
ON PREVARIETIES OF LOGIC

TOMMASO MORASCHINI AND JAMES G. RAFTERY

Abstract. It is proved that every prevariety of algebras is categori-
cally equivalent to a ‘prevariety of logic’, i.e., to the equivalent algebraic
semantics of some sentential deductive system. This allows us to show
that no nontrivial equation in the language ∧,∨, ◦ holds in the congru-
ence lattices of all members of every variety of logic, and that being a
(pre)variety of logic is not a categorical property.

1. Prevarieties of Logic

Recall that the class operator symbols I, H, S, P and Pu stand for the
formation of isomorphic and homomorphic images, subalgebras, direct prod-
ucts and ultraproducts, respectively. A class of similar algebras is called a
prevariety, a quasivariety or a variety if it is closed, respectively, under I, S
and P, under I, S, P and Pu, or under H, S and P.

The informal notion of a ‘variety of logic’ has acquired a precise meaning
in abstract algebraic logic (see [4, 10, 13]), where it extends naturally to pre-
varieties. In the standard terminology, a prevariety of logic is the equivalent
algebraic semantics of an algebraizable (sentential) logic, but the following
purely algebraic characterization can serve here as a definition.

Definition 1. A prevariety K is called a prevariety of logic if some fixed
formula of infinitary logic, having the form(

&i∈I, j∈J δi(ρj(x, y)) ≈ εi(ρj(x, y))
)
⇐⇒ x ≈ y, (1)

is valid in (every member of) K. It is understood here that I and J are
sets, and that τ = {〈δi, εi〉 : i ∈ I} is a family of pairs of unary terms and
ρ = {ρj : j ∈ J} a family of binary terms in the signature of K. In this
context, τ and ρ are called transformers. If, moreover, K is a [quasi]variety,
then we refer to it as a [quasi ]variety of logic. �
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Example 2. In the variety of Boolean [resp. Heyting] algebras, which alge-
braizes classical [resp. intuitionistic] propositional logic, (1) takes the form

(x→ y ≈ 1 & y → x ≈ 1)⇐⇒ x ≈ y.
In the variety of commutative residuated lattices [14], which algebraizes a
rich fragment of linear logic, (1) is most naturally instantiated as

((x→ y) ∧ 1 ≈ 1 & (y → x) ∧ 1 ≈ 1)⇐⇒ x ≈ y. �

Given K, τ and ρ as in Definition 1, we can construct a logic `K,τ for
which K is the equivalent algebraic semantics, as follows. It is convenient
here to fix a proper class Var of variables for the entire discussion.

For each set X ⊆ Var , a term ϕ over X in the signature of K is declared
a `XK,τ -consequence of a set Γ of such terms (written as Γ `XK,τ ϕ) provided
that the following is true: for any homomorphism h from the absolutely free
algebra T (X) over X to any member of K, the kernel of h contains

τ (ϕ) := {〈δi(ϕ), εi(ϕ)〉 : i ∈ I}
whenever it contains τ [Γ] :=

⋃
γ∈Γ τ (γ). (This criterion is abbreviated as

τ [Γ] |=K τ (ϕ).) (2)

Thus, `XK,τ is a binary relation from the power set of T (X) to T (X).

For any two sets X,Y ⊆ Var , with Γ ∪ {ϕ} ⊆ T (X) ∩ T (Y ), it can be
verified that Γ `XK,τ ϕ iff Γ `YK,τ ϕ. It therefore makes sense to write

Γ `K,τ ϕ if there exists a set X ⊆ Var such that Γ `XK,τ ϕ.

Technically, `K,τ is the family of relations `XK,τ indexed by the subsets
X of Var . It has the following properties for any sets X,Y ⊆ Var , any
Γ ∪Ψ ∪ {ϕ} ⊆ T (X) and any homomorphism h : T (X) −→ T (Y ), where we
abbreviate `K,τ as ` :

(i) if ϕ ∈ Γ, then Γ ` ϕ;

(ii) if Γ ` ψ for all ψ ∈ Ψ, and Ψ ` ϕ, then Γ ` ϕ;

(iii) if Γ ` ϕ, then h[Γ] ` h(ϕ).

For present purposes, (i)–(iii) are the defining properties of logics (over
Var) in general. Notice that `K,τ is defined and is a logic for any class K
of similar algebras and any set τ of pairs of unary terms in its signature
(regardless of ρ and (1)).

We say that a logic ` is finitary if it has the following additional property:

(iv) whenever Γ ` ϕ, then Γ′ ` ϕ for some finite Γ′ ⊆ Γ.

In this case, for any infinite set X ⊆ Var , the logic ` is determined by
its restriction to terms over X, and (iii) need only be stipulated for the
endomorphisms h of T (X). A finitary logic is usually (and can always be)
specified by a formal system F of axioms and finite inference rules, because
the natural deducibility relation of F satisfies (i)–(iv).
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Definition 3. If a logic ` has the form `K,τ for some prevariety K and
transformers τ and ρ, where K satisfies (1), then K is said to algebraize `,
and ` is said to be algebraizable. �

The terminology is justified, because (1) ensures that `K,τ is suitably inter-
changeable with the class of all (possibly infinitary) quasi-identities of K, as
opposed to the special ones captured in (2). In other words, the interpre-
tation given by the equation ‘` = `K,τ ’ is invertible when ` is algebraized
by K, but we shall not dwell further on interpretations here.

Under the conditions of Definition 3, we call K the equivalent algebraic
semantics of `, because it is the only prevariety that algebraizes `; the
transformers are essentially unique as well, cf. [4, Thm. 2.15]. A quasi-
variety that algebraizes two different logics (via different transformers τ and
a common ρ) is exhibited in [4, Sec. 5.2], along with several non-algebraizable
finitary logics.

An algebraizable logic is said to be finitely algebraizable if, in its alge-
braization, the transformer ρ can be chosen finite, i.e., the index set J in
(1) can be kept finite. That happens, for instance, whenever the equivalent
algebraic semantics K is a quasivariety. Dually, if an algebraizable logic `
is finitary, then a finite choice of τ (i.e., of I) is possible in (1). These facts
and the next lemma are proved, for instance, in [13, Lem. 3.37].

Lemma 4. Let K be a quasivariety of logic, with transformers τ and ρ as
in (1). Then τ can be chosen finite iff `K,τ is finitary.

The finitely algebraizable finitary logics coincide with the original ‘algebraiz-
able logics’ of Blok and Pigozzi [4]. For cases excluded by their definition
(but not by Definition 3), see [17, 27].

Notice that (1) is valid in a class K of similar algebras iff it is valid in
the prevariety ISP(K) generated by K. Our focus on prevarieties is therefore
not restrictive. In contrast with the case of quasivarieties, it is not prov-
able in the class theory NBG (with choice) that every prevariety has an
axiomatization involving only a set of variables [1]. Papers dealing with the
algebraization of logics over proper classes of variables include [2, 11, 23].

Remark 5. A variety K that satisfies f(x, x, . . . , x) ≈ x for each of its basic
operation symbols f is said to be idempotent. In this case, if (1) is valid
in K, then K satisfies δi(x) ≈ x ≈ εi(x) for all i ∈ I, making the left hand
side of (1) true on any interpretation of x, y in any member of K. In view
of the right hand side of (1), this forces K to be trivial. Thus, no nontrivial
idempotent variety is a variety of logic. In particular, a nontrivial variety of
lattices cannot be a variety of logic, as it is idempotent. More strikingly, al-
though De Morgan lattices are a modest generalization of Boolean algebras,
in essentially the same signature, the variety of De Morgan lattices (which
is not idempotent) also fails to be a variety of logic [12]. �
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2. Category Equivalences

A class of similar algebras can be treated as a concrete category, the mor-
phisms being the algebraic homomorphisms between its members. Termwise
equivalent classes are then categorically equivalent, but not conversely.

When a prevariety K algebraizes a logic `, we sometimes discover signif-
icant features of ` via ‘bridge theorems’ of the form

` has metalogical property P iff K has algebraic property Q. (3)

Examples include connections between metalogical interpolation properties
and algebraic amalgamation properties [11], between definability theorems
and the surjectivity of suitable epimorphisms [2, 23], and between deduction-
like theorems and congruence extensibility properties [3, 5, 10].

As it happens, the algebraic properties Q alluded to here are categorical,
i.e., they persist under category equivalences between classes K of the kind
to which (3) applies. In such cases, if we wish to establish P for `, we
are not forced to prove Q in K directly; it suffices to prove Q in an equally
suitable class M that is categorically equivalent to K.

The value of this observation lies not only in the hope that M can be
chosen simpler or better-understood than K, but also in the possibility that
M algebraizes a logic `′, different from ` (perhaps in a different signature).
In that situation, a category equivalence F between M and K carries positive
and negative results from one whole family of logics to another. This is
because, in the case of varieties for instance, F induces an isomorphism
between the respective sub(quasi)variety lattices of M and K, along which
categorical properties can still be transferred. And the subquasivarieties
of K [resp. M] algebraize the extensions of ` [resp. `′], with subvarieties
corresponding to axiomatic extensions.

That being so, and in view of Remark 5, it is natural to ask which pre-
varieties are categorically equivalent to prevarieties of logic. We proceed to
prove that this is true of every prevariety. Consequently, being a prevariety
of logic is not a categorical property.

Definition 6. Given an algebra A and n ∈ ω = {0, 1, 2, . . . }, we denote by
Tn(A) the set of all n-ary terms in the signature of A. For n > 0, the n-th
matrix power of A is the algebra

A[n] := 〈An, {mt : t ∈ Tkn(A)n for some positive k ∈ ω},
where for each t = 〈t1, . . . , tn〉 ∈ Tkn(A)n, we define mt : (An)k −→ An as
follows: if aj = 〈aj1, . . . , ajn〉 ∈ An for j = 1, . . . , k, then

mt(a1, . . . , ak) = 〈tAi (a11, . . . , a1n, . . . , ak1, . . . , akn) : 1 ≤ i ≤ n〉.
(Roughly speaking, therefore, the basic operations ofA[n] are all conceivable
operations on n-tuples that can be defined using the terms of A.)

For 0 < n ∈ ω, the n-th matrix power of a class K of similar algebras is
the class K[n] := I{A[n] : A ∈ K}. �
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Applications of the matrix power construction in universal algebra range
from the algebraic description of category equivalences and adjunctions [21,
22] to the study of clones [24], Maltsev conditions [29, 15], and finite algebras
[18]. Matrix powers are also the basis for ‘twist-product’ constructions and
product representations; see for instance [9].

Theorem 7. (cf. [21, Thm. 2.3]) Let K be a class of similar algebras and n

a positive integer. Then K[n] is a class of similar algebras, which is categor-
ically equivalent to K. Moreover, if K is a prevariety [resp. a quasivariety;

a variety ], then so is K[n].

Proof. It is not difficult to see that the functor (·)[n] : K→ K[n] sending alge-

bras A ∈ K to A[n] ∈ K[n] and replicating homomorphisms componentwise
is a category equivalence. And for each class operator O among S,P,Pu,H,
it is easily verified that K is closed under O iff the same is true of K[n]. �

We can now prove the main result of this section.

Theorem 8. Let K be any prevariety. Then K is categorically equivalent to
a prevariety of logic, i.e., to the equivalent algebraic semantics M of some
algebraizable logic `.

Moreover, we can choose M in such a way that the transformers τ and ρ
in (1) are finite, and we can arrange that M is a [quasi ]variety if K is.

If K is a quasivariety, then ` can be chosen finitary.

Proof. Let M be the matrix power K[2]. By Theorem 7 and Lemma 4, we
need only prove that M satisfies (1) for some finite transformers τ ,ρ (in
which case `M,τ can serve as `).

Now each member of M has basic binary operations → and ←, and a
basic unary operation 2 such that, for all A ∈ K and a, b, c, d ∈ A,

〈a, b〉 →A[2] 〈c, d〉 = 〈a, c〉 = 〈π1(a, b, c, d), π3(a, b, c, d)〉;

〈a, b〉 ←A[2] 〈c, d〉 = 〈b, d〉 = 〈π2(a, b, c, d), π4(a, b, c, d)〉;

2A
[2]〈a, b〉 = 〈b, a〉 = 〈π2(a, b), π1(a, b)〉,

where πk(z1, . . . , zn) := zk whenever 1 ≤ k ≤ n ∈ ω. These are indeed
basic operations for M, because projections are term functions of A.

For every A ∈ K and a, b, c, d ∈ A, we have

〈a, b〉 = 〈c, d〉 iff a = c and b = d

iff 〈a, c〉 = 〈c, a〉 and 〈b, d〉 = 〈d, b〉

iff
(
〈a, b〉 →A[2] 〈c, d〉 = 2A

[2]
(〈a, b〉 →A[2] 〈c, d〉) and

〈a, b〉 ←A[2] 〈c, d〉 = 2A
[2]

(〈a, b〉 ←A[2] 〈c, d〉)
)
.

This implies that the following formula is valid in M:(
x→ y ≈ 2(x→ y) & x← y ≈ 2(x← y)

)
⇐⇒ x ≈ y.
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In other words, (1) becomes valid in M when we set

τ (x) = {〈x,2x〉} and ρ(x, y) = {x→ y, x← y}. �

Readers who are familiar with abstract algebraic logic will notice that, in
the proof above, the reduced matrix models of `M,τ are, up to isomorphism,

just all 〈A[2], {〈a, a〉 : a ∈ A}〉, A ∈ K.

Corollary 9. The property of being the equivalent algebraic semantics of
an algebraizable logic is not preserved by category equivalences between pre-
varieties, quasivarieties or varieties.

Proof. This follows from Theorem 8 and Remark 5. �

3. Congruence Equations

We have noted that the transformer ρ in the definition of a quasivariety
of logic can be chosen finite. By a finitary variety of logic, we mean a variety
of logic for which the transformer τ can also be chosen finite (i.e., `K,τ is
finitary—see Lemma 4).

Remark 10. The finitary varieties of logic constitute a Maltsev class in the
sense of [28]. Indeed, suppose

τ = {〈δi, εi〉 : i = 1, . . . , n} and ρ = {ρj : j = 1, . . . ,m}.
Applying Maltsev’s Lemma (cf. [8, Lem. V.3.1]) to the free 2-generated alge-
bra in a variety K, we see that (1) is equivalent, over K, to the conjunction of
the identities δi(ρj(x, x)) ≈ εi(ρj(x, x)) and a suitable scheme of identities

x ≈ t1(x, y, δρ(x, y), ερ(x, y))

ti(x, y, ερ(x, y), δρ(x, y)) ≈ ti+1(x, y, δρ(x, y), ερ(x, y)) (1 ≤ i < k)

tk(x, y, ερ(x, y), δρ(x, y)) ≈ y

involving terms t1, . . . , tk, where δρ(x, y) [resp. ερ(x, y)] abbreviates

δ1(ρ1(x, y)), . . . , δn(ρ1(x, y)), . . . , δ1(ρm(x, y)), . . . , δn(ρm(x, y))

[resp. ε1(ρ1(x, y)), . . . , εn(ρ1(x, y)), . . . , ε1(ρm(x, y)), . . . , εn(ρm(x, y))].

If we leave the term symbols δi, εi, ρj , tr unspecified, then the finite con-
junction above defines a strong Maltsev class, which need not be idempotent
(e.g., the variety M in the proof of Theorem 8 does not satisfy 2x ≈ x when
K is a variety). There are only denumerably many such formal conjunctions,
and any two of them have a common weakening of the same form, got by
maximizing, for each of the letters δ, ε, ρ, t, the number of subscripted oc-
currences of that letter. The finitary varieties of logic are therefore directed
by the interpretability relation, whence they form a Maltsev class.

Alternatively, it can be verified that the non-indexed product of two fini-
tary varieties of logic is a finitary variety of logic; see [19, 25, 28] for the
pertinent characterizations. �
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Despite Remark 10, we shall show (with the help of Theorem 8 and an
elementary argument) that finitary varieties of logic are not forced to satisfy
any interesting ‘congruence equation’ in the sense of the next definition.
This contrasts with the fact that every point-regular variety is a finitary
variety of logic [6, p. 16] that is both congruence modular and congruence
n-permutable for a suitable finite n [16]. The varieties in Example 2 are
point-regular, as are most of the familiar varieties of logic.

Definition 11. A congruence equation is a formal equation in the binary
symbols ∧, ∨ and ◦. It is satisfied by an algebra A if it becomes true
whenever we interpret the variables of the equation as congruence relations
of A, and for arbitrary binary relations α and β on A, we interpret α ∧ β,
α∨β and α◦β as α∩β, ΘA(α∪β) and the relational product, respectively.
(Here, ΘA stands for congruence generation in A.) A congruence equation
is satisfied by a class of algebras if it is satisfied by every member of the
class. It is nontrivial if some algebra fails to satisfy it. �

Because ◦ is not generally a binary operation on congruences, we associate
with each algebra A another algebra Rel(A) = 〈Rel(A);∩,∨, ◦〉, where
Rel(A) is the set of all binary relations on A, and

α ∨ β := ΘA(α ∪ β) for all α, β ∈ Rel(A).

The congruence lattice of A is therefore a subalgebra of the ∩,∨ reduct of
Rel(A). Given α, β ∈ Rel(A), we also define

α⊗ β = {〈〈a, b〉, 〈c, d〉〉 : 〈a, c〉 ∈ α and 〈b, d〉 ∈ β} ∈ Rel(A2).

For congruences α, β of A, it is well known that α ⊗ β is a congruence of
the algebra A2, but in fact it is also a congruence of A[2]. This follows
straightforwardly from the definitions of A[2] and α⊗ β.

Recall that a polynomial of an algebra 〈A;F 〉 is a term function of the
algebra 〈A;F ∪ F0〉, where F0 consists of the elements of A, considered as
nullary basic operations. (Of course, we arrange first that A ∩ F = ∅.)

Lemma 12. Let A be an algebra. Then λ : α 7→ α⊗α defines an embedding
of Rel(A) into Rel(A[2]), which maps congruences to congruences.

Proof. It is easily verified that, as a function from Rel(A) to Rel(A[2]),
λ is injective, ∩-preserving and ◦-preserving. Let α, β ∈ Rel(A). We have
already mentioned that λ preserves congruencehood, from which it follows
that λ(α) ∨ λ(β) ⊆ λ(α ∨ β). It remains to prove the reverse inclusion.

Accordingly, let 〈〈a, b〉, 〈c, d〉〉 ∈ λ(α ∨ β), so 〈a, c〉, 〈b, d〉 ∈ α ∨ β. The
closure operator ΘA (on the power set of A2) is algebraic, so there exist

〈e1, g1〉, . . . , 〈em, gm〉 ∈ α and 〈em+1, gm+1〉, . . . , 〈e2m, g2m〉 ∈ β (4)

with 〈a, c〉, 〈b, d〉 ∈ ΘA{〈e1, g1〉, . . . , 〈em, gm〉, 〈em+1, gm+1〉, . . . , 〈e2m, g2m〉}
(where m is finite). By Maltsev’s Lemma, therefore, there are finitely many
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4m-ary polynomials p1, . . . , pk and q1, . . . , qk of A such that

a = p1(e1, . . . , e2m, g1, . . . , g2m)

pi(g1, . . . , g2m, e1, . . . , e2m) = pi+1(e1, . . . , e2m, g1, . . . , g2m)

pk(g1, . . . , g2m, e1, . . . , e2m) = c ;

b = q1(e1, . . . , e2m, g1, . . . , g2m)

qi(g1, . . . , g2m, e1, . . . , e2m) = qi+1(e1, . . . , e2m, g1, . . . , g2m)

qk(g1, . . . , g2m, e1, . . . , e2m) = d

for i = 1, . . . , k − 1. For each i ∈ {1, . . . , k − 1}, the rules

p̂i(x1, . . . , x4m) := pi(x1, x3, . . . , x2m−1, x2, x4, . . . , x2m,

x2m+1, x2m+3, . . . , x4m−1, x2m+2, x2m+4, . . . , x4m);

q̂i(x1, . . . , x4m) := qi(x1, x3, . . . , x2m−1, x2, x4, . . . , x2m,

x2m+1, x2m+3, . . . , x4m−1, x2m+2, x2m+4, . . . , x4m);

ti(z1, . . . , z2m) := 〈p̂i(π1(z1), π2(z1), . . . , π1(z2m), π2(z2m)),

q̂i(π1(z1), π2(z1), . . . , π1(z2m), π2(z2m))〉
define two new 4m-ary polynomials of A and a 2m-ary polynomial ti of
A[2], such that for any 〈s1, u1〉, . . . , 〈s2m, u2m〉 ∈ A2, the respective first and
second co-ordinates of ti(〈s1, u1〉, . . . , 〈s2m, u2m〉) are

pi(s1, s2, . . . , sm, u1, . . . , um, sm+1, . . . , s2m, um+1, . . . , u2m)

and qi(s1, s2, . . . , sm, u1, . . . , um, sm+1, . . . , s2m, um+1, . . . , u2m).

It follows that

〈a, b〉 = t1(〈e1, em+1〉, . . . , 〈em, e2m〉, 〈g1, gm+1〉, . . . , 〈gm, g2m〉);

ti(〈g1, gm+1〉, . . . , 〈gm, g2m〉, 〈e1, em+1〉, . . . , 〈em, e2m〉)
= ti+1(〈e1, em+1〉, . . . , 〈em, e2m〉, 〈g1, gm+1〉, . . . , 〈gm, g2m〉);

tk(〈g1, gm+1〉, . . . , 〈gm, g2m〉, 〈e1, em+1〉, . . . , 〈em, e2m〉) = 〈c, d〉
for i = 1, . . . , k − 1, whence

〈〈a, b〉, 〈c, d〉〉 ∈ ΘA
[2]{〈〈e1, em+1〉, 〈g1, gm+1〉〉, . . . , 〈〈em, e2m〉, 〈gm, g2m〉〉}. (5)

Now let j ∈ {1, . . . ,m}. By (4),

〈〈ej , ej〉, 〈gj , gj〉〉 ∈ λ(α) and 〈〈em+j , em+j〉, 〈gm+j , gm+j〉〉 ∈ λ(β). (6)

For the basic operation →A[2]
in the proof of Theorem 8, we have

〈ej , em+j〉 = 〈ej , ej〉 →A[2] 〈em+j , em+j〉

〈gj , gm+j〉 = 〈gj , gj〉 →A[2] 〈gm+j , gm+j〉,
so 〈〈ej , em+j〉, 〈gj , gm+j〉〉 ∈ λ(α) ∨ λ(β), by (6). Then, since j ∈ {1, . . . ,m}
was arbitrary, (5) yields 〈〈a, b〉, 〈c, d〉〉 ∈ λ(α) ∨ λ(β), as required. �
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Corollary 13. If a congruence equation fails in an algebra A, then it fails
in A[2].

This allows us to prove the main result of this section:

Theorem 14. Every nontrivial congruence equation fails in some finitary
variety of logic, i.e., in a variety that is the equivalent algebraic semantics
of some finitely algebraizable finitary logic.

Proof. Each nontrivial congruence equation fails in some variety K, hence
also in K[2] (by Corollary 13), which is itself a variety (by Theorem 7). And

K[2] is a finitary variety of logic, by the proof of Theorem 8. �

A finitary variety of logic satisfying no nontrivial congruence equation in
the signature ∧,∨ (excluding ◦) was exhibited in [6]. The stronger fact that
this variety satisfies no nontrivial idempotent Maltsev condition was pointed
out in [7, Sec. 10.1], using [20, Thm. 4.23]. Theorem 14 does not follow
from these observations and general results of universal algebra, however,
because it is not evident that every nontrivial congruence equation (in the
full signature ∧,∨, ◦) entails a nontrivial idempotent Maltsev condition, as
opposed to a weak Maltsev condition. (This corrects an impression left in
the last lines of [7, p. 647], and in [26].) For more on the general connections
between these notions, see [20].
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