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Centrifugal separation experimentation and
optimum predictive model development for
copper recovery from waste copper smelter
dust
Daniel Okanigbe1*, Popoola Olawale2, Abimbola Popoola1, Adeleke Abraham3,
Ayomoh Michael4 and Kolesnikov Andrei1

Abstract: This research has presented a three level-two factors full factorial
experimental design that investigated the process parameterization of a centrifugal
concentrator for the separation of a waste copper smelter dust (CSD). This was
followed by a theoretical contribution involving the development of a scheme of
predictive models premised on the concept of constrained interpolant models.
These were used for the experimental trend, pattern investigation and furthermore
to provide expressions that depicts optimal experimental conditions in this research.
Based on the experimental outputs, it was observed that a maximum grade of
about 35.02 wt% Cu was achieved at a Rotational Bowl Speed of 120G, Water Flow
Rate of 3.0l/min and constant experimental flow rate of 1.48l/min with a Liquid to
Solid Ratio of 0.5. Similarly, a minimum output of 14.58% SiO2 and 10.29% Al2O3

was achieved at same experimental conditions. This clearly depicts a trend geared
towards optimum experimental conditions aimed at maximizing Cu output and
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minimizing SiO2 and Al2O3 impurities. The predicted outputs premised on the use of
Matlab software are in good conformance with the experimental outputs with
a high degree of accuracy and confidence level over 97% as shown in Table 1 and
corresponding Figures.

Subjects: Applied & Economic Geology; Resource Management - Environmental Studies;
Environment & Resources; Metallurgical Engineering

Keywords: Waste copper smelter dust; mathematical modeling; optimization; density
separation; classification

1. Introduction
In the last few decades, the literature of extractive metallurgy has extended its research needs to
proffering alternative and sustainable solutions for the readily availability of metallic resources. This
measure has become very necessary for sustainability of the earth amongst other deteriorating
environmental factors. One promising alternative measure for metallic extraction other than explor-
ing the earth surface is the approach of scrap materials smelting. The smelting of abandoned scrap
materials for the purpose of harnessing specific metals does not only aid in sustainability of the
earth but controls and minimizes environmental pollution posed through non-biodegradable solid
wastes in form of metallic solid wastes and powdery materials amongst others. This research is
focused at providing both experimental and mathematical modeling solutions capable of exploring
the effectiveness of a proposed experimental technique. A predictive modelling scheme premised on
the use of constraint interpolants was used to model the percentage output proportion from the
extraction and refinement of copper concentrates via smelting of scrap metallic copper concentrate
also referred to as waste CSD.The process is not without its own challenges characterized usually
with waste generation. The waste CSD contains a substantial amount of copper in close association
with environmentally toxic compounds such as Arsenic, Bismuth, Lead, Antimony and Cadmium
capable of affecting the purity of the refined copper. The generation of waste CSD is almost
becoming a global menace requiring that stringent environmental regulations be put in place to
inhibit its generation (Montenegro, Sano, & Fujisawa, 2008). However, the waste CSD if well har-
nessed and managed can be a sustainable secondary source of copper. Hence, the need for an
appropriate technology becomes inevitable, principally from the stand point of mineral conservation,
utilization of scanty copper resource and its sustainability. Mineral processing techniques can be
employed as a pretreatment method to reduce the amount of contaminants in the waste CSD before
subjecting the produced concentrate to hydrometallurgical treatments (Geldenhuis, 2002).
Additionally, most of the heavy minerals are treated in gravity concentration at different stages of
upgradation (Demi, Koci, & Boci, 2006; Meloy, Williams, Bevilacqua, & Ferrara, 1994).

Furthermore, gravity concentration is considered advantageous because of its simplicity, low
operating cost and ease of operation. However, the average size of this waste CSD falls within the
size range of 5–50 µm; (Ha, Kwon, Park, & Mohapatra, 2015; Morales, Cruells, Roca, & Bergó, 2010;
Okanigbe, Popoola, & Adeleke, 2017a, 2017b), a size range only the modern gravity techniques e.g.
Knelson (Figure 1) and Falcon concentrators have proven useful in separation of materials into
different fractions (Wills & Finch, 2015). As expected in mineral processing a rigorous and costly
experimental evaluation of laboratory and pilot-scale equipment trials are carried out to ascertain
the performance of any unit operation. Consequently, designing a low cost, time saving tool (model),
with the capacity to correctly predict the separation results of the unit operation would be
advantageous.

The success of separation with centrifugal concentrator is a function of the selection of appro-
priate process variables at which the response attains its optimum. One of the approaches for
achieving the optimum results is the Design of Experiments (DOE) using the full Factorial
Methodology (FFM). Several experimental designs can be used for different objectives, just as the
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randomized block designs can be used for screening relevant factors (Aslan, 2008; Xiao & Vien,
2004).Some reports exist in literature of modeling methods been used in mineral and coal
processing operations (Akar Sen, 2016). Optimization and modeling studies of hydrocyclone for
treating Indian iron ore slime is an example (Mohanty & Das, 2010) as well as low-grade bentonite
(Özgen, Yıldız, Çalışkan, & Sabah, 2009). Response surface methodology has also been used to
assess the performance of the froth floatation on coal fines (Kalyani, Pallavika, Gouri Charan, &
Chaudhuri, 2005). A Second order quadratic model was created by using the response surface
methodology for separation of titanium bearing minerals from Indian beach sand minerals
(Gunaraj & Murugan, 1999). In this investigation, the experiments were carried out as per the
full factorial design, with an objective to develop the empirical models for predicting the maximum
percentage grade in concentrate fraction of the centrifugal concentrator while treating waste CSD.
The optimum conditions were obtained for achieving maximum grade and recovery of the con-
centrate fraction. The effects of different operating parameters Fluidized water flow rate (FWFR),
Rotational bowl speed (RBS) on percentage grade of copper and its closely associated contami-
nants in concentrate fraction while treating waste CSD are presented.

2. Experimental

2.1. Materials

2.1.1. Ore handling and sampling
Precisely 120 kg of waste CSD was received from Palabora Copper (PTY) Ltd, Limpopo, Republic of
South Africa for the purpose of this study. The homogenization of the as-received waste CSD
sample was carried out first by re-weighing it before subjecting it to coning and quartering
method. The homogenized waste CSD was separate into two categories—undersized and oversized
particles with a 300 micron sieve. The oversized particles were afterwards milled and sieved with
the same 300 micron sieve and the produced undersized particles were mixed with the previously
produced undersized waste CSD (segment diameter d97 = 300 micron). After the milling and sieving
exercise, the amount of particles with diameter less than 300 micron increased from 90.82% of
total number of particles in the sample to 95.59%.This change is shown by the distribution curve
before (Figure 2(a)) and after sample preparation (Figure 2(b)). After milling, the distribution curve
(Figure 2(b)) became skewed to the left making the distribution asymmetric.

2.2. Methods

2.2.1. Design of experiment (DOE) for centrifugal separation experiment
The DOE is based on principles of experimental design, mathematical equations or models and
outcomes of the factors. In the present study, the FFM was used to determine the interaction

Figure 1. Cut away schematic of
a Knelson Centrifugal
Concentrator (Rahil Khan, 2016).
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between the response functions of maximum copper content, minimum contaminant content
(quartz and mullite) and the two operating variables (FWFR and RBS). The FFM contains all likely
combinations of the operating variables (factors). The effect of all factors and interaction
effects on the responses are investigated methodically. The centrifugal separation experiments
were conducted using a laboratory scale Knelson gravity concentrator (KGC) with model
number KC-MD3, at the Gravity Concentrators Africa (GCA), Republic of South Africa. The
variables together with the levels considered and the DOE for the test program are shown
in Tables 2 and 3.

2.2.2. Modeling
2.2.2.1. Modeling procedure for output prediction. Software MATLAB 7.1 was used to perform data
processing according to full factorial design procedure.

Step #1: Study trend of experimental samples

Step #2: Set-up constraint models to categorize and group samples into sub-classes based on #1.

Step #3: Compute absolute difference between input andoutput samples in same class as grouped in #2.

Step #4: identify different experimental levels for selected classes.

Step #5: Apply interpolant model

Step #6: End

Table 4 is a generalized representation of the interpolant model variables. Herein, the assumed
unknown output is for row one hence $1 is first computed. The Predicted output model Oo1 is trend
driven and constraint based as presented in the following sub-section. Table 4 can however be
adapted to compute $2 and $3 as the case may be.

Given: Output =

Output ¼ fðspeed; flow rate; input; feed rate; liquid solid ratioÞ

Let: serial number for inputs: si ¼ 1; ::::;n� 1;nf g and serial number for outputs so ¼ 1; ::::;n� 1;nf g
for "n 2 R

Where:

tsðiÞi;j ¼ Total available input samples

tsðoÞi;j ¼ Total available output samples

expðiÞi;j ¼ Experimental inputs

Figure 2. Particle size distribu-
tion: A) As-receivedwaste CSD B)
milled waste CSD (Okanigbe,
Popoola, Adeleke, & Popoola,
2018).
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expðoÞi;j ¼ Experimental outputs

Pr eðoÞi;j ¼ Pr edictive outputs

Iij ¼ % input proportion of selected samples

Oij ¼ % output proportion of selected samples

ΔIOi;j ¼ Iij � Oi;j

���
��� absolute difference between Iij and Ooj

Where:

j ¼ 1; :::; k� 1; kf g

representing experimental levels

Given the following absolute differences between Iij and Ooj

Ii1 � Oo1

�� �� ¼ $1

jIi2 � Oo2 j ¼ $2

Ii3 � Oo3

�� �� ¼ $3

Where, poj (output) is constraint specific.

“Absolute difference” model with respect to Table 4 is given as:

$1 ¼ ½ $3ðϕ2 � ϕ1Þ �$2ðϕ2 � ϕ1Þ �$2ðϕ3 � ϕ2Þ
ðϕ2 � ϕ3Þ

� (1)

$2 ¼ ½ $3ðϕ2 � ϕ1Þ þ$1ðϕ3 � ϕ2Þ
ðϕ3 � ϕ2Þ þ ðϕ2 � ϕ1Þ

� (2)

$3 ¼ ½ $1ðϕ2 � ϕ3Þ þ$2ðϕ3 � ϕ2Þ þ$2ðϕ2 � ϕ1Þ
ðϕ2 � ϕ1Þ

� (3)

2.2.2.2. Different experimental conditions and constraints.

i. Modeling constraints for [CuO] prediction

Given:LSR = 0.5; FR = 1.48 constants for all experiments

Pr edictive Output : O1;1 ¼ I1;1 þ ΔIO1;1

O1;2 ¼ I1;2 þ ΔIO1;2

O1;3 ¼ I1;3 þ ΔIO1;3

Output ¼ fðFWFR; RBS; LSR; FRÞ ¼

s : 1 ! s ! 3

i : 17:22 ! CuO ! 16:61

o : 25:17 ! CuO ! 18:43

3 � FWFR � 6

RBS : 60

8>>>>>><
>>>>>>:

(4)
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Pr edictive Output : O2;1 ¼ I2;1 þ ΔIO2;1

O2;2 ¼ I2;2 þ ΔIO2;2

O2;3 ¼ I2;3 þ ΔIO2;3

Output ¼ fðFWFR; RBS; LSR; FRÞ ¼

s : 4 � s � 6

i : 16:42 ! CuO ! 16:05

o : 30:08 ! CuO ! 23:74

3 � FWFR � 6

RBS : 90

8>>>>>><
>>>>>>:

(5)

Pr edictive Output : O3;1 ¼ I3;1 þ ΔIO3;1

O3;2 ¼ I3;2 þ ΔIO3;2

O3;3 ¼ I3;3 þ ΔIO3;3

Output ¼ fðFWFR; RBS; LSR; FRÞ ¼

s : 7 � s � 9

i : 16:56 ! CuO ! 15:99

o : 35:02 ! CuO ! 24:03

3 � FWFR � 6

RBS : 120

8>>>>>><
>>>>>>:

(6)

ii. Modeling constraints for [Fe2O3] prediction

Pr edictive Output : O1;1 ¼ I1;1 þ ΔIO1;1

O1;2 ¼ I1;2 þ ΔIO1;2

O1;3 ¼ I1;3 þ ΔIO1;3

Output ¼ fðFWFR; RBS; LSR; FRÞ ¼

s : 1 � s � 3

i : 11:26 ! Fe2O3 ! 10:63

o : 21:90 ! Fe2O3 ! 15:75

3 � FWFR � 6

RBS : 60

8>>>>>><
>>>>>>:

(7)

Pr edictive Output : O3;1 ¼ I3;1 þ ΔIO3;1

O3;2 ¼ I3;2 þ ΔIO3;2

O3;3 ¼ I3;3 þ ΔIO3;3

Output ¼ fðFWFR; RBS; LSR; FRÞ ¼

s : 7 � s � 9

i : 11:36 ! Fe2O3 ! 11:03

o : 26:18 ! Fe2O3 ! 21:49

3 � FWFR � 6
RBS : 120

8>>>>>><
>>>>>>:

(8)

iii. Modelling constraints for [SiO2] prediction

Pr edictive Output : O1;1 ¼ I1;1 � ΔIO1;1

O1;2 ¼ I1;2 � ΔIO1;2

O1;3 ¼ I1;3 � ΔIO1;3

Output ¼ fðFWFR; RBS; LSR; FRÞ ¼

s : 1 � s � 3

i : 35:34 ! SiO2 ! 36:29

o : 22:97 ! SiO2 ! 31:36
3 � FWFR � 6

RBS : 60

8>>>>>><
>>>>>>:

(9)
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Pr edictive Output : O2;1 ¼ I2;1 � ΔIO2;1

O2;2 ¼ I2;2 � ΔIO2;2

O2;3 ¼ I2;3 � ΔIO2;3

Output ¼ fðFWFR; RBS; LSR; FRÞ ¼

s : 4 � s � 6

i : 35:3 ! SiO2 ! 35:69

o : 18:10 ! SiO2 ! 24:93

3 � FWFR � 6

RBS : 90

8>>>>>><
>>>>>>:

(10)

Pr edictive Output : O3;1 ¼ I3;1 � ΔIO3;1

O3;2 ¼ I3;2 � ΔIO3;2

O3;3 ¼ I3;3 � ΔIO3;3

Output ¼ fðFWFR; RBS; LSR; FRÞ ¼

s : 7 � s � 9

i : 35:4 ! SiO2 ! 35:85

o : 14:58 ! SiO2 ! 24:14

3 � FWFR � 6

RBS : 120

8>>>>>><
>>>>>>:

(11)

iv. Modelling constraints for [Al2O3] prediction

Pr edictive Output : O1;1 ¼ I1;1 � ΔIO1;1

O1;2 ¼ I1;2 � ΔIO1;2

O1;3 ¼ I1;3 � ΔIO1;3

Output ¼ fðFWFR; RBS; LSR; FRÞ ¼

s : 1 � s � 3

i : 27:45 ! Al2O3 ! 28:38

o : 18:08 ! Al2O3 ! 24:67

3 � FWFR � 6

RBS : 60

8>>>>>><
>>>>>>:

(12)

Pr edictive Output : O2;1 ¼ I2;1 � ΔIO2;1

O2;2 ¼ I2;2 � ΔIO2;2

O2;3 ¼ I2;3 � ΔIO2;3

Output ¼ fðFWFR; RBS; LSR; FRÞ ¼

s : 4 � s � 6

i : 27:64 ! Al2O3 ! 27:96

o : 13:98 ! Al2O3 ! 19:32

3 � FWFR � 6
RBS : 90

8>>>>>><
>>>>>>:

(13)

Pr edictive Output : O3;1 ¼ I3;1 � ΔIO3;1

O3;2 ¼ I3;2 � ΔIO3;2

O3;3 ¼ I3;3 � ΔIO3;3

Output ¼ fðFWFR; RBS; LSR; FRÞ ¼

s : 7 � s � 9

i : 27:59 ! Al2O3 ! 28:04

o : 10:29 ! Al2O3 ! 18:93

3 � FWFR � 6
RBS : 120

8>>>>>><
>>>>>>:

(14)

Expressions (4) to (14) represent the different constraint interpolant models proposed for this
research. The constraint models are experiment specific with a corresponding positive or nega-
tive incremental difference between the input and output experimental proportion.
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A complimentary curve fitting model of 10th order polynomial was also presented as shown in
Equations (15)–(19).The 10th order polynomial curve fitting was adjudged the best fitment for
this experiment amongst the different fitment option. While (15) represents a generalized form
of the polynomial functions, (16)–(19) are specific functions with-respect-to the different con-
centrates in the mix.

y ¼ P1x10 þ P2x9 þ P3x8 þ P4x7 þ P5x6 þ P6x5 þ P7x4 þ P8x3 þ P9x2 þ P10xþ P11 � e (15)

CuO (w%)

y ¼ �1:1 � 10�7x10 þ 10�5x9 � 0:00039x8 þ 0:0081x7 � 0:1x6 þ 0:75x5 � 3:3x4 þ 8:1x3

� 9:8x2 þ 1:9xþ 28� e (16)

Fe2O3 (w%)

y ¼ �3:1 � 10�8x10 þ 2:5 � 10�6x9 � 7:4 � 10�5x8 þ 0:00092x7 þ 0:00058x6 � 0:15x5

þ 1:8x4 � 9:5x3 þ 26x2 � 35xþ 39� e (17)

SiO3 (w%)

y ¼ 10�7x10 � 8:9 � 10�6x9 þ 0:00033x8 � 0:0065x7 þ 0:073x6 � 0:45x5 þ 1:3x4

þ 0:12x3 � 9:4x2 þ 21xþ 10� e (18)

Al2O3 (w%)

y ¼ 9:610�8x10 � 8:7 � 10�6x9 þ 0:00033x8 � 0:0068x7 þ 0:081x6 � 0:58x5 þ 2:3x4

� 4:5x3 þ 2:3x2 þ 5:9xþ 13� e (19)

where e ¼ error factor

2.2.2.3. Optimum experimental trend and condition. This section presents both the optimum
experimental condition and optimum experimental trend represented in a generalized mathematical
expression. The optimum and most viable experimental condition is directly linked to the maximiza-
tion of the reduction process of dominant SiO2 and Al2O3 (Silica and Alumina) impurity in the
resultant concentrates while also maximizing the recovery of CuO and Fe2O3 (Copper oxide and
Iron oxide) in the same concentrates. Having a prior knowledge of optimum conditions and optimum
experimental trend can be of tremendous benefit in setting up a future design of experiment for
a similar behaved waste CSD. The optimum experimental condition for this research takes place
when the RBS increases with extremely low values for the FWFR as shown in Table 1 and Figures 4–6.
The optimum experimental condition was recorded for a RBS of 120G and FWFR of 3.0l/min. This
experimental condition resulted in a maximum output of CuO and Fe2O3 at respective values of
35.02 wt% and 26.18 wt%. The corresponding global minimum outputs for SiO2 and Al2O3 are
respectively 14.58 wt% and 10.29 wt%. The first expression in (20) is a trend indicator which
shows that increasing the value of RBS along the positive Cartesian plane combined with
a decreased value of FWFR along the positive Cartesian plane would result in a maximum recovery
of Fe2O3 and CuO and minimum recovery of SiO2 and Al2O3.The second expression indicates that
a decrement of RBS along the negative Cartesian plane coupled with an increment of FWFR along
the negative Cartesian plane would also result in a maximum recovery of CuO and Fe2O3 and
a minimum recovery of both SiO2 and Al2O3 impurities. Similarly, expression number three of (20)
indicates that an increment in RBS combined with a corresponding increase of FWFR along
a negative Cartesian plane would result in a maximum recovery of the desired CuO and Fe2O3 and
a minimum recovery of the contaminants SiO2 and Al2O3. Finally, the fourth expression of (20)
indicates that a decrease of RBS along the negative Cartesian plane coupled with a decrease of
FWFR along the positive Cartesian plane would result in a maximum recovery of Fe2O3 and CuO
concentrates and a minimum recovery of the undesired SiO2 and Al2O3 concentrates.
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½ð" þRBSÞ\ ð# þFWFRÞ�
or

½ð# �RBSÞ\ ð" �FWFRÞ�
or

½ð" þRBSÞ\ ð" �FWFRÞ�
or

½ð# �RBSÞ\ ð# þFWFRÞ�

(20)

Where
"¼ increment in the positiveðþveÞ or negativeð�veÞdirection
#¼ decrement in the positiveðþveÞ or negativeð�veÞdirection

3. Results and discussion
This section presents the simulation results of this research in two folds viz: experimentation and
predictive outputs Firstly, considering the experimental procedure, it should be noted that the
experiments were carried out using the KGC to separate the copper minerals from the closely
associated impurities in the waste CSD. The experimental outputs of the beneficiation process
alongside the respective operating conditions are presented in Table 4. The predictive outputs
presented in Table 1 were obtained using an interpolant interval of 0.75units within the FWFR
levels. At this interval, the entire experimental outputs as presented in Table 1 were adequately
recovered for the different input feed concentrates viz: CuO, Fe2O3, SiO2, and Al2O3. The maximum
error obtained between the predicted and experimental outputs is 1.86units. This is contained in

Table 2. Parameters considered at three levels for the KGC

S/N Variable (factor) Low (0) Medium (1) High (2)

X1 Rotational bowl speed (G) 60 90 120

X2 water flow rate (l/min) 3.0 4.5 6.0

Table 3. DOE for centrifugal separation of the waste CSD using the 32 full factorial design

Tests Rotational bowl
speed (G)

Water Flow rate (l/
min)

Treatment
Combination

1 0 0 00

2 0 1 01

3 0 2 02

4 1 0 10

5 1 1 11

6 1 2 12

7 2 0 20

8 2 1 21

9 2 2 22

Key: 0 = low Water Flow rate (3.0l/min) or Rotational bowl speed (60G); 1 = Water Flow rate (4.5l/min) or Rotational bowl
speed (90G); 2 = Water Flow rate (6.0l/min) or Rotational bowl speed (120G)

Table 4. Generalized representation of model variables

Level Data
Acquisition
Procedure

Input value
for variant
factor Ii j

Output
values for

variant factor
Ooj

Expt. Levels
ϕ1

Absolute
difference
between
lij and Ooj

1-First Prediction Ii1 Oo1 ϕ1 Ii1 � Oo1j j ¼ $1

2-second Experiment Ii2 Oo2 ϕ2 Ii2 � Oo2j j ¼ $2

3-Third Experiment Ii3 Oo3 ϕ3 Ii3 � Oo3j j ¼ $3
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serial number 6 of Table 1 and under the CuO column. The experimental output herein is 23.74 wt
% while the predicted is 25wt%. The predicted intervals without experimentations for varying
levels of RBS and FWFR are with a high degree of accuracy ranging between 95 and 99% based on
the extremely minimal discrepancy between the experimented and predicted outputs. In addition,
Figures 3 through 6 present a graphical representation of specific predicted outputs and corre-
sponding FWFR levels.

The graphical trend for CuO as contained in Figure 3 presents the lowest predictive value of
18.43 wt% when FWFR is 6.0 l/min with a RBS value of 60G. The highest predictive value of
35.02 wt% was obtained as RBS increased to 120G and for a corresponding lowest value of 3.0l/
min for FWFR. In Figure 4, results for Fe2O3 are presented with an observed output trend similar
to that of Figure 3. The least predictive value of 15.76 wt% was obtained for RBS of 60G and
FWFR of 6.0 l/min. A higher value was obtained for CuO over Fe2O3 as the RBS increased to
a peak value of 120G perhaps due to a much higher concentration criterion (CC) between CuO

Figure 3. Experimental and
Predictive Output for CuO.

Figure 4. Experimental and
Predictive Output for Fe2O3.
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(specific gravity (S.G.) of 6.50) and the impurities-SiO2- (specific gravity of 2.13) and Al2O3

-(specific gravity of 3.4) than for the CC between Fe2O3 (specific gravity of 4.2) and the same
impurities in the waste CSD amongst other factors. As mentioned earlier, the two major
impurities present in the experimental waste CSD includes: SiO2 and Al2O3. Unlike the beha-
vioral pattern presented by outputs of CuO and Fe2O3 compounds, Sio2 and Al2O3 compounds
as respectively shown in Figures 5 and 6 both have peak predictive outputs of 31.37 wt% and
24.68 wt% at the least RBS of 60G and a corresponding FWFR value of 6.0 l/min. Similarly, the
least predictive output values for Sio2 and Al2O3 were obtained while RBS was high at 120G at
a corresponding low FWFR value of 3l/min. The accuracy of the experimentation process is
reflected in the output data. Also, the impact of the predicted data in this research firstly, lies in
the area of experimental cost savings by avoiding set-up costs, resource acquisition cost, cost
of safety adherence and accidents amongst others. Furthermore is the facilitation of an
efficient and effective long and short-term planning process prior to the conduct of an experi-
ment. In addition, on comparing the predicted data (premised on the constrained interpolant

Figure 5. Experimental and
Predictive Output for SiO2.

Figure 6. Experimental and
Predictive Output for Al2O3.
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model) with the experimental data, a high level of statistical correlation was recorded. While
CuO had a least square correlation coefficient of 0.992, Fe2O3, SiO2 and Al2O3, respectively, had
correlation coefficients of 1.000.

4. Conclusion
On a generalized note, this research has effectively demonstrated some competence by
showing how the interactive effects of statistical attributes such as factorial design, optimum
conditions etc., related to an experiment can be applied on experimental data for the accurate
prediction of computational data. This can be linked to the work presented by Fagade, Tande,
Cho, Seames, Sakodynskaya, Muggli, & Kozliak (2013) which stated that statistical study-
specific terms such as “effect,” “factorial design,” “interaction effect,” “factors,” “optimum
condition” etc. are not common terminologies for general readers. Furthermore, this research
has presented the experimental classification and mathematical prediction of Copper mineral
in close association with contaminants in the waste CSD using the Knelson centrifugal gravity
concentrator. The classification and predictive efforts in this research were achieved by setting
up optimum combinations of the process parameters for the centrifugal concentrator. The four
process parameters considered in this study include: FWFR, RBS, Flow rate of 1.48l/min and
a Liquid to Solid Ratio of 0.5. The model proposed in this research was developed to maximize
Cu output and minimize the output of SiO2 and Al2O3 impurities. The following deductions were
reached in this research:

● KGC separated the waste CSD’s particles into light and heavy minerals with maximum CuO
recovery and minimum SiO2 and Al2O3 recoveries in the resultant concentrates.

● Optimum separation conditions (giving highest CuO content and reduced amount of contami-
nants in concentrate) were: FWFR 3.0 l/min. and RBS 120G.

● Maximum grade of copper was achieved under Test 7 (As-received waste CSD −16.56 wt%,
concentrate −35.02 wt%) compared to that obtained under Test 4 (As- received waste CSD
−16.42wt%, concentrate −30.08 wt %), the closest to it.

● The same Test 7 produced a concentrate with the least quartz content (As- received waste
CSD −35.34 wt%, concentrate −14.58wt %) and mullite content (As- received waste CSD
−27.59 wt%, concentrate −10.29wt %) compared to that produced under Test 4 with content
of quartz (As- received waste CSD −35.30wt%, concentrate −18.10wt %) and mullite (As-
received waste CSD −27.64wt%, concentrate—13.98 wt%).

● The predicted values obtained using the models were in good agreement with the observed
values with an error margin between 0.00 and 0.06%.

● Both variables considered i.e. FWFR and RBS had major influence on the experimentation
process of the concentrates from the centrifugal concentrator.

● From the model, further outputs can be generated without any laboratory experimental effort.

● Future predictive work would present an automated algorithm capable of considering two or
more experimental varying factors.
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