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In this paper, we will introduce the concept of Suzuki type multivalued (𝜃,R)-contraction and we will prove some fixed point
results in the setting of a metric space equipped with a binary relation. Our results generalize and extend various comparable
results in the existing literature. Examples are provided to support the results proved here. As an application of our results, we
obtain a homotopy result, proving the existence of a solution for a second-order differential equation and for a first-order fractional
differential equation.

1. Introduction and Preliminaries

Let (𝑋, 𝑑) be ametric space and𝑇 : 𝑋 → 𝑋 be amapping on𝑋. An element 𝑥 ∈ 𝑋 is called a fixed point of 𝑇 if it remains
invariant under the action of 𝑇; that is, 𝑥 = 𝑇𝑥. Amapping 𝑇
on a metric space𝑋 is said to be a Banach contraction if

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) (1)

holds for all 𝑥, 𝑦 ∈ 𝑋, where 0 ≤ 𝑘 < 1. A Banach contraction
mapping defined on a complete metric space has a unique
fixed point. This result is known as Banach contraction
principle. Several authors have extended and generalized
Banach contraction principle in different directions.

Jleli and Samet [1] suggested a modification in the con-
traction condition and introduced a 𝜗-contraction mapping.
Consistent with [1], the following notations, definitions, and
results will be needed in the sequel.

Suppose that

Ω = {𝜗 : (0,∞)
→ (1,∞) satisfy (𝜗1) , (𝜗2) and (𝜗3)} (2)

where

(𝜗1) 𝜗 is nondecreasing;
(𝜗2) for each sequence {𝑡𝑛} ⊆ (0,∞), lim𝑛→∞𝜗(𝑡𝑛) = 1 if

and only if lim𝑛→∞𝑡𝑛 = 0+;
(𝜗3) there exists 𝑟 ∈ (0, 1) and 𝑙 ∈ (0,∞] such that

lim𝑡→0+((𝜗(𝑡) − 1)/𝑡𝑟) = 𝑙.
Example 1. Define 𝜂𝑖 : (0,∞) → (1,∞) for 𝑖 = 1, 2, 3 by

𝜂1 (𝑡) = 𝑒√𝑡

𝜂2 (𝑡) = 5√𝑡 and

𝜂3 (𝑡) = 𝑒√𝑡𝑒𝑡 .
(3)

Then, 𝜂1, 𝜂2, 𝜂3 ∈ Ω.
Let (𝑋, 𝑑) be a metric space and 𝜗 ∈ Ω. A mapping 𝑇 :𝑋 → 𝑋 is called a 𝜗-contraction if for any 𝑥, 𝑦 ∈ 𝑋, we have

𝜗 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ [𝜗 (𝑑 (𝑥, 𝑦))]𝛼 (4)

whenever 𝑑(𝑇𝑥, 𝑇𝑦) > 0 and 0 ≤ 𝛼 < 1. Jleli and Samet [1]
proved the following fixed point theorem in the framework
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of a generalized metric space in the sense of Branciar; i.e.,
the triangle inequality is replaced by the inequality 𝑑(𝑥, 𝑦) ≤𝑑(𝑥, 𝑢) + 𝑑(𝑢, V) + 𝑑(V, 𝑦), for all pairwise distinct points𝑥, 𝑦, 𝑢, V ∈ 𝑋.
Theorem 2. Let (𝑋, 𝑑) be a complete generalized metric space
in the sense of Branciari and 𝑇 : 𝑋 → 𝑋 be a 𝜗-contraction.
Then 𝑇 has a unique fixed point.

Hussain et al. [2] considered the following class of
mappings:

Θ = {𝜃 : [0,∞) → [1,∞) : 𝜃 satisfies (𝜃1) − (𝜃5)} (5)

where
(𝜃1) 𝜃 is nondecreasing;
(𝜃2) 𝜃(𝑡) = 1 if and only if 𝑡 = 0;
(𝜃3) for each sequence {𝑡𝑛} ⊂ (0,∞), lim𝑛→∞𝜃(𝑡𝑛) = 1 if

and only if lim𝑛→∞𝑡𝑛 = 0+;
(𝜃4) there exists 𝑟 ∈ (0, 1) and 𝑙 ∈ (0,∞] such that

lim𝑡→0+((𝜃(𝑡) − 1)/𝑡𝑟) = 𝑙;
(𝜃5) 𝜃(𝑡1 + 𝑡2) ≤ 𝜃(𝑡1)𝜃(𝑡2).

Example 3. Let 𝜃1, 𝜃2 : [0,∞) → [1,∞) be defined by
𝜃1(𝑡) = 𝑒√𝑡 and 𝜃2(𝑡) = 5√𝑡, respectively, then 𝜃1 and 𝜃2 ∈ Θ.

Hussain et al. [2] proved the following result.

Theorem 4. Let (𝑋, 𝑑) be a complete metric space and 𝑇 :𝑋 → 𝑋 be a continuous mapping. Suppose there exist 𝜃 ∈ Θ
and 𝛼, 𝛽, 𝛾, 𝛿 ∈ R+ with 0 ≤ 𝛼 + 𝛽 + 𝛾 + 2𝛿 < 1, such that for
any 𝑥, 𝑦 ∈ 𝑋, we have

𝜃 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ [𝜃 (𝑑 (𝑥, 𝑦))]𝛼 [𝜃 (𝑑 (𝑥, 𝑇𝑥))]𝛽
⋅ [𝜃 (𝑑 (𝑦, 𝑇𝑦))]𝛾
⋅ [𝜃 (𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥))]𝛿 .

(6)

Then 𝑇 has a unique fixed point.

For other results in this direction, we refer to [3, 4] and
references mentioned therein.

Let (𝑋, 𝑑) be a metric space and 𝐶𝐵(𝑋) (respectively𝐾(𝑋)) be the family of all nonempty closed and bounded
(nonempty compact, respectively) subsets of 𝑋. For 𝐴, 𝐵 ∈𝐶𝐵(𝑋) and 𝑥 ∈ 𝑋, define

𝑑 (𝑥, 𝐴) fl inf
𝑎∈𝐴

𝑑 (𝑥, 𝑎) ,

𝐻 (𝐴, 𝐵) fl max{sup
𝑎∈𝐴

𝑑 (𝑎, 𝐵) , sup
𝑏∈𝐵

𝑑 (𝑏, 𝐴)} . (7)

𝐻 is the Hausdorff-Pompeiu metric on 𝐶𝐵(𝑋) (or on 𝐾(𝑋))
induced by 𝑑. Let 𝑇 : 𝑋 → 𝐶𝐵(𝑋) be a given multivalued
mapping. An element 𝑥 ∈ 𝑋 is called a fixed point of 𝑇 if𝑥 ∈ 𝑇𝑥. A mapping 𝑇 : 𝑋 → 𝐶𝐵(𝑋) is said to be a Nadler
contraction if there exists 𝑘 ∈ (0, 1) such that

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) , (8)

for any 𝑥, 𝑦 ∈ 𝑋. Nadler [5] obtained the following
multivalued version of Banach contraction principle.

Theorem 5. Let (𝑋, 𝑑) be a complete metric space and 𝑇 :𝑋 → 𝐶𝐵(𝑋) be a Nadler contraction. Then 𝑇 has at least
one fixed point.

Later on, many researchers have obtained fixed point
results for multivalued mappings satisfying generalized con-
traction type conditions. For example, recently, Hançer et al.
[6] proved the following fixed point result for multivalued 𝜃-
contractions.

Theorem 6. Let (𝑋, 𝑑) be a complete metric space and 𝑇 :𝑋 → 𝐾(𝑋) be a multivalued mapping. Suppose that there
exist 𝜃 ∈ Θ and 0 ≤ 𝛼 < 1 such that

𝜃 (𝐻 (𝑇𝑥, 𝑇𝑦)) ≤ [𝜃 (𝑑 (𝑥, 𝑦))]𝛼 , (9)

for any 𝑥, 𝑦 ∈ 𝑋, provided that 𝐻(𝑇𝑥, 𝑇𝑦) > 0. Then 𝑇 has at
least one fixed point.

Durmaz [7] introduced a new type of generalized multi-
valued 𝜃-contraction and proved some interesting fixed point
results (see also [8]). Kikkawa and Suzuki [9] refined Nadler’
result by proving the following theorem.

Theorem 7. Let 𝛽 : [0, 1) → (1/2, 1] be defined as 𝛽(𝑏) =1/(1 + 𝑏). Let (𝑋, 𝑑) be a complete metric space and 𝑇 : 𝑋 →𝐶𝐵(𝑋). Assume there exists 𝑏 ∈ (0, 1) such that
𝑥, 𝑦 ∈ 𝑋

with 𝛽 (𝑏) 𝑑 (𝑥, 𝑇𝑥) ≤ 𝑑 (𝑥, 𝑦)
implies 𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑏𝑑 (𝑥, 𝑦) .

(10)

Then 𝑇 has at least one fixed point.

We denote R+ fl [0,∞) and define the following class of
mappings, which was considered in [10].

Φ = {𝜑 : R+ ×R
+ → R and 𝜑 (𝑠, 𝑡) ≤ 1

2𝑠 − 𝑡} . (11)

Example 8. Let 𝜑1 : R+ × R+ → R be defined by 𝜑(𝑠, 𝑡) =
V(𝑠) − 𝑢(𝑡) where V, 𝑠 : R+ → R+ are given by V(𝑠) = 𝑠/2 and𝑢(𝑡) = 𝑡. Obviously 𝜑1 ∈ Φ.
Example 9. Let 𝜑2 : R+ × R+ → R be defined by 𝜑(𝑠, 𝑡) =𝑠/2− (V(𝑠, 𝑡)/𝑢(𝑠, 𝑡))𝑡where V, 𝑠 : R+ ×R+ → R+ are defined
by V(𝑠, 𝑡) = 𝑠𝑡 and 𝑢(𝑠, 𝑡) = 𝑠𝑡 + 𝑡 for all 𝑠, 𝑡 > 0. Note that𝜑2 ∈ Φ.

Many results, dealing with existence of fixed points of
mappings satisfying certain contraction type conditions in
the framework of complete metric spaces endowed with a
partial ordering, have appeared in the last decade. Ran and
Reurings [11] proved an analogue of Banach’s fixed point
theorem in a metric space endowed with partial ordering
and gave an application of their results to solve matrix
equations. Alam and Imdad [12] proved another variant of
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Banach’s fixed point theorem in ametric space equipped with
a binary relation which generalized many comparable results,
including Ran and Reuring’s result in [11]. Senapati and Dey
[13] proved Banach’s fixed point theorem in metric spaces
equipped with an arbitrary binary relation using 𝜔-distance.
They employed their results to prove the existence of solutions
of nonlinear fractional differential equations and fractional
thermostat model involving the Caputo fractional derivative.
A very nice Ph.D. thesis was written on the same subject; see
Dobrican [14].

Let us first recall the following definitions.

Definition 10. Let 𝑋 be a nonempty set and R be a binary
relation defined on 𝑋 × 𝑋. Then, 𝑥 is R-related to 𝑦 if and
only if (𝑥, 𝑦) ∈R.

We denote N0 fl {0, 1, 2, . . . , } and N fl {1, 2, . . . , }.
Definition 11. Let 𝑋 be a nonempty set and R a binary
relation on 𝑋. A sequence {𝑥𝑛} ⊂ 𝑋 is called R-preserving
if

(𝑥𝑛, 𝑥𝑛+1) ∈ R ∀𝑛 ∈ N0. (12)

Definition 12. Let (𝑋, 𝑑) be a metric space. A binary relation
R defined on 𝑋 is called 𝑑-self closed if whenever {𝑥𝑛} is
anR-preserving sequence and 𝑥𝑛 converges to 𝑥, then there
exists a subsequence {𝑥𝑛𝑘} of {𝑥𝑛} with either (𝑥𝑛𝑘 , 𝑥) ∈ R or(𝑥, 𝑥𝑛𝑘 ) ∈ R for all 𝑘 ∈ N0.

Definition 13. Let (𝑋, 𝑑) be a metric space and R a binary
relation defined on 𝑋. A mapping 𝑇 : 𝑋 → 𝑃(𝑋) is R-
closed if for any 𝑥, 𝑦 ∈ 𝑋, (𝑥, 𝑦) ∈ R implies that (𝑢, V) ∈ R

for any 𝑢 ∈ 𝑇𝑥 and V ∈ 𝑇𝑦.
If 𝑇 : 𝑋 → 𝑃(𝑋) is a multivalued map, then we set

𝑋 (𝑇;R) = {𝑥 ∈ 𝑋 : (𝑥, 𝑦) ∈ R for some 𝑦 ∈ 𝑇𝑥} . (13)

In particular, if 𝑇 is single-valued, then we denote

𝑋 (𝑇;R) = {𝑥 ∈ 𝑋 : (𝑥, 𝑇𝑥) ∈ R} . (14)

Motivated by the results in [2, 10, 12], we introduce the
concept of a Suzuki type multivalued (𝜃,R) -contraction
mapping and present some fixed point results in metric
spaces equipped with a binary relation. Our results extend
and generalize several results given in [2, 15–19]. We also
provide applications of our results to homotopy theory prov-
ing the existence of a solution of second-order differential
equations and first-order fractional differential equations.

2. Multivalued Suzuki Type (𝜃,R)-Contraction
In this section, we obtain a fixed point result for multivalued
Suzuki type (𝜃,R)-contraction in a metric space equipped
with a binary relationR.

Throughout this paper 𝜃 ∈ Θ satisfies the following
additional property:

(𝜃6) : 𝜃 (inf 𝐴) = inf
𝑎∈𝐴

𝜃 (𝑎) (15)

where 𝐴 ⊂ [0,∞).

We will denote

Θ∗ = {𝜃 : [0,∞) → [1,∞) : 𝜃 satisfies (𝜃1) − (𝜃6)} (16)

We start with the following definition.

Definition 14. Let (𝑋, 𝑑) be a metric space and R a binary
relation on𝑋. Assume that 𝜑 ∈ Φ and 𝜃 ∈ Θ∗. Amapping 𝑇 :𝑋 → 𝑃(𝑋) is a multivalued Suzuki type (𝜃,R)-contraction
if for any 𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ R

𝜑 (𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑥, 𝑦)) < 0 ⇒
𝜃 (𝐻 (𝑇𝑥, 𝑇𝑦)) ≤ [𝜃 (𝑑 (𝑥, 𝑦))]𝛼 [𝜃 (𝑑 (𝑥, 𝑇𝑥))]𝛽

⋅ [𝜃 (𝑑 (𝑦, 𝑇𝑦))]𝛾 [𝜃 (𝑑 (𝑦, 𝑇𝑥) + 𝑑 (𝑥, 𝑇𝑦))]𝛿 ,
(17)

where 𝛼, 𝛽, 𝛾, 𝛿 ∈ R+ with 0 ≤ 𝛼 + 𝛽 + 𝛾 + 2𝛿 < 1.
Our first main result is the following.

Theorem 15. Let (𝑋, 𝑑) be a completemetric space,R a binary
relation on𝑋, and𝑇 : 𝑋 → 𝐶𝐵(𝑋) amultivalued Suzuki type(𝜃,R)-contraction. Suppose that following conditions hold:

(1) 𝑋(𝑇;R) is nonempty,
(2) 𝑇 isR-closed,
(3) R is 𝑑-self closed or 𝑇 has closed graph.

Then 𝑇 has at least one fixed point.

Proof. Since 𝑋(𝑇;R) is nonempty, if we choose 𝑥0 ∈𝑋(𝑇;R), then there exists some 𝑥1 ∈ 𝑇𝑥0 such that (𝑥0, 𝑥1) ∈
R. If 𝑥0 = 𝑥1, the result follows. Assume that 𝑥0 ̸= 𝑥1. As(𝑥0, 𝑥1) ∈ R and

𝜑 (𝑑 (𝑥0, 𝑇𝑥0) , 𝑑 (𝑥0, 𝑥1))
≤ 1
2𝑑 (𝑥0, 𝑇𝑥0) − 𝑑 (𝑥0, 𝑥1)

< 𝑑 (𝑥0, 𝑇𝑥0) − 𝑑 (𝑥0, 𝑥1) ≤ 𝑑 (𝑥0, 𝑥1) − 𝑑 (𝑥0, 𝑥1)
= 0,

(18)

we have

𝜃 (𝑑 (𝑥1, 𝑇𝑥1)) ≤ 𝜃 (𝐻 (𝑇𝑥0, 𝑇𝑥1))
≤ [𝜃 (𝑑 (𝑥0, 𝑥1))]𝛼 [𝜃 (𝑑 (𝑥0, 𝑇𝑥0))]𝛽
⋅ [𝜃 (𝑑 (𝑥1, 𝑇𝑥1))]𝛾
⋅ [𝜃 (𝑑 (𝑥1, 𝑇𝑥0) + 𝑑 (𝑥0, 𝑇𝑥1))]𝛿 .

(19)

Now 𝑑(𝑥1, 𝑇𝑥0) = 0 and 𝑑(𝑥0, 𝑇𝑥0) ≤ 𝑑(𝑥0, 𝑥1) imply that

𝜃 (𝑑 (𝑥1, 𝑇𝑥1)) ≤ [𝜃 (𝑑 (𝑥0, 𝑥1))]𝛼+𝛽

⋅ [𝜃 (𝑑 (𝑥1, 𝑇𝑥1))]𝛾
⋅ [𝜃(𝑑 (𝑥0, 𝑇𝑥1)]𝛿 .

(20)
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Thenby𝑑(𝑥0, 𝑇𝑥1) ≤ 𝑑(𝑥0, 𝑥1)+𝑑(𝑥1, 𝑇𝑥1) and (𝜃5), it follows
that

𝜃 (𝑑 (𝑥0, 𝑇𝑥1)) ≤ 𝜃 (𝑑 (𝑥0, 𝑥1)) 𝜃 (𝑑 (𝑥1, 𝑇𝑥1)) (21)

and hence

𝜃 (𝑑 (𝑥1, 𝑇𝑥1))
≤ [𝜃 (𝑑 (𝑥0, 𝑥1))]𝛼+𝛽+𝛿 [𝜃 (𝑑 (𝑥1, 𝑇𝑥1))]𝛾+𝛿 . (22)

Hence, we obtain

[𝜃 (𝑑 (𝑥1, 𝑇𝑥1))]1−𝛾−𝛿 ≤ [𝜃 (𝑑 (𝑥0, 𝑥1))]𝛼+𝛽+𝛿 (23)

and, in conclusion, we get that

𝜃 (𝑑 (𝑥1, 𝑇𝑥1)) ≤ [𝜃 (𝑑 (𝑥0, 𝑥1))](𝛼+𝛽+𝛿)/(1−𝛾−𝛿) . (24)

By (𝜃6) we have
𝜃 (𝑑 (𝑥1, 𝑇𝑥1)) = inf

𝑦∈𝑇𝑥1
𝜃 (𝑑 (𝑥1, 𝑦)) . (25)

Thus,

inf
𝑦∈𝑇𝑥1

𝜃 (𝑑 (𝑥1, 𝑦)) ≤ [𝜃 (𝑑 (𝑥0, 𝑥1))](𝛼+𝛽+𝛿)/(1−𝛾−𝛿) . (26)

We can choose 𝑥2 ∈ 𝑇𝑥1 such that

𝜃 (𝑑 (𝑥1, 𝑥2)) ≤ [𝜃 (𝑑 (𝑥0, 𝑥1))](𝛼+𝛽+𝛿)/(1−𝛾−𝛿) . (27)

As (𝑥0, 𝑥1) ∈ R, 𝑥1 ∈ 𝑇𝑥0, 𝑥2 ∈ 𝑇𝑥1 and 𝑇 isR- closed, we
have that (𝑥1, 𝑥2) ∈ R. If 𝑥1 = 𝑥2, the result follows. Assume
that 𝑥1 ̸= 𝑥2. Also,

𝜑 (𝑑 (𝑥1, 𝑇𝑥1) , 𝑑 (𝑥1, 𝑥2))
≤ 1
2𝑑 (𝑥1, 𝑇𝑥1) − 𝑑 (𝑥1, 𝑥2)

< 𝑑 (𝑥1, 𝑇𝑥1) − 𝑑 (𝑥1, 𝑥2) < 0.
(28)

Hence,

𝜃 (𝑑 (𝑥2, 𝑇𝑥2)) ≤ 𝜃 (𝐻 (𝑇𝑥1, 𝑇𝑥2))
≤ [𝜃 (𝑑 (𝑥1, 𝑥2))]𝛼 [𝜃 (𝑑 (𝑥1, 𝑇𝑥1))]𝛽
⋅ [𝜃 (𝑑 (𝑥2, 𝑇𝑥2))]𝛾
⋅ [𝜃 (𝑑 (𝑥2, 𝑇𝑥1) + 𝑑 (𝑥1, 𝑇𝑥2))]𝛿 .

(29)

By 𝑑(𝑥1, 𝑇𝑥2) ≤ 𝑑(𝑥1, 𝑥2) + 𝑑(𝑥2, 𝑇𝑥2) and (𝜃5), we have
𝜃 (𝑑 (𝑥1, 𝑇𝑥2)) ≤ 𝜃 (𝑑 (𝑥1, 𝑥2)) 𝜃 (𝑑 (𝑥2, 𝑇𝑥2)) . (30)

As 𝑑(𝑥2, 𝑇𝑥1) = 0 and 𝑑(𝑥1, 𝑇𝑥1) ≤ 𝑑(𝑥1, 𝑥2), we obtain that

[𝜃 (𝑑 (𝑥2, 𝑇𝑥2))]1−𝛾−𝛿 ≤ [𝜃 (𝑑 (𝑥1, 𝑥2))]𝛼+𝛽+𝛿 . (31)

Hence,

𝜃 (𝑑 (𝑥2, 𝑇𝑥2)) ≤ [𝜃 (𝑑 (𝑥1, 𝑥2))](𝛼+𝛽+𝛿)/(1−𝛾−𝛿) . (32)

By (𝜃6), we have
𝜃 (𝑑 (𝑥2, 𝑇𝑥2)) = inf

𝑦∈𝑇𝑥2
𝜃 (𝑑 (𝑥2, 𝑦)) . (33)

Hence,

inf
𝑦∈𝑇𝑥2

𝜃 (𝑑 (𝑥2, 𝑦)) ≤ [𝜃 (𝑑 (𝑥1, 𝑥2))](𝛼+𝛽+𝛿)/(1−𝛾−𝛿)
(34)

We can choose 𝑥3 ∈ 𝑇𝑥2 such that

𝜃 (𝑑 (𝑥2, 𝑥3)) ≤ [𝜃 (𝑑 (𝑥1, 𝑥2))](𝛼+𝛽+𝛿)/(1−𝛾−𝛿) . (35)

By (27), we get

𝜃 (𝑑 (𝑥2, 𝑥3)) ≤ [𝜃 (𝑑 (𝑥0, 𝑥1))]((𝛼+𝛽+𝛿)/(1−𝛾−𝛿))2 . (36)

Since (𝑥1, 𝑥2) ∈ R, and 𝑇 isR-closed, we have (𝑥2, 𝑥3) ∈ R.
Continuing this way, we can obtain a sequence {𝑥𝑛} such

that 𝑥𝑛+1 ∈ 𝑇𝑥𝑛 and {𝑥𝑛} is R-preserving. Obviously, we
have 𝑑(𝑥𝑛, 𝑇𝑥𝑛) ≤ 𝑑(𝑥𝑛, 𝑥𝑛+1), for all natural numbers 𝑛 ≥ 0.
Hence,

𝜃 (𝑑 (𝑥𝑛, 𝑥𝑛+1)) ≤ [𝜃 (𝑑 (𝑥𝑛−1, 𝑥𝑛))](𝛼+𝛽+𝛿)/(1−𝛾−𝛿)

≤ . . .
≤ [𝜃 (𝑑 (𝑥0, 𝑥1))]((𝛼+𝛽+𝛿)/(1−𝛾−𝛿))𝑛 .

(37)

Letting 𝑛 → ∞, we have

lim𝑛→∞𝜃 (𝑑 (𝑥𝑛, 𝑥𝑛+1)) = 1. (38)

It follows from (𝜃3) that
lim𝑛→∞𝑑 (𝑥𝑛, 𝑥𝑛+1) = 0. (39)

Now, we show that {𝑥𝑛} is a Cauchy sequence. If we set 𝑡𝑛 =𝑑(𝑥𝑛, 𝑥𝑛+1), then from (37), we obtain

1 < 𝜃 (𝑡𝑛) ≤ (𝜃 (𝑡𝑛−1))(𝛼+𝛽+𝛿)/(1−𝛾−𝛿) ≤ ⋅ ⋅ ⋅
≤ (𝜃 (𝑡1))((𝛼+𝛽+𝛿)/(1−𝛾−𝛿))𝑛 .

(40)

Further, from (𝜃4), there exist 𝑟 ∈ (0, 1) and 𝑙 ∈ (0,∞] such
that

lim𝑛→∞
𝜃 (𝑡𝑛) − 1
(𝑡𝑛)𝑟 = 𝑙. (41)

Suppose 𝑙 < ∞. Let 𝐵 = 𝑙/2 > 0. Then there exists 𝑛0 ∈ N

such that for all 𝑛 ≥ 𝑛0, we obtain that

𝜃 (𝑡𝑛) − 1
(𝑡𝑛)𝑟 − 𝑙 ≤ 𝐵. (42)

Hence, for all 𝑛 ≥ 𝑛0, we have

𝜃 (𝑡𝑛) − 1
(𝑡𝑛)𝑟 − 𝑙 ≥ −𝐵. (43)
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This implies that

𝑛 (𝑡𝑛)𝑟 ≤ 𝐴𝑛 [𝜃 (𝑡𝑛) − 1] ∀𝑛 ≥ 𝑛0 and for 𝐴 = 1
𝐵 . (44)

If 𝑙 = ∞, then for 𝐵 > 0 there exists 𝑛0 such that for all 𝑛 ≥ 𝑛0,
we have

𝜃 (𝑡𝑛) − 1
(𝑡𝑛)𝑟 ≥ 𝐵 (45)

which implies that

𝑛 (𝑡𝑛)𝑟 ≤ 𝐴𝑛 [𝜃 (𝑡𝑛) − 1] ∀𝑛 ≥ 𝑛0, where 𝐴 = 1
𝐵. (46)

Hence, for each case, we obtain that

𝑛 (𝑡𝑛)𝑟 ≤ 𝐴𝑛 [𝜃 (𝑡𝑛) − 1] ∀𝑛 ≥ 𝑛0. (47)

Thus, using (40) we have

𝑛 (𝑡𝑛)𝑟 ≤ 𝐴𝑛 [(𝜃 (𝑡1))((𝛼+𝛽+𝛿)/(1−𝛾−𝛿))𝑛 − 1] ∀𝑛 ≥ 𝑛0. (48)

Therefore,

lim𝑛→∞𝑛 (𝑡𝑛)𝑟 = 0. (49)

So, there exists 𝑛1 ∈ N such that for all 𝑛 ≥ 𝑛1, we have 0 <𝑛(𝑡𝑛)𝑟 < 1 which implies that 𝑡𝑛 < (1/𝑛)1/𝑟. Let𝑚 > 𝑛 > 𝑛1 ∈
N. Then
𝑑 (𝑥𝑛, 𝑥𝑚) ≤ 𝑑 (𝑥𝑛, 𝑥𝑛+1) + 𝑑 (𝑥𝑛+1, 𝑥𝑛+2) + ⋅ ⋅ ⋅

+ 𝑑 (𝑥𝑚−1, 𝑥𝑚) = 𝑡𝑛 + 𝑡𝑛+1 + ⋅ ⋅ ⋅ + 𝑡𝑚−1

≤ ∞∑
𝑖=𝑛
𝑡𝑖 <

∞∑
𝑖=𝑛
(1𝑖 )

1/𝑟 .
(50)

By the convergence of the series ∑∞
𝑖=1(1/𝑖)1/𝑟 we get𝑑(𝑥𝑛, 𝑥𝑚) → 0 as 𝑚, 𝑛 → ∞. Hence, {𝑥𝑛} is Cauchy. Since(𝑋, 𝑑) is complete, there exists 𝑥∗ in 𝑋 such that 𝑥𝑛 → 𝑥∗.

We show that 𝑇 has a fixed point. Assume on the contrary
that 𝑇 does not have a fixed point. Then, 𝑑(𝑥𝑛, 𝑇𝑥𝑛) > 0 for
all natural numbers 𝑛 ≥ 0. As (𝑥𝑛, 𝑥𝑛+1) ∈ R, we have

1
2𝑑 (𝑥𝑛, 𝑇𝑥𝑛) < 𝑑 (𝑥𝑛, 𝑇𝑥𝑛) ≤ 𝑑 (𝑥𝑛, 𝑥𝑛+1) , (51)

which implies that

𝜑 (𝑑 (𝑥𝑛, 𝑇𝑥𝑛) , 𝑑 (𝑥𝑛, 𝑥𝑛+1)) < 0. (52)

Furthermore,

𝑑 (𝑥𝑛+1, 𝑇𝑥𝑛+1) ≤ 𝐻 (𝑇𝑥𝑛, 𝑇𝑥𝑛+1) (53)

gives that

𝜃 (𝑑 (𝑥𝑛+1, 𝑇𝑥𝑛+1)) ≤ 𝜃 (𝐻 (𝑇𝑥𝑛, 𝑇𝑥𝑛+1))
≤ [𝜃 (𝑑 (𝑥𝑛, 𝑥𝑛+1))]𝛼 ⋅ [𝜃 (𝑑 (𝑥𝑛, 𝑇𝑥𝑛))]𝛽
⋅ [𝜃 (𝑑 (𝑥𝑛+1, 𝑇𝑥𝑛+1))]𝛾
⋅ [𝜃 (𝑑 (𝑥𝑛+1, 𝑇𝑥𝑛) + 𝑑 (𝑥𝑛, 𝑇𝑥𝑛+1))]𝛿 .

(54)

Thus

[𝜃 (𝑑 (𝑥𝑛+1, 𝑇𝑥𝑛+1))]1−𝛾−𝛿 ≤ [𝜃 (𝑑 (𝑥𝑛, 𝑥𝑛+1))]𝛼+𝛽+𝛿 , (55)

which further implies that

𝜃 (𝑑 (𝑥𝑛+1, 𝑇𝑥𝑛+1)) ≤ [𝜃 (𝑑 (𝑥𝑛, 𝑥𝑛+1))](𝛼+𝛽+𝛿)/(1−𝛾−𝛿)

< 𝜃 (𝑑 (𝑥𝑛, 𝑥𝑛+1)) .
(56)

Hence

𝑑 (𝑥𝑛+1, 𝑇𝑥𝑛+1) < 𝑑 (𝑥𝑛, 𝑥𝑛+1) , ∀𝑛 ∈ N0. (57)

IfR is 𝑑-self closed, there exists a subsequence {𝑥𝑛𝑘} of {𝑥𝑛}
such that either (𝑥𝑛𝑘 , 𝑥∗) ∈ R or (𝑥∗, 𝑥𝑛𝑘) ∈ R. Assume that
(𝑥𝑛𝑘 , 𝑥∗) ∈ R. If𝜑(𝑑(𝑥𝑛𝑘 , 𝑇𝑥𝑛𝑘), 𝑑(𝑥𝑛𝑘 , 𝑥∗)) ≥ 0, then we have

1
2𝑑 (𝑥𝑛𝑘 , 𝑇𝑥𝑛𝑘) ≥ 𝑑 (𝑥𝑛𝑘 , 𝑥∗) . (58)

From (57), we obtain that

𝑑 (𝑥𝑛𝑘 , 𝑥𝑛𝑘+1) ≤ 𝑑 (𝑥𝑛𝑘 , 𝑥∗) + 𝑑 (𝑥∗, 𝑥𝑛𝑘+1)
≤ 1
2𝑑 (𝑥𝑛𝑘 , 𝑇𝑥𝑛𝑘) + 1

2𝑑 (𝑥𝑛𝑘+1 , 𝑇𝑥𝑛𝑘+1)
< 1
2𝑑 (𝑥𝑛𝑘 , 𝑥𝑛𝑘+1) + 1

2𝑑 (𝑥𝑛𝑘 , 𝑥𝑛𝑘+1)
= 𝑑 (𝑥𝑛𝑘 , 𝑥𝑛𝑘+1) ,

(59)

a contradiction. Hence, 𝜑(𝑑(𝑥𝑛𝑘 , 𝑇𝑥𝑛𝑘+1), 𝑑(𝑥𝑛𝑘 , 𝑥∗)) < 0 for
all 𝑘 ∈ N0.

By our assumption 𝑥∗ ∉ 𝑇𝑥∗. Thus

𝑑 (𝑥∗, 𝑇𝑥∗) ≤ 𝑑 (𝑥∗, 𝑥𝑛𝑘) + 𝑑 (𝑥𝑛𝑘 , 𝑇𝑥∗)
≤ 𝑑 (𝑥∗, 𝑥𝑛𝑘) + 𝐻(𝑇𝑥𝑛𝑘 , 𝑇𝑥∗) , (60)

which implies that

𝜃 (𝑑 (𝑥∗, 𝑇𝑥∗)) ≤ 𝜃 (𝑑 (𝑥∗, 𝑥𝑛𝑘)) 𝜃 (𝐻 (𝑇𝑥𝑛𝑘 , 𝑇𝑥∗)) . (61)

Consequently,

𝜃 (𝑑 (𝑥∗, 𝑥𝑛𝑘)) 𝜃 (𝐻(𝑇𝑥𝑛𝑘 , 𝑇𝑥∗)) ≤ 𝜃 (𝑑 (𝑥∗, 𝑥𝑛𝑘))
⋅ [𝜃 (𝑑 (𝑥𝑛𝑘 , 𝑥∗))]𝛼 [𝜃 (𝑑 (𝑥𝑛𝑘 , 𝑇𝑥𝑛𝑘))]𝛽
⋅ [𝜃 (𝑑 (𝑥∗, 𝑇𝑥∗))]𝛾
⋅ [𝜃 (𝑑 (𝑥∗, 𝑇𝑥𝑛𝑘) + 𝑑 (𝑥𝑛𝑘 , 𝑇𝑥∗))]𝛿 .

(62)

Also,

𝑑 (𝑥𝑛𝑘 , 𝑇𝑥∗) ≤ 𝑑 (𝑥𝑛𝑘 , 𝑥∗) + 𝑑 (𝑥∗, 𝑇𝑥∗) . (63)
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From (61), it follows that

𝜃 (𝑑 (𝑥∗, 𝑇𝑥∗)) ≤ [𝜃 (𝑑 (𝑥∗, 𝑥𝑛𝑘))]1+𝛼+𝛿

⋅ [𝜃 (𝑑 (𝑥∗, 𝑇𝑥∗))]𝛿+𝛾

⋅ [𝜃 (𝑑 (𝑥𝑛𝑘 , 𝑥𝑛𝑘+1))]𝛽

⋅ [𝜃 (𝑑 (𝑥∗, 𝑥𝑛𝑘+1))]𝛿 .

(64)

Letting 𝑘 → ∞ in (64) we obtain that

𝜃 (𝑑 (𝑥∗, 𝑇𝑥∗)) ≤ [𝜃 (𝑑 (𝑥∗, 𝑇𝑥∗))]𝛿+𝛾

< 𝜃 (𝑑 (𝑥∗, 𝑇𝑥∗)) , (65)

a contradiction. Hence, 𝑥∗ ∈ 𝑇𝑥∗.
If 𝑇 has closed graph, since 𝑥𝑛+1 ∈ 𝑇𝑥𝑛 for each 𝑛 ∈ N0

and lim𝑛→∞𝑥𝑛 = 𝑥∗, we get that 𝑥∗ ∈ 𝑇𝑥∗.

If we take 𝛽, 𝛾, 𝛿 = 0 in Theorem 15, we obtain a Suzuki
type generalization of the result in [6] in the framework of a
complete metric space equipped with a binary relation R.

Corollary 16. Let (𝑋, 𝑑) be a complete metric space, R a
binary relation on 𝑋 and 𝑇 : 𝑋 → 𝐶𝐵(𝑋). Assume that𝜑 ∈ Φ and 𝜃 ∈ Θ∗. Suppose that there exists 0 ≤ 𝛼 < 1
such that for any 𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ R,

𝜑 (𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑥, 𝑦)) < 0 (66)

implies that

𝜃 (𝐻 (𝑇𝑥, 𝑇𝑦)) ≤ (𝜃 (𝑑 (𝑥, 𝑦)))𝛼 . (67)

If conditions (1)-(3) in Theorem 15 are satisfied, then 𝑇 has a
fixed point.

If we take 𝜃(𝑡) = 𝑒√𝑡n, Theorem 15, then we have the
following multivalued extension of Cirić result in [16].

Corollary 17. Let (𝑋, 𝑑) be a complete metric space, R a
binary relation on 𝑋, and 𝑇 : 𝑋 → 𝐶𝐵(𝑋). Suppose that𝜑 ∈ Φ and there exist𝛼, 𝛽, 𝛾, 𝛿 ∈ R+ with 0 ≤ 𝛼+𝛽+𝛾+2𝛿 < 1,
such that for any 𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ R,

𝜑 (𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑥, 𝑦)) < 0 (68)

implies that

√𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛼√𝑑 (𝑥, 𝑦) + 𝛽√𝑑 (𝑥, 𝑇𝑥)
+ 𝛾√𝑑 (𝑦, 𝑇𝑦)
+ 𝛿√(𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)).

(69)

Assume that conditions (1)-(3) inTheorem 15 are satisfied.Then𝑇 has a fixed point.

Remark 18. Note that the conclusion of Corollary 17 can be
written as

𝐻(𝑇𝑥, 𝑇𝑦)
≤ 𝛼2𝑑 (𝑥, 𝑦) + 𝛽2𝑑 (𝑥, 𝑇𝑥) + 𝛾2𝑑 (𝑦, 𝑇𝑦)
+ 𝛿2 {𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑇𝑥, 𝑦)}
+ 2𝛼𝛽√𝑑 (𝑥, 𝑦) 𝑑 (𝑥, 𝑇𝑥)
+ 2𝛼𝛾√𝑑 (𝑥, 𝑦) 𝑑 (𝑦, 𝑇𝑦)
+ 2𝛼𝛿√𝑑 (𝑥, 𝑦) (𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥))
+ 2𝛽𝛾√𝑑 (𝑥, 𝑇𝑥) 𝑑 (𝑦, 𝑇𝑦)
+ 2𝛽𝛿√𝑑 (𝑦, 𝑇𝑦) ((𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)))
+ 2𝛾𝛿√𝑑 (𝑦, 𝑇𝑦) (𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥))

(70)

Notice that if we take 𝛼, 𝛽, 𝛾 = 0 in Theorem 15, using
Remark 18, we obtain the following multivalued Suzuki type
generalization of Chatterjea’s result in [15].

Corollary 19. Let (𝑋, 𝑑) be a complete metric space, R a
binary relation on 𝑋, and 𝑇 : 𝑋 → 𝐶𝐵(𝑋). Suppose that𝜑 ∈ Φ and there exists 𝛿 ∈ [0, 1/2) such that for any 𝑥, 𝑦 ∈ 𝑋
with (𝑥, 𝑦) ∈ R,

𝜑 (𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑥, 𝑦)) < 0 (71)

implies that

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛿2 {𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)} (72)

Assume that conditions (1)-(3) inTheorem 15 are satisfied, then𝑇 has a fixed point.

If we take 𝛼 = 𝛿 = 0 in Theorem 15, using Remark 18, we
obtain the following multivalued Kannan type result in [17].

Corollary 20. Let (𝑋, 𝑑) be a complete metric space, R a
binary relation on 𝑋, and 𝑇 : 𝑋 → 𝐶𝐵(𝑋). Suppose that𝜑 ∈ Φ and there exist 𝛽, 𝛾 ∈ R+ with 0 ≤ 𝛽 + 𝛾 < 1 such that
for any 𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ R,

𝜑 (𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑥, 𝑦)) < 0 (73)

implies that

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛽2𝑑 (𝑥, 𝑇𝑥) + 𝛾2𝑑 (𝑦, 𝑇𝑦)
+ 2𝛽𝛾√𝑑 (𝑥, 𝑇𝑥) 𝑑 (𝑦, 𝑇𝑦). (74)

Assume that conditions (1)-(3) inTheorem 15 are satisfied.Then𝑇 has a fixed point.

Taking 𝛿 = 0 in Theorem 15, we have a multivalued
extension and generalization of Reich’s result in [20].



Journal of Function Spaces 7

Corollary 21. Let (𝑋, 𝑑) be a complete metric space, R a
binary relation on 𝑋, and 𝑇 : 𝑋 → 𝐶𝐵(𝑋). Suppose that𝜑 ∈ Φ and there exist 𝛼, 𝛽, 𝛾 ∈ R+ with 0 ≤ 𝛼+𝛽+𝛾 < 1, such
that for any𝑥, 𝑦 ∈ 𝑋with (𝑥, 𝑦) ∈ R, the following implication
is true

𝜑 (𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑥, 𝑦)) < 0 (75)

implying that

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛼2𝑑 (𝑥, 𝑦) + 𝛽2𝑑 (𝑥, 𝑇𝑥) + 𝛾2𝑑 (𝑦, 𝑇𝑦)
+ 2𝛼𝛽√𝑑 (𝑥, 𝑦) 𝑑 (𝑥, 𝑇𝑥)
+ 2𝛼𝛾√𝑑 (𝑥, 𝑦) 𝑑 (𝑦, 𝑇𝑦)2𝛽𝛾√𝑑 (𝑥, 𝑇𝑥) 𝑑 (𝑦, 𝑇𝑦).

(76)

Assume that conditions (1)-(3) inTheorem 15 are satisfied.Then𝑇 has a fixed point.

Similarly, if we take 𝜃(𝑡) = 𝑒 𝑛√𝑡, then we obtain the
following corollary.

Corollary 22. Let (𝑋, 𝑑) be a complete metric space, R a
binary relation on 𝑋, and 𝑇 : 𝑋 → 𝐶𝐵(𝑋). Suppose that 𝜑 ∈Φ and there exists 𝛼, 𝛽, 𝛾, 𝛿 ∈ R+ with 0 ≤ 𝛼 + 𝛽 + 𝛾 + 2𝛿 < 1,
such that for any 𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ R,

𝜑 (𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑥, 𝑦)) < 0 (77)

implies that

𝑛√𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛼 𝑛√𝑑 (𝑥, 𝑦) + 𝛽 𝑛√𝑑 (𝑥, 𝑇𝑥)
+ 𝛾 𝑛√𝑑 (𝑦, 𝑇𝑦)
+ 𝛿 𝑛√(𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)).

(78)

Assume that conditions (1)-(3) inTheorem 15 are satisfied.Then𝑇 has a fixed point.

We now give an example of a multivalued Suzuki type(𝜃,R)-contraction which is neither a multivalued Banach
contraction nor a multivalued (𝜃,R)-contraction.
Example 23. Let 𝑋 = {𝑥1, 𝑥2, 𝑥3}. Define the binary relation
on𝑋 as follows:

R = {(𝑥1, 𝑥1) , (𝑥1, 𝑥2) , (𝑥2, 𝑥1) , (𝑥2, 𝑥3) , (𝑥2, 𝑥2) ,
(𝑥3, 𝑥2) , (𝑥3, 𝑥3)} (79)

Let 𝑑 : 𝑋 × 𝑋 → R+ be defined by

𝑑 (𝑥1, 𝑥2) = 4,
𝑑 (𝑥2, 𝑥3) = 1,
𝑑 (𝑥1, 𝑥3) = 3

and 𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥) , 𝑑 (𝑥, 𝑥) = 0, for 𝑥, 𝑦 ∈ 𝑋.
(80)

Define the mapping 𝑇 : 𝑋 → 𝐶𝐵(𝑋) by
𝑇𝑥 = {{{

{𝑥1, 𝑥2} , whenever 𝑥 ∈ {𝑥1, 𝑥2}
{𝑥1} , whenever 𝑥 = 𝑥3. (81)

Clearly, 𝑇 is R-closed and 𝑋(𝑇;R) is nonempty. Indeed,
if 𝑥 = 𝑥1, 𝑇𝑥1 = {𝑥1, 𝑥2}, then (𝑥1, 𝑥2) ∈ R. Take an
R-preserving sequence {𝑥𝑛} such that {𝑥𝑛} converges to 𝑥
and (𝑥𝑛, 𝑥𝑛+1) ∈ R for all 𝑛 ∈ N0. Then, (𝑥𝑛, 𝑥𝑛+1) ∈{(𝑥1, 𝑥1), (𝑥1, 𝑥2), (𝑥2, 𝑥1), (𝑥2, 𝑥3), (𝑥2, 𝑥2), (𝑥3, 𝑥2), (𝑥3, 𝑥3)}
for all 𝑛 ∈ N0. Thus, {𝑥𝑛} ⊂ {𝑥1, 𝑥2} or {𝑥2, 𝑥3}. Since both{𝑥1, 𝑥2} and {𝑥2, 𝑥3} are closed, either (𝑥𝑛, 𝑥) ∈ R or (𝑥, 𝑥𝑛) ∈
R.

Let 𝜑(𝑟, 𝑠) = 𝑟/2−𝑠 and 𝜃(𝑡) = 𝑒√𝑡. We consider following
cases:

(1) If (𝑥, 𝑦) = (𝑥3, 𝑥2), then (1/2)𝑑(𝑥3, 𝑇𝑥3) − 𝑑(𝑥3, 𝑥2) =3/2 − 1 > 0.
(2) If (𝑥, 𝑦) = (𝑥2, 𝑥3), then clearly (1/2)𝑑(𝑥2, 𝑇𝑥2) −𝑑(𝑥2, 𝑥3) < 0. For 𝛼, 𝛽, 𝛾 = 0 and 𝛿 = 0.9 we have

𝜃 (𝐻 (𝑇𝑥2, 𝑇𝑥3)) ≤ (𝜃 (𝑑 (𝑥2, 𝑥3)))𝛼
⋅ (𝜃 (𝑑 (𝑥2, 𝑇𝑥2)))𝛽 (𝜃 (𝑑 (𝑥3, 𝑇𝑥3)))𝛾
⋅ (𝜃 (𝑑 (𝑥2, 𝑇𝑥3) + 𝑑 (𝑥3, 𝑇𝑥2))𝛿

(82)

which implies that 𝑒√4 < (𝑒√5)0.9.
All other cases are trivial. Thus all the conditions of Theo-
rem 15 are satisfied. Moreover, 𝑇 has two fixed points 𝑥1 and𝑥2.

Note that, for (𝑥3, 𝑥2) ∈ R,

𝐻(𝑇𝑥3, 𝑇𝑥2) = 4 > (𝑘) 1 = 𝑘𝑑 (𝑥3, 𝑥2) (83)

for any 0 < 𝑘 < 1. Thus 𝑇 is not a Nadler’s contraction. Also,

𝜃 (𝐻 (𝑇𝑥3, 𝑇𝑥2)) = 𝑒√4 > (𝑒√1)𝑘 = (𝜃 (𝑑 (𝑥3, 𝑥2)))𝑘 (84)

for any 0 < 𝑘 < 1. Thus, 𝑇 is not multivalued (𝜃,R)-
contraction.

If 𝑇 : 𝑋 → 𝑋 is a single-valued map, then we have the
following result.

Theorem 24. Let (𝑋, 𝑑) be a complete metric space, R a
binary relation on 𝑋, and 𝑇 : 𝑋 → 𝑋. Suppose that 𝜑 ∈ Φ,𝜃 ∈ Θ∗ and there exist 𝛼, 𝛽, 𝛾, 𝛿 ∈ R+ with 0 ≤ 𝛼+𝛽+𝛾+2𝛿 <1, such that for any 𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ R,

𝜑 (𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑥, 𝑦)) < 0 (85)

implies that

𝜃 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜃 (𝑑 (𝑥, 𝑦))𝛼 𝜃 (𝑑 (𝑥, 𝑇𝑥))𝛽
⋅ 𝜃 (𝑑 (𝑦, 𝑇𝑦))𝛾
⋅ 𝜃 ((𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)))𝛿 .

(86)

In addition, assume that the following conditions also hold:
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(1) 𝑋(𝑇;R) is nonempty,
(2) if 𝑥, 𝑦 ∈ 𝑋 such that (𝑥, 𝑦) ∈ R, then (𝑇𝑥, 𝑇𝑦) ∈ R,

(3) R is 𝑑-self closed or 𝑇 has closed graph.

Then 𝑇 has at least one fixed point.

Remark 25. The above theorem generalizes various existing
results in literature. If inTheorem 24 we take𝜑(𝑠, 𝑡) = (1/2)𝑠−𝑡, then we have the following:

(1) We obtain a Suzuki type generalization of 𝜃-
contraction result in [2] in the setup of metric spaces
endowed with binary relation. If 𝜃(𝑡) = 𝑒√𝑡, the above
theorem also generalizes the result in [16].

(2) If 𝜃(𝑡) = 𝑒√𝑡,𝛽, 𝛾, 𝛿 = 0, and 𝛼 < 1, we obtain a Suzuki
type result in the setting of metric spaces endowed
with binary relation (see [19]).

(3) If 𝜃(𝑡) = 𝑒√𝑡, 𝛼, 𝛽, 𝛾 = 0, and 𝛿 < 1/2, we obtain
a Suzuki type version of Chatterjea result [15] in the
setup of metric spaces endowed with binary relation.

(4) If 𝜃(𝑡) = 𝑒√𝑡, 𝛼, 𝛿 = 0, and 𝛽 + 𝛾 < 1, we obtain a
Suzuki type result for generalized Kannan mappings
[17] in the setup ofmetric spaces endowedwith binary
relation.

Example 26. Let𝑋 = [0, 3] ∪ [5, 9] be the usual metric space
with binary relation defined as follows:

R = {(1, 1) , (1, 3) , (3, 1) , (3, 3) , (1, 5) , (5, 5) , (5, 9) , (9, 5) ,
(9, 9)} . (87)

Define the mapping 𝑇 : 𝑋 → 𝑋 by

𝑇𝑥 = {{{
2𝑥 + 3, whenever 1 ≤ 𝑥 ≤ 3
9, whenever 5 ≤ 𝑥 ≤ 9. (88)

Let 𝜑(𝑠, 𝑡) = (1/2)𝑠 − 𝑡 and 𝜃(𝑡) = 5√𝑡. Note that 𝑇 is not a(𝜃,R)-contraction because

𝜃 (𝑑 (𝑇1, 𝑇3)) = 𝜃 (𝑑 (1, 5)) = 5√4 > (𝜃 (𝑑 (1, 5)))𝑘
= (5√4)𝑘 .

(89)

Consider the following cases:

(1) If (𝑥, 𝑦) ∈ {(1, 1), (1, 3), (3, 1), (3, 3)}, then(1/2)𝑑(𝑥, 𝑇𝑥) − 𝑑(𝑥, 𝑦) < 0 does not hold.
(2) If (𝑥, 𝑦) ∈ {(5, 5), (5, 9), (9, 5), (9, 9)}, then clearly 𝑇 is

a Suzuki type (𝜃,R)-contraction.
(3) If (𝑥, 𝑦) = (1, 5), then we have

1
2 (𝑑 (1, 𝑇1)) − 𝑑 (1, 5) =

1
2𝑑 (1, 5) − (𝑑 (1, 5)) < 0 (90)

For 𝛼, 𝛽, 𝛾 = 0.1 and 𝛿 = 0.4, we obtain that

𝜃 (𝑑 (𝑇1, 𝑇5)) < (𝜃 (𝑑 (1, 5)))𝛼 (𝜃 (𝑑 (1, 𝑇1)))𝛽
⋅ (𝜃 (𝑑 (5, 𝑇5)))𝛾
⋅ (𝜃 (𝑑 (1, 𝑇5)) + 𝑑 (5, 𝑇1))𝛿

(91)

which implies that

5√4 < (5√4)0.1 (5√4)0.1 (5√4)0.1 (5√8)0.4 . (92)

Clearly, 𝑇 is R-closed and 𝑋(𝑇;R) is nonempty, since(5, 9) ∈ R. Take an R-preserving sequence {𝑥𝑛} such that{𝑥𝑛} converges to 𝑥 and we have (𝑥𝑛, 𝑥𝑛+1) ∈ R for all𝑛 ∈ N0. Note that (𝑥𝑛, 𝑥𝑛+1) ∉ {(1, 5)}. Then, (𝑥𝑛, 𝑥𝑛+1) ∈{(1, 1), (1, 3), (3, 1), (3, 3), (5, 5), (5, 9), (9, 5), (9, 9)} for 𝑛 ∈
N0. Thus, {𝑥𝑛} is a subset of {1, 3}, {3, 5}, or {5, 9}. Since all
of these sets are closed, either (𝑥𝑛, 𝑥) ∈ R or (𝑥, 𝑥𝑛) ∈ R.
Thus all the conditions ofTheorem 24 are satisfied. Moreover,𝑥 = 9 is a fixed point of 𝑇.
3. Application to Homotopy Results

In this section, as an application of our above fixed point
result for Suzuki type (𝜃,R)-contractions, we obtain a homo-
topy result for this class of multivalued mappings. For the
beginning, we give a local fixed point result for multivalued
Suzuki type (𝜃,R)-contraction. Let 𝐵(𝑥0, 𝑟) be an open ball
and 𝐵(𝑥0, 𝑟) the closure of 𝐵(𝑥0, 𝑟).
Theorem 27. Let (𝑋, 𝑑) be a complete metric space, R a
binary relation on 𝑋, 𝑥0 ∈ 𝑋 and 𝑟 > 0. Suppose that
𝑇 : 𝐵(𝑥0, 𝑟) → 𝐶𝐵(𝑋) be a multivalued Suzuki type (𝜃,R)-
contraction with 𝜃(𝑑(𝑥0, 𝑇𝑥0)) < (𝜃(𝑟))1−𝑘 where 0 < 𝑘 < 1.
Assume that the following conditions are also satisfied:

(1) 𝑥0 ∈ 𝑋(𝑇;R),
(2) 𝑇 isR-closed,

(3) 𝑇 has closed graph orR is 𝑑-self closed.
Then 𝑇 has a fixed point in 𝐵(𝑥0, 𝑟).
Proof. Since 𝑥0 ∈ 𝑋(𝑇;R), there exists 𝑥1 ∈ 𝑇𝑥0 such that(𝑥0, 𝑥1) ∈ R. If 𝑥0 = 𝑥1, the result follows. Assume that
𝑥0 ̸= 𝑥1. Let 0 < 𝑠 < 𝑟 be such that 𝐵(𝑥0, 𝑠) ⊂ 𝐵(𝑥0, 𝑟) and𝜃(𝑑(𝑥0, 𝑇𝑥0)) < (𝜃(𝑠))1−𝑘 < (𝜃(𝑟))1−𝑘. Clearly, 𝑑(𝑥1, 𝑇𝑥1) ≤𝐻(𝑇𝑥0, 𝑇𝑥1).Now

𝜑 (𝑑 (𝑥0, 𝑇𝑥0) , 𝑑 (𝑥0, 𝑥1))
≤ 1
2𝑑 (𝑥0, 𝑇𝑥0) − 𝑑 (𝑥0, 𝑥1)

< 𝑑 (𝑥0, 𝑇𝑥0) − 𝑑 (𝑥0, 𝑥1) < 0
(93)
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implies that

𝜃 (𝑑 (𝑥1, 𝑇𝑥1)) ≤ 𝜃 (𝐻 (𝑇𝑥0, 𝑇𝑥1))
≤ [𝜃 (𝑑 (𝑥0, 𝑥1))]𝛼 [𝜃 (𝑑 (𝑥0, 𝑇𝑥0))]𝛽
⋅ [𝜃 (𝑑 (𝑥1, 𝑇𝑥1))]𝛾
⋅ [𝜃 (𝑑 (𝑥0, 𝑇𝑥1) + 𝑑 (𝑥1, 𝑇𝑥0))]𝛿 .

(94)

Thus, we have

𝜃 (𝑑 (𝑥1, 𝑇𝑥1))
≤ [𝜃 (𝑑 (𝑥0, 𝑥1))]𝛼+𝛽+𝛿 [𝜃 (𝑑 (𝑇𝑥1, 𝑥1))]𝛾+𝛿 . (95)

Hence

[𝜃 (𝑑 (𝑥1, 𝑇𝑥1))]1−𝛾−𝛿 ≤ [𝜃 (𝑑 (𝑥0, 𝑥1))]𝛼+𝛽+𝛿 , (96)

which implies that

𝜃 (𝑑 (𝑥1, 𝑇𝑥1)) ≤ [𝜃 (𝑑 (𝑥0, 𝑥1))](𝛼+𝛽+𝛿)/(1−𝛾−𝛿) . (97)

By the condition (𝜃6), we get
inf

𝑦∈𝑇𝑥1
𝜃 (𝑑 (𝑥1, 𝑦)) ≤ [𝜃 (𝑑 (𝑥0, 𝑥1))](𝛼+𝛽+𝛿)/(1−𝛾−𝛿) . (98)

We may now choose 𝑥2 ∈ 𝑇𝑥1 such that (𝑥1, 𝑥2) ∈ R and

𝜃 (𝑑 (𝑥1, 𝑥2)) ≤ [𝜃 (𝑑 (𝑥0, 𝑥1))]𝑘 (99)

where 𝑘 fl (𝛼 + 𝛽 + 𝛿)/(1 − 𝛾 − 𝛿) < 1. Furthermore,

𝜃 (𝑑 (𝑥1, 𝑥2)) ≤ [𝜃 (𝑑 (𝑥0, 𝑥1))]𝑘 < ((𝜃 (𝑠))1−𝑘)𝑘 . (100)

Note that

𝜃 (𝑑 (𝑥0, 𝑥2)) ≤ 𝜃 (𝑑 (𝑥0, 𝑥1)) 𝜃 (𝑑 (𝑥1, 𝑥2))
< (𝜃 (𝑠))1−𝑘 (𝜃 (𝑠))𝑘(1−𝑘) < (𝜃 (𝑠))1−𝑘2

< 𝜃 (𝑠) .
(101)

Thus 𝑥2 ∈ 𝐵(𝑥0, 𝑠) as 𝑑(𝑥0, 𝑥2) < 𝑠. Continuing this way, we
obtain a sequence {𝑥𝑛} with following properties:

(1) 𝑥𝑛 ∈ 𝐵(𝑥0, 𝑠),
(2) (𝑥𝑛, 𝑥𝑛+1) ∈R,
(3) 𝑥𝑛+1 ∈ 𝑇𝑥𝑛 ∀𝑛 ∈ N0,

(4) 𝜃(𝑑(𝑥𝑛, 𝑥𝑛+1)) < (𝜃(𝑠))𝑘𝑛(1−𝑘).

By similar arguments to those in the proof of Theorem 15, we
obtain that {𝑥𝑛} is a Cauchy sequence which converges to 𝑢 ∈𝐵(𝑥0, 𝑟) and 𝑢 ∈ 𝑇𝑢.

Now we present the following homotopy result.

Theorem28. Let (𝑋, 𝑑) be a complete metric space,𝑈 an open
set of 𝑋, R a 𝑑-self closed binary relation on 𝑋 and Λ : 𝑈 ×[0, 1] → 𝑃(𝑋) be a multivalued mapping with closed values.
Suppose that for each 𝑡 ∈ [0, 1], Λ(⋅, 𝑡) : 𝑈 → 𝐶𝐵(𝑋) satisfies
the conditions (1)-(2) inTheorem 27. Assume that the following
conditions are also satisfied:

(1) 𝑥 ∉ Λ(𝑥, 𝑡), for each 𝑥 ∈ 𝜕𝑈 and each 𝑡 ∈ [0, 1];
(2) Λ(⋅, 𝑡) : 𝑈 → 𝐶𝐵(𝑋) is a multivalued Suzuki type(𝜃,R)-contraction with closed graph, for each 𝑡 ∈[0, 1];
(3) there exists a continuous increasing function 𝜂 :[0, 1] → R such that

𝜃(𝐻(Λ (𝑥, 𝑡) , Λ (𝑥, 𝑠)) ≤ 𝜃 (𝜂 (𝑡) − 𝜂 (𝑠)) (102)

for all 𝑡, 𝑠 ∈ [0, 1] and each 𝑥 ∈ 𝑈.
Then Λ(⋅, 0) has a fixed point if and only if Λ(⋅, 1) has a fixed
point.

Proof. Suppose that Λ(⋅, 0) has a fixed point 𝑧, then by (1) 𝑧 ∈𝑈. Define
𝑄 = {( (𝑥, 𝑡) ∈ 𝑈 × [0, 1] : 𝑥 ∈ Λ (𝑥, 𝑡)} (103)

As (𝑧, 0) ∈ 𝑄, so 𝑄 ̸= 0. Define partial order on 𝑄 by

(𝑥, 𝑡) ≼ (𝑦, 𝑠) if and only if 𝑡 ≤ 𝑠 (104)

and

𝜃 (𝑑 (𝑥, 𝑦)) ≤ (𝜃 (𝜂 (𝑡) − 𝜂 (𝑠)))2/(1−𝑘) ,
where 𝑘 = 𝛼 + 𝛽 + 𝛿

1 − 𝛾 − 𝛿 .
(105)

Let 𝐴 be a totally ordered set in 𝑄 and 𝑡∗ = sup{𝑡 : (𝑥, 𝑡) ∈𝐴}. Consider a sequence {(𝑥𝑛, 𝑡𝑛)} in 𝐴 such that (𝑥𝑛, 𝑡𝑛) ≼(𝑥𝑛+1, 𝑡𝑛+1) and 𝑡𝑛 → 𝑡∗ as 𝑛 → ∞. Then, we have

𝜃 (𝑑 (𝑥𝑚, 𝑥𝑛)) ≤ (𝜃 (𝜂 (𝑡𝑚) − 𝜂 (𝑡𝑛) ))2/(1−𝑘) . (106)

As

lim𝑚,𝑛→∞
𝜂 (𝑡𝑚) − 𝜂 (𝑡𝑛) = 0, (107)

by (𝜃3), we have
lim𝑚,𝑛→∞𝜃 (𝜂 (𝑡𝑚) − 𝜂 (𝑡𝑛)) = 1. (108)

Thus (106) gives that

1 ≤ lim𝑚,𝑛→∞𝜃 (𝑑 (𝑥𝑚, 𝑥𝑛)) ≤ 1 (109)

and

lim𝑚,𝑛→∞𝑑 (𝑥𝑚, 𝑥𝑛) = 0. (110)

Hence {𝑥𝑛} is Cauchy sequence which converges to an
element 𝑥∗ ∈ 𝑈. As 𝑥𝑛 ∈ Λ(𝑥𝑛, 𝑡𝑛) for 𝑛 ∈ N and Λ is
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closed, so 𝑥∗ ∈ Λ(𝑥∗, 𝑡∗). Also, from (1) we have 𝑥∗ ∈ 𝑈.
Hence, (𝑥∗, 𝑡∗) ∈ 𝑄. Since 𝐴 is totally ordered, therefore(𝑥, 𝑡) ≤ (𝑥∗, 𝑡∗) for each (𝑥, 𝑡) ∈ 𝐴.That is, (𝑥∗, 𝑡∗) is an upper
bound of 𝐴. By Zorn’s Lemma, the set 𝑄 admits a maximal
element (𝑥0, 𝑡0) ∈ 𝑄. We claim that 𝑡0 = 1. Assume, on the
contrary, that 𝑡0 < 1. Choose 𝑟 > 0 and 𝑡 ∈ (𝑡0, 1] such that𝐵(𝑥0, 𝑟) ⊂ 𝑈 and

𝜃 (𝑟) = [𝜃( 𝜂 (𝑡) − 𝜂 (𝑡0)]2/(1−𝑘) . (111)

Note that

𝜃 (𝑑 (𝑥0, Λ (𝑥0, 𝑡)))
≤ 𝜃 (𝑑 (𝑥0, Λ (𝑥0, 𝑡0)) + 𝐻 (Λ (𝑥0, 𝑡0) , Λ (𝑥0, 𝑡)))
≤ 𝜃 (𝜂 (𝑡) − 𝜂 (𝑡0)) = (𝜃 (𝑟))(1−𝑘)/2 < (𝜃 (𝑟))1−𝑘 .

(112)

Thus Λ(⋅, 𝑡) : 𝐵(𝑥0, 𝑟) → 𝐶𝐵(𝑋) satisfies all assumptions of
Theorem 27. Hence, for all 𝑡 ∈ [0, 1], there exists 𝑥 ∈ 𝐵(𝑥0, 𝑟)
such that 𝑥 ∈ Λ(𝑥, 𝑡). Hence (𝑥, 𝑡) ∈ 𝑄. Now, 𝑑(𝑥0, 𝑥) < 𝑟
implies that

𝜃 (𝑑 (𝑥0, 𝑥)) < 𝜃 (𝑟) = [𝜃( 𝜂 (𝑡) − 𝜂 (𝑡0)]2/(1−𝑘) , (113)

which further implies that (𝑥0, 𝑡0) < (𝑥, 𝑡), a contradiction to
the fact that (𝑥0, 𝑡0) is a maximal element.

Conversely, if Λ(⋅, 1) has a fixed point, then by similar
arguments to those given before, we obtain that Λ(., 0) has
a fixed point.

4. Existence of a Solution of Second-Order
Differential Equation

In this section, we study the existence of solution of a two-
point boundary value problem associated with a second-
order differential equation. Let 𝑋 = 𝐶[0, 1] be the space of
all continuous functions defined on [0, 1].Themetric on𝑋 is
given by

𝑑 (𝑥, 𝑦) = 𝑥 − 𝑦∞ = max
𝑡∈[0,1]

𝑥 (𝑡) − 𝑦 (𝑡) . (114)

Define the binary relation on𝑋 by

(𝑥, 𝑦) ∈ R if and only if 𝑥 ≤ 𝑦
(i.e., 𝑥 (𝑡) ≤ 𝑦 (𝑡) , 𝑡 ∈ [0, 1]) . (115)

Note that the space 𝑋 = (𝐶[0, 1], 𝑑) is complete metric
space. We consider the following two-point boundary value
problem:

−𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 1]
𝑥 (0) = 𝑥 (1) = 0, (116)

where𝑓 : [0, 1]×R → R is a continuous function.Then, the
problem (116) can be written in the following integral form:

𝑥 (𝑡) = ∫1

0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (s)) 𝑑𝑠, (117)

where the associated Green function is

𝐺 (𝑡, 𝑠) = {{{
𝑡 (1 − 𝑠) ; 0 ≤ 𝑡 ≤ 𝑠 ≤ 1
𝑠 (1 − 𝑡) ; 0 ≤ 𝑠 ≤ 𝑡 ≤ 1, (118)

see [21] for details.

Theorem 29. Assume that the following conditions are satis-
fied:

(1) 𝑓 : [0, 1] ×R → R is continuous,
(2) 𝑓(𝑠, .) : R → R is increasing for all 𝑠 ∈ [0, 1],
(3) there exists 𝜏 ∈ [1,∞) such that the following condition

holds for all 𝑥, 𝑦 ∈ 𝑋, with 𝑥 ≤ 𝑦,
𝑓 (𝑠, 𝑥) − 𝑓 (𝑠, 𝑦) ≤ 8𝑒−𝜏 𝑥 (𝑠) − 𝑦 (𝑠) ,

∀𝑠 ∈ [0, 1] , (119)

(4) there exists 𝑥0 ∈ 𝑋 such that for all 𝑡 ∈ [0, 1], we have
𝑥0 (𝑡) ≤ ∫

1

0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥0 (𝑠)) 𝑑𝑠. (120)

Then the problem (116) has a solution in 𝑋.
Proof. If we define the mapping 𝑇 : 𝑋 → 𝑋 by

𝑇 (𝑥) (𝑡) = ∫1

0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠, (121)

then our problem can be written as a fixed point equation 𝑥 =𝑇𝑥.
Obviously,𝑇 is continuous. As𝑓(𝑠, .) is increasing, for any𝑥, 𝑦 ∈ 𝑋 with 𝑥(𝑡) ≤ 𝑦(𝑡) for all 𝑡 ∈ [0, 1], we obtain that

∫1

0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 ≤ ∫1

0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠,

i.e., 𝑇 (𝑥) (𝑡) ≤ 𝑇 (𝑦) (𝑡) .
(122)

Thus, 𝑇 is R-closed. If 𝑥, 𝑦 ∈ 𝑋 such that 𝑥(𝑡) ≤ 𝑦(𝑡), then
we have

𝑇 (𝑥) (𝑡) − 𝑇 (𝑦) (𝑡) =
∫

1

0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

− ∫1

0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

≤ ∫1

0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

≤ ∫1

0
8𝑒−𝜏 𝑥 (𝑠) − 𝑦 (𝑠) 𝐺 (𝑡, 𝑠) 𝑑𝑠

≤ 8𝑒−𝜏𝑑 (𝑥, 𝑦) ∫1

0
𝐺 (𝑡, 𝑠) 𝑑𝑠.

(123)
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As ∫1
0 𝐺(𝑡, 𝑠)𝑑𝑠 = 𝑡/2 − 𝑡2/2, we get that sup𝑡∈[0,1](∫1

0 𝐺(𝑡,𝑠)𝑑𝑠) = 1/8. The inequality (123) becomes

𝑇 (𝑥) (𝑡) − 𝑇 (𝑦) (𝑡) ≤ 8𝑒−𝜏𝑑 (𝑥, 𝑦) 18
≤ 𝑒−𝜏𝑑 (𝑥, 𝑦) .

(124)

Hence, we have

max
𝑡∈[0,1]

𝑇 (𝑥) (𝑡) − 𝑇 (𝑦) (𝑡) ≤ 𝑒−𝜏𝑑 (𝑥, 𝑦) , (125)

which implies that

𝑑 (𝑇 (𝑥) , 𝑇 (𝑦)) ≤ 𝑒−𝜏𝑑 (𝑥, 𝑦) . (126)

Taking square root on both sides and passing through
exponential function, we obtain that

𝑒√𝑑(𝑇(𝑥),𝑇(𝑦)) ≤ 𝑒√𝑒−𝜏𝑑(𝑥,𝑦) = [𝑒√𝑑(𝑥,𝑦)]√𝑒−𝜏 , (127)

where 𝑒−𝜏 < 1 as 𝜏 ≥ 1. Hence,
𝑒√𝑑(𝑇(𝑥),𝑇(𝑦)) ≤ [𝑒√𝑑(𝑥,𝑦)]𝛼 with 𝛼 = √𝑒−𝜏 ∈ (0, 1) . (128)

Thus,

𝜃 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ (𝜃 (𝑑 (𝑥, 𝑦)))𝛼 , (129)

where 𝜃(𝑡) = 𝑒√𝑡 and (𝑥, 𝑦) ∈ R.
As above inequality is true for any 𝑥, 𝑦 ∈ 𝑋 with 𝑥(𝑡) ≤𝑦(𝑡), so is for any 𝜑 ∈ Φ, with 𝜑(𝑑(𝑥, 𝑇𝑥), 𝑑(𝑥, 𝑦)) < 0. Thus

𝜃 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ (𝜃 (𝑑 (𝑥, 𝑦)))𝛼 . (130)

ByTheorem 24 we get that (116) has a solution in 𝑋.
5. Existence of a Solution of Fractional
Boundary Value Problem

In this section, we investigate the existence of solutions of a
nonlinear fractional differential equation. Let the space𝑋 and
the metric 𝑑 be defined as in the above section.

Consider the following fractional differential equation

𝐶𝐷𝛽𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) ; 0 < 𝑡 < 1, 1 < 𝛽 ≤ 2, (131)

with boundary conditions

𝑥 (0) = 0,
𝐼𝑥 (1) = 𝑥 (0) . (132)

Here 𝐶𝐷𝛽 stands for the Caputo fractional derivative of order𝛽, defined by

𝐶𝐷𝛽𝑓 (𝑡) = 1
Γ (𝑛 − 𝛽) ∫

𝑡

0
(𝑡 − 𝑠)𝑛−𝛽−1 𝑓𝑛 (𝑠) 𝑑𝑠, (133)

(where we consider 𝑛 − 1 < 𝛽 < 𝑛 and 𝑛 = [𝛽] + 1) and 𝐼𝛽𝑓
denotes the Riemann-Liouville fractional integral of order 𝛽
of a continuous function 𝑓, given by

𝐼𝛽𝑓 (𝑡) = 1
Γ (𝛽) ∫

𝑡

0
(𝑡 − 𝑠)𝛽−1 𝑓 (𝑠) 𝑑𝑠, with 𝛽 > 0. (134)

Senapati and Dey ([13]) showed that the problem (131)+(132)
can be written in the following integral form:

𝑥 (𝑡) = 1
Γ (𝛽) ∫

𝑡

0
(𝑡 − 𝑠)𝛽−1 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+ 2𝑡
Γ (𝛽) ∫

1

0
∫𝑠

0
(𝑠 − 𝑟)𝛽−1 𝑓 (𝑟, 𝑥 (𝑟)) 𝑑𝑟 𝑑𝑠.

(135)

Theorem 30. Suppose that following conditions are satisfied:

(1) 𝑓 : [0, 1] ×R → R is a continuous function,

(2) 𝑓(𝑠, ⋅) : R → R is an increasing function,

(3) for every 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≤ 𝑦, the following condition
holds:

𝑓 (𝑠, 𝑥) − 𝑓 (𝑠, 𝑦) ≤ 𝑒−𝜏Γ (𝛽 + 1)
4 𝑥 (𝑠) − 𝑦 (𝑠) ,

∀𝑠 ∈ [0, 1] ,
(136)

where 𝜏 ∈ [1,∞),
(4) there exists 𝑥0 ∈ 𝑋 such that, for all 𝑡 ∈ [0, 1], we have
𝑥0 (𝑡) ≤ 1

Γ (𝛽) ∫
𝑡

0
(𝑡 − 𝑠)𝛽−1 𝑓 (𝑠, 𝑥0 (𝑠)) 𝑑𝑠

+ 2𝑡
Γ (𝛽) ∫

1

0
∫𝑠

0
(𝑠 − 𝑟)𝛽−1 𝑓 (𝑟, 𝑥0 (𝑟)) 𝑑𝑟 𝑑𝑠.

(137)

Then, (131)+(132) has at least one solution in 𝐶[0, 1].
Proof. Define the mapping 𝑇 : 𝑋 → 𝑋 by

𝑇 (𝑥) (𝑡)
= 1
Γ (𝛽) ∫

𝑡

0
(𝑡 − 𝑠)𝛽−1 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+ 2𝑡
Γ (𝛽) ∫

1

0
∫𝑠

0
(𝑠 − 𝑟)𝛽−1 𝑓 (𝑟, 𝑥 (𝑟)) 𝑑𝑟 𝑑𝑠.

(138)

Then (135) can be written as a fixed point equation for 𝑇; i.e.,𝑥 = 𝑇𝑥. Consider on 𝑋 fl 𝐶[0, 1] the binary relation defined
as follows

𝑥R𝑦 if and only if 𝑥 (𝑡) ≤ 𝑦 (𝑡) , ∀𝑡 ∈ [0, 1] . (139)
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By the given assumption (4),𝑋(𝑇;R) is nonempty. If 𝑥, 𝑦 ∈𝑋 are such that 𝑥(𝑡) ≤ 𝑦(𝑡) for every 𝑡, then by assumption
that 𝑓(𝑠, ⋅) is increasing we have

1
Γ (𝛽) ∫

𝑡

0
(𝑡 − 𝑠)𝛽−1 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+ 2𝑡
Γ (𝛽) ∫

1

0
∫𝑠

0
(𝑠 − 𝑟)𝛽−1 𝑓 (𝑟, 𝑥 (𝑟)) 𝑑𝑟𝑑𝑠

≤ 1
Γ (𝛽) ∫

𝑡

0
(𝑡 − 𝑠)𝛽−1 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+ 2𝑡
Γ (𝛽) ∫

1

0
∫𝑠

0
(𝑠 − 𝑟)𝛽−1 𝑓 (𝑟, 𝑦 (𝑟)) 𝑑𝑟 𝑑𝑠,

(140)

which implies that 𝑇(𝑥)(𝑡) ≤ 𝑇(𝑦)(𝑡). Therefore, 𝑇 is R-
closed. Nieto and López [22] have shown that if there exists a
sequence {𝑥𝑛} in𝑋 such that𝑥𝑛(𝑡) ≤ 𝑥𝑛+1(𝑡) and 𝑥𝑛 converges
to some 𝑥, then 𝑥𝑛(𝑡) ≤ 𝑥(𝑡). Hence, R is 𝑑-self closed. If𝑥, 𝑦 ∈ 𝑋 such that 𝑥(𝑡) ≤ 𝑦(𝑡), then

𝑇 (𝑥) (𝑡) − 𝑇 (𝑦) (𝑡)
= 

1
Γ (𝛽) ∫

𝑡

0
(𝑡 − 𝑠)𝛽−1 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

− 1
Γ (𝛽) ∫

𝑡

0
(𝑡 − 𝑠)𝛽−1 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+ 2𝑡
Γ (𝛽) ∫

1

0
∫𝑠

0
(𝑠 − 𝑟)𝛽−1 𝑓 (𝑟, 𝑥 (𝑟)) 𝑑𝑟𝑑𝑠

− 2𝑡
Γ (𝛽) ∫

1

0
∫𝑠

0
(𝑠 − 𝑟)𝛽−1 𝑓 (𝑟, 𝑦 (𝑟)) 𝑑𝑟𝑑𝑠

≤ 1
Γ (𝛽)

⋅ ∫𝑡

0
(𝑡 − 𝑠)𝛽−1 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 − 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+ 2
Γ (𝛽)

⋅ ∫1

0
∫𝑠

0
(𝑠 − 𝑟)𝛽−1 𝑓 (𝑟, 𝑥 (𝑟)) − 𝑓 (𝑟, 𝑦 (𝑟)) 𝑑𝑟 𝑑𝑠

≤ 𝑒−𝜏 Γ (𝛽 + 1)4Γ (𝛽) ∫𝑡

0
(𝑡 − 𝑠)𝛽−1 𝑥 (𝑠) − 𝑦 (𝑠) 𝑑𝑠

+ 2𝑒−𝜏 Γ (𝛽 + 1)4Γ (𝛽)
⋅ ∫1

0
∫𝑠

0
(𝑠 − 𝑟)𝛽−1 𝑥 (𝑟) − 𝑦 (𝑟) 𝑑𝑟 𝑑𝑠 ≤ 𝑒−𝜏

⋅ Γ (𝛽 + 1)4Γ (𝛽) 𝑑 (𝑥, 𝑦) ∫𝑡

0
(𝑡 − 𝑠)𝛽−1 𝑑𝑠 + 2𝑒−𝜏

⋅ Γ (𝛽 + 1)4Γ (𝛽) 𝑑 (𝑥, 𝑦) ∫1

0
∫𝑠

0
(𝑠 − 𝑟)𝛽−1 𝑑𝑟 𝑑𝑠 ≤ 𝑒−𝜏

⋅ Γ (𝛽) Γ (𝛽 + 1)4Γ (𝛽) Γ (𝛽 + 1)𝑑 (𝑥, 𝑦) + 2𝑒−𝜏𝐵 (𝛽 + 1, 1)

⋅ Γ (𝛽) Γ (𝛽 + 1)4Γ (𝛽) Γ (𝛽 + 1)𝑑 (𝑥, 𝑦) ≤
𝑒−𝜏

4 𝑑 (𝑥, 𝑦)

+ 𝑒−𝜏

2 𝑑 (𝑥, 𝑦) ,
(141)

where 𝐵 is the beta function. From the above inequality, we
obtain that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑒−𝜏𝑑 (𝑥, 𝑦) . (142)

Taking square root on both sides and passing through
exponential function, we have

𝑒√𝑑(𝑇𝑥,𝑇𝑦) ≤ 𝑒√𝑒−𝜏𝑑(𝑥,𝑦), (143)

that is,

𝑒√𝑑(𝑇𝑥,𝑇𝑦) ≤ (𝑒√𝑑(𝑥,𝑦))𝛼 , (144)

where 𝛼 = √𝑒−𝜏 < 1. Since the above inequality holds for any𝑥, 𝑦 ∈ 𝑋 such that 𝑥(𝑡) ≤ 𝑦(𝑡) so is true for any 𝜑 ∈ Φ, with
𝜑 (𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑥, 𝑦)) < 0. (145)

Hence we have

𝜃 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ (𝜃 (𝑑 (𝑥, 𝑦)))𝛼 . (146)

Thus 𝑇 is a Suzuki type (𝜃,R)-contractive mapping. Since all
the conditions of Theorem 24 are satisfied, the problem (131)
has at least one solution.
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[6] H. A. Hançer, G. Minak, and I. Altun, “On a broad category of
multivalued weakly picard operators,” Fixed Point Theory and
Applications, vol. 18, no. 1, pp. 229–236, 2017.

[7] G. Durmaz, “Some theorems for a new type of multivalued con-
tractive maps on metric space,” Turkish Journal of Mathematics,
vol. 41, no. 4, pp. 1092–1100, 2017.

[8] G. Durmaz and I. Altun, “A new perspective for mul-
tivalued weakly picard operators,” Publications de l’Institut
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