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Abstract

We say a graph G is locally P if for each vertex v in G the open neighbourhood of v induces a graph with
property P. The Hamilton Cycle Problem (HCP) is the problem of deciding whether a graph contains a
Hamilton cycle. It is known that the HCP is NP-complete for locally traceable (LT) graphs with maximum
degree 6. We extend that result to 1-tough graphs and to graphs with restricted degree sequences. If R is
a set of nonnegative integers, we say a graph G is R-regular if the degrees of all the vertices in V (G) are
elements of R. We show that the HCP is NP-complete for R-regular LT graphs if R is any set of natural
numbers with max(R) ≥ 6, with the possible exception of {4, 6} and {6}.
It is known that the HCP is NP-complete for LH graphs with maximum degree 10. We improve this result
by showing that the HCP is NP-complete for 1-tough LH graphs with maximum degree 9 and for R-regular
LH graphs if R is any set of natural numbers with min(R) = 3 and max(R) ∈ {9, 10}, or if R is any set of
natural numbers with max(R) ≥ 11. Finally, we show that the HCP for k-connected LH graphs that are
also locally (k − 1)-connected is NP-complete for every k ≥ 3.
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1. Introduction

We say a graph G is locally P if for each vertex v in G the open neighbourhood of v induces a graph (denoted
〈N(v)〉) with property P. In this paper we will be considering locally connected (LC), localy traceable (LT),
and locally hamiltonian (LH) graphs. If R is a set of nonnegative integers, we say a graph G is R-regular
if the degrees of all the vertices in V (G) are elements of R. The Hamilton Cycle Problem (HCP) is the
problem of determining whether a graph has a Hamilton cycle, and is known to be NP-complete for many
classes of graphs - see for example [3, 11, 16].

LC, LT and LH graphs have been intensively studied - see for example [1, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14,
15, 17, 18, 19, 20, 21, 22, 23, 24]. Results from [8, 11, 13, 15] show that the HCP for R-regular LC graphs
is fully solved if max(R) ≤ 4 and also if R ⊆ {3, 4, 5}, but NP-complete if max(R) ≥ 7. Gordon et al. [11]
conjectured the HCP is polynomially solvable for LC graphs with maximum degree at most 6. It has since
been shown [1, 14] that the HCP is NP-complete for R-regular LC graphs if R = {2, 5} or R is any set of
natural numbers with max(R) ≥ 6.

Locally traceable graphs are of course locally connected, and as shown in [2], there are only three connected
LT graphs with maximum degree 5 that are not hamiltonian. This implies that the HCP for LT graphs
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with maximum degree 5 can be solved in polynomial time. It is known [24] that the HCP for LT graphs
with maximum degree 6 is NP-complete. We extend that result to 1-tough graphs and show that the HCP
is NP-complete for R-regular LT graphs if R is any set of natural numbers with max(R) ≥ 6, with the
possible exception of {4, 6} and {6}.
A graph is fully cycle extendable if every vertex lies in a 3-cycle, and every nonhamiltonian cycle in the
graph can be extended by having a vertex added to it. It is known that connected LH graphs with maximum
degree at most 6 are fully cycle extendable [2], and therefore hamiltonian, and as shown in [19, 22], many
nonhamiltonian connected LH graphs with maximum degree 8 exist.

Skupień [20] observed that maximal planar graphs are LH, and Chvátal [7] and Wigderson [25] independently
proved that the HCP is NP-complete for maximal planar graphs. Neither author considered constraints on
the maximum degree of such graphs, but it is easy to manipulate Chvátal’s construction such that his proof
is valid for maximal planar graphs with maximum degree 12. De Wet et. al [24] showed that the HCP for
LH graphs with maximum degree 10 is NP-complete.

Here we show that the HCP for 1-tough LH graphs with maximum degree 9 is NP-complete (the proof
does not apply to maximal planar graphs), and also that the HCP is NP-complete for LH graphs that are
R-regular where R is any set of natural numbers with min(R) = 3 and max(R) ∈ {9, 10}, or if R is any set
of natural numbers with max(R) ≥ 11.

Finally, we show that the HCP for k-connected LH graphs that are locally (k−1)-connected is NP-complete
for every k ≥ 3.

2. Locally Traceable Graphs

It has been shown that the HCP for LC graphs with maximum degree 5 is NP-complete [1, 14]. However,
the same does not apply to LT graphs, as can be seen from the following theorem. The three exceptional
graphs referred to in the theorem are shown in Figure 1. Graphs of this kind are referred to as magwheels.

Theorem 2.1. [2] Suppose G is a connected LT graph with n(G) ≥ 3 and ∆(G) ≤ 5. Then G is fully cycle
extendable if and only if G /∈ {M3,M4,M5}.

M3 M4 M5 

Figure 1: The graphs M3, M4 and M5.

From Theorem 2.1 it is clear that the HCP for LT graphs with maximum degree 5 can be solved in polynomial
time. However, as shown in [24], the HCP for LT graphs with maximum degree 6 is NP-complete. Here we
present an alternative, simpler proof for this result and extend the result to 1-tough graphs. The new proof
will be required for the the proof of the results relating to R-regular graphs.

We will need the following earlier results (a graph is claw-free if it does not contain a copy of K1,3 as an
induced subgraph):

Theorem 2.2. [16] The Hamilton cycle problem is NP-complete for 3-connected cubic claw-free planar
graphs.

Theorem 2.3. [5] Every 3-connected cubic graph is 1-tough.
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In [23] we developed the following technique for combining LT graphs to create larger LT graphs.

Construction 2.4. [23] (Edge identification) Let G1 and G2 be two LT graphs such that E(Gi) contains
an edge uivi so that there is a Hamilton path in 〈N(ui)〉 that ends at vi and a Hamilton path in 〈N(vi)〉 that
ends at ui, i = 1, 2. Now create a larger graph G by identifying the edges u1v1 and u2v2 to a single edge uv.

An edge in a LC graph that can be used in the above edge identification procedure will be called a suitable
edge.

Theorem 2.5. [22, 23, 24] Let G1 and G2 be two LT graphs that satisfy the conditions of Construction 2.4
and let G1 and G2 be combined by means of edge identification to create a graph G. Then
(a) G is LT .
(b) If G1 and G2 are planar, then so is G.
(c) If at least one of G1 and G2 is nonhamiltonian, then G is nonhamiltonian.

The next corollary follows readily from Theorem 2.5.

Corollary 2.6. Let G be an LT graph with two suitable edges xy and uv such that {x, y} and {u, v} have
distinct neighbourhoods. Then if x is identified with u and y is identified with v, the resulting graph is still
LT.

We are now ready to prove the theorem.

Theorem 2.7. The Hamilton Cycle Problem for 1-tough planar LT graphs with maximum degree 6 is NP-
complete.

Proof. By Theorem 2.2 the HCP for 3-connected cubic planar 1-tough graphs is NP-complete. Now
consider any 1-tough 3-connected planar cubic graph G′. We shall show that G′ can be transformed in
polynomial time to a planar LT graph G with ∆(G) = 6 such that G is hamiltonian if and only if G′ is
hamiltonian.

Each vertex in G′ will be represented by a triangle in G, and will be referred to as a node in G.

The edges in G′ will be represented by a more complicated structure in G to ensure that G is LT and also
that G is hamiltonian if and only if G′ is hamiltonian. Consider the smallest of the magwheels, M3, and
the graph S in Figure 2. The graph M3 and two copies of the graph S are combined by means of edge
identification to create the graph B in Figure 3. This graph will be used in G to represent the edges in G′,
and will be referred to as a border.

M3 (a) (b) S 

Figure 2: (a) The magwheel M3 and (b) the graph S used in the proof of Theorem 2.7.

Figure 4 shows how the graph G′ is transformed into graph G. A vertex zi in G′ becomes a triangle Zi in
G and an edge zizj in G′ becomes a border Bi,j in G. All the combinations of different components are
done by means of edge identification. It follows from Theorem 2.5 (a) and (b) and Corollary 2.6 that the
resulting graph is LT , and since G′ is planar, so is G.
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B 

Figure 3: The border B used in the proof of Theorem 2.7.
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Figure 4: Translating graph G′ into graph G in the proof of Theorem 2.7.

It remains to be shown that G is hamiltonian if and only if G′ is hamiltonian. Figure 5 shows how a
Hamilton cycle in G′ translates to a Hamilton cycle in G. The heavy lines in the figure represent edges
that are part of the Hamilton cycles. Now suppose C is a Hamilton cycle in G. Since the magwheel M3 is
nonhamiltonian, it follows that there does not exist a 2-path cover for M3 for which the two pairs of end
vertices are adjacent. Therefore C passes at most once through a given border from one node to another.
Since each node has exactly three borders incident to it, C corresponds to a Hamilton cycle in G′.

Finally, to see that graph G is 1-tough, we note that since G′ is 1-tough, removing vertices only from the
nodes of G does not result in more components than vertices removed (the nodes are cliques). The magwheel
M3 used to construct the borders in G is not 1-tough: if the three vertices of degree 5 (labeled say v1, v2, v3)
are removed, the result is a graph consisting of four isolated vertices. If v1, v2, v3 are removed from a border
in G, the resulting graph contains two isolated vertices, and the border no longer connects the two nodes
incident to it in G. We will now proceed to remove the vertices in the position of v1, v2, v3 from borders in
G. Let Gm be the graph Gm−1−{vm,1, vm,2, vm,3}−{um,1, um,2}, m ≥ 1, where m is the number of borders
that have been broken in this way, vm,1, vm,2, vm,3 are the vertices in border m in the same relative position
as v1, v2, v3 that have been removed and um,1 and um,2 are the two vertices that have been isolated by the
removal of vm,1, vm,2, vm,3 (note that G0 = G). Removing an edge in any graph increases the number of
components by at most one, so removing the vertices vm,1, vm,2, vm,3 from a border in Gm−1 increases the
number of components by at most 3 (um,1, um,2 and possibly the number of components of Gm increases
by one). Since G′ is 3-connected, at least 3 borders in G have to be broken before Gm is disconnected. It
follows that after two borders have been broken there are 4 isolated vertices and G2 is still connected, and
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Figure 5: Translating a Hamilton cycle in G′ into a Hamilton cycle in G in the proof of Theorem 2.7.

after m borders have been broken (by removing 3m vertices), the number of components in the resulting
graph is at most 3 + 2 + 3 + 3 + · · · = 2 + 3(m− 1) = 3m− 1 < 3m. The same argument applies to removing
2 vertices at a time from a border. It follows that G is 1-tough.

We will now use the construction in the proof of Theorem 2.7 to extend the result to R-regular graphs.

Theorem 2.8. The HCP is NP-complete for R-regular LT graphs if R is any set of natural numbers with
max(R) ≥ 6, with the possible exception of {4, 6} and {6}.

Proof. It is sufficient to consider the cases R = {2, 6}, R = {3, 6}, R = {5, 6} and R = {d}, d ≥ 7. In
each case we will start with the basic construction G in the proof of Theorem 2.7 and modify the borders
and/or nodes to create an R-regular LT graph GR that is hamiltonian if and only if G is hamiltonian.

Case 1: R = {2, 6}. Since it is not possible to manipulate the central vertex of a magwheel using edge
identification (the edges incident to this vertex are not suitable for use in edge identification), we replace
the graph M3 with M6 (a magwheel with six spokes). We then add three vertices to the graph, to create
the graph M ′6 shown in Figure 6 (a). This is done in order to avoid problems with vertex degree parity
(since all the elements of R are even numbers, it is essential that there is an even number of edges between
M6 and each of the graphs that will be attached to it). This graph has the desired properties of being LT,
nonhamiltonian, and traceable from each vertex in {v1, v2} to each vertex in {v3v4}. The graph M ′6 will
form the core of the border and will be connected to the nodes (which are still triangles) using the graph F1

in Figure 6 (b). This will be done by identifying the edge v1v2 in M ′6 with the edge u1u2 in F1. The edge
u3u4 in F1 is identified with one of the edges of the triangle representing the node. The same is done using
the edge v3v4 to connect M ′6 to the second node.
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w1 w2 

F2 F1 
v1 

v2 

v3 
v4 

v5 
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M’6 

Figure 6: The graphs used to create a border of G{2,6}.

At this point the vertices v5 and v6 in Figure 6 (a) are not yet of degree 2 or 6. This is addressed by
identifying the edge v5v6 with the edge w1w2 in the graph F2 in Figure 6 (c). The graphs F1 and F2 are LT
and have Hamilton cycles that contain the edges u1u2 and u3u4, and w1w2, respectively. Hence by Theorem
2.5 (a) and Corollary 2.6, the resulting graph G{2,6} is LT. Moreover, G{2,6} is hamiltonian if and only if G
is hamiltonian. A border in G{2,6} and the two nodes that it are attached to can be seen in Figure 7, where
the heavy lines represent edges that result from edge identification. The heavy edges in Figure 8 illustrate
how a Hamilton cycle in G{2,6} (a) passes through a given border and (b) does not pass through a given
border.

Node 

Node 

F1 

F2 

F1 

Border 

Figure 7: A border connecting two nodes in the graph G{2,6}.

(a) (b) 

Figure 8: Part of a Hamilton cycle in G{2,6} that (a) passes through a given border and (b) does not pass through a given
border.

Case 2: R = {3, 6}. We use M3 as node and also as the cores of the borders and combine these graphs using
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edge identification as shown in Figure 9. The edges v1v2 and u1u2 are identified, as are the edges v3v4 and
u3u4.

Node Node Core of border Node Node 

v1 

v2 

v3 

v4 

u1 

u2 

u4 

u3 

w2 w1 

Figure 9: Combining copies of M3 in the construction of G{3,6}.

All that remains to be done is to address the degrees of the vertices w1 and w2 in Figure 9. This is done
by identifying the edge w1w2 with the edge x1x2 in the LT graph F3 in Figure 10. The resulting graph
G{3,6} is LT and {3, 6}-regular, and hamiltonian if and only if G is hamiltonian. Figure 11 shows a border
connecting two nodes in G{3,6}. The heavy lines in Figures 10 and 11 represent edges that are the result of
edge identification.

x1 

x2 

F3 

Figure 10: The graph used to change the degrees of vertices w1 and w2 in G{3,6} by means of edge identification.

Node 
Node 

Border 

F3 

Figure 11: A border and two nodes in the graph G{3,6}.
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Case 3: R = {5, 6}. In this case the border is constructed around M5 (a magwheel with 5 spokes - Figure
12 (a)), and the nodes are again triangles. A node is linked to M5 by identifying the edge u3u4 in the LT
graph F4 in Figure 12 (b) with one of the edges of the node, and the edge u1u2 is identified with either the
edge v1v2 or the edge v7v8 in the magwheel. The vertices in the magwheel that are still of degree two are
addressed by identifying the edges v3v4, v5v6 and v9v10 with the edge w1w2 in three copies of the graph F5

in Figure 12 (c). This creates the LT graph G{5,6} (the edges resulting from edge identifcation are shown
as heavy lines in Figure 13). Again, G{5,6} is hamiltonian if and only if G is hamiltonian.

u1 u2 

u4 u3 

w2 

w1 (b) (c) 

F4 

F5 

v1 

v2 

v3 
v4 

v5 

v6 

v9 

v7 

v8 v10 

(a) 

M5 

Figure 12: The graphs used in the construction of a border in G{5,6}.

Node 

Node 

Border 

F4 

F4 

F5 

F5 

F5 

Figure 13: A border and two nodes in the graph G{5,6}.

Case 4: r-Regular graphs. Due to constraints relating to vertex degree parity, we need different constructions
for odd and even values of r. In each case, we start constructing the borders of Gr using a magwheel with
r spokes. We first address the case where r is odd, and illustrate it with r = 7. As before, in constructing
the graph G7, we use hamiltonian LT graphs to connect the magwheel to the nodes, and also to address the
vertices with degrees other than 7. We use the LT graph F6 in Figure 14 (a) to connect the magwheels to
the nodes (in this case, a node is the square of a 6-cycle) by means of edge identification (the edge u1u2 is
identified with an edge on the rim of the magwheel, and the edge u3u4 is identified with an edge on the rim
of the node - see Figure 15). Multiple copies of the LT graph F7 in Figure 14 (b) are used to address the
degrees of the remaining vertices by identifying the edge w1w2 with an edge on the rim of the magwheel.
The complete structure of a border and two nodes can be seen in Figure 15 (the graphs in Figures 14 are
represented by ovals).

For r an even number, we again add vertices to the outside of the magwheel as was done in the {2, 6}-regular
case. In the case of r = 8, we end up with the graph M ′8 in Figure 16 (a).

To construct the graph G8, we connect M ′8 to two nodes (which are again the squares of 6-cycles) using
copies of the LT graph F8 in Figure 16 (b). In particular we identify the edges v9v17 and v13v21 with the
edge u1u2, and the edge u3u4 is identified with an edge on the rim of the node. The degrees of the remaining
vertices of G8 are addressed using the graphs F9 and F10 in Figure 16 (c) and (d). Using multiple copies
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u1 u2 
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w1 w2 

F6 
F7 

Figure 14: Auxiliary graphs used in the construction of the borders of G7.
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F7 

F7 
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Border 

Figure 15: A border and two nodes in the graph G7.

u1 u2 

u3 u4 

w1 w4 w3 w2 

(b) (d) (c) 

F8 
F10 

F9 
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v1 

v24 

v20 

v19 

v18 
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v13 

v12 

v11 

v10 

v9 

v8 v7 

v6 

v5 

v4 v3 

v23 

v22 

v21 

(a) 

M’8 

Figure 16: The graphs used in the construction of the borders of G8.

of these graphs, we do the following: v1v24, v8v16, v7v14, v5v20, v4v12, v3v18, v2v10, and v6v22 are identified
with the edge w1w2 in distinct copies of F9, and the edges v23v15 and v11v19 are identified with the edge
w3w4 in distinct copies of the LT graph F10. A border and the two nodes adjacent to it in the resulting
graph G8 are shown in Figure 17, where the graphs F8, F9 and F10 are represented by ovals.
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F8 

F9 

Node 

Border 

Node F8 

F9 

F9 

F9 

F9 

F9 

F9 

F9 

F10 

F10 

Figure 17: A border and two nodes in the graph G8.

3. Locally Hamiltonian Graphs

It is known that connected LH graphs are hamiltonian if the maximum degree is at most 6, as can be seen
from the following theorem.

Theorem 3.1. [2] Let G be a connected LH graph with n(G) ≥ 3 and ∆(G) ≤ 6. Then G is fully cycle
extendable.

There many known examples of connected LH graphs with maximum degree 8 that are not hamiltonian
([19, 22]), and there is a published “proof” for the claim that any connected LH graph with maximum
degree 7 is hamiltonian [18]. However, there are serious gaps in the “proof”, as discussed in [22, 24], and we
consider this claim to be unproved.

As mentioned in Section 1, maximal planar graphs are LH, and the HCP is NP-complete for maximal planar
graphs with maximum degree 12. For LH graphs, this number was improved to 10 in earlier work [24]. Here
we improve this further by showing that the HCP is NP-complete for LH graphs with maximum degree 9,
and we extend the result to 1-tough graphs.

Before we proceed with the proof, we will need some earlier results.

Construction 3.2. [23] For i = 1, 2, let Gi be an LH graph that contains a triangle Xi such that for each
vertex x ∈ V (Xi), there is a Hamilton cycle of 〈N(x)〉 that contains the edge Xi − x. Suppose V (Xi) =
{ui, vi, wi}, i = 1, 2. Now create a graph G of order n(G1)+n(G2)−3 by identifying the vertices ui, i = 1, 2
to a single vertex u, and similarly the vertices vi, i = 1, 2 to v and wi, i = 1, 2 to w, while retaining all the
edges present in the original two graphs.

A triangle in a LH graph that can be used in the above triangle identification procedure will be called a
suitable triangle.
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Lemma 3.3. [23, 24] Let G1 and G2 be two LH graphs, and let G be a graph obtained from G1 and G2 by
identifying suitable triangles. Then G is LH.

The corollary is fairly obvious:

Corollary 3.4. Let G be an LH graph with two suitable triangles xyz and uvw such that {x, y, z} and
{u, v, w} have distinct neighbourhoods. If we identify u with x, v with y, and w with z, then G is LH.

We are now ready for our first new result.

Theorem 3.5. The Hamilton Cycle Problem for 1-tough LH graphs with maximum degree 9 is NP-complete.

Proof. Starting with a 3-connected cubic graph G′, we will construct a connected LH graph G with
∆(G) = 9 such that G is hamiltonian if and only if G′ is hamiltonian.

The nodes of G (that replace the vertices in G′) are copies of K4 and the borders are copies of the graph
B in Figure 19. The graph B is constructed by combining the nonhamiltonian LH Goldner-Harary graph
H in Figure 18 (a) and two copies of the LH graph D in Figure 18 (b) using triangle identification in the
following way: using the first copy of D, identify v1 and x1, v2 and x2, and v3 and x3, and using the second
copy of D, identify u1 and x1, u2 and x2, and u3 and x3.

v3 

v2 

v1 

u3 

u2 

u1 (a) (b) 

x3 x1 

x2 

H D 

s 

Figure 18: (a) The Goldner-Harary graph H and (b) the graph D used to construct the border B of Theorem 3.5.

The borders are connected to the nodes by means of triangle identification as shown in Figure 20, which
shows a border in G and the two nodes adjacent to it (the heavy lines represent triangles that are the result
of triangle identification).

Checking the degrees of the vertices that have been identified shows that ∆(G) = 9 and by Lemma 3.3 and
Corollary 3.4, G is LH.

Figure 21 shows how a Hamilton cycle in G′ translates to a Hamilton cycle in G (the heavy lines represent
paths in the Hamilton cycle).

Consider a copy of H in a border of G that connects two nodes, say Z1 and Z2. Assume that the edges
between H and Z1 are incident with vertices in {u1, u2, u3}, and the edges between H and Z2 are incident
with vertices in {v1, v2, v3} (as labelled in Figure 18 (a)).

Now suppose C is a Hamilton cycle in G. Let S = N(s)−{v2, v3, u2, u3} (i.e. the set of unlabelled neighbours
of s in H in Figure 18 (a)). Then S is an independent set of cardinality four and N(S) = {v2, v3, u2, u3, s}.
The intersection of C with 〈N [s]〉 is therefore a path with end vertices in {v2, v3, u2, u3}. Hence any path
cover of H contains at most one path that has one end vertex in {u1, u2, u3} and the other in {v1, v2, v3}.
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w3 

B 

w1 

w2 

Figure 19: The graph B used in the proof of Theorem 3.5.

Node 

Border 

Node 

Figure 20: A border and two nodes in the graph G.

Thus every Hamilton cycle in G has at most one path from Z1 to Z2 that passes through the border between
them. Therefore, C corresponds to a Hamilton cycle in G′. Since G′ is 1-tough, it is not difficult to see that
G is also 1-tough. The argument is similar to the one used for LT graphs in Theorem 2.7

12



Graph G’ 

Graph G 

z1 

Z1 

z5 z2 

z6 z3 

z4 

zi 

Zi is the corresponding 

 node in G 

V(G’) 

Z6 

Z5 

Z3 

Z2 

Z4 

Figure 21: Translating a Hamilton cycle from G′ to G.

We will now use the construction in the above proof for the results relating to R-regular graphs.

Theorem 3.6. The HCP is NP-complete for R-regular LH graphs if R is any set of natural numbers with
min(R) = 3 and max(R) ∈ {9, 10}, or if R is any set of natural numbers with max(R) ≥ 11.

Proof. It is sufficient to consider the cases R = {3, 9}, R = {3, 10} and R = {d}, where d ≥ 11. For each
case we start with the graph G constructed in the proof of Theorem 3.5 and modify the borders and/or
nodes to create an R-regular, LH graph GR that is hamiltonian if and only if G is hamiltonian.

Case 1: R = {3, 9}. The nodes of G{3,9} are copies of the graph in Figure 22. The borders in G{3,9} are
based on the Goldner-Harary graph (with vertices as labeled in Figure 23 (a)), as was the case for G.
However, the links between the Goldner-Harary graph and the nodes are now the two graphs F11 and F12

in Figure 23 (b) and (c). We use two different graphs so that we can modify the degrees of all the vertices
in the Goldner-Harary graph that are not of degree 3. Specifically, we construct a border by identifying
the pairs of vertices as listed in Table 1 (Note that the vertices labeled x1, x2 and x3 are listed twice - this
should be interpreted as the vertices with these labels in two separate copies of the node.). This yields the
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graph G{3,9}, of which one border and the nodes attached to it are shown in Figure 24 (where the heavy
lines represent edges between vertices that have been identified).

x1 x2 x3 x1 x2 x3 v3 v4 v11 v2 v5 v6 v1
u1 u2 u3 y1 y2 y3 u5 u6 u4 y5 y6 y4 y7

Table 1: Vertices identified in the proof of Case 1: R = {3, 9}.

x1 

x2 

x3 

Figure 22: A node of G{3,9}.

u1 u3 

u2 

u4 u5 

u6 

y1 

y2 
y3 

y4 
y5 y6 

y7 
(a) (b) (c) 

v1 

v2 

v3 

v4 

v6 v7 

v8 
v9 

v10 

v11 

v5 

H 

F11 F12 

Figure 23: The graphs used to construct a border in G{3,9}.

Node 

Node 

Border 

F12 F11 

Figure 24: A border and two nodes in the graph G{3,9}.

Note that the connection between the Goldner-Harary graph and the graph F12 in Figure 23 (c) was not
done using triangle identification. This is clear from the fact that 4 vertices in each graph was identified with
4 vertices in the other graph. However, it is a simple matter to confirm that the resulting graph is still LH.
As was the case in G, it is not possible for a Hamilton cycle in G{3,9} to pass through a border more than
once. This is because, assuming after identifying vertices, the resulting vertices retain the labels from the
Goldner-Harary graph, N({v7, v8, v9, v10}) = {v1, v2, v3, v4, v5}, and therefore all these vertices must occur
consecutively (in some order) in any Hamilton cycle of G{3,9}.
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Case 2: R = {3, 10}. The nodes of G{3,10} are the same as in G{3,9}, but we use different graphs to connect
the Goldner-Harary graph to the nodes, namely the graphs F13 and F14 in Figure 25 (a) and (b). Having
linked up the nodes to the Goldner-Harary graph in this way, there are still some vertices that do not have
degree 3 or 10. This is remedied by attaching the graph F15 in Figure 25 (c) to the Goldner-Harary graph.
Table 2 lists the vertices that are identified with each other in the construction of a border in G{3,10} (refer
to Figures 23 (a) and 25 to see which vertices the labels refer to). Note that v2 occurs twice in the table.
That is because it is first identified with u6 and then the resulting vertex is identified with w1. The vertices
x1, x2 and x3 are also listed twice in the table. This should be interpreted as the vertices with these labels
in two separate copies of the node. A border and the nodes attached to it can be found in Figure 26, where
the heavy lines represent edges resulting form triangle identification.

x1 x2 x3 x1 x2 x3 v1 v2 v10 v3 v4 v11 v2 v5 v7
u1 u2 u3 y1 y2 y3 u5 u6 u4 y5 y6 y4 w1 w2 w3

Table 2: Vertices identified in the proof of Case 2: R = {3, 10}.

(a) (b) (c) 

u1 u3 

u2 

u4 u5 
u6 

y1 
y2 

y3 

y4 
y5 

y6 

w1 
w2 

w3 

F13 F15 F14 

Figure 25: Graphs used in the construction of a border in G{3,10}.

Case 3: r-regular graphs, where d ≥ 11. We will construct the graph G11. The constructions for larger
values of d are similar. We use the graph in Figure 27 as nodes of G11. The Goldner-Harary graph again
forms the core of the border, and is connected to the nodes by means of the graph F16 in Figure 28 (a).
In order to make the graph 11-regular, we attach four additional LH graphs to the Goldner-Harary graph
using triangle identification. It is necessary to use 4 graphs because there are 4 remaining vertices of degree
3, and they form an independent set. The graphs attached to the Goldner-Harary graph are 3 copies of the
graph F17 in Figure 28 (b) and 1 copy of the graph F18 in Figure 28 (c).

The vertices identified are shown in Table 3. Note that the vertices labeled x, u and w are listed more than
once in the table. This should be interpreted as the same vertices in different copies of the graph to which
they belong. Several vertices in the Goldner-Harary graph (labeled vi for some i) are also listed more than
once. In this case it means that these vertices are first identified with one other vertex, and then the resulting
vertex is again identified with another vertex. A border in G11 and the two nodes attached to it are shown
in Figure 29 (again, the heavy lines represent edges that are the result of triangle identification). Since G11

was constructed using triangle identification, it follows that it is LH. It is straightforward to confirm that
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Node 
Node 

F13 F14 

F15 
Border 

Figure 26: A border and two nodes of the graph G{3,10}.

x1 

x3 

x2 

Figure 27: Node used in the construction of G11.

(a) (b) 

w1 
w2 w3 y1 y3 

y2 

u2 
u3 u1 

u5 

u4 

u6 

(c) 

F18 F16 F17 

Figure 28: Graphs used in the construction of a border in G11.

the conversion from G to G11 does not affect the hamiltonicity of the graph, that is, G11 is hamiltonian if
and only if G is hamiltonian.

It should be noted that the construction for even values of d, although very similar, requires the use of the
graph in Figure 30 instead of the Goldner-Harary graph in order to avoid problems with vertex degree parity
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x1 x2 x3 x1 x2 x3 v1 v2 v10 v3 v4 v11
u1 u2 u3 u1 u2 u3 u4 u5 u6 u4 u5 u6

v2 v5 v6 v1 v4 v9 v2 v3 v7 v4 v5 v8
w2 w1 w3 w2 w1 w3 w1 w2 w3 y2 y1 y3

Table 3: Vertices identified in the proof of Case 2: R = {11}.

Node 

Node 

Border 

F18 

F17 

F17 

F17 

F16 
F16 

Figure 29: A border and the two nodes attached to it in the graph G11.

(that is, having an odd number of edges connecting r-regular components, where r is an even number).

Figure 30: The graph that replaces the Goldner-Harary graph for even values of d.

Finally, we address the issue of connectivity. It is easy to construct a k-connected LH graph that is not
hamiltonian, for any k ≥ 3. We start with the complete graph Kk+3 with vertices labeled v0, v1, . . . , vk+2. To
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this graph we add k+2 mutually independent vertices of degree k labeled u0, u1, . . . , uk+1 in such a way that
N(ui) = {vi, vi+1, . . . , vi+(k−1)}, subscripts taken modulo (k + 2). Call this graph Hk. The graph Hk is not
hamiltonian since it is not 1-tough, because {v0, v1, . . . , vk+1} is a cutset of order k+2, the removal of which
results in a graph consisting of k + 3 mutually independent vertices, vk+2, uo, u1, . . . , uk+1. Since 〈N(ui)〉,
i = 0, 1, . . . , k + 1 and 〈N(vk+2)〉 are complete graphs, they are hamiltonian. For i ∈ {0, 1, . . . , k + 1},
N(vi) = {v0, v1, . . . , vi−1, vi+1, . . . , vk+2, ui, ui−1, . . . , ui−(k−1)}, subscripts taken modulo (k + 2). Thus
vi−(k−1)ui−(k−1)vi−(k−2)ui−(k−2) . . . vi−2ui−2vi−1ui−1vi+1uivi+2vk+2vi−(k−1) is a Hamilton cycle of 〈N(vi)〉.
It follows that Hk is LH. Since Hk consists of a clique of order k+3 and vertices of degree k whose neighbours
are all in the clique, it is easy to see that Hk is k-connected. The graph H4 can be seen in Figure 31.

u0 

v5 v4 

v3 

v2 v1 

v0 

u5 

u4 

u3 

u2 

u1 

v6 

Figure 31: The graph H4.

Theorem 3.7. The HCP for k-connected LH graphs is NP-complete.

Proof. Again we base the proof on the construction used in the proof of Theorem 3.5, except that now the
Goldner-Harary graph is replaced with the graph Hk and we do not use triangle identification. The nodes
of Gk consist of copies of the complete graph K3k. We create the graph Gk by connecting the graph Hk to
two nodes, say N1 and N2, in the following way. Divide the vertices of each node into three equal subsets,
each of which induces a clique of order k. The vertices in each of these cliques will only have neighbours in
the same border of Gk. Let one of these subsets of V (N1) be W1 with vertices {w1,1, w1,2, . . . , w1,k} and let
one of these subsets of V (N2) be W2 with vertices {w2,1, w2,2, . . . , w2,k}. Edges are added between u0 and
each of the vertices in {w1,1, w1,2, . . . , w1,k}. Then for each vj , where j ∈ {0, 1, . . . , k − 2}, edges are added
between vj and the vertices in {w1,1, w1,2, . . . , w1,k−j−1}. Similarly, edges are added between u⌈ k+1

2

⌉ and

the vertices in {w2,1, w2,2, . . . , w2,k}, and for each vm, m ∈ {3, 4, . . . , k + 1}, edges are added between vm
and the vertices in {w2,1, w2,2, . . . , w2,k−m+2}. Figure 32 illustrates the construction for k = 4.

By symmetry, it is only necessary to confirm that the neighbourhoods of the vertices u0, vj , where j ∈
{0, 1, . . . , k− 2} and w1,m, where m ∈ {1, 2, . . . , k} induce hamiltonian graphs to show that Gk is LH. Note
that 〈NGk

(u0)〉 consists of two cliques with at least three edges between the two cliques. It follows that
〈NGk

(u0)〉 is hamiltonian. For each vj , where j ∈ {0, 1, . . . , k − 2}, there is a Hamilton cycle (described in
the construction of the graph Hk) in 〈NHk

(vj)〉 which contains an edge between u0 and a vertex vp, where
p ∈ {0, 1, . . . , k − 2}. In 〈NGk

(vj)〉, this edge can be replaced by the path u0Wvp, where W is a path in N1

that includes all the vertices of V (N1)∩N(vj). Also, for each m ∈ {1, 2, . . . , k}, 〈NGk
(w1,m)〉 consists of two

cliques with multiple edges between the cliques. It follows that 〈NGk
(w1,m)〉 is hamiltonian, and therefore

that Gk is LH.

Since the graph Hk is traceable between ui and uj for any distinct pair {ui, uj} ⊆ {u0, u1, . . . , uk+1}
and Hk − ui is hamiltonian for each i ∈ {0, 1, . . . , k + 1}, it follows that if G is hamiltonian then Gk is
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u0 

v5 

v4 

v3 

v2 

v1 

u4 

u2 

u1 

v0 

u3 

u5 

w1,1 w2,4 

w1,4 w2,1 

Node Node Border 

Figure 32: A border and the two nodes attached to it in the graph Gk for the case k = 4.

hamiltonian. To see that G is hamiltonian if Gk is hamiltonian, note that the vertices in the set A =
{u1, u2, . . . , u⌈ k+1

2

⌉
−1

, u⌈ k+1
2

⌉
+1

, . . . , uk+1, vk} only have neighbours in the set B = {v0, v1, . . . , vk+1}, and

therefore any Hamilton cycle in Gk contains a path P such that V (P ) = A∪B. It follows that no Hamilton
cycle can contain more than one path through any given border.

Corollary 3.8. The HCP for k-connected LH graphs that are locally (k − 1)-connected is NP-complete.

Proof. It is sufficient to show that the graph Gk constructed in the proof of Theorem 3.7 is locally (k−1)-
connected. Note that 〈N(ui)〉, i ∈ {1, 2, . . . ,

⌈
k+1
2

⌉
− 1,

⌈
k+1
2

⌉
+ 1, . . . , k + 1}, is a complete graph of order

k and is therefore (k−1)-connected. Similarly, 〈N(vk+2)〉 is a complete graph of order k+2 and is therefore
(k − 1)-connected. For i ∈ {0, 1, . . . , k − 1}, 〈N(vi)〉 can be constructed in the following way: start with
a clique, say Fi, of order (k + 2), where V (Fi) = {v0, v1, . . . , vi−1, vi+1, vi+2, . . . , vk+2}. There are either
k − 2 or k − 1 vertices labeled uj adjacent to vi, where j ∈ {1, 2, . . . ,

⌈
k+1
2

⌉
− 1,

⌈
k+1
2

⌉
+ 1, . . . , k + 1} (u0

and u⌈ k+1
2

⌉ will be addressed later). Each of these vertices have k − 1 neighbours in V (Fi), and no other

neighbours in N(vi).

Furthermore, each of the vertices in {v0, v1, . . . , vi−1} is adjacent to each of the vertices in {w1, w2, . . . , wk−i−1}.
Also, for m ∈ {1, 2, . . . , k−i−2}, vi+m is adjacent to wk−i−1−m (for example, vi+1 is adjacent to wk−i−2 and
vk−2 = vi+(k−i−2) is adjacent to w1). Finally, u0 is adjacent to all the vertices in {v0, v1, . . . , vi−1, vi+1, vi+2,
. . . , vk+2, w1, w2, . . . , wk−i−1}. Therefore, in 〈N(vi)〉, for any vertex wx, there are (k− 1) internally disjoint
paths from wx to vp ∈ V (Fi). See Figure 33 for a schematic representation. By symmetry, it follows that
〈N(vi)〉, i = 0, 1, . . . , k + 1 is (k − 1)-connected.

All that remains to be addressed are the neighbourhoods of u0, u⌈ k+1
2

⌉ and the vertices in the nodes. It

follows from the above discussion that the graph induced by the neighbourhood of each of these vertices
is (k − 1)-connected. By symmetry, this exhausts the cases to consider, and it follows that Gk is locally
(k − 1)-connected.

4. Conclusions

In our view the most significant unresolved questions relating to the hamiltonicity of LT and LH graphs are
the following:
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u0 

v0 

v1 

vi-1 
w1 

w2 

wk-i-2 

wk-i-1 

vk 

vk+1 

vk+2 

vi+1 

vk-3 
vk-2 
vk-1 

Figure 33: A schematic drawing of part of 〈N(vi)〉. Only vertices and edges are shown that are necessary to see that there are
(k − 1) internally disjoint paths from any vertex in a node (vertices labeled w) to any vertex in Fi (vertices labeled v). The
ovals represent cliques.

• Do connected nonhamiltonian LT graphs that are {4, 6}-regular or 6-regular exist, and if so, is the
HCP for these classes of graphs NP-complete?

• Are all connected LH graphs with maximum degree at most 7 hamiltonian?

• Is the HCP for LH graphs with maximum degree 8 solvable in polynomial time?
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[20] Z. Skupień, Locally Hamilonian and planar graphs, Fundamenta Mathematicae 58 (1966) 193-200.
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