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Abstract

Condition monitoring is usually performed over long periods of time when critical ro-

tating machines such as wind turbine gearboxes are monitored. There are many potential

signal processing and analysis techniques that can be utilised to diagnose the machine from

the condition monitoring data, however, they seldom incorporate the available healthy his-

torical data of a machine systematically in the fault diagnosis process. Hence, a method-

ology is proposed in this article which supplements the order-frequency spectral coherence

with historical data from a healthy machine to perform automatic fault detection, auto-

matic fault localisation and fault trending. This has the benefit that the order-frequency

spectral coherence, a very powerful technique for rotating machine fault diagnosis under

varying speed conditions, can be utilised without requiring an expert to interpret the

results. In this methodology, an extended version of the improved envelope spectrum

is utilised to extract features from the order-frequency spectral coherence, whereafter a

probabilistic model is carefully used to calculate a diagnostic metric for automatic fault

detection and localisation. The methodology is investigated on numerical gearbox data as

well as experimental gearbox data, both acquired under time-varying operating conditions

with two probabilistic models, namely a Gaussian model and a kernel density estimator,

compared as well. The results indicate the potential of this methodology for performing

gearbox fault diagnosis under varying operating conditions.
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1. Introduction

Gearboxes found in wind turbines for example are subjected to harsh operating con-

ditions, which result in the deterioration and potential failure of its bearings and gears

[1, 2]. This could ultimately lead to the complete failure of the gearbox and therefore

detecting and localising incipient damage are very important. It is possible to monitor

the condition of the gearbox, by collecting and interrogating condition monitoring data

at regular intervals [1, 3]. It is also possible to use oil and lubrication analysis, acoustic

emission analysis and vibration analysis to infer the condition of the machine [1, 3]. The

benefits of using vibration and acoustic emission measurements however are that they are

sensitive to instantaneous changes in the condition of the machine and rich with diag-

nostic information. Since, gearboxes often operate under time-varying conditions which

manifest in the condition monitoring data and impede the condition monitoring process,

it is important to develop fault diagnosis techniques which can be used under time-varying

operating conditions.

Rotating machine vibration signals are inherently cyclostationary [4], which makes

cyclostationary analysis techniques well-suited for analysing the vibration signals. The

squared envelope spectrum, the spectral correlation and its power normalised form, i.e.

the spectral coherence, are very powerful second-order cyclostationary techniques used

to perform bearing and gear fault diagnosis [5–9]. However, the vibration signals be-

come cyclo-non-stationary under varying speed conditions, which impede the performance

of cyclostationary techniques. Therefore, Abboud et al. [10, 11] extended the spectral

correlation and spectral coherence for cyclo-non-stationary signals, which resulted in the

order-frequency spectral correlation and the order-frequency spectral coherence to be de-

veloped for cyclo-non-stationary signals. The order-frequency spectral coherence has been

very successful for diagnosing rotating machines under varying operating conditions. Ab-

boud et al. [9] also compared different deterministic-random separation tasks for using

the Squared Envelope Spectrum (SES), one of the most popular techniques for bearing
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diagnostics, under time-varying operating conditions.

Condition monitoring data are usually acquired over long periods of time from a healthy

gearbox and then ultimately damage develops in a machine component or components

which are then replaced based on an appropriate maintenance strategy. This means that

historical data of a machine in a healthy condition can be easily acquired. Combining

this plentiful resource of historical data from healthy machines (referred to as healthy

historical data) and the spectral coherence for diagnosing the machine under time-varying

operating conditions could potentially enhance the performance of the spectral coherence

even further. The potential benefit of combining historical data and the spectral coherence

was illustrated in the paper by Schmidt et al. [12] on numerical gearbox data. In the

aforementioned paper, a methodology is proposed using the concept of feature windows to

extract features from the spectral coherence, whereafter a multivariate Gaussian model of

the healthy historical features is used to perform fault detection and localisation. However,

the features were not properly motivated and the Gaussian model has many parameters

that need to be estimated, which ultimately restrict the number of features that can be

extracted from a given dataset. Lastly, the fault detection and localisation were also

performed manually in this paper.

Hence, in this article, a methodology is proposed to automatically detect and localise

anomalous behaviour in specific machine components under time-varying operating con-

ditions to address the shortcomings of the method in Ref. [12]. This is performed by

firstly extracting features from the order-frequency spectral coherence with the modified

Improved Envelope Spectrum (IES), whereafter a model of the historical healthy features

produces a diagnostic metric that can be used to automatically detect and localise the

damaged component in the machine. In summary, the contributions of this paper are as

follows:

• A methodology is proposed to automatically perform fault detection and fault local-

isation for gearboxes operating under time-varying conditions. This can enhance the

performance of the order-frequency spectral coherence even more for fault diagnosis.

• The IES, a very powerful representation for fault diagnosis, is modified to extract fea-

tures from the order-frequency spectral coherence. This means that well-motivated
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features can be used without performing feature engineering.

• Two models, the Gaussian model and a model using kernel density estimators (a

flexible non-parametric model [13]), are compared to investigate the benefits of using

a non-Gaussian model as opposed to a Gaussian model on non-Gaussian datasets.

• The methodology is validated on numerical gearbox data as well as on experimental

gearbox data, both generated under time-varying operating conditions.

The layout of the paper is as follows: In Section 2, the methodology is presented in

detail, whereafter the methodology is applied on numerical data in Section 3 and on

experimental data in Section 4. Conclusions are drawn and recommendations are made in

Section 5. Appendix A contains additional information related to the numerical gearbox

model presented in Section 3.1.

2. Methodology

In this methodology, it is assumed that a historical dataset of vibration signals, denoted

{x(t)} and their corresponding rotational speed signals {θ̇(t)} in rad/s are available from

the rotating machine in a healthy condition as well as the analytical cyclic orders of the

components-of-interest, e.g. the Ball-Pass Outer race Order (BPOO) and Ball-Pass Inner

race Order (BPIO) of the bearing-of-interest. This methodology has two phases, namely, a

training and application phase, with both presented in Figure 1. In the training phase, the
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Figure 1: Process diagram of the proposed methodology.

spectral coherence of each vibration signal in the historical dataset {x(t)} is calculated.

Features are subsequently extracted from the spectral coherences of the healthy machine

vibration data and modelled with a probabilistic model. In the testing or application

4



phase of the methodology, the probabilistic model of the healthy features is used with

features extracted from the new vibration signal, to calculate a diagnostic metric which is

subsequently used to infer the condition of the machine.

A more detailed overview of each step in the methodology is presented in subsequent

sections.

2.1. Spectral coherence calculation

Damaged rotating machine components result in periodical impacts that generate vi-

bration signals x(t) with periodical statistics in the angle domain θ, while the impacts

excite time-invariant structural resonances [11, 14]. The implication of this is that the

angle-time autocorrelation function of the vibration signal [11]

R2x (θ, τ) = E {x (t(θ))x(t (θ)− τ)∗} , (1)

which is a function of both angle θ and time-lag τ , is periodic in the angle domain, i.e.

R2x (θ, τ) = R2x (θ + Θc, τ) for an angle Θc in radians. The cyclic order α of the impacts

and the specific spectral frequencies f being excited by the impacts can be determined

from the order-frequency spectral correlation. The order-frequency spectral correlation is

defined as the double Fourier transform of the angle-time autocorrelation function [10, 11]

S2x (α, f) = F
θ→α

F
τ→f

(R2x (θ, τ)) , (2)

where F
a→b

denotes the Fourier transform from the a to the b domain, and the cyclic orders

and the spectral frequency are denoted by α and f respectively. The order-frequency

spectral correlation can also equivalently be written as [10]

S2x (α, f) = lim
T→∞

1

θ (T )− θ (0)
E
{
FT (x(t))∗ · FT

(
x(t)e−jαθ(t)θ̇(t)

)}
, (3)

where T is the time-period under consideration and θ̇(t) = d
dt
θ(t). The spectral correlation

is dependent on the power spectrum of the vibration signal and can potentially mask

weak cyclostationary components in the signal and therefore the order-frequency spectral

coherence [10]

γ2x(α, f) =
S2x(α, f)

|S2x(0, f)S2xα(0, f)| 12
, (4)

is used here instead of the order-frequency spectral correlation.
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The Order-Frequency Spectral Correlation (OFSC) and the Order-Frequency Spectral

Coherence (OFSCoh) cannot be calculated by using Equations (3) and (4) in practice,

but estimators of the OFSC should be used instead. The Averaged Cyclic Periodogram

(ACP) estimator of the OFSC is used in this paper due to its relatively good bias and

variance properties and relatively good computational efficiency [6, 10]. Essentially, the

ACP removes the expectation operator E in Equation (3), by performing this calculation

for different segments of the vibration signal, whereafter a weighted average over the

results of the different segments is calculated [10]. A detailed overview of using the ACP

for estimating the spectral correlation and related representations is given in Refs. [6, 10].

It is important to note that the recent developments in the Fast Spectral Correlation

(FSC) [15] and the faster estimator of the FSC presented in Ref. [16] make the potential

application of this methodology more computationally efficient.

2.2. Feature extraction

We desire to use the spectral coherence with historical data to automatically infer

the condition of the machine. It is possible to learn the whole spectral coherence from

the healthy historical data to detect anomalous behaviour with a flexible model such as

a convolutional neural network. However, it can be difficult to select and to motivate

the appropriate architecture [17]. It is computationally expensive to optimise and it does

not naturally provide information on which component causes the anomalous behaviour.

Hence, a feature extraction procedure is used in this paper that makes it possible to not

only automatically detect damage, but also to determine which component is damaged

with simple probabilistic models.

We assume that there is a set of components being monitored that has a corresponding

set of analytical or predetermined cyclic orders {α̂c}. Hence, it is possible to extract

features from the spectral coherence at the set of cyclic orders {α̂c} and their harmonics.

We desire to extract features based on well developed theory and not to perform feature

engineering (i.e. to optimise the features to achieve an optimal outcome). Therefore, the

Improved Envelope Spectrum (IES) is used as a starting point for the feature extraction

procedure. The IES [18]

I2x(α; f1, f2) =
1

f2 − f1

∫ f2

f1

|γ2x(α, f)|2df, (5)
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is the average squared magnitude spectral coherence over a predefined frequency band

f ∈ [f1, f2] and is better suited for damage detection than the Squared Envelope Spectrum

(SES) if the frequency band is selected correctly [18]. A detailed overview of the SES and

its relationship to cyclostationary analysis can be found in Refs. [8, 9, 19]. It is therefore

possible to define the features for a specific monitored component as follows

bc = [I2x(α̂c · 1; f1, f2), I2x(α̂c · 2; f1, f2), . . . , I2x(α̂c ·Nharm; f1, f2)]T (6)

for the predefined frequency band [f1, f2] and Nharm harmonics of the associated estimated

or analytical cyclic order α̂c. However, it is not possible to determine the optimal frequency

band [f1, f2] from only healthy historical data (i.e. to estimate it during the training phase

of the methodology) and the available analytical estimate of αc, denoted α̂c, could be

slightly different from the actual cyclic order and/or the analytical estimate may not be

defined for the estimated OFSCoh (i.e. the estimated OFSCoh is defined for a discrete

set of cyclic orders α and spectral frequencies f). Hence, due to the uncertainty over the

actual αc, it is best to describe it with a probability density function pαc(αc|α̂c). The

subscript αc in pαc(αc|α̂c) is used to avoid confusion between this model and the models

used in Section 2.3.

The expected value of the bivariate improved envelope spectrum

Eαc {I2x(αc, fm; ∆f)| α̂c} = Eαc

{
1

∆f

∫ fm+∆f/2

fm−∆f/2

|γ2x(αc, f)|2df
∣∣∣∣∣ α̂c
}

(7)

=

∫
αc

1

∆f

∫ fm+∆f/2

fm−∆f/2

|γ2x(αc, f)|2df · pαc(αc|α̂c)dαc. (8)

is calculated to overcome the need to determine the unknown frequency band [f1, f2] a

priori, because it is now parametrised in terms of cyclic orders and spectral frequencies.

The uncertainty in the cyclic order is also incorporated in Equation (7) by calculating the

expected value of the IES over the random cyclic order variable, while being conditioned

on the analytical estimate α̂c.

For simplicity, it is assumed that pαc(αc|α̂c) is a uniform distribution with a domain

of αc ∈ [α̂c −∆α/2, α̂c + ∆α/2] and therefore Equation (8) can be simplified to

J2x(α̂c, fm; ∆f,∆α) =
1

∆f ·∆α

∫ α̂c+∆α/2

α̂c−∆α/2

∫ fm+∆f/2

fm−∆f/2

|γ2x(α, f)|2df dα, (9)
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where the notation J is used to avoid confusion over the I used in Equation (5). The cyclic

order tolerance ∆α and the integration points, i.e. fi and ∆f , needs to be specified before

applying this methodology. Therefore, as opposed to using Equation (6), the following

features, b, are used for characteristic c

bc =
[
J2x(α̂c · 1, f1), . . . , J2x(α̂c · k, fm), . . . , J2x(α̂c ·Nharm, fNf )

]T
, (10)

and is defined for all combinations of k = 1, 2, . . . Nharm and m = 1, 2, . . . , Nf , where

Nharm and Nf denote the number of harmonics and number of frequency bands being

used respectively, i.e. bc ∈ R(Nf ·Nharm)×1. Equation (9) is equivalent to using a feature

window on the squared-magnitude OFSCoh, whereafter the mean of the windowed data

is used as a feature [12].

Ultimately, the features of all characteristics are concatenated together to form the

Nfeat features of a specific measurement

b = [bT1 , · · · , bTc , . . . bTNc ]T , (11)

where Nc denotes the number of components being monitored and b ∈ RNfeat .

2.3. Feature modelling

We aim to model the features of a healthy machine with a probabilistic model p(b),

which can ultimately be used to detect damage. The distribution of the healthy features

of the gearbox is unknown and therefore two different modelling approaches, namely, a

Gaussian model and a kernel density estimator, are compared.

2.3.1. Gaussian model

Even though the features are not expected to be Gaussian, it is naively assumed that

the features are Gaussian distributed and therefore a Gaussian distribution is used to

model the data. The multivariate Gaussian model, described by a mean and a covariance

parameter, can be used to detect anomalous behaviour in the machine [12, 20]. However,

due to the large number of features that can potentially be encountered and large number of

parameters that need to be estimated for the mean and the covariance, it is rather assumed

that the features are identically and independently distributed (i.i.d) if the gearbox is
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healthy, which results in the following simplified model

p(b;µb,σb) =

Nfeat∏
n=1

N (bn;µbn , σ
2
bn), (12)

where bn denotes the nth feature and µbn and σ2
bn

denote the corresponding mean and

variance of the univariate Gaussian modelN . The same assumption is made by a Gaussian

Naive-Bayes classification model, which has performed very well despite these seemingly

limiting assumptions [13]. In Equation (12), the empirical mean and variance of the nth

feature of the healthy data are used as the mean µbn and the variance σ2
bn

of the Gaussian

model.

However, as the Gaussian model is unable to capture the underlying distribution of

non-Gaussian data, it could potentially be insensitive to incipient damage and therefore a

non-parametric density estimation method is considered in the next section.

2.3.2. Kernel density model

Kernel density estimators are non-parametric models of the data, with the benefit

that they do make fewer assumptions on the shape of the distribution and therefore can

potentially describe the actual distribution better than the Gaussian model [13]. However,

this flexibility comes with the risk of overfitting on the training data and therefore care

should be taken to select the parameters. The kernel density estimator of the assumed

independently and identically distributed healthy features [13]

p(b;h) ≈
Nfeat∏
n=1

1

Ntrain

Ntrain∑
i=1

1

h
· K
(
bn − b(i)

n

h

)
, (13)

is calculated for a specific kernel function K(·) and hyperparameter h. The widely used

Gaussian kernel, which enforces smoothness in the estimation [13], is used and results in

the following probability density function:

p(b;h) ≈
Nfeat∏
n=1

1

Ntrain

Ntrain∑
i=1

1√
2πh
· exp

−1

2

(
bn − b(i)

n

h

)2
 . (14)

In Equation (14), the training feature set containsNtrain samples from theNfeat-dimensional

features of a healthy gearbox, with b
(i)
n denoting the nth feature of the ith measurement

in the training dataset.
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The hyperparameter h in Equation (14) cannot be selected by maximising the likeli-

hood for the training dataset and therefore a k-fold cross-validation process is used. In

a k-fold cross validation procedure, the training data are segmented into k equally-sized

datasets, whereafter k− 1 datasets are used to train the model and the remaining dataset

is used as a validation dataset to calculate a score or prediction error of the model [13].

This process is repeated for all possible combinations of training and validation data, with

the h that maximises the likelihood of the validation datasets being used in Equation

(14) for subsequent predictions. Bishop [21] used a kernel density estimator for novelty

detection, where the parameter h was selected as the average distance between each point

in the dataset and its ten nearest neighbours.

In the next section, the development of diagnostic metrics for automatic fault detection

is discussed. For notational simplicity, the dependence of the probability density functions

on the hyperparameters is omitted in subsequent sections.

2.4. Diagnostic metric calculation and automatic fault detection

The model of the healthy dataset can be used to develop a diagnostic metric, i.e. a

metric which can be used to infer the condition of the machine. It is expected that the

likelihood of the parameters of a healthy model would decrease as the machine transitions

from a healthy condition to a severely damage condition. Hence, the negative logarithm

of the model − log p(b) is appropriate as a diagnostic metric.

However, − log p(b) can only be used to detect changes in the system and not to detect

changes in a specific component of the machine. Therefore, the negative logarithm of the

marginal distribution over characteristic c, i.e. − log p(bc), is also used here as a diagnostic

metric. This allows one to not only detect changes in the condition of the machine, but also

to detect changes in the condition of a specific component. The marginal distribution can

either be obtained by integrating the distribution p(b) over the complementary features

of bc, or by directly modelling p(bc). It is easy to calculate the marginal distribution from

the full distribution when the i.i.d. assumption is made or when a Gaussian model is used

[13]. Both diagnostic metrics, i.e. − log p(b) and − log p(bc), are evaluated in subsequent

investigations.

It is subsequently possible to calculate an alarm threshold βthres from the diagnostic
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metrics of the healthy data, whereafter the threshold can be used to determine whether

anomalous behaviour is present or not. For example, − log p(bc) > βthres can be used for

detecting anomalous behaviour or − log p(bc) ≤ βthres for detecting normal behaviour. In

this paper, the 99th percentile of the diagnostic metric of the healthy data is used as a

threshold βthres for detection. The motivation for using the 99th percentile as a threshold

is as follows: It is desired to be able to detect the faults early in the degradation process

to ensure that there is sufficient time to properly trend the components and to perform

maintenance planning (e.g. spare parts procurement). The 99th percentile is calculated-

based on the empirical distribution of the data and not based on a naive assumption, e.g.

µ+3σ, and would therefore be very sensitive to subtle changes in the data. Unfortunately,

if this threshold is compared to the raw data, many false alarms would be triggered as well

and therefore the threshold is rather compared to the median of the diagnostic metrics of

the previous N measurements in this methodology. The median is robust to outliers and

therefore if the threshold is exceeded, an anomaly would be present. If this methodology

was applied on in industrial application, it would be sensible to define different thresholds,

where the 99th percentile is only used to warn the maintenance team and other less

conservative thresholds being used to stop the machine.

2.5. Final remarks about the methodology

In summary, the following information needs to be provided or specified when imple-

menting this methodology:

• A dataset of vibration signals and their corresponding rotational speed signals from

a healthy machine.

• The analytical cyclic orders of the components-of-interest {α̂c} as well as the number

of harmonics Nharm that need to be monitored.

• A cyclic order tolerance ∆α of the cyclic orders of the components-of-interest.

• The bounds of the integration ∆f and the spectral integration points fi used in the

calculation of the features.

The methodology is investigated on numerical gearbox data in Section 3 and on ex-

perimental gearbox data in Section 4.
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3. Numerical investigation

A phenomenological gearbox model, presented in the paper by Abboud et al. [9] and

also used by Schmidt et al. [20] is used in this section, because it is capable of modelling

complex phenomena such as the amplitude variation in vibration signals due to variations

in rotational speed, while being computationally efficient to calculate.

3.1. Numerical model

The casing vibration signal of the numerical gearbox model

x(t) = xgmc(t) + xb(t) + xdgd(t) + xn(t), (15)

is decomposed in terms of a gear mesh component xgmc(t), an outer race bearing damage

component xb(t), a distributed gear damage component xdgd(t) and a noise component

xn(t). The bearing and gear damage are explicitly introduced in the casing vibration

signal by decomposing the associated signal component i into a fault severity factor FSi

and a baseline signal component x̃i(t)

x(t) = xgmc(t) + FSb · x̃b(t) + FSdgd · x̃dgd(t) + xn(t). (16)

All combinations of {FSb} = {0, 1.33, 2.66, 4} and {FSdgd} = {0, 1.33, 2.66, 4} are inves-

tigated in this work, where FSb = 0 and FSdgd = 0 define a healthy gearbox. The gear

mesh component in the casing vibration signal

xgmc(t) = hgmc(t)⊗
∣∣∣θ̇(t)∣∣∣2 · Ngmc∑

k=1

Agmcn sin (k · θ(t) ·N1 + φgmcn ) (17)

is obtained by filtering the signal at the source with the impulse response function hgmc(t).

In Equation (17), Agmck and φgmck denote the amplitude and the phase of the kth harmonic

of the gear mesh component, and
∣∣∣θ̇(t)∣∣∣2 simulates the amplitude variation of the signal

due to speed variations. The distributed gear damage component

x̃dgd(t) = hdgd(t)⊗
∣∣∣θ̇(t)∣∣∣2 · ε(t) · Ngmc∑

k=1

Adgdn · sin
(
k · θ(t) + φdgdn

)
, (18)

has a similar form to Equation (17), except that it is multiplied by an additional zero

mean Gaussian random variable ε(t) and its fundamental frequency is 1.0 shaft orders.
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The outer bearing component consists of a train of impulses

x̃b(t) = hb(t)⊗
∣∣∣θ̇(t)∣∣∣2 Nb∑

n=1

Abn · δ (t− Tn (θ(t))) (19)

multiplied by a uniformly distributed random component Abn and a component which

scales the amplitude of the bearing impulse with the rotational speed. The time-of-arrival

of the nth impulse Tn is dependent on the instantaneous phase of the system θ(t).

Lastly, the broadband noise component

xn(t) =
∣∣∣θ̇(t)∣∣∣2 · ε(t), (20)

contains a zero mean Gaussian component ε(t), which is scaled with the rotational speed

of the system. In all cases, a single degree-of-freedom impulse response function is used

for hi(t) and is described by two parameters, the natural frequency and the damping ratio

[20]. The data are generated with a sampling frequency of 20 kHz.

The fundamental order of the distributed gear damage is 1.0 and the natural frequency

and the damping ratio of its impulse response function are 3000 Hz and 0.05, respectively.

The fundamental order of the outer race bearing component is 2.57 and the natural fre-

quency and the damping ratio of its impulse response function are 7000 Hz and 0.05,

respectively.

The operating conditions that can for example be encountered in the gearboxes of wind

turbines and bucket wheel excavators are inherently non-stationary [22–24]. We therefore

desire to simulate data under time-varying operating conditions where the rotational speed

of each measurement is different. Instead of defining many unique rotational speed signals,

three operating condition profile functions were used as baseline rotational speed signals,

whereafter the phase of the signals and the amplitudes of the components were sampled

from probability density distributions. This ensured that each casing vibration signal is

unique and that the training dataset does not comprise of exactly the same rotational

speed signals as the testing dataset. The resulting rotational speeds are presented in

Figure 2 for the three rotational speed profiles. A detailed description of the procedure

used to generate the signals in Figure 2 is given in Appendix A.
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Figure 2: The Operating Conditions (OCs) that are used in the simulated model. Three profiles are used

to generate the samples presented in the figure, with a sample of each profile highlighted with a thicker

line and all samples associated with a specific profile having the same colour.

3.2. Results

The methodology was implemented by monitoring the gear for distributed gear damage

and the bearing for outer race damage. Due to the discrete nature of the estimated

OFSCoh, the monitored cyclic orders are {αc} = {0.975, 2.550} with 3 harmonics used,

i.e. Nharm = 3. The spectral frequency resolution in Equation (9), denoted ∆f , is selected

to ensure that it allows changes in specific frequency bands to be detected, while allowing

Equation (9) to be properly estimated. The ∆α is selected to include at least three

samples of the OFSCoh along the α-axis. The resulting parameters are ∆f = 781.25 Hz

and ∆α = 0.1 shaft orders.

The OFSCoh for a case with bearing and distributed gear damage is presented in

Figure 3(i) with the centres of the integration areas (k · αc, fm) and their integration

bound [αc −∆α/2, αc + ∆α/2] in Equation (9) are presented in Figure 3(ii). As a result,

72 features are extracted from the spectral coherence of each dataset, i.e. Nfeat = 72. The

results of the two different modelling approaches, discussed in Section 2.3, are presented

separately in Sections 3.2.1 and 3.2.2. The healthy dataset in this section comprises of

12 measurements of each operating condition as presented in Figure 2, i.e. the training

dataset comprises of 36 measurements with FSb = FSdgd = 0 in Equation (16).

3.2.1. Gaussian model

The mean and the variance of the Gaussian model for a specific feature are set to

the empirical mean and variance of the corresponding feature extracted from the healthy
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Figure 3: The spectral coherence of the casing vibration signal from the numerical gearbox are presented

in Figure 3(i) for FSb = 4 and FSdgd = 4. The integration region is presented in Figure 3(ii). In Figure

3(ii), the ∆f bound is not shown, because ∆f is fixed and there is no overlap and gaps between vertically

coinciding integration bounds.

gearbox data. The diagnostic metric for the complete feature set of a specific measurement

− log p(b) is calculated with Equation (12) for the different combinations of FSi and is

presented as a three-dimensional scatter plot in Figure 4(i). A contour, which indicates

the relative change of the magnitudes of the diagnostic metric as the condition changes

from a healthy system, is presented as well. The diagnostic metric − log p(b) changes

significantly with changes in FSb, while changing less for changes in FSdgd.

A threshold βthres was calculated from the 99th percentile of the diagnostic metric

− log p(b) of the healthy data and compared to the median diagnostic metric of a specific

machine condition to obtain an alarm trigger (i.e. 0 indicates that healthy behaviour is

observed, while 1 indicates that anomalous behaviour is present) for all combinations of

FS. It is sensible to calculate the median diagnostic metric of a few measurements of a

gearbox in the same condition, to ensure that the alarm is not triggered by outliers, but

by actual changes in the data. The results are presented in Figure 4(ii), where it is seen

that there is only a single false negative for FSb = 1.33. This is attributed to the fact that

the bearing damage is very small and the Gaussian model does not perfectly describe the

underlying distribution. It is expected that if a more appropriate density is used, then the

results would be improved.

15



(i)

FSdgd

0 1 2 3 4
FS

b

0
1

2
3

4

-l
og
p(
b

)/
10

3

0
20
40
60
80
100

0

20

40

60

80

100
∆%

(ii)

False negative

Figure 4: The diagnostic metric of the Gaussian model for the complete features b, − log p(b), is presented

in Figure 4(i) over the different combinations of FSdgd and FSb in a scatter plot. A contour plot of the

diagnostic metric is also presented with a corresponding colorbar to indicate the trend of the diagnostic

metric over the feature space. The contour is obtained by firstly fitting a two-dimensional linear regression

model to the data and then to predict the relative change of the diagnostic metric from a healthy system.

The alarm, after comparing the median of the data in Figure 4(i) to an alarm threshold, is presented in

Figure 4(ii).

The marginal distribution of each characteristic − log p(bc) is calculated separately

and presented in Figure 5 for the different combinations of gear and bearing damage. The

presented alarm threshold is set to the 99th percentile of the diagnostic measure of the

healthy dataset. It is clear from Figure 5(i) that changes in the condition of the gear

result in changes in the diagnostic metric − log p(bdgd), while it is largely unaffected by

the presence of bearing damage. The same conclusion can be drawn from the results of the

bearing diagnostic metric − log p(bb) in Figure 5(ii). Even though the diagnostic metrics

have non-linear relationships with FS in Figure 5, the resulting change in the diagnostic

metric − log p(bb) for FSb = 1.33 for a healthy system is not prominent. This insensitivity

of the Gaussian model’s diagnostic metric to incipient damage is attributed to the fact

that the Gaussian distribution is incapable of capturing the true underlying distribution

of the features and could therefore be insensitive to small changes in the data. However,

the diagnostic metric of the Gaussian model performs very well compared to the SES of

the raw vibration signal. In the SES, the damaged components could not be detected for

all the investigated FSs due to the low signal-to-noise ratio of the diagnostic components.
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Figure 5: The diagnostic metric of the Gaussian model for the marginal distribution, i.e. associated with

each monitored characteristic, is presented over the corresponding fault severity values in Figure 5(i) for

the gear and in Figure 5(ii) for the bearing. An alarm threshold, calculated from the 99th percentile of

the healthy data of the specific component, is also presented on the figures.

The thresholds are compared to the diagnostic data in order to obtain the alarm level in

Figure 6 for automatic fault detection. The results in Figure 6 corroborate the observations
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Figure 6: The alarm value is presented for the gear and bearing in Figures 6(i) and 6(ii), respectively for

the data and threshold presented in Figures 5(i) and 5(ii) respectively.

made in Figure 5. The diagnostic metric of the Gaussian model is sensitive to changes in

the condition of the machine, but the bearing damage at a FSb = 1.33 is undetected. The

results indicate that the Gaussian model performs very well despite the naive assumption

that the features are Gaussian distributed.
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3.2.2. Kernel density model

The results, obtained by using the kernel density model instead of the Gaussian model,

are presented for the same data used in the previous section. The hyperparameter of the

Gaussian kernel density estimator is obtained by defining a grid of potential h values on a

logarithmic scale between [10−5, 105] and by selecting the appropriate h in Equation (14)

which maximises the likelihood function after performing a five-fold cross validation.

The diagnostic metric − log p (b) is presented over the grid of the FSi in Figure 7(i)

with the alarm, after comparing the median of the data for a gearbox in a specific condition

to an alarm threshold, presented in Figure 7(ii). The results in Figure 7(i) indicate that the
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Figure 7: A scatter plot of the diagnostic metric − log p(b) for the kernel density estimator and a contour

of the diagnostic metric are presented in Figure 7(i) for different combinations of fault severity factors

FSi. In Figure 7(ii) the alarm value, obtained by comparing the median data of each combination of FSb

and FSdgd in Figure 7(i) to the alarm threshold, is presented similarly to Figure 4.

kernel density model is sensitive to changes in the condition of the gear and the bearing,

however, its detection capabilities in Figure 7(ii) are very similar to the results in Figure

4.

Even though the diagnostic metric of the complete feature set− log p(b) performed well,

the diagnostic metric from the marginal distribution contains more useful information. The

marginal diagnostic metrics are presented in Figure 8(i) for the gear and in Figure 8(ii)

for the bearings, with the alarm thresholds superimposed as well. It is evident from the

results in Figure 8, compared to the results in Figure 5, that the kernel density model is
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Figure 8: The diagnostic metric of the kernel density model for the marginal distribution is presented

over the corresponding fault severity values in Figure 8(i) for the gear and in Figure 8(ii) for the bearing.

The alarm thresholds, calculated from the healthy data of a specific diagnostic metric, are also presented

in the figures.

more sensitive to incipient damage than the Gaussian model. The diagnostic metric in this

case almost has a linear relationship with FSi as opposed to the non-linear relationship of

the Gaussian model, which indicates that it could be better suited for incipient damage

detection. Some outliers in Figure 8(i) for FSdgd = 0 and in Figure 8(ii) for FSb = 0

exceed the threshold, which emphasise that the statistics of the data (e.g. the median of

the data) and not the data itself must be compared to the threshold to avoid false alarms.

The alarm threshold in Figure 8 is compared to the median of the data from a gearbox

in a specific condition, i.e. a specific combination of FSb and FSdgd, in Figure 8 to obtain

the alarm value presented in Figure 9. The results in Figure 9 confirm that the kernel

model is able to automatically detect the presence of the gear and the bearing damage

and when compared to the results in Figure 6 it is clear that the kernel density model is

more sensitive to damage than the Gaussian model. This is attributed to the fact that

the kernel density model is capable of describing the actual distribution of the data more

accurately than the fixed, and potentially limiting, shape of the Gaussian distribution.

However, even though the Gaussian assumption is inappropriate, very good results are

obtained with the Gaussian model as well.
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Figure 9: The alarm value is presented for the gear and bearing in Figures 9(i) and 9(ii), respectively for

the data and threshold presented in Figure 8.

4. Experimental investigation

It is important to investigate the methodology on experimental data as well, therefore,

the methodology is applied to gearbox data acquired under varying operating conditions.

An overview of the experiments is given in Section 4.1, whereafter the results are presented

in Section 4.2.

4.1. Overview of the experiments

The experimental setup is presented in Figure 10 and consists of three gearboxes,

an alternator and an electrical motor. The test gearbox in Figure 10 is monitored for

damage, while the alternator and the electrical motor are separately controlled to exert

time-varying loads and speeds on the system. The monitored gearbox is a single stage

Figure 10: The experimental setup used to generate the experimental dataset.

helical gearbox with a gear ratio of 1.85 and monitored with a tri-axial accelerometer,

located on the bearing housing of the input shaft of the test gearbox. The vibration signal
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was acquired at a sampling frequency of 25.6 kHz with the axial component of the tri-axial

accelerometer used in this investigation. The rotational speed measurements are acquired

from the input shaft of the gearbox with an optical probe and a zebra tape shaft encoder.

The zebra tape shaft encoder resulted in 88 pulses to be generated per revolution and

its signal was acquired at a sampling frequency of 51.2 kHz. The operating conditions

applied to the monitored gearbox over the 20 second measurement period are fixed for

each measurement and are presented in Figure 11.
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Figure 11: The operating conditions that were applied to the input shaft of the test gearbox.

Condition monitoring data were acquired from gears in a healthy condition, whereafter

the gearbox was opened and the gear was damaged by seeding a slot with spark erosion in

its root. The gearbox was assembled with the damaged gear, whereafter it was operated

until the gear tooth failed after approximately 20 days. The damaged gear with the seeded

damage is presented in Figure 12(i), while the gear with the broken tooth is presented

in Figure 12(ii). Even though the gear damage in Figure 12(i) may seem large, it has

little effect on the gear mesh stiffness due to the fact that helical gears are used and is

therefore not easy to be detected under the varying operating conditions. In this paper,

35 measurements from the healthy machine define the healthy dataset, while 100 equally

spaced measurements of the actual 1400 measurements from the damaged gearbox are

used as the testing dataset.

In the next section, the results of the methodology are investigated for the Gaussian

model and the kernel density model.

4.2. Results

In this investigation, the monitored gearbox components are the gear and the pinion,

with the cyclic orders of the gear being 1.0 and the pinion 1.85. However, due to the
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(i) Before (ii) After

Figure 12: The damaged gear with the initial damage before the test and the damaged gear with the

broken tooth after the test was completed, are presented in Figure 12(i) and Figure 12(ii), respectively.

fixed grid of the OFSCoh, the corresponding set of monitored cyclic orders that can be

achieved is {αc} = {1.0, 1.84}. The OFSCoh of the damaged gearbox is presented in

Figure 13(i), while the feature windows are superimposed on the OFSCoh in Figure 13(ii).

Metrics, similar to those used in Section 3.2, are used to design the integration region to
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Figure 13: The OFSCoh is presented in Figure 13(i) for the damaged gear and presented in Figure 13(ii)

with the integration regions used in Equation (9) superimposed on the same OFSCoh.

obtain the features. The integration bounds are given by ∆α = 0.06 shaft orders and

∆f = 500 Hz, while three harmonics of the monitored gear and pinion components are

used. This resulted in a total of 24 features being extracted from the spectral coherence
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for this investigation.

In the next section, the Gaussian model is used in the methodology to model the

features, whereafter the kernel density model is used in Section 4.2.2.

4.2.1. Gaussian model

The Gaussian model is implemented as in Section 3.2.1, with the raw diagnostic metric

− log p(b), i.e. calculated for each measurement without processing, being presented in

Figure 14(i) as a function of measurement number. It is difficult to observe changes in the
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Figure 14: The diagnostic metric for the complete feature set, − log p(b), is presented for the Gaussian

model for the gearbox data as a function of measurement number in Figure 14(i). The processed diagnostic

metric, by calculating the median of the diagnostic metrics of consecutive measurements, is also presented

in Figure 14(i) with the alarm threshold superimposed. The processed data are compared to the alarm

threshold to obtain the alarm presented in Figure 14(ii).

condition of the machine for the initial measurements with large change only observed in

Figure 14(i) during the final stages of the experiment.

It is necessary to compare the data to an alarm threshold for automatic fault detection.

If the raw data in Figure 14(i) are compared to the alarm threshold, outliers can easily

trigger false alarms. Hence, it is assumed that the condition of the gearbox remains

approximately constant for two days and therefore the median of the diagnostic metrics

associated with this time period is calculated and compared to an alarm threshold for fault

detection. Hence, a moving median filter is applied to the raw diagnostic metrics to obtain

the processed diagnostic metric, which is also presented in Figure 14(i). The processed
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diagnostic metric is significantly smoother than the raw diagnostic metric and is therefore

more robust to outliers. The 99th percentile of the diagnostic metric − log p(b) of the first

20 measurements is used to define the alarm threshold presented in Figure 14(i) as well.

The alarm, obtained by comparing the processed diagnostic metric to the alarm thresh-

old, is presented in Figure 14(ii) for the data in Figure 14(i). The alarm is triggered at

measurement number 199, whereafter the alarm is momentarily 0 between measurement

numbers 310 and 423. Even though the alarm is correctly triggered (i.e. the gear is

damaged), the subsequent alternation between triggered and non-triggered can lead to

confusion.

The raw diagnostic metric from the marginal distribution is presented in Figure 15(i)

for the gear and the pinion as a function of measurement number. The processed diagnostic
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Figure 15: The raw diagnostic metric of the marginal Gaussian distribution of each monitored component

− log p(bc) is presented in Figure 15(i). The processed diagnostic metrics, obtained with the same proce-

dure as Figure 14(i), are presented with the alarm threshold of each monitored component as well. The

alarm, by comparing each processed diagnostic metric to its corresponding alarm threshold, is presented

in Figure 15(ii).

metrics and the alarm thresholds of the gear and the pinion are obtained with the same

procedure as presented in Figure 14(i). The alarm thresholds of the gear and the pinion

are very close to each other and their values are quite small compared to the scale of the

diagnostic metric over the life of the machine. This is attributed to the little variance
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in the diagnostic metrics of the initial measurements and the exponential growth of the

diagnostic metric with changes in the condition of the machine.

The alarms, obtained by comparing the processed data to their respective thresholds

in Figure 15(ii), are presented in Figure 15(ii). The results indicate that the pinion is

in a healthy condition, while the gear damage is detected at measurement number 115.

Therefore, the results are significantly better than the results in Figure 14, because the

damage is detected earlier, the damaged component can be identified and the alarm is less

confusing, i.e. after the alarm is triggered for the first time, it remains triggered.

4.2.2. Kernel density model

The model obtained from the kernel density estimator is applied on the same data

as the Gaussian model in the previous section, with the hyperparameter h obtained with

the same procedure as discussed in Section 3.2.2. The raw diagnostic metric for the

complete feature set is presented in Figure 16(i) as a function of measurement number.

The processed diagnostic metric and the threshold are obtained with exactly the same

procedure used in Section 4.2.1. The raw diagnostic metric contains much more noise
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Figure 16: The raw diagnostic metric for the full dataset, − log p(b), obtained from the kernel density

model applied to the experimental gearbox dataset, is shown with the processed diagnostic metric and the

alarm threshold in Figure 16(i). The corresponding alarm value is presented in Figure 16(ii) as a function

of measurement number.

than the raw diagnostic metric in Figure 14(i). The kernel density model is able to

capture the distribution of the healthy data more accurately, which means that it is much

25



more sensitive to changes in the distribution of the data. The distribution of the data

can for example be changed by environmental factors such as temperature variations and

subtle differences in operating conditions. This means that the kernel density model is

more sensitive to damage, but also inherently more sensitive to noise in the data and this

is reflected in the diagnostic metric.

The alarm threshold is compared to the processed data to obtain the alarm presented in

Figure 16(ii). The alarm is only triggered once at measurement 507, which is significantly

later than the results in Figure 14(ii). However, this result can be misleading, because

the diagnostic metric in Figure 16(i) almost results in the alarm being triggered earlier,

similarly to the result of the Gaussian model in Figure 14(ii). Hence, the two models

perform very similarly when comparing their diagnostic metric of the complete features.

The raw and processed marginal diagnostic metric are presented in Figure 17(i) for the

gear and the pinion with the alarm threshold superimposed as well. The alarm threshold of
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Figure 17: The raw and processed diagnostic metrics of the marginal distribution of the kernel density

model and the alarm threshold is presented in Figure 17(i) for the experimental gearbox data. The alarm

value, obtained by comparing the alarm threshold to the processed diagnostic metric, is presented in

Figure 17(ii) for the monitored components.

the pinion is larger than the alarm threshold of the gear, because its features of the initial

measurements contain more noise. It is evident from the processed diagnostic metric that

significant changes are observed in the initial measurements of the gear (i.e. it has a large
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gradient), which reflects the fact that the kernel density model is much more sensitive

to changes in the condition, however, the larger noise levels in the gear and the pinion

diagnostic metrics also indicate that the model is more sensitive to noise in the condition

monitoring data as well.

The processed results in Figure 17(i) are compared to the associated alarm threshold

in the same figure to obtain the alarm in Figure 17(ii). According to the alarm, the

damaged gear is detected at the same measurement number as the Gaussian model, while

the pinion remains healthy for the complete test. Hence, in terms of detection capabilities,

the Gaussian and the kernel density models performed the same. The results in Figure

17 also emphasise the benefits of using the processed data for detection and not the raw

data. The noise that is observed in the pinion in Figure 17(i) result in the threshold to be

exceeded, however, the processed diagnostic metric, reduces the sensitivity of the alarms

to outliers.

5. Conclusion and recommendations

In this paper, a methodology is proposed which utilises the modified improved envelope

spectrum for performing feature extraction and a model of the extracted features, opti-

mised on healthy historical data, for automatic fault detection and fault localisation under

varying operating conditions. The performance of the Gaussian model and the model ob-

tained from kernel density estimators are compared on a numerical gearbox dataset which

contains bearing and gear damage, and on an experimental gearbox dataset which contains

a damaged gear. In summary, the results indicate:

• The methodology is able to detect and localise the damaged component by using

the negative log-likelihood of the marginal distribution of a specific characteristic as

a diagnostic metric.

• The proposed features are presented and motivated based on state-of-the-art tech-

niques in the condition monitoring field, i.e. they do not require feature engineering

to be performed.

• The model obtained from a kernel density estimator is capable of estimating the

probability density function of the data more accurately and this results in the
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model being more sensitive to damage, but also more sensitive to spurious noise

in the condition monitoring data. Its performance is also very dependent on the

estimation of the hyperparameter, a task which is not easy to perform.

• The assumption made by the Gaussian model is poor for practical applications (the

condition monitoring data and their features are non-Gaussian), however, it performs

very well on the investigated datasets. It has the additional benefits that the model

is robust to noise in the condition monitoring data and the two unknown parameters

can easily be estimated with closed-form solutions.

• It is important to use the statistics of the diagnostic metrics, e.g. the median of

consecutive measurements for detection, rather than the diagnostic metrics of the

individual measurements.

In this paper, the monitored characteristics did not coincide, which means that it is

easy to distinguish between different damaged components. However, when monitoring

rotating machines with many rotating components, some overlap between the components

in the order domain is inevitable. Our current suggestion is to ignore the overlapping

harmonics or to assign the same label to components with the same fundamental cyclic

orders. However, we do recommend that future investigations should focus on investi-

gating the different solutions for characteristics with overlapping cyclic orders. It is also

recommended that more elaborate feature modelling approaches be investigated as well.

Lastly, it is also recommended that the methodology is extended for performing automatic

condition recognition when historical fault data are available in addition to the healthy

historical data.
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Appendix A. Additional information

The following procedure was used to generate each rotational speed signal θ̇(t) for the

numerical gearbox model:

1. Select an unscaled baseline signal, denoted o(t), i.e. the range can be arbitrary. The

following baseline signals are used in this paper:

o1(t) = 1− 0.1t+ 0.05 sin(2.4πt+ φε1) + 0.1 sin(1.0πt+ φε2) (A.1)

o2(t) = sin(0.4πt+ φε3) + 0.2 sin(2.0πt+ φε4) + 0.1 sin(3.0πt+ φε5) (A.2)

o3(t) = (1 + exp (5− t− 10 · φε6))−1 + 0.05 sin(2.8πt+ φε7) (A.3)

where the subscript i in oi(t) denotes the operating condition profile number used

in Figure 2. The phase of the rotational speed signal components, denoted φεj, is

sampled from a zero mean, unit variance Gaussian distribution.

2. Linearly scale the baseline vibration signal oi(t) to have a minimum value of θ̇min

and a maximum value of θ̇max, where θ̇min = 2π (3 + u− 0.5) rad/s and θ̇max =

2π (7 + u− 0.5) rad/s. The variable u is a sample from a uniform distribution with

domain [0, 1].

This procedure was used to generate each signal shown in Figure 2, which is why the

magnitude and the phase of the rotational speed signals θ̇i(t) are random.
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