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Abstract

Heat stress-induced sperm DNA damage has recently been demonstrated in boars during

tropical summer; which could negatively impact early embryo survival and litter size in sows.

Given the boar’s inefficient capacity to sweat, non-pendulous scrotum and low antioxidant

activity in seminal plasma, elevated endogenous levels of antioxidants are needed to com-

bat reactive oxygen species induced during periods of heat stress. This should prevent the

build-up of pathological levels of DNA damage in boar spermatozoa. Our aim was to investi-

gate whether a combined antioxidant supplement could mitigate sperm DNA damage in

boars exposed to tropical summer conditions. Terminal deoxynucleotidyl transferase dUTP

nick end labelling and flow cytometry of 20,000 spermatozoa/boar/treatment revealed that

boar diets supplemented with 100 g/day custom-mixed antioxidant during peak wet summer

effectively reduced sperm DNA damage by as much as 55% after 42 and 84 days treatment

respectively (16.1 ± 4.9 peak wet control vs. 9.9 ± 4.5 42 day vs. 7.2 ± 1.6% 84 day treat-

ments; P� 0.05). Supplementation did not improve sperm concentration beyond control lev-

els for either season (P > 0.05); nor alter total motility, progressive motility or several other

motion parameters measured by computer assisted sperm analysis of 20 x 106 sperm/mL at

38˚C (P > 0.05). Antioxidant supplementation during tropical summer appears to mitigate

the negative impact of heat stress on DNA integrity but not concentration nor motility of boar

spermatozoa; which may provide one solution to the problem of summer infertility in the pig.

Introduction

Tropical countries such as Brazil, Vietnam, The Philippines and Mexico are among the top 10

pork producers globally [1]. Pig production during summer in the tropics can be impacted
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considerably by the phenomenon of seasonal or summer infertility. Summer temperature and

humidity can predispose pigs to heat stress when ambient temperatures rise beyond the ani-

mal’s thermal comfort zone at about 18–20˚ C [2, 3]. This consequently affects food and water

consumption, general comfort and reproductive performance, causing significant reduction in

profitability. In pigs, poor reproductive performance due to summer infertility has been asso-

ciated with reduced expression of oestrus and increased pregnancy failure in females [4, 5],

and decreased breeding efficiency in males [6, 7].

While the sow plays a central role in overall reproductive success, the inefficient capacity to

sweat, non-pendulous scrotum, and the high susceptibility of spermatozoa to temperature

shock [8–11], makes the boar particularly vulnerable to the effects of heat stress. Moreover,

ambient temperatures above 29˚C causes impaired spermatogenesis in Large White boars

[12]. Overall, fertility of heat stressed boars is known to be affected by multi-faceted declines in

sperm concentration [13], motility and morphology [14, 15], testosterone production [16],

ejaculate volume [13] and libido [17].

The relatively high unsaturated fatty acids in the plasma membrane [18] and low antioxi-

dant activity of seminal plasma [19], all contribute to boar sperm’s high sensitivity to peroxida-

tive stress (free radical-mediated oxidative deterioration of polyunsaturated lipids) which can

lead to sperm DNA damage during periods of heat stress [20]. Studies in mice show that heat

stress induces sperm DNA damage, leading to arrested embryo development and ultimately

foetal loss [21]. Our group has recently demonstrated that tropical summer induces 16% DNA

damage and reduces concentration of boar spermatozoa without depressing motility [22].

Sperm with greater than 6% DNA fragmentation results in decreased farrowing rates [23];

and, in another study, reduced litter size when sperm DNA fragmentation was greater than

2.1% [24]. Thus, heat stress-induced DNA damaged boar spermatozoa may contribute signifi-

cantly to early embryo loss in sows.

Antioxidants are substances that inhibit oxidation and ultimately cell damage by neutralis-

ing free radicals [25]. Antioxidant supplementation is a common practice geared towards com-

bating oxidative stress and optimising the overall health conditions of many animals but more

so particularly in commercial animal production when the demands for growth and reproduc-

tion are high [26–29]. In boars specifically, several antioxidants have been identified that

improve various sperm quality parameters including Vitamin C [30–32], zinc [33], selenium

and Vitamin E [34–36], glutathione [37], and garlic powder [38] among others. Nevertheless,

there appears to be no substantial reports demonstrating the benefit of antioxidant supplemen-

tation on boar sperm DNA integrity in vivo; although one in vitro experimental study in which

the antioxidant was directly added to the semen extender has been described [39]. In humans,

oral administration of 1 g vitamin C and 1 g vitamin E daily for two months [40] or a cocktail

of various antioxidants for three months [41], has resulted in improved sperm DNA integrity

in men with unexplained infertility and elevated levels of sperm DNA damage. By contrast,

another study demonstrated decondensation of sperm DNA after antioxidant supplementa-

tion, making it vulnerable to damage, ultimately causing a negative impact on male fertility

[42].

Exogenous antioxidant supplementation has been used previously in commercial piggeries

to improve overall productivity. In the boar, antioxidants have been shown to improve sperm

motility, sperm membrane lipid architecture, mitochondrial membrane potential, viability,

survivability and storage, acrosome integrity and functional status, among others [33, 43–45].

While other studies conclude that antioxidants provide little or no value to boar sperm health

[34]. Conclusive evidence regarding the effectiveness of antioxidant supplementation to pro-

tect boar sperm DNA integrity are limited or at times conflicting; and appear to be related to

the specific antioxidant and dosage used, or boar-specific factors [39, 46]. Supplementing anti-
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lipid peroxidases to thawing and incubation media of frozen-thawed boar spermatozoa pro-

tects against DNA fragmentation [47], while the opposite occurs in the presence of glutathione

[48]. Nevertheless, improvements in sperm DNA after antioxidant supplementation has been

demonstrated in other species such as cattle [49], cats [50] and humans [40, 41]. More specifi-

cally, 3 months ingestion of a commercial oral multi-antioxidant supplement comprised of

folic acid, zinc, selenium, Vitamins C and E, and garlic resulted in improved sperm DNA

integrity, protamine packaging and reduction in seminal reactive oxygen species (ROS) pro-

duction in infertile men [41]. Such a cocktail of antioxidants are known to either directly neu-

tralize ROS and/or bolster sperm DNA synthesis and protamine packaging [51–54]. To date

however, there are no substantial reports validating the potential benefits of antioxidant sup-

plementation on boar sperm DNA integrity. Moreover, it is known that heat stress is associ-

ated with reduced expression of oxidative stress-induced antioxidants [55]. As such, we

hypothesize that a multi-antioxidant supplement might act synergistically to bolster boar

sperm DNA more effectively during periods of heat stress. Therefore, the aim of this study was

to investigate whether a combined antioxidant supplement could mitigate sperm DNA dam-

age in boars exposed to tropical summer conditions.

Materials and methods

Boars and location

Five Large White boars between 3–3.5 years of age were housed and maintained in an open,

gable roof-type facility within individual 3 x 3 metre pens at the College of Public Health, Med-

ical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia (19˚

19’46.4"S, 146˚45’40.3"E). For inclusion in the study, boars must have met the following mini-

mum standards: having spermatozoa of at least 70% total motility, 65% normal morphology

and an ejaculate volume of at least 100 mL. Boars were exposed to prevailing winds and ambi-

ent temperatures throughout the day. Each boar was fed 2.3–2.8 kg/day of a commercial pel-

leted diet (Barastoc, Ridley AgriProducts, Victoria, Australia) to maintain a body score

between 3–3.5. Water was provided ad libitum via an automatic pig nipple waterer. Experi-

ments were approved by the James Cook University Animal Ethics Committee.

Climate data

Temperature and relative humidity in Townsville spanning the 42-day period immediately

before semen was collected were obtained from the Australian Bureau of Meteorology. This

period corresponds to approximately one complete cycle of spermatogenesis in this species

[56, 57], during which boars where exposed to ambient environmental conditions. Town-

sville’s weather, climatic conditions and the procedures by which values for temperature,

humidity and temperature-humidity index (THI) were generated were as previously described

[22].

Antioxidant supplementation

Boars were fed 100 g per boar per day custom-mixed multi-antioxidant supplement (PG581

JCU) for 42 and 84 days respectively during the peak wet (hot and wet; January to April 2016)

and early dry (cool and dry; May to August 2016) seasons, and semen samples collected and

compared to those from the same boars exposed to the peak wet and early dry seasons of the

previous year without supplement (February and end of May 2015 respectively). One boar

was excluded from the study in the early dry season during the 42-day treatment and a second

during the 84-day treatment due to illness. The antioxidant (PG581 JCU) was mixed by a
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commercial animal feed manufacturer (Rabar Pty Ltd, Queensland, Australia) and contained

multiple ingredients including Vitamin E, Vitamin C, Folic acid, β-carotene, Zinc, Selenium,

Garlic powder and pollard (as a carrier; Table 1). The ingredients of the antioxidant supple-

ment were based on previous studies showing relevant improvements in the quality of boar or

human sperm after supplementation [33, 35, 41, 43–45]. At the time of feeding, 100 g of anti-

oxidant was thoroughly mixed into the first half of the basal feed and given to each boar. The

second half of the basal ration was given once the boar had fully consumed the first half to

ensure the full antioxidant dose was taken each day.

Semen collection and processing

At the end of each treatment and from controls, semen was collected from the same n = 5

boars using a dummy sow (Minitube, USA) and gloved hand technique [58]. Briefly, the boar’s

penis was directed into a plastic semen collection bag fitted inside a collection cup and covered

with non-woven tissue filters (all Minitube, Victoria, Australia) to remove the gel fraction. The

collection bag was then placed inside an insulated container containing 38˚C water and imme-

diately brought to the laboratory for processing. Raw semen from each boar was diluted 1:3

with 38˚C pre-warmed Beltsville Thawing Solution (BTS; pH 7.2 [22, 59]). All reagents were

sourced from Sigma-Aldrich (Sydney, New South Wales, Australia), unless otherwise stated.

One aliquot was evaluated for sperm concentration using a Neubauer haemocytometer, using

standard protocols [60], a second aliquot adjusted to 20 x 106 sperm/mL in BTS for evaluation

of sperm motility characteristics using a computer-assisted sperm analyser (CASA; IVOS ver-

sion 10, Hamilton Thorne Research, Beverly, MA, USA), and a third aliquot evaluated for

DNA damage.

Determination of motility characteristics by CASA

Motility and sperm head characteristics were derived from at least 200 spermatozoa across five

random fields. This was achieved by loading each chamber of 38˚C pre-warmed Leja Standard

Count 4 Chamber Slides (Leja Products, Nieuw-Vennep, Netherlands) with 3 μL of 20 x 106

sperm/mL semen in BTS as previously described [61]. The CASA software was calibrated to

the following settings: analysis set-up #7: BOAR; frames acquired, 40/sec; frame rate, 50 Hz;

minimum contrast, 60%; minimum cell size, two pixels; minimum static contrast, 30%;

straightness threshold, 71.4%; low average-path velocity (VAP) cut-off, 5.0 μm/sec; medium

VAP cut-off, 22.0 μm/sec; low straight-line velocity (VSL) cut-off, 11.0 μm/sec; head size (non-

motile), two pixels; head intensity (non-motile), 70 pixels; static head size, 0.10–10.0 pixels;

Table 1. Composition of custom-made antioxidant supplement PG581 JCU.

Ingredient Active level in premix (mg/kg)

Vitamin E 3,250

Vitamin C 25,000

Folic Acid 330

β-carotene 2,250

Zinc† 250

Selenium 6

Garlic Powder 75,000

Pollard �

� acts as carrier
† as zinc sulphate preparation

https://doi.org/10.1371/journal.pone.0216143.t001
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static head intensity, 0.10–0.95 pixels; static elongation, 0–60; count slow cells as motile, YES;

magnification, 3.20; video source, camera; video frequency, 50; brightfield, NO; illumination

intensity, 2381 and temperature, 38˚C. The following characteristics were evaluated: total

motility, progressive motility of the whole sample, average-path velocity (VAP; μm/sec),

straight-line velocity (VSL; μm/sec), curvilinear velocity (VCL; μm/sec), amplitude of lateral

head displacement (ALH; μm), beat cross frequency (BCF; Hz), straightness (STR; ratio of

VSL/VAP), linearity (LIN; ratio of VSL/VCL) and elongation (ELO; ratio in % of head width

to head length) as previously described [61, 62].

Sperm DNA integrity assay and flow cytometry analysis

The procedures used for sperm DNA integrity analysis were as described by Peña et al. [22].

Briefly, BTS-diluted semen samples were purified by Percoll gradient centrifugation to remove

seminal plasma and possibly dead and damaged spermatozoa [63]. The final sperm pellet was

adjusted to 5 x 106 sperm/mL in BTS. Boar spermatozoa was stained using the Terminal deox-

ynucleotidyl transferase dUTP nick end labelling assay according to manufacturer’s instruc-

tions (TUNEL; In Situ Cell Death Detection Kit, Fluorescein, Version 17, Nov 2012, Roche

Diagnostics, Mannheim, Germany) with modifications. Six control samples (2 positive, 2 neg-

ative, and 2 unlabelled) were prepared in parallel using pooled semen. These were used to

accurately gate different populations of spermatozoa in the flow cytometer before experimental

samples were analysed as previously described [22]. The TUNEL reaction labels DNA dam-

aged cells positive for Fluorescein isothiocyanate (FITC). Positive controls (P1 and P2) and all

test samples were incubated in 50 μL TUNEL reaction mixture containing enzyme while the

Negative controls (N1 and N2) were incubated in TUNEL labelling solution without the

enzyme. Unlabelled controls (U1 and U2) were incubated in PBS. Moreover, U2, N2, P2 and

all test samples were subsequently incubated with 5 μg/mL of the nucleic acid stain 4’, 6-diami-

dino-2-phenylindole (DAPI) in PBS for 20 min at room temperature to ensure that only nucle-

ated TUNEL-positive spermatozoa were accounted for as DNA damaged cells during analysis

by FACS. The specificity of sperm staining was validated using fluorescent microscopy [22],

and showed FITC/DAPI positive DNA damaged sperm heads in green alongside DAPI posi-

tive DNA intact boar sperm heads in blue.

All samples were evaluated using a CyanADP flow cytometer (Dako Cytomation, Glostrup,

Denmark). Spermatozoa were identified by their forward and side scatter profiles using a scat-

ter-area vs. scatter-height gate previously calibrated specifically for boar spermatozoa. Data

were analysed using Summit 4.3 software (Dako Cytomation). The flow cytometer was set to

analyse 20,000 cells per sample at about 150 events/sec. Prior to evaluating test samples, con-

trol samples were used to accurately define the different cell staining populations delineated

into four distinct quadrants by adjusting both vertical and horizontal thresholds: (i) R3, FITC-

positive cells only; (ii) R4, both FITC and DAPI-positive cells; (iii) R5, unstained cells; and (iv)

R6, DAPI-positive cells only [22]. Sample N2 (Negative control in Label Solution with DAPI)

was used to set a 0.5% threshold cut-off before running all test samples. Cells in R4 were desig-

nated as nucleated DNA damaged spermatozoa, expressed as a percentage of the total number

of cells analysed within the gated area.

Data presentation and statistical analyses

Standard tests to check for normality and variance in the data were performed using the Sha-

piro-Wilk test and Levene’s test, respectively and data were transformed using Log10 where

necessary before any statistical analysis was done. Differences in test parameters were analysed

using the parametric paired sample tests (sperm DNA damage, sperm concentration and most
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CASA parameters) or independent sample T-tests (involving the 42 and 84 days antioxidant

supplementation in winter) in SPSS (SPSS Statistics version 22, IBM Corporation, NY, USA).

Where a parametric test was inappropriate (i.e. assumptions for parametric tests were not

met), a 2-sample related test (mean maximum, mean minimum and daily mean temperatures,

humidity and THI values) or Mann-Witney test (CASA parameters for VSL and ALH) was

used to determine if values were significantly different (P� 0.05).

Results

Daily mean temperatures spanning the 42-day period immediately prior to semen collection

were consistently hotter during peak wet than early dry season (P� 0.05, Table 2). Moreover,

daily mean temperatures were identical for the control and 42-day supplement groups during

either the peak wet or early dry seasons. Daily mean relative humidity was generally similar for

most treatments, ranging from 70–73%. However, the 84-day supplement group during the

peak wet was more humid while the early dry control was dryer. Daily mean temperature-

humidity index was consistently higher during the peak wet than early dry season (P� 0.05),

although values started to decline in the 84-day supplement groups during the peak wet, but

was lowest for the early dry season (P� 0.05).

Antioxidant supplementation of boars during the peak wet resulted in more than a 1.6 and

2.2-fold reduction of DNA-damaged spermatozoa after both 42 and 84 days treatment, respec-

tively (P� 0.05; Fig 1). Peak wet supplementation did not reduce DNA damage to basal levels

Table 2. Mean (± SEM) ambient temperature, relative humidity and temperature-humidity index in Townsville, North Queensland, Australia spanning the 42 day

treatment period immediately preceding semen collection during the peak wet and early dry seasons.

Peak Wet Control

(Feb 2015)

Peak Wet

+ 42 day Antiox

(Feb 2016)

Peak Wet

+ 84 day Antiox (Apr 2016)

Early Dry Control

(May 2015)

Early Dry

+ 42 day Antiox (Jun 2016)

Early Dry

+ 84 day Antiox (Aug 2016)

Ambient Temperature (˚C)

Daily Mean 29.2 ± 0.2a 29.3 ± 0.2a 27.3 ± 0.2b 24.2 ± 0.4c 23.7 ± 0.3c 21.1 ± 0.3d

Relative Humidity (%)

Daily Mean 71.4 ± 1.2bc 72.4 ± 1.0bc 77.1 ± 1.3a 61.9 ± 2.1d 73.0 ± 1.4ab 70.0 ± 2.3c

Temperature-Humidity Index (THI)

Daily Mean 92.9 ± 1.1a 93.4 ± 1.2a 86.3 ± 0.7b 75.8 ± 0.9c 75.5 ± 0.6c 70.2 ± 0.7d

Different letters indicate a significant difference between treatments (P� 0.05).

https://doi.org/10.1371/journal.pone.0216143.t002

Fig 1. Mean (± SEM) percentage of DNA damage in boar spermatozoa collected after no (control), 42 or 84 days

antioxidant supplementation during peak wet and early dry seasons. Different letters indicate significant difference

between treatment groups (P� 0.05); numbers in parenthesis indicate sample size.

https://doi.org/10.1371/journal.pone.0216143.g001
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observed during the early dry season, but values were similar to those observed during supple-

mentation in the early dry.

While sperm concentration was lower in the peak wet compared to early dry control

(P� 0.05; Fig 2), antioxidant supplementation did not improve sperm concentration beyond

control levels for either season (P> 0.05).

Total sperm motility was similar in the peak wet and early dry and this was not altered by

42 or 84-day treatment with antioxidants during either season (P> 0.05; Fig 3). Similarly, the

number of progressively motile spermatozoa were similar in the peak wet and early dry and

this was not altered by 42 or 84 day treatment with antioxidants during either season

(P� 0.05; Fig 4). However, there were more progressively motile spermatozoa after 84 days

antioxidant supplementation during early dry than peak wet season (P� 0.05).

Detailed sperm motility and head shape characteristics determined by CASA are shown in

Table 3. Average path velocity, straight-line velocity, curvilinear velocity, amplitude of lateral

head displacement and beat cross frequency were similar in the peak wet and early dry and

this was not altered by 42 or 84-day treatment with antioxidants during either season

(P> 0.05). Sperm elongation was higher after 42 days antioxidant supplementation in the

early dry but also after 84 days treatment in both early dry and peak wet seasons, respectively

(P� 0.05). Straightness and linearity of spermatozoa only increased compared to control after

84 days supplementation during the early dry season (P� 0.05).

Fig 2. Mean (± SEM) concentration of boar spermatozoa collected after no (control), 42 or 84 days antioxidant

supplementation during peak wet and early dry seasons. Different letters indicate a significant difference between

treatment groups (P� 0.05); numbers in parenthesis indicate sample size.

https://doi.org/10.1371/journal.pone.0216143.g002

Fig 3. Mean (± SEM) percentage of total motility of boar spermatozoa collected after no (control), 42 or 84 days

antioxidant supplementation during peak wet and early dry seasons. No significant difference between treatment

groups (P> 0.05); numbers in parenthesis indicate sample size.

https://doi.org/10.1371/journal.pone.0216143.g003
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Discussion

The negative impact of heat stress on sperm DNA integrity coupled with its downstream effect

on early embryo development [20], presents a new challenge to maintaining seasonal sperm

quality in boars [39, 64]. Here, we demonstrate for the first time the beneficial effect of a

multi-antioxidant supplement in reducing DNA damage in boar spermatozoa during periods

of tropical heat stress. Supplementation of boars at 100 g/day using a custom-made antioxidant

formula resulted in 38% to more than 55% reduction in sperm DNA damage after 42 and 84

days, respectively.

Baseline levels of sperm DNA damage occur naturally in the final stages of spermiogenesis

[65]. Physiologically, it helps to relieve torsional stress during the DNA packaging process into

the compact nucleus of the sperm head [65]. For example, our study has shown that the base-

line level of sperm DNA damage in boars raised under tropical conditions during the early dry

(when environmental temperature is cool) is about 1%. There are however, several additional

causes of sperm DNA damage including environmental stress, toxicants, pollution, infection,

poor nutrition and low antioxidant activity in the seminal plasma [65, 66]. Oxidative stress-

Fig 4. Mean (± SEM) percentage of progressively motile boar spermatozoa collected after no (control), 42 or 84

days antioxidant supplementation during peak wet and early dry seasons. Different letters indicate a significant

difference between treatment groups (P� 0.05); numbers in parenthesis indicate sample size.

https://doi.org/10.1371/journal.pone.0216143.g004

Table 3. Mean (± SEM) sperm motility and head shape characteristics in boar ejaculates collected after no (control), 42 days or 84 days antioxidant supplementa-

tion during peak wet and early dry seasons in Townsville, North Queensland, Australia.

CASA Parameters Peak Wet Control

(n = 5)

Peak Wet

+ 42 day Antiox

(n = 5)

Peak Wet

+ 84 day Antiox

(n = 5)

Early Dry Control

(n = 5)

Early Dry

+ 42 day Antiox

(n = 4)

Early Dry

+ 84 day Antiox

(n = 3)

VAP 26.7 ± 2.7 31.9 ± 2.7 32.5 ± 2.7 38.8 ± 4.5 33.8 ± 1.7 35.6 ± 2.1

VSL 22.2 ± 2.4 25.8 ± 2.5 26.8 ± 2.5 30.7 ± 3.5 28.9 ± 1.2 31.3 ± 2.1

VCL 45.9 ± 4.1 55.9 ± 4.5 52.7 ± 3.6 68.3 ± 7.0 56.2 ± 2.3 59.0 ± 2.3

ALH 2.3 ± 0.2 2.7 ± 0.2 2.5 ± 0.2 3.4 ± 0.3 2.7 ± 0.1 2.8 ± 0.1

BCF 21.1 ± 0.6 17.3 ± 0.6 16.9 ± 1.2 19.1 ± 1.5 18.3 ± 1.2 20.2 ± 1.9

STR 76.9 ± 2.2ab 76.1 ± 2.5ab 76.4 ± 1.2b 74.1 ± 1.3b 80.6 ± 2.1ab 83.2 ± 2.8a

LIN 47.3 ± 2.1ab 46.4 ± 2.7ab 47.9 ± 1.6ab 44.8 ± 1.2b 51.2 ± 3.0ab 52.0 ± 3.1a

ELONG 80.3 ± 1.2b 86.9 ± 3.1ab 87.7 ± 2.3a 78.3 ± 1.3b 87.8 ± 1.0a 88.0 ± 0.7a

Different letters indicate a significant difference between treatment groups (P� 0.05).VAP, average-path velocity (μm/sec); VSL, straight-line velocity (μm/sec); VCL,

curvilinear velocity (μm/sec); ALH, amplitude of lateral head displacement (μm); BCF, beat cross frequency (Hz); STR, straightness (ratio of VSL/VAP); LIN, linearity

(ratio of VSL/VCL); ELONG, elongation (ratio in % of head width to head length).

https://doi.org/10.1371/journal.pone.0216143.t003
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induced antioxidants are reduced in cells during heat stress [55], predisposing them to DNA

attack by reactive oxygen species. Spermatozoa are specifically vulnerable to oxidative damage

due their inherent high level of polyunsaturated fatty acids (PUFAs) in the plasma membrane

[67, 68]. Excessive production of reactive oxygen species (ROS) increases rates of cellular dam-

age [69], and in sperm increase the rate of sperm ATP depletion; which in turn leads to insuffi-

cient axonemal phosphorylation, lipid peroxidation, and loss of motility and viability [70]. As

such, tropical heat stress encountered by boars during the peak wet season when the ambient

temperature, humidity and THI are high appears to be the major contributor to the substantial

DNA strand breakages that occur in boar sperm [22] during this time. Given that spermatozoa

lack DNA repair machinery, some could be released from the germinal epithelium still carry-

ing their broken DNA [65]. The female reproductive tract is known to limit the migration of

many types of abnormal sperm through natural barriers in the cervix and uterotubal junction

[71]. However, Percoll purification often enriches raw semen for fertilization competent sper-

matozoa [72] to reach and fertilize oocytes. Given we detected over 16% DNA damage during

summer in Percoll-purified spermatozoa, suggests that it is this enriched population of sper-

matozoa most likely to participate in fertilization during natural breeding or artificial insemi-

nation, with the potential to adversely affect embryo viability. This is further supported by

observations in pigs, mice and humans that show a decrease in litter size or pregnancy rate

respectively, when sperm DNA damage increases above species-specific thresholds [23, 24, 73,

74]. As such, it is important to test for sperm DNA integrity in ‘gradient-enriched’ populations

of spermatozoa. Nevertheless, results found in our study during periods of heat stress appear

to support the role of antioxidants in neutralizing free radical activity and protecting sperm

DNA from ROS that are already produced [75].

Our study tested a multi-antioxidant formulation, an approach that can increase the puta-

tive synergistic effect each compound has on sperm quality, as observed in other studies using

a mixed formula [68, 76, 77]. Our antioxidant formula given at 100 g/day resulted in a 1.6 to

2.2-fold reduction in sperm DNA damage after 42 and 84 days, respectively. While the benefi-

cial compound(s) and mechanism by which this antioxidant cocktail functions in protecting

sperm DNA is still unclear, the reduction in sperm DNA damage can be related to other posi-

tive effects of antioxidants in boar sperm biology. Selenium, a crucial component in swine

nutrition, serves as a raw material in the synthesis of selenoprotein. Selenoprotein plays a sig-

nificant role in antioxidant system regulation in the body [54], from which a popular Se-

dependent enzyme glutathione peroxidase (GSH-Px) depends. Glutathione and vitamin E

increase sperm production but also protect against lipid peroxidation [78]. In fact, lipid perox-

idation, as measured by the levels of ascorbate-induced thiobarbituric acid reactive substances

(TBARS), was inhibited by as much as 62% and 57% using water-soluble vitamin E analog

(TROLOX) and GSH, respectively [78]. Moreover, garlic, which is also part of our antioxidant

cocktail, is able to regulate leukocyte cell proliferation and cytokine production [52] and this

anti-inflammatory effect could potentially reduce ROS production by seminal leukocytes.

Where pigs are reared in groups/herds, administration of a multi-antioxidant supplement

via their feed is both convenient and has been shown to have synergistic effects. For example, sele-

nium and Vitamin E tend to produce better results in improving boar sperm motility, concentra-

tion and/or morphology when given together [35]. Similarly, Vitamin B12 and folic acids tend to

produce better results on folate and homocysteine metabolism in pigs during early pregnancy

[79]. Overall, our work and the above studies suggest a cocktail of antioxidants in a supplement

formula appears to be more beneficial than a single antioxidant approach to treating boars.

Nevertheless, not all antioxidants are guaranteed to protect boar sperm against DNA dam-

age. While survival of boar sperm improved, adding magnesium fumarate to Biosolwens

extender increased the proportion of sperm DNA damage [39]. Moreover, zinc in the form of
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zinc-methionate at 200 ppm adversely affected boar sperm quality including increased sperm

DNA damage [80]. It is not known whether antioxidant supplementation in our study has led

to accumulated levels of zinc in the testis or spermatozoa of our boars, but in our case zinc was

administered as zinc sulphate at a recommended dose of ~100 ppm [33]. Zinc is known to

facilitate the condensation of DNA protamine 2 [51], however, one study reported deconden-

sation of sperm DNA after zinc and selenium supplementation, making it vulnerable to dam-

age [42]. Coincidentally, we observed a significant increase in sperm head width (via the

elongation parameter) in nearly all antioxidant treatments irrespective of season (Table 3).

This may reflect impaired DNA compaction and possibly low-level strand breaks associated

with these antioxidants in spermatozoa obtained from our treatment boars. Perhaps this might

partly explain the increase in sperm DNA damage compared to control after 42 days treatment

during the much cooler early dry season (Fig 1). Given these levels were similar to those

observed in antioxidant treated groups during the peak wet but both were significantly lower

than control at this time, suggests zinc may be a beneficial antioxidant during periods of tropi-

cal heat stress but may be detrimental as a long-term general supplement.

Interestingly, despite sperm concentration in the peak wet control being significantly lower

that the early dry control, we did not observe any significant improvement in sperm concen-

tration nor sperm motility after antioxidant supplementation. Some previous studies also

showed no improvement in sperm motility [41, 43], and selenium has been reported to reduce

sperm motility in vitro when added to extender [76]. However, in other studies [32, 35, 36, 38]

improved sperm motility, concentration and/or morphology were the primary consequences

of antioxidant supplementation; with one paper specifically highlighting the beneficial effect of

antioxidants Selenium and Vitamin E during the warm season [35]. These papers were the

basis upon which we selected compounds for inclusion in our antioxidant formula. However,

the mechanisms by which antioxidants support DNA structural integrity is still not clear and

may not necessarily be linked to pathways that enhance sperm motility and increased sper-

matogenesis during periods of heat stress. Our previous study showed that tropical heat stress

does not affect sperm motility in boars [22], suggesting more detailed studies are needed on

the mechanism by which heat stress acts on sperm physiology and the protective role antioxi-

dants play across the different sperm quality parameters.

In conclusion, antioxidant supplementation appears to be an effective measure to mitigate

the negative impact of heat stress on sperm DNA integrity but not sperm concentration nor

motility during tropical summer. While further research is needed to identify which specific

antioxidant(s) in the formula confer this DNA protection and their precise mechanism of

action, our study provides a practical solution to improving boar fertility during periods of

heat stress, which may greatly improve pig production during summer in tropical and sub-

tropical environments.
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42. Ménézo YJR, Hazout A, Panteix G, Robert F, Rollet J, Cohen-Bacrie P, et al. Antioxidants to reduce

sperm DNA fragmentation: an unexpected adverse effect. Reprod Biomed Online. 2007; 14(4):418–21.

PMID: 17425820

43. Peña FJ, Johannisson A, Wallgren M, Rodriguez Martinez H. Antioxidant supplementation in vitro

improves boar sperm motility and mitochondrial membrane potential after cryopreservation of different

fractions of the ejaculate. Anim Reprod Sci. 2003; 78(1–2):85–98. PMID: 12753785

44. Strzezek J, Fraser L, Kuklinska M, Dziekonska A, Lecewicz M. Effects of dietary supplementation with

polyunsaturated fatty acids and antioxidants on biochemical characteristics of boar semen. Reprod

Biol. 2004; 4:271–87. PMID: 15592586

45. Chanapiwat P, Kaeoket K, Tummaruk P. Effects of DHA-enriched hen egg yolk and L-cysteine supple-

mentation on quality of cryopreserved boar semen. Asian J Androl. 2009; 11(5):600–8. https://doi.org/

10.1038/aja.2009.40 PMID: 19633681

46. Chanapiwat P, Kaeoket K, Tummaruk P. The sperm DNA damage after cryopreservation of boar

semen in relation to post-thawed semen qualities, antioxidant supplementation and boars effects. Thai

J Vet Med. 2010; 40(2):187–93.

47. Casey S, Taupier R, Whitaker B. Effects of anti-lipid peroxidases on frozen-thawed boar spermatozoa.

In Vitro Cell Dev Biol—Animal. 2011; 47:350–4.

48. Whitaker B, Carle B, Mukai T, Simpson A, Vu L, Knight J. Effect of exogenous glutathione supplementa-

tion on motility, viability, and DNA integrity of frozen-thawed boar semen. Anim Reprod. 2008; 5(3–

4):127–31.
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