two other units (e.g. rand per 

sweet) (see Table 2.6). 

 

Table 2.6: Using a function operator 

M1 (Sweets) M2 (Rand) 

1 R7 

× 7 

9 ? 

× 7 

 

Vergnaud (1983) proposes four classes of multiplication problems under isomorphism 

of measures, namely equal sharing/groups, constant price, uniform speed and 

constant density on a line (see Table 2.3).  Like Vergnaud (1983), Greer (1992), 

Mulligan (1992), Mulligan and Mitchelmore (1997), and Siemon et al., (2010) also 

include equal sharing/groups, but exclude constant price, uniform speed and constant 

density on a line.  Mulligan (1992), Mulligan and Mitchelmore (1997), and Greer (1992) 

add multiplicative comparison to Vergnaud’s (1983) classification (see Table 2.3).  

Each of the five classes of multiplication problems will now be discussed. 

 

i. Equal groups 

Equal groups are multiplication problems that learners encounter in their first years of 

school (Greer, 1992).  Multiplication problems of this class normally include several 

groups, each consisting of the same number of persons and objects (Greer, 1992; 

Mulligan, 1992; Mulligan & Mitchelmore, 1997; Vergnaud, 1983).  For example: Four 

boys each have ten marbles.  How many marbles do they have altogether?  Or: There 
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are five tables with two learners seated at each table.  How many learners are there 

altogether?  Greer (1992) postulates that the equal groups idea can be seen in 

different situations, for example in cases of natural replication (e.g. 4 girls each have 

5 fingers), repetition of a sequence of actions (e.g. taking 5 steps 8 times) and human 

practices (e.g. I give 3 learners 4 sweets each).  Siemon (2005) and Siemon et al. 

(2010) also include equal groups (counting in, for example, 3s: One 3 = 3, two 3s = 6, 

three 3s = 9, etc.), which they propose lead to partitioning/sharing (e.g. 12 is two 6s, 

three 4s or four 3s).    

 

ii. Constant price 

The second class of multiplication problems is constant price, which includes goods 

and cost and represent simple proportions with no comparisons (e.g. Mary buys 8 

chocolates at R9 each. How much does she have to pay?) (Vergnaud, 1983).  The 

mathematical idea that applies here is the same as the equal groups idea in that it 

represents groups that consist of the same number of people/objects.  However, even 

though problems in this class are mathematically equivalent to the equal groups 

problems, they have different semantic structures, which can evoke a different 

scheme.  In turn, these different schemes could lead to different calculation techniques 

and learners could perceive them as more difficult than the equal groups problems 

(Mulligan, 1992; Mulligan & Mitchelmore, 1997).  

 

iii. Uniform speed and constant density on a line 

The third and fourth classes of multiplication problems are uniform speed and constant 

density on a line.  Uniform speed includes duration and distance (e.g. Eric drives 80 

km/hour on the highway.  How far will he drive in 5 hours?), and constant density on 

a line includes, for example, trees and distances (e.g. There are 5 trees per km with 

equal distances between them.  How many trees will there be over a distance of 8 

km?) (Vergnaud, 1983).  These classes of multiplication problems are mathematically 

the same as the equal groups and constant price classes, but again the semantic 

structures are different.  While learners in South African schools solve money 

mathematical problems in the Intermediate Phase (Grades 4 to 6) (DBE, 2011b), 

however they are only confronted with uniform speed in the Senior Phase (Grades 7 

to 9) and constant density on a line problems are extremely rare, if done at all (DBE, 

2011c).  For South African learners, uniform speed and constant density on a line 
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problems are therefore expected to be more difficult than equal groups and constant 

price problems.   

  

iv. Multiplicative comparison 

Greer (1992), Mulligan (1992), and Mulligan and Mitchelmore (1997) identify 

multiplicative comparison as another isomorphism of measures.  Kouba (1989) refers 

to problems of this kind as scalar problems.  Although Vergnaud (1983) does not 

explicitly identify this as a separate class of problems, he does explain it as one way 

in which learners can solve isomorphism of measures problems (see Table 2.5).  An 

example of multiplicative comparison is: Susan has 4 pens.  If Pete has two times as 

many pens as Susan, how many pens does Pete have?  Or: There are 8 boys in a 

class and three times as many girls in a class.  How many girls are there?  Problems 

of this type can be identified by the phrase (keywords) times as many, which, if 

understood, can be a link to understanding ratio (Greer, 1992; Hurst, 2015).  Greer 

(1992) agrees with Vergnaud (1983) that problems of this type require a different kind 

of thinking than the previous problems. They can be viewed in two ways, i.e. the scalar 

operator can either be seen as the multiplier (e.g. 2 × 4 pens, where 2 is the scalar 

operator/multiplier), or can be seen in terms of many-to-one correspondence (e.g. 

Pete had 2 pens and Susan has 1 pen), where the 2 pens are the multiplier, thus 

making use of a ratio or proportional reasoning.  Consequently, Greer (1992), Mulligan 

(1992) and Mulligan and Mitchelmore (1997) make use explicitly of a semantic 

structure that has a scalar operator (times as many), whereas Vergnaud (1983) 

expects learners to imply it without using the explicit semantic structure. 

 

To summarise, the following five classes of multiplication problems are classified 

under the isomorphism of measures: Equal groups, constant price, uniform speed, 

constant density and multiplicative comparison.  Although all five classes of 

multiplication problems are seen as mathematically equivalent, they have different 

semantic structures, which can make the multiplication problems less or more 

complex.  However, multiplicative comparison problems differ slightly from the other 

classes and can be viewed either as having scalar operators or as ratio problems 

(Greer, 1992).  In the South African school context, uniform speed and constant 

density on a line multiplication problems would be more difficult as learners in Grade 

6 have not yet been exposed to them.    
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2.3.2.2 Product of measures 

Product of measures multiplication problems include two measure-spaces, M1 and M2, 

which change into a third, M3 (Vergnaud, 1983).  These problems have at least three 

variables and can be represented by a double-correspondence table (see Table 2.7).  

In these problems the two numbers that are multiplied play equivalent roles, in other 

words, there is no distinction between the multiplier and the multiplicand (Greer, 1992).  

For example: The length of a floor is 5 metres and the breadth is 3 metres.  What is 

the area of the floor? 

 

Table 2.7: Double correspondence table for product of measures problems 

Breadth 
(metres) 

Length (metres) 

 1 2 3 4 5 

1      

2     

3  15 m2 (area) 

       

The first class of problems under the product of measures are arrays.  While Vergnaud 

(1983) does not include arrays, Hurst (2015), Jacob and Mulligan (2014), and Siemon 

et al. (2010) agree on their importance and that they differ from area.  Arrays make 

use of discrete objects and the conception is additive (e.g.               ).  A grid, as seen 

in Table 2.7 above, is regarded as more powerful than arrays as it links with the area 

idea, promotes the idea of a composite unit or an entity, promotes an understanding 

of the distributive and commutative property of multiplication, and represents 

Cartesian product problems (Hurst, 2015; Jacob & Mulligan, 2014).  Siemon et al. 

(2010) suggest that the arrays/region idea embodies the groups of idea and leads to 

the area idea where one can work with bigger numbers.  Furthermore, they view grids 

as the basis for understanding fraction diagrams, which can help learners to 

appreciate the two-dimensional (semi-concrete) property of multiplication (Young-

Loveridge, 2005).    

 

The second and third classes of multiplication problems under product of measures 

are area (e.g. The length of a floor is 5 metres and the breadth is 3 metres.  What is 

the area of the floor?) and volume (e.g. If a pipe is 100 cm long and has an area of 13 

cm2, what will the volume be?).  As discussed above, area has the same benefits as 
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arrays, with the difference that larger numbers can be used in area problems.  Area 

provides a useful way to represent binary operations, such as commutativity (e.g. 3 × 

4 or 4 × 3) (Greer, 1992).  The same arguments apply to volume, which has only one 

added dimension, i.e. depth, which is conceptually more abstract than area.        

 

The last class of problems under the product of measures is the Cartesian product 

(see Table 2.3).  For example: Six girls and three boys are at a dance.  Each boy 

wants to dance with each girl, and vice versa.  How many different girl-boy couples 

are possible?  Vergnaud (1983) views this type of problem as more difficult to 

conceptualise than the other types of multiplicative context problems since it involves 

double proportions.  In France, this type of problem was introduced in the second and 

third grades; however, learners were unable to conceptualise it as they first needed to 

understand simple-proportion problems before they could grasp double-proportion 

problems, of which the Cartesian product is an example.  Greer (1992) agrees with 

Vergnaud and defines it as a sophisticated way of defining multiplication.  The 

Cartesian product idea can also be seen in how the place-value system is structured.  

For example, for each ten there are 10-ones, for each one there are 10-tenths, and so 

forth (Siemon et al., 2010).  In the South African school context, the Cartesian product 

is introduced with probability in the FET (Further Education and Training) Phase 

(Grades 10 to 12).   

 

To summarise, product of measures includes four classes of multiplication problems: 

Arrays, area, volume and the Cartesian product.  The first three products of measure 

seem similar in respect of the calculation technique that learners can employ to solve 

them.  However, whereas in the case of arrays learners may make use of additive 

reasoning, they can make use of only multiplicative reasoning for calculations of area 

and volume.  Since it involves multiple proportion, the Cartesian product requires 

different reasoning and learners usually struggle to understand the reasoning behind 

it.  

     

2.3.2.3 Multiple proportion 

Although the structure of multiple proportion problems is similar to that of the product 

of measures with regard to mathematical relationships, it differs in respect of the third 

measure-space.  These problems consist of two different and independent measure-
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spaces, namely M1 and M2, with M3 being proportional to M1 and M2 (Vergnaud, 1983).  

Time is often present as a magnitude in problems of this type, with each of the 

magnitudes having its own meaning, which means that it cannot be reduced to a 

product of the others.  For example: A family of three people wants to spend ten days 

at a resort.  The cost per person is R400 per day.  How much will the holiday cost?  

The calculation will be: 3 people × 10 days × R400 = R12 000 (Vergnaud, 1983).  The 

classes of multiplication problems that Vergnaud (1983) uses to represent multiple 

proportion are consumption, production, and expense.      

 

The first class of multiplication problems that involves multiple proportion is 

consumption.  For example: At a camp each child eats 500 grams of cereal per day.  

How much cereal will 150 children eat over a 10-day period?  The second class of 

problems is production.  For example: One cow produces an average of 15 litres of 

milk in six days.  How much milk will seven cows produce over a period of 120 days?  

The third class of problems is expense (Vergnaud, 1983).  For example: A family of 

five goes to a resort for a holiday.  The cost per person is R350 per day.  What will it 

cost the family for seven days?  Multiple proportion problems are more difficult to solve 

as the context consists of three variables, instead of two as with the other problems.  

These examples have more than one unknown and one unknown has to be worked 

out to determine the other unknown.  In South Africa, problems of this type are only 

done in secondary school, if at all.     

   

2.4 The developmental nature of calculation techniques   

When solving addition and multiplication problems, learners use various calculation 

techniques that provide an indication of the level on which they are solving those 

problems, and whether they reason multiplicatively or additively.  While Ell (2001),  

Siemon et al. (2010) and Zhang et al. (2011) are uncertain about how learners 

advance from additive to multiplicative reasoning, Clark and Kamii (1996), Hurst and 

Hurrell (2014), and Tobias and Andreasen (2013) believe that multiplicative calculation 

techniques develop from additive calculation techniques, which are based on counting.  

In contrast, Confrey (1994) postulates that multiplication calculation techniques should 

rather develop from splitting (e.g. dividing a piece of paper in two halves, four quarters, 

eight eighths, etc.).  When learners count, the focus is on the concept of unit numbers, 
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which leads to additive reasoning, whereas splitting focuses on the relationship 

between numbers and is a precursor of understanding exponents (Confrey, 1994; 

Vergnaud, 2009).  Splitting avoids additive reasoning as it forces learners to reason 

multiplicatively and proportionally (Confrey, 1994).  A study done by Empson and 

Turner (2005), which involved 30 learners in Grades 1, 3 and 5 in the USA, found that 

by teaching splitting, learners are encouraged to think multiplicatively.  Confrey (1994) 

suggests that counting and splitting should be taught simmultaneously as both are 

necessary and of equal importance.   

 

2.4.1 Other research studies on calculation techniques 

Numerous counting techniques exist that lead to multiplication calculation techniques.  

Various authors identify calculation techniques that might indicate learners’ 

progression from additive to multiplicative reasoning.  However, they suggest different 

categorisation of the calculation techniques.  While Hulbert and Laird (2013) created 

a framework of calculation techniques based on a long-term project, the calculation 

techniques proposed by Jacob and Willis (2003) are a summary of other research 

studies, and those suggested by Carrier (2014), Kouba (1989), Mulligan (1992) and 

Zhang et al. (2011) are based on empirical research.  The calculation techniques 

suggested by the abovementioned authors are summarised in Table 2.8 below.   
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Table 2.8: Summary of calculation techniques identified by different authors  

Mulligan  
(1992, p. 34) 

Jacob & 
Willis 
(2003) 

Kouba  
(1989, p. 151); 
Zhang et al.  

(2011, pp. 56, 
58) 

Hulbert & Laird 
(2013) 

Carrier  
(2014, p. 91) 

   
 
 

Non-quantifier 

   Guess 
Spontaneous 

guesser 

   
 
 

Keyword finder 

Counting all 
One-to-one 

counting 
Unitary counting 

Counting by 
ones 

Counter 

   
Inconsistent 
groupings 

 

Skip counting 
 
 

Skip counting Skip counting  

Repeated 
addition 

Additive 
composition 

Repeated 
addition 

Repeated 
addition 

Repeated adder 

Additive 
doubling 

    

Known 
addition fact 

    

 
 
 

 Doubling  

 
Many-to-one 

counting 
Double counting   

 
 
 

 Algorithms  

 
Multiplicative 

relations 
 

Distributive 
properties 

 

Derived 
multiplication 

fact 
  Derived fact  

Known 
multiplication 

fact 

Operating on 
the operator 

Direct retrieval Known fact  

  
While conducting a longitudinal study in Australia, Mulligan (1992) interviewed four 

times 70 female participants in Grades 2 and 3.  She asked them to solve five 

multiplication and five division word problems with whole numbers, using either mental 

calculation or 3D cubes.  The aim was to analyse the calculation techniques that those 

participants used and to establish how they had developed those techniques.    The 

questions included the following five classes of multiplication problems: Equivalent 

groups, rate, comparison, array and Cartesian product.  Only correct answers were 

analysed.  Based on the analysis, she identified seven multiplication calculation 
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techniques, which are shown in Table 2.8.  The participants used all seven 

multiplication calculation techniques for all the questions.  With each interview the 

participants’ performance improved.  They performed better doing the problems with 

small numbers than those with bigger numbers and continued struggling with 

Cartesian and factor problems. 

 

In the USA, Zhang et al. (2011) conducted a teaching experiment (using a pre- and a 

post-test) with three Grade 5 learners with learning difficulties.  The questions included 

multiplication, partitive, and division problems.  The participants were taught how to 

double count by using 3D cubes.  When answering the questions, they had to explain 

how they would solve each problem.  The aim of this study was to determine which 

intuitive calculation techniques the participants used, and whether the teaching of 

double counting was likely to develop their multiplicative reasoning.  This particular 

study was based on another study conducted in the USA by Kouba (1989), who 

interviewed 128 participants in Grades 1 to 3 who had been asked to solve 12 

multiplication, division, addition and subtraction problems (which included only two 

multiplication problems).  These participants, who were allowed to use 3D material to 

solve the problem, used four intuitive calculation techniques, namely, unitary counting, 

skip counting and repeated addition.  In their study, Zhang et al. (2011) also found that 

three of these four techniques were used intuitively.  The participants were then taught 

the fourth calculation technique, i.e. double counting.  In the pre-test, participants 

mostly used unitary counting, while in the post-test they used double counting more 

often than unitary counting.  All three participants showed significant improvement 

after the intervention as they were able to advance from intuitive calculation 

techniques to using more advanced techniques for calculation.  However, it took more 

than six times attempts before they started consistently using double counting.  Zhang 

et al.’s (2011) study further showed that learners with learning difficulties had problems 

with both conceptual understanding and information retrieval, and used fewer 

calculation techniques than those without learning difficulties.   

 

Carrier (2014) conducted a study in the USA for which fourteen Grade 4 participants 

were interviewed while they answered ten computer-based questions that focused on 

proportion.  Participants were allowed to use 3D material to help them solve the 

problems and had to answer the questions on a computer, but also had to write them 
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down and explain their calculations, or use 3D material to demonstrate how they had 

arrived at the solutions.  The purpose of this study was to identify indicators of 

multiplicative reasoning.  Carrier (2014) identified twelve calculation technique levels.  

These twelve levels are: Non-quantifier, spontaneous guesser, keyword finder, 

counter, adder, quantifier, measurer, repeated adder, coordinator, multiplier, splitter 

and predictor.  The twelve levels are an expansion of Clark and Kamii’s (1996) five 

levels on which Carrier (2014) had based his study (i.e. no serial correspondence or 

serial correspondence with qualitative quantification, additive thinking with a numeral 

sequence of +1 or +2, additive thinking involving +2 and +3, multiplicative thinking, but 

not with immediate success, and multiplicative thinking with immediate success).  

Clark and Kamii (1996) interviewed 336 participants in Grades 1 to 5 and asked them 

three questions that focused on proportion.  Since the questions asked were specific 

to the participants’ levels, the findings cannot be used for my study, but it is interesting 

to note that they found that multiplicative reasoning starts in the early grades and 

develops slowly.  Carrier’s (2014) twelve calculation technique levels show that 

learners make use of various calculation techniques that could serve as learning 

trajectories which could assist teachers in helping learners along to ultimately use 

multiplicative calculation techniques.  Apart from guesser, also identified by Hulbert 

and Laird (2013), none of his other calculation techniques were identified by other 

authors. 

 

Hubert and Laird (2013), Jacob and Willis (2003) and Mulligan (1992) propose 

different categorisation of the calculation techniques.  For my study, I chose the 

developmental approach to the categorisation of calculation techniques to determine 

whether learners use non-calculation, additive, or multiplicative calculation 

techniques.  My categorisation is based on and adapted from Hulbert and Laird’s 

(2013) classification model.  Each of the calculation techniques proposed by these 

authors (as listed in Table 2.8) will be discussed in the next section.  

 

2.4.2 Non-calculation techniques 

Carrier (2014) identifies three non-calculation techniques, namely non-quantifier, 

guesser, and keyword finder.  The only one of these that Hulbert and Laird (2013) and 

I agree with is guesser.  Learners that use the calculation technique of guesser, will 
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guess an answer and not use additive or multiplicative calculation techniques to solve 

the problem.  Non-quantifier and the use of keywords are not calculation techniques, 

as non-quantifiers cannot preserve quantity; therefore, they do not see eight as a 

specific quantity, but choose any number to solve a problem.  These learners will, for 

instance, when asked to calculate 3 × 2, calculate 3 × 4 as they do not yet understand 

the values of numbers (Carrier, 2014).  While using incorrect numbers to calculate the 

answer, they have to use another calculation technique that would probably be 

additive in nature.  In the same way, keyword finders decide on an operation by 

identifying keywords in a problem (Carrier, 2014).  They can use either valid or invalid 

keywords to decide which operation to use.  For example, they may wrongly think that 

the keyword ‘altogether’ or ‘total’ means multiplication, or they may rightly think that 

‘times’ means multiplication.  Having chosen which operation to use based on a 

keyword they can then choose any calculation technique to solve the problem.     

 

2.4.3 Additive calculation techniques 

When learners use additive calculation techniques, they think additively when solving 

multiplication problems.  The six additive calculation techniques (summarised in Table 

2.8) are: Unitary counting, inconsistent groupings, skip counting, repeated addition, 

additive doubling and known addition fact.  When learners start to count, they count 

objects one at a time.  This is called unitary counting.  All the authors included this 

calculation technique, but use different names, such as counting by ones (Hulbert & 

Laird, 2013), counter (Carrier, 2014), counting all (Mulligan, 1992; Zhang et al., 2011), 

and one-to-one counting (Jacob & Willis, 2003) (see Table 2.8).  Instead of objects, 

learners can use their fingers or tallies to count.  Second, inconsistent groupings, 

suggested only by Hulbert and Laird (2013), entail that learners make groupings that 

are different from those indicated by the problem.  For example, to calculate 3 × 4, 

learners count in groups of two (2, 4, 6, 8, 10, 12), instead of in groups of four (4, 8, 

12). 

 

Third, Hulbert and Laird (2013), Mulligan (1992) and Zhang et al. (2011) identify skip 

counting as a calculation technique.  Ell (2001), Jacob and Willis (2003) and Zhang et 

al. (2011) believe that skip counting usually follows unitary counting, but Hulbert and 

Laird (2013) disagree and place inconsistent groupings between direct counting and 
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skip counting.  When skip counting, learners count in multiples of numbers such as 3, 

6 and 9, but do not know when to stop counting.  For example, if they are asked to 

give the answer to 2 × 3, they will count in threes, but will not know when to stop (e.g. 

3, 6, 9, 12, 15), which indicates that they are, not yet able to coordinate two quantities, 

keep track when counting in threes and grasp how many times they need to count in 

threes (Zhang et al., 2011).   

 

Fourth, Carrier (2014), Hulbert and Laird (2013), Mulligan (1992) and Zhang et al. 

(2011) all include repeated addition, or additive composition, as it is called by Jacob 

and Willis (2003) (see Table 2.8).  Learners use repeated addition to solve a 

multiplication problem by adding the same number repeatedly (e.g. they calculate 3 × 

4 as 4 + 4 + 4 = 12).  These learners still think in additive terms.  When working with 

whole numbers, multiplication is often seen as repeated addition and even though the 

answer may be correct, it is not obtainded by way of multiplicative reasoning as 

learners cannot use this thinking process to solve problems involving fractions and 

decimal numbers (Kouba, 1989).   

 

Only Mulligan (1992) includes the last two calculation techniques, namely additive 

doubling and known addition fact.  Additive doubling occurs when learners calculating, 

for example 2 × 4, will calculate it as 2 + 2 is 4, and 4 + 4 is 8.  In the case of known 

addition fact, learners know an addition fact, for example 2 + 4 is 6.      

  

2.4.4 Multiplicative calculation techniques 

Multiplicative calculation techniques develop from additive calculation techniques and 

require higher-order multiplicative reasoning (Clark & Kamii, 1996).  Multiplicative 

calculation techniques include doubling, double counting, algorithms, distributive 

properties, derived and known multiplicative facts.  Hulbert and Laird (2013) are the 

only authors who identify doubling as a multiplicative calculation technique.  This 

means that learners double a number to solve a problem (e.g. 6 × 4, can be calculated 

as 6 doubled is 12 and 12 doubled is 24).  Double counting (Zhang et al., 2011) or 

many-to-one counting (Jacob & Willis, 2003) means that learners are able to keep 

track of two quantities at the same time.  For example, if they are asked what 4 × 5 is, 
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they will put up a finger each time they count in 5s until they have counted it four times. 

Therefore, one 5 is 5, two 5s are 10, three 5s are 15, four 5s are 20. 

 

Hulbert and Laird (2013) are the only author who identify algorithms as a multiplicative 

calculation technique that entails the use of the column method to solve a 

multiplication problem.  Distributive properties (Hulbert & Laird, 2013), also called 

multiplicative relations by Jacob and Willis (2003), occur where one or both numbers 

are ‘broken up’ in their place values to facilitate multiplication (e.g. 12 × 5, can be 

calculated as 10 × 5 + 2 × 5 = 50 + 10 = 60).  Mulligan (1992) identifies derived 

multiplicative fact, which is called derived fact by Hulbert and Laird (2013).  This is 

when, for example, learners calculate 13 × 6 as 12 × 6 is 72 + 6 is 78.  The last 

calculation technique, which is identified by all the authors with the exception of Carrier 

(2014), is known multiplicative fact (Mulligan, 1992), operating on the operator (Jacob 

& Willis, 2003), direct retrieval (Zhang et al., 2011), or known fact (Hulbert & Laird, 

2013).  Recall of learnt multiplicative facts is the highest-ranking calculation technique 

learners can use (Zhang et al., 2011).  For example, learners will immediately give the 

answer to 4 × 5 as 20.  Even though direct recall of multiplication facts is seen as the 

highest calculation technique, it is not by itself an indicator of multiplicative reasoning 

and thus not an indicator of conceptual understanding (Hurst & Hurrell, 2016).    

 

Thus the use non-calculation techniques indicate that learners are not using any 

additive or multiplicative calculation technique, which is usually due to a lack of good 

number sense.  When solving multiplication problems, additive calculation techniques 

are less efficient than multiplicative calculation techniques.  If multiplicative calculation 

techniques are learnt after additive calculation techniques, they are developmental, 

which means that the mastering of multiplicative calculation techniques require 

thinking of a higher order than additive calculation techniques.  How these calculation 

techniques link to internal and external representations is explained in the conceptual 

framework, which will be discussed below. 

 

2.5 Conceptual framework 

My study was based on the conceptual fields theory of Vergnaud (1982; 2009; 2013a), 

which builds on Piaget’s theory of cognitive development.  Vergnaud (2013a) 



46 
 

acknowledges the work of Piaget in his conceptual fields theory, but points out 

shortcomings in Piaget’s theory regarding cognitive development.  According to 

Vergnaud’s (2013a) view of progressive conceptualisation, conceptualisation 

continuously takes place in cognitive development during specific activities.  

Furthermore, Vergnaud (2013b) postulates that Piaget’s idea of cognitive 

development through adaptation is too general, biological and social to study and that 

Piaget fails to explain who adapts and to what.  However, Piaget (1953) does explain 

that people adapt to their environments, and that intelligence structures the 

environment it encounters.  Piaget (1953, p. 4) also proposes that it is “the relationship 

of thought to things” that adapts.  Although in cognitive development the main function 

of thought remains invariant, the structures in the mind are variant (Piaget, 1953).  The 

two invariant operations mentioned by Piaget (1953) namely organisation and 

adaptation, link well with what Vergnaud (2009; 2013b) call schemes.  According to 

Piaget (1953), the process of adaptation takes place when a person is transformed by 

the environment (Piaget 1953).  With his conceptual fields theory, Vergnaud (2013b) 

clarifies this idea and postulates that learners adapt to situations, and it is in fact the 

schemes that adapt when learners are confronted with new situations.  Vergnaud 

(2009; 2013b) proposes that this situation-scheme pair replaces the stimulus-

response, which is well known in psychology.  The situation-scheme pair is the root of 

cognitive development.  The activity (external representations) that is generated when 

learners are confronted by classes of problems (situations) is the focus of my study, 

as summarised in Figure 2.1.  Proficiency in this activity (external representations) for 

solving specific mathematical problems is essential if learners are to master 

mathematical content.   

 

2.5.1 The interplay between internal thinking processes and external 

representations 

In any interaction between a researcher and learners, the researcher provides external 

representations to the learners.  These representations are the classes of 

mathematical problems, the material that they should use to solve the problem and 

the sequence in which they are required to solve a multiplication problem.  Learners 

need to interpret the given information and decide, based on that information and their 

prior knowledge (internal representations), how to solve the given multiplication 
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problem.  This decision-making process involves internal cognitive processes, which 

include the transformation or creation of new schemes and schemas.  Once the 

learners have decided how to solve the given problem, they then give the solution by 

using observable and measurable external representations (see Figure 2.1).  This 

process will be discussed in the next section. 
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Figure 2.1: The interplay between internal thinking processes and external 
representations 
 

As a researcher, I sought to gather measurable and observable data (external 

representations).  In order to accomplish this, I needed instruments and methods that 

could produce measurable and observable results.  Furthermore, I was interested in 

determining which processes learners followed to solve multiplication problems, and 

whether their cognitive processes were proficient.  For this reason I used Vergnaud’s 

(2009; 2013a; 2013b) scheme theory, for which he provided a comprehensive 

definition (see section 2.2.2 of this chapter), with the two important components 

concepts-in-action and theorems-in-action.  However, the transformation process is 

External input 
(Provided by researcher) 

Cognitive transformation 
(Internal processes of learners) 

External output 
(Solutions provided by 

learners)  

• Task-based interview 
questions  
(ten classes of 
multiplication problems)  
Equal groups 
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   - constant price 
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  Rectangular arrays 
- array 
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- consumption 
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- abstract (pen and  
  paper)  
- semi-concrete (pen  
  and paper) 
- concrete (3D 
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• Evidence of conceptual 
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- Level 1B: skip counting 
- Level 1C: repeated  
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      multiplication fact 

Strategic competence 
Schemes 

(internal reasoning) 

Theorems-
in-action 
(organising 
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  and how to  
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not visible or measurable.  It is only through external representations that I could infer 

how learners used schemes to solve problems.   

 

2.5.1.1 External and internal input 

I provided the materials and question to serve as external input, which included the 

ten multiplication problems, the sequence in which I wanted them to solve the 

problems and the material that could be used for that purpose.  Learners consulted 

their prior knowledge of the concept of multiplication, their schemas, and their existing 

schemes for solving multiplication problems.  These served as internal input for my 

study (see Figure 2.1).    

 

i. Internal input 

Conceptual understanding implies an integrated and functional grasp of related 

mathematical ideas (Kilpatrick et al., 2001).  It furthermore implies that learners with 

conceptual understanding are able to grasp the full meaning of a mathematical 

concept and can discern, interpret and compare ideas in various situations (Panasuk, 

2010).  This idea corresponds to what Skemp (1976) refers to as relational 

understanding, which he defines as the knowledge of what to do and why you do it.  

Learners should have knowledge of the multiplication concept which should be more 

than isolated facts.  In mathematics, conceptual understanding is a highly complex 

process of abstraction as learners’ understanding is determined by the number and 

strength of the connections that they make when confronted with new concepts 

(Barmby et al., 2007; Panasuk, 2010).  The more connections are made, the better 

the conceptual understanding.  The idea to group related concepts together has led to 

the forming of conceptual fields, which include multiplicative reasoning.  The 

multiplicative conceptual field is made up of schemas that consist of different concepts 

and competences.  It is important to have a conceptual understanding of the 

multiplicative conceptual field as it helps learners to build a schema that consists of a 

network of different representations of a specific concept, and consequently to make 

connections between mental representations (Barmby et al., 2007).  It is, therefore, 

possible for learners to have conceptual understanding before they are able to 

verbalise it (Kilpatrick et al., 2001).  When learners are asked to solve a mathematical 

problem, they do it by using their internal representations together with given external 

representations.  
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ii. External input 

I provided external input, which included multiplication problems, the sequence in 

which I wanted the learners to present their answers, and the material needed to solve 

the given problems (see Table 2.1).  To evaluate the participants’ proficiency in solving 

whole-number multiplication problems, I selected ten classes of multiplication 

problems from the relevant literature.  These can be grouped together into five 

categories of multiplication.  The five categories of multiplication on which the majority 

of authors agree and their classes of multiplication problems were discussed in depth 

in section 2.3.2 of this chapter and for the purpose of this study, included: Equal groups 

(equal sharing, constant price, unit speed), multiplicative comparison (times as many, 

simple proportion), rectangular arrays (arrays, area, volume), Cartesian product 

(combinations), and multiple proportion (consumption).  In order to evaluate the 

conceptual understanding of the various classes of multiplication problems among 

learners with learning difficulties, learners were asked to externally represent their 

schemes by using abstract, semi-concrete and concrete representations (see section 

2.2.3 of this chapter for discussion) and different materials.   

 

a. Proposed classes of multiplication problems for my study 

Twelve classes of multiplication problems were discussed (see section 2.3.2 of this 

chapter) under three main categories.  These classes of multiplication problems and 

main categories can be summarised as follows: 

 

• Isomorphism of measures, which includes the classes of multiplication 

problems known as equal sharing, constant price, unit speed, constant density 

on a line and multiplicative comparison; 

• Product of measures, which includes the classes of multiplication problems 

known as arrays, area, volume and Cartesian product; 

• Multiple proportion, which includes the classes of multiplication problems 

known as consumption, production and expense. 

 

For my study, I chose five categories, which are a combination of Greer (1992), 

Mulligan (1992), Mulligan and Mitchelmore (1997), and Vergnaud’s (1983) 
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classification, and included equal groups, multiplicative comparison, rectangular 

arrays, Cartesian product and multiple proportion (see Figure 2.1).  Under 

multiplicative comparison, I included another class of problems, namely simple 

proportion, which was not included by Greer (1992), Mulligan (1992), Mulligan and 

Mitchelmore (1997) and Siemon et al. (2010), but was implied by Vergnaud (1983).  I 

included it under multiplicative comparison and not under equal groups or multiple 

proportion, since the problems in the category equal groups have two variables and 

do not count as comparative problems.  Multiple proportion has six variables, of which 

two are unknown.  Simple proportion has four variables, one of which is known.  The 

category multiplicative comparison includes the idea of times as many, which 

compares two units of the same kind, and because of its comparative nature, simple 

proportion naturally fits in here even though it is somewhat more complex than times 

as many. 

 

Simple proportion is a comparison of two “between” or of two “within” ratios that covary 

(Lamon, 1994; Van de Walle et al., 2015).  Vergnaud (1994) also refers to these types 

of proportions, but names them functional and scalar ratios respectively.  “Between” 

ratio problems have two variables in different contexts, whereas “within” ratio problems 

have two variables in the same context.  Proportion problems of this kind include four 

variables and one unknown, unlike double proportions that have six variables and two 

unknowns (Vergnaud, 1983).  For example: If 2 boxes fruit juice cost R20, how much 

would 8 boxes of fruit juice cost?  If this is conceptualised it as a “within” or scalar ratio, 

the ratio of the original number of fruit juices (2) in comparison to the number of fruit 

juices in the second situation (8) will be considered.  When it is conceptualised as a 

“between” or functional ratio, the ratio of fruit juices (2) to money (R20) will be 

considered (Lamon, 1994; Vergnaud, 1983).  Personally I know many learners that 

struggle with proportional reasoning of this type, as teachers do not teach it as 

proportional reasoning but teach it rather in a procedural way.  Learners are taught to 

calculate the cost of one box of fruit juice and then to work out what eight will cost. 

         

The five categories of multiplication for this study are therefore equal groups, 

multiplicative comparison, rectangular arrays, Cartesian product, and multiple 

proportion.  First, under equal groups I included the following three classes of 

multiplication problems: Equal sharing, constant price and uniform speed.  The reason 
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for the inclusion of equal sharing and constant price is that they are the most 

recognisable problems that learners have been asked to solve since the Foundation 

Phase (Grades R to 3) and form the foundation of multiplication (DBE, 2011a).  I also 

included uniform speed because it is unfamiliar to learners as they will only be doing 

these problems later in their Grade 9 year (DBE, 2011c), however according to the 

mathematics textbooks they are introduced to the concept in Grade 4 (Bowie, 

Gleeson-Blaird, Jones, Morgan, Morrison, and Smallbones, 2012a).  I believe that it is 

important to see how learners reason when confronted with classes of multiplication 

problems with which they are not familiar.  I have left out constant density on a line as 

learners are not confronted with problems of this type in the South African school 

curriculum.  

 

Second, under multiplicative comparison, I included two classes of multiplication 

problems, namely times as many and simple proportion, which I separated from equal 

groups as they require thinking that is different from that required for equal groups 

(DBE, 2011a; Greer, 1992).  The first class of multiplication problems has a specific 

identifying phrase, namely times as many, and functions as a bridge to understanding 

ratios (Greer, 1992; Hurst, 2015).  Simple proportion is a new class of problem that I 

wanted to include as it compares two situations and problems of this kind are included 

in both mathematics and mathematical literacy in the South African curriculum (DBE, 

2011a).   

 

Third, under rectangular arrays I included three classes of multiplication problems, 

namely arrays, area and volume.  I decided to include arrays and area because 

learners are familiar with both.  Arrays are not included in the Intermediate Phase 

(Grades 4 to 6), but are dealt with it in the Foundation Phase (Grades R to 3) (DBE, 

2011a; 2011b).  I also included volume, and even though the reasoning is very similar 

to that for area, volume is a 3D problem whereas the other two are 2D problems.  In 

my experience, learners with learning difficulties find 3D thinking more difficult than 2D 

thinking.   

 

Fourth, under Cartesian product I included only combinations as a class of problems.  

Like Greer (1992), Mulligan (1992), Mulligan and Mitchelmore (1997) and Siemon et 

al. (2010), I separated the Cartesian product from rectangular arrays.  Although 
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combinations are only introduced in the FET Phase in the South African school 

curriculum (DBE, 2011d), I decided that I would like to explore how participants reason 

to solve problems in this class, which they have not previously encountered.  

 

Last, under multiple proportion I included the class of problems of consumption, which 

is explained by Vergnaud (1983).  Consumption problems are the most difficult 

problems, as they include two unknowns and they are not covered in the South African 

school curriculum.  Proportional reasoning is the essence of multiplicative reasoning 

its inclusion in a study of multiplicative reasoning is therefore essential.  I did not 

include expense as a class of problem as I did include consumption, which is already 

a difficult problem for learners.  Thus, both familiar and unfamiliar classes of 

multiplication problems were included in my study.  This was done to enable me to 

explore the conceptions that learners with learning difficulties have of both familiar and 

unfamiliar classes of multiplication problems.  How learners solve multiplication 

problems in these classes is discussed next.   

 

2.5.1.2 Transformation processes 

When asked to solve a multiplication problem, learners have to use a scheme.  They 

need to either create a new scheme or (more often) adapt an existing scheme to solve 

the multiplication problem.  Learners need to consider the external input given to them, 

as well as internal input, i.e. their prior knowledge of the concept, and then withdraw 

relevant information from both internal and external input.  This process, known as 

concepts-in-action is part of a scheme (thought in action) that learners activate to 

decide how to solve the problem.  Using the available information, they need to decide 

what type of problem it is: Multiplication, addition, subtraction, or division.  

Furthermore, once they have decided what type of operation to use, they must decide 

on the appropriate calculation technique to be used.  This forms part of the second 

component of a scheme, called theorems-in-action (see section 2.2.2.1 of this chapter 

for an in-depth discussion of schemes).  The role of theorems-in-action is to organise 

mental activity to solve a problem and thus to choose a relevant calculation technique 

based on their prior knowledge of calculation techniques.  The act of using a scheme 

to solve the given multiplication problem transforms the thinking and memory of 

learners and the adapted scheme becomes part of their memory and therefore 

transforms their prior knowledge.  Once learners have decided which operation and 



54 
 

calculation technique they can use, they can externally represent their thinking and 

the answer. 

 

2.5.1.3 External output 

When learners are asked to solve a multiplication problem, they first need to decide 

how the problem should be represented, and then what calculation technique to use.  

Even though a multiplication problem has only one correct answer, the answer can be 

calculated in multitude ways.  When researchers want to explore the proficiency of 

learners, they need to follow a multi-dimensional approach.  Considering only the 

answer is not enough as it does not tell you how learners think (Ayub et al., 2013; 

Barmby et al., 2007; Lesser & Tchoshanov, 2005; Panasuk, 2010; Panasuk & 

Beyranevand, 2011; Pape & Tchoshanov, 2001).  The use of different representations 

(abstract, semi-concrete and concrete) can shed light on learners’ understanding of a 

concept (Panasuk, 2010; Panasuk & Beyranevand, 2011).  This said, an evaluation of 

the calculation techniques that learners use reveals the level of procedural fluency 

they have for solving a problem and makes it possible to evaluate the proficiency of 

their schemes.    

 

Learners could use various materials, which served as their output, to solve 

multiplication problems and demonstrate their understanding.  These materials include 

pen and paper, drawings and the use of 3D materials, which they could manipulate to 

solve the problem and demonstrate their conceptual understanding.  The solving of a 

problem also requires calculation techniques that allow learners to count on their 

fingers, use symbols and explain in words how they arrived at the answer.  To decide 

which calculation technique to use, learners have to consider the internal and external 

input and then choose the best calculation technique for solving the specific problem.   

  

In order to help learners to make the switch to multiplicative reasoning it is important 

for teachers and researchers to be able to determine whether learners reason 

additively or multiplicatively (Jacob & Willis, 2003).  Carrier (2014), Hubert and Laird 

(2013), Jacob and Willis (2003), and Mulligan (1992) propose different categorising 

models.  For the purpose of this study, I used levels, which I adapted from those 

proposed by Carrier (2014), and selected categories to group the calculation 

techniques, namely non-calculation, additive, and multiplicative calculation 



55 
 

techniques, to reveal their developmental structures.  These categories, which were 

based on and adapted from those proposed by Hulbert and Laird (2013), as well as 

their corresponding calculation techniques and levels, are summarised in Table 2.9.   

 

The various calculation techniques that learners were the most likely to use were 

selected based on the information in the relevant literature.  They are discussed in 

detail in section 2.4 of this chapter and include non-calculation techniques (guesser), 

additive calculation techniques (unitary counting, skip counting, and repeated 

addition), and multiplicative calculation techniques (doubling, double counting, 

algorithms, distributive properties, derived, and known multiplication fact).  The 

calculation techniques were arranged into levels, which can be used to indicate how 

proficient learners are in solving a given multiplication problem.   

 

i. Proposed calculation techniques for solving multiplicative problems 

Since this study focused on learners with learning difficulties and some of the learners 

are behind their grade level in understanding mathematics, it was expected that the 

range of calculation techniques used would show considerable variation.  Section 2.4 

of this chapter, contains a discussion of all the calculation techniques that I could find 

that apply to multiplicative reasoning. They are: 

 

• Non-calculation techniques, including non-quantifier, keyword finder and 

guesser 

• Additive calculation techniques, including unitary counting, inconsistent 

groupings, skip counting, repeated addition, additive doubling and known 

addition fact 

• Multiplicative calculation techniques, including doubling, double counting, 

algorithms, distributive properties, derived multiplicative fact and known 

multiplicative fact 

 

For my study, I chose not to use the calculation techniques non-quantifier, keyword 

finder, inconsistent groupings and additive doubling.  I do not agree with Carrier (2014) 

that non-quantifier and keyword finder are calculation techniques.  Using different 

numbers than what is given is not a calculation technique, but rather an error.  
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Learners still have to use a Level 1 or Level 2 calculation technique to solve the 

problem.  Learners that use keywords only use it to identify what operation to use and 

they also need to use a Level 1 or Level 2 calculation technique for finding an answer.  

It, therefore, always needs to be used in conjunction with another calculation 

technique.  I also did not include inconsistent groupings and additive doubling as they 

are calculation techniques that are used when using 3D material to calculate an 

answer.  I evaluated the calculation techniques used by learners when they solved the 

multiplication problem by using abstract symbols.  Furthermore, I do not agree with 

Mulligan’s (1992) opinion that known addition fact as a calculation technique can be 

used for solving multiplication problems.  This calculation technique implies that you 

add, and that you see the problem as an addition and not as a multiplication problem.  

The chosen eleven calculation techniques for my study are summarised in Table 2.9. 

 
Table 2.9: Summary of calculation techniques and levels related to the 
development of multiplicative reasoning 

Calculation 
level  

Calculation technique Description 

Level 0 
Non-calculation 
techniques 

 

Level 0A Guesser 
Guesses the answer with no understanding of the 
problem 

Level 1 
Additive calculation 
techniques 

 

Level 1A Unitary counting 
Uses fingers or tallies to calculate answer counting 
each unit separately, e.g. 2 + 3 is 1, 2, 3, 4, 5  

Level 1B Skip counting 
Counts in multiples, such as 3, 6, 9, but does not 
know when to stop counting 

Level 1C Repeated addition Uses repeated addition, e.g. 3 + 3 + 3 = 9  

Level 2 
Multiplicative 
calculation techniques 

 

Level 2A Doubling 
Uses doubling, e.g. 6 × 4, is 6 doubled is 12, 12 
doubled is 24 

Level 2B Double counting 

Counts in multiples while keeping track of how 
many groups have been counted, e.g. 5 × 3, is 
calculated as one 5 is 5, two 5s are 10, three 5s are 
15 

Level 2C Algorithms Uses an algorithm, e.g. the column method 

Level 2D Distributive properties 
For example, 12 × 5 is calculated as 10 × 5 + 2 × 5 
= 50 + 10 = 60) 

Level 2E 
Derived multiplication 
fact 

For example, 13 × 5 is calculated as 12 × 5 is 60 + 
5 is 65  

Level 2F Known multiplication fact For example, 3 × 4 is 12 
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The calculation technique levels specify the development of proficiency, in other 

words, the higher the level, the more proficient learners’ calculation techniques are. 

The first calculation technique category consists of the non-calculation techniques, 

which means that learners are not using any counting techniques as they guess the 

answer.  There is only one non-calculation technique, Level 0A, as the technique is 

not additive or multiplicative yet.  The second category of calculation consists of the 

additive calculation techniques, which include unitary counting, skip counting and 

repeated addition and labelled as Levels 1A to 1C, as they imply that learners reason 

additively and have not yet made the switch to multiplicative reasoning.  The third 

calculation technique category was labelled Levels 2A to 2F, which means that 

learners could coordinate two quantities at the same time and had therefore made the 

conceptual shift to multiplicative reasoning to solve multiplication problems (Zhang et 

al., 2011).  The use of multiplication facts demonstrates abstract thinking and is seen 

as the highest cognitive developmental calculation technique (Hurst & Hurrell, 2014; 

Zhang et al., 2011).  However, knowing multiplication facts is not an indicator of 

conceptual understanding, but only of procedural fluency.  This was found in a study 

conducted by Hurst and Hurrell (2016) in Australia, where they interviewed sixteen 

Grade 6 participants.  Their aim was to determine whether participants could first solve 

problems mentally, using pen and paper, if not they were asked to show their 

calculations concretely.  They found that half of the learners could neither use an 

algorithm to calculate the answer, nor use 3D material to display the problem.   

 

2.6 Summary 

Multiplicative reasoning is a conceptual field that is developmental in nature and 

should develop over time with the transition from additive reasoning to multiplicative 

reasoning taking place during the Intermediate Phase (Grades 4 to 6).  To evaluate 

whether learners have made the transition, the nature of the calculation techniques 

that they use to solve multiplication problems can be explored.  Although there are 

four levels of calculation techniques, only Level 3 calculation techniques are indicative 

of learners’ ability to operate on a multiplicative reasoning level.  If the transition from 

additive to multiplicative reasoning is not made in the Intermediate Phase, learners will 

struggle with, for instance, proportional reasoning and algebraic reasoning, which build 
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on multiplicative reasoning.  Moreover, to evaluate learners’ conceptions and 

misconceptions of multiplication problems I explored how Grade 6 learners with 

learning difficulties represented each class of problem abstractly, semi-concretely and 

concretely.  These three levels of abstractness could give insight into learners’ 

understanding of multiplicative reasoning.   

 

From the literature review it emerged that learners struggle, and those with learning 

problems seems to struggle more, with the transition from additive to multiplicative 

reasoning.  This study attempted to explore the reasons for this failure in transitioning 

from additive to multiplicative reasoning by exploring learners’ proficiency in 

multiplicative reasoning, which includes conceptions and misconceptions in the 

abstract, semi-concrete and concrete understanding of multiplication and the 

calculation techniques, or lack of calculation techniques, used and the errors they 

made.    
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RESEARCH METHODOLOGY 

 

3.1 Introduction 

Ell (2001), Vergnaud (1982) and Zhang et al. (2011) claim that interviews offer the 

most powerful research method as it can shed light on learners’ thinking processes.  I 

therefore decided to conduct a qualitative case study with task-based interviews as 

my aim was to explore the proficiency of learners’ multiplicative reasoning.     

 

This chapter starts with a discussion of the paradigmatic perspective that underpins 

this study, which is critical realism.  This is followed by an explanation of my research 

design, which included the selection of participants and how I collected the data.  I 

then discuss the instrument used for data collection, which consisted of task-based 

interviews.  Thereafter, I explain how I analysed the data, followed by a discussion of 

the quality measures and ethical considerations. 

 

3.2 Paradigmatic perspective 

The philosophical paradigm that underpinned this study was critical realism.  Bhaskar 

coined the term critical realism during the 1970s as an alternative to the positivist and 

the interpretivist paradigms (Fletcher, 2017; Wynn & Williams, 2012).  One of the main 

beliefs subscribed to by critical realism is that we cannot reduce the nature of reality 

(ontology) to our knowledge of reality (epistemology).  Critical realism therefore places 

the focus on ontology, rather than on epistemology, and seeks to identify the 

components and interactions within a reality (Wynn & Williams, 2012).     

 

3.2.1 Ontological assumptions 

I discuss the ontological assumptions first as they lead to epistemology, and since the 

focus of critical realism focus is on ontology, rather than on epistemology (Cohen, 

Manion, & Morrison, 2011; Wynn & Williams, 2012).  Cohen et al. (2011) define 

ontology as how we think about the nature of reality or the nature of things.  According 

to Wynn and Williams (2012), critical realism has four ontological assumptions.  The 

first of these is that reality exists outside of people and can only be partially known 
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(Easton, 2010).  In this study, it is assumed that knowledge of multiplicative reasoning 

is developmental and exists independently of participants.   

 

The second ontological assumption is unique to critical realism as it views reality as 

stratified into three levels: Real, actual and empirical (Easton, 2010; Fletcher, 2017).  

First, the real level of reality consists of structures inherent in objects that act as causal 

mechanisms that produce events at the empirical level.  In this study, the real level 

included the classes of multiplication problems, the calculation techniques and the 

external representations that I required learners to use to demonstrate their conceptual 

understanding and procedural fluency of multiplicative reasoning.  Each of the 

multiplication problems represented various classes of multiplication with different 

levels of complexity (structures of mathematics).  Furthermore, I asked participants to 

demonstrate their conceptual understanding of the various classes of multiplication 

problems by means of abstract, semi-concrete and concrete representations 

(structures of understanding).  I then required them use calculation techniques to solve 

the multiplication problem (structures of calculation).  The classes of multiplication 

problems, the external representations and the calculation techniques act as causal 

mechanisms that required participants to produce a spoken answer that I could hear 

and one that I could observe in what they wrote, drew, or constructed by using 3D 

material (empirical level).  What the participants did depended on their prior 

knowledge, or internal representations, which they filtered through their experiences.  

When as the researcher I interpreted their responses and representations on the 

empirical level, I interpreted them by applying the theory and inevitably my 

interpretation was filtered through my experiences and what I saw, heard and 

observed (Godino & Font, 2010).  Second, the actual level of reality is a subset of the 

real level where events occur, regardless of whether they are observed or not.  The 

actual level of reality is usually different from what we observe at the empirical level 

as it is not filtered through human experience.  The actual level did not form part of my 

study as I could not observe it and it could therefore not be empirically measured 

(Easton, 2010; Fletcher, 2017).  This refers to events that occurred during the thinking 

process while participants were deciding how to solve the problem.  Since these 

events were not verbalised, I could only make inferences and draw conclusions based 

on what I observed or heard from the external representations, and could not 

speculate on what I had not observed or heard.  Finally, the empirical level of reality 
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is a subset of the actual level and is an event that we experience, measure or observe, 

and which influences our interpretation of it (Easton, 2010; Fletcher, 2017).  This study 

focused on the empirical level of reality, i.e. the external representations of 

participants, which I could observe or hear.   

 

The third ontological assumption is that of emergence.  This implies that the 

components of the different structures will emerge as they interact with one another 

and should not be seen in isolation (Wynn & Williams, 2012).  As the participants in 

this study solved the multiplication problem by using representations and calculation 

techniques, their conceptual understanding and procedural fluency of the 

multiplication problem and their strategic competence emerged, which provided an 

indication of how proficient they were in solving various classes of multiplication 

problems.   

 

The last ontological assumption of critical realism is the fact that reality is an open 

system that cannot be directly controlled.  This implies that as a mechanism enacts in 

a system and may change that system, it cannot be assumed that it will produce the 

same event in the future.  Because of this, the focus is on identifying tendencies (Wynn 

& Williams, 2012).  This study was seen as an open system and I admit that it is 

possible that mechanisms (classes of multiplication problems, order of representations 

and calculation techniques as well as my presence) might have influenced participants 

while they were busy with the task.  This could have had an influence on what 

emerged, as discussed previously, which was a limitation of this study.  For this 

reason, the focus was on identifying trends and tendencies, and not on predicting the 

future.  

 

3.2.2 Epistemological assumptions  

Various authors define epistemology as how we come to know reality.  It determines 

how we develop knowledge claims, how we evaluate the truth and the validity of these 

claims, and how we measure them against existing knowledge (Cohen et al., 2011; 

Wynn & Williams, 2012).  The ontological assumptions of critical realism are linked 

with the epistemological assumptions.  Wynn and Williams (2012) posit five 

epistemological assumptions.  The first of these is that of mediated knowledge.  
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Knowledge of the intransitive structures situated in the real level, where reality is 

independent, forms at the empirical level of reality, which is transitive.  This implies 

that knowledge, for critical realists, is theoretically informed (Wynn & Williams, 2012).  

In this study it is assumed that knowledge of the classes of multiplication problems, 

external representations and calculation techniques can only be known by looking at 

literature and what others and I have observed.   

 

The second epistemological assumption is that the goal of critical realism is to explain 

why events have happened, rather than make predictions about future events.  We 

cannot predict the future when we assume an open system, since there are too many 

factors that may influence events (Wynn & Williams, 2012).  The focus of this study 

was on exploring how participants with learning difficulties reasoned when solving 

multiplication problems, and not to predict how they would reason in the future.   

 

The third epistemological assumption is that we should describe events via 

mechanisms.  Because of the open-system ontological assumption, the descriptions 

should be based on theories and should focus on the causal relationships between 

the mechanisms for a specific event (Wynn & Williams, 2012).  In this study, I used 

mechanisms to describe the proficiency of participants when solving multiplication 

problems.  I could only describe the proficiency of participants in multiplication and 

causality if I had examined various classes of multiplication problems by using multiple 

external representations and evaluating the calculation techniques that participants 

used when solving the problems (which are the mechanisms for this study).   

 

The fourth epistemological assumption was the unobservability of mechanisms.  

Knowledge of reality is not always based only on what we can observe, but also on 

what we do.  We can therefore not always observe the mechanisms directly, but can 

observe only how they manifest (Wynn & Williams, 2012).  In this study, the 

manifestation of the identified mechanisms was the verbal and non-verbal responses 

from participants (for example using their fingers to count), as well as how they 

represented the problems with 3D material and how they drew them.  The combination 

of all these provided me with a multi-dimensional picture of the mechanisms.   
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Owing to the open-system ontological assumption, the final epistemological 

assumption of critical realism is multiple possible descriptions of what had caused an 

event.  The description that is selected is the one that is the most likely, given the 

mechanisms involved, and that most accurately represents the real world, given what 

we know now (Wynn & Williams, 2012).  In this study, the descriptions that I selected 

were based on what I found in the literature and were given from a multi-dimensional 

perspective of different external representations. 

 

3.2.3 Methodological assumptions 

Ontological and epistemological assumptions determine the methodological 

assumptions (Cohen et al., 2011).  Wynn and Williams (2012) identify five 

methodological assumptions.  The first of those is the explication of events.  This 

means that, for my study, I needed to identify the different aspects of the event that I 

studied.  Stratified ontology and mediated knowledge epistemology determine this 

assumption (Wynn & Williams, 2012).  The different aspects that I studied were set 

out and explained in the conceptual framework (see section 2.5 of Chapter 2).  The 

order of the task-based interviews will be discussed in section 3.4.   

 

The second methodological assumption is the explication of structure and context.  

This means identifying what it was about the structures that have produced the results.  

To do that, it is necessary to follow a process of abstraction, which requires re-

describing the components of structure and their relationships in terms of existing 

theories (Wynn & Williams, 2012).  The structures of the classes of multiplication 

problems, different external representations, and calculation techniques were 

discussed in Chapter 2.  In Chapter 4 I explained how these were observed.    

 

The third methodological assumption is that of retroduction, which refers to the 

identification of possible causal mechanisms that may link the structure to the results 

(Wynn & Williams, 2012).  It shifts the focus from the results to the relationships that 

produced the results (Fletcher, 2017).  In this study, I used retroduction to draw 

inferences by using the external representations and calculation techniques that the 

participants used for various classes of multiplication problems to describe how the 
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different representations were linked to one another and which calculation techniques 

were used.   

 

The fourth methodological assumption relates to empirical corroboration, which means 

that there should be sufficient depth in describing the relationships (Wynn & Williams, 

2012).  In this study, the different external representations (CSA) and the calculation 

techniques used to solve the different classes of multiplication problems gave the 

depth required to identify tendencies and causal relationships between the external 

representations and the calculation techniques used.   

 

The final methodological assumption is triangulation, which refers to the use of various 

data-collection methods (Wynn & Williams, 2012).  I used only task-based interviews, 

but within those task-based interviews I used three different external representations, 

namely concrete, semi-concrete and abstract representations, calculation techniques 

and participants’ verbal responses.  All these external representations triangulated to 

provide a holistic picture of participants’ proficiency in multiplicative reasoning.   

 

3.3 Research design  

Research design is a logical plan that guides researchers from asking questions to 

where they can draw conclusions about the information obtained from the responses 

(Yin, 2014).  I decided to use a case study research design for my study.  The case 

study research design helped me to answer the research questions in a meaningful 

way as this study aimed to explore and describe multiplicative reasoning in a group of 

fifteen participants with learning difficulties.  There are different ways that case studies 

can be categorised and I found the categories of Yin (2014) the most appropriate.  He 

divided case study research designs into singe-case and multiple-case design of 

which I chose the single-case study design with the group of fifteen participants as the 

unit of analysis (Zainal, 2007; Yin, 2014).  My single-case study included fifteen Grade 

6 participants from three LSEN public schools in Pretoria.  The method used to select 

my participants and the data collection procedures will now be discussed. 
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3.3.1 Selection of participants and sampling 

I chose to use a convenient sampling method to select the participants for the task-

based interviews.  The reason for this was that there are only four LSEN public schools 

for learners with learning difficulties in Pretoria, and consequently a limited number of 

participants to choose from.  Seventeen Grade 6 learners from three of these schools 

were willing to participate.  My reason for selecting Grade 6 learners was that, 

according to the relevant literature, the switch from additive reasoning to multiplicative 

reasoning should take place in the Intermediate Phase (Grades 4 to 6) (Long & Dunne, 

2014; McClintock, et al., 2011; Tzur et al., 2010).  Since Grade 6 is the last year of the 

Intermediate Phase, it is assumed that learners in this grade would already have made 

this switch.  At the beginning of Grade 6, when I conducted the task-based interviews, 

the participants had not yet learned about decimal numbers and percentages, and had 

a limited understanding of multiplication with fractions.  I decided that asking 

multiplication questions with only whole numbers would give me an indication of the 

extent to which they had made the switch from additive reasoning to multiplicative 

reasoning, which should prepare them to better understand fractions, decimal 

numbers and percentages.  I chose LSEN participants as at the time of writing no 

studies involving LSEN participants had yet been undertaken in South Africa.  In fact, 

I could find only one South African study on multiplicative reasoning, which involved 

high school participants (Long, 2011).   

 

3.3.2 Data collection procedures 

I conducted one-on-one task-based interviews with altogether seventeen participants, 

but decided to use the first two participants for a pilot study.  After collecting their data 

and analysing their video recordings, I realised that I needed to change certain aspects 

of how I conducted the task-based interviews.  The first problem I noticed was that I 

dominated the conversation, with Learner 1 barely saying a word.  I also did not ask 

enough questions.  I changed that during the second interview and gave the participant 

time to explain.  Second, I noticed that I kept fidgeting with the plastic bags that 

contained the 3D blocks, sweets and money, which could distract the participant.  

From the second interview I avoided the fidgeting, and waited to unpack the material 

and only put it away after the participant finished solving the problem.  Last, I noticed 

that after the participants had abstractly presented their solutions, I did not remove 
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that page when they drew their picture, with the result that they looked at what they 

had done before and have the same answer.  I wanted them to provide a semi-

concrete representation of the problem without having access to the previous 

representation.  From the third interview, I removed the page on which the participants 

had done their calculations and made sure that they did not have access to any 

previous representations.   

 

After the pilot study and for the next three months, I continued with the one-on-one 

task-based interviews with fifteen Grade 6 learners with learning difficulties.  I used 

the literature study and conceptual framework to compile ten multiplication problems 

(see Chapter 2).  I made video-recordings of the tasked-based interviews, which I then 

transcribed to be able to revisit the interviews and code them to ensure the credibility 

of the data.  Three types of data were transcribed, namely the conversation between 

the learner and I, any non-verbal communication observed (such as counting on 

fingers), and what the participants said, what they wrote and drew, and how they used 

the 3D material.  As the researcher my role was to ask the questions and to guide 

learners in the order that they needed to represent their answers, as well as to ask 

further clarifying questions on what they had done and why they had done it, and to 

answer any questions that they had, which made me part of the research. 

 

As the task-based interviews continued, I made further adjustments when necessary.  

During the third interview, the participant fixated on the different colours of the sweets 

wrappings that I used in three of the questions.  After that interview, I started phasing 

out the different colours and used sweets wrapped in the same colour.  Furthermore, 

I did not finish all the questions in an hour.  I had previously decided to limit the task-

based interviews to one hour, if possible, as participants with learning difficulties 

struggle to concentrate for long and also because the interviews were conducted after 

school hours.  I therefore had to decide which questions to omit once I realised that 

we would not finish within an hour. This resulted in a limitation of the study as I was 

unable to select the questions scientifically.  I decide that all the participants should 

solve the first four task-based questions as they had already come across those 

questions in previous grades.  However, the criterion that I applied to choose which 

other questions to ask was to make sure that I asked them at the same rate.  During 

each of the following interviews I started by asking the first four questions, after which 
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I determined which questions I had not put to the previous participants and asked 

those first before continuing with the rest.  In the end, all fifteen the participants 

answered Questions 1 to 4, eleven answered Questions 5 to 7 and nine answered 

Questions 8 to 10.  

 

3.4 Instrument for data collection 

Allsopp et al. (2007) suggest that when conducting interviews with participants who 

can verbalise their thinking when solving mathematical problems, it is possible to form 

an idea of learners’ conceptual understanding of a specific topic.  For this reason, the 

instrument that I used to collect my data was task-based interviews. However, since 

learners with learning difficulties often struggle to express their thoughts, I included 

other external representations, namely semi-concrete and concrete representations, 

to obtain a clearer picture of their conceptual understanding.     

 

Since researchers view interviews as the preferred and most powerful method for 

studying multiplicative reasoning (Ell, 2001; Vergnaud, 1982; Zhang et al., 2011), I 

conducted one-on-one task-based interviews with seventeen participants over a 

period of three months.  Interviews enable researchers to explore the thinking of 

participants in a way that is not possible with normal paper-and-pencil tests.  To date 

I have not found any trace of research conducted in mainstream or LSEN schools in 

South Africa to determine the conceptions and misconceptions of learners’ 

multiplicative reasoning. 

 

The task-based interviews consisted of ten classes of multiplication problems, as 

suggested in the relevant literature and discussed in my literature review (see section 

2.3.2 in Chapter 2).  These questions covered different ideas about multiplication 

which, when answered, provided a holistic picture of the participants’ proficiency in 

multiplication with whole numbers.  While choosing the context and the numbers to be 

used in the questions, I considered the following criteria: 

 

• I chose multiplication of whole numbers, since Grade 6 learners only start 

working with decimal numbers and percentages and the multiplication of 

fractions towards the end of the school year (DBE, 2011b). 
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• My decision to choose the classes of multiplication problems, and the order in 

which I asked them, were based on a study of the literature and I included easy, 

moderate and difficult classes of problems (see section 2.3.2 of Chapter 2).  

Questions that were regarded as lower than, on a par with and above the 

learners’ levels of development were necessary to give an accurate picture of 

their proficiency in multiplicative reasoning (Way, 1994). 

• I chose the numbers in the questions with a specific purpose.  The numbers are 

either numbers below fifteen or numbers with which participants should be 

familiar and can easily work with, such as 20, 30 and 50.  Moreover, I selected 

all the numbers below ten at least once and in such a way that the numbers 

that the participants had to multiply were not repeated.  One aim of the study 

was to find out whether the learners used additive of multiplicative calculation 

techniques to solve multiplication problems. 

• Since some participants struggled with reading, each question given to them 

was printed on an index card and I also read it to them as many times as they 

wanted me to do so. 

• I wrote all the numbers used in the questions as numbers and not in words (for 

example, 9 and not nine) since participants with reading difficulties might have 

been unable to pick out numbers in the question if they were written as words.    

 

I wanted the participants to represent the multiplication problems in a specific order.  

After first asking them to use abstract representations to solve a problem, I asked them 

to solve it with semi-concrete representations, and finally with concrete 

representations.  There were two reasons for this.  First, I did not want the use of semi-

concrete and concrete representations to influence their abstract thinking, since 

abstract representations are the most difficult.  Second, when teachers assess 

learners at school, they need to show their calculations by using abstract symbols 

only.  Teachers decide whether learners understand a concept by assessing only their 

abstract answers.  By asking the participants to represent the problems in different 

ways using various external representations, I could explore the depth of their 

conceptual understanding, the extent of their schemas, and the extent of the 

connections between their internal representations.  The order of the external 

representations and what I expected of participants is explained below. 
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• I started by giving the participants the question on an index card.  I then read it 

to them, gave them a pen and paper and asked them to solve the problem by 

means of abstract representations, like they do at school. 

• Next, to explore their reasoning, I asked them to explain their thinking while 

they were solving the problem.  This also gave me insight into what they had 

written in their abstract representation and they had gone about solving the 

problem. 

• Once they had finished explaining and solving the problem abstractly, I asked 

them to draw a picture to semi-concretely represent the problem and give the 

answer again.   

• Finally, I asked them to use 3D material, such as 3D blocks, sweets, money, 

cans, bottles and pens, to concretely demonstrate their understanding of the 

problem.   

 

I repeated this order for each question.  After the participants had completed each 

representation I asked them, where necessary, to further clarify their answers.  My 

questions, adapted from Tapper (2012, p. 98), included the following: Why did you 

decide to multiply / add / divide?  How did you calculate the answer?  Explain what 

you have drawn / built there.  Why did you change your mind? 

 

Table 3.1 provides a summary of the ten tasked-based interview questions.  The class 

to which each multiplication problem belongs and the degree of complexity of each 

question are indicated in the second and third columns.  This is based on the literature 

review and is discussed in section 2.3.2 of Chapter 2.  My choice of the multiplication 

questions (Column 4) was influenced by the relevant literature (international) and my 

study of South African mathematics textbooks (Column 5) undertaken to determine in 

which grade these concepts are introduced in an abstract form (Column 6).  In the 

case of material taken from an international source, I changed the language and 

scenarios to fit the South African context and language use.  I also changed the 

numbers used in the questions to fit the criteria, as previously discussed.     
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Table 3.1: Summary of tasked-based interview questions 

Question 
number 

Class of 
multiplication 

problem 

Complexity of 
question 

(Vergnaud, 
1982) 

Question 
Authors 

(International, CAPS and 
textbook) 

CAPS 
Curriculum 

(Abstract introduction 
of concept) 

1 Equal sharing 

Isomorphism of 
measures 

(one variable 
with constant) 

There are 5 orange trees in a 
park.  Each tree has 13 oranges 

on them.  How many oranges 
are there altogether? 

Adapted from Vergnaud 
(1983), DBE (2011a, p. 190), 

Mostert (2011, p. 66) 

CAPS Grade 1 
(Found in Grade 1 
textbook, Term 3) 

2 Constant price 

Isomorphism of 
measures 

(one variable 
with constant) 

If 1 sweet costs R7, how much 
will 9 sweets cost? 

Adapted from Vergnaud 
(1983), DBE (2011a, p. 318), 

Bowie et al. (2012a, p. 48) 

CAPS Grade 2 
(Found in Grade 4 
textbook, Term 1) 

3 
Uniform 
speed 

Isomorphism of 
measures 

(one variable 
with constant) 

Thabo rides his bicycle at a 
speed of 50 metres in 1 minute.  
How far will he ride his bicycle in 

3 minutes? 

Adapted from Vergnaud 
(1983), DBE (2011c, p. 120), 
Bowie et al. (2012a, p. 151) 

CAPS Grade 9 
(Found in a Grade 4 

textbook, Term 3) 

4 
Times as 

many 

Isomorphism of 
measures 

(one variable 
with constant) 

Paul has 4 coloured pens.  If 
Sarah has 8 times as many 
coloured pens as Paul, how 

many coloured pens does Sarah 
have? 

Adapted from Mulligan 
(1992), Mulligan & 

Mitchelmore (1997), DBE 
(2011a, p. 222), Bowie et al. 

(2012a, p. 85) 

CAPS Grade 2 
(Found in a Grade 4 

textbook, Term 2) 

5 
Simple 

proportion 

Isomorphism of 
measures 

(one variable 
with constant) 

If 4 sweets cost R10, how much 
will 12 sweets cost? 

Adapted from 
Van de Walle et al. (2015), 

DBE (2011b, p. 120), Bowie 
et al. (2012a, p. 151) 

CAPS Grade 4  
(Found in a Grade 4 

textbook, Term 3) 

6 Array 

Product of 
measures 

(two variables, 
answer third 
different unit 

There are 8 rows of chairs in the 
school hall.  There are 8 chairs in 
each row.  How many chairs are 

there altogether? 

Adapted from Mulligan 
(1992), Mulligan & 

Mitchelmore (1997), DBE 
(2011a, p. 190), Mostert 

(2011, p. 67) 

CAPS Grade 1 
(Found in textbook for 

Grade 1, Term 3) 
 



71 
 

7 Area 

Isomorphism of 
measures 

(one variable 
with constant) 

A piece of paper is 30 cm long 
and 20 cm wide.  What is the 

area of the paper? 

Adapted from Vergnaud 
(1983), DBE (2011c, p. 106), 

Bowie et al. (2013, p. 122) 

CAPS Grade 8 
(Found in a Grade 7 

textbook, Term 2) 

8 Volume 

Product of 
measures 

(two variables, 
answer third 
different unit 

What volume of water is needed 
to fill up a rectangular fish tank if 
the fish tank is 6 metres long, 2 
metres wide and 4 metres high? 

Adapted from Vergnaud 
(1993), DBE (2011c, p. 57), 
Bowie et al. (2012c, p. 203) 

CAPS Grade 7 
(Found in textbook for 

Grade 6, Term 4) 

9 Combinations 
Cartesian 
product 

There are 3 brands of cool drinks 
(Coke, Pepsi and Sprite) which 
are available in both cans and 
bottles.  If you want to buy one 
cooldrink, how many different 

possibilities are there? 

Adapted from Mulligan 
(1992), Mulligan & 

Mitchelmore (1997), DBE 
(2011c, p. 152) 

CAPS Grade 9 

10 Consumption 
Multiple 

proportion 

A mother gives each of her 5 
children 3 sweets per day.  How 
many sweets will the children eat 

over a 3-day period? 

Adapted from Vergnaud 
(1983), DBE (2011a, p. 287) 

CAPS Grade 2 
(Not found in any 
primary school 

textbooks) 
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The multiplication problems included problems of several difficulty levels and from 

various classes of multiplication.  The participants had already learned to solve some 

of the multiplication problems in previous grades, whereas others had not yet been 

dealt with.  I asked familiar and unfamiliar questions to explore their conceptual 

understanding and procedural fluency and to obtain a more in-depth and holistic 

picture of their proficiency in multiplicative reasoning. 

 

3.5 Data analysis and interpretation 

According to Cohen et al. (2011), data can be organised and presented in seven ways, 

namely as groups, individuals, issue or themes, research questions, instruments, 

cases, or narratives.  For this study, I chose to organise and present the data as a 

group (the fifteen participants) so as to explore and describe the proficiency of the 

participants with their diverse learning difficulties.  I discussed the data by posing task-

based questions and discussed each question according to the order in which I asked 

participants to give their answers by using three representations, namely abstract (the 

most abstract), semi-concrete and concrete representations (the least abstract) – in 

that order.  I kept this order when I analysed the data to explore at which level of 

abstractness the participants were the most proficient.   

 

Clarke and Braun (2013) describe six steps for analysing qualitative data.  The first 

step was to familiarise yourself with the data.  I familiarised myself with the data by 

transcribing the video data myself, which helped me to become intimately familiar with 

what each participant had said and done.  The second step was to code the data, 

which I called categorisation (Clarke & Braun, 2013).  I did not code all the data, but 

only that which was relevant to the categories that I had decided on beforehand.  

Under each representation (abstract, semi-concrete and concrete), I structured the 

data into categories by using deductive reasoning based on my conceptual framework.  

I had chosen those categories with my secondary research questions in mind, which 

helped me to these questions.  The categories were type of operation, operation 

concept, misconceptions, misrepresentations, calculation technique levels, calculation 

technique types and calculation errors, as summarised in Table 3.2.  I used an Excel 

spreadsheet to organise my transcribed data from the video recordings and the photos 

that I took.   
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Table 3.2: Categories used for the analysis of my data 

Abstract representations 
Semi-concrete 
representations 

Concrete representations 

Operation type Drawing operation concept 
3D material operation 
concept 

Misconception and/or 
misrepresentation from 
operation type 

Misrepresentation from 
drawing 

Misrepresentation from 3D 
material 

Calculation technique level   

Calculation technique type   

Calculation error Calculation error  

 

The third step in analysing data, according to Clarke and Braun (2013), is to search 

for themes, which I called subcategories.  Under each category, I used both deductive 

and inductive reasoning to identify subcategories, as summarised in Table 3.2.  When 

I used deductive reasoning to identify subcategories, I accepted that new 

subcategories might emerge.  I used different colours to highlight phrases, which I 

used as indicators for similar subcategories.  The fourth step is to review the 

subcategories to determine whether they sufficiently represent the participants’ levels 

of understanding.  According to Clarke and Braun (2013), it is necessary to consider 

the relationship between the subcategories.  When doing this, I asked myself which 

subcategories contained the answers to which secondary research questions and then 

discussed those subcategories together.  As a fifth step, I defined and named the 

subcategories (Clarke & Braun, 2013).  Some subcategories, for instance those found 

under the calculation technique levels, had already named for my conceptual 

framework.  Other subcategories, found under misconceptions and calculation errors, 

were named by identifying the essence of each one.  The final step in the data analysis 

is to write everything up (Clarke & Braun, 2013).  The data analysis and extracts of the 

data can be found in Chapter 4.  I also interpret and discuss my research in the context 

of other studies included in my literature review.  I used the secondary research 

questions to discuss and interpret the data analysis.  Table 3.3 shows how the data 

analysis answered the secondary research questions.  The combined answers to the 

three secondary research questions indicate learners’ proficiency in solving 

multiplication problems.   
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Table 3.3: Parallel between secondary research questions, components of 
proficiency and analysis 

Secondary research 
questions 

Components of 
proficiency  

Analysis 

1. What is the status of 
learners’ conceptual 
understanding of 
multiplication? 

Conceptual 
understanding 

Abstract, semi-concrete and 
concrete representations and 
explanations; misconceptions and 
misrepresentations 

2. What is the level of the 
learners’ procedural fluency 
related to multiplication? 

Procedural fluency 
Calculation technique levels; 
calculation errors 

3. What is the nature of 
learners’ strategic 
competence when solving 
multiplication problems? 

Strategic competence 
Effective representations and 
calculation technique types 

 

When I analysed the representations (abstract, semi-concrete, and concrete) and 

determined the operation type indicated by each representation, together with the 

participants’ explanations and the identified conceptions, misconceptions and 

misrepresentations, I could answer the first secondary research question relating to 

conceptual understanding.  Analysing the calculation technique levels and the 

calculation errors made by participants, answered the second secondary research 

question, which related to their procedural fluency.  The third secondary research 

question, which required information on the participants’ strategic competence, was 

answered by analysing the efficiency of participants’ representations and the 

calculation technique types they used.  I was therefore able to answer the primary 

research questions about the learners’ proficiency in multiplicative reasoning.      

 

3.6 Quality measures 

Participants solved ten selected multiplication problems as part of task-based 

interviews.  These ten multiplication problems had to be credible and dependable.  

Since this study is qualitative in nature, I chose these two terms, rather than valid and 

reliable, which are more often used in quantitative research (Cohen et al., 2011; 

Creswell, 2007).  Credibility, in my context, means that these multiplication problems 

should have tested what they were supposed to test (Cohen et al., 2011).  Various 

types of credibility applied to this study, namely construct, content, concurrent and 

cultural credibility. 
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First, construct credibility means that the task-based interviews should measure the 

specific concept that it is supposed to measure (Cohen et al., 2011; Gareis & Grant, 

2015; Kubiszyn & Borich, 2013).  For the purpose of this study, I studied the concept 

of multiplication of whole numbers and asked the participants to solve ten classes of 

multiplication problem, which they had to represent in three different ways, namely 

abstractly, semi-concretely and concretely.  Both the classes of problems and the 

different representations improved and deepened my understanding of the 

participants’ conceptual understanding of the multiplication of whole numbers.   

 

Second, content credibility means that adequate samples from the content that should 

be asked are included in the task-based interviews (Gareis & Grant, 2015; Kubiszyn 

& Borich, 2013).  For this study, all ten multiplication questions were based on classes 

of multiplication problems that were identified in the literature consulted and about 

which authors agree that they are credible for multiplicative reasoning and cover the 

various classes of multiplication problems.   

 

Third, concurrent credibility means that the types of problems that were asked 

correlated with similar questions in the field (Cohen et al., 2011).  All the questions 

were adapted from the work of experts in the field of multiplicative reasoning and are 

indicated as such in Table 3.1.  I also verified when each class of multiplication 

problem was introduced in the South African school curriculum and how each class of 

multiplication problem is presented in South African textbooks (see Table 3.1).  

 

The last is cultural credibility, which required that the language and culture of the 

participants were taken into consideration when questions are formulated (Cohen et 

al., 2011).  All the cultural groups in South Africa are familiar with the names and 

situations used in the questions.  I asked colleagues who belong to cultures other than 

mine to look at the multiplication questions to make sure that they contained no cultural 

bias, that the reading level was appropriate and that there are no grammatical errors 

(Gareis & Grant, 2015).     

 

Dependability is another important quality measure when conducting qualitative 

research.  Dependability is concerned with the research situation and the factors 

affecting the researcher and the participants (Cohen et al., 2011).  One way to ensure 
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dependability in qualitative research is to ensure inter-rater reliability.  This implies that 

someone who is not involved in the research should also be asked to analyse and 

code the recorded data.  Inter-rater reliability is calculated by using the formula: The 

number of times two observers agree, divided by the number of possible opportunities 

to agree, calculated as a precentage (Cohen et al., 2011).  The higher the level of 

agreement, which should be more than 90 per cent, the more dependable the study is 

(Cohen et al., 2011).  For this study, I asked a colleague to evaluate the categories 

and subcategories of the transcribed data in conjunction with the tabels where I 

summarised my categories and subcategories.  She evaluated about 25% of my data, 

which included the categorising of the data for fifteen participants’ first two questions 

they solved and half of the participants for Question 3.  There were 241 possible 

opportunities to agree and 229 times we did agree, which gives 95 per cent agreement.    

 

3.7 Ethical considerations 

Permission to conduct my research was obtained from the Ethics Committee of the 

University of Pretoria and the Gauteng Department of Education, and informed 

consent for the task-based interviews and video-recordings was obtained from the 

principals of the three LSEN schools, the teachers and the participants’ parents.  I also 

obtained informed assent and permission to make video-recordings of the interviews 

form the participants.  Before each interview, I took time to explain to the participants 

that they were free to withdraw their participation at any time.  Even though these 

learners had various learning problems, they understood the concept of free 

participation and I made it easy for them to stop the interview at any time. 

 

When conducting research, anonymity, privacy and confidentiality of the participants 

are important.  Anonymity and privacy were accomplished by giving each participant 

a pseudonym, e.g. Learner 1, Learner 2, etc.  The schools are referred to as School 

A, School B and School C.  The video-recordings of the task-based interviews were 

done in such a way that if at all possible, the participants’ faces were not visible.  

Where this was not possible, the videos were password protected to maintain 

anonymity.  Furthermore, I did not use the names of the participants during the 

interview.  Confidentiality was maintained by providing an envelope into which they 

could put their replies.  This ensured that only I knew who had given permission for 
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the research.  Furthermore, since my participants were learners with special needs I 

made sure that they were not harmed my being sensitive towards the emotional 

feedback that they gave me.  If participants asked that they did not want to continue, I 

stopped the interview, or when they stuggled to answer a question I moved on and did 

not force them to give me an answer. 

 

3.8 Summary 

In this chapter I explained why critical realism, as a paradigm, underpinned my study.  

I discussed why the focus was on ontology rather than epistemology.  I used a 

qualitative research approach with a single-case study design and selected a 

convenient sample of fifteen participants with learning difficulties from three LSEN 

schools in Pretoria, with the fifteen participants forming a group as the unit of analysis.  

I collected the data through one-on-one task-based interviews, which consisted of ten 

multiplication questions.  I asked the participants to solve each problem by using 

abstract, semi-concrete and concrete representations.  After the participants had 

solved the problems by using different representations, I asked them to explain their 

reasoning.  Thereafter, I categorised and analysed their task-based interviews in 

predetermined categories in order to answer my secondary research questions.  

Under each category I either chose subcategories (deductive), or coded (inductive) 

those parts that did not have pre-determined categories.  Finally, I described the 

quality criteria and the ethical considerations of this study.  In the next chapter I will 

present, analyse and discuss the data.       
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DATA PRESENTATION AND ANALYSIS  

 

4.1 Introduction 

This study explores the multiplicative reasoning proficiency of Grade 6 learners with 

learning difficulties.  In Chapter 1, I established that, for the purpose of this study, 

multiplicative reasoning proficiency could be measured by a multi-dimensional 

approach involving investigating participants’ conceptual understanding, their 

procedural fluency and their strategic competence.  This multi-dimensional approach 

was discussed in my conceptual framework in Chapter 2, where I illustrated the 

interplay between participants’ internal and external interpretations.  In Chapter 3, I 

explained that this research was grounded in critical realism, which means that only 

that which is observable can be measured. In order to have enough measurable data, 

I interviewed seventeen participants (labelled Learner 1 to Learner 17). Learners 1 

and 2 were used for my pilot study.  As explained in Chapter 3, I made certain changes 

before I continued interviewing the rest of the participants.   The data of fifteen 

participants (Learners 3 to 17) was therefore analysed and discussed.  Data were 

collected by way of one-on-one task-based interviews and deductive and inductive 

reasoning were used to analyse my data for each of the ten questions the participants 

had to answer.  I analysed each question separately and under each question 

presented the data in the order of the representations I had asked the participants to 

use, namely abstract, semi-concrete and concrete representations.  I selected the 

following categories: conceptions, misconceptions, misrepresentations, calculation 

technique levels, calculation technique types and calculation errors, and used 

indicators to identify subcategories through both inductive and deductive reasoning in 

each category.  The subcategories are summarised in tables throughout the 

presentation and discussion of the data.  

 

4.2 Participants’ backgrounds  

The fifteen participants attended three different special needs schools in Pretoria.  Five 

of the participants turned twelve, which is the usual age for Grade 6, seven turned 
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thirteen, two turned fourteen and one turned fifteen during the year in which I 

conducted my research.  The group included seven boys and eight girls.  Their 

achievements in mathematics during their first term in Grade 6 ranged from 35% to 

96%.  All the participants experienced some form of learning difficulty.  The teachers 

indicated, among others, the following learning difficulties: severe learning disorder, 

possibility of mild intellectual disorder, attention-deficit hyperactivity disorder (ADHD), 

attention-deficit disorder (ADD), difficulties with learning abstract content, language 

problems, such as struggling to read and understand word problems, damage to the 

language centres of the brain due to near drowning, dyslexia, possibility of dyscalculia, 

Tourette’s syndrome, Asperger’s disorder, severe behavioural problems, emotional 

problems, epilepsy, premature birth and slow learning.  Twelve of the participants were 

Afrikaans speaking.        

 

4.3 Question 1: Combined categorisation, analysis and discussion  

The first task-based question was: There are 5 orange trees in a park.  Each tree has 

13 oranges on them.  How many oranges are there altogether?  Question 1 

represented the ‘equal sharing’ class of multiplication problems (Greer, 1992; 

Mulligan, 1992; Vergnaud, 1983) and, together with Questions 2 and 3, was 

categorised under ‘equal groups’ (see section 2.3.2.1 in Chapter 2 for a full 

explanation).  All the participants answered Question 1. Since it was the first question 

asked, I had explained in greater depth than for the subsequent questions what I 

expected of them.  With all the questions I asked participants to start by solving the 

multiplication problem using abstract representations, i.e. numbers and symbols, as 

they are required to do at school.  I then asked them to draw a picture, and then to use 

3D blocks to solve the problem (see section 3.3.2 in Chapter 3 for a full discussion).  I 

expected the participants to illustrate their conceptual understanding by drawing five 

trees with thirteen oranges on each and using the 3D blocks to make five groups of 

thirteen blocks each to represent the trees and oranges. 

 

The ten task-based questions were developmental in nature. Conceptually, Question 

1 was the least complex and therefore the least abstract, and should have been the 

easiest to visualise (trees and oranges on the trees).  The abstract reasoning required 

to solve problems of this class is introduced in Grade 1 (Mostert, 2011; DBE, 2011a); 
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therefore participants should have been familiar with solving such problems.  When 

participants were unsure of what to draw by using semi-concrete representations, I 

told them to draw trees and oranges to illustrate the problem.  When they were 

required to concretely represent the problem, I gave them 3D blocks to represent the 

oranges.  I provided prompts for Question 1 only, after which they understood what 

was expected of them.   

 

Table 4.1 summarises the categories and subcategories of the data for all the 

participants’ representations for Question 1.  I colour coded similar subcategories for 

easier recognition.  For all the questions discussed, I added pictures of the 

participants’ work.  I also included examples of the fifteen participants’ explanations 

(in italics).  Even though twelve of the participants were Afrikaans speakers, the 

explanations were given in English.   

 

The data under each heading in Table 4.1 was analysed, starting with the participants’ 

conceptions, then their misconceptions and misrepresentations.  The levels and types 

of calculation techniques used, and the calculation errors were also analysed.  Finally, 

the analysis of all the data for this question was discussed.  I used inductive reasoning 

to analyse the misconceptions, misrepresentations, calculation technique types and 

calculation errors, and deductive reasoning to analyse the calculation technique levels, 

as derived from my conceptual framework. 
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Table 4.1: Summary of the categories and subcategories of Question 1 for all participants and representations 
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Learner 3 
× 

(65) 
 

Level 2B 
Double 

counting 
Counted in  

× 
Equal sharing 

(65) 
  

× 
Equal sharing 

 

Learner 4 
+ 

(18) 
 

Level 1A 
Unitary 

counting 
Counted on  

Addition 
+ 

(18) 

 Combination of 
measures 

 
Intention was 

+ 
Abstract 
numbers 

Learner 5 
× 

(65) 
 

Level 2C 
Algorithm 

Column 
method 

 
× 

Equal sharing 
 (56) 

 
Memory error 
(Answer 56) 

× 
Equal sharing 

 
 

Learner 6 
× 

(65) 
Keyword 

(altogether) 
Level 2C 
Algorithm 

Column 
method 

 
× 

Equal sharing 
 (65) 

  
× 

Equal sharing 
 

Learner 7 
+ 

(18) 
Added 

different units 

Level 1A 
Unitary 

counting 

Counted 
from one 

 
Intention was 
equal sharing 

(36) 
 

Counting error 
(Answer 36) 

Memory error 
(3 trees) 

× 
Equal sharing 

 

Learner 8 
+ 

(18) 
Added 

different units 

Level 1A 
Unitary 

counting 
Counted on  

× 
Equal sharing 

 (18) 
 

Disconnect 
between 

abstract and 
drawing 

(Answer 18) 

Addition 
+ 

Combination 
of measures 

Learner 9 
× 

(65) 
 

Level 2B 
Double 

counting 
Counted in  

× 
Equal sharing 

 (65) 
  

× 
Equal sharing 

 

                                                
1 Learners 1 and 2 eventually became the subjects for my pilot study; therefore the fifteen participants reported on were numbered Learners 3 to 17.  Fifteen 
participants answered Questions 1 to 4. 
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Learner 10 
× 

(65) 
 

Level 2C 
Algorithm 

Column 
method 

 
Intention was 

× 
(65) 

Abstract 
numbers  

 
Intention was 

× 
Abstract 
numbers 

Learner 11 
÷ 

(3) 
 

Level 0A 
Guesser 

Guessed  
× 

Equal sharing 
 (68) 

 
Counting error 
(Answer 68) 

× 
Equal sharing 

 

Learner 12 
× 

(65) 
 

Level 2B 
Double 

counting 
Counted in  

× 
Equal sharing 

 (65) 
  

× 
Equal sharing 

 

Learner 13 
+ 

(18) 
Keyword 

(altogether) 

Level 1A 
Unitary 

counting 
Counted on  

× 
Equal sharing 

 (18) 
 

Disconnect 
between 

abstract and 
drawing 

(Answer 18) 

× 
Equal sharing 

 

Learner 14 
× 

(Say 
65) 

 
Level 2B 
Double 

counting 
Counted in 

Writing 
error 

(writes 56) 

× 
Equal sharing 

 (say 65) 
 

Writing error 
 (writes 56) 

× 
Equal sharing 

 

Learner 15 
× 

(65) 
 

Level 2C 
Algorithm 

Column 
method 

 
× 

Equal sharing 
 (65) 

  
× 

Equal sharing 
 

Learner 16 
+ 

(18) 
Keyword 

(altogether) 

Level 1A 
Unitary 

counting 
Counted on  

× 
Equal sharing 

 (18) 
 

Disconnect 
between 

abstract and 
drawing 

(Answer 18) 

Addition 
+ 

Combination 
of measures 

Learner 17 
× 

(65) 
 

Level 2E 
Derived 

multiplication 
fact 

Times table 
and addition 

 
× 

Equal sharing 
 (65) 

  
× 

Equal sharing 
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Eight of the fifteen participants (Learners 3, 5, 6, 9, 12, 14, 15 and 17) were able to 

solve this multiplication problem by using all three types of representation. Those eight 

learners, whose names are marked in dark blue on Table 4.1, multiplied to solve this 

problem by using abstract representations.  Moreover, they drew oranges and trees 

and the way they placed the 3D blocks was indicative of ‘equal sharing’.  Picture 4.1 

shows Learner 9’s drawing and 3D block representations of ‘equal sharing’, as well as 

his equation indicating multiplication.  Learners 3, 6, 9, 14, 15 and 17 all drew similar 

pictures and arranged 3D blocks to represent five groups of thirteen, as required by 

the question. 

 

 

Picture 4.1: Question 1: Learner 9’s equation, conceptual drawing and 3D 

blocks representing ‘equal sharing’  

 

Learner 5, whose response is illustrated in Picture 4.2 below, drew 13 trees with five 

oranges on each and placed the 3D blocks in 13 groups of five. Although this also 

demonstrated a conceptual understanding of ‘equal sharing’, it was not an exact 

representation of the question.  

 

 

Picture 4.2: Question 1: Learner 5’s conceptual drawing and 3D block 
representation 

 

Picture 4.3 below shows Learner 12’s semi-concrete drawing, which does not contain 

any semi-concrete representations. 
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Picture 4.3: Question 1: Learner 12’s semi-concrete drawing  
 
Even though Learner 12 also showed a conceptual understanding of the problem as 

one of ‘equal sharing’, his drawing was a combination of semi-concrete and abstract 

representations.   

 

Learners 11 and 13, whose names are marked in light blue in Table 4.1, could solve 

the problem by using semi-concrete and concrete representations, but could not do so 

with abstract representations.  Their drawings and concrete representations included 

five groups of thirteen 3D blocks, which are all indicative of ‘equal sharing’.  Learners 

8 and 16’s drawings represented ‘equal sharing’, while Learner 7’s abstract use of the 

3D blocks represented ‘equal sharing’ and Learner 10 could solve the problem with 

abstract representations only. (These learners’ names are marked in purple in Table 

4.1).  

 

4.3.1 Question 1: Misconceptions and misrepresentations  

Misconceptions and misrepresentations were identified and categorised by way of 

inductive reasoning.  For this question, two misconceptions were identified and 

categorised, namely ‘added different units’ and ‘keyword’ (see Table 4.1).  ‘Added 

different units’ was categorised as a misconception as participants explained that they 

had added different units together, which could indicate a misinformed concept of 

addition.  Moreover, I categorised ‘keyword’ as a misconception, since the participants 

focused on specific words in the problem to help them determine whether addition or 

multiplication was required.  This could indicate that the participants had an incorrect 

schema and therefore a misconception that specific words in word problems could 

help them decide what to do.   

 

Learners 7 and 8 explained that it was possible to add, in this case oranges and trees, 

together, which I categorised as a misconception, i.e. ‘added different units’ (see Table 
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4.1).  Learner 7, for instance, explained: I added the trees and the oranges.  Three 

participants (Learners 6, 13 and 16) explained that they could use the word ‘altogether’ 

in the problem to determine whether the problem was an addition or multiplication 

problem, which led to the categorisation of the misconception ‘keyword’.  Learners 13 

and 16 both thought that the word ‘altogether’ meant that they had to add, whereas 

Learner 6 thought it meant that he had to multiply.   

 

Learner 4 added, while Learner 11 divided to solve the problem with abstract 

representations. However, I was unable to identify any misconceptions based on their 

verbal explanations.  Neither appeared to have any abstract understanding of the 

problem.  For example, Learner 11 incoherently explained why she had added: 

Because, if it is thirteen … because you want each to … There are five trees and each 

tree carry five oranges, and then you have to divide how many oranges, how many 

oranges is part of the tree … on the five trees.   

 

In both the semi-concrete and concrete representations, two misrepresentations were 

identified and categorised for this question, namely ‘abstract numbers’ and 

‘combination of measures’.  Participants who drew or replaced the numbers in their 

equations with circles or 3D blocks to represent the numbers in the equation were 

categorised as ‘abstract numbers’ misrepresentations.  Learner 4’s concrete 

representation and Learner 10’s semi-concrete and concrete representations were 

categorised as a misrepresentation of ‘abstract numbers’.  Learner 10 wrote a 

multiplication equation and it seemed that he had this equation in mind when he drew 

the problem and arranged the 3D blocks.  He simply replaced the numbers in the 

equation with circles, as shown in Picture 4.4.  This learner also struggled to represent 

the problem using the concrete 3D blocks.  He packed out only thirteen 3D blocks to 

represent the oranges on one tree and did not add five 3D blocks to represent the 

trees. 
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Picture 4.4: Question 1: Learner 10’s misrepresentation of ‘abstract numbers’  

 

Learner 4 was the only participant who understood the problem as addition in all three 

forms of representation.  Her misrepresentation with the 3D blocks was also 

categorised as ‘abstract numbers’, as it seemed that she had had her abstract 

equation in mind and had used the 3D blocks to reproduce that equation (see Picture 

4.5).   

 

 

Picture 4.5: Question 1: Learner 4’s misrepresentations of ‘combination of 
measures’ and ‘abstract numbers’  

 

Picture 4.5 also shows her semi-concrete drawing, which was categorised as 

‘combination of measures’, using the term coined by Vergnaud (1982; 1992) to classify 

addition of this kind in which two numbers are combined (added) to calculate the 

answer.  In the case of this study it is seen as a misrepresentation since all the 

problems required multiplication and not addition.  Learners 8 and 16’s concrete 

representations were also categorised as ‘combination of measures’.  Since both their 

equations involved addition, one could infer that the two separate rows of thirteen and 

five indicated addition.  Learner 8’s misrepresentation is illustrated in Picture 4.6.  This 

participant placed fourteen 3D blocks in the first row, instead of thirteen.   

  

 

Picture 4.6: Question 1: Learner 8’s misrepresentation of ‘combination of 
measures’  
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For this question, two misconceptions (‘added different units’ and ‘keyword’) and two 

misrepresentations (‘abstract numbers’ and ‘combination of measures’) could be 

identified and categorised.  The levels and types of calculation techniques will be 

discussed next.  

 

4.3.2 Question 1: Levels and types of calculation techniques  

The calculation technique levels were categorised according to the conceptual 

framework (see section 2.5.1 and Figure 2.1 in Chapter 2) and the calculation 

technique types were inductively identified and grouped into similar categories (colour 

coded in green and pink respectively in Table 4.1).  The calculation technique levels 

that were identified were: Level 0A (guesser), Level 1A (unitary counting), Level 2B 

(double counting), Level 2C (algorithms) and Level 2E (derived multiplication fact).  

The calculation technique types identified for solving Question 1 were: ‘guesser’, 

‘counted from one’, ‘counted on’, ‘counted in’, ‘column method’ and ‘times table and 

addition’ (see Table 4.1).    

 

Level 0 is ineffective as participants rely on non-calculation techniques to find the 

answer.   Learner 11 was categorised on Level 0A (guesser), since she tried to divide 

five into thirteen and said: I think it is about three.  She could not calculate the answer 

and simply guessed what it should be.   

 

Level 1 calculation techniques are additive in nature and five participants (Learners 4, 

7, 8, 13 and 16) added to calculate the answer and were therefore categorised on 

Level 1A (unitary counting).  Two calculation technique types were identified and 

categorised as ‘counted from one’ and ‘counted on’.  Learner 7’s calculation technique 

type was categorised as ‘counted from one’, since he made marks on the paper and 

then started counting the marks from one to calculate the answer.  Learners 4, 8, 13 

and 16’s calculation technique type was categorised as ‘counted on’, since they 

started counting from 13 and then counted on another five.   

 

The Level 2 calculation techniques are considered to be multiplicative, which means 

that the participants were able to think multiplicatively when solving the problem 

(Carrier, 2014).  Nine participants used multiplicative calculation techniques to solve 
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this problem.  Of these nine, four (Learners 3, 9, 12 and 14) were categorised on Level 

2B (double counting).  These participants’ calculation technique type was categorised 

as ‘counted in’, since they used their fingers to count in 5s. The only exception was 

Learner 12, who used a paper-based calculation technique that his teacher had taught 

them (see Picture 4.7).   

 

 

Picture 4.7: Question 1: Learner 12’s paper-based multiplication method  

Learner 14 started out using the ‘column method’, but forgot how to calculate using 

this method and then changed to the ‘counted in’ type of calculation technique.  I 

therefore categorised her method as ‘counted in’ and not as ‘column method’.  

  

Four of the other nine participants (Learners 5, 6, 10 and 15) were categorised on 

Level 2C (algorithms) and their calculation technique type was categorised as the 

‘column method’. Picture 4.8 shows how Learner 15 calculated her answer by using 

the ‘column method’. 

 

 

Picture 4.8: Question 1: Learner 15’s use of the ‘column method’  

 

The last of the nine participants (Learner 17) was categorised on Level 2E (derived 

multiplication facts), which is considered one of the highest calculation technique 

levels (Hurst & Hurrell, 2014; Zhang et al., 2011).  Her calculation technique type was 

categorised as ‘times table and addition’, since she used her knowledge of the five 
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times table and then added another five.  She explained: I knew that … uhm… that 5 

times 12 is 60 and then added 5.     

 

Nine participants used multiplicative calculation techniques, while five used additive 

calculation techniques to calculate the answer to this problem.  One participant 

guessed the answer.  The calculation errors will be discussed next. 

 

4.3.3 Question 1: Calculation errors  

Calculation errors were considered only in respect of the abstract and semi-concrete 

representations.  I did not report on any calculation errors made in the concrete 

representations as I had not considered the answers of all the participants and since 

most of their answers had been influenced by their answers obtained by using abstract 

and semi-concrete representations, which would not have provided valid data.  

Inductive reasoning was used to identify and categorise calculation errors.   

 

Four calculation errors were identified and categorised for Question 1, namely ‘writing 

error’, ‘memory error’, ‘counting error’ and ‘disconnect between abstract and drawing’ 

(see Table 4.1).  The first calculation error that was identified and categorised was a 

‘writing error’.  Although Learner 14 stated that the answer was 65, she had written it 

as 56 in both the abstract and semi-concrete representations.   

 

The second calculation error was categorised as a ‘memory error’.  Although Learner 

5’s abstract representation gave the answer as 65, she wrote it as 56 after she had 

drawn her picture of the problem (see Picture 4.2).  Learner 7 drew only three trees, 

in spite of the fact that the card containing the question was in front of him.  He was 

convinced that there should be three trees and not five (see Picture 4.9).  I asked him: 

Why do you have three groups, three trees?  He answered: I have three trees, because 

the question asks that there are three trees, and each tree there were thirteen oranges.    
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Picture 4.9: Question 1: Learner 7’s ‘memory error’ and ‘counting error’  

 

The third calculation error was categorised as a ‘counting error’.  Learners 7 and 11 

both made ‘counting error’.  Learner 7 drew only three trees and also struggled with 

counting.  Picture 4.9 shows that he had scratched through some oranges.  He 

recounted the oranges several times.  In spite of that, his trees still did not have the 

same number of oranges on them, i.e. there were 14, 11 and 12 oranges on the three 

trees respectively.  Learner 11 also made a ‘counting error’ when she counted 68 

instead of 65 oranges on the trees.     

 

The last calculation error, categorised as a ‘disconnect between abstract and drawing’, 

was evident in the calculations of Learners 8, 13 and 16.  This calculation error implies 

that while the participants had drawn their pictures using semi-concrete 

representations, their answers reflected that they had been calculated based on the 

abstract representations.  Picture 4.10 shows Learner 13’s drawing, in which the 

answer 18 does not correspond with the number of oranges in his picture, but rather 

with the answer provided in his abstract representation.  These three participants 

appeared to be unaware of the fact that what they had drawn did not reflect their 

answers.  They added using their abstract representations and illustrated ‘equal 

sharing’ with their semi-concrete representations.   
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Picture 4.10: Question 1: Learner 13’s calculation error of ‘disconnect between 
abstract and drawing’  

 

The four calculation errors that were identified and categorised were ‘counting error’, 

‘writing error’, ‘memory error’ and ‘disconnect between abstract and drawing’.  I will 

discuss the analysis of the data next. 

 

4.3.4 Question 1: Discussion of the analysis 

Question 1 was the least conceptually complex in the category ‘equal groups’, which 

included Questions 1 to 3.  This question should have been easy to visualise as the 

participants had been solving this class of problem since Grade 1 (DBE, 2011a; 

Mostert, 2011).  My analysis revealed that eight of the 15 participants (Learners 3, 5, 

6, 9, 12, 14, 15 and 17) could solve the problem of ‘equal sharing’ without any difficulty 

in all the representational forms.  Their semi-concrete and concrete representations of 

five groups of thirteen made it possible to infer that they had a conceptual 

understanding of ‘equal sharing’.  Moreover, their procedural fluency could be inferred 

as they used multiplicative calculation techniques to solve their multiplication 

equations.  According to Hiebert and Carpenter (1992), the more connections there 

are between different representations, the better the learners’ understanding.  It could 

therefore be concluded that the abovementioned eight participants had a clear 

understanding of the connections between the different types of representations as all 

their representations indicated the ‘equal sharing’ class of problem, and therefore a 

good schema and scheme of ‘equal sharing’.  Since these participants had a good 

interconnected schema of the ‘equal sharing’ between the three representations, they 
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were able to consider the correct multiplicative concept-in-action, which allowed them 

to choose their most effective theorem-in-action to solve the problem (Vergnaud, 1998; 

2013a; 2013b).  This in turn could indicate good procedural fluency (see conceptual 

framework, Figure 2.1 in Chapter 2). 

 

A further two participants (Learners 11 and 13) could represent ‘equal sharing’ of five 

groups of thirteen with both their semi-concrete drawings and the 3D blocks, but did 

not use multiplication for their equations.  It could therefore be inferred that they 

understood ‘equal sharing’ conceptually, but not in its abstract form.  One could 

conclude that their schema of ‘equal sharing’ was limited, since the abstract schema 

was lacking and they used additive and division schemes to solve the problem.   

 

Although Learners 8 and 16 could illustrate the ‘equal sharing’ of five groups of 

thirteen, their abstract and concrete representations were indicative of addition, 

whereas only Learner 7’s concrete representation, and not his abstract and semi-

concrete representations, indicated ‘equal sharing’.  According to Ayub et al. (2013), 

if only one type of representation is correct, it could be an indication that limited 

connections were made.  One could therefore conclude that Learners 8 and 16 had 

only a semi-concrete schema, while Learner 8 had only a concrete schema of this 

problem, which could have led to the use of an incorrect scheme to solve the problem 

– in this case addition.    Their conceptual understanding was limited to either semi-

concrete or concrete representation.  One could infer that while these five participants 

(Learners 7, 8, 11, 13 and 16) did have limited conceptual understanding, they lacked 

procedural fluency.  It is possible that they used the incorrect scheme because I had 

asked them to solve this problem with abstract representations first.  When they 

considered their options by relying on their concept-in-action, they considered only 

their abstract schemas and not their semi-concrete schemas, which may have led 

them to make an incorrect choice between addition and division.  This could indicate 

that they lacked the necessary strategic competence.   

 

One participant (Learner 10) could solve this problem only by using abstract 

representations, which could indicate limited connections between the different 

representations and only an abstract schema.  This could further indicate that he had 

memorised a procedure, but lacked conceptual understanding (Ayub et al., 2013).  
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Only one participant (Learner 4) could not solve this problem as she had used addition 

in all her representations.  It could be concluded that she did not have an ‘equal groups’ 

schema in any of the representations and no scheme, and therefore lacked the 

procedural fluency or strategic competence required to solve this problem. 

       

Eight of the fifteen participants (Learners 3, 5, 6, 9, 12, 14, 15 and 17) could solve the 

problem with all the representations.  Learners 11 and 13 could solve it with both semi-

concrete and concrete representations, Learner 7 could solve it only with concrete 

representations, Learners 8 and 16 could solve it with semi-concrete representations 

and Learner 10 could solve it with abstract representations only.  In total, fourteen of 

the fifteen participants could solve the problem with at least one of the representations.  

Only Learner 4 could not solve this problem with any of the representations.   

 

4.3.4.1 Question 1: Discussion of misconceptions and misrepresentations  

Two misconceptions were identified and categorised, namely ‘keyword’ and ‘added 

different units’.  Three participants (Learners 6, 13 and 16) thought the word 

‘altogether’ in the question could help them decide what operation to use, while 

Learners 7 and 8 thought that it was possible to add two different units together (i.e. 

trees and oranges).  Both of these misconceptions could indicate a problem with how 

they were taught or it could be their own method that they think might indicate to them 

what operation to use.  Furthermore, teachers might neglect to emphasise the fact that 

different units (e.g. oranges and trees) cannot be added together. 

 

Two misrepresentations were identified and categorised, namely ‘abstract numbers’ 

and ‘combination of measures’.  The semi-concrete and/or concrete 

misrepresentations included the answer given by Learner 10, who had replaced his 

abstract equation of numbers with circles, and Learner 4, who had used the 3D blocks 

to represent her abstract equation (she used the 3D blocks to form the numbers 5 and 

13).  This misrepresentation of ‘abstract numbers’ could possibly indicate that those 

participants were unable to visualise the actual trees and the oranges on the trees, 

and had only an abstract equation schema and no other way to visualise this problem.  

The visualisation of abstract concepts is characteristic of learners with learning 

difficulties (Allsopp et al., 2007).  
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Three participants (Learners 4, 8 and 16) drew pictures or arranged the 3D blocks to 

reflect the misrepresentation of ‘combination of measures’.  This means that the two 

numbers in the problem were added together.  This misrepresentation of ‘combination 

of measures’ could indicate that those participants may not have any schema and 

scheme for the ‘equal sharing’ class of problem, which may explain why they used 

addition instead of multiplication.  This misrepresentation suggests the total absence 

of any conceptual understanding of ‘times as many’ and a lack of procedural fluency.   

 

4.3.4.2 Question 1: Discussion of the calculation technique levels and types 

Nine of the fifteen participants (Learners 3, 5, 6, 9, 10, 12, 14, 15 and 16) were 

categorised on Level 2, whereas four (Learners 3, 9, 12 and 14) were categorised on 

Level 2B (double counting) and had used the calculation technique type categorised 

as ‘counted in’. Four participants (Learners 5, 6, 10 and 15) were categorised on Level 

2C (algorithms) and the calculation technique type that they had used was categorised 

as the ’column method’.  Learner 17 was categorised on Level 2E (derived 

multiplication fact) and the calculation technique type she had used was categorised 

as ‘times table and addition’.  One could infer that the abovementioned participants 

had an abstract schema and a multiplicative scheme for this ‘equal sharing’ class of 

problem.  It can be concluded that since their abstract concept-in-action was 

multiplicative, they were able to choose an appropriate multiplicative theorem-in-action 

to solve this problem, thus demonstrating good procedural fluency.  However, the 

majority of the nine participants who had used multiplicative schemes used calculation 

technique types that were less efficient than the more efficient calculation technique 

type used by, for example, Learner 17. The lower the level of the calculation technique, 

the more effective the technique will be, with Level 2F being the highest and most 

efficient level (see the conceptual framework, Figure 2.1 in Chapter 2).  One could 

therefore infer that the majority of the participants were less strategically competent, 

since they did not use the most effective calculation technique type to solve this 

problem.   

 

Five of the fifteen participants (Learners 4, 7, 8, 13 and 16) were categorised on Level 

1A (unitary counting), and except for Learner 7, who ‘counted from one’, their 

calculation technique type was categorised as ‘counted on’.  These participants 

therefore used additive calculation technique types to solve this problem and also 
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understood the problem to be an additive problem.  It could be inferred that they lacked 

a correct schema and scheme of ‘equal sharing’ since their schema and scheme were 

additive and could therefore not be used to solve this problem.  Because their concept-

in-action was incorrect, they chose an incorrect theorem-in-action.  Learner 11 

guessed the answer, which suggests that she did not have any schema and scheme 

for solving this problem.  These five learners had no procedural fluency and lacked the 

strategic competence required to solve this problem.   

 

4.3.4.3 Question 1: Discussion of calculation errors  

Four calculation errors were identified and categorised, namely ‘writing error’, ‘memory 

error’, ‘counting error’ and ‘disconnect between abstract and drawing’.  It is very 

difficult to reliably determine the reasons for these calculation errors.  One possible 

reason could be the learning difficulties experienced by the participants.  Learner 14 

wrote the answer as 56 in both her abstract and semi-concrete representations, but 

verbally indicated that the answer was 65.  This ‘writing error’ could possibly be 

ascribed to dyslexia, which could explain why the written numbers were inverted.  The 

‘memory error’ made by Learner 5, who wrote 65 in her abstract representations, but 

56 when she drew her picture could possibly be ascribed to either ADHD or dyslexia.  

Learner 7’s ‘memory error’ (thinking that there were three trees instead of five) might 

also be ascribed to ADHD, dyslexia or a problem in remembering information due to 

his learning difficulties.  The ‘counting errors’ made by Learners 7 and 11, who 

repeatedly recounted the circles they had drawn, could possibly be ascribed to 

organisational or visual / spatial problems, since they recounted their circles over and 

over, each time either missing circles or counting some of them twice.  The ‘disconnect 

between the abstract and drawing’ calculation error (Learner 8) could have been a 

result of the fact that she was not used to having to draw pictures of word problems.  

She did not seem to make a connection between what she drew and the answer she 

gave.  She repeated the answer derived from the abstract representations and did not 

refer to her picture for verification.  When learners are asked to illustrate a problem, 

teachers could point out to them that the number of oranges drawn, for example, 

provides an indication of what the answer should be.   
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4.4 Question 2: Combined categorisation, analysis and discussion  

The second task-based question, which all the participants were required to answer, 

was: If 1 sweet costs R7, how much will 9 sweets cost?  Question 2 represented the 

‘constant price’ class of multiplication problems (Vergnaud, 1983).  Since the 

participants now understood what was expected of them, there was no need for 

lengthy explanations.  As for Question 1, the participants had to solve the problem 

using abstract symbols first, followed by semi-concrete drawings and finally 3D 

material.  I expected the participants to illustrate their understanding by drawing nine 

sweets and writing R7 at each sweet.  The concrete objects I gave them were sweets 

and money and I expected them to lay out nine sweets and place one R5 and one R2 

coin with each sweet.     

 

Question 2 was conceptually more complex that Question 1, since money was one of 

the units.  Participants were expected to know that R7 is made up of R5 and R2.  

Although the abstract reasoning required to solve problems in this class should be 

introduced in Grade 2 (DBE, 2011a), I scrutinised several textbooks and could only 

find this type of problem in a Grade 4 textbook (Bowie et al., 2012a).  The participants 

should therefore have previously encountered problems of this kind.  Money problems 

play an important role in the South African school curriculum and are dealt with as a 

separate topic every year during the primary school phase.   

 

Table 4.2 contains a summary of the categories and subcategories of data obtained 

from all the participants’ representations in their answers to Question 1.  Similar 

subcategories have been colour coded for easier recognition.  The data analysed 

under each heading in the table starts with the participants’ conceptions, 

misconceptions and misrepresentations, after which the levels and types of calculation 

techniques and calculation errors are analysed.  Finally, the analysis of all the data for 

this question is discussed.  I used inductive reasoning to analyse the misconceptions, 

misrepresentations, calculation technique types and calculation errors, and deductive 

reasoning to analyse the calculation technique levels derived from my conceptual 

framework. 
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Table 4.2: Summary of the categories and subcategories of Question 2 for all participants and all the representations 
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Learner 3 
× 

(63) 
 

Level 2A  
Doubling 
Level 1A 

Unitary counting 

Doubling 
Counted on 

 

× 
Constant 

price 
(61) 

 
Counting error 
(Answer 61) 

× 
Constant 

price 
 

Learner 4 
+ 

(15) 
 

Level 1A 
Unitary counting 

Counted on 

Wrong 
number 
(wrote  
9 + 6)  

Addition 
+ 

(15) 

Combination 
of measures 

Wrong number 
(wrote 9 + 6) 

Intention 
was 

+ 

Abstract 
numbers  

Learner 5 
× 

(63) 
 

Level 2B  
Double counting 

Level 1C 
Repeated addition 

Counted in 
Counted on 

 

× 
Constant 

price 
(63) 

 
 

 
Intention 

was 
× 

Answer 

Learner 6 
× 

(63) 
 

Level 2E 
Derived 

multiplication fact 

Times table 
and 

subtraction 
 

× 
Constant 

price 
(63) 
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Counting error 
(Answer 58) 
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Tracking 
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+ 
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Level 1C 
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Counting 

error 
(Answer 64) 
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Constant 
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(63) 

  
× 

Constant 
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Learner 10 
× 

(63) 
 

Level 2F 
Known 
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Times table  
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× 
 (63) 

Abstract 
numbers  
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Abstract 
numbers 
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Level 1C 
Repeated addition 

Counted on  
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Disconnect 
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(Answer 16) 
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Learner 17 
× 
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Level 2E 
Derived 
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Times table 
and 

subtraction 
 

× 
Constant 

price 
(63) 

  
× 

Constant 
price 
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Four of the fifteen participants (Learners 3, 6, 14 and 17, whose names are marked in 

dark blue in Table 4.2) could solve this multiplication problem using all three forms of 

representation. To solve the problem, they multiplied by using abstract 

representations.  They placed and then drew nine sweets and allocated R7 to each 

sweet, which is indicative of ‘constant price’ (see Picture 4.11).  

 

 

Picture 4.11: Question 2: Learner 6’s equation, conceptual drawing and 3D 
material representing ‘constant price’  

 

The example of Learner 6’s work, shown in Picture 4.11, demonstrates his 

representation of ‘constant price’ in the semi-concrete drawing and using the 3D 

material.  It also shows the abstract equation that he used to solve the problem. 

 

Learners 9 and 16 (whose names are marked in light blue in Table 4.2) could solve 

the problem by using both semi-concrete and concrete representations, but could not 

solve it by using abstract representations.  Their drawings and their use of the 3D 

material indicated an understanding of ‘constant price’ as R7 had been allocated to 

each of the nine sweets.  Seven of the fifteen participants could solve this problem by 

using either semi-concrete or abstract representations, or both.  Of these seven 

participants, whose names are marked in purple in Table 4.2, two (Learners 5 and 11) 

could solve the problem by using both semi-concrete and abstract representations; 

two (Learners 7 and 13) used only concrete representations; and three (Learners 10, 

12 and 15) could solve it only by using  abstract representations.    

 

4.4.1 Question 2: Misconceptions and misrepresentations 

As in the responses to Question 1, two misconceptions were identified and 

categorised, namely ‘added different units’ and ‘keyword’ (see Table 4.2).  Learner 7 

explained that it was possible to add, in this instance sweets and money, together, 

which I categorised as a misconception and described as ‘added different units’.  He 

explained his view as follows: Because they said, if 1 sweet costs R7, how much will 
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9 cost? So, I added 1 and 7 and 9 altogether.  Learner 13 explained that the phrase 

‘how much’ in the problem indicated addition, because it says, if 1 sweet costs R7, 

how much will 9 sweets cost? So, how much?  This was categorised as a ‘keyword’ 

misconception.   

 

Learners 4 and 16 added the numbers together to solve the problem using abstract 

representations and I could not identify any misconceptions in their explanations.  Both 

seemed to lack an abstract understanding of the problem.  For example, Learner 16 

explained his reasoning as follows: I thought it was going to be a subtraction sum, and 

then I tried the minus sum.  And now I think it is an addition sum. 

 

In the responses to this question, three misrepresentations were identified and 

categorised, namely ‘abstract numbers’, ‘answer’ and ‘combination of measures’ (see 

Table 4.2).  Six participants’ semi-concrete and/or concrete representations were 

categorised as ‘abstract numbers’.  Two (Learners 10 and 15) of the six participants’ 

semi-concrete and concrete representations were categorised as a misrepresentation 

of ‘abstract numbers’, since their pictures and their 3D materials could indicate that 

they had their equation in mind when they solved the problem using abstract numbers.  

They simply replaced the numbers of the multiplication equation with sweets and 

money (see Picture 4.12).  

 

 

Picture 4.12: Question 2: Learner 15’s misrepresentation of ‘abstract numbers’  
 

The semi-concrete drawings of another three of these six participants’ (Learners 7, 8 

and 12) indicated a misrepresentation of ‘abstract numbers’ as Learners 7 and 8 each 

drew nine sweets and Learner 12 drew seven sweets and multiplied the number of 

sweets by 9, inversing the units, which still represent his equation and not the 

multiplication concept of ‘constant price’ (see Picture 4.13).   
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Picture 4.13: Question 2: Learner 12’s misrepresentation of ‘abstract numbers’  
 

The concrete representation of the last of the seven participants (Learner 4) was a 

replication of the numbers in her equation and therefore also a misrepresentation of 

‘abstract numbers’ (Picture 4.14).       

 

Picture 4.14: Question 2: Learner 4’s misrepresentation of ‘abstract numbers’  
 

Learner 13’s drawings and Learners 5, 8 and 12’s 3D material were categorised as a 

misrepresentation of the word ‘answer’, since they represented the answer to the 

problem instead of the problem.  For his abstract presentation, Learner 13 drew 

seventeen circles.  Learners 5, 8 and 12 calculated an amount of R63, which was the 

answer to the question, instead of placing R7 with each sweet.  Learner 12 mistakenly 

counted out twelve sweets instead of nine.  Picture 4.15 illustrates Learner 5’s 

misrepresentation of the word ‘answer’. 

 

 

Picture 4.15: Question 2: Learner 5’s misrepresentation of ‘answer’  
 

Learner 4’s semi-concrete representation was categorised as a misrepresentation of 

a ‘combination of measures’, as she had drawn nine and then seven sweets 

separately.  
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It was not possible to identify and categorise Learner 11’s concrete representation, as 

she had used an incorrect amount of money and made two groupings of the sweets 

and money, instead of placing nine sweets and R7 with each sweet.   Picture 4.16 

shows her misrepresentation when using the 3D material, when she placed four 

sweets with R4 and five sweets with R5. 

 

 

Picture 4.16: Question 2: Learner 11’s misrepresentation  
   

For this question, two misconceptions (‘added different units’ and ‘keyword’) and three 

misrepresentations (‘abstract numbers’, ‘answer’ and ‘combination of measures’) were 

identified and categorised.  The calculation technique levels and types will be 

discussed next.  

 

4.4.2 Question 2: Levels and types of calculation techniques  

The calculation technique levels were categorised according to the conceptual 

framework (see section 2.5.1 and Figure 2.1 in Chapter 2).  The calculation technique 

types were inductively identified and grouped into similar categories (colour coded in 

green and pink in Table 4.2).  The following calculation technique levels were identified 

and categorised: Level 1A (unitary counting), Level 1C (repeated addition), Level 2A 

(doubling), Level 2B (double counting), Level 2E (derived multiplication fact) and Level 

2F (known multiplication fact).  The calculation technique types identified for solving 

Question 2 were: ‘counted on’, ‘doubling’, ‘counted in’, ‘times table and subtraction’ 

and ‘times table’ (see Table 4.2).     

 

Level 1 calculation techniques are additive and eight participants were categorised on 

Level 1, since they added to calculate the answer.  Four of those eight participants 

(Learners 4, 7, 13 and 16) were categorised on Level 1A (unitary counting) as their 

calculation technique type was categorised as ‘counted on’.  They ‘counted on’ starting 

with either nine or seven and then added the other number on.  Learners 8, 9, 11 and 

12 were categorised on Level 1C (repeated addition).  Their calculation technique type 
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was also categorised as ‘counted on’. Counting on their fingers, they added seven or 

nine each time while keeping track of how many times they had added the seven or 

nine.      

 

Learners 3 and 5 used a combination of additive and multiplicative calculation 

technique types and their calculation techniques were categorised as Level 1A 

(doubling) and Level 2 (unitary counting).  Learner 3’s calculation technique types 

were categorised as ‘doubling’ and ‘counted on’, since she first doubled fourteen and 

then counted on her fingers while keeping track of how many she had counted on.  

She counted out loud, saying: 7, 14, 14 + 14 is 28… 31, 32… is 42 plus 14 is 56, 57, 

58, 59, 60, 61, 62, 63.  So it is 63.  Learner 5’s calculation technique levels were 

categorised on Level 2B (double counting) and Level 1C (repeated addition) 

respectively, since her calculation technique types were categorised as ‘counted in’ 

and ‘counted on’.  She counted in 7s as she wrote 7, 21, 28 and ‘counted on’ 7 each 

time.   

    

Level 2 calculation techniques are considered to be multiplicative, meaning 

participants were able to think multiplicatively when solving the problem (Carrier, 

2014).  Five participants used multiplicative calculation techniques to solve this 

problem.  Learners 14 and 15’s calculation techniques were categorised on Level 2B 

(double counting).  Their calculation technique type was categorised as ‘counted in’.  

Learners 14 and 15 counted in 9s to calculate their answers.  Learners 6 and 17’s 

calculation techniques were categorised on Level 2E (derived multiplication facts), 

since their calculation technique type was categorised as ‘times table and subtraction’.  

They both multiplied ten by seven and then subtracted seven.  Learner 17 explained: 

So, I multiplied 7 with 10, it is 70.  And then if you minus one 7, it is 63.    Learner 10’s 

calculation technique was categorised on Level 2F (known multiplication facts), and 

since he knew that nine times seven is 63 his calculation technique type was 

categorised as ‘times table’.   

 

To calculate the answer to this problem, five participants used multiplicative calculation 

techniques, eight used additive calculation techniques and two used a combination of 

additive and multiplicative calculation techniques.  The calculation errors will be 

discussed next. 
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4.4.3 Question 2: Calculation errors  

Four calculation errors were identified and categorised, namely ‘counting error’, ‘wrong 

number’, ‘tracking error’ and ‘disconnect between abstract and drawing’ (see Table 

4.2).  Six participants made errors that were categorised as ‘counting errors’.  Learners 

9 and 13 made ‘counting errors’ when attempting to solve the problem using abstract 

representations and Learner 9 incorrectly added seven every time and finally 

calculated a total of 64, whereas Learner 13 added 9 and 7 and calculated a total of 

17.  Learners 3, 7, 8 and 12 counted incorrectly when they referred to their drawings 

to recalculate their answers.  Learner 3 calculated R61, Learner 7 R58 and Learner 8 

R70. 

 

The second calculation error identified and categorised was ‘wrong number’.  Learner 

4 had used an incorrect number when adding in both her abstract and semi-concrete 

representations.  She had added together 9 and 6 instead of 9 and 7.  The third 

calculation error that was categorised was a ‘tracking error’.  Learner 8 struggled to 

keep track of the number of times she had added 7 and added ten instead of nine 7s.   

 

The last calculation error identified and categorised was a ‘disconnect between the 

abstract and drawing’.  Learner 16 gave the answer as R16 when he drew his picture 

using semi-concrete representations, which represented his answer with the abstract 

representations.  However, his drawing did illustrate the ‘constant price’ concept (see 

Picture 4.17).      

 

 

Picture 4.17: Question 2: Learner 16’s misrepresentation of ‘disconnect 
between abstract and drawing’  

 

The four calculation errors that were identified and categorised were ‘counting error’, 

‘wrong number’, ‘tracking error’ and ‘disconnect between abstract and drawing’.  A 

discussion of the analysis of the data follows below. 
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4.4.4 Question 2: Discussion of the analysis  

Mathematically Question 2 is similar to Question 1, but it is slightly more complex, as 

one of the units to be calculated was money and the participants had to understand 

that two coins – a R2 and a R5 coin – had to be allocated to each of the nine sweets.  

Ideally the abstract reasoning required to solve problems of this type should be 

introduced in Grade 2 (DBE, 2011a).  However, in the textbooks that I perused I only 

found such problems in a Grade 4 textbook (Bowie et al., 2012a).  The participants 

should therefore have gained experience in solving problems of this nature.  My 

analysis revealed that only four of the fifteen participants (Learners 3, 6, 14 and 17) 

could solve the problem of ‘constant price’ without any difficulty in all the 

representational forms.  From their semi-concrete and concrete representations of 

nine sweets, with R7 placed with each sweet, one could infer their conceptual 

understanding of ‘constant price’.  Moreover, their procedural fluency could be inferred 

from their use of multiplicative calculation techniques to solve their multiplication 

equations. The one exception was Learner 3, who used both multiplicative and 

additive calculation techniques.  This could indicate good connections between their 

different types of representations, and more connections indicate better understanding 

(Hiebert & Carpenter, 1992).  Good connections between different types of 

representations could be inferred as all these learners’ representations indicated the 

‘constant price’ type of problem, and therefore a good schema and scheme of 

‘constant price’.  Since these participants demonstrated a good interconnected 

schema of ‘constant price’ between the three representations, they were able to 

consider the correct multiplicative concept-in-action, which allowed them to choose 

their most effective theorem-in-action to solve the problem (Vergnaud, 1998; 2013a; 

2013b).  This in turn could indicate that they had good procedural fluency (see 

conceptual framework, Figure 2.1 in Chapter 2).   

 

A further two participants (Learners 9 and 16) could use semi-concrete drawings and 

3D material by placing R7 next to each of the nine sweets, but they did not use 

multiplication for their equations.  Learner 16’s abstract representations indicated that 

the problem had been perceived as being additive, while Learner 9 used repeated 

addition to calculate his answer.  When asked about his abstract representation, it was 
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clear that he had understood the problem to be additive. This is in line with what Kouba 

(1989) found in his study and explains why repeated addition was classified as an 

additive, and not as a multiplicative calculation technique.  It could therefore be 

inferred that while the learners understood the ‘constant price’ conceptually, they did 

not understand it in the abstract.  One could conclude that their schema of ‘constant 

price’ was limited, since the abstract schema was lacking as they used additive 

schemes to solve the problem.  

 

Four more participants (Learners 5, 7, 11 and 13) could either illustrate constant price 

of nine sweets by placing R7 next to each sweet, or could use 3D material to represent 

the sweets and the money, but could not solve the problem by using abstract 

representations.  When only one type of representation is correct, it could indicate that 

limited connections were made (Ayub et al., 2013).  One could conclude that Learners 

5 and 11 had only semi-concrete schemas, while Learners 7 and 13 had only a 

concrete schema of constant price, which could have led to their use of incorrect 

schemes to solve the problem.  Their conceptual understanding was limited to either 

the semi-concrete or concrete representations, which suggests limited conceptual 

understanding and no procedural fluency.  One possible reason for the incorrect 

choice of a scheme could be that when I asked them to solve the problem by using 

abstract representations, they only tried to access the abstract schema, and since it 

was not available, they accessed the incorrect concept-in-action, which led to an 

incorrect theorem-in-action being chosen.  This could indicate a lack of strategic 

competence.      

 

Four participants (Learners 8, 10, 12 and 15) could solve this problem using only 

abstract representations. This could suggest that they saw only limited connections 

between the representations, which could indicate that they had only an abstract 

schema of the problem and not a semi-concrete or a concrete schema of ‘constant 

price’.  It is possible that they simply memorised the procedure without conceptually 

understanding it (Ayub et al., 2013).  Only one participant (Learner 4) could not solve 

this problem as all her representations indicated addition.  One might therefore 

conclude that she did not have a ‘constant price’ schema in any of the three 

representations, and no scheme, and therefore lacked the procedural fluency or 

strategic competence needed to solve this problem. 
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Four of the fifteen participants (Learners 3, 6, 14 and 17) could solve this problem of 

constant price by using all the representational forms.  Learners 9 and 16 could solve 

it by using both semi-concrete and concrete representations; Learners 5 and 11 could 

solve it by using only the semi-concrete representations; and Learners 7 and 13 could 

only solve it by using concrete representations.  Four participants (Learners 8, 10, 12 

and 15) could only solve this problem by using abstract representations.  In total, 

fourteen of the fifteen participants could solve it by using at least one of the 

representations.  Only Learner 4 was unable to solve it by using any of the 

representations.  

 

4.4.4.1 Question 2: Discussion of misconceptions and misrepresentations  

The misconceptions identified and categorised were the same as for Question 1, 

namely, ‘keyword’ and ‘added different units’.  Learner 13 thought that the words ‘how 

much’ in the question indicated the operation to be used, while Learner 7 thought that 

different units could be added together (i.e. sweets and money).  As explained in the 

discussion of the answers given to Question 1, this could possibly be indicative of 

teachers’ failure to adequately emphasise the fact that different units cannot be added 

together and a possible over-emphasis of the use of keywords as indicators of the 

operations to be used. 

 

Three misrepresentations were identified and categorised, namely ‘abstract numbers’, 

‘answer’ and ‘combination of measures’.  Learners 10 and 15 replaced their abstract 

equations with sweets and money when they did their semi-concrete and/or concrete 

representations, while Learner 4 arranged the sweets to form numbers to represent 

her abstract equation.  These misrepresentations could indicate that the above-

mentioned participants struggled to visualise ‘constant price’ and could visualise only 

their abstract equations, which they then used to choose their concept-in-action.  Four 

participants (Learners 7, 8, 10 and 12) drew sweets or blocks representing sweets, 

which represented only one part of the problem (i.e. the sweets).  The 

misrepresentation of ‘abstract numbers’ could indicate that these participants had only 

a schema of sweets, and not one of money, as sweets are more concrete and easier 

to visualise than money.  Therefore, because they struggled to visualise the money, 

they only drew what they knew best, namely sweets, even though the amount of 
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money should have constituted the answer.  It could be inferred that these learners 

struggled with abstract thinking, which is characteristic of learners with learning 

difficulties (Allsopp et al., 2007).     

 

Three participants (Learners 5, 8, 12) arranged the money not to represent ‘constant 

price’, but to represent the answer to the problem, and one participant (Learner 13) 

drew sweets to give the answer.  The reasons for this misrepresentation of the ‘answer’ 

could be twofold: either they were influenced by what they did for the abstract 

representations (they already had an answer in mind and then counted out the answer 

when they had to solve the problem again), or they struggled to visualise the problem 

either semi-concretely or concretely as ‘constant price’, which means that they did not 

have a very strong schema of problems of this nature. It could also be a combination 

of the two reasons: because they did not have a strong visual schema, they were 

easily influenced by what they had already done.   

 

Learner 4 drew a combination of two set of sweets, indicating addition.  She added 

when she had to represent the problem by using abstract representations.  This 

misrepresentation of ‘combination of measures’ could indicate that she did not have a 

schema and scheme of the ‘constant price’ class of problem, and therefore chose an 

additive schema and scheme.  She also gave the answer in sweets instead of in 

money, which could indicate a problem with abstract thinking, as money is more 

abstract to visualise than sweets.  This misrepresentation suggests that she had no 

conceptual understanding of ‘times as many’ and no procedural fluency.   

 

4.4.4.2 Question 2: Discussion of the calculation technique levels and types  

Even though ten of the fifteen participants (Learners 3, 5, 6, 8, 10, 11, 12, 14, 15 and 

17) used equations that indicated multiplication, only Learners 6, 10, 14, 15 and 17 

used multiplicative calculation technique types to solve the problem and were 

categorised on Level 2.  Learners 14 and 15 were categorised on Level 2B (double 

counting) and the calculation technique was categorised as ‘counted in’.  Learners 6 

and 17 were categorised on Level 2E (derived multiplication facts) and the calculation 

technique was categorised as ‘times table and subtraction’.  This could indicate that 

only a third of all the participants had an abstract schema and multiplicative schemes 

of this ‘constant price’ class of problem, which in turn could indicate that they 
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possessed good procedural fluency.  Learners 6 and 17 were the only ones for whom 

good strategic competence could be inferred, since they were categorised on Level 

2E, which demonstrates abstract thinking and is therefore seen as one of the highest 

cognitive developmental calculation techniques (Hurst & Hurrell, 2014; Zhang et al., 

2011).  

 

Learners 3 and 5 used a combination of multiplicative and additive calculation 

techniques.  Learner 3 was categorised on Level 2A (doubling) and Level 1A (unitary 

counting), and her calculation technique types were categorised as ‘doubling’ and 

‘counted on’, while Learner 5 was categorised on Level 2B (double counting) and Level 

1C (repeated addition), and her calculation technique types as ‘counted in’ and 

‘counted on’.  The use of a mixture of calculation technique types could indicate that 

these participants lacked a scheme to effectively solve this problem.  It might also 

indicate that their multiplicative schemes were underdeveloped, which necessitated 

the use of multiplicative and additive calculation techniques.  One could conclude that 

their procedural fluency and strategic competence were limited. 

 

Eight participants (Learners 4, 7, 8, 9, 11, 12, 13 and 16) used additive calculation 

techniques types. Four of them (Learners 8, 9, 11 and 12) understood the problem to 

be multiplicative, but used additive calculation technique types to calculate the answer 

and were categorised on Level 1C (repeated addition). Their calculation technique 

type was categorised as ‘counted on’, which might indicate that even though they knew 

that it was a multiplication problem, they were unable to use multiplicative calculation 

techniques and had to resort to addition to solve it.  The other four participants 

(Learners 4, 7, 13 and 16), who understood the problem to be additive, added the 

numbers together and were categorised on Level 1.  They were categorised on Level 

1A (unitary counting) and their calculation technique type was categorised as ‘counted 

on’.  One could infer that they lacked a correct schema and scheme of ‘constant price’, 

but had an additive schema and scheme and could therefore not solve this problem.  

They lacked the necessary procedural fluency and strategic competence to solve this 

problem and since their concept-in-action was incorrect, they chose an incorrect 

theorem-in-action. 
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4.4.4.3 Question 2: Discussion of calculation errors  

Four calculation errors were identified and categorised, namely ‘counting errors’, 

‘wrong number’, ‘tracking error’ and ‘disconnect between abstract and drawing’.  It is 

very difficult to give decisive reasons why participants made these calculation errors, 

which might have been due to their learning difficulties.  Learner 4 added 6 and 9, 

instead of 7 and 9, which could indicate difficulties with remembering information.  Six 

participants (Learners 3, 7, 8, 9, 12 and 13) found it difficult to add the big numbers 

together and easily lost their places, which resulted in ‘counting errors’.  Learner 8 

knew that she had to add nine 7s together, but lost track of how many 7s she had 

already added.  This ‘counting error’ could be indicative of organisational or visual-

spatial problems experienced due to their learning difficulties.  The ‘disconnect 

between the abstract and drawing’ calculation error that was identified for Learner 16, 

could have occurred because he was not used to drawing pictures of word problems.  

In my opinion, teachers who allow learners to make drawings of problems should 

explain to them how their pictures can be used to verify their answers.  In the case of 

this problem, for which sweets and money had to be drawn, it was the amounts of 

money next to the sweets that had to be added together to arrive at the answer.   

 

4.5 Question 3: Combined categorising, analysis and discussion 

The third task-based question was: Thabo rides his bicycle at a speed of 50 metres in 

one minute, how far will he ride his bicycle in 3 minutes?  This question represented 

the ‘uniform speed’ class of multiplication problems (Vergnaud, 1983) which, together 

with the two classes of problems addressed in Questions 1 and 2, are classified under 

‘equal groups’ (see section 2.3.2.1 of Chapter 2 for full explanation).  The learners 

were asked to answer this question by using first abstract, then semi-concrete and 

finally concrete representations.  I expected them to illustrate their conceptual 

understanding by drawing a line (indicating distance) divided into three parts (each 

indicating one minute).  The only concrete material I could suggest for participants to 

demonstrate their understanding of distance and time was a standard ruler.  I expected 

them to point to the numbers 50, 100 and 150 marked on the ruler.   

 

Since Question 3 included the abstract concepts distance and time, it was 

conceptually more complex than the previous two questions and therefore more 
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difficult to visualise.  Problems in this class are gradually introduced to learners from 

Grade 4 (Bowie et al., 2012a), and their abstract introduction follows in Grade 9, when 

they are taught as problems involving distance, speed and time (DBE, 2011c).   

 

Table 4.3 provides a summary for all the participants of the categories and 

subcategories of the data and representations dealt with in Question 3.  I colour coded 

similar subcategories for easier recognition and analysed the data under each heading 

in Table 4.3 by starting with the participants’ conceptions, followed by their 

misconceptions and misrepresentations. Subsequently the levels and types of 

calculation techniques and calculation errors were analysed.  A discussion of the 

analysis of all the data for this question, as well as Questions 1 to 3 together, followed.  

I used inductive reasoning to analyse the misconceptions, misrepresentations, 

calculation technique types and calculation errors, and deductive reasoning to analyse 

the calculation technique levels as derived from my conceptual framework. 
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Table 4.3: Summary of the categories and subcategories of Question 3 for all the participants and representations 
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Learner 3 
× 

(150) 
 

Level 1C 
Repeated addition 
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addition 
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(150) 

Abstract 
numbers  

Wrong unit 
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× 
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Learner 4 
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(33) 
 

Level 1A 
Unitary counting 

Counted on 
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number 
(wrote  
30 + 3) 

Addition 
+  

(33) 

Combination 
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Wrong unit 

Wrong 
number 
(wrote  
30 + 3) 
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+  
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Level 1C 
Repeated addition 
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addition 
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× 
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Only one of the fifteen participants (Learner 12, whose name is marked in dark blue in 

Table 4.3) multiplied to solve the problem by using abstract representations and could 

solve this problem by using all three representations. He drew distance and time and 

could also indicate distance and time on a ruler, which indicated ‘uniform speed’.  

Picture 4.18 shows how Learner 12 represented ‘uniform speed’ by using abstract and 

semi-concrete representations.  Referring to the concrete representation, he explained 

his understanding: Pointing to the 50 on the ruler: It is one minute, it is the first minute.  

Pointing to the 100 on the ruler: It is the second minute ... Pointing to the 150 on the 

ruler: and the third minute. 

 

 

Picture 4.18: Question 3: Learner 12’s abstract and semi-concrete drawing 
representing uniform speed  

 

Learner 6 (whose name is marked in light blue in Table 4.3) could demonstrate his 

understanding of ‘uniform speed’ with both the semi-concrete and concrete 

representations, but not with the abstract representations, while Learners 5 and 17 

could demonstrate an understanding of ‘uniform speed’ with both abstract and semi-

concrete representations, and  Learners 10, 11 and 14 could demonstrate their 

understanding of ‘uniform speed’ with both abstract and concrete representations.  

The way in which Learners 7 and 8 pointed out distances on the ruler indicated their 

understanding of ‘uniform speed’ in concrete representations, and Learners 3, 9, 15 

and 16 (whose names are marked in purple in Table 4.3) could only solve the problem 

with abstract representations, using multiplicative equations.    

 

4.5.1 Question 3: Misconceptions and misrepresentations  

Learners 4 and 13 added the two numbers together, but their explanations did not 

reveal any verbal misconceptions.  I could identify and categorise four 

misrepresentations for this question, namely ‘abstract numbers’, ‘answer’, 

‘combination of measures’ and ‘wrong unit’ (see Table 4.3).  Learners 3, 10, 11, 14 
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and 16’s semi-concrete representations were categorised as ‘abstract numbers’, since 

they used abstract numbers and/or drew bicycles that represented their equations.  

Picture 4.19 shows how Learners 11 and 16 misrepresented this problem. 

 

Picture 4.19: Question 3: Learners 11 and 16’s misrepresentations of ‘abstract 
numbers’  

 

Learners 15 and 17’s misrepresentation of ‘abstract numbers’ was with the use of the 

concrete material.  They showed the multiplication of two numbers on the ruler.   

 

Learner 3’s misrepresentation when using the 3D material was categorised as 

‘answer’, since she gave the answer to the problem, but failed to show how it had been 

calculated.  She actually used 3D blocks with the ruler to show the answer (see Picture 

4.20). 

 

 

Picture 4.20: Question 3: Learner 3’s misrepresentation of the answer  
 

This learner had placed fifteen blocks alongside the ruler until she reached the 150 

mark on the ruler.  She explained her representation as follows: What if I take a block 

and say that each block is a bicycle?  I responded: OK, but if I give you the ruler, how 

will you use the ruler to show it to me? Then she said: So, each block is 10 cm and 

each 10 cm equals 10 metres. 

 

Learners 4 and 13 added the two numbers together when they used the 3D material 

and Learner 4 used addition as she added the bicycles together. This 

misrepresentation was categorised as ‘combination of measures’.  Picture 4.21 shows 
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Learner 4’s semi-concrete drawing of the ‘combination of measures’ 

misrepresentation.   

 

 

Picture 4.21: Question 3: Learner 4’s misrepresentation of ‘combination of 
measures’  

 

The context of this problem was Thabo riding his bicycle, and nine of the participants 

(Learners 3, 4, 7, 9, 10, 11, 13, 15 and 16) drew bicycles, which did not represent one 

of the units in the problem (which were distance and time).  I categorised this 

misrepresentation as ‘wrong unit’.  Picture 4.22 shows Learners 7 and 13’s 

misrepresentations in which each drew only a bicycle and none of the real units that 

had to be used to calculate the answer.    

   

 

Picture 4.22: Question 3: Learners 7 and 13’s misrepresentation of the ‘wrong 
unit’  

 

Learners 5, 9 and 16 were unable to use the 3D material (a ruler) to solve the problem.  

They simply pointed randomly at the ruler without showing any understanding.  Only 

Learner 8 did not attempt to make a drawing to answer the question.     

 

No misconceptions were identified for this question, but four misrepresentations 

(‘abstract numbers’, ‘answer’, ‘combination of measures’ and ‘wrong unit’) were 

identified and categorised.  The levels and types of calculation techniques will be 

discussed next. 
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4.5.2 Question 3: Levels and types of calculation techniques 

The calculation technique levels were categorised according to the conceptual 

framework (see section 2.5.1 and Figure 2.1 in Chapter 2) and the calculation 

technique types were inductively identified and grouped into similar categories (colour 

coded in green and pink in Table 4.3).  The following calculation technique levels were 

identified: Level 1A (unitary counting); Level 1C (repeated addition); Level 2B (double 

counting); and Level 2C (algorithms).  Another additive level, not included in my 

conceptual framework, was identified and categorised, namely addition algorithm.  

This is a valid method taught in South African schools when adding larger numbers 

together (Bowie, Gleeson-Baird, Jones, Morgan, Morrison, & Smallbones, 2012b).  

This calculation technique was not mentioned in my conceptual framework as none of 

the research studies I had consulted about multiplicative reasoning mentioned it as a 

calculation technique, and it is more likely to be found in addition than in multiplicative 

problems.  The calculation technique types identified for solving Question 3 were: 

‘counted on’, ‘repeated addition’, ‘counted in’ and the ‘column method’ (see Table 4.3).    

 

Level 1 calculation techniques are additive in nature and six participants (Learners 3, 

4, 5, 6, 7 and 13) were categorised on Level 1, even though multiplication was used 

for the equations of two participants (Learners 3 and 5).  Learner 7 was categorised 

on the new level, namely Level 1 (addition algorithm), as he had added the three 50s 

together using the ‘column method’ as calculation technique type.  Learners 4 and 13 

were categorised on Level 1A (unitary counting), since they had understood the 

problem as addition and had added the numbers together.  Their calculation technique 

type was categorised as ‘counted on’, since they had started counting from one 

number and continued by adding the other.  The three participants (Learners 3, 5 and 

6) who had added the three 50s together were categorised on Level 1C (repeated 

addition).  Their calculation technique type was categorised as ‘repeated addition’, 

since they had first added two 50s together to get 100 and had then added the other 

50.  For example, although Learner 3’s algorithm was indicative of multiplication, when 

she explained how she had calculated the answer, she said: Because 50 + 50 is 100, 

and 100 + 50 is 150.   
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The Level 2 calculation techniques are considered to be multiplicative, which means 

that the participants were able to think multiplicatively when solving the problem 

(Carrier, 2014).  Eight participants (Learners 9, 10, 11, 12, 14, 15, 16 and 17) used 

multiplicative calculation techniques to solve the problem and although Learner 8 used 

equation for her addition, she used a multiplicative calculation technique.  Seven of 

these nine participants (Learners 8, 9, 11, 12, 14, 16 and 17) were categorised on 

Level 2B (double counting).  The calculation technique type they used was categorised 

as ‘counted in’ as they all ‘counted in’ 50s, with the exception of Learner 17, who 

counted in 3s.  Learners 10 and 15 were categorised on Level 2C (algorithms).  Their 

calculation technique type was categorised as the ‘column method’, since they wrote 

the numbers below one another and multiplied each number separately.   

 

Eight participants used multiplicative calculation techniques and six used additive 

calculation techniques to calculate the answer to this problem.  The calculation errors 

will be discussed next. 

 

4.5.3 Question 3: Calculation errors  

Two calculation errors were identified and categorised, namely ‘wrong number’ and 

‘counting error’ (see Table 4.3).  Learners 4 and 8 both used incorrect numbers to 

calculate their answers, and this calculation error was categorised as ‘wrong number’.  

Learner 4 wrote ‘30 + 3’ instead of ‘50 + 3’ in both the abstract and the semi-concrete 

representations, while Learner 8 wrote ‘50 + 30’ instead of ‘50 × 3’ in the abstract 

representation (see Picture 4.23). 

     

 

Picture 4.23: Question 3: Learner 8’s calculation error of ‘wrong number’  
 

When I asked Learner 8 to explain how he had arrived at 150, he explained: I added.  

I took the 50 metres … I counted in 50s.  I counted in 50s until I got to … wait, I said it 

is 150.  I counted in 50s three times.  When I asked him to write his calculation down, 

he first wrote 3 + 50 and then said: No, 50.  I will just say 50 + 30 equals 150.  There 

was therefore was no correspondence between what he said and what he wrote down.   
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The other calculation error that was identified and categorised was a ‘counting error’.  

Learner 16 had struggled to calculate the answer.  He had decided to count in 3s, but 

could not keep track of counting in 3s 50 times.  To help him, I gave him a 100 chart, 

but that seemed to confuse him even more.  During our conversation that followed, he 

explained: You must multiply 3 with … you must multiply 3 with 50.  He then pointed 

to every third number on the hundred chart and said: It will be … it will be 130. When 

I asked him: Did you keep counting in 3s all the time or what?  He explained: Yes, 20, 

40, 60, 80, then 100.  Wait it is not … it is actually 140.   

 

4.5.4 Question 3: Discussion of the analysis  

Question 3 was more conceptually complex than the previous two questions as the 

concepts distance and time are more abstract than trees, oranges, money and sweets.  

Although learners are occasionally exposed to problems of this kind from Grade 4 

(Bowie et al., 2012a), they are only frequently encountered from Grade 9 (DBE, 

2011c). The analysis showed that only Learner 12 could solve this problem of ‘uniform 

speed’ without any difficulty in all the representational forms.  He had drawn a line with 

three intervals marked on it to indicate distance and time and could show three 50s on 

the ruler, which indicated a conceptual understanding of ‘uniform speed’.  Procedural 

fluency was suggested by his use of multiplicative calculation techniques to solve this 

problem.  This could indicate good connections between his different representations, 

which in turn indicates better understanding (Hiebert & Carpenter, 1992).  One could 

therefore infer that he had good connections between his different representations, 

which indicated ‘uniform speed’, and therefore a good schema and scheme for 

‘uniform speed’.  Since he had a good interconnected schema for ‘uniform speed’ 

between the three representations, he was able to consider the correct multiplicative 

concept-in-action. This allowed him to choose the most effective theorem-in-action to 

solve the problem (Vergnaud, 1998; 2013a; 2013b), which could indicate good 

procedural fluency (see the conceptual framework, Figure 2.1 in Chapter 2).  

 

Learner 6 could represent ‘uniform speed’ in his semi-concrete drawings by drawing 

a line and three intervals, and also when using 3D material.  However, since his 

equation was additive, it could be inferred that he thought the problem was additive 

when he used the abstract representations to calculate the answer.  One could 
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therefore infer that he understood ‘uniform speed’ conceptually, but not as an abstract 

concept, and conclude that his schema for ‘uniform speed’ was limited, since the 

abstract schema was lacking as he had used an additive scheme to solve the problem.   

 

Seven more participants could solve this problem by using either semi-concrete 

representations (Learners 5 and 17) or concrete representations (Learners 7, 8, 10, 

11 and 14).  All these participants could solve this problem in the abstract form, but 

used addition to calculate the answer.  One could conclude that Learners 5 and 17 

had semi-concrete schemas and addition schemes, while Learners 7, 8, 10, 11 and 

14 had concrete schemas for ‘uniform speed’ and addition schemes.  Their schema 

for ‘uniform speed’ was not yet well integrated between the representations.  Limited 

conceptual understanding with additive procedural fluency could therefore be inferred.   

 

Four participants (Learners 3, 9, 15 and 16) could solve this problem through 

multiplication by using only abstract representations, which could indicate that they 

had only limited connections between the representations, and therefore that they had 

only an abstract schema for the problem.  This could also indicate that these learners 

had memorised a procedure without developing any conceptual understanding (Ayub 

et al., 2013).  Learners 4 and 13 could not solve this problem as all their 

representations indicated that they had used addition.  Therefore, one could possibly 

conclude that they did not have a ‘uniform speed’ schema in any of the representations 

and no scheme, and thus lacked the procedural fluency or strategic competence 

needed to solve this problem. 

 

Learner 12 could solve the problem of ‘uniform speed’ in all the representational forms, 

while Learner 6 could solve it with both semi-concrete and concrete representations 

and the use of addition with the abstract representation.  Learners 5 and 17 used semi-

concrete representations to solve this problem, while Learners 7, 8, 10, 11 and 14 

solved it with concrete representations and could solve it with addition in abstract 

representations.  Learners 3, 9, 15 and 16 solved this problem through multiplication 

using only abstract representations.  In total, thirteen of the fifteen participants could 

solve this problem in at least one of the representations.  Learners 4 and 13 could not 

solve it in any of the representations. 
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4.5.4.1 Question 3: Discussion of misconceptions and misrepresentations 

While the participants’ explanations revealed no misconceptions, four 

misrepresentations could be identified and categorised, namely ‘abstract numbers’, 

‘answer’, ‘combination of measures’ and ‘wrong unit’.  Nine participants (Learners 3, 

4, 7, 9, 10, 11, 13, 15 and 16) found the context of riding a bicycle confusing and their 

misrepresentation was categorised as ‘wrong unit’.  Their semi-concrete pictures 

showed misrepresentations as they had drawn one or more bicycles without any 

indication of distance and/or time.  This could indicate that they did not know how to 

represent time and distance, which in turn could be an indication that they did not have 

semi-concrete schemas for distance and time.  A possible conclusion could therefore 

be that they used the only schema they had (the bicycle), which is more concrete (a 

visible object) than distance and time, to represent the problem.  The bicycle was their 

only point of reference and the only object with which they were familiar.   

 

Seven participants (Learners 3, 10, 11, 14, 15, 16 and 17) tried to replace their abstract 

equations with bicycles or a combination of bicycles and numbers in their semi-

concrete representations, which resulted in a misrepresentation of ‘abstract numbers’.  

This could possibly indicate that they were unable to visualise distance and time and 

could only visualise their abstract equations and the bicycles.  The visualisation of 

abstract concepts is characteristic of learners with learning difficulties (Allsopp et al., 

2007). 

     

Learner 3 used a concrete representation to demonstrate the answer instead of 

showing how she had calculated the answer.  There are two possible reasons for this 

misrepresentation of ‘answer’: either she was influenced by her abstract 

representation and already had an answer in mind when she tried to solve the problem 

using a concrete representation, or she found it difficult to visualise the problem as 

‘uniform speed’.  It could also be a combination of the abovementioned possibilities, 

as she may not have had a strong visual schema and was easily influenced by what 

she had already done.  This participant could have had a poor conceptual 

understanding of, and consequently an inadequate schema for ‘uniform speed’.              

   

The two participants (Learners 4 and 13) who thought that the question required 

addition misrepresented either the semi-concrete or the concrete representation, or 
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both.  One can infer an understanding of ‘combination of measures’ as they simply 

added the two units (time and distance) together.  This could indicate that they had no 

schema and scheme for ‘uniform speed’, but only an additive schema for problems of 

this class. Because of this misrepresentation, one could infer that they had no 

conceptual understanding of ‘times as many’ and no procedural fluency.   

   

I believe that teachers have a responsibility to not only teach learners procedural 

fluency, but to also help them to develop conceptual understanding.  Teachers are 

encouraged to teach by using the CSA sequencing, which means that they have to 

first use concrete,  then semi-concrete and finally abstract representations (Allsopp et 

al., 2007; Bruner, 1963; Debrenti, 2013; Hoong et al., 2015; Hui et al., 2017; Lesser & 

Tchoshanov, 2005; Pape & Tchoshanov, 2001; Post, 1981).  If learners were taught 

to demonstrate their understanding in the form of concrete, semi-concrete and abstract 

(CSA) representations, those with learning difficulties might have a more thoroughly 

integrated schema for distance and time. 

 

4.5.4.2 Question 3: Discussion of calculation technique levels and types  

Nine of the fifteen participants (Learners 8, 9, 10, 11, 12, 14, 15, 16 and 17) were 

categorised on Level 2.  Seven (Learners 8, 9, 11, 12, 14, 16 and 17) were categorised 

on Level 2B (double counting) and the calculation technique type that they had used 

was categorised as ‘counted in’.  Learners 10 and 15 were categorised on Level 2C 

(algorithms) and their calculation type was categorised as the ‘column method’.  One 

could infer that they had an abstract and a multiplicative schema for this class of 

problem, namely ‘uniform speed’.  A possible conclusion is that since their concept-in-

action was multiplicative, they were able to choose an appropriate multiplicative 

theorem-in-action to solve the problem.  Although they possessed procedural fluency, 

none of them used very efficient calculation technique types, since the lower the 

calculation technique level, the more efficient the calculation technique.  It could be 

inferred that these learners were not really strategically competent, since they were 

categorised on Levels 2B and 2C, which are not among the highest cognitively 

developmental calculation techniques (Hurst & Hurrell, 2014; Zhang et al., 2011).  

 

Six participants (Learners 3, 4, 5, 6, 7 and 13) were categorised on Level 1, while 

Learners 4 and 13 were categorised on Level 1A (unitary counting) and the calculation 
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technique type was categorised as ‘counted on’.  Learners 3, 5 and 6 were categorised 

on Level 1C (repeated addition), the calculation technique type was categorised as 

‘repeated addition’ and Learner 7 was categorised on a new Level 1 (addition 

algorithm). The calculation technique type was categorised as ‘column method’.  

These participants also thought that this was an addition problem and therefore used 

additive calculation technique types to solve it.  It could be inferred that they did not 

have a correct schema for ‘uniform speed’ and could not solve the problem because 

their schema and scheme were additive.  They lacked the procedural fluency and 

strategic competence required to solve this problem.  Since their concept-in-action 

was incorrect, they chose an incorrect theorem-in action. 

 

4.5.4.3 Question 3: Discussion of calculation errors  

The calculation errors identified and categorised were ‘wrong number’ and ‘counting 

error’.  As mentioned in the discussion of the first two questions, it is very difficult to 

explain why the participants had made these calculation errors.  Learner 4 added 30 

and 3 together, instead of 50 and 3, and Learner 8 added 50 and 30 together, which 

led to a categorisation as ‘wrong number’.  This could indicate that these learners 

struggled to remember the information, which could be as a result of their learning 

difficulties.  Learner 16 had made a ‘counting error’ when he tried to add three 50 

times.  His calculation did not make any sense to me as he gave up counting in 3s and 

continued counting in 20s.  I could therefore not find any pattern in what he was doing.  

He might have found adding three 50 times overwhelming, which points to a lack of 

strategic competence.    

 

4.6 Question 4: Combined categorising, analysis and discussion 

The fourth task-based question, which represented the ‘times as many’ class of 

multiplication problems (Greer, 1992; Mulligan, 1992), was: Paul has 4 coloured pens.  

If Sarah has 8 times as many coloured pens as Paul, how many coloured pens does 

Sarah have?  The classes of problems presented in Questions 4 and 5 are categorised 

as ‘multiplicative comparison’, which is more conceptually complex than ‘equal groups’ 

(Questions 1 to 3) (see section 2.3.2.2 in Chapter 2 for a full explanation).  All the 

participants were required to first answer this question with abstract representations, 

then with semi-concrete and lastly with concrete representations.  I provided the 
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learners with coloured pens as 3D material and expected them to illustrate their 

conceptual understanding by drawing eight groups of four pens each.  

 

According to the CAPS, problems of this class should be introduced in Grade 2 (DBE, 

2011a), but the first example I found was in a Grade 4 textbook (Bowie et al., 2012a).  

‘Times as many’ problems are the least complex as in the multiplicative category as 

they involve only one unit (coloured pens).   

 

Table 4.4 contains a summary of the categories and subcategories of the data for all 

the representations of all the participants.  Similar subcategories are colour coded for 

easier recognition.  I analysed the data under each of the headings in Table 4.4, 

starting with the participants’ conceptions, then their misconceptions and 

misrepresentations.  This is followed by an analysis of the levels and types of 

calculation techniques and calculation errors.  Finally, the analysis of all the data for 

this question is discussed.  I used inductive reasoning to analyse the misconceptions, 

misrepresentations, calculation technique types and calculation errors, and deductive 

reasoning to analyse the calculation technique levels, as derived from my conceptual 

framework. 
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Table 4.4: Summary of the categories and subcategories of Question 4 for all participants and all their representations 
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Learner 3 
× 

(32) 
 

Level 2B 
Double counting 

Level 1A 
Unitary counting 

Counted in 
Counted on 

 

× 
Times as 

many 
(32) 

  
× 

Times as 
many 

 

Learner 4 
- 

(4) 
 

Level 1 
Unitary 

subtraction 

Counted 
down 

 
Subtraction 

- 
 (4) 

Take away  
Subtraction 

- 
Abstract 
numbers 

Learner 5 
× 

(32) 
 

Level 2B 
Double counting 

Level 1C 
Repeated 
addition 

Counted in 
Counted on 

 

Intention 
was  

× 
 (32) 

Abstract 
numbers 

 
Intention 

was  
× 

Abstract 
numbers 

Learner 6 
× 

(32) 
 

Level 2E 
Derived 

multiplication 
fact 

Split 
multiplication 
and addition 

 

× 
Times as 

many 
(32) 

  
× 

Times as 
many 

 

Learner 7 
+ 

(16) 
 

Level 2A 
Doubling 

Doubling 
Wrong 
number 

(wrote 4) 

× 
Times as 

many  
(16) 

 
Wrong 
number 

(wrote 4) 

× 
Times as 

many 
 

Learner 8 
× 

(16) 
 

Level 2B 
Double counting 

Counted in  
Wrong 
number 

(wrote 4) 

Intention 
was  

× 
(16) 

Answer  
× 

Times as 
many 

 

Learner 9 
× 

(32) 
 

Level 2B 
Double counting 

Counted in   

× 
Times as 

many 
(32) 

  
× 

Times as 
many 
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Learner 10 
+ 

(12) 

Keyword 
(times as 

many) 

Level 1 
Known addition 

fact 
Addition fact  

Addition 
+ 

(12) 

Combination 
of measures 

 
Addition 

+ 
Combination 
of measures 

Learner 11 
× 

(32) 
 

Level 2B 
Double counting 

Level 1A 
Unitary counting 

Counted in 
Counted on 

 

 Intention 
was 

× 
(32) 

Abstract 
numbers  

 
Intention 

was 
× 

Abstract 
numbers 

Learner 12 
× 

(32) 
 

Level 1C 
Repeated 
addition 

Counted on  

Intention 
was 

× 
(32) 

Abstract 
numbers  

 
Intention 

was 
× 

Abstract 
numbers  

Learner 13 
× 

(32) 
 

Level 1C 
Repeated 
addition 

Counted on  

Intention 
was 

× 
(32)  

Answer  
Intention 

was 
× 

Answer 

Learner 14 
+ 

(12) 
 

Level 1A 
Unitary counting 

Counted on  

Intention 
was 

+ 
(12) 

Answer  
Addition 

+ 
Combination 
of measures 

Learner 15 
× 

(32) 
 

Level 2B 
Double counting 

Counted in  

Intention 
was 

× 
(32) 

Abstract 
numbers  

 
Intention 
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× 

Abstract 
numbers 

Learner 16 
- 

(4) 
 

Level 1 
Unitary 

subtraction 

Counted 
down 

 
Subtraction 

- 
 (4) 

Take away  
Intention 

was 
- 

Take away 

Learner 17 
× 

(32) 
 

Level 2E 
Derived 

multiplication 
fact 

Times table 
and 

subtraction 
 

× 
Times as 

many 
(32) 

  
× 

Times as 
many 

 

 



127 
 

Four of the fifteen participants (Learners 3, 6, 9 and 17, whose names are marked in 

dark blue in Table 4.4) could solve this problem with all three representations after first 

multiplying to solve it with abstract representations.  They drew eight groups of four 

pens each, which is indicative of the ‘times as many’ concept (see Picture 4.24).  

   

    

 

Picture 4.24: Question 4: Learner 6’s equation, conceptual drawing and 
coloured pens representing ‘times as many’  

 

Learner 7 (whose name is marked in light blue in Table 4.4) produced semi-concrete 

and concrete drawings that were indicative of ‘times of many’, but drew only four 

instead of eight groups of four coloured pens each.  He could not solve the problem 

with the abstract representations.  Learner 8’s concrete representation was also 

indicative of ‘times as many’, whereas the abstract representations of Learners 5, 11, 

12, 13 and 15, whose names are marked in purple in Table 4.4, were multiplicative.  

Even though Learner 8’s concrete representation was categorised as showing the 

‘times as many’ class of problem, she had placed the coloured pens in eight groups of 

two each, which although indicative of multiplication, was not the grouping required by 

the question.  Furthermore, six of the fifteen participants (Learners 5, 6, 9, 11, 12 and 

13) knew that the keywords ‘times as many’ indicate multiplication and therefore 

multiplied to solve the problem.  When asked: Is there something in the question that 

tells you that it is a multiplication sum? Learner 11 answered: Times as many.  

However, there were some misconceptions regarding these keywords, which will be 

discussed next. 
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4.6.1 Question 4: Misconceptions and misrepresentations  

Only one misconception was identified and categorised, namely ‘keyword’.  Learner 

10 explained that the phrase ‘times as many’ in the problem indicated addition (see 

Table 4.4).  Although ‘times as many’ is used to indicate multiplication, this participant 

associated it with addition and it was therefore categorised as a misconception of 

‘keyword’.  He explained: Because Paul had four and Sarah had eight times as many, 

so I added.  Learners 4 and 16 subtracted, and Learner 14 added the two numbers 

together, but I could not identify any misconceptions in their explanations.    

 

Four misrepresentations were identified and categorised, namely ‘abstract numbers’, 

‘answer’, ‘combination of measures’ and ‘take away’ (see Table 4.4).  Five participants’ 

semi-concrete and concrete representations were categorised as misconceptions of 

‘abstract numbers’.  The semi-concrete and concrete representations of four of the five 

participants (Learners 5, 11, 12 and 15) were categorised as ‘abstract numbers’, since 

they simply replaced the numbers of their equations with coloured pens, as shown in 

Learner 11’s work in Picture 4.25. Learner 4 recreated her equation by using the 

coloured pens to replace the numbers.    

 

 

Picture 4.25: Question 4: Learner 11’s misrepresentations of ‘abstract 
numbers’  

 

Learners 8, 13 and 14 drew the answer and Learner 13 placed the coloured pens 

together to represent the answer to the problem instead of the problem itself.  Their 

misrepresentations were categorised as ‘answer’.  Picture 4.26 shows Learner 13’s 

semi-concrete and concrete misrepresentation of the ‘answer’. 
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Picture 4.26: Question 4: Learner 13’s misrepresentation of the ‘answer’  
 

Learner 10’s drawing and concrete representation and Learner 14’s concrete 

representation were categorised as misrepresentations of a ‘combination of measures’ 

as they simply drew and placed eight and four pens together, which indicates addition.  

While the two abovementioned learners thought that addition was required, Learners 

4 and 16 thought that the problem should be solved by subtraction.  To categorise this 

misconception, I used Vergnaud’s (1982) classification of subtraction of this kind, i.e. 

‘take away’.  In the case of this study it should be seen as a misrepresentation since 

all the problems required multiplication and not subtraction.  The learners subtracted 

eight from four to calculate the answer, and Learner 4 used the coloured pens to form 

a four and an eight, which inferred a misrepresentation of ‘abstract numbers’. 

 

For this question, one misconception (‘keyword’) and four misrepresentations 

(‘abstract number’, ‘answer’, ‘combination of measures’ and ‘take away’) could be 

identified and categorised.  The levels and types of calculation techniques will be 

discussed next. 

 

4.6.2 Question 4: Levels and types of calculation techniques    

The calculation technique levels were categorised according to the conceptual 

framework (see section 2.5.1 and Figure 2.1 in Chapter 2) and the calculation 

technique types were inductively identified and grouped into similar categories (colour 

coded in green and pink in Table 4.4).  The following calculation technique levels were 

identified and categorised: Level 1A (unitary counting), Level 1C (repeated addition), 

Level 2A (doubling), Level 2B (double counting), and Level 2E (derived multiplication 

fact).  Two other additive levels, categorised on Level 1, were identified, namely 

‘known addition fact’ and ‘unitary subtraction’, but were not mentioned in my 

conceptual framework since my study focused on multiplication and these two 

calculation technique levels can only be used when adding and subtracting.  The 
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following calculation technique types were identified for calculating the answer to 

Question 4: ‘counted on’, ‘addition fact’, ‘counted down’, ‘doubling’, ‘counted in’, ‘split 

multiplication and addition’ and ‘times table and subtraction’. 

 

Level 1 calculation techniques are additive in nature and six participants (Learners 4, 

10, 12, 13, 14 and 16) were categorised on this level.  Learner 14 was categorised on 

Level 1A (unitary counting), since her calculation technique type was categorised as 

‘counted on’ as she had arrived at 12 by starting from eight and counting on four.  

Learners 12 and 13 were categorised on Level 1C (repeated addition) and their 

calculation technique type was also categorised as ‘counted on’ as Learner 12 had 

counted on four each time and Learner 13 had counted on eight each time to arrive at 

32.  Learners 4, 10 and 16’s calculation technique levels were not part of my 

conceptual framework as they are not multiplicative in nature.  Learner 10 understood 

the problem as addition and was categorised on Level 1 (known addition fact).  His 

calculation technique type was categorised as ‘addition fact’, since he knew that 8 + 4 

= 12.  Learners 4 and 16 thought that it was a subtraction problem and were 

categorised on Level 1 (unitary subtraction) as their calculation technique type was 

categorised as ‘counted down’.  They had subtracted four from eight to calculate the 

answer. 

 

Learners 3, 5 and 11 used a combination of additive and multiplicative calculation 

technique types, which were categorised on Levels 1A (unitary counting), 1C 

(repeated addition) and 2B (double counting).  The calculation technique type with 

which these learners had started out was categorised as ‘counted in’, since Learners 

3 and 5 had counted in 4s and Learner 11 had counted in 8s.  When they did not know 

how to continue, Learners 3 and 11 counted on the last four and eight respectively 

and their calculation technique type was categorised as ‘counted on’ and Level 1A 

(unitary counting).  Learner 5 was categorised on Level 1C (repeated addition) as she 

had repeatedly counted on four to find the answer, and her calculation technique type 

was categorised as ‘counted on’.  

 

The Level 2 calculation techniques are considered multiplicative as the participants 

were able to think multiplicatively when solving the problem (Carrier, 2014).  Six 

participants were categorised on Level 2 as they had used multiplication calculation 
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techniques to calculate their answers.  Learner 7 was categorised on Level 2A, since 

his calculation technique type was categorised as ‘doubling’. He doubled four to get 

eight and then doubled eight to get 16, which was not the correct answer.  Three of 

the six participants (Learners 8, 9 and 15) were categorised on Level 2B (double 

counting) since their calculation technique type was categorised as ‘counted in’.  They 

had all counted in 4s to calculate the answer.  Learners 6 and 17 were categorised on 

Level 2E (derived multiplication fact).  Learner 6’s calculation technique type was 

categorised as ‘split multiplication and addition’ and he explained it as follows: I took 

the 8, I divided the 4 in two 2-2, then I multiplied 8 by 2, which gave me 16.  Then I did 

it again, which gave me 16.  Then I added it together to get 32.  Learner 17’s calculation 

technique type was categorised as ‘times table and subtraction’.  She explained her 

calculation as follows: 4 × 10 is 40 and then you subtract only 4, 8, because you 

subtract only two times four.     

 

Six participants used multiplicative calculation techniques and another six used 

additive calculation techniques to solve this problem.  Three participants used a 

combination of additive and multiplicative calculation techniques.  The calculation 

errors will be discussed next. 

 

4.6.3 Question 4: Calculation errors  

Only one calculation error was identified and categorised, namely ‘wrong number’ (see 

Table 4.4).  Learners 7 and 8 both wrote 4 x 4 instead of 4 x 8.  Learner 7 used the 

‘wrong number’ in the abstract and semi-concrete representations, while Learner 8 

used the ‘wrong number’ in the abstract representations.  Their explanations provided 

no indication as to their reasons for using four instead of eight.    

 

4.6.4 Question 4: Discussion of the analysis  

Question 4 was the least conceptually complex problem in the category ‘multiplicative 

comparison’, which also included Question 5 as the participants only needed to 

visualise eight groups of four coloured pens.  Although according to the CAPS learners 

should be introduced to this concept in Grade 2 (DBE, 2011a), the first examples I 

could find were in a Grade 4 textbook (Bowie et al., 2012a).  My analysis showed that 

only four of the fifteen participants (Learners 3, 6, 9 and 17) could solve this ‘times as 
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many’ problem without any difficulty in all the representational forms, and from their 

semi-concrete and concrete representations of eight groups of four it could be inferred 

that they had a conceptual understanding of ‘times as many’.  Moreover, procedural 

fluency could be inferred as they used multiplicative calculation techniques to solve 

their multiplication equations.  According to Hiebert and Carpenter (1992), the more 

connections there are between the different types of representations, the better a 

person’s understanding will be.  One could therefore infer that these four participants 

had good connections between their different types of representations as all their 

representations indicated the ‘times as many’ class of problem, and therefore that they 

had a good schema and scheme for ‘times as many’.  Their good interconnected 

schema for ‘times as many’ between the three types of representations enabled them 

to consider the correct multiplicative concept-in-action, which allowed them to choose 

the most effective theorem-in-action to solve this problem, which in turn made it 

possible to infer that they had good procedural fluency (see conceptual framework, 

Figure 2.1 in Chapter 2). 

 

Learner 7 could represent ‘times as many’, but only with four groups of four sweets 

each in the semi-concrete and concrete representations, but he did not use 

multiplication for his equation.  Although he did not draw eight, but only four groups of 

four, conceptual understanding could nevertheless be inferred, except in the abstract 

representation.  One could conclude that his schema was limited, since the abstract 

schema was lacking.  Although Learner 8 placed the 3D material in eight instead of 

four groups, I did infer limited connections between the representations and limited 

conceptual understanding in the case of the concrete representations as she had 

made eight groups. However, she lacked procedural fluency.       

 

Learners 5, 11, 12, 13 and 15 could solve the problem only with abstract 

representations, which could indicate that they had only limited connections between 

the different representations and only an abstract schema.  This could further indicate 

that they memorised a procedure without gaining conceptual understanding (Ayub et 

al., 2013).  Four participants (Learners 4, 10, 14 and 16) had trouble solving this 

problem in any of the representations.  Learners 4 and 16 thought that the problem 

could be solved by subtracting, while Learners 10 and 14 thought that it could be 

solved by addition.  It could therefore be concluded that they did not have a ‘times as 
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many’ schema for any of the representations and no scheme, and therefore lacked the 

necessary procedural fluency or strategic competence to solve this problem. 

 

Four of the fifteen participants (Learners 3, 6, 9 and 17) could solve this ‘times as 

many’ problem in all the representational forms.  Learner 7 could represent ‘times as 

many’ with both semi-concrete and concrete representations, while Learner 8 could 

only place the 3D material in eight groups of two.  Five of the participants (Learners 5, 

11, 12, 13 and 15) could only solve the problem with abstract representations.  In total, 

eleven of the fifteen participants could solve this problem with at least one of the 

representations and four (Learners 4, 10, 14 and 16) could not solve it with any of the 

representations.       

 

4.6.4.1 Question 4: Discussion of misconceptions and misrepresentations 

One misconception could be identified and categorised as ‘keyword’.  Learner 10 

thought that the phrase ‘times as many’ in the question implied addition, which could 

possibly indicate a problem with how the participant had been taught or it might be his 

own method that he thinks may help him to choose the operation to solve the problem.     

 

Four misrepresentations were identified and categorised, namely ‘abstract numbers’, 

‘answer’, ‘combination of measures’ and ‘take away’.  Learners 5, 11, 12 and 15 

replaced their abstract equations with four and eight pens, while Learner 4 used the 

pens to form an eight and a four.  Learners 12 and 15 used a combination of abstract 

numbers (i.e. 8) and drew four pens for their semi-concrete representations.  All these 

misrepresentations of ‘abstract numbers’ could possibly indicate that these 

participants struggled to visualise ‘times as many’ and could only visualise their 

abstract equations, which they used to choose their concepts-in-action.  Learners with 

learning difficulties typically visualise abstract concepts (Allsopp et al., 2007).   

 

Learners 8, 13 and 14 misrepresented the problem by drawing or displaying the 

coloured pens as the ‘answer’, instead of arranging them in eight groups of four pens 

each.  Learner 8 drew 16 pens, while Learner 13 drew 32 pens and Learner 14 drew 

12.  Two possible reasons for this could be that they were either influenced by their 

answer in their abstract representations, or could have found it difficult to visualise the 

problem as ‘times as many’, which points to the absence of a strong schema for 
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problems of this class.  Alternately it could be a combination of the abovementioned 

possibilities, as they may not have had strong visual schemas and were easily 

influenced by what they had already done.  The abovementioned participants could 

have had a poor conceptual understanding of ‘uniform speed’ and therefore 

inadequate schemas.              

 

Learners 10 and 14’s representations were categorised as a misrepresentation of 

‘combination of measures’ as they had added the two numbers together.  This 

misrepresentation could indicate that they lacked schemas and schemes for problems 

classified as ‘times as many’, which might explain why they had used a ‘combination 

of measures’ concept-in-action, which had led to their choice of addition as the 

theorem-in-action.  Learners 4 and 16 misrepresented the problem as subtraction and 

deducted eight from four.  This misrepresentation, categorised as ‘take away’, could 

indicate that they also did not have a correct schema and scheme for this class of 

problem, but used a ‘take away’ concept-in-action that led them to choose a 

subtraction theorem-in-action.  In both of the above misrepresentations one could infer 

a total lack of conceptual understanding of ‘times as many’ and of procedural fluency.   

 

4.6.4.2 Question 4: Discussion of the calculation technique levels and types 

Even though ten of the fifteen participants (Learners 3, 5, 6, 8, 9, 11, 12, 13, 15 and 

17) used equations that indicated multiplication, only five of them (Learners 6, 8, 9, 15 

and 17) used multiplicative calculation technique types to solve the problem.  Learner 

7 used addition for his equation, but used a multiplicative calculation technique type 

to solve the problem.  Six participants (Learners 6, 7, 8, 9, 15 and 17) were categorised 

on Level 2.  Learner 7 was categorised on Level 2A (doubling) and his calculation 

technique type was categorised as ‘doubling’ since he had first doubled 4 and then 8, 

but had not doubled 8 again.  Learners 8, 9 and 15 were categorised on Level 2B 

(double counting) and their calculation technique type was categorised as ‘counted in’.  

Learners 6 and 17 were categorised on Level 2E (derived multiplication fact) and their 

calculation technique types were categorised as ‘split multiplication and addition’ and 

‘times table and subtraction’ respectively.  This could indicate that less than half of the 

participants had abstract schemas and multiplicative schemes for the ‘times as many’ 

class of problem and had used multiplicative calculation techniques, which in turn 

could indicate that they had good procedural fluency.  However, Learners 6 and 17 
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were the only ones about whom it could be inferred that they had good strategic 

competence as they were categorised on Level 2E, which is one of the highest 

developmental calculation technique levels and demonstrates abstract thinking (Hurst 

& Hurrell, 2014; Zhang et al., 2011).    

 

Learners 3, 5 and 11 used a combination of multiplicative and additive calculation 

techniques.  Learners 3 and 11 were categorised on Level 2B (double counting) and 

Level 1A (unitary counting), and their calculation technique types were categorised as 

‘counted in’ and ‘counted on’.  Learner 5 was categorised on Level 2B (double 

counting) and Level 1C (repeated addition), and the calculation technique types used 

were categorised as ‘counted in’ and ‘counted on’.  This could indicate that these three 

participants lacked an efficient scheme to solve the problem.  Moreover, their 

multiplicative schemes might not yet have been well developed and therefore they had 

to make use of multiplicative and additive calculation techniques.  One could conclude 

that they had limited procedural fluency and poor strategic competence.  

 

Six participants (Learners 4, 10, 12, 13, 12 and 16) used additive calculation technique 

types to solve the problem and were therefore categorised on Level 1.  Learners 4 and 

16 subtracted and were categorised on a new Level 1 (unitary subtraction) while their 

calculation technique type was categorised as ‘counted down’.  Learners 10 and 14 

understood the problem as addition and were categorised on a new Level 1 (known 

addition fact) and Level 1A (unitary counting), and the calculation technique types 

were categorised as ‘addition fact’ and ‘counted on’.  One could infer that they did not 

have correct schemas and schemes for ‘times as many’ and that they could not solve 

the problem as their schemas and schemes were additive.  They had neither 

procedural fluency nor strategic competence.  One could conclude that because their 

concepts-in-action were incorrect, they chose incorrect theorems-in-action.  Learners 

12 and 13 understood the problem as multiplication, but used additive calculation 

techniques and were categorised on Level 1C (repeated addition). Their calculation 

technique type was categorised as ‘counted on’.  One could infer that their schemas 

were correct, but that they had additive schemes to solve the problem.  They had 

additive procedural fluency, but poor strategic competence.  Their concepts-in-action 

were correct; however their theorems-in-action were not very efficient at solving the 

problem.     
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This could possibly indicate that even though they knew that it was a multiplication 

problem, they were unable to solve it by using a multiplicative calculation technique 

and had to resort to using only addition or a combination of multiplication and addition 

calculation techniques.  In the case of those who had used a combination of additive 

and multiplicative calculation techniques one could only infer a degree of strategic 

competence with limited procedural fluency.     

 

4.6.4.3 Question 4: Discussion of calculation errors  

Only one calculation error was identified and categorised, namely ‘wrong number’.  

Learners 7 and 8 used the number four instead of eight to solve their problem.  The 

reason for this error is unclear, but it could indicate difficulties with remembering 

information.       

 

4.7 Question 5: Combined categorising, analysis and discussion  

The fifth task-based question was: If 4 sweets cost R10, how much will 12 sweets 

cost?  This question represented multiplication problems belonging to the class ‘simple 

proportion’ (Lamon, 1994; Vergnaud, 1983).  Due to the one-hour time limit placed on 

the interviews, only eleven of the fifteen participants answered this question – first with 

abstract, then with semi-concrete and lastly with concrete representations.  I expected 

them to illustrate their conceptual understanding by drawing three groups of four 

sweets, with a R10 note next to each group.  I gave the participants sweets and R10 

notes as 3D material and expected them to make three groups of four sweets each 

and place a R10 note with each group.   

 

According to the CAPS, problems of this class should be first introduced in Grade 4 

(Bowie et al., 2012a; DBE, 2011b).  In the ‘multiplicative comparison’ category under 

which Questions 4 and 5 fall, Question 5 was more conceptually complex than 

Question 4 (see section 2.3.2.2 in Chapter 2 for full explanation) as it required 

participants to think both proportionally and multiplicatively. 

 

Table 4.5 contains a summary of the categories and subcategories of the data for the 

eleven participants and all their representations.  I colour coded similar subcategories 
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for easier recognition.  I analysed the data under the different headings in Table 4.5, 

e.g. the participants’ conceptions and their verbal, drawn and 3D material 

misrepresentations.  This is followed by an analysis of the levels and types of 

calculation techniques and calculation errors.  Finally, the analysis of all the data for 

this question is discussed together with the data obtained through the analysis of 

Questions 4 and 5.  I used inductive reasoning to analyse the misconceptions, 

misrepresentations, calculation technique types and calculation errors, and deductive 

reasoning to analyse the calculation technique levels derived from my conceptual 

framework. 
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Table 4.5: Summary of the categories and subcategories of Question 5 for eleven participants and all the representations 
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Learner 3 
÷  

(3) 
 

[Division, 
none of my 

Levels] 

[Incorrect 
division] 

 

× 
Simple 

proportion 
(40) 

  
× 

Simple 
proportion 

 

Learner 5 
× 

(120 or 
48) 

Non-
consideration 
of proportion 

Level 2C 
Algorithms 

Column 
method 

 
[Unable to 

draw] 
  

× 
Simple 

proportion 
 

Learner 6 
× 

(480) 

Non-
consideration 
of proportion 

Level 2C 
Algorithms 

Column 
method 

 
Multiplication 

× 
 (120) 

Equal 
sharing 

Wrong unit 

Disconnect between 
abstract and drawing 

(Answer 120) 

× 
Simple 

proportion 
 

Learner 7 
× 

(120) 

Non-
consideration 
of proportion 

Level 2B 
Double 

counting 
Counted in  

Intention 
was 

× 
(120) 

Answer  
Intention was 

× 
Constant 

price 

Learner 8 
× 

(No final 
answer) 

Non-
consideration 
of proportion 

[Unable to 
determine] 

[Unable to 
determine] 

 
[Unable to 

draw] 
  [Unable to do]  

Learner 9 
× 

(30) 
 

Level 2B 
Double 

counting 
Counted in  

× 
Simple 

proportion 
 (12) 

 
Disconnect between 
abstract and drawing 

(Answer 12) 

× 
Simple 

proportion 
 

Learner 10 
× 

(48) 

Non-
consideration 
of proportion 

Level 2C 
Algorithms 

Column 
method 

 

Intention 
was 

× 
(48) 

Abstract 
numbers  

 
Intention was 

× 
Abstract 
numbers 

Learner 11 
× 

(48) 

Non-
consideration 
of proportion 

Level 2C 
Algorithms 

Column 
method 

Counting 
error 

Intention 
was 

× 

Answer 
Wrong unit 

 
Intention was 

× 
Answer 

                                                
2 Only eleven of the fifteen participants answered Questions 5 to 7.  
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(Answer 
48) 

(48) 

Learner 14 
× 

(30) 

Equation 
inconsistent 
with answer 

Level 2B 
Double 

counting 
Counted in  

× 
Simple 

proportion 
(30) 

  
× 

Simple 
proportion 

 

Learner 15 
× 

(30) 

Equation 
inconsistent 
with answer 

[Unable to 
determine] 

[Unable to 
determine] 

 

Intention 
was 

× 
(30) 

Repeated 
addition 

 
Intention was 

× 
Repeated 
addition 

Learner 17 
[Unable 
to do] 

    

× 
Simple 

proportion 
(30) 

  
× 

Simple 
proportion 
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Of the eleven participants, only Learner 9 (whose name is marked in dark blue in Table 

4.5) could solve this problem with all three representations, since he multiplied to solve 

the problem with abstract representations. Furthermore, he drew three groups of four 

sweets and a R10 note next to each group, which is indicative of ‘simple proportion’ 

(see Picture 4.27).    

 

     

Picture 4.27: Question 5: Learner 9’s equation, conceptual drawing and 3D 
material representing ‘simple proportion’  

 

Three participants (Learners 3, 14 and 17, whose names are marked in light blue in 

Table 4.5) drew three groups of four sweets and a R10 note, and used the 3D material 

to place four sweets in three groups, adding a R10 note to each, from which an 

understanding of ‘simple proportion’ could be inferred. However, they had trouble 

solving the problem using abstract representations. The semi-concrete and concrete 

representations of one of these learners can be seen in Picture 4.28 below.   

   

 

Picture 4.28: Question 5: Learner 17’s semi-concrete and concrete 
representations of ‘simple proportion’  

 

Learners 14 and 15 could also solve the problem by reasoning it out, but could not 

write an equation to show how they had calculated the answer with their abstract 

representations.    Learners 5 and 6 (whose names are marked in dark blue in Table 

4.5) could solve the problem with the concrete representations only.  Although Learner 

8, whose name is indicated in dark red in Table 4.5, attempted to solve the problem 

with the abstract representations, she gave up and did not attempt to solve the problem 

with the other representations.   
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4.7.1 Question 5: Misconceptions and misrepresentations  

Learner 3 divided to get the answer and no verbal misconception could be identified 

from her explanations.  However, since written misrepresentations were identified in 

the abstract representations, I changed the heading for Table 4.5 from ‘verbal 

misconception’ to ‘written misrepresentation’ in order to report on those 

misrepresentations.  The two written misrepresentations that were identified and 

categorised were ‘non-consideration of proportion’ and ‘equation inconsistent with 

answer’.   

 

Six participants (Learners 5, 6, 7, 8, 10 and 11) could not solve the problem with 

abstract representations and their equations were categorised as a misrepresentation 

of ‘non-consideration of proportion’ (see Table 4.5).  Learners 6 and 11 attempted to 

solve the problem by multiplying all three numbers with one another (i.e. 12, 4 and 10) 

and gave the answer as 480.  Learner 7 multiplied 10 by 20 and calculated the answer 

to be 120, and Learner 10 multiplied 4 by 8 and gave 48 as the answer.  Learner 5 

calculated the answer by multiplying 10 by 20 and the answer she arrived at was 120, 

and also multiplied 4 by 12 twelve to calculate the answer, which was 48.  However, 

she could not decide which answer was correct.  Learner 8 multiplied 10 by 4, but 

became confused and tried different calculation techniques and never committed to a 

final answer.  All these calculations were categorised as ‘non-consideration of 

proportion’, since the participants used different combinations of the numbers given in 

the question without considering how they related to one another or realising that they 

should not simply be multiplied.     

 

Learners 14 and 15 knew that 30 was the correct answer, but struggled to explain their 

reasoning in writing.  Their equations were inconsistent with the answers they gave 

and these misrepresentations were categorised as ‘equation inconsistent with 

answer’.  Picture 4.29 shows how they wrote their equations. 

          

Picture 4.29: Question 5: Learners 14 and 15’s misrepresentation of ‘equations 
inconsistent with answer’  
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Their explanations corroborated their answers, which both gave as R30.  Learner 14 

explained: Each fourth sweets costs R10. Four cost R10, eight cost R20 and 12 cost 

R30.  Learner 15’s explanation was: R10 is for four sweets. Then it is 4 × 3; 4 × 3 is 

12, then it is R10 for 4, then it is R30.   

 

Learner 3 wanted to calculate the cost of one sweet by dividing four by ten, but she 

struggled to calculate the answer and eventually gave up.  In this case the cost of one 

sweet was a decimal number and she was unable to work that out.    

 

Six misrepresentations with the semi-concrete and concrete representations were 

identified and categorised, namely ‘abstract numbers’, ‘answer’, ‘equal sharing’, 

‘constant price’, ‘wrong unit’ and ‘repeated addition’ (see Table 4.5).  Learner 10’s 

semi-concrete and concrete representations were categorised as ‘abstract numbers’ 

as he had replicated his equation with sweets and money in his drawing and also with 

the 3D material.  His equation involved the multiplication of 12 by 4, which was 

incorrect, but was replicated with the 3D material and incorrectly replicated in his 

drawing (which depicted 10 sweets instead of 12) (see Picture 4.30). 

 

             

Picture 4.30: Question 5: Learner 10’s misrepresentation of ‘abstract numbers’ 
  

Learner 7’s drawing and Learner 11’s semi-concrete and concrete representations 

were categorised as misrepresentations of ‘answer’.  Learner 7 made 120 marks on 

the paper, while Learner 11 drew 48 sweets and then circled groups of four sweets 

each (see Picture 4.31).  She then counted out 48 sweets, and placed groups of four 

and five sweets on the 11 R10 notes.  These participants’ misrepresentations were 

categorised as ‘answer’. 
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Picture 4.31: Question 5: Learners 7 and 11’s misrepresentations of ‘answer’  
 

Learner 6’s drawing was categorised as a misrepresentation of ‘equal sharing’.  He 

had drawn three groups of four sweets each, which is indicative of the ‘equal sharing’ 

class of problem and not of ‘simple proportion’.  Learner 7’s concrete representation 

was categorised as a misrepresentation of ‘constant price’.  He paired each R10 note 

with one sweet, which is indicative of the ‘constant price’ class of problems and not of 

‘simple proportion’.  Picture 4.32 shows these two participants’ misrepresentations of 

‘equal sharing’ and ‘constant price’.   

 

         

Picture 4.32: Question 5: Learners 6 and 7’s misrepresentation of ‘equal 
sharing’ and ‘constant price’  

 

Learners 6 and 11’s drawings represented only the unit sweets (see Pictures 4.32 and 

4.33).  The question required them to calculate the cost of the sweets.  The unit in 

which they drew their pictures was not correct and I categorised this misrepresentation 

as ‘wrong unit’.  Learner 15’s drawing and concrete representation illustrated repeated 

addition as she had placed R10 with the first group of sweets, R20 with the next group 

and R30 with the last group (see Picture 3.33).  This is categorised as a 
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misrepresentation of ‘repeated addition’, since she added the previous amount to the 

new amount and represented the new amount each time. 

 

 

Picture 4.33: Question 5: Learner 15’s misrepresentation of ‘repeated addition’  
 

Learner 8 was unable to draw a picture to illustrate the problem and did not know how 

to use the money and sweets for a concrete representation of the problem, and 

Learner 5 could not illustrate the problem by using semi-concrete representations. 

 

While no misconceptions could be identified for this problem, two written 

misrepresentations (‘non-consideration of proportion’ and ‘equation inconsistent with 

answer’) were identified and categorised, as well as six misrepresentations (‘abstract 

numbers’, ‘answer’, ‘equal sharing’, ‘constant price’, wrong unit’ and ‘repeated 

addition’) in the semi-concrete and concrete representations.   

 

4.7.2 Question 5: Levels and types of calculation techniques  

The calculation technique levels were categorised according to the conceptual 

framework (see section 2.5.1 and Figure 2.1 in Chapter 2).  The calculation technique 

types were inductively identified and grouped into similar categories (colour coded in 

green and pink in Table 4.5).  The following calculation technique levels were identified 

and categorised: Level 2B (double counting) and Level 2C (Algorithms).  The 

calculation technique types identified for Question 5 were ‘counted in’ and ‘column 

method’ (see Table 4.5).   

 

Learners 3, 8, 15 and 17’s calculation techniques could not be categorised as it was 

difficult to determine what they had done.  Learner 3 tried to divide, but could not find 

an answer, while Learners 8 and 17 could not decide on how to calculate the answer.  

Leaner 15’s equation did not show how she had calculated the answer as she had not 

used the numbers she had written down for her calculation.  
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Learners 5, 6, 7, 9, 10, 11 and 14 were categorised on Level 2.  Level 2 calculation 

technique levels are considered to be multiplicative, which means that the participants 

were able to think multiplicatively when solving the problem.  Three of these seven 

participants (Learners 7, 9 and 14) were categorised on Level 2B (double counting) 

and their calculation technique type was categorised as ‘counted in’.  Learner 7 

counted in 10s, whereas Learners 9 and 14 counted in 4s to solve the problem.  Four 

of the seven participants (Learners 5, 6, 10 and 11) were categorised on Level 2C 

(algorithms) and their calculation technique type was categorised as ‘column method’.  

They wrote the numbers below each other in a column and multiplied with one digit at 

a time to calculate the answer.  

 

Seven participants used multiplicative calculation techniques, while the calculation 

techniques of four participants could not be determined and categorised.  The 

calculation errors will be discussed next.  

 

4.7.3 Question 5: Calculation errors  

Two calculation errors were identified and categorised, namely ‘counting error’ and ‘a 

disconnect between abstract and drawing’ (see Table 4.5).  For her abstract 

representation, Learner 11 multiplied 48 by 10, but forgot to add the zero of the 10 

with which she had multiplied and gave the answer as 48.  This calculation error was 

categorised as a ‘counting error’.  Learners 6 and 9’s semi-concrete drawings with 

their answers were categorised as a ‘disconnect between abstract and drawing’.  

Learner 6 drew three groups of four and wrote the answer as R120, which did not 

correspond with what he had drawn (see Picture 4.34).   

 

 

Picture 4.34: Question 5: Learner 6’s calculation error, ‘disconnect between 
abstract and drawing’ 

 

Learner 9 also drew three groups of four and wrote R10 next to each group, but gave 

the answer as 12, which was the number of sweets and not the amount in rand.     
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4.7.4 Question 5: Discussion of the analysis  

Question 5 was conceptually more complex than Question 4, which falls under the 

category ‘multiplicative comparison’.  The reason for this is that even though problems 

of this class are introduced in Grade 4 (Bowie et al., 2012a; DBE, 2011b), experience 

has shown that learners in South African primary schools are rarely presented with 

them, which explained why the participants were not confident when attempting to 

solve this kind of problem.  As a result of the one-hour limit I had placed on the 

interviews, only eleven of the fifteen participants were asked to solve this problem.  

The analysis showed that only Learner 9 could solve this problem of ‘simple proportion’ 

in all the representational forms without any difficulty.  With his semi-concrete and 

concrete representations of three groups of four sweets and a R10 note next to each 

group, one could infer his conceptual understanding of ‘simple proportion’.  Moreover, 

his procedural fluency could be inferred from his use of a multiplicative calculation 

technique to solve the problem.  This could indicate good integrated connections 

between the different representations, since more connections indicate better 

understanding (Hiebert & Carpenter, 1992). His good interconnected schema of 

‘simple proportion’ between the three representations enabled him to consider the 

correct multiplicative concept-in-action, which allowed him to choose the most 

effective theorem-in-action to solve the problem (Vergnaud, 1998; 2013a; 2013b).  

This in turn could indicate that he had good strategic competence (see conceptual 

framework, Figure 2.1 in Chapter 2).    

 

A further three participants (Learners 3, 14 and 17) could represent ‘simple proportion’ 

by showing three groups of four sweets each with a R10 note next to each group in 

both their semi-concrete drawings and their arrangements of the 3D material.  

However, Learner 3 used division for the equation and Learner 17 could not solve the 

problem by using abstract representations.  Learner 14 used multiplication, but the 

answer was incorrect.  One could therefore infer that they had a conceptual, but not 

an abstract understanding of ‘simple proportion’.  The abstract schema was clearly 

lacking since their abstract equations did not show an understanding of ‘simple 

proportion’. It could therefore be concluded that their schema of ‘simple proportion’ 

was limited.     
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Learners 5 and 6 used the concrete material to make three groups of four sweets with 

a R10 note next to each group, which was indicative of ‘simple proportion’.  When only 

one type of representation is correct, it could be an indication that only limited 

connections were made (Ayub et al., 2013).  One could conclude that their conceptual 

understanding of ‘simple proportion’ was limited to concrete representations.  

Furthermore, one could infer limited conceptual understanding, with no procedural 

fluency, which meant that they lacked the strategic competence needed to solve the 

problem. 

 

Learner 15 could verbally give the correct answer, but could not write the equation.  

Not a single participant could solve this problem with only abstract representations.  

One could possibly infer that none of the participants, with the exception of Learner 9, 

had any abstract schema and scheme for solving problems of this class.  Learner 8 

was the only participant who could not solve the problem with any of the 

representations.  It could be that the participants had no abstract conceptual 

understanding and because their concepts-in-action was lacking, they had no 

theorems-in-action to solve the problem.  

 

Only Learner 9 could solve this problem of ‘simple proportion’ in all the 

representational forms.  Three participants (Learners 3, 14 and 17) were able to solve 

it with semi-concrete and concrete representations, while Learners 5 and 6 could solve 

it in the concrete representation only.  In total, six of the eleven participants could solve 

this problem with at least one of the representations and only Learner 8 could not solve 

it with any of the representations.   

 

4.7.4.1 Question 5: Discussion of misconceptions and misrepresentations  

No misconceptions could be identified from the participants’ explanations.  However, 

I could identify and categorise written misrepresentations in their written equations.  

The two written misrepresentations that were identified are ‘non-consideration of 

proportion’ and ‘equation inconsistent with answer’.  Six of the eleven participants 

(Learners 5, 6, 7, 8, 10 and 11) did not consider the proportionality of this problem by 

first determining the number by which they needed to multiply, therefore the 

misrepresentation was categorised as ‘non-consideration of proportion’.  They simply 

multiplied by all three numbers, or by a combination of two of the three numbers given 
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in the problem, which could indicate that they did not understand proportionality.  It 

could therefore be inferred that they lacked an abstract schema of ‘simple proportion’ 

and a scheme to solve the problem.   

 

Learners 14 and 15’s equations were inconsistent with their answers.  They could 

mentally calculate the answer correctly, but the numbers used for their multiplication 

did not match their answers. This was categorised as ‘equation inconsistent with 

answer’ and could indicate that the participants had some type of scheme for solving 

the problem, but could not explain their reasoning in writing. Their lack of experience 

with problems of this class could explain why they struggled to present their reasoning 

in abstract equations. 

 

In the semi-concrete and concrete representations, six other misrepresentations could 

be identified and categorised, namely ‘wrong unit’, ‘equal sharing’, ‘answer’, ‘constant 

price’, ‘abstract numbers’ and ‘repeated addition’.  Learners 6 and 11 drew only 

sweets, even though the question was about the cost of the sweets.  It is possible that 

they did not realise that their pictures did not reflect the question, and that they drew 

only sweets because they were less abstract than money and therefore easier to 

visualise and represent.        

 

One participant (Learner 10) simply replaced his abstract equations with sweets and 

money in both the semi-concrete and concrete representations. This 

misrepresentation was categorised as ‘abstract numbers’.  He probably recalled his 

abstract equation, which could indicate that he had only an abstract schema of the 

problem and that he struggled to visualise the problem in any other way.  Learners 7 

and 11 drew the answer and/or arranged 3D material to illustrate it, but did not include 

the problem.  This misrepresentation was categorised as ‘answer’ and could be an 

indication that these participants also found it difficult to visualise the problem due to 

a poor semi-concrete and concrete schema of ‘simple proportion’. Learners with 

learning difficulties generally struggle to visualise abstract concepts (Allsopp et al., 

2007).     

 

Learner 6 drew three groups of four sweets, which was categorised as ‘equal sharing’.  

Learner 7 took twelve sweets and placed a R10 note with each sweet, which was 
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categorised as ‘constant price’.  Both these participants were probably either thinking 

of problems of other classes that they had previously solved and became confused, 

or did not have conceptual schemas of ‘simple proportion’ and used schemas that they 

thought resembled the question.       

 

Learner 15 misrepresented semi-concrete and concrete representations as she 

placed a R10 note with the first group of four sweets, R20 with the second group of 

sweets, and R30 with the third group of sweets, instead of one R10 note with each 

group.  This misrepresentation was categorised as ‘repeated addition’.  One could 

infer that although she had a conceptual understanding of ‘simple proportion’, she was 

unable to demonstrate it correctly.  She might have been thinking of her scheme of 

repeated addition, and not of the problem, when she represented the latter.   

 

4.7.4.2 Question 5: Discussion of calculation technique levels and types  

Seven of the eleven participants (Learners 5, 6, 7, 9, 10, 11 and 14) used multiplication 

for their equations and were categorised on Level 2.  However, only Learner 9 could 

solve the problem by providing an answer that corresponded with his equation.  The 

other participants knew that they had to multiply, but multiplied by the wrong numbers.  

Learners 7, 9 and 14 were categorised on Level 2B (double counting) and the 

calculation technique type was categorised as ‘counted in’.  The other four participants 

(Learners 5, 6, 10 and 11) were categorised on Level 2C (algorithms) and their 

calculation technique type was categorised as the ‘column method’.  This could 

indicate that although these participants, with the exception of Learner 9, knew that 

they had to multiply, they probably did not have a correct abstract schema of ‘simple 

proportion’ and could therefore not solve the problem.  Learner 9, one could infer, had 

an abstract schema of ‘simple proportion’ and could choose a scheme that could 

abstractly represent and solve the problem.  Furthermore, one could infer that Learner 

9 was the only one who had procedural fluency and some strategic competence, since 

he did not use one of the highest calculation technique types to solve the problem. 

 

Learner 3 divided and was not categorised on any calculation technique level, and I 

was unable to determine Learners 8 and 15’s calculation technique levels.  Learner 

17 did not know how to solve the problem with an abstract representation.  One could 

therefore infer that these participants did not have any abstract schema of ‘simple 
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proportion’ and therefore no scheme for solving the problem.  Because their concepts-

in-action were lacking, they could not choose theorems-in-action to solve the problem.    

 

4.7.4.3 Question 5: Discussion of calculation errors  

Only two calculation errors were identified and categorised, namely ‘counting error’ 

and ‘disconnect between abstract and drawing’.  It is difficult to give decisive reasons 

for these calculation errors, which could be related to learning difficulties.  Learner 11 

forgot to add the zero when he multiplied by ten. This error, categorised as a ‘counting 

error’, could indicate that the participant did not know how to multiply by ten, or that he 

simply forgot to add the zero to the answer, which could be due to a lack of 

concentration.  Learners 6 and 9’s drawings did not correspond with their answers, 

which were categorised as a ‘disconnect between abstract and drawing’.  This could 

possibly be because although they could recall the answers they had given in their 

abstract representations, they did not realise that their drawings did not correctly 

illustrate those answers. This could possibly indicate that they did not know that they 

could use their drawings to verify their answers.  It is also possible that they were not 

familiar with drawing pictures of word problems.  In my view, teachers who allow 

learners to make drawings of problems should explain to them how they can use their 

pictures to verify their answers.  In Question 5, which required the learners to draw 

sweets and money, it was the total cost of the sweets (the amount of money) that had 

to be calculated.   

 

4.8 Question 6: Combined categorising, analysis and discussion  

The sixth task-based question was: A piece of paper is 30 cm long and 20 cm wide.  

What is the area of the paper?  Question 6 represented multiplicative problems of the 

class ‘area’ (Vergnaud, 1983) and, together with Questions 7 and 8, falls under the 

category ‘rectangular array’. These questions are conceptually more complex than the 

previous ones (see section 2.3.2.2 in Chapter 2 for a full explanation).  Only eleven of 

the fifteen participants answered this question because of the one-hour time limit I had 

placed on the interview.   As with the other questions, they were asked to answer this 

question by first using abstract representations, then semi-concrete and finally 

concrete representations.  I expected them to illustrate their conceptual understanding 

by drawing a rectangle and to write 30 cm along the long edge and 20 cm along the 
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short edge.  For the concrete representations, I used a clean sheet of paper and asked 

them to show me its length, breadth and area. 

   

When I prepared the questions for the task-based interviews, I accidentally swopped 

Questions 6 and 7 and only realised my mistake after I had collected the data.  

Developmentally the order should be: Question 7, then Question 6 and then Question 

8.  I will discuss the answers in the order in which the questions were asked to maintain 

a logical sequence.  Although, according to the CAPS, problems of this class should 

only be introduced abstractly in Grade 8, I found examples in a Grade 7 textbook 

(Bowie et al., 2013; DBE, 2011c).  The participants in this study had already been 

introduced to area, but had only been required to count the number of blocks inside a 

fixed space to determine area, and not to use a formula. 

 

Table 4.6 contains a summary of the categories and subcategories of the data for the 

eleven participants’ representations.  I colour coded similar subcategories for easy 

recognition and analysed the data under each heading, starting with the participants’ 

conceptions, then their misconceptions and misrepresentations.  This is followed by 

an analysis of the levels and types of calculation techniques and errors.  Finally, the 

analysis of all the data for this question is discussed.  I used inductive reasoning to 

analyse the misconceptions, misrepresentations, calculation technique types and 

calculation errors, and deductive reasoning to analyse the calculation technique levels 

derived from my conceptual framework. 
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Table 4.6: Summary of the categories and subcategories of Question 6 for eleven participants’ representations 
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Learner 3 
[Unable 
to do] 

    
Addition 

+  
(142) 

Perimeter  
Length, 

breadth, area 
 

Learner 5 
× 

(60 and 
40) 

Perimeter 
Level 2F 
Known 

multiplication fact 
Times table  

[Unable to 
draw] 

  
Length, 

breadth, area 
 

Learner 6 
× 

(60) 
 

Level 2F 
Known 

multiplication fact 
Times table 

Counting 
error 

(Answer 60) 

× 
Area 
(60) 

 
Counting 

error 
(Answer 60) 

Length, 
breadth, area 

 

Learner 8 
[Unable 
to do] 

    
[Unable to 

draw] 
  

[Unable to 
identify it] 

 

Learner 9 
+ 

(50) 
 

Level 1 
Known addition 

fact 
Addition fact  

 Intention 
was  

+ 
(50) 

Intention was 
Answer 

 
Length, 

breadth, area 
 

Learner 10 
+ 

(100) 
Perimeter 

Level 1 
Addition algorithm 

Column 
method 

 
Addition 

+  
(no answer) 

Perimeter  
Length, 
breadth 

 

Learner 11 
[Unable 
to do] 

    
[Unable to 

draw] 
  

[Unable to 
identify it] 

 

Learner 13 
- 

(10) 
 

[Unable to 
determine] 

[Unable to 
determine] 

 

Intention 
was  

- 
(10) 

  
Length, 

breadth, area 
 

Learner 14 
× 

(60) 
 

Level 2B 
Double counting 

Counted in 
Counting 

error 
(Answer 60) 

× 
Area 
(60) 

 
Counting 

error 
(Answer 60) 

Length, 
breadth, area 

 

Learner 15 
+ 

(100) 
Perimeter Level 1 2× addition   

Addition 
+  

Perimeter  
Length, 

breadth, area 
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Derived addition 
fact 

(100) 

Learner 17 
+ 

(100) 
Perimeter 

Level 1 
Derived addition 

fact 
2× addition  

Addition 
+  

(142) 
Perimeter  

Length, 
breadth, area 
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Two of the eleven participants (Learners 6 and 14, whose names are marked in dark 

blue in Table 4.6) multiplied length by breadth for their abstract representations and 

could solve this problem with all three representations. Their semi-concrete pictures 

were rectangles and they wrote the measurements in the right places. They could also 

indicate the length, breadth and area of a blank sheet of paper.  In spite of the fact that 

the equation was written correctly, they calculated the answer incorrectly (to be 

discussed in section 4.8.3).  Picture 4.35 shows Learner 14’s representation of ‘area’ 

with abstract and semi-concrete representations. 

                 

Picture 4.35: Question 6: Learner 14’s equation and conceptual drawing 
representing ‘area’  

 

Six of the eleven participants (Learners 3, 5, 9, 13, 15 and 17, whose names are 

marked in purple in Table 4.6) could only indicate the length, breadth and area of a 

sheet of paper shown to them.  They were unable to solve the problem with abstract 

or semi-concrete representations.  Learners 8 and 11 (whose names are marked in 

dark red in Table 4.6) did not attempt to solve the problem as they did not know what 

area meant.          

 

4.8.1 Question 6: Misconceptions and misrepresentations  

No verbal misconceptions could be identified in the explanations given by Learner 9, 

who added the two numbers together, and Learner 13 who subtracted.  However, a 

written misrepresentation was identified in the abstract representations and I therefore 

changed the heading in Table 4.6 from verbal misconception to written 

misrepresentation in order to report on this misrepresentation, namely ‘perimeter’. 

‘Perimeter’ was also identified and categorised under misrepresentations of semi-

concrete representations.  The other misrepresentation that was identified and 

categorised was that of ‘answer’.   

 

Learners 10, 15 and 17’s written equations and semi-concrete representations were 

categorised as a misrepresentations of ‘perimeter’, whereas Learner 3’s semi-
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concrete representation and Learner 5’s written equation were categorised as 

misrepresentations of ‘perimeter’, as they had written the measurements of all four 

sides of the rectangle that they had drawn and their answers showed that they had 

added all the sides together.  Although this is an ‘area’ problem, these participants all 

added the four sides together to calculate the answer, which is indicative of a 

misrepresentation of ‘perimeter’.  Had the questions asked for the perimeter, their 

method would have been correct perimeter.  Picture 4.36 shows how Learner 17 

added the lengths of all the sides together. 

 

 

Picture 4.36: Question 6: Learner 17’s equation indicative of the 
misrepresentation of ‘perimeter’  

 

Learner 9’s semi-concrete representation was categorised as a misrepresentation of 

‘answer’.  He drew five rectangles and his answer was 50, as can be seen in Picture 

4.37.  When I asked him why he had drawn five rectangles, he answered: Because 

the total of this is 50.  Although it could be inferred from his explanation that he had 

attempted to draw the answer, the same cannot be inferred from his picture.  

 

Picture 4.37: Question 6: Learner 9’s misrepresentation of ‘answer’  
 

No verbal misconception could be identified for this question, but two 

misrepresentations (‘perimeter’ and ‘answer’) were identified and classified.  The 

levels and types of calculation techniques will be discussed next. 

 

4.8.2 Question 6: Levels and types of calculation techniques  

The calculation technique levels were categorised according to the conceptual 

framework (see section 2.5.1 and Figure 2.1 in Chapter 2) and the calculation 

technique types were inductively identified and grouped into similar categories (colour 

coded in green and pink in Table 4.6).  The additive calculation technique levels 

identified on Level 1 were additional levels that could be used only when adding, and 
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included ‘addition algorithm’, ‘derived additional fact’ and ‘known additional fact’.  The 

multiplicative calculation technique levels identified were Level 2B (double counting) 

and Level 2F (known multiplication fact).  The calculation technique types identified 

for solving Question 6 were: ‘addition fact’, ‘column method’, ‘2x addition’, ‘counted in’ 

and ‘times table’ (see Table 4.6). 

 

Learners 3, 8 and 11 were unable to solve this problem as they did not understand 

what area meant.  Learner 13 subtracted, but explained that he had divided, therefore 

I could not determine exactly what he had intended to do.  Four participants (Learners 

9, 10, 15 and 17) were categorised on Level 1.   

 

Level 1 calculation techniques are additive in nature and four participants (Learner 9, 

10, 15 and 17) all used calculation techniques that were not included in my conceptual 

framework.  They thought that it was an addition problem and used calculation 

techniques that are used only when adding.  Learner 9 knew that 20 and 30 would add 

up to 50 and the calculation technique type used to solve the problem was categorised 

as ‘addition fact’.  Learner 10’s calculation technique type was categorised as the 

‘column method’, as he had written the numbers below one another and had added 

each digit separately.  Learners 15 and 17’s calculation technique type was 

categorised as ‘2x addition’ as they first added two sides, then the other two sides, 

after which they added the two answers together.  Learner 17 explained her calculation 

as follows: I said 30 + 30… 60.  Plus 20 plus 20 is 40, and 60 + 40 is 100.   

 

The Level 2 calculation techniques are multiplicative, which means that the 

participants should think multiplicatively when solving problems (Carrier, 2014).  Three 

participants (Learners 5, 6 and 14) used multiplicative calculation techniques to solve 

this problem.  Learner 14 was categorised on Level 2B (double counting). Her 

calculation technique type was categorised as ‘counted in’ as she had counted in 2s 

to calculate the answer.  Learners 5 and 6 were categorised on Level 2F (known 

multiplication fact) and their calculation technique type was categorised as ‘times 

table’.  Learner 5 multiplied 30 x 2 and 20 x 2, while Learner 6 incorrectly ‘knew’ that 

30 x 20 = 60.   
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Three participants used multiplicative calculation techniques, while four used additive 

calculation techniques to calculate the answer to this problem.  Three made no attempt 

to solve the problem and the calculation technique used by one could not be identified.  

The calculation errors will be discussed next.  

 

4.8.3 Question 6: Calculation errors  

The only calculation error identified and categorised was a ‘counting error’.  Both 

Learners 6 and 14 multiplied 20 by 30 in both their abstract and semi-concrete 

representations and calculated the answer to be 60 instead of 600.  This calculation 

error was categorised as a ‘counting error’. 

 

4.8.4 Question 6: Discussion of the analysis  

As mentioned in section 4.8, this question is developmentally more complex than 

Question 7. When I collected my data I inadvertently swapped Questions 6 and 7, with 

the result that the more complex question was asked first.  From a developmental 

perspective, Question 6 belongs between Questions 7 and 8, as Question 7 deals with 

‘arrays’, which have discrete elements and can be counted.  Questions 6 and 8 have 

measurements which are not discrete and cannot be counted and cognitively more 

complex than Question 6.  These three questions are all in the category ‘rectangular 

arrays’.  Although the learners had worked with area before, it was in a context where 

they had to cover an area with blocks and count the blocks to calculate the answer.  

According to the CAPS and school textbooks, the learners had no previous experience 

of abstract calculations that required the multiplication of length by breadth (DBE, 

2011c).    

 

My analysis showed that two of the eleven participants (Learners 6 and 14) could write 

an equation for which they multiplied the length by the breadth.  Their drawings were 

indicative of the ‘area’ class of problems as they had indicated the length and breadth 

correctly in writing.  Using 3D material, they could also indicate where the length, 

breadth and area were.  According to Hiebert and Carpenter (1992), the more 

connections there are between the representations, the better the understanding will 

be.  One can therefore infer that these learners had a conceptual understanding of 

‘area’, which could be indicative of a schema of ‘area’, and that there were good 
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connections between the different representations.  Moreover, their procedural fluency 

could be inferred from their use of multiplicative calculation techniques to solve the 

problem.   

 

Six of the participants (Learners 3, 5, 9, 13, 15 and 17) could only indicate the length, 

breadth and area of the sheet of paper when working with 3D material.  Where only 

one type of representation was correct, it is possible that only limited connections were 

made (Ayub et al., 2013).  One could therefore infer that these participants had only a 

concrete schema of the ‘area’ class of problems, which could have led to the use of 

incorrect schemes to solve the problem.  It could further be inferred that they had an 

incomplete schema of this problem, limited to concrete representations, with no 

procedural fluency.  One possible reason for having chosen the incorrect scheme is 

that when I asked them to solve the problem using abstract representations, they only 

tried to access the abstract schema, and in its absence, they accessed the incorrect 

concept-in-action, which led them to choosing an incorrect theorem-in-action.  This 

could indicate a lack of strategic competence.      

 

Learner 10 thought that the problem should be solved through addition and could not 

solve it in any of the representational forms.  It could be inferred that this participant 

has a schema of ‘perimeter’, but not of ‘area’ and therefore used an additive scheme 

to solve the problem.  Learners 8 and 11 did not know what ‘area’ meant and did not 

attempt to solve this problem in any of the representational forms.  It is possible that 

they had no abstract conceptual understanding, and because their concepts-in-action 

were lacking they had no theorems-in-action to solve the problem.  This could indicate 

that they had no schemas of ‘area’ and therefore no schemes to solve it.  Since these 

participants had no concepts-in-action available, they also did not have theorems-in-

action that could be used to solve the problem. 

 

Learners 6 and 14 demonstrated a conceptual understanding of ‘area’ in all 

representational forms, while six participants (Learners 3, 5, 9, 13, 15 and 17) 

demonstrated their conceptual understanding when working with the concrete 

material.  Eight of the eleven participants could show conceptual understanding of this 

problem with at least one of their representations.  Learner 10 could not solve this 
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problem with any of the representations, while Learners 8 and 11 did not know what 

‘area’ meant and made no attempt to solve the problem.   

 

4.8.4.1 Question 6: Discussion of misconceptions and misrepresentations  

Although I identified no misconceptions, I did identify and categorise a written 

misrepresentation that was also identified in the semi-concrete representations, 

namely ‘perimeter’.  Four participants (Learners 5, 10, 15 and 17) misrepresented this 

problem in their abstract equations when they added all the sides together. Learners 

3, 10, 15 and 17 wrote the length and breadth on all the sides, which I categorised as 

‘perimeter’ as their answers indicated perimeter.  It is possible that they either mistook 

area for perimeter, or lacked exposure to the abstract calculation of ‘area’ (DBE, 

2011c).  A possible inference is that they chose the only schema available to them, 

i.e. ‘perimeter’, and used an additive scheme to solve the problem.   

 

Learner 9 attempted to base his drawing on the abstract representation by drawing 

five rectangles, thus categorising it as ‘answer’.  This was a strange way of 

representing the problem as each rectangle could be interpreted as a discrete entity 

with its own area.  I am convinced that he did not have an ‘area’ schema as he added 

the two numbers instead of multiplying them and therefore used an additive scheme 

to solve the problem.  It is possible that he had an abstract equation in mind when he 

tried to use semi-concrete representations to solve the problem.  

 

4.8.4.2 Question 6: Discussion of calculation technique levels and types  

Three of the eleven participants (Learners 5, 6 and 14) were categorised on Level 2.  

However, Learner 5 did not solve the problem as she multiplied the length twice and 

the breadth twice.  She was categorised on Level 2E (known multiplication fact) and 

the calculation technique level was categorised as ‘times table’.  Learner 14 was 

categorised on Level 2B (double counting) and the calculation technique type was 

categorised as ‘counted in’.  Learner 5 was categorised on Level 2F (known 

multiplication fact) and the calculation technique was categorised as ‘times table’.  

Since from this one could infer that even though these learners thought multiplicatively, 

none of them could actually solve the problem and no procedural fluency could be 

inferred for this question, which led to the conclusion that not one of them was 

strategically competent.   
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Four participants (Learners 9, 10, 15 and 17) were categorised on new Level 1 as 

these calculation techniques can be used only for addition.  Learner 9 was categorised 

on Level 1 (known addition fact) and the calculation technique type was categorised 

as ‘addition fact’.  Learner 10 was categorised on Level 1 (addition algorithm) and the 

calculation technique type was categorised as the ‘column method’.  Both Learners 15 

and 17 were categorised on Level 1 (derived addition fact) and the calculation 

technique type was categorised as ‘2× addition’, which could indicate that these 

participants did not have multiplicative schemes to solve this problem.  Because their 

concepts-in-action were incorrect, they chose incorrect theorems-in-action to solve the 

problem.   

 

4.8.4.3 Question 6: Discussion of calculation errors  

One calculation error could be identified and categorised, namely ‘counting error’.  

Learners 6 and 14 made ‘counting errors’ in both their abstract and semi-concrete 

representations, since they both struggled to multiply 30 by 20.  Their answer was 60 

instead of 600.  As always, it is difficult to give reasons for their calculation errors. A 

possible explanation is that they had not yet learnt to multiply with two zeros, or that, 

due to their learning difficulties and their possible struggle with mental calculation, they 

had simply forgotten to add the second zero.   

 

4.9 Question 7: Combined categorising, analysis and discussion  

The seventh task-based question was: There are 8 rows of chairs in the school hall.  

There are 8 chairs in each row.  How many chairs are there altogether?  This question 

represented the ‘array’ class of multiplication problems (Hurst, 2015; Jacob & Mulligan, 

2014; Simon et al., 2010).  Questions 6, 7 and 8 fall in the category ‘rectangular arrays’ 

(see conceptual framework, Figure 2.1 in Chapter 2).  Only eleven of the fifteen 

participants had time to answer this question due to the one-hour time limit I had 

placed on the interview.  They were again asked to start with abstract representations, 

followed by semi-concrete and finally concrete representations.  I expected them to 

illustrate their conceptual understanding by drawing eight rows of eight chairs each.  

When working with the 3D blocks, I expected them to make eight rows of eight blocks 

each. 
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As explained in section 4.8, Questions 7 was asked before Question 6.  Question 7 

was the least conceptually abstract and complex question in the category ‘rectangular 

arrays’ as discrete chairs are easier to visualise than measurements such as ‘area’ 

and ‘volume’.  Furthermore, although problems of this class are introduced from Grade 

1 (DBE, 2011a; Mostert, 2011) and are solved throughout the Foundation Phase 

(Grades 1 to 3), they are rarely dealt with really during the Intermediate Phase (Grades 

4 to 6), when grids are introduced as the basis for calculating area.   

 

Table 4.7 contains a summary of the categories and subcategories of the data for all 

the participants’ representations for Question 7.  Similar subcategories are colour 

coded for easier recognition.  The participants’ conceptions, misconceptions and 

misrepresentations are analysed under the various headings.  This is followed by an 

analysis of the levels and types of calculation techniques and calculation errors.  

Finally, the analysis of all the data for this question is discussed.  I used inductive 

reasoning to analyse the misconceptions, misrepresentations, calculation technique 

types and calculation errors, and deductive reasoning to analyse the calculation 

technique levels derived from my conceptual framework. 
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Table 4.7: Summary of the Question 7 categories and subcategories for eleven participants and all the representations 
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Learner 4 
+ 

(16) 
 

Level 1 
Known addition 

fact 
Addition fact  

Addition 
+ 

(16) 

Combination 
of measures 

 

Intention 
was 

+ 
 

Abstract 
numbers  

Learner 5 
× 

(64) 
 

Level 2B 
Double counting 

Level 1C 
Repeated 
addition 

Counted in 
Counted on 

 
× 

Array 
(No answer) 

  
Multiplication 

× 
Equal sharing 

Learner 6 
× 

(64) 
 

Level 2E 
Derived 

multiplication 
fact 

Split 
multiplication 
and addition 

 

Intention 
was 

× 
(64) 

Abstract 
numbers  

 
× 

Array 
 

 

Learner 7 
+ 

(16) 
 

Level 1A 
Unitary counting 

Counted on  
× 

Array 
(63) 

 
Counting error 
(Answer 63) 

× 
Array 

 
 

Learner 8 
+ 

(12) 
 

Level 1C 
Repeated 
addition 

Repeated 
addition 

Counting 
error 

(Answer 
12) 

Addition 
+ 

(8) 

Combination 
of measures 

 

Writing error 
(write 8, say 16) 

Addition 
+ 

Combination 
of measures 

Learner 9 
× 

(64) 
 

Level 1C 
Repeated 
addition 

Counted on  
Multiplication 

× 
(64) 

Equal 
sharing 

 
Multiplication 

× 
Equal sharing 

 

Learner 10 
× 

(128) 
Perimeter 

Level 2F  
Known 

multiplication 
fact 

Level 1  
Known addition 

fact 

Times table 
Addition fact 

 

Intention 
was  

× 
(128) 

Abstract 
numbers  

 
Intention 

was  
× 

Perimeter 
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Learner 13 
+ 

(63) 
 

Level 1C 
Repeated 
addition 

Counted on 

Counting 
error 

(Answer 
63) 

× 
Array 
(72) 

  
× 

Array 
 

Learner 14 
× 

(64) 
 

Level 1C 
Repeated 
addition 

Counted on  
× 

Array 
(No answer) 

  
Multiplication 

× 
Equal sharing 

Learner 15 
× 

(64) 
 

Level 2B 
Double counting 

Level 1C 
Repeated 
addition 

Counted in 
Counted on 

 
× 

Array 
(No answer) 

  
Multiplication 

× 
Equal sharing 

Learner 17 
× 

(64) 
 

Level 2F  
Known 

multiplication 
fact 

Times table  
× 

Array 
(64) 

  
× 

Array 
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Only one of the eleven participants (Learner 17, whose name is marked in dark blue 

in Table 4.7) multiplied to solve the problem with her abstract representation and could 

solve it with all three representations.  Furthermore, she drew eight rows of eight chairs 

each and placed the 3D blocks in eight rows of eight blocks each, which is indicative 

of the ‘array’ concept (see Picture 4.38).   

 

 

 

 

 

 

 

 
Picture 4.38: Question 7: Learner 17’s equation, conceptual drawing and 3D 

material representing the ‘array’ concept  
 

Learners 7 and 13 (whose names are indicated in light blue in Table 4.7) could draw 

the problem correctly and placed the 3D blocks in an array, demonstrating their 

understanding of an ‘array’ with their semi-concrete and concrete representations, but 

could not solve the problem with abstract representations.  However, Learner 13 

added an extra row to his array, which resulted in an incorrect answer.  Learner 6 

could solve the problem with abstract and concrete representations, and Learners 14 

and 15 could solve it with abstract and semi-concrete representations.  Learners 5 and 

9 (whose names are marked in purple in Table 4.7) used a multiplicative equation and 

could solve the problem with abstract representations only.   

 

4.9.1 Question 7: Misconceptions and misrepresentations  

I could not identify any verbal misconceptions in the explanations given by Learners 

4, 7 and 8, who had added the two numbers together.  A written misrepresentation 

was identified in the abstract representations and I therefore changed the heading in 

Table 4.7 from verbal misconception to written misrepresentation in order to report on 

this misrepresentation, namely ‘perimeter’.  ‘Perimeter’ was also identified and 

categorised under misrepresentations of semi-concrete representations.  Another 
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three misrepresentations could be identified and categorised, namely ‘abstract 

numbers’, ‘equal sharing’ and ‘combination of measures’ (see Table 4.7). 

 

Learner 10 used the method followed for calculating perimeter and added all four sides 

together to calculate his answer.  However, he multiplied one length by one breadth 

and then the other length and breadth and finally added the two answers together.  He 

used the 3D blocks to form the outline of a square with eight blocks on each side.  He 

did not fill in the inside of the square with 3D blocks, even though he said that that 

should be done. 

 

Learners 6 and 10’s drawings and Learner 4’s concrete representation were 

categorised as misrepresentations of ‘abstract numbers’.  Learner 10 replaced the 

abstract numbers with chairs to calculate his answer, as shown in Picture 4.39, and 

Learner 6 used a combination of pictures and numbers when he drew eight chairs and 

then wrote the number eight, also replacing his abstract equation with chairs and 

numbers.  Learner 4 arranged the 3D blocks to represent the numbers used in her 

abstract equation, as shown in Picture 4.39.   

 

        

 

Picture 4.39: Question 7: Learner 4 and Learner 10’s misrepresentation of 
‘abstract numbers’  

 

Another misrepresentation that was identified and categorised was ‘equal sharing’.  

Learner 9’s drawing and concrete representation were categorised as 

misrepresentations of ‘equal sharing’, while only the concrete representations of 

Learners 5, 14 and 15 were categorised as misrepresentation of ‘equal sharing’.  They 

had made eight groups of eight by either bundling the groups or arranging them in 

rows, but not in an array form.  Picture 4.40 shows Learner 9’s misrepresentation of 

‘equal sharing’.  
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Picture 4.40: Question 7: Learner 9’s misrepresentation of ‘equal sharing’  
 

 

Learner 8’s semi-concrete and concrete representations and Learners 4’s semi-

concrete drawing were categorised as misrepresentations of a ‘combination of 

measures’ as both had added the numbers together.  Picture 4.41 shows Learner 8’s 

misrepresentation of ‘combination of measures’.       

  

          

 

Picture 4.41: Question 7: Learner 8’s misrepresentation of ‘combination of 
measures’  

 

While no verbal misconception could be identified for this question, I did identify and 

categorise four misrepresentations (‘perimeter’, ‘abstract numbers’, ‘equal sharing’ 

and ‘combination of measures’).  The levels and types of calculation techniques will 

be discussed next. 

 

4.9.2 Question 7: Levels and types of calculation techniques  

The calculation technique levels were categorised according to the conceptual 

framework (see section 2.5.1 and Figure 2.1 in Chapter 2).  The calculation technique 

types were inductively identified and grouped into similar categories (colour coded in 

green and dark pink in Table 4.7).  The calculation technique levels that were identified 

were the following: Level 1A (unitary counting), Level 1C (repeated addition), Level 1 

(known addition fact), Level 2B (double counting), Level 2E (derived multiplication fact) 

and Level 2F (known multiplication fact).  The calculation technique types that were 

identified for solving Question 7 were: ‘counted on’, ‘addition fact’, ‘repeated addition’, 

‘counted in’, ‘split multiplication and addition’, and ‘times table’ (see Table 4.7).      
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Level 1 calculation techniques are additive in nature and six participants (Learners 4, 

7, 8, 9, 13 and 14) were categorised on this level.  Learners 7, 9, 13 and 14 were 

categorised on Level 1A (unitary counting) and their calculation technique type was 

categorised as ‘counted on’.  They counted on eight each time.    Four participants 

(Learners 8, 9, 13 and 14) were categorised on Level 1C (repeated addition).  Learner 

8 added four each time, calculating the answer and adding four again. This calculation 

technique type was categorised as ‘repeated addition’.  Learner 13 explained: I 

plussed eight sixteen times.  Learner 4 was categorised on Level 1 (known addition 

fact) and her calculation technique type was also categorised on Level 1 (known 

addition fact) as she had added eight and eight together.     

 

Three participants (Learners 5, 10 and 15) used a combination of additive and 

multiplicative calculation techniques types.  Learners 5 and 15 were categorised on 

Level 2B (double counting) and Level 1C (repeated addition).  Their calculation 

technique types were categorised as ‘counted in’ and ‘counted on’.  They both started 

to count in 8s, but they switched over to counting on eight each time until they arrived 

at the answer.  Learner 10 was categorised on Level 2F (known multiplication fact) 

and Level 1 (known addition fact), and his calculation technique types were 

categorised as ‘times table’ and ‘addition fact’.  He knew that eight times eight is 64 

and that 64 plus 64 is 128. 

 

The Level 2 calculation techniques are multiplicative, therefore participants who were 

categorised on this level were able to think multiplicatively when solving the problem 

(Carrier, 2014).  Learners 6 and 17 used multiplicative calculation techniques to solve 

the problem.  Learner 6’s calculation technique was categorised on Level 2E (derived 

multiplication fact), since his calculation technique type was categorised as ‘split 

multiplication and addition’.  He explained his calculation as follows: I took the one 8 

and I divided it up in 4.  Then I got 32 at each… 2 groups.  Then I added it together, 

then I got 64.  Learner 17’s calculation technique was categorised on Level 2F (known 

multiplication fact), since her calculation technique type was categorised as ‘times 

table’.  She knew that eight times eight is 64.  
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Two participants used multiplicative calculation techniques, six used additive 

calculation techniques and three used a combination of additive and multiplicative 

calculation techniques to calculate the answer to this problem.  The calculation errors 

will be discussed next. 

 

4.9.3 Question 7: Calculation errors  

Two types of calculation errors were identified and categorised, namely ‘counting 

errors’ and ‘writing errors’ (see Table 4.7).  Three participants’ calculation errors were 

categorised as ‘counting errors’.  Learner 7 added the marks he had made in his 

picture incorrectly and gave 63 as his answer, and Learners 8 and 13’s ‘counting 

errors’ were identified in their abstract representations. These two participants had 

used their fingers to count and had given the answers as 12 instead of 16 and 63 

instead of 64 respectively.  Learner 8 had also made another calculation error, 

categorised as a ‘writing error’, as she had written the answer as 8, but said that it was 

16, which should have been the answer according to her picture. 

 

4.9.4 Question 7: Discussion of the analysis  

Question 7 was the least conceptually complex question in the ‘rectangular arrays’ 

category as it was easy to visualise discrete chairs.  Problems of the class ‘array’ are 

introduced in Grade 1 (DBE, 2011a; Mostert, 2011); however, as soon as learners 

switch to learning about ‘area’ they no longer solve problems dealing with arrays.  My 

analysis indicated that only Learner 17 could solve this ‘array’ problem in all the 

representational forms without any difficulty.  Her semi-concrete and concrete 

representations represented an array of eight chairs in eight rows and could therefore 

infer a conceptual understanding of ‘arrays’.   Moreover, her use of multiplication 

calculation techniques to solve the problem inferred procedural understanding.  

Hiebert and Carpenter (1992) suggest that the more connections there are between 

different representations, the better the understanding.  Learner 17 was able to choose 

the correct concept-in-action, which allowed her to choose her most effective theorem-

in-action to solve the problem.  One could therefore conclude that she had a good 

schema of problems in the ‘array’ class and an appropriate multiplicative scheme to 

solve them. 
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Two of the eleven participants (Learners 7 and 13) could solve the problem with both 

semi-concrete and concrete representations and drew and placed eight chairs in eight 

rows, which showed that they understood ‘array’ conceptually, but not in the abstract.  

However, since they had used addition to solve the problem one could infer that they 

lacked abstract schemas had only additive procedural fluency.   

 

Four participants could solve the problem with their abstract representations and with 

either semi-concrete (Learners 5, 14 and 15) or concrete representations (Learner 6).  

From this one could infer a limited schema with limited connections between the 

different representations.  One could also infer an abstract schema that allowed for an 

appropriate scheme to be used, thus procedural fluency.  These learners were able to 

choose a concept-in-action that allowed them to choose the correct theorem-in-action 

(Vergnaud, 1998; 2013a; 2013b).   

 

Learner 9 could solve the problem with the abstract representation.  One could 

therefore infer an abstract schema of ‘array’.  According to Ayub et al. (2013), if only 

one type of representation is correct, it could be an indication that limited connections 

were made.  One could therefore infer a limited number of connections between the 

representations. It could further be inferred that Learner 9 had memorised a procedure 

without conceptual understanding (Ayub et al., 2013).   

 

Learners 4 and 8 could not solve this problem in any of the representational forms.  

Since they added to solve the problem, one could infer that they had no ‘array’ scheme.  

Because they did not have an ‘array’ schema, they also lacked a scheme for solving 

the problem.  Learner 10 knew that it was a multiplication problem, but multiplied four 

sides.  He apparently tried to solve the problem by using a combination of ‘perimeter’ 

and ‘area’.  This could be an indication that his schema for ‘array’ was not yet well 

established.  It could be inferred that these participants had no abstract conceptual 

understanding and because their concepts-in-action were lacking, they had no 

theorems-in-action to solve the problem.    

 

Learner 17 could solve this problem of ‘array’ using all the representational forms.  

Learners 7 and 13 could solve it with semi-concrete and concrete representations, 

Learners 5, 14 and 15 could solve it with semi-concrete representations, and Learner 
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6 with concrete representations.  Learner 9 could solve it only with the abstract 

representation.  Eight of the eleven participants could solve this problem with at least 

one form of representations and three (Learners 4, 8 and 10) could not solve it in any 

form.      

 

4.9.4.1 Question 7: Discussion of misconceptions and misrepresentations  

While no misconceptions were identified, I did identify and categorise a written 

misrepresentation that was also identified in the concrete representations, namely 

‘perimeter’.  Learner 10 thought that all the sides had to be included to calculate the 

area, which could indicate that he mistook area for perimeter.  He did know that the 

sides had to be multiplied, but multiplied all instead of only two.  He probably had a 

schema of ‘perimeter’, but not of ‘array’.  It is also possible that he had no recent 

exposure solving ‘array’ problems or he mistook area for perimeter (DBE, 2011b).   

 

Three other misrepresentations were identified and categorised, namely ‘combination 

of measures’, ‘abstract numbers’ and ‘equal sharing’.  Learners 4 and 8 added the 

numbers and drew two rows of eight chairs each, which was categorised as 

‘combination of measures’.    They might have struggled to visualise the eight chairs 

and the rows and therefore had an addition schema of this problem, which prevented 

them from understanding it as a multiplicative problem.  Learners 4, 6 and 10 replaced 

the numbers in their abstract equations with chairs. This misrepresentation, 

categorised as ‘abstract numbers’, could indicate that they also had difficulty to 

visualise the problem and had an abstract schema, but no semi-concrete or concrete 

schema of this problem.  One could infer that these participants struggled with abstract 

thinking, which is characteristic of learners with learning difficulties (Allsopp et al., 

2007).   

 

Learners 5, 9, 14 and 15 drew eight groups of eight chairs each or placed the 3D 

blocks in eight groups of eight, instead of rows.  Even though this gave them the 

correct answer, it was not conceptually correctly presented.  This misrepresentation 

was categorised as ‘equal sharing’.  Problems of these two classes are conceptually 

different.  Having a schema of an ‘array’ is important as it is the precursor to forming 

an area schema (Simon, 2005; Simon et al., 2010).  Having an array schema promotes 

learners’ understanding of more abstract problems, such as ‘area’ problems, at a later 
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stage.  In my opinion teachers should make sure that learners have a schema of arrays 

to help them understand area, and eventually also volume. 

 

4.9.4.2 Question 7: Discussion of calculation technique levels and types  

Two of the eleven participants (Learners 6 and 17) were categorised on Level 2 as 

they used multiplication for their equations.  Learner 6 was categorised on Level 2E 

(derived multiplication fact) and his calculation technique type as ‘split multiplication 

and addition’, and Learner 17 was categorised on Level 2F (known multiplication fact) 

and her calculation technique type as ‘times table’.  This could indicate that these two 

participants had an abstract schema of problems of the ‘array’ class and multiplicative 

schemes for solving them, which in turn could indicate that they had good procedural 

fluency. Both used efficient calculation technique types to solve the problem, which 

indicates good strategic competence. Level 2E is one of the highest cognitive levels 

as Level 2F is the highest cognitive developmental calculation technique (Hurst & 

Hurrell, 2014; Zhang et al., 2011).  

 

Learners 5, 10 and 15 used a combination of multiplicative and additive calculation 

techniques.  Learners 5 and 15 were categorised on Level 2B (double counting) and 

Level 1C (repeated addition), and their calculation technique types were categorised 

as ‘counted in’ and ‘counted on’ respectively.  Learner 10 was categorised on Level 

2F (known multiplication fact) and Level 1 (known addition fact).  The use of a 

combination of additive and multiplicative calculation techniques could indicate that 

these participants did not have a scheme to successfully solve the problem.  Moreover, 

their multiplicative schemes might not have been well developed and therefore they 

had to make use of multiplicative and additive calculation techniques.  One could 

conclude that they had limited procedural fluency and strategic competence. 

 

Five participants (Learners 7, 8, 9, 13 and 14) used additive calculation technique 

types to solve the problem and were categorised on Level 1.  Learner 7 was 

categorised on Level 1A (unitary counting) and his calculation technique type was 

categorised as ‘counted on’.  Learners 8, 9, 13 and 14 were categorised on Level 1C 

(repeated addition). Learner 8’s calculation technique type was categorised as 

‘repeated addition’ and the other three participants’ calculation technique type was 

categorised as ‘counted on’.  Learners 7 and 8 thought that it was an addition problem, 
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from which one could infer that they had no conceptual understanding regarding 

abstract representations of an ‘array’ and lacked the procedural fluency needed to 

solve the problem, which in turn indicates a lack of strategic competence.   It can 

therefore be concluded that they did not have a schema of ‘array’ and no scheme to 

solve the problem.  However, Learners 9, 13 and 14 had conceptual understanding of 

an ‘array’ as they understood it to be eight times eight.  Since their schemes were 

additive, they had the necessary additive procedural fluency to solve this problem, but 

no strategic competence.   

 

4.9.4.3 Question 7: Discussion of calculation errors  

Two calculation errors were identified and categorised.  Three participants (Learners 

7, 8 and 13) could not keep track of their counting and were categorised as ‘counting 

error’.  When Learners 8 and 13 calculated their answers, they used their fingers and 

Learner 7 counted the marks on the paper.  The reason for this could either be that 

they had difficulty remembering while counting, or that they experienced visual-spatial 

problems and had to try to visually keep track of where they were, which could both 

be ascribed to their learning difficulties.  The other calculation error identified was a 

‘writing error’.  Learner 8 drew sixteen chairs, but used her fingers to count and 

although she had counted sixteen, she wrote eight on the paper.  It is difficult to say 

for sure why she made this error; however it could indicate that she was unable to see 

a connection between her drawing and her answer.   

 

4.10 Question 8: Combined categorising, analysis and discussion  

The eighth task-based question was: What volume of water is needed to fill a 

rectangular fish tank if the fish tank is 6 metres long, 2 metres wide and 4 metres high?  

and represented multiplication problems of the class ‘volume’ (Vergnaud, 1983).  The 

three classes of problems dealt with in Questions 6, 7 and 8 are categorised under 

‘rectangular arrays’ (see section 2.3.2.2 of Chapter 2 for the full explanation). Only ten 

of the fifteen participants answered this question due to the time limit of one-hour I had 

placed on the interviews. They were required to solve the problem first using an 

abstract representation, and then semi-concrete and concrete representations.  I 

expected them to illustrate their conceptual understanding by drawing a rectangular 

prism and writing the words length, breadth and height along the correct sides.  With 
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the concrete representation (e.g. a plastic container), I expected them to show me 

where length, breath, height and volume are measured.   

 

Question 8 was more conceptually complex than Questions 6 and 7 as it included the 

added dimension of height, making it three-dimensional.  Multiplication problems of 

this class are introduced in an abstract format in the fourth term in Grade 6 (Seelinger 

& Mouton, 2012) even though, according to the CAPS, they should be introduced in 

Grade 7 (DBE, 2011a).  This means that the participants would not have been familiar 

with this kind of problem in the form in which it was asked.      

 

Table 4.8 contains a summary of the categories and subcategories of the data for all 

the representations of the ten participants who answered Question 8.  I colour coded 

similar subcategories for easier recognition.  I analysed the data under the different 

headings in Table 4.8, i.e. participants’ conceptions, misconceptions and 

misrepresentations.  This is followed by an analysis of the levels and types of 

calculation techniques and errors, and finally a discussion of the analysis of all the 

data for this question.  I used inductive reasoning to analyse the misconceptions, 

misrepresentations, calculation technique types and calculation errors, and deductive 

reasoning to analyse the calculation technique levels derived from my conceptual 

framework. 
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Table 4.8: Summary of the Question 8 categories and subcategories for ten participants and all the representations 
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Learner 4 
+ 

(12) 
 

Level 1A 
Unitary counting 

Counted 
on 

 
Addition 

+ 
(12) 

Combination of 
measures 
Discrete 

 None correct 
Sides 

confusion 

Learner 5 
[Unable 
to do] 

    
[Unable to 
determine] 

Wrong figure  [Unable to do]  

Learner 6 
× 

(48) 
 

Level 2F 
Known 

multiplication fact 

Times 
table 

 

× 
Intention 

was 
volume 

(48) 

Sides confusion  
Length, breadth, 
height, volume 

 

Learner 7 
+ 

(12) 
 

Level 1A 
Unitary counting 

Counted 
on 

 

Intention 
was 

volume 
(None given) 

Sides confusion  Length, height 
Sides 

confusion 

Learner 8 
+ 

(12) 
 

Level 1A 
Unitary counting 

Counted 
on 

 
Addition 

+ 
(12) 

Combination of 
measures 
Discrete 

 
Height and 

volume 
Sides 

confusion 

Learner 9 
+ 

(14) 
 

Level 1A 
Unitary counting 

Counted 
on 

Counting 
error 

(Answer 
14) 

[Unable to 
draw] 

  
Height and 

volume 
Sides 

confusion 

Learner 10 
× 

(24) 
Unit 

conversion   

Level 2F 
Known 

multiplication fact 

Times 
table 

 
[Unable to 

draw] 
  

Height and 
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Sides 
confusion 

Learner 13 
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(12) 
Keyword 
(needed) 

Level 1A 
Unitary counting 

Counted 
on 

 

+ 
Intention 

was 
volume 

Sides confusion  
Height and 

volume 
Sides 

confusion 

                                                
3 Only ten of the fifteen participants answered Questions 8 to 10 
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(12) 

Learner 14 
× 

(48) 
 

Level 2B 
Double counting 

Counted 
in 

 

× 
Intention 

was 
volume 

(48) 

Wrong figure  
Height and 

volume 
Sides 

confusion 

Learner 15 
+ 

(12) 
 

Level 1A 
Unitary counting 

Counted 
on 

 
+ 

Circle 
(12) 

Wrong figure  
Length, breadth, 
height, volume 
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None of the ten participants could solve this problem using all three forms of 

representation.  Learner 6 could solve it with his abstract representation and correctly 

indicated length, breadth, height and volume.  Learner 14 could only solve the problem 

with the abstract representation and Learner 12 could only correctly indicate the 

length, breadth, height and volume (the names of these participants are marked in 

purple in Table 4.8).  Learner 5 (whose name is marked in dark red in Table 4.8) did 

not know what volume was and was the only participant who did not attempt to solve 

this problem.   

 

4.10.1 Question 8: Misconceptions and misrepresentations  

Two verbal misconceptions were identified and categorised, namely ‘unit conversion’ 

and ‘keyword’ (see Table 4.8).  In his written equation, Learner 10 correctly multiplied 

the three numbers, but then divided his answer by two (see Picture 4.42).  The 

explanation written in Afrikaans next to his answer (see Picture 4.42), translated into 

English, is: 24L volume are needed.  When I asked him why he had divided, he 

explained: Ma’am I have 48 there.  Ma’am, I am going to take the half of 48.  

Researcher: OK, why?  Participant: Because it has to be volume and not litres … full 

as in capacity. So, it must be a little bit less.  Researcher: To get it into litres?  

Participant: Yes.  Based on his explanation the misconception can be categorised as 

‘unit conversion’ as he had incorrectly assumed that to convert units you need to divide 

by two.     

 

  
Picture 4.42: Question 8: Learner 10’s misconception of ‘unit conversion’ 

 

Learner 13’s explanation that the word ‘needed’ in the question indicated to him that 

he had to add.  One can therefore categorise his misconception as ‘keyword’.  Four 

other participants (Learners 4, 7, 8 and 15) also used addition for their abstract 

representations; however, I could not identify any verbal misconceptions.   
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Four misrepresentations could be identified and categorised, namely ‘sides confusion’, 

discrete’, ‘combination of measures’ and ‘wrong figure’ (see Table 4.8).  The semi-

concrete and/or concrete representations of eight participants were categorised as a 

misrepresentation of ‘sides confusion’.  Learners 7 and 13’s semi-concrete and 

concrete representations were categorised as a misrepresentation of ‘sides confusion’ 

because the measurement they wrote on their picture did not correspond with the 

sides along which they were written and they could not correctly indicate all the sides 

of the plastic container that represented the fish tank.  Learner 6 could not write the 

correct measurements on the picture, and Learner 4 was unable to identify any of the 

sides correctly. Four participants (Learners 8, 9, 10 and 14) could not correctly indicate 

the length and breadth of the plastic container.   

   

The semi-concrete drawings made by Learners 4 and 8 were categorised as both 

‘discrete’ and a ‘combination of measures’.  The latter categorisation was based on 

the fact that they added the three numbers together to calculate their answers.  

Furthermore, both these participants did not draw a 3D fish tank, but drew two, six and 

four discrete units, therefore this misrepresentation was categorised as ‘discrete’ (see 

Picture 4.43). 

 

               

Picture 4.43:  Question 8: Learners 4 and 8’s misrepresentations of 
‘combination of measures’ and ‘discrete’ 

 

Three participants drew the incorrect figure and their misrepresentations were 

categorised as ‘wrong figure’.  Learner 5 drew a cup, which represented a cylinder, 

Learner 14 drew a rectangle instead of a 3D fish tank and Learner 15 drew a circle, 

which were all categorised as ‘wrong figure’.  Learner 15’s misrepresentation of ‘wrong 

figure’ can be seen in Picture 4.44.  Her picture is confusing as she tried to show sides 

on the circle. She also ignored the 6 metres given as the length of the fish tank and 

did not add it to her drawing.       
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Picture 4.44: Question 8: Learner 15’s misrepresentation of ‘wrong figure’  
 

For this question, two verbal misconceptions (‘unit conversion’ and ‘keyword’) and four 

misrepresentations (‘perimeter’, ‘abstract numbers’, ‘equal sharing’ and ‘combination 

of measures’) were identified and categorised.  The levels and types of calculation 

techniques will be discussed next. 

 

4.10.2 Question 8: Levels and types of calculation techniques 

The calculation technique levels were categorised according to the conceptual 

framework (see section 2.5.1 and Figure 2.1 in Chapter 2) and the calculation 

technique types were inductively identified and grouped into similar categories (colour 

coded in green and pink in Table 4.8).  The following calculation technique levels were 

identified: Level 1A (unitary counting), Level 2B (double counting) and Level 2F 

(known multiplication fact).  The calculation technique types identified for solving 

Question 8 were ‘counted on’, ‘counted in’ and ‘times table’ (see Table 4.8). 

 

Learner 5 was the only participant who did not attempt to solve this problem.  Level 1 

calculation techniques are additive in nature and the participants who were 

categorised on this level all added to solve this problem.  Six participants (Learners 4, 

7, 8, 9, 13 and 15) were categorised on Level 1A (unitary counting) since their 

calculation technique type was categorised as ‘counted on’.  They started at six, then 

added on four and then two.     

 

Level 2 calculation techniques are multiplicative, therefore participants categorised on 

this level were able to think multiplicatively when solving the problem (Carrier, 2014).  
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Learners 6, 10 and 14 used multiplication to solve this problem.  Learner 14 was 

categorised on Level 2B (double counting) and her calculation technique type was 

categorised as ‘counted in’.  She first counted in 2s and then in 12s to calculate the 

answer.  She calculated it out loud by saying:  6, 12.  OK, then 12 x 4 is … 12, 24, 36, 

48.  Learners 6 and 10 were categorised on Level 2F (known multiplication fact) and 

their calculation technique type was categorised as ‘times table’.  They used their 

knowledge of the times tables to calculate their answers.  

 

Three participants used multiplicative calculation techniques, while six used additive 

calculation techniques to calculate the answer to this problem.  One participant did not 

know how to calculate the answer.  

 

4.10.3 Question 8: Calculation errors 

Only one calculation error was identified and categorised, namely a ‘counting error’ 

(see Table 4.8).  Learner 9 added six, four and two and calculated it to be fourteen 

instead of twelve.   

 

4.10.4 Question 8: Discussion of the analysis  

Question 8, which represented multiplication problems belonging to the class ‘volume’ 

and had the added dimension of height, was the most conceptually complex of the 

questions in the category ‘rectangular arrays’, which also included Questions 6 and 7.  

The participants had not previously done any abstract calculations of multiplication 

problems in this class (Bowie et al., 2012c; DBE, 2011c).  My analysis showed that 

none of the ten participants could solve this problem (volume) using the three different 

representations.  Learner 6 was the only participant whose abstract and concrete 

representations were correct, from which it could be inferred that a schema had not 

yet been well formed and that only limited connections could be made between the 

different representations.  One could assume that abstract and concrete schemas 

existed that allowed for an appropriate scheme to be used to solve the problem. It 

could therefore be concluded that although his conceptual understanding was limited, 

he had procedural fluency.  He could draw a 3D fish tank, but was unable to connect 

the correct numbers to the correct sides on his drawing.  He was able to choose a 
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concept-in-action that allowed him to choose the correct theorem-in-action (Vergnaud, 

1998; 2013a; 2013b).   

 

Learner 15 could only indicate length, breadth, height and volume when using the 3D 

material, while Learner 14 could solve the problem only with the abstract 

representation.  One could possibly infer that some conceptual understanding existed, 

but that these participants had only either a concrete or an abstract schema of 

problems belonging to this class.  When only one type of representation is correct, it 

could indicate that only limited connections were made between the representations 

(Ayub et al., 2013).  Learner 14 had procedural fluency, which Learner 15 lacked.  

Furthermore, since Learner 14 could not solve the problem using the other 

representations, one could perhaps infer that this participant had limited conceptual 

understanding of ‘volume’ and might have memorised a procedure without conceptual 

understanding (Ayub et al., 2013).   

 

Seven participants (Learners 4, 7, 8, 9, 10, 13 and 15) could not solve the problem 

with any of the forms of representation as they had added to find the answer, except 

for Learner 10, who multiplied but calculated incorrectly.  Learners 8, 9 and 15 

struggled to illustrate ‘volume’ or did not attempt it at all.  Only Learner 5 made no 

effort to solve the problem.  One could infer that these participants did not have a 

‘volume’ schema and therefore no conceptual understanding, which leads to the 

conclusion that since they did not have a ‘volume’ schema, they also did not have an 

appropriate scheme for solving the problem, and thus no procedural fluency.  These 

participants might have had difficulty with this question because they had previously 

seen 3D figures made up of blocks indicating volume, which they had to count (Bowie 

et al., 2012b).  Learners of this age are not expected to draw 3D figures and match 

the correct numbers to the correct sides.  However, I think that exposure to problems 

of this kind is important to develop their conceptual understanding of the different sides 

of a 3D figure and where volume is located.  If they are then asked to solve such a 

problem, they will be able to identify the sides represented on the 3D figure and 

understand why the three sides have to be multiplied. One could finally conclude that 

the majority of these participants associated ‘volume’ problems with addition, rather 

than with multiplication.         
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Learner 6 could solve this problem with abstract and concrete representations.  

Learner 15 could indicate only length, breadth, height and volume when using the 3D 

material, while Learner 14 could solve the problem with the abstract representation 

only. Three participants could solve this problem using at least one form of 

representation and seven participants (Learners 4, 7, 8, 9, 10, 13 and 15) could not 

solve it at all.   

 

4.10.4.1 Question 8: Discussion of misconceptions and misrepresentations 

Two misconceptions were identified and categorised, namely ‘unit conversion’ and 

‘keyword’.  The first verbal misconception was ‘unit conversion’.  Learner 10 incorrectly 

thought that if he divided his answer by two it would change the unit from litre to 

volume.  The reason for this misconception cannot be explained as I unfortunately 

neglected to ask him to explain his reasoning.  In my opinion this participant had an 

abstract conceptual understanding of ‘volume’, but no procedural fluency.  The second 

misconception identified was ‘keyword’.  Learner 13 thought that the word ‘needed’ in 

the question indicated addition, possibly because this participant had been taught to 

look for keywords or it might be his own method that he thought would help him to 

decide which operation to use. However, this is not the best approach as very few 

words used in word problems reliably indicate the appropriate calculation to be 

applied.   

 

The misrepresentations identified were ‘combination of measures’, ‘discrete’, ‘wrong 

figure’ and ‘sides confusion’.  The first two, categorised as ‘combination of measures’ 

and ‘discrete’, were identified when Learners 4 and 8 added three discrete numbers 

together to calculate ‘volume’, most likely because they had no ‘volume’ schema and 

the problem was too abstract to visualise.  Allsopp et al. (2007) do point out that 

learners with learning difficulties may struggle with abstract thinking, as seen here.  

The difference between this question and the question involving ‘array’ was that 

volume measurements are continuous, while ‘arrays’ consist of discrete objects.  

Discrete items can be counted, whereas continuous measurements cannot be 

counted, which makes calculation more cognitively complex.   

 

The third misrepresentation, ‘wrong figure’, was identified when Learner 15 drew a 

circle instead of 3D fish tank, Learner 5 drew a cup and Learner 14 attempted to draw 
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a fish tank, but drew a rectangle.  It is possible that these learners had no conceptual 

schema of ‘volume’, or simply did not known how to draw a 3D fish tank.  The last and 

most significant misrepresentation, evident in the work of eight of the ten participants 

(Learners 4, 6, 7, 8, 9, 10, 13 and 14), was categorised as ‘sides confusion’.  These 

participants struggled mostly with identifying the length and breadth of the 3D figure, 

which led to the assumption that their schemas of both ‘area’ and ‘volume’ had not yet 

been properly formed.  They seemed to be unable to understand that ‘volume’ is simply 

an extra dimension (height) added to ‘area’, and that the length and breadth of an area 

remain the same when height is added.  Since they did not have a good schema of 

‘volume’, they were unable to choose an appropriate scheme, which could explain why 

they could not solve the problem abstractly.   

 

4.10.4.2 Question 8: Discussion of the calculation technique levels and types  

Learners 6, 10 and 14 multiplied to calculate the answer and were categorised on 

Level 2.  Learner 14 was categorised on Level 2B (double counting) and the 

calculation technique type used was categorised as ‘counted in’.  Learners 6 and 10 

were categorised on Level 2F (known multiplication fact) and their calculation 

technique type was categorised as ‘times table’.  This could indicate that they had an 

abstract schema and multiplication schemes for ‘volume’ problems, which in turn could 

indicate that they had procedural fluency. However, this does not apply to Learner 10, 

who in the end divided for ‘unit conversion’.  Learner 6 appeared to have good strategic 

competence, since he had used the calculation technique type ‘times table’ on Level 

2F, which demonstrates abstract thinking and is seen as the highest cognitive 

developmental calculation technique (Hurst & Hurrell, 2014; Zhang et al., 2011).  

 

Six participants (Learners 4, 7, 8, 9, 13 and 15) added to solve the problem and were 

categorised on Level 1.  They were categorised on Level 1A and their calculation 

technique type was categorised as ‘counted on’, which could indicate that they lacked 

a correct schema or scheme of ‘volume’ and that their schemes were additive.  They 

therefore lacked the conceptual understanding and procedural fluency, and also the 

strategic competence required to solve the problem.  Their concepts-in-action were 

incorrect and therefore they chose incorrect theorems-in-action.     
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4.10.4.3 Question 8: Discussion of calculation errors  

Only one calculation error was identified and categorised, namely ‘counting error’.  

Learner 9 thought that he needed to add to solve the problem and added the numbers 

incorrectly.  This ‘counting error’ might have occurred because he could not keep count 

on his fingers, but I cannot explain it as I did not ask him how he had arrived at 

fourteen.      

 

4.11 Question 9: Combined categorising, analysis and discussion  

The ninth task-based question was: There are 3 brands of cool drinks (Coke, Pepsi 

and Sprite), which are available in both cans and bottles.  If you want to buy one cool 

drink, how many different possibilities are there?  Since participants had trouble 

understanding this question, I repeated the last part by saying: If you want to buy one 

cool drink, how many cool drinks can you choose from?  Question 9 represented 

multiplication problems of the class ‘combinations’ (Vergnaud, 1983) under the 

category ‘Cartesian product’ (see section 2.3.2.3 and Figure 2.1 in Chapter 2).  Ten of 

the fifteen participants answered this question.  I expected them to show their 

conceptual understanding by drawing three cans and three bottles of each brand and 

to place three cans and three bottles of each brand on the table.   

 

This question is conceptually more complex than all the previous questions as the 

participants had not seen questions of this type before and therefore found it difficult 

to understand and visualise.  Problems of this kind are never taught in primary school 

and are only introduced in Grade 9 (DBE, 2011c) under the topic probability.   

 

The categories and subcategories of all the participants’ data for Question 9 are 

summarised in Table 4.9.  Colour coding was used for easier recognition.  I analysed 

the data under each heading in Table 4.9, starting with the participants’ conceptions, 

then their misconceptions and misrepresentations.  This is followed by an analysis of 

the levels and types of calculation techniques and calculation errors.  Finally, the 

analysis of all the data for this question is discussed.  I used inductive reasoning to 

analyse the misconceptions, misrepresentations, calculation technique types and 

calculation errors, and deductive reasoning to analyse the calculation technique levels 

derived from my conceptual framework. 
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Table 4.9: Summary of the Question 9 categories and subcategories for ten participants and all the representations 
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Learner 6 
+ 

(6) 
 

Level 1C 
Repeated addition 

Counted in  
× 

Combinations 
(6) 

  
× 

Combinations 
 

 

Learner 8 
[Unable 
to do] 

    
[Unable to 

draw] 
  [Unable to do]  

Learner 9 
× 

(3) 

Non- 
consideration 

of all units 

Level 2B 
Double counting 

Counted in  
Addition 

+ 
(3) 

One unit  
Addition 

+ 
One unit 

Learner 10 
[Unable 
to do] 

    
Addition 

+ 
(3) 

One unit  
Intention was 
Combinations 

× 
One unit 

Learner 11 
None 

(2) 

Non- 
consideration 

of all units 
   

× 
Combinations 

(6) 
  

× 
Combinations 

 

Learner 13 
+ 

(6) 
 

Level 1 
 Known addition 

fact 

Addition 
fact 

 
× 

Combinations 
(6) 

  
× 

Combinations 
 

Learner 14 
None 

(3) 

Non- 
consideration 

of all units 
   

Addition 
+ 

(3) 
One unit  

× 
Combinations 

 

Learner 15 
None 

(3) 

Non- 
consideration 

of all units 
   

Addition 
+ 

(3) 
One unit  

Addition 
+ 

One unit 

Learner 16 
+ 

(18) 
 

Level 1C 
Repeated addition 

Counted 
on 

 
Multiplication 

× 
Equal 

sharing 
 

Multiplication 
× 

Equal 
sharing 

Learner 17 
None 

(3) 

Non- 
consideration 

of all units 
   

Addition 
+ 

(1) 
One unit  

[Unable to 
determine] 
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As was the case with the previous question, none of the ten participants could solve 

this problem using all three representations.  Three of the participants (Learners 6, 11 

and 13, whose names are marked in light blue in Table 4.9) could solve the problem 

with semi-concrete and concrete representations, but their equations in their abstract 

representations were not indicative of multiplication.  Even though they had used 

addition for their equations, they could draw pictures that showed three bottles and 

three cans of cool drink, and placed three bottles of each brand and three cans of cool 

drink on the table, which indicated an understanding of ‘combinations’.  Picture 4.45 

shows Learner 13’s understanding of ‘combinations’.   

 

           

Picture 4.45: Question 9: Learner 13’s the equation, conceptual drawing and 
3D material representing ‘combinations’  

 

Learner 14 (whose name is marked in purple in Table 4.9) could solve this problem 

only with a concrete representation.  Learner 8 (whose name is marked in dark red in 

Table 4.9) was the only participant who did not attempt to solve it as she did not 

understand the question.  

 

4.11.1 Question 9: Misconceptions and misrepresentations  

One verbal misconception was identified and categorised as ‘non-consideration of all 

units’ (see Table 4.9).  Five participants (Learners 9, 11, 14, 15 and 17) were 

categorised with this misconception.  Learners 9, 14 and 17 considered only the 

different brands of cool drinks, ignoring the type of containers in which they were sold.  

Learner 9, for example, explained: Ma’am, because there are three brands of cool 

drinks, while Learners 11 and 15 considered only the type of containers and Learner 

11 explained: Because you can buy either a bottle or a can, ignoring the different 

brands.  Learner 16 used addition in the abstract representations and I could not 

identify any verbal misconception.  
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In the semi-concrete and/or concrete representations, two misrepresentations were 

identified and categorised, namely ‘one unit’ and ‘equal sharing’ (see Table 4.9).  

Three participants’ semi-concrete and concrete representations misrepresented only 

‘one unit’, namely bottles (Learners 9 and 15) and Pepsi (Learner 10).  Picture 4.46 

shows Learner 15’s ‘one unit’ misrepresentation in the semi-concrete and concrete 

representations.  Learners 14 and 17’s semi-concrete drawings misrepresented ‘one 

unit’, namely bottles.     

 

        

Picture 4.46: Question 9: Learner 15’s misrepresentation of ‘one unit’ 
 

The other misrepresentation that was identified and categorised was ‘equal sharing’.  

Learner 16 drew and packed out three groups of cans and three groups of bottles.  

Picture 4.47 shows this misrepresentation of ‘equal sharing’ in the semi-concrete and 

concrete representations. 

 

               

Picture 4.47: Question 9: Learner 16’s misrepresentation of ‘equal sharing’ 
 

Learner 17 placed three bottles and one can of cool drink on the table for her 3D 

representation.  This could not be categorised as it did not represent anything specific.  

I did not ask her to explain why she had represented the problem in that way. 

 

For this question, one verbal misconception (‘non-consideration of all units’) and two 

misrepresentations (‘one unit’ and ‘equal sharing’) could be identified and categorised.  

The levels and types of calculation techniques will be discussed next. 
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4.11.2 Question 9: Levels and types of calculation techniques  

The calculation technique levels were categorised according to the conceptual 

framework (see section 2.5.1 and Figure 2.1 in Chapter 2).  The calculation technique 

types were inductively identified and grouped into similar categories (colour coded in 

green and pink in Table 4.9).  The following calculation technique levels were identified 

and categorised:  Level 1C (repeated addition), Level 1 (known addition fact) and Level 

2B (double counting).  The calculation technique types identified for solving Question 

9 were ‘counted on’, ‘addition fact’ and ‘counted in’ (see Table 4.9). 

 

Learners 8 and 10 did not know how to calculate the answer to this problem and four 

other participants (Learners 11, 14, 15 and 17) gave an answer but did not do any 

calculations. No calculation techniques levels and types were therefore identified. 

 

Level 1 calculation techniques are additive and three of the participants (Learners 6, 

13 and 16) added when calculating their answers.  Learners 6 and 16 were categorised 

on Level 1C (repeated addition), and their calculation technique types were 

categorised as ‘counted in’ and ‘counted on’ respectively.  Learner 6 counted in 2s 

and Learner 16 counted on six each time.  Learner 13 was categorised on Level 1 

(known addition fact) and since he added three and three together his calculation 

technique type was categorised as ‘addition fact’.   

 

The Level 2 calculation techniques are considered multiplicative, meaning that the 

participants were able to think multiplicatively when solving the problem (Carrier, 

2014).  Learner 9 was categorised on Level 2B (double counting) and his calculation 

technique types were categorised as ‘counted in’.  To solve the problem, he wrote 

three times one (3 x 1).  

 

One participant used multiplicative calculation techniques, while three used additive 

calculation techniques to calculate the answer to this problem.  Two could not solve 

the problem and four gave answers, but did not do any calculations. 
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4.11.3 Question 9: Calculation errors  

None of the participants made any calculation errors when calculating the answer to 

this question.  Four of the ten participants did not do calculations because they thought 

the answer was two or three and considered calculations to be unnecessary.  The 

numbers used for this problem were two and three and the calculation was so simple 

that there were no calculation errors.              

 

4.11.4 Question 9: Discussion of the analysis 

This is the only question in the category ‘Cartesian product’.  It is conceptually complex 

and the participants had not previously been asked to solve problems from this class, 

which are actually only introduced under the topic probability at the end of the Senior 

Phase (Grade 9) (DBE, 2011c).  My analysis showed that none of the ten participants 

could solve this problem in all the representational forms.  This was expected, since 

they had never encountered problems of this class before.  One could infer that the 

participants lacked a well-integrated schema of this problem and an appropriate 

scheme for solving it.   

 

Three of the ten participants (Learners 6, 11 and 13) could draw three cans and three 

bottles of different brands and arranged the actual objects in the same way, but 

Learners 6 and 13 used addition for their equations and Learner 11 did not write out 

any type of equation.  From this one can infer a conceptual understanding of 

‘combinations’, but not in the abstract form.  However, since the participants had 

added and not multiplied to calculate their answers, I could only infer additive 

procedural fluency.  It could be concluded that their schemas of ‘combinations’ were 

limited since their abstract schemas were lacking, as demonstrated by their use of an 

additive scheme or no calculation scheme at all to solve the problem.    

 

Learner 14 could solve this problem only when she used 3D material.  It could be 

inferred that her schema, and therefore her understanding, was limited to the concrete 

as there were no connections with the other types of representation (Ayub et al., 2012; 

Hiebert & Carpenter, 1992).  The fact that her conceptual understanding was limited 

to the concrete could have led to the use of an incorrect scheme to solve the problem 

and a lack of procedural fluency.  She struggled to solve the problem as she had 
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chosen the incorrect concept-in-action, which led her to choose the incorrect theorem-

in-action. 

 

Five participants (Learners 9, 10, 15, 16 and 17) could not solve the problem in any of 

the representational forms and Leaner 8 made no attempt at all to solve it.  One could 

possibly conclude that they could not solve the problem because they did not have a 

‘combinations’ schema in any of the representational forms and no scheme, and 

therefore no procedural fluency.  It could further be assumed that they had no abstract 

conceptual understanding, and because their concepts-in-action were lacking they 

also had no theorems-in-action to solve the problem.   

 

No participant could solve this problem in all the forms of representation.  Learners 6, 

11 and 13 could solve the problem of ‘combination’ with semi-concrete and concrete 

representations, while Learner 14 could solve it only with the concrete representation.  

Four of the ten participants could solve it with at least one of the representations and 

five (Learners 9, 10, 15, 16 and 17) could not solve it in any of the representational 

forms.  Leaner 8 made no attempt at all to solve the problem.       

 

4.11.4.1 Question 9: Discussion of misconceptions and misrepresentations  

One misconception could be identified and categorised, namely 'non-consideration of 

all units’.  Five participants (Learners 9, 11, 14, 15 and 17) considered either only the 

cool drink brands or only the fact that there were bottles and cans, which was 

categorised as ‘non-consideration of all units’.  One reason for this misconception 

could be that there was simply too much information to be considered.  The 

participants had never done any problems of this class and therefore had no concept-

in-action for ‘combinations’.   This might have caused them to focus on one part of the 

question and ignore the other part.     

 

Two misrepresentations were identified and categorised, namely ‘one unit’ and ‘equal 

sharing’. Five participants (Learners 9, 10, 14, 15 and 17) drew only one of the units 

mentioned in the question, which implies that they considered only one of the units 

(i.e. either the brands, or cans and bottles) when they tried to solve the problem.  The 

reason for this misrepresentation could be that the problem was too complex and that 

they had not been taught strategies for solving unfamiliar problems. 
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The other misrepresentation was categorised as ‘equal sharing’.  Learner 16 placed 

the bottles and cans into three groups.  The reason for this misrepresentation is difficult 

to explain, but it is possible that this participant did not know what to do and used 

another schema (i.e. equal sharing) to solve the problem.   

 

4.11.4.2 Question 9: Discussion of calculation technique levels and type 

Only four participants (Learners 6, 9, 13 and 16) did any type of calculation and with 

the exception of Learner 9 none of them multiplied to solve the problem. Learner 9 

multiplied three by one (3 x 1), which was not the correct calculation, and was 

categorised on Level 2B (double counting), while the calculation technique type was 

categorised as ‘counted in’.  Even though he did multiply, it was not the correct 

calculation for solving the problem and he lacked procedural fluency and therefore 

also strategic competence. 

 

The other three participants (Learners 6, 13 and 16) used additive calculation 

techniques and were categorised on Level 1.  Learners 6 and 16 were categorised on 

Level 1C (repeated addition) and their respective calculation technique types were 

categorised as ‘counted in’ and ‘counted on’.  Learner 13 was categorised on Level 1 

(known addition fact) and his calculation technique type was categorised as ‘addition 

fact’.  Learners 6 and 13 were the only participants who could solve this problem in 

the abstract form by using additive calculation techniques.  For them one could infer 

no procedural fluency and no strategic competence.   

 

4.11.4.3 Question 9: Discussion of calculation errors 

The participants used addition or no calculation at all to solve this problem and no 

calculation errors were identified.  There could be two reasons for this: The first is that 

the numbers they worked with were small numbers (i.e. two and three) and the second 

is that no calculation errors were made because of the misconception of ‘non-

consideration of all units’.  They did not have to do any calculations to solve this 

problem as the answer was clear enough. 
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4.12  Question 10: Combined categorising, analysis and discussion  

The last task-based question was: A mother gives each of her 5 children 3 sweets per 

day.  How many sweets will the children eat over a 3-day period?  When I asked this 

question, I noticed that some participants did not know what the word period meant.  I 

had asked the question as it appeared on the card, but then repeated the last part 

saying: How many sweets will the children eat in 3 days or over 3 days?  Question 10 

represented multiplication problems belonging to the class ‘consumption’ (Vergnaud, 

1983) under the category ‘multiple proportion’ (see section 2.3.2.3 and Figure 2.1 in 

Chapter 2).  Ten of the fifteen participants answered this question by first using 

abstract representations, then semi-concrete and lastly concrete representations (see 

section 3.3.2 in Chapter 3 for a full discussion).  I expected them to draw a picture with 

five children and three groups of three sweets each for each child, and to make the 

same arrangement using the 3D material.  They could use 3D blocks to represent the 

children and place three groups of three sweets each next to each block. 

 

Although according to the CAPS, problems of this kind should be introduced 

concretely in Grade 2 (DBE, 2011a), I could not find any such problems in the 

textbooks that the schools used where the participants attended.  The fact that there 

were more than two numbers to multiply made this problem more conceptually 

complex than the previous questions.  Experience has taught me that some learners 

with learning difficulties and those struggling with mathematics find it difficult to solve 

two-step problems.      

 

Table 4.10 contains a summary of the categories and subcategories of the data for 

this question for all the ten participants’ representations.  Similar subcategories are 

colour coded for easier recognition.  I analysed the data under each heading in Table 

4.10, starting with the participants’ conceptions, misconceptions and 

misrepresentations.  I then analysed the levels and types of calculation techniques 

and calculation errors.  Finally, the analysis of all the data for this question and the 

analysis of the last two questions is discussed.  I used inductive reasoning to analyse 

the misconceptions, misrepresentations, calculation technique types and calculation 

errors, and deductive reasoning to analyse the calculation technique levels derived 

from my conceptual framework. 



192 
 

Table 4.10: Summary of the Question 10 categories and subcategories for ten participants and all the representations 
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Learner 5 
× 

(45) 
 

Level 2B 
Double counting 

Counted in  
[Unable to 

draw] 
  

Multiplication 
× 

Equal 
sharing 

Learner 6 
× 

(45) 
 

Level: 2F Known 
multiplication fact 
Level 2E Derived 
multiplication fact 

Times table 
Times table 
and addition 

 
× 

Consumption 
(no answer) 

  
Multiplication 

× 
Equal 

sharing 

Learner 7 
+ 

(27) 
 

Level 1C 
Repeated addition 

Repeated 
addition 

 

Intention  
was  

+ 
(27) 

Abstract 
numbers  

Disconnect 
between 

abstract and 
drawing 

(Answer 27) 

Multiplication 
× 

Equal 
sharing 

Learner 8 
+ 

(11) 
 

Level 1A 
Unitary counting 

Counted on  
Addition 

+ 
(11) 

Combination 
of measures 

 
Addition 

+ 
Combination 
of measures 

Learner 9 
× 

(45) 
 

Level 2B 
Double counting 

Counted in  
Multiplication 

×  
(45) 

Equal 
sharing 

Disconnect 
between 

abstract and 
drawing 

(Answer 45) 

Multiplication 
× 

Equal 
sharing 

Learner 10 
+ 

(45) 
 

Level 2B 
Double counting 

Level 1 
Addition algorithm 

Counted in 
Column 
method 

 
 

Intention  
was  

× 
(45) 

Abstract 
numbers  

 
Intention  

was  
× 

Abstract 
numbers  

Learner 11 
× 

(24) 
 

Level 2B 
Double counting 

Counted in 

Counting 
error 

(Answer 
24) 

[Unable to 
determine] 

Answer  
Multiplication 

× 
Equal 

sharing 

Learner 14 
× 

(15) 
 

Level 2B 
Double counting 

Counted in  
Multiplication 

× 
(Says 45) 

Equal 
sharing 

Writing error 
 (writes 54) 

Multiplication 
× 

Equal 
sharing 
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Learner 15 
× and ÷ 

(1) 
 

Level 2B 
Double counting 

Counted in  

Intention  
was  

× and ÷ 
(1) 

Abstract 
numbers  

Disconnect 
between 

abstract and 
drawing 

(Answer 1) 

Multiplication 
× 

Equal 
sharing 

Learner 16 
+ 

(20) 
 

Level 2B 
Double counting 

Counted in  
Multiplication 

×  
(20) 

Equal 
sharing 

Disconnect 
between 

abstract and 
drawing 

(Answer 20) 

Intention  
was  

× 

Abstract 
numbers  
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As with the previous two questions, none of the ten participants could solve this 

problem with all three representations.  Learner 6 could solve it with an abstract 

representation (multiplication) and his semi-concrete representation showed an 

understanding of ‘consumption’ as he had drawn three groups of three sweets each 

for each child.  Learners 5 and 9 (whose names are marked in purple in Table 4.10) 

could solve this problem with abstract representations only and used multiplication for 

their equations.   

 

4.12.1 Question 10: Misconceptions and misrepresentations 

No verbal misconceptions could be identified, even though three participants added to 

calculate their answers.  Learner 8 simply added the three numbers together, while 

Learners 7 and 16 added numbers other than those given.  Learner 15 multiplied and 

divided to calculate her answer.  It is possible that they did not understand the 

question. 

 

Four misrepresentations could be identified and categorised, namely ‘abstract 

numbers’, ‘answer’, ‘equal sharing’ and ‘combination of measures’ (see Table 4.10).  

Four participants’ drawings and/or concrete representations were identified and 

categorised as misrepresentations of ‘abstract numbers’.  Learner 10 misrepresented 

this problem in the semi-concrete and concrete representations.  This participant drew 

and placed fifteen sweets and three sweets to represent the numbers in his abstract 

equation (see Picture 4.48). 

 

          

Picture 4.48: Question 10: Learner 10’s misrepresentation of ‘abstract 
numbers’  

 

Learners 7 and 15’s semi-concrete representations were also categorised as ‘abstract 

numbers’ as they had used both pictures and numbers to represent the problem, while 

Learner 16’s concrete representation was categorised as ‘abstract numbers’ as he 

had arranged the 3D material to reflect his abstract representation. 
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The second misrepresentation, identified and categorised as ‘answer’, was difficult to 

categorise as Learner 11 drew only three sweets as her answer.   

 

The third misrepresentation was identified and categorised as ‘equal sharing’. Eight 

participants misrepresented this problem in their semi-concrete and/or concrete 

representations.  In the semi-concrete and concrete representations, Learner 9 

grouped three sweets together, ignoring the fact that the children each received three 

sweets daily for three days (see Picture 4.49). Learner 14 also grouped three sweets 

together and wrote ‘3x’ in her picture, and in her 3D representation grouped fifteen 

sweets together, instead of nine sweets per child.  This was categorised as ‘equal 

sharing’ as it represented this class of problem rather than ‘consumption’.      

 

             

Picture 4.49: Question 10: Learner 9’s misrepresentation of ‘equal sharing’  
 

Five of the eight participants’ (Learners 5, 6, 7, 11 and 15) misrepresentations in their 

concrete representations were categorised as ‘equal sharing’.  Like Learner 9, 

Learners 5, 11 and 15 made five groups of three sweets (see Picture 4.49) for the 

concrete representations, while Learners 6 and 7 arranged five groups of five 3D 

blocks each (to represent the five children) and added nine sweets to each of the 

groups of five 3D blocks.  Picture 4.50 shows Learner 6’s misrepresentation of ‘equal 

sharing’.   

 

 

Picture 4.50: Question 10: Learner 6’s misrepresentation of ‘equal sharing’  
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Learner 16’s semi-concrete representation was categorised as ‘equal sharing’, since 

he drew five sweets for each child, thus five groups of five.   

 

Learner 8’s misrepresentation in her semi-concrete and concrete representations was 

categorised as ‘combination of measures’, since she had added the three numbers 

together (see Picture 4.51).   

         

Picture 4.51: Question 10: Learner 8’s misrepresentation of ‘combination of 
measures’ 

 

For this question no verbal misconceptions could be identified; however, four 

misrepresentations (‘abstract numbers’, ‘answer’, ‘equal sharing’ and ‘combination of 

measures’) were identified and categorised.  The levels and types of calculation 

techniques will be discussed next. 

 

4.12.2 Question 10: Levels and types of calculation techniques  

The calculation technique levels were categorised according to the conceptual 

framework (see section 2.5.1 and Figure 2.1 in Chapter 2).  The calculation technique 

types were identified and grouped into similar categories (colour coded in green and 

pink in Table 4.10).  The following calculation technique levels were identified and 

categorised: Level 1A (unitary counting), Level 1C (repeated addition), Level 2B 

(double counting), Level 2C (algorithms), Level 2E (derived multiplication fact) and 

Level 2F (known multiplication fact).  The calculation technique types that I identified 

for solving Question 10 were: ‘counted on’, ‘repeated addition’, ‘counted in’, ‘column 

method’, ‘times table and addition’ and ‘times table’ (see Table 4.10). 

 

Only two of the ten participants used additive calculation techniques.  Learner 8, 

whose calculation technique type was categorised as ‘counted on’, which was 

categorised on Level 1A (unitary counting), had added the three numbers in the 
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problem together, starting with five, then three and then another three.  Learner 7 

wrote his equation in the form of repeated addition and was therefore categorised on 

Level 1C (repeated addition). His calculation technique type was also indicative of 

‘repeated addition’. 

 

Level 1 calculation techniques are additive in nature. Two participants had added to 

calculate the answer and were categorised on Level 1.  Learner 8 was categorised on 

Level 1A (unitary counting) and her calculation technique type was categorised as 

‘counted on’.  She started from five and, counting on her fingers, added three and then 

two to calculate the answer.  Learner 7, who had added nine each time, was 

categorised on Level 1C (repeated addition) and his calculation technique type was 

categorised as ‘repeated addition’. 

 

Learner 10 used a combination of additive and multiplicative calculation technique 

types. His calculation technique was categorised as Level 2B (double counting) and 

Level 1 (addition algorithm), and the calculation technique types he used to solve the 

problem were categorised as ‘counted in’ and the ‘column method’.  He had counted 

in 3s first, after which he had written three fifteens below one another before adding 

all the numbers together.   

 

Level 2 calculation techniques are multiplicative, meaning that participants 

categorised on this level were able to think multiplicatively when solving the problem 

(Carrier, 2014).  Eight participants used multiplication to solve this problem.  Learners 

5, 9, 11, 14, 15 and 16’s calculation techniques were categorised on Level 2B (double 

counting) and the calculation technique type was categorised as ‘counted in’.  Learner 

5 first counted in 3s and then in 5s to solve the problem.  Learner 9 counted in 15s, 

while Learners 11 and 15 counted in 3s.  Learner 14 counted in 5s and Learner 16 in 

4s.  Learner 6 used two different multiplicative calculation techniques to solve this two-

step problem.  Learner 6’s calculation techniques were categorised on Level 2F 

(known multiplication fact) and Level 2E (derived multiplication fact) and his calculation 

technique types were categorised as ‘times table’ and ‘times table and addition’.  He 

first calculated 5 x 3 = 15 and then calculated 15 x 3. He knew that 12 x 3 = 36, and 

added 9 to get the answer, which was 45. 
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Seven participants used multiplicative calculation techniques, two used additive 

calculation techniques and one used a combination of multiplicative and additive 

calculation techniques to calculate the answer to this problem.   The calculation errors 

will be discussed next.   

 

4.12.3 Question 10: Calculation errors  

Three calculation errors were identified and categorised, namely ‘counting error’, 

‘writing error’ and ‘disconnect between abstract representation and drawing’ (Table 

4.10).  The first calculation error that was identified and categorised was the ‘counting 

error’ made by Learner 11, who had multiplied five by three and gave the answer as 

24.  When she reached 12, she doubled it instead of adding the last three.  The second 

calculation error, categorised as a ‘writing error’, had been made by Learner 14, who 

had written 54 but said that the answer was 45.  The last calculation error was 

categorised as a ‘disconnect between abstract and drawing’.  Four participants 

(Learners 7, 9, 15 and 16) had made this error.  Learner 9 had drawn five groups of 

three and gave his answer as 45, which was his answer in his abstract representation 

(see Picture 4.49).  Learners 7, 15 and 16 also gave answers that did not correspond 

with their pictures.   

 

4.12.4 Question 10: Discussion of the analysis 

Question 10, which is the only question in the category ‘multiple proportion’, is 

conceptually complex as the calculation involves more than two numbers.  Although 

according to the CAPS the problems belonging to the class ‘consumption’ should be 

concretely introduced in Grade 2 (DBE, 2011a), I could not find any such problems in 

the textbooks that the schools used where the participants attended.  Since the 

participants had not encountered this type of problem before, it was to be expected 

that they would struggle to solve it.  An unforeseen problem that was identified was 

the use of the word period in the question as some participants understood it to refer 

to a school period.  Consequently, I had to rephrase the question as follows: How 

many sweets will they eat in three days, or over three days.  This word confusion might 

have contributed to their misunderstanding of the problem and incorrect calculations. 
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None of the participants could solve this problem in all the representational forms.  

Learner 6 could solve it with abstract and semi-concrete representations. Hiebert and 

Carpenter (1992) suggest that the more connections the better the understanding, 

which could indicate that this participant had some connection between the abstract 

and semi-concrete representations and thus some understanding of ‘consumption’ 

problems. Learner 6 had an abstract and semi-concrete schema of ‘consumption’ and 

therefore a scheme to solve the problem.  One could infer that since he had some 

conceptual understanding of the problem, he could choose a correct concept-in-action 

that led to an appropriate theorem-in-action. Procedural fluency and strategic 

competence could therefore be inferred.      

 

Learners 5 and 9 could solve this problem with multiplicative abstract representations 

only.  When only one type of representation is correct, it could be an indication that 

limited connections were made (Ayub et al., 2013). It could therefore be inferred that 

they had limited connections and only an abstract conceptual schema of this type of 

problem, and consequently no real conceptual understanding.  While it is possible that 

they memorised the procedure without conceptually understanding it (Ayub et al., 

2013), procedural fluency could be inferred.  Learner 10 could solve this problem with 

abstract representations, but used an additive calculation technique.  One could infer 

that he had an abstract schema with only additive procedural fluency and no strategic 

competence.     

 

Six participants (Learners 7, 8, 11, 14, 15 and 16) could not solve the problem in any 

of the representational forms.  It could be inferred that they had no connections 

between the representations of multiplication problems belonging to the class 

‘consumption’, and therefore no schema and scheme for this problem.  It could further 

be concluded that they had no conceptual understanding, procedural fluency and 

strategic competence.  Since they did not have a ‘multiple proportion’ schema, they 

did not have the correct concept-in-action and therefore chose the incorrect theorem-

in-action.   

 

Learner 6 could solve this problem with abstract and semi-concrete representations, 

while Learners 5 and 9 could solve it using multiplicative abstract representations.  

Three of the ten participants could solve this problem using at least one of the 
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representations and six (Learners 7, 8, 11, 14, 15 and 16) could not solve it in any of 

the representational forms.   

 

4.12.4.1 Question 10: Discussion of misconceptions and misrepresentations 

While no misconceptions were identified, I could identify and categorise four 

misrepresentations, namely ‘equal sharing’, ‘abstract numbers’, ‘combination of 

measures’ and ‘answer’. The most prevalent misrepresentation was that of ‘equal 

sharing’.  Eight of the participants’ (Learners 5, 6, 7, 9, 11, 14, 15 and 16) pictures 

and/or representation using 3D material were indicative of ‘equal sharing’ and were 

categorised as such.  The reason for this might be that since these participants had 

not previously dealt with problems of this type, they did not have a schema of the 

‘consumption’ class of multiplication problem, but only of the ‘equal sharing’ class, and  

therefore solved the problem by using another concept-in-action that they had.   

 

For their semi-concrete and/or concrete representations, four participants (Learners 

7, 10, 15 and 16) simply replaced the numbers of their abstract equations with sweets 

and blocks. This was categorised as the misrepresentation of ‘abstract numbers’.  

Learner 11 drew only three sweets to represent the answer to the problem. This was 

categorised as a misrepresentation of ‘answer’.  The reason for these two 

misrepresentations could be that they struggled to visualise the problem semi-

concretely and/or concretely.  One could infer that these participants struggled with 

abstract thinking, which is characteristic of learners with learning difficulties (Allsopp 

et al., 2007).     

 

For her semi-concrete representation, Learner 8 drew five stripes.  Underneath that 

she drew three stripes, with another three underneath the previous tree, which she 

added together for an answer of 11. For her concrete representation she placed three 

sweets, three blocks and then another five blocks in a line, which was indicative of 

addition.  This misrepresentation, which was categorised as a ‘combination of 

measures’, could indicate that she did not have a schema and scheme for problems 

belonging to the class ‘multiple proportion’.  She might not have known how to 

distinguish between multiplication and addition problems.   
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4.12.4.2 Question 10: Discussion of calculation technique levels and types 

Seven participants (Learners 5, 6, 9, 11, 14, 15 and 16) used multiplication calculation 

techniques and were categorised on Level 2.  Six (Learners 5, 9, 11, 14, 15 and 16) 

were categorised on Level 2B (double counting) and their calculation technique type 

was categorised as ‘counted in’.  Learner 6 was categorised on Level 2E (derived 

multiplication fact) and Level 2F (known multiplication fact) and his calculation 

technique types were categorised as ‘times table and addition’ and ‘times table’ 

respectively.  This could indicate that these participants had an abstract schema and 

multiplicative schemes for ‘multiple proportion’ problems, which in turn could indicate 

that they had procedural fluency.  However, one could infer that only Learner 6 had 

good strategic competence, since he was categorised on Levels 2E and 2F, which are 

the two highest cognitive developmental calculation techniques demonstrating 

abstract thinking (Hurst & Hurrell, 2014; Zhang et al., 2011). 

 

Learner 10 used a combination of multiplicative and additive calculation techniques to 

solve the problem and was categorised on Level 2B (double counting) and Level 1 

(addition algorithm).  The respective calculation technique types used were 

categorised as ‘counted in’ and ‘column method’.  This could indicate that he did not 

have an effective scheme to solve the problem.  Moreover, his multiplicative scheme 

might not yet have been well developed and therefore he had to use multiplicative and 

additive calculation techniques.  It could be concluded that he had limited procedural 

fluency and poor strategic competence. 

 

Learners 7 and 8 used additive calculation techniques and were therefore categorised 

on Level 1.  Learner 8 was categorised on Level 1A (unitary counting) and the 

calculation technique type was categorised as ‘counted on’, while Learner 7 was 

categorised on Level 1C (repeated addition) and the calculation technique type was 

also categorised as ‘counted on’.  One could infer that these participants did not have 

correct schemas and schemes for ‘multiple proportion’.  Their schemas and schemes 

were additive and therefore they could not solve the problem.  They had no procedural 

fluency and no strategic competence to solve the problem.  Their concepts-in-action 

were additive and therefore they chose incorrect theorems-in-action.   
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4.12.4.3 Question 10: Discussion of calculation errors 

Three calculation errors were identified and categorised, namely ‘counting error’, 

‘writing error’ and ‘disconnect between abstract and drawing’.  Learner 11 made a 

‘counting error’, when counting in 3s.  It is difficult to say for certain why she made this 

error, but it could be due to concentration problems.  Learner 14 made a ‘writing error’, 

as she wrote 54 and said 45.  This participant might have been dyslexic, which would 

explain the inversion of numbers.  The drawings made by four participants (Learners 

7, 9, 15 and 16) were inconsistent with the answer they gave.  The reason why their 

pictures did not reflect their answers could be that they were not used to drawing 

pictures of problems and did not realise that they should use their pictures to calculate 

the answer.  These participants used the answers given in their abstract 

representations without realising that their pictures did not reflect those answers. 

 

4.13 Summary 

In this chapter I systematically presented and analysed the data obtained from each 

of the ten questions.  For each question I started by analysing the conceptions, written 

misconceptions and misrepresentations, which was followed by an analysis of the 

levels and types of calculation techniques.  Thereafter I analysed the calculation errors 

for each question and ended with a discussion of what had been analysed.  Following 

the same systematic presentation, I first discussed the conceptions, then the 

misconceptions and misrepresentations, the levels and types of calculation 

techniques, and lastly the calculation errors.  I discussed the analysis by referring back 

to my conceptual framework and my literature study, which will help me, in the next 

chapter, to answer my three secondary research questions, which relate to the status 

of the participants’ conceptual understanding, their procedural fluency and strategic 

competence.  In Chapter 5 I will show how the findings regarding the conceptions, 

misconceptions, misrepresentations, levels and types of calculation techniques and 

calculation errors that were found in the learners’ responses to each of the ten 

multiplication problems helped me to answer the secondary research questions and 

thus the main research question.    
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CONCLUSION AND IMPLICATIONS  

 

5.1 Introduction 

In the previous chapter I identified, analysed and categorised the conceptions and 

misconceptions of the fifteen participants, the levels and types of calculation 

techniques they used and the calculation errors they made.  During individual 

interviews with the participants, I asked them to solve ten different classes of 

multiplication problems, as categorised in my conceptual framework (see Figure 2.1, 

in Chapter 2 and Table 3.1, in Chapter 3).  In the previous chapter I discussed each 

of the ten multiplication questions separately.  In this chapter I will discuss the findings 

in order to answer my three secondary research questions and to ultimately establish 

the multiplicative proficiency of Grade 6 learners with learning difficulties.  I will start 

this chapter by giving an overview of the preceding chapters, after which I will discuss 

the findings in relation to each of my secondary research questions and explain how 

my findings fit into the current research literature.  This will be followed by a critical 

reflection on and discussion of my theoretical, methodological and practical 

contribution to the current research literature, the implications and limitations of this 

study and recommendations for future research. Finally, I will reflect on my study as a 

whole.      

 

5.2 Overview of previous chapters 

In Chapter 1 I introduced my study by highlighting the importance of the conceptual 

shift from additive to multiplicative reasoning that learners are expected to make during 

the Intermediate Phase (Grades 4 to 6). The degree of success with which this 

conceptual shift is made will determine how well they will cope with more cognitively 

complex mathematics in later years.  This study was undertaken to investigate the 

proficiency in multiplicative reasoning of Grade 6 learners with learning difficulties by 

answering three secondary research questions.  

 

Chapter 2 contains an in-depth overview of multiplicative reasoning as a cognitive field 

and the subcomponents relevant to this study, as well as an overview of the first 
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research done in this field by Vergnaud (1982–2014) and other researchers.  This 

overview was used to establish a conceptual framework for this study, based on the 

interplay between internal and external representations as a measure for proficiency 

in multiplicative reasoning.   

 

In Chapter 3 I summarised the methodologies used in previous research studies in 

this field.  I situated my study in the critical realism paradigm, focusing more on 

ontology than on epistemology.  I established my study as qualitative using a single-

case study design and explained how I had chosen the fifteen participants, and how I 

had collected my data through task-based interviews.  I also reported on the quality 

measures and the ethical considerations applied during this study.   

  

In Chapter 4 I analysed and discussed, with evidence, the data collected from the 

individual participants for each of the ten multiplication questions. I identified and 

categorised conceptions, misconceptions, misrepresentations, levels and types of 

calculation techniques and calculation errors by using both inductive and deductive 

reasoning.  The participants’ conceptions, misconceptions and misrepresentations of 

each of the ten multiplication problems were discussed together in order to answer the 

first secondary research question about the participants’ conceptual understanding.  

The calculation technique levels and the calculation errors were discussed together in 

order to answer the second secondary research question, which related to the 

participants’ procedural fluency.  The calculation technique types were discussed 

separately, but were also linked to the calculation technique levels in order to answer 

the third secondary research question relating to strategic competence.   

 

5.3 Discussion and conclusions relating to the three secondary 

research questions 

The primary research question, as stated in Chapter 1 of this study, was:  

How proficient are Grade 6 learners with learning difficulties in multiplicative 

reasoning?   

 

In order to answer the primary research question, I formulated three secondary 

research questions, which will each be discussed separately.  As discussed in Chapter 
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1, it is important for learners to make a conceptual shift from additive to multiplicative 

reasoning in order to become proficient in multiplicative reasoning.  The way in which 

proficiency was measured for this study included a combination of conceptual 

understanding (Secondary research question 1), procedural fluency (Secondary 

research question 2) and strategic competence (Secondary research question 3), 

demonstrated by using abstract, semi-concrete and concrete representations.  If 

participants could show their understanding in all three of these components, they 

were deemed proficient.       

 

5.3.1 First secondary research question: Conceptual understanding 

The first secondary research question was:  

What is the status of the learners’ conceptual understanding of multiplication?   

 

In order to answer this question, participants’ conceptions, misconceptions and 

misrepresentations of each of the ten task-based questions, as seen in their abstract, 

semi-concrete and concrete representations, were identified and categorised.  As 

shown in the conceptual framework, participants were expected to also show their 

conceptual understanding through verbal explanations; however, the majority of the 

participants were unable to explain how they decided whether they should use 

multiplication or addition to solve a problem.   

 

Moreover, the findings of this study revealed that only some of the participants 

demonstrated conceptual understanding of the ten classes of multiplication problems 

with both their semi-concrete and concrete representations.  From the findings 

discussed in Chapter 4, one could conclude that in the case of the less cognitively 

complex questions (Questions 1, 2, 4 and 7), more participants showed conceptual 

understanding: ten showed their conceptual understanding for Question 1 (Learners 

3, 5, 6, 9, 11, 12, 13, 14, 15 and 17), six for Question 2 (Learners 3, 6, 9, 14, 16 and 

17), five for Question 4 (Learners 3, 6, 7, 9 and 17) and three for Question 7 (Learners 

7, 13 and 17), while for the more cognitively complex questions (Questions 3, 5, 6, 8, 

9 and 10), fewer participants showed conceptual understanding:   two for Question 3 

(Learners 6 and 12), four for Question 5 (Learners 3, 9, 14 and 17), two for Question 

6 (Learners 6 and 14), none for Question 8, three for Question 9 (Learners 6, 11 and 
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13) and none for Question 10.  From these findings one could further conclude that 

more participants had good interconnected semi-concrete and concrete schemas for 

the less cognitively complex classes of multiplication problems and could easily 

visualise them, while fewer participants could semi-concretely and concretely visualise 

the more cognitively complex classes of multiplication problems.  The majority of 

participants lacked semi-concrete and concrete schemas for the more cognitively 

complex classes of multiplication problems.  This is in line with Allsopp et al.’s (2007) 

view that learners with learning difficulties struggle with abstract thinking, and therefore 

with visualising more abstract concepts (cognitively complex).  These findings indicate 

that most participants lacked the conceptual understanding and the semi-concrete and 

concrete conceptual schemas of multiplication needed to make the transition from 

additive to multiplicative reasoning.  Possible reasons for this lack of semi-concrete 

and concrete conceptual schemas could be deduced from the misconceptions and 

misrepresentations identified in this study.     

   

5.3.1.1 Misconceptions hindering conceptual understanding    

Only four misconceptions could be identified and categorised due to the fact that the 

participants struggled to verbally explain and justify what they were doing (see Chapter 

4).  In my opinion, and based on my experience of working with learners with learning 

difficulties, a possible reason for their inability to explain and justify their reasoning is 

that although learners in South African schools are required, according to the 

curriculum (DBE, 2011b), to verbally explain and justify their solutions, many teachers 

teaching learners with learning difficulties do not follow this curriculum prescript due 

to the perception that learners with learning difficulties generally also experience 

language difficulties and have trouble expressing themselves.   

 

The misconceptions identified were: the use of wrong ‘keywords’, ‘added different 

units’, ‘unit conversion’ and ‘non-consideration of all units’ (see Chapter 4 for more 

details).  The participants who had these misconceptions appeared to have poor 

existing conceptual schemas, which could have been the result of inadequate 

explanations given by teachers.  I believe that the more teachers ask learners to 

explain their reasoning and justify what they are doing, the easier it would be to identify 

learners’ misconceptions, which in turn could help teachers to improve their 

instructional practice and eliminate the identified misconceptions.   
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5.3.1.2 Misrepresentations hindering conceptual understanding 

A total of fourteen misrepresentations were identified and categorised, which is an 

indication that many of the participants were unable to properly represent the different 

classes of problems, namely ‘abstract numbers’, combination of measures’, ‘answer’, 

‘wrong unit’, ‘take away’, ‘non-consideration of proportion’, ‘equal sharing’, ‘constant 

price’, ‘repeated addition’, ‘perimeter’, ‘discrete’, ‘wrong figure’, ‘sides confusion’ and 

‘one unit’ (see Chapter 4 for more detail).  A possible reason for these 

misrepresentations is that although the curriculum requires learners in the 

Intermediate Phase (Grades 4 to 6) to represent their understanding in different ways 

(DBE, 2011b), teachers do not always ensure the adequate exposure of learners to 

opportunities to make drawings or use 3D materials to represent their problems.    

Literature dealing with the teaching of learners with special needs encourages 

teachers teaching a new concept to first teach it concretely, then semi-concretely and 

then abstractly in order to help their learners to establish connections between the 

different representational forms (Allsopp et al., 2007; Bruner, 1963; Debrenti, 2013; 

Hoong et al., 2015; Hui et al., 2017; Lesser & Tchoshanov, 2005; Pape & Tchoshanov, 

2001; Post, 1981).  Ayub et al. (2012) and Hiebert and Carpenter (1992) suggest that 

limited connections between the representational forms could result in limited 

conceptual understanding, which was confirmed by the findings of this study.  Based 

on the many and varied misrepresentations identified in the semi-concrete and 

concrete representations, and the small number of participants that showed 

conceptual understanding as discussed above, it could be concluded that the 

participants in this study showed limited conceptual understanding of multiplication 

and that their conceptual understanding was limited to the less conceptually complex 

classes of multiplication problems.           

 

5.3.2 Second secondary research question: Procedural fluency   

The second secondary research question was:  

What is the level of the learners’ procedural fluency related to multiplication?  

 

In order to answer this question, the participants’ calculation technique levels in their 

abstract calculations for each of the ten task-based questions, as well as the 
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calculation errors they had made in their abstract and semi-concrete representations, 

were identified and categorised. 

 

According to the findings of this study, the number of participants who could correctly 

solve the ten classes of multiplication problems with abstract representations using 

either additive or multiplicative calculation techniques were as follows: nine for 

Question 1 (Learners 3, 5, 6, 9, 10, 12, 14, 15 and 17); nine for Question 2 (Learners 

3, 5, 6, 10, 11, 12, 14, 15 and 17); twelve for Question 3 (Learners 3, 5, 6, 7, 8, 9, 10, 

11, 12, 14, 15 and 17); nine for Question 4 (Learners 3, 5, 6, 9, 11, 12, 13, 15 and 17); 

three for Question 5 (Learners 9, 14 and 15); none for Question 6; six for Question 7 

(Learners 5, 6, 9, 14, 15 and 17); two for Question 8 (Learners 6 and 14); two for 

Question 9 (Learners 6 and 13); and four for Question 10 (Learners 5, 6, 9 and 10).  

From these findings one could conclude that more of the participants were able to 

solve the multiplication problems (Questions 1, 2, 3, 4 and 7) of the classes that they 

had already learned to solve abstractly, while  fewer participants could solve the 

multiplication problems (Questions 5, 6, 8, 9, 10) belonging to classes that they had 

not yet learned to solve.  Since more participants could solve the ten multiplication 

problems using abstract representations than with the semi-concrete and concrete 

representations, one could conclude that, as Ayub et al. (2013) suggest, some 

participants might have memorised the calculation technique without conceptual 

understanding.  

 

Only the participants who could solve the different classes of multiplication problems 

are mentioned here, since the others did not understand the problem and chose their 

calculation techniques based on their own interpretations of the problems.  Although I 

did report on the other participants’ calculation techniques in Chapter 4 in order to form 

a full picture, their procedural fluency could not be considered as they could not solve 

the problems.  The calculation technique levels of the participants mentioned in the 

previous paragraph were categorised as follows:  Level 1C (repeated addition) ten 

times (all the questions included), once on Level 1 (addition algorithm) and once on 

Level 1 (known addition fact).  The participants were categorised nineteen times on 

Level 2B (double counting) (all the questions); six times on Level 2C (algorithms); six 

times on Level 2E (derived multiplication fact); and three times on Level 2F (known 

multiplication fact).  Participants who used a combination of addition and multiplication 
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calculation techniques were categorised altogether eight times on different Level 1 

and Level 2s.  The calculation techniques used by participants categorised on Level 2 

are considered to be multiplicative calculation techniques as it means that they could 

coordinate two quantities at the same time and had therefore made the conceptual 

shift from additive to multiplicative reasoning to solve multiplication problems (Zhang 

et al., 2011).  The findings indicate that most of the participants who could solve the 

problem were on Level 2 and could be considered procedurally fluent.  One could 

therefore conclude that, for abstract representations, more participants could solve 

those kinds of problems that they had already learned to solve, while they struggled 

with unfamiliar types of problems.  Procedural fluency is therefore limited to known 

classes of multiplication problems. 

 

However, my analysis revealed that some of the participants who could not solve the 

ten multiplication problems with abstract representations were able to solve them with 

semi-concrete and/or concrete representations.   

 

• Five of the six participants who could not solve Question 1 with abstract 

representations could solve it with semi-concrete and/or concrete 

representations. 

• Four of the six participants who could not solve Question 2 with abstract 

representations could solve it with semi-concrete and/or concrete 

representations. 

• None of the three participants who could not solve Question 3 with abstract 

representations could solve it with semi-concrete and/or concrete 

representations. 

• Three of the six participants who could not solve Question 4 with abstract 

representations could solve it with semi-concrete and/or concrete 

representations. 

• Four of the eight participants could not solve Question 5 with abstract 

representations could solve it with semi-concrete and/or concrete 

representations. 
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• Two of the eleven participants who could not solve Question 6 with abstract 

representations could solve it with semi-concrete and/or concrete 

representations. 

• Three of the five participants who could not solve Question 7 with abstract 

representations could solve it with semi-concrete and/or concrete 

representations. 

• None of the eight participants who could not solve Question 8 with abstract 

representations could solve it with semi-concrete and/or concrete 

representations.  

• Two of the eight participants who could not solve Question 9 with abstract 

representations could solve it with semi-concrete and/or concrete 

representations.  

• None of the six participants who could not solve Question 10 with abstract 

representations could solve it with semi-concrete and/or concrete 

representations.   

 

As indicated by the above findings, it cannot be conclusively stated that those 

participants who could not solve the problems with abstract representations could 

solve them with semi-concrete and/or concrete representations.  However, more of 

the participants could solve the problems that were less cognitively complex and 

easier to visualise when they were allowed to use semi-concrete and concrete 

representations.  In other words, in the case of the more cognitively complex problems 

that were more difficult to visualise, fewer participants could solve them with either 

abstract and semi-concrete and/or concrete representations.  Furthermore, it seems 

that when participants lacked a schema of the more cognitively complex problems, 

they were unable to solve them in any of the representations.  However, the 

participants appeared to have some type of schema of the less cognitively complex 

problems as they could solve them by using the semi-concrete and concrete 

representations.   For this reason I believe that learners should be given opportunities 

to demonstrate their conceptual understanding of problems by using representations 

other than abstract representations, since teachers who teach learners with learning 

difficulties are encouraged to teach using the CSA sequencing, which means that they 

have to teach by first using concrete, then semi-concrete and then abstract 
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representations (Allsopp et al., 2007; Bruner, 1963; Debrenti, 2013; Hoong et al., 

2015; Hui et al., 2017; Lesser & Tchoshanov, 2005; Pape & Tchoshanov, 2001; Post, 

1981).  If learners are taught to demonstrate their understanding by using concrete, 

semi-concrete and abstract (CSA) representations, learners with learning difficulties 

might be able to develop better-connected schemas, which could be helpful when they 

are asked to solve problems in new contexts.  Calculation errors, which contributed to 

the lack of procedural fluency in some participants, will be discussed next.      

 

5.3.2.1 Calculation errors hindering procedural fluency 

Six calculation errors could be identified and categorised, namely ‘writing error’, 

‘memory error’, ‘counting error’, ‘disconnect between abstract and drawing’, ‘wrong 

number’ and ‘tracking error’.  ‘Writing error’ was identified four times, ‘memory error’ 

twice, ‘counting error’ eighteen times, ‘disconnect between abstract and drawing’ ten 

times, ‘wrong number’ eight times and ‘tracking error’ once (see Chapter 4 for details).  

The calculation error that occurred most frequently was ‘counting error’, which is 

meaningful as this prevented participants from calculating the answer correctly and 

hindered procedural fluency.  While I believe that more needs to be done to help 

learners to count correctly, I concede that this might be problematic in the case of 

learners with serious learning difficulties.  The other calculation error that occurred 

often was ‘disconnect between abstract and drawing’, which was identified in using 

semi-concrete representations.  It is my opinion that teachers should allow learners 

with learning difficulties to draw pictures of problems and teach them that their 

drawings could help them to calculate the answers, which is something many of the 

participants did not seem to realise. The use of ‘wrong numbers’ was also meaningful 

as some participants used numbers that had not been given.  They did not verify the 

questions, which might have been because of a lack of concentration or because of 

their learning difficulties.  Teachers should focus on these calculation errors and find 

ways to help learners to overcome them in order to improve their procedural fluency.   
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5.3.3 Third secondary research question: Strategic competence  

The third secondary research question was:  

What is the nature of the learners’ strategic competence when solving 

multiplication problems? 

In order to answer this question, the calculation techniques used by the participants 

for their abstract representations were identified and categorised according to 

calculation technique types.  

 

The following additive calculation technique types were identified and categorised: 

‘counted from one’ was categorised once; ‘counted on’ twenty-nine times; ‘repeated 

addition’ five times; ‘column method’ twice; ‘addition fact’ three times; and ‘2× addition’ 

twice.  Eight participants used a combination of additive and multiplicative calculation 

technique types to calculate the answers.  These participants were not strategically 

competent as they thought the problems required addition and therefore used additive 

calculation techniques to solve them (see Chapter 4 for details). 

 

The following multiplicative calculation technique types were identified and 

categorised: ‘counted in’ which was categorised twenty-eight times; ‘doubling’ once; 

‘column method’ ten times; ‘split multiplication and addition’ twice; ‘times table and 

subtraction/addition’ five times; and ‘times table’ seven times.  The findings indicate 

that while the participants who had used multiplicative calculation techniques did 

demonstrate procedural fluency, not all of them demonstrated strategic competence.  

The most frequently identified calculation technique type was ‘counted in’ (28 times), 

which is considered the first step to multiplicative thinking. The calculation technique 

types ‘times table and subtraction/addition’ and ‘times table’ were identified only five 

and seven times respectively.  These two calculation technique types are considered 

by Hurst and Hurrell (2014) and Zhang et al. (2011) as the two highest cognitive 

developmental calculation techniques and are categorised on Level 2E (derived 

multiplication fact) and Level 2F (known multiplication fact).  Although there is nothing 

wrong with using the other calculation technique types, strategic competence implies 

using the most effective techniques to calculate the answer, which would be ‘times 

table and subtraction/addition’ and ‘times table’.  One can therefore conclude that 

although more participants showed procedural fluency, very few showed strategic 
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competence.  One of the reasons for this could be that most of the participants still 

relied heavily on using their fingers when calculating the answers.  Another reason 

could be poor memory due to learning difficulties.     

 

5.4 Final remarks concerning the main and secondary research 

questions  

The different levels on which this study makes a contribution, namely the theoretical, 

methodological and instructional practice levels, will each be discussed separately. 

 

5.5 Contribution of this study  

The findings of this study indicate that the following numbers of participants could 

correctly solve the different classes of multiplication problems in all three 

representational forms and by using multiplicative calculation techniques: 

 

• Eight (Learners 3, 5, 6, 9, 12, 14, 15 and 17) could solve Question 1, with only 

Learner 17 categorised on Level 2E. 

• Three (Learners 6, 4 and 17) could solve Question 2, with Learners 6 and 17 

categorised on Level 2E. 

• One (Learner 12) could solve Question 3. 

• Three (Learners 6, 9 and 17) could solve Question 4, with Learners 6 and 17 

categorised on Level 2E. 

• One (Learner 9) could solve Question 5. 

• None of the participants could solve Question 6.  

• One (Learner 17) could solve Question 7, with Learner 17 categorised on Level 

2F. 

• None of the participants could solve Questions 8 to 10.   

 

From these findings one could conclude that very few participants had procedural 

fluency and a conceptual understanding of the different classes of multiplication 

problems.  One of the findings of a study by Bakker et al. (2014) was that participants 

found it easier to solve problems from the class equal groups.  Even though my 

findings suggest that more participants showed conceptual understanding and 

procedural fluency in respect of the least conceptually complex question, namely 
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Question 1 (part of ‘equal groups’), the same does not apply in the case of Questions 

2 and 3, which were also categorised under ‘equal groups’ (see my conceptual 

framework, Figure 2.1). With regard to the rest of the questions, including Questions 

2 and 3, which were conceptually more complex that Question 1, fewer participants 

showed conceptual understanding and procedural fluency. 

 

These participants who could solve the problems without any problem with all the 

representations could be said to have made the transition from additive to 

multiplicative reasoning.  These findings are in agreement with current research 

literature, according to which learners, especially those with learning difficulties, 

struggle to make this transition (Ell, 2001; McClintock et al., 2011; Tzur et al., 2010).  

Moreover, it can be concluded that some learners with learning difficulties are capable 

of making the necessary transition from additive to multiplicative reasoning, 

specifically for less cognitively complex and therefore more abstract multiplication 

problems.  This confirms Allsopp et al. (2007), Dednam (2011) and Miller and Mercer’s 

(1997) finding that learners with learning difficulties struggle with abstract thinking.      

 

Only Learners 6 and 17 demonstrated strategic competence, mostly when solving the 

less cognitively complex problems.  It could therefore be concluded that even though 

the abovementioned participants had demonstrated conceptual understanding and 

procedural fluency in answering the questions mentioned, only Learner 17 showed 

proficiency in solving some of the less cognitively complex questions, such as 

Questions 1, 2, 4 and 7 (‘equal sharing’, ‘constant price’, times as many’ and ‘array’), 

while Learner 6 showed proficiency in answering Questions 2 and 4.     

 

According to the findings of this study, the participants had limited conceptual 

understanding and lacked good interconnected schemes and schemas between the 

abstract, semi-concrete and concrete representations for the different classes of 

multiplication problems.  Those who could solve the problems had good procedural 

fluency as they could make the conceptual shift from additive to multiplicative 

reasoning and used multiplicative calculation techniques to solve the problem.  

However, even though they had procedural fluency, they lacked strategic competence 

in using calculation techniques that calculated the answer correctly.  Many of the 

participants did not have procedural fluency or strategic competence and could not 
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solve the problems as they used additive calculation techniques, which indicates that 

they had not yet made the conceptual shift from additive to multiplicative reasoning.  

All three components (conceptual understanding, procedural fluency and strategic 

competence) are necessary for learners to be able to solve cognitively more complex 

problems in their later school years.  It was encouraging to see that the majority of the 

participants who understood the problem as multiplication had already succeeded in 

making the conceptual shift from additive to multiplicative reasoning.  

 

5.5.1 Theoretical contribution 

This study makes a theoretical contribution in that it proposes a way to investigate 

multiplicative reasoning on multiple levels, including conceptual understanding (semi-

concrete and concrete representations), procedural fluency (abstract representations) 

and strategic competence (concepts-in-action and theorems-in-action), by 

investigating the interplay between internal and external representations as set out in 

my conceptual framework.  I believe that this conceptual framework can be used, 

improved or adapted to investigate proficiency in different mathematical conceptual 

fields.  The conceptual framework for this study shows how the use of multiple external 

representations and Vergnaud’s scheme theory (2009; 2013a; 2013b) could help us 

understand how learners access internal representations with concepts-in-action and 

theorems-in-action as the two components that connect internal and external 

representations (see Figure 2.1, in Chapter 2).  

 

The reasons for the participants’ lack of proficiency in multiplicative reasoning that 

emerged from this study were categorised as misconceptions, misrepresentations and 

calculation errors.  I could find no previous studies that had specifically investigated 

these shortcomings as causes for learners’ inability to solve different classes of 

multiplication problems.  These error categories included:  
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• misconceptions: ‘keywords’, ‘added different units’, ‘unit conversion’ and ‘non-

consideration of all units’; 

• misrepresentations: ‘abstract numbers’, combination of measures’, ‘answer’, 

‘wrong unit’, take away’, ‘non-consideration of proportion’, ‘equal sharing’, 

‘constant price’, ‘repeated addition’, ‘perimeter’, ‘discrete’, ‘wrong figure’, ‘sides 

confusion’ and ‘one unit’; and 

• calculation errors: ‘writing error’, ‘memory error’, ‘counting error’, ‘disconnect 

between abstract and drawing’, ‘wrong number’ and ‘tracking error’ (see 

Chapter 4 for more details). 

     

5.5.2 Methodological contribution 

The current research literature on multiplicative reasoning is one-dimensional, with 

studies focusing mainly on participants’ procedural fluency, and therefore on their 

abstract thinking (Carrier, 2014; Clark & Kamii, 1996; Jacob & Willis, 2003; Kouba 

1989; Mulligan, 1992; Zhang et al., 2011).  This study makes a contribution to the 

multi-dimensional methodological approach, as discussed in the conceptual 

framework.  This multi-dimensional approach is dealt with on two levels.  First, I 

explored the abstract reasoning of participants by investigating their procedural 

fluency and also their conceptual understanding and strategic competence.  Second, 

I asked them to solve the problems by using different representational forms, namely 

abstract, semi-concrete and concrete representations.  This multi-dimensional 

methodological approach ensured the emergence of a more complete picture of 

participants’ multiplicative reasoning, since the definition of multiplicative reasoning 

includes a multi-dimensional understanding, i.e. “… the capacity to work flexibly with 

the concept, techniques and representations of multiplication (and division) as they 

occur in a wide range of contexts” (Vergnaud, 2010, p. 2).   

 

As explained in detail in Chapter 3, for the purpose of this study I deliberately asked 

the participants to answer the questions in a particular order, starting with the more 

difficult abstract representations before moving on to semi-concrete and concrete 

representations.  In my opinion this was the best method for exploring proficiency.  

Forcing participants to access their internal concrete or semi-concrete schemas first, 

or allowing them to choose which representation they wanted to start with would have 



217 
 

influenced their abstract thinking and the result would therefore not have been a true 

reflection of their abstract thinking ability.   

 

5.5.3 Practical contribution 

As explained in section 5.5.1, this study makes a theoretical contribution by giving 

three possible reasons why participants were not proficient in multiplicative reasoning, 

namely misconceptions, misrepresentations and calculation errors.  However, it also 

makes a practical contribution.  If teachers are aware of the types of misconceptions, 

misrepresentations and calculation errors they should expect when working with 

learners with learning disabilities, they will be able to improve their instructional 

practice.    

 

Furthermore, I believe that this study shows that the key to helping learners with 

learning difficulties to make the conceptual shift from additive to multiplicative 

reasoning, is to strengthen their conceptual understanding of multiplication through 

the use of semi-concrete and concrete representations.  Seeing the groupings will help 

them to understand the difference between multiplication and addition.  This study 

clearly showed that the participants struggled to solve problems that were more 

conceptually complex, even with their semi-concrete and concrete representations.  

The reason for this could be the exclusive focus on abstract representations in the 

South African school context, and the assertion that learners with learning difficulties 

struggle with abstract thinking (Allsopp et al., 2007; Dednam, 2011; Miller & Mercer, 

1997).  In addition to using equations, learners should be explicitly taught different 

ways to solve problems in new contexts, for instance by drawing pictures to illustrate 

the problems.  This will help learners with learning difficulties to develop better 

interconnected schemas and schemes for solving problems in new contexts.   

 

Furthermore, since this study showed that the majority of the participants were unable 

to explain and justify their reasoning, teachers should pay more attention to the 

development of this ability. This will enable them to determine what and how learners 

think and to improve their instructional practice of a specific concept by addressing 

misconceptions that are identified.   
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5.6 Limitations of this study 

The findings of this study and the generalisability of the results are subject to certain 

limitations.  Since my research paradigm was critical realism, I could only report on 

what I observed and the inferences drawn on the basis of those observations. I 

therefore used external representations to report on what participants experienced 

internally.  Fifteen randomly selected participants with different learning difficulties 

participated in this study.  Although each participant was unique with regard to his or 

her specific type of learning difficulty, I analysed them as a group and not as individual 

participants.  I limited the time for the task-based interviews to one hour each. Some 

of the learners were slower than others, so that not all the participants could complete 

all the questions, which was a limitation.  All the participants answered the first four 

questions, while Questions 5 to 10 were asked randomly to make sure that all the 

questions were asked approximately the same number of times.  Another limitation 

was that I neglected to ask some participants to explain their answers and to write 

their answers with their semi-concrete drawings.  In spite of these limitations, I believe 

that the findings provide a general picture of the conceptions, misconceptions, 

misrepresentations, calculation technique levels and types, and calculation errors a 

teacher could expect when teaching multiplication to learners with learning difficulties.      

 

5.7 Recommendations for further study 

This study was undertaken in LSEN schools and involved an investigation of the 

conceptions, misconceptions, misrepresentations, calculation technique levels and 

types, and calculation errors commonly encountered when teaching learners with 

learning difficulties.  First, further studies could focus on each of these aspects 

separately, especially the investigation of the misconceptions, as this could inform 

instructional practice.  Second, a comparative study could be undertaken to compare 

the multiplicative reasoning proficiency of mainstream school learners and learners 

with special needs.  Third, action research could also be done. This would be done by 

teachers who instruct learners using CSA sequencing and who investigate how 

learners’ ability to solve multiplication problems is influenced if they use concrete 

representations first and then move on to semi-concrete and abstract representations.  

For the purpose of this study, I asked the participants to use abstract representations 

first; however, future studies could allow participants to use any representational form 
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of their choice to determine which representational forms learners with learning 

difficulties prefer.  Fourth, future studies could investigate how asking learners to 

explain and justify their reasoning could improve their schemas and schemes for 

solving multiplication problems.  Finally, future studies could conduct a similar study 

as this one in other countries and results could be compared.   

 

5.8 Implications and recommendations 

The findings of this study indicate that more needs to be done to help learners with 

learning difficulties to make the conceptual shift from additive to multiplicative 

reasoning.  This study shows that although some learners in special needs education 

have already made this conceptual shift, many more have not yet done so.  The 

teachers who teach those learners are responsible for helping them to achieve this 

shift.  One way in which this can be done is by helping them to develop good 

interconnected schemas and schemes by allowing them to use different 

representational forms, thus giving them more options for solving problems.  This 

study clearly showed that those who had made the conceptual shift from additive to 

multiplicative reasoning had good interconnected schemas and schemes in all the 

representational forms, which helped them to solve problems, whereas the rest had 

poor interconnected schemas and schemes in the different representational forms.  

Learners with learning difficulties who struggle with abstract thinking need to be 

encouraged to use semi-concrete and concrete representations, which will hopefully 

serve as a bridge to abstract thinking.   

 

When introducing new concepts, teachers in the Intermediate Phase (Grades 4 to 6) 

should initially focus less on abstract teaching and more on concrete and semi-

concrete teaching.   They should allow learners to first practise with semi-concrete 

pictures and concrete objects before they are asked to solve problems by using 

abstract representations.  Furthermore, they should encourage learners to verbally 

explain and justify their reasoning while solving problems.  In this way teachers will be 

able to identify misconceptions, which could then be addressed.  In my opinion, 

teachers should aim to help those who struggle by applying a multi-disciplinary 

approach, i.e. their abstract teaching should be enhanced by interactive teaching to 

give learners opportunities to explain their reasoning and show their understanding in 
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different representational forms.  In South Africa, inclusive education has resulted in 

more learners who struggle academically attending mainstream schools, and teachers 

should be equipped to teach those who fall behind.     

 

5.9 Final reflection 

Learners with learning difficulties are very close to my heart and it is my desire to see 

them enjoying and doing well in mathematics.  Once I had started researching the then 

still unfamiliar concept of multiplicative reasoning, I realised how important the 

development of this type of reasoning is for all learners who want to excel in high 

school mathematics. I discovered that few past research studies had focused on this 

topic and even fewer had investigated multiplicative reasoning in learners with learning 

difficulties.  This and other studies have, however, clearly shown the importance of the 

conceptual shift from additive to multiplicative reasoning that learners need to make.  

Teachers need to be made aware of this and should implement strategies, as 

suggested in this study, to help learners with learning difficulties to become abstract 

thinkers.  Only then will those learners be able to understand more abstract 

mathematical concepts.   

 

I believe that this study sheds light on the interplay between internal and external 

representations and shows that when there is a lack of connections and well-formed 

schemes and schemas, what we receive from learners through external 

representations will not be sufficient.  Mathematics teachers should focus on 

strengthening internal connections.  
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