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In this dissertation a combination of numerical and statistical methods are used to analyse and model

periodic breaking ocean wave radar data in a littoral coastal zone. Analysis, based primarily on

post-aligned parallel breaking waves, is considered for this research. Measurement data, obtained from

the CSIR, is used to parametrise the model variables. Returns are corrected against the incoming wave

angle, with respect to the radar, through a Radon transform analysis followed by a data alignment

correction step. This ensures that the periodic breaking waves are then parallel to the time axis. The

assumption is made that the fractional change in grazing angle has negligible effects on the clutter

statistics. Subsequently statistical analysis is performed on the angular corrected measured data.

Several different segments of a breaking wave are independently considered and analysed in terms of

their distribution and correlation properties. Statistical results show that the best fitting distribution is a

function of the sub-section of the sea wave and a function of the noise floor of the measuring radar.

This is in part due to the radar signal not being able to reflect between the troughs of an ocean wave,

because of the low grazing angle. Crest sections of an ocean wave tend to be distributed according to

Rayleigh and K-distributions.



After data processing, statistical parameters are obtained, which allows for the successful simulation of

statistically similar periodic breaking wave range-time clutter data. Angular data is captured for post

skewing of the approaching ocean waves. Statistical correlation times and distribution parameters are

analysed and recorded for use in the data generation process. Further datasets containing small rigid

inflatable boats crossing the sea wave crest are compared with pure sea clutter datasets and discussed.

Influences on the Radon transform and the resulting effects are also discussed.

Based on these models, methods and simulations, future work will include using the resultant model to

develop improved detection algorithms, which measure and detect small targets in periodic breaking

waves in littoral coastal zones. This could lead to integrating environmental wave structures, which may

be independently tracked and categorised, into the algorithm design and ultimately lead to improving

small vessel detection using low grazing angle coastal ground radar through classification.
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CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

Rigid-inflatable boats (RIB) and other similar type vessels are difficult to detect due to their low radar

cross section (RCS) and are easily hidden within sea clutter [2, 3]. Characteristics of importance, for

detection, include the RCS of the boat (function of material type), absolute and relative size, radar

grazing angle, reflection angle, polarisation, as well as the characteristics of the surrounding sea

condition [4]. Periodic breaking wave sea clutter structures, in addition to the above characteristics,

make small boats not readily detectable by common detection algorithms. They are easily treated as sea

clutter and not processed correctly. Small boats typically have the response of a single radar resolution

cell, which makes detection amongst measured anomalies extremely difficult in comparison to larger

ships that return more cells. Ships of length greater than 30 m generally return a signal stronger than

the sea clutter. Whereas for small boats ocean breaking waves and fronts can represent a larger and

stronger signal, which effectively conceals the small vessel within the clutter [2].

In order to detect these types of vessels, a better understanding of periodic breaking waves in littoral

environments is needed. This dissertation contains research into the statistical parameters, which are

required to accurately simulate such an environment and analyse which anomalies can be detected

therein.

The aim is that these methods will help researchers and practitioners to better understand and model

such environments. This could lead to improved detection algorithms, aiding in improving detection

of illegal fishing activities and or detection of debris for rescue operations. Overall this process has the

intention to help improve border and coastal security by monitoring the shoreline more accurately at a

lower resource cost [5].
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1.1.1 Context of the problem

The South African Department of Defence (DoD) stated, in their 2015 Defence Review, critical tasks

and goals relating to the safety and security of the country. The Defence Mission as stated in [6] is to

"defend and protect South Africa, its territory, sovereignty and people and enhance peace security and

development". Amongst this statement, is the need for the defence force to secure the air, land and

sea borders of the country, of which the shoreline plays a formidable role essential to the economy

[6, 7].

Goal 2 of the review is to safeguard South Africa against foreign and local threats. Task 4 of this goal,

as outlined in the document, is to secure the borders. The borders consist of the airspace region, the

land borders and the maritime areas. The country has an area of 1,219,090 km2 to secure, of which

the land border has a length of a 4,471 km, the an air border of 7,660 km and a shoreline of 3,924 km

at the high water line, one of the longest shorelines in Africa [6, 7]. Further it is the responsibility

of the country to also defend the exclusive economic zone (EEZ) along the shore, which includes

Marion and Prince Edward Islands, as defined by the United Nations Convention on the Law of the

Sea (UNCLOS) . Figure 1.1 shows the region of concern.

As mentioned in [6, 7], South Africa can be considered an island economy, 50% of its gross domestic

product (GDP) is directly dependent on maritime based trade. This figure can be increased to 75% of

the country’s GDP, if one includes the dependency on oil and fuel required for economic productivity,

which originates via sea from the middle east. This also includes an all important fishing industry,

which provides an annual turnover of over R80 billion or 0.5% of the GDP [8].

There are principally four main maritime regions for the country to protect. The smallest and closest is

the territorial waters measured as 12 nautical miles (nm) (≈ 22.25 km) from the coast, followed by the

contiguous zone (24 nm ≈ 44.45 km), the EEZ at 200 nm (≈ 370 km) and finally the continental shelf

at 350 nm (≈ 556 km) [7, 9]. This is graphically represented in Figure 1.2.

South Africa lies along one of the primary international sea trading routes. These routes date back to

the spice trading routes of Vasco da Gama’s journey in 1497. The country is relatively isolated from

its key Asian and European partners, and thus it is critical for South Africa to commit to providing

safe passage and security for ships travelling through the region. The country is also obligated, by
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Figure 1.1. Illustration of South African martime borders [7].
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Figure 1.2. Illustration of South African maritime region of responsibility [7].
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international agreement, to protect and care for the marine environment [6, 7]. Consequently it is of

paramount importance to secure and protect the country’s maritime borders. This can only be achieved

with reduced or low monitoring costs, such as effective detection and tracking via ground radar.

Accurate and intelligent monitoring of the shoreline is vital in addressing the following key

concerns:

• peace, safety and security for the African continent and South Africa,

• piracy,

• smuggling of illegal weapons, contraband and people, and

• illegal exploitation of maritime resources.

The last point is of particular concern for this dissertation and as emphasised in [6, 7], "littoral states in

the region generally lack the capacity to monitor, police and enforce maritime law". Consequently it is

of utmost importance to implement the necessary new technologies to protect the country’s shoreline

and economy and aid authorities to enforce relevant protection and policing acts.

Abalone poaching is a common maritime fishing infringement that occurs off the South African coast

and one which is jeopardising the future of the local fishing industry. Poaching is a highly critical form

of exploitation and occurs through contravening local maritime law as defined by the Marine Living

Resources Act of 1998. Diving in restricted areas and exceeding the prescribed daily catch limits are

difficult to regulate. Improved small boat detection will aid in the monitoring of off-shore activities

and the protected fishing areas [10].

1.1.2 Research gap

The South African coastal oceanic littoral region, with regular occurring strong periodic breaking

waves, have no optimised functional simulation models for periodically structured sea clutter. This is

essential for the correct simulation of data, not only for analysis but also for the correct development

of object detection algorithms within such strong clutter environments. Further, the generation of data

may be used to verify such methods. The lack of such models limits the capabilities within the research

community to expand and advance detection algorithms that match the sea conditions and sea clutter
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environment. This dissertation creates a first statistical representation of periodic breaking waves in a

littoral environment typical to the South African coast.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

The primary research objective of this dissertation is to develop the processing steps required to

parametrise the model that is suggested for analysing and generating breaking sea wave clutter in a

littoral environment. The model considers data distribution and correlation at individual sections of the

breaking wave. This is justified as the signal from a radar with low grazing angle may be obscured by

the wave structure itself. The goal is to reduce the cost of measuring radar data in littoral regions and

generate accurate breaking wave sea clutter for further investigations and simulations.

The main research questions that are posed in this study include:

• Can recorded radar data within the littoral environment be accurately represented by statistical

means?

• Can the statistical data then be used to generate accurate simulated data?

• What is the computational expense of such a process?

• What significant characteristics do each of the current methods offer and how are they related to

one another?

1.3 HYPOTHESIS AND APPROACH

This dissertation investigates the littoral sea clutter amplitude distributions associated with individual

segments within periodic ocean waves. Low grazing angle, X-band sea clutter data, obtained from

the Council for Scientific and Industrial Research’s (CSIR) online database was utilised for this study

[11]. The dataset contains fixed frequency pulsed radar returns of low grazing angle sea clutter with a

pulse repetition frequency (PRF) between 2.5 kHz and 5 kHz. The algorithmic processing involves

correcting the data by means of rotation, such that the periodic wave phase structures within the data

matrices align over time and are parallel to the longtime axis. Thereafter, the data and thus the wave

structures, are segmented into multiple partitions, where each partition represents a section of the

ocean wave phase in the range dimension. These segments are then fitted against multiple distributions
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typically used to model sea clutter. It is expected that the approach can accurately describe specific

sections of the ocean wave with a reduced error between actual and estimated distributions. The

improved probability density function (PDF) representation will allow for more accurate data analysis

and data generation in littoral environments. This can then be used for the simulation and performance

estimation as well as development of new detectors [4].

1.4 RESEARCH CONTRIBUTION

The above problem is still considered an open problem in literature [12]. This proposal suggests the

generation of a sea clutter model for periodic breaking ocean waves in a littoral environment, which

through future work and research, may lead to improved probability of detection of small vessels in

such environments. One conference paper discussing the analysis steps of the suggested model has

been published [4].

1.4.1 Research goals

The goals of this research are to:

• generate a statistically accurate model of breaking sea wave clutter in littoral environments,

• accurately represent breaking periodic waves inherent to the South African coastal environment,

• verify this method against actual measured radar data obtained off the coast of Cape Town.

1.5 OVERVIEW OF STUDY

In this dissertation, a brief review of present clutter models and detection algorithms are presented in

the literature review of Chapter 2. This is followed by a basic summary of the operating principles

of a radar system and its corresponding terminology, which is presented in Chapter 3. Chapter 4

presents the mathematical methods and algorithms used specific to the proposed algorithm. Some

data illustration examples and further radar background are also provided where needed. The results

are then presented and discussed in Chapter 5, followed by a summary and conclusion in Chapter 6.

Appendix A presents results for further processed and analysed datasets that were not presented in

Chapter 5.
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Clutter models and detection methods applicable to this dissertation are reviewed in Chapter 2. A

summary of known clutter models with an emphasise on high resolution, low grazing angle radar data

are presented in Section 2.1. Detector models based on statistical methods are reviewed in Section 2.2.

The chapter is closed with some concluding remarks.

2.1 CLUTTER MODELS

The ability to analyse and model sea clutter is essential for accurate and reliable radar design and

performance [13, 14, 15, 16, 17, 18]. Effective models allow for the optimisation of radar hardware

and processing parameters during design, leading to more accurate and improved detection of targets

[15, 17]. This is especially important for low RCS targets that are difficult to detect and measure.

Much work has been completed in this area and several modelling methods based on statistical and

electromagnetic principles have been investigated and analysed [16, 19].

Models can be broadly categorised into the following methods:

• distributional analysis with spatial correlation and amplitude statistics,

• fractal theory,

• chaos theory, and

• other processing methods specifically aimed at small target detection [16, 19].

Historically, low resolution radar systems typically show returns which can be stochastically categorised

to be of a Gaussian nature [13, 15, 16, 20]. However, due to increased radar resolution, returns typically

no longer follow these Gaussian based distributions and contain additional spiky measurements. These
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spikes were previously integrated out due to the lower resolution. Using high resolution data causes

traditional Gaussian based detectors, such as the standard Gaussian based CFAR, to produce an

increased number of false alarms [15, 20]. This occurs due to the wave front spikes being treated as

possible targets, essentially decreasing the radar’s performance and reliability to detect targets. Overall,

the detection algorithms had to be adapted to account for the increase in resolution [15], which allows

for the capturing of small targets previously not measurable.

Many distributions have been considered to accurately describe these high resolution radar returns,

including the log-normal, Weibull, and the most commonly accepted K-distribution [13, 16, 19]. In

order to address the increase in radar resolution Pusey presented an alternative to the Rayleigh model.

Originating from the optical laser field, the K-distribution can be used for sea clutter distribution

modelling [20]. Ward and Watts further illustrated that this distribution can be considered to be a

phenomenological model [15, 21]. This essentially describes the electromagnetic reflections in such a

way so that they can be traced back to a physical structure present within the waves [17, 18]. Ocean

waves are considered to be the addition of two main types of sub-waves. Gravity waves make up for the

large amplitudes and higher wavelengths, whereas capillary waves, caused by the water surface tension

of the wave, add a random type of behaviour to the radar returns [17, 21]. Furthermore, it is shown that

the amplitude of the capillary waves is also a function of the direction of the gravity wave. For example

an approaching front travelling against the wind direction shows smaller capillary amplitudes than on

the other side of the gravity crest travelling with the wind [17, 21]. Horizontally polarised returns are

more pronounced to a limiting case of a log-normal distribution, for low grazing angles, than vertically

polarised returns. The latter tends to be a limiting case of a Rayleigh distribution [13, 20]. All of these

can, to an extent, be described by the K-distribution. Ward shows how to apply the K-distribution to

coherent data [14, 21] and its applicability. The compound K-distribution further fluctuates the power

of the K-distribution using an exponential distribution, thus improving the spatial correlation [19, 21].

In [22, 23], Watts accounts for time dependent frequency characteristics by using the power spectrum,

mean Doppler spectrum, clutter to noise ratio, and normalised width of the spectrum as inputs to the

model for single range bin. These are then expanded using a Gaussian variate for a weighted FIR to

generate time-series correlated data.

More recently researchers suggest that sea clutter is better modelled as a chaotic process [24, 25]. This

allows the clutter to be described by a non-linear deterministic system with a few degrees of freedom

[26, 27]. The difficulty is thus to retrospectively track this time series data and fit it to a non-linear
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deterministic model. Methods include algorithms based on neural networks and multiple model neural

networks, where predictions are then compared to measured data to determine detections [25, 28].

Chaotic forms of modelling do not easily integrate themselves into standard detection methods, which

are commonly based on statistics [17]. Chaotic models are sensitive to initial conditions. In [29] an

exponential sensitivity to initial conditions model is considered. Chaos theory includes the methods of

fractal analysis, which implies a feedback loop together with an alternating loop to describe sea clutter.

This allows high flexibility towards the input parameters and produces a certain statistical similarity to

measured data [5, 30]. Chaotic models have been disputed by many researchers [27, 31].

2.2 DETECTION METHODS

Owing to the high resolution returns sea wave structures are resolved, making wave troughs and

crests visible within the measured data [2]. This distributional information needs to be taken into

account during the design of the detector algorithms such as the standard CFAR, so that targets can

autonomously be detected within these structures [32, 33]. Statistical models have shown good results

at modelling high resolution data [12, 13, 14, 15, 17]. The K-distribution has shown promising results

as an underlying distribution for small target detection [2, 15, 18].

In [2], Panagopoulos summarises the common techniques for signal detection into the following

categories:

• signal averaging,

• time-frequency representation, and

• morphological filtering.

Signal averaging relies on the property that noise is incoherent and the signal coherent. Under this

condition and for a relatively stationary target in the given time-span, noise is averaged towards zero,

whilst static signals are reinforced [2]. Even with the suggested forgetting factor, a relatively stationary

target with respect to the wave velocity is assumed.

The time-frequency representation essentially filters out low frequencies due to the input window size,

thus acting as a high pass filter. The method relies on targets and waves moving at different velocities
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[2]. Frequency based analysis relies on the Doppler spectrum features in coherent data [32]. It often

occurs that the Doppler of slow targets overlap with that of the wave crest, making detection difficult

[32]. In [32], Wang expands on the traditional single dimensional Doppler amplitude based detection

method, to improve small target detection, by instead considering the obtained multidimensional

Doppler spectrum shape.

Morphological filtering is a non-linear image processing method to analyse textures [2]. This method

assumes a target detection structure that is longer in time than the presented wave crest and a relatively

stationary target for staring data.

For a well defined and known Gaussian distribution with known covariance, the optimal filter for

training of the clutter distribution is given by a whitening-matched filter [12]. However, the distribution

rarely fits the true world and the parameters are rarely known. Therefore, for a system to account

for a changing environment with varying target distributions and characteristics, adaptive filters

are commonly implemented. These allow the detection of targets within clutter of an unknown

distribution.

Kelly’s generalised likelihood ratio test (KGLRT) and the adaptive matched filter (AMF) are used for

coherent data [12], where it is known that the clutter distribution is non-Gaussian and a reasonable

assumption of the steering vector of the target can be made. The normalised matched filter (NMF)

further improves on this as it only requires prior knowledge of the noise covariance matrix, allowing

for relatively robust detection in multiple scenarios [12].

2.3 CONCLUDING REMARKS

The literature review presents known methods that are typically used to model high resolution radar

data. These models are commonly suited to data with a clearly defined underlying distribution. The

common distributions include the log-normal, Weibull, and the most commonly accepted K-distribution.

Detection methods are also based on these models and their performance is thus dependant on the

quality of radar returns and their correlation to the defined distribution.
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Some of the primary theoretical knowledge used throughout this dissertation is summarised in this

Chapter. Fundamental radar concepts are explained and statistical distributions, commonly associated

with sea clutter, are introduced. Furthermore, specific methods for generating data and analysing the

accuracy of statistical fits are presented. The chapter is concluded with a short discussion on one of the

most common detection methods.

3.1 RADAR OVERVIEW

A radar emits electromagnetic (EM) waves from its transmitter via a specifically designed directional

antenna. Echoing waves that have reflected back off the target, return to the receiver and are processed

to obtain information such as range, velocity and angular position [1, 34].

The transmitted waveform is one of the primary characteristics which describe a radar system. There

are two common types of waveforms, namely continuous waveforms (CW) and pulsed waveforms

(PW). As the name suggests, the CW type continually transmits a signal such that both the receiver

and transmitter are working concurrently. This is only possible with a two antenna system. Otherwise

leakage of the high power transmitter, which typically produces signals in the range of hundreds of

watts (102 W) to megawatts (106 W), into the ultra sensitive receiver, typically with a sensitivity in the

region of milliwatts to nanowatts (10−3 W to 10−9 W), would render the received signal undetectable.

This would require a costly receiver section with a high dynamic range [1].

The PW type emits short transmit pulses, followed by longer listening cycles where the system waits for

the echoes to return, all via the same antenna. The transmitted pulse is of a short duration and denoted

by the pulse width τ , which is usually around τ = 10−7 s. The time between pulses is proportionally
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much longer than the transmitted signal and is used by the radar system to listen to EM returns. The

time difference between transmitted pulses and received pulses is then used to measure the one way

distance to the target and summarises the basic operation of a radar system [1, 34].

This method is best described by the range equation (3.1),

R =
c∆T

2
, (3.1)

where R is the range to the target in meters, calculated by the change in time, ∆T , it takes the transmitted

signal (traveling at a speed of light c≈ 3×108 ms−1) to reflect off of the target. The division by two

accounts for the two-way path time [34].

As mentioned, there are principally two types of radar antenna configurations. Those with separate

transmission and reception antennas, and those with a single antenna together with a transmit/receive

switch. If these antennas are in close proximity to each other the system can be considered monostatic;

any systems where the antennas are significantly separated in space from each other are considered

bistatic [34].

The key to improved reception and signal strength in monostatic configurations is the transmit/receive

switch. This isolates the power sensitive receiver electronics from signal leakage originating from

the powerful transmit stage, as shown in Figure 3.1. Upon reception of the signal, the signal is sent

through a low noise amplifier and a matched filter. The signal is synced to the transmit oscillator so

that phase information can also be determined. This analog signal is then sampled into the digital

domain, where range and phase information is captured. From here subsequent signal processing can

occur, and detection algorithms can be implemented [1].

An illustration of a typical system for measuring data is shown in Figure 3.1.

Another critical parameter for the description of a radar system is the frequency band. The operating

frequency influences the radar’s capability with regard to distance, resolution, weather dependency,

required antenna size and complexity as well as and cost. Conventional radars use the frequency bands

that lie between high-frequency (HF) and the W-band, as shown in the electromagnetic spectrum in

Figure 3.2 [1, 34].
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Figure 3.1. Principle elements illustrating a functioning radar system. Reproduced with permission

from [1].

Radio Telegraphy

Broadcast

Short Wave

Conventional Radar

Millimeter Radar

Infrared rays

Visible light rays

Ultraviolet rays

X-rays

Gamma rays

HF   (3 – 30 MHz)

VHF   (30 – 300 MHz)

UHF   (300 – 1000 MHz)

L-Band   (1 – 2 GHz)

S-Band   (2 – 4 GHz)

C-Band   (4 – 8 GHz)

X-Band   (8 – 12 GHz)

Ku-Band  (12 – 18 GHz)

K-Band    (18 – 27 GHz)

Ka-Band  (27 – 40 GHz)

V-Band   (40 – 75 GHz)

W-Band   (75 – 110 GHz)

f [MHz] λ [m]

0.3 1x10
3

3x10
0
 1x10

0

3x10
5
 1x10

-3

4x10
8

7x10
-7

5x10
13

6x10
-12

3x10
10

1x10
-8

8x10
8

4x10
-7

1x10
15

3x10
-13

M
ic

ro
w

av
e
s

Figure 3.2. Electromagnetic spectrum showing common radar bands. Reproduced with permission

from [1].

Non-coherent radar systems only measure amplitude returns, whereas coherent radar systems also

capture phase information in addition to the amplitude. Typically non-coherent systems are used in

cases where the target signal far surpasses that of the clutter signal. Coherent radars offer the user

the ability to also determine motion characteristics by analysing the change in phase properties of the
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measured signal. For pulsed systems, the phase is measured on every return pulse (range bin) and

compared against that of a local oscillator which is used to sync the transmit pulse with the received

signal. Thus, any phase variations can easily be determined [1, 34].

3.1.1 Radar waveform principles

The propagation of a transmission wave oscillating at a carrier frequency can be defined by

E = E0 cos(kz−ωt +φ), (3.2)

where E is the electromagnetic wave, E0 the maximum wave amplitude, k the wave number, z the axis

along which the wave propagates, ω the angular frequency, t the time in seconds , and φ the initial

phase offset [1].

The wave number is related to the wavelength given by

k =
2π

λ
, (3.3)

where λ is the wavelength in meters [1]. Further, the carrier frequency is related to the angular

frequency defined by

ω = 2π f , (3.4)

where f is the carrier frequency in Hertz [1]. The wavelength and the frequency are related by the

constant c (speed of light) defined by

λ f = c. (3.5)

For a PW type radar, a pulse is propagated along an axis at a carrier frequency for a duration of τ

[s]. This pulse is then repeated over time, essentially defining the inter pulse period (IPP) denoted

by the symbol T , which is also known as the pulse repetition interval (PRI). A repeating sequence is

commonly referred to as a pulse train [34]. Figure 3.3 illustrates this relationship.
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Figure 3.3. Transmission pulse train illustrating radar timing. Reproduced with permission from [1].

The pulse repetition frequency (PRF) can then simply be defined by the inverse of the PRI, given

by

PRF =
1

PRI
(3.6)

=
1
T
.

A PW waveform is transmitted for a short duration as defined by τ . After transmission the transmitter

is disconnected form the antenna and switched to the receiver. Thereafter the receiver waits and listens

for a period of time, as shown in Figure 3.4 [1, 34].
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Figure 3.4. Illustration of radar return signals. Reproduced with permission from [1].
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The PRF defines the number of transmit/receive cycles per second, usually expressed in Hz. Expanding

on equation (3.6), the pulse width τ can be used to determine the duty factor dt given by

dt =
τ

PRI
(3.7)

= τ ·PRF,

thus allowing the calculation of the average transmitted power of the transmission signal. This can be

expressed as

Pavg = Pt ·dt (3.8)

= Pt · τ ·PRF,

where Pt is the radar peak power in Watts.

Furthermore, the energy of one pulse can be described by

Ep = Pt ·dt (3.9)

= Pavg ·T

=
Pavg

fr
.

3.1.2 Range ambiguity and resolution

From Figure 3.4 it is clear that the listening time is finite (defined by T − τ) and as such so is the

maximum measurable range, Rmax. Should a return occur at ∆T , it becomes unclear whether the

return is due to the last transmitted pulse (τ1) or the pulse before that (τ0), making the response

ambiguous.

In order to obtain unambiguous range measurements, the round trip time ∆t must be less than the IPP.

This ambiguity is typically avoided by ensuring that the PRI is long enough to include all radar returns

of interest in the range under consideration. The maximum unambiguous range is then given by

Rmax ≤
c ·PRI

2
(3.10)

=
c

2 ·PRF
,

where the division by 2 accounts for the two-way path delay.
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Owing to the Nyquist-Shannon sampling theorem, the sampling frequency of the return pulses need to

exceed that of the transmission pulse frequency, fpulse =
1
τ

by a factor of at least 2 to avoid aliasing

[34]. This is given by

fmin = 2 · 1
τ

(3.11)

= 2 · fpulse.

Every received sample during the listening period represents a distance in range. Discrete distances are

referred to as range bins. The number of samples (which is a function of the pulse width τ) determines

the range resolution ∆R and thus the individual size of a single range bin for the radar, given by the

equation (3.12).

∆R =
c · τ

2
(3.12)

=
c

2 ·B
,

where B is the bandwidth of the transmitter (B = 1
τ
) and is limited by the semiconductor electronics.

The amount of energy that can be created during a short pulse period τ is limited to component

dielectric strengths and operating temperatures. This in turn limits the maximum resolution that the

radar system can evaluate [1, 34].

A method known as pulse compression increases the accuracy by modulating the pulse with a known

waveform, typically frequency or phase modulated, thus allowing the receiver to identify overlapping

targets within a return pulse. The improvement achieved by using such techniques, with respect

to the traditional radar equation (3.17), is defined by the pulse compression ratio (PCR) [1, 34].

Measurements using these techniques were not considered in this dissertation.

3.1.3 Doppler shift

Relative motion between the receiver and the target is termed Doppler shift. This occurs when either

the target or the radar (or both) travel towards or away from each other during the pulse period, thus

effectively changing the frequency of the pulse. The difference in the frequency is then given by the

Doppler frequency shift fd and is described by equation (3.13) [1],

fd ≈
2vr

λ
, (3.13)
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where vr is the target’s relative velocity toward the radar. The relative velocity vr and thus fd are positive

for targets approaching the radar and negative for targets moving away from the radar [1].

Doppler shift ambiguity occurs, as described by the Nyquist-Shannon sampling theorem, when the

sampling rate of the velocity vr is less than the PRF as defined by equations (3.14) and (3.15).

Thus moving targets impose a maximum velocity which can be defined by vrmax . The maximum

non-ambiguous velocity is a function of the PRF and best described by (3.14) and (3.15).

fdmax =±
PRF

2
(3.14)

PRFmin = 2 · fdmax (3.15)

=
4vrmax

τ

3.1.4 Radar cross section

The EM return wave is a function of multiple properties of the object it reflects off. The RCS of a

target describes the signal strength of the reflected transmitted signal from the target. In its basic form,

the RCS is given by

σRCS =
Pr

PD
·m2, (3.16)

where Pr is the power received off of the target and PD is the transmitted power density. PD is a function

of range and thus attenuates over distance, m2 represents the target’s surface area [34].

The returned Pr value is a function of at least the following properties:

• the size of the target,

• the mechanical form of the target,

• the orientation and direction of the target, and

• the material properties of the target.

3.1.5 The radar equation

The radar equation describes the physical process and takes RCS, signal attenuation, transmission

efficiency, SNR, power, frequency, and maximum range into account. There are many forms of
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the equation. These forms depend on which variable the equation is solved for and which radar

configuration is given [1, 34]. The range, R, can be calculated from the radar equation as in (3.17)

R = 4

√
PD ·G2 ·λ 2 ·σRCS

Pr · (4π)3 , (3.17)

where G is antenna gain (omnidirectional), which is dependent on design and operating frequency. The

relation between distance R and power PD shows the physical limitations and constraints commonly

found in radar design.

Equation (3.17) can be extended to include further factors such as directional antennas, antenna loss,

thermal noise, temperature and the Earth’s surface in terms of reflection. However, for this dissertation

it is deemed not necessary to include these as little reference to these design parameters is made with

respect to the results, and thus forms only part of the background information.

Further important criteria for the design includes noise N, which is determined by the operating

frequency and bandwidth, thus effectively determining the minimum detectable power Smin.

3.1.6 Clutter principles

Clutter represents any unwanted signal returns that are captured by the receiver. This includes noise

and unwanted reflections off of objects that are not of interest. Thus, by definition, the classification of

clutter itself is dependent on the function of the radar. The following groups of clutter are commonly

considered [1]:

• Surface clutter: typically stationary masses or sea surface reflections that are large and have slow

to no velocity. Is is described by the reflectivity given as a surface area in m2.

• Volume clutter: typically unwanted objects found in the air between the radar and the object of

interest, such as rain or snow (with the weather radar as an exception). Commonly described by

the reflectivity defined by the volume and given in m3.

These can further be categorised into clumped, spiky, correlated and discrete clutter [2].

Sea clutter is an inherently difficult form of clutter to detect, due to its inherent wind-based Doppler

speed that occurs due to the ocean waves moving. Wave crests that are returned are either approaching
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or retracting from the radar origin over time, thus automatically influencing the Doppler. Objects of

interest traveling at the same or similar speed along the crest of the wave are thus problematic to detect

[1, 2].

3.1.6.1 Signal to noise and clutter ratio

The signal to noise and clutter ratio (SNR) is defined as the ratio between the wanted signal to the

unwanted signal, best described by

SNR =
Psignal

Pnoise
, (3.18)

where Psignal in this dissertation typically represent the power of the sea clutter and Pnoise the power of

the radar’s ground noise [1].

In cases where the clutter is being analysed, commonly the signal then refers to the clutter signal and

the noise refers to the radar’s ground noise. In cases where a target (boat) is defined, then Psignal refers

to the power of the reflected signal returned by the boat with respect to the unwanted background noise,

which is sea clutter plus radar ground noise. In this document the analysis primarily focuses around the

sea clutter signal Psignal , which refers to the clutter signal strength, with respect to the radar’s ground

noise Pnoise, typically caused by the radar’s amplification block.

Owing to the wide dynamic range of such signals, it is commonly preferred to represent these in

decibels, given by

SNRdB =
10 · log10 (Psignal)

10 · log10 (Pnoise)
. (3.19)

3.2 SEA CLUTTER STATISTICS

In this dissertation, reference is regularly made to three statistical distributions. These are commonly

used to describe the spectrum of the sea clutter signal contained within the measured radar returns

[18, 19].
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3.2.1 Log-normal distribution

The log-normal probability density function (PDF) is closely related to the normal Gaussian distribution.

If Y = ln(X) and if Y is Gaussian, then X is said to be lognormally distributed [35, 36]. The PDF is

defined by equation (3.20).

fX(x|σ ; µ) =
1
x
· 1

σ
√

2π
· exp

(
−(logx−µ)2

2σ2

)
, (3.20)

where σ represents the standard deviation of the logarithm and µ the mean. Figure 3.5 illustrates the

PDF for multiple values of parameters µ and σ .
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Figure 3.5. Log-normal probability density distribution function.

There are two common methods to estimate the parameters µ and σ for a given dataset. These are

discussed below.

3.2.1.1 Maximum likelihood estimator

Used to estimate many distribution’s parameters, the maximum likelihood estimator (MLE) maximises

a derived likelihood function in order to parametrise the given distribution. For the log-normal PDF

this is described by the function L(µ,σ2|x), which is given in [37, equation (2.1)] as

L(µ,σ2|x) = (2πσ
2)
−n
2 ·

n

∏
i=1

x−1
i · exp

[
n

∑
i=1

−(ln(xi)−µ)2

2σ2

]
. (3.21)
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The solving of equation (3.21) as described in [37, Section 2.1], for µ and σ2 is achieved by maximising

the likelihood function and results in the maximum likelihood estimators given by the following two

equations:

µ̂ =
∑

n
i=1 ln(xi)

n
, (3.22)

σ̂
2 =

∑
n
i=1

(
ln(xi)− ∑

n
i=1(lnxi)

n

)2

n
, (3.23)

where µ̂ is the estimate of µ , σ̂2 is the estimate of σ2, xi is the sampled data at index i and n represents

the total number of samples considered.

3.2.1.2 Method of moments

The method of moments (MoM) estimator determines the expected values for E(x) and E(x2) for

the given log-normally distributed data x and equates them to two known moment equations for the

distribution as shown in [37]. In this case the expected values are then solved for moments m1 and m2,

so that the parameter estimation is given to be [37]:

µ̂ =− ln(∑n
i=1 x2

i )

2
+2ln

(
n

∑
i=1

xi

)
− 3

2
ln(n), (3.24)

σ̂
2 = ln

(
n

∑
i=1

x2
i

)
−2ln

(
n

∑
i=1

xi

)
+ ln(n), (3.25)

where again µ̂ is the estimate of µ , σ̂2 is the estimate of σ2, xi is the sampled data at index i and n

represents the total number of samples considered.

3.2.2 Rayleigh distribution

The Rayleigh distribution is a special case of the Weibull distribution. The Rayleigh distribution results

from calculating the amplitude distribution of two uncorrelated, normally distributed equal variance

zero mean components, such as real and imaginary components of a complex Gaussian signal. The

distribution is given by equation (3.26) and is commonly used in communication theory to represent

dense signal scattering due to multiple paths. It is also commonly used to describe ocean wave heights

in oceanography [36].

f (x,σ) =
x

σ2 · exp
(
−(x2)

2σ2

)
, x≥ 0, (3.26)
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where σ is the scale parameter of the distribution.

Figure 3.6 illustrates the PDF for multiple σ parameters.
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Figure 3.6. Rayleigh probability density distribution function.

3.2.2.1 Maximum likelihood estimator

The maximum likelihood estimator for the Rayleigh distribution creates an estimate for the parameter

σ , so that the likelihood function of σ is maximised by solving its differential set equal to 0, the

estimate is then given by equation (3.27)

σ̂ =

√
∑

n
i=1 x2

i
2n

. (3.27)

3.2.3 K-distribution

The K-distribution has been shown to be a good estimator for maritime clutter, allowing for better

representation of spikiness within the observed data compared to traditional Rayleigh, Weibull and

log-normal distributions [4, 18]. Further, the K-distribution is the only distribution that can be traced

back to the physical mechanisms underlying the observed data [4, 20, 38]. Two factors contribute to
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the stochastic nature of pulse returns for low grazing angle radars operating in a maritime environment.

The first is the small capillary waves on the sea surface, which induce a speckle component in the pulse

returns. The pulse returns have a relatively short decorrelation time (in the order of milliseconds) and

are represented by a Rayleigh distribution [4]. The second is the result of the underlying sea swell,

which induces a slow variation in the mean power level of the pulse returns. This can be associated

with a wave structure over a sea surface and is represented by a generalized chi-distribution [38]. The

K-distribution is derived from the Rayleigh distribution with a varying mean power implemented as a

random variable that follows the chi-squared distribution.

The K-distribution is commonly given by equation (3.28) [39, 40, 41, 42],

fX1(x) =
2

bΓ(u+1)

( x
2b

)u+1
·Ku

( x
b

)
, (3.28)

where x > 0, b > 0 and u > −1. The standard gamma function is defined by Γ(·) and the modified

Bessel function of order u is given by Ku(·), where u is denoted to represent the scale of the distribution

and b is denoted to represent the shape of the distribution [41]. The texture of the K-distribution is

typically referred to as a gamma distribution, which in turn is also chi-square distributed [39].

Alternative forms of the K-distribution can be found in literature and are shortly summarised.

The K-distribution definition given by [43] is represented by equation (3.29),

fX2(x) =
x(α−1+N

2 )2(2−
N
4 −

α

2 )σ (N
4 +

α

2 )

Γ(N
2 )Γ(α)

K
α−N

2
(
√

2σx). (3.29)

Solving the equation for N = 2 it can easily be shown that equation (3.29) is equivalent to the third

common form described by equation (3.30),

fX3(x) =
4xva

v+1
2

Γ(v)
·Kv−1(2x

√
a), (3.30)

where x > 0, a > 0 and v > 0.

For completeness, equation (3.28) and equation (3.29) are solved with respect to the form used in this

dissertation and given by equation (3.30). The results show the relationship between the scale and

shape parameters which are summarised in the table below.

It can be shown that two further forms, given by equation (3.31) [15] and equation (3.32) [18], can also

be traced back to the same definition. However, for this dissertation, these forms were not considered
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Table 3.1. Parameter comparison for various K-distribution equation forms.

fX1 fX2

b = 1
2
√

a σ = a√
2

u = v−1 α = v

in depth and are illustrated only for completeness

fX4(x) =

√
2v

√
µ ·Γ(v) ·2v−1 ·

(√
2v
µ

z

)v

·Kv−1

(√
2v
µ

z

)
u(x) and (3.31)

fX5(x) =
2b

x+1
2 · z x−1

2

Γ(v)
·Kv−1

(
2
√

bz
)

u(x), (3.32)

where u(x) is the unit step function for x > 0.

Using the equation (3.30), a plot illustrating the influence of the scale v and shape a variables is shown

in Figure 3.7.
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Figure 3.7. K-distribution probability density distribution function.
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3.2.3.1 Maximum likelihood method of moments parameter estimation

The parameters, where v describes the scale and a the shape, are estimated using a technique described

by Iskander in [40]. This method combines the maximum likelihood and the method of moments

approaches to provide a computationally efficient estimate, in particular to prevent the necessity to

numerically solve for the shape parameter v [4]. In [41], two moments create the relationship between

the variable estimates v̂ and â. This is achieved by solving the equation as shown in [41, equation (13)]

by Iskander, re-illustrated below for convenience in corrected form.

gk(v̂) = log

(
Γ(v̂+1)

Γ(v̂+1+ k
2)

)
+

kΨ(v̂+1)
2

(3.33)

=
1
N

N

∑
i=1

log(xk
i )− log

(
1
N

N

∑
i=1

xk
i

)
− kγ

2
+ log

(
Γ(1+

k
2
)

)
,

where k = 1.5 is given to be optimal and γ = 0.5772 is defined to be Euler’s constant.

Thus, as shown in [41], v̂ can best be determined by equation (3.34),

v̂ = g−1
k

(
1
N

N

∑
i=1

log(xk
i )− log

(
1
N

N

∑
i=1

xk
i

)
− kγ

2
+ log

(
Γ(1+

k
2
)

))
, (3.34)

where g−1
k denotes the inverse of equation (3.33).

Further, the estimation of parameter â is given by equation (3.35) [40]

â =
1
2

exp

(
γ−Ψ(v̂+1)

2
+

1
N

N

∑
i=1

log(xi)

)
. (3.35)

Figure 3.8 illustrates the estimation of the distribution parameters for generated data. The PDF is

generated with parameters v = 5.5 and a = 127. Estimation using the MoM method is given by

vMoM = 5.23 and aMoM = 119.08 and for the maximum likelihood method of moments (ML-MoM)

method is given by vML−MoM = 5.19 and aML−MoM = 118.13.

An analysis of the estimation parameter range and its respective error towards the generated data is

shown in Figure 3.9, illustrating the operating region for the ML-MoM technique as implemented for

this dissertation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

26



CHAPTER 3 THEORETICAL BACKGROUND

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

Clutter Envelope x

f(
x)

PDF of data
Random generated data
Estimate MoM (v=5.23 a=119.08)
Estimate ML-MoM (v=5.19 a=118.13)

Figure 3.8. K-distribution PDF parameter estimation illustrating difference for each estimation

parameter.
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Figure 3.9. K-distribution PDF parameter estimation error for (a) δa and (b) δv.
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3.2.3.2 Rejection sampling

Accept-reject sampling is a rejection sampling method used to obtain random data from a given

distribution, where no direct transform exists [44, 45, 46]. It relies on the sampling of a distribution

larger than that of the desired distribution, for which a random sampling technique is defined. In this

case a uniform distribution is used. When sampled data points fall within the 2D distribution of the

desired distribution, the sample is accepted, else the sample is rejected and ignored. This is a form

of Monte Carlo sampling, where the algorithm is repeated until a set number of accepted samples

is obtained. Figure 3.10 illustrates the algorithm for 500 data points, showing the accept and reject

regions.
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Figure 3.10. Distribution dataset illustrating accept reject sampling.

For n large samples the results can be compared against the desired distribution by the use of the

histogram function. An example with 50k points is illustrated in Figure 3.11.

The performance of the sampling method is greatly dependent on the integral difference between the

desired and known distributions. The larger the difference, the more samples are ignored and the less

effective the algorithm becomes. The worst-case solution of a uniform distribution is used in this case

as it easily provides a distribution which covers the desired distribution for all parameters v and a, with

roughly 1 sampled data point for every 100 tries.
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Figure 3.11. Verification of sampled data points’ distribution.

3.2.3.3 Quantile-quantile Plots

In order to effectively evaluate the accuracy and goodness of fit for a selected distribution, the quantile-

quantile (q-q) plot is presented. Similar to percentiles, the q-q plots n-Quantiles from the measured

dataset against n-quantiles from the proposed PDF. A linear line with a slope of m = 1 indicates a

good fit, whilst deviation from the slope indicates a poor fit. Even though the method does not provide

an objective comparative number, it does provide good visual insight as to how well the head, tails and

body fit the suggested distribution.

For this graphical technique, a quantile is defined by

Q(i) = F−1
(

i− (
1
2
))/n

)
j = 1, ...,n (3.36)

where n is the number of desired quantiles. In this dissertation n is equal to the number of sampled

points allowing the highest accuracy [35, 47].

The q-q plot depicts the interdependency between sampled and theoretical quantiles. A linear plot

along the y = x line represents a close fitting dataset, whereas tail and head outliers towards the line

indicate skewness or incorrect parametrisation of the PDF. Non similarity towards the straight line

would represent a non applicable distribution [47].
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An illustration of such plots is shown in Figures 3.12 and 3.13.
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Figure 3.12. Q-q plot illustrating (a) two differently parametrised Rayleigh distributions (σa = 0.85

and σb = 0.9) and (b) the corresponding q-q plot illustrating a deviation in the tail section.

As can be seen from Figure 3.12(a), two similar Rayleigh distributions are presented with marginal

parameter difference. The q-q plot illustrates that the distributions are similar in that the one follows

the slope of the other. However, the tail departs from the comparison distribution, indicated by the blue

sample points. The deviation from the ideal line, shown in red, suggests bad parametrisation.

In Figure 3.13 a large difference between the two distributions is clearly visible. This is emphasized

by the q-q plot, where the blue sample points deviate from the red slope line, suggesting that the two

datasets are of different distribution types.
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Figure 3.13. Q-q plot illustrating (a) strong difference between two distributions given by a

K-distribution (a = 14,v = 5) and a Rayleigh distribution (σ = 0.5) and (b) the corresponding q-q plot

illustrating a deviation from the slope line indicating a poor distribution choice.

3.3 DETECTION

3.3.1 Constant false alarm rate

A constant false alarm rate (CFAR) detector is an adaptive filtering technique used to detect targets.

The detector is tasked with deciding whether radar returns are assigned to the target-plus-interference

hypothesis (H1 hypothesis) or the interference-only hypothesis (H0 hypothesis).

A dynamic threshold is used to distinguish between noise and target information by comparing their

respective amplitudes. The detector threshold is calculated to achieve the maximum probability of

detection for a given SNR and a defined probability of a false alarm Pd . This is the most important and

difficult parameter to specify for the detector.

A false alarm is defined to be an interference signal that exceeds the defined threshold and thus

represents a false detection of a target where there is no actual target. For a given radar design, the
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probability of a false alarm is usually defined by the radar specifications.

In clutter environments the parameters of the assumed environmental distribution are generally

unknown. Part of the CFAR algorithm is thus to sample data to estimate these parameters, consequently

allowing the algorithm to dynamically change its threshold for the measured clutter. This allows clutter

with varying strength to still be effectively filtered.

If the threshold is decreased, then the probability of detection increases along with the number of false

detections. If the threshold is too high, then the probability of detection is very low and many actual

targets will most likely be misinterpreted as clutter.

Typically, a radar configuration is setup so that a given probability of detection (or a given false alarm

rate) is achieved. However, in the case of standard sea clutter, the measured spectrum is constantly

changing in amplitude and distribution. Thus, an adaptive detection method is needed for each

evaluation in order to allow the detector to adapt to a changing environment [1, 2].

3.3.2 Cell averaging constant false alarm rate

The most common form of adaptive sampling is cell averaging CFAR (CA-CFAR) . For this detector

the noise floor is estimated by considering a number of cells around the cell of interest, defined as

the cell under test (CUT) . Further, to avoid power leakage across the cells of interest and those for

estimating the noise floor, guard cells around the CUT are inserted. This reduces the influence of the

target on the leading and lagging cells for noise floor power estimation.

The noise floor power is estimated using the following equation:

Pi =
1
N
·

N

∑
i=1

abs(xi), (3.37)

where Pi denotes the power of the noise floor and N the number of training cells. Figure 3.14 represents

the relation between CUT, Guard-Cells and Training-Cells.
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Training Cells (lag) Guard Cells CUT Guard Cells Training Cells (lead)

Figure 3.14. CFAR cell structure illustration.

Figure 3.15 illustrates the sensitivity and difficulty in determining the detector threshold Tthres. A PDF

of the noise spectrum (red) vs the PDF of a target (blue) is illustrated. An ideal detector threshold is

illustrated by the black dashed line. The area below the curve of the blue PDF of the target and to the

right of the detector threshold is the probability of detection region PD. A false detection would occur

if an interference (clutter plus noise) sample occurs right of the threshold. The probability of such false

alarm events (given by PFA) is equal to the area under the red PDF curve (the distribution of clutter and

noise) which is to the right of the threshold Tthres.
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Figure 3.15. Illustration of threshold filtering with respect to the PFA and PD areas.
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CHAPTER 4 METHOD

In this Chapter a short review of the methods implemented in the algorithm, presented in this

dissertation, are provided. The methods are discussed using a generic dataset to aid in the descriptive

function of each block below. Section 4.1 discusses an underlying assumption of the presented process.

Section 4.2 provides an overview of the numerical and statistical methods that are implemented

throughout this dissertation. These steps have the goal of analysing, parametrising and generating

a low grazing angle sea clutter model for periodic breaking waves in a littoral coastal zone and are

discussed in more detail in Sections 4.3 to 4.5. Essential to this is the angular correction of the

approaching breaking waves prior to statistical analysis. This is discussed in Section 4.6 and 4.7. The

measured radar returns are corrected such that the breaking waves are parallel to the x-axis. This allows

individual phase segments of the ocean wave, i.e. crest and troughs, to be analysed separately. With

the correction applied to a wider and more significant section of measured radar data, parametrisation

provides insights into the alternating statistical structure of the measured sea waves as discussed in

Section 4.8. Through the determination of appropriate parameters, a generation method is developed

which allows for the output of statistically similar low grazing angle radar data.

4.1 ASSUMPTIONS

The approach angle of the breaking wave, with respect to the radar, is determined through a type

of Hough transform known as the Radon transform. This integral transform effectively returns line

intensities within a two dimensional matrix by integrating over all possible angles and positions. The

transform is explained in detail in Section 4.4.

Given the determined angle, the data is shifted and corrected such that the breaking waves are now

parallel to the x-axis. An assumption is made at this point, namely that the fractional change in grazing
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angle due to the angular correction of the measured data is considered negligible in terms of the clutter

statistics. The maximum change is given by

∆θgr = arcsin
hr

∆R
, (4.1)

where hr is the height of the radars antenna and ∆R is the change in range due to the shift in the data

matrix.

After data processing, statistical parameters are obtained. Statistical correlation times and distribution

parameters are recorded and used for the data generation process. Based on these models, methods

and simulations, statically similar data can then be generated by applying part of the process in

reverse.

4.2 ALGORITHM

A general overview of the algorithmic process, implemented throughout this dissertation, is shown

in Figures 4.1 to 4.3. This first section (see Figure 4.1) of the algorithm concerns itself with the

preparation of the measured radar returns for analysis and parametrisation. The individual processing

blocks are first introduced in Figure 4.3 and then discussed in detail in the sections that follow.

Raw Data Upsample data

Radon transform

and peak

identification

Angle

calculation

Wave phase

alignment

Analysis

of phase

aligned waves

Figure 4.1. Process overview of angle correction algorithm.
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Raw radar data refers to the digitally sampled complex measured radar returns obtained after the

receiver stage from a coherent X-band radar with an I/Q intermediate frequency sampler. In order to

make processing easier, it is common to organise the measured data in the form of a two dimensional

matrix. As illustrated in Figure 3.4, the returns between pulses are recorded over time. Fast time

returns are known as the measured returns that occur due to one transmission pulse. These returns

indicate an increase in target distance (range) over time, thus the further the target is away from the

radar the longer it takes until the signal is returned. Slow time refers to analysis of the same range

distance bin over time, i.e. over multiple transmission pulses. At low grazing angles, these returns

typically have a low number of resolution range bins (fast time), where individual gate sizes vary

between 15 m and 45 m for the provided measurements. Slow time is merely limited to the recoding

time.

In order to generate a square matrix of data, as needed by the Radon transform, either the number of

returns (slow time) can be reduced to match the number of range bins, or the range resolution (fast

time) can be increased through an up-sampling process. Although simpler, decreasing the number of

returns produces insufficient accuracy. When the number of input samples to the transform is increased,

the angular accuracy is improved as the transform has sufficient data. Thus for the square matrix an

up-sampling process is implemented. The Radon transform block together with the angle calculation

block is then responsible for determining the approaching angle of the ocean wave crests with respect

to the radar. The wave phase alignment block can then correct the original measured data, which may

be many times longer over slow time, such that all wave crests are parallel to the x-axis. This allows

for simplified statical analysis of individual wave sections, which will be discussed in the next section.

This step provides the basis for the statistical analysis of the remaining data.

The next section of the algorithm analyses and parametrises the angular corrected data, as illustrated

in Figure 4.2. The processing block inputs the angular corrected and aligned measurement data,

where the length of the data is theoretically unlimited. However, due to computational limits in

terms of personally available processing and memory resources, radar data in excess of 30 s was

not considered. Data of this length stored in complex double form results in an input matrix of ≈

100 MB (≈64 bit×2×64000 samples×96 range bins
8 ). A radon transform of this data using a resolution of 0.1

degrees results in an output of ≈ 1GB. This limitation is further discussed in Section 4.4. Therefore,

the data is firstly analysed for appropriate statistical distributions where, due to data from individual

distributions, individual sections of the wave can be considered. These results are recorded and all
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necessary parameters for the generation are noted. Hereafter the correlation section investigates the

correlation in fast time (i.e. between range bins) in order to determine parameters such as periodicity

between ocean wave crests and troughs. Again these parameters are recorded and noted, as they are

needed by the final processing section.

Aligned data

Distribution

analysis

slow time

Correlation

analysis fast time

Parametrisation Parametrisation

Figure 4.2. Process overview of the analysis and parametrisation algorithm.

Finally, after parametrisation, the entire process is reversed. The processing chain is shown in Figure

4.3. Fed by a random generator which generates independent complex samples, the wave generation

process creates periodically structured sea clutter with a given statistical correlation and distribution.

Finally, the generated data is then shifted to account for the ocean wave approach angle with respect to

the radar position.
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Random

generator

Wave generation

function
Angle offset

Parametrisation

Figure 4.3. Process overview of data generation algorithm.

4.3 DATA UP-SAMPLING

In order to obtain unbiased and comparable results from the Radon transform, the input data needs

to be a square matrix. Oblong input matrices cause varying integration lengths for different rotation

angles, which is undesirable. This causes integration results that are not normalised with respect to

each other and effectively distorts the output. This complication is explained in more detail in Section

4.4 of this chapter. The outcome is that square input data matrices are required.

4.3.1 Basic principle

The radar returns used for this simulation typically have a fast time width of 96 returns and a slow time

in excess of minutes, which with a PRF of 2.5 kHz to 5 kHz, creates a highly rectangular data matrix

(eg. 96 × 67334 for TFC15 data). In order to obtain square data matrices, the given data needs to

be increased in resolution through interpolation. This concept is illustrated with a simplified matrix

shown in the Figure 4.4. To address this challenge and obtain a square matrix for preprocessing, several

methods to increase the fast time resolution are evaluated and include:

• zero order hold (block copy),

• first order hold (linear interpolation), and

• finite impulse response filter based interpolation (complex interpolation).
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4
8

8

8

Figure 4.4. Creating a square matrix from measured data, where the individual squares indicate the

matrix elements and size, and the blue highlighted cells illustrate a simple wave crest amplitude within

the matrix.

4.3.2 Zero order hold filter

The zero order hold filter firstly determines the number of missing rows in the y-axis of the matrix for

it to be square. These are then padded with zeros. Next a square pulse is convolved over the sampled

data, effectively copying the existing data into the missing rows and making the output matrix square.

The disadvantage of this method is that due to the replication of data over several fast time ranges, clear

identifiable steps are produced in the output. Although the method is fully reversible, the processing

leads to steps in the output of the Radon transform, identifiable as high frequency steps within the filter

response.
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Figure 4.5. Zero order hold filter for a single time step within the measured data matrix illustrating the

increase in fast time resolution.

4.3.3 First order hold filter

A more accurate method which causes less high frequency distortion is to use linear interpolation

between the missing fast time rows. This method linearly estimates the values between the start and

end values for the missing rows. Again, the data is first zero padded to represent the desired output

resolution and then a triangular impulse response is convolved over the data. This method produces

fewer high frequency steps due to the reduction of instantaneous changes in the slope of the curve.

However, the complex data of the returns are not captured in the added rows. Further, this method

assumes that the relationship between individual range bins is linear by nature.

Figure 4.6. First order hold filter for a single time step within the measured data matrix, illustrating

the linear transition in amplitude for an increased resolution in fast time.
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4.3.4 FIR based filter

Zero and first order hold filters effectively increase the sampling rate of the discrete time signal.

However, they also introduce several undesired distortions into the output signal. Thus an improved

technique for increasing the number of discrete samples is required.

The fundamental principle underlying discrete time up-sampling is best described by Figure 4.7. This

method also applies to the comprehensible methods already discussed. The discrete time input signal

xd [n] is firstly expanded in time by inserting zeroes between each discrete time sample, described

by xe[n]. M describes the increase in the sampling rate. Finally, this expanded output is then filtered

by a low pass filter which smooths the output result and produces the desired output signal x̂[n].

All interpolations described thus far are therefore dependent of the implementation of the low pass filter.

xd [n]

insert m− 1 zeroes

between each

discrete sample

low pass filter

Hi(e jω)
x̂[n]

xe[n]

Figure 4.7. Discrete time signal interpolation process flow.

As stated xd [n] is the discrete time sampled signal that is returned from the radar. xe[n] is the zero

expanded signal and can be described by Equation 4.2. xe[n] is equal to xd [n] only if n
m is an integer,

otherwise the signal is a zero. This equation can be rewritten in the form of Equation 4.3 by using the

discrete time delta dirac function (Kronecker delta function) which is 1 only at n = km. M represents

the increase in sampling frequency.

xe[n] =


xd

[
n
m

]
, where n

m ∈ Z

0 , otherwise
(4.2)

=
∞

∑
k=−∞

x[k]δ [n− km] (4.3)
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Using the definition of the discrete time fourier transform (DTFT) provided in Equation 4.4, the

spectrum of xe[n] can be determined by inserting Equation 4.3 into Equation 4.4. This frequency

spectrum of the expanded discrete time signal Xe(ω) is shown in Equation 4.5.

X(ω) =
∞

∑
n=−∞

x[n]e− jωn (4.4)

Xe(ω) =
∞

∑
n=−∞

(
∞

∑
k=−∞

x[k]δ [n− km]

)
e− jωn (4.5)

=
∞

∑
k=−∞

x[k]

(
∞

∑
n=−∞

δ [n− km]e− jωn

)

=
∞

∑
k=−∞

x[k]e− jωmk

= Xd(ωm)

From the result of Equation 4.5, the scaling in the frequency by a factor m is clearly visible with respect

to the input signal. This result is also visually represented in the frequency domain in Figures 4.8 and

4.9.

Xd(ω)

ω0

A

π 2π−π−2π

Figure 4.8. Illustrative spectrum of sampled signal xd [n] with no scaling.

For illustrative purposes a scaling factor of m = 3 was chosen for Figure 4.9. In order to obtain the

original signal at a higher sampling frequency, the spectrum of the original signal must remain and the

duplicates must be removed. This is achieved by filtering the data using a low pass filter.
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Xe(ω)

ω0

A

π 2π−π−2π π

m− π

m

Figure 4.9. Scaling the input signal xe by a factor of m = 3 shown in the frequency domain.

In order to isolate the periodic signal in the frequency domain and smooth the signal in the time

domain, only every m-th pulse in the spectrum must remain after filtering. This is easily achieved by

filtering the periodic signal with a low pass filter. The filter requires a passband over the region − π

m to
π

m to isolate the desired repetition and with a gain of m to compensate for the amplitude change.

Applying an ideal low pass filter results in Figure 4.10. The red lines illustrate the ideal low pass filter

and the black lines the resulting output spectrum X̂(ω).

X̂(ω)

ω0

m
A

π 2π−π−2π π

m− π

m

m

Figure 4.10. Low pass filter shown in red applied to Xe(ω) shown in black.

Such an ideal filter however cannot be implemented, especially as there is no provisioned gap between

the spectrum for a passband to stopband transition. Thus a tradeoff between passband ripple, transition

band width and stopband attenuation needs to me made.
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4.3.4.1 FIR filter design of low pass

A finite impulse response (FIR) filter based on the windowing method is initially considered in this

section. A Kaiser window approach specifies acceptable ripple for the passband and stopband, as well

as the transition widths in order to specify the filter. The Kaiser window is then multiplied with the ideal

impulse response for the given passband in order to generate realistic passband filter coefficients. The

method was designed using an iterative process. Very small ripple specifications cause the side-lobes

to increase, which causes the stopband to inject slight amounts of unwanted information into the

passband, essentially resulting in an over-fit of the interpolated data.

In order to optimise this method a second approach, known as a constrained least squares filter (CLS),

was considered. This filter considers the design of the FIR filter as an optimisation problem. First the

cutoff frequencies for the passband are specified, then the ripple threshold. The transition width is then

implicitly calculated. An error function, specified as the difference between the desired and actual

filter, is minimised during design in order to find a filter that is closest to the design specifications.

This method produces acceptable results with reduced over-fitting compared to interpolation.

4.3.4.2 Constrained least squares filter

Complex interpolation is based on filtering the data through a specially designed FIR filter based on

the CLS method. The FIR filter results in a passband with a steep cut-off. Designed in the frequency

domain, the filter is set to start slightly before the maximum sampling frequency f smax, causing

reduced reversal at the cost of slight information loss in the passband. This effectively ensures that

only very little information from the outside stopband is within the final interpolated output data. This

causes the interpolation function not to match all data points exactly, giving the system more flexibility

and creating smoother output data. The original data is padded with zeros to expand to the desired

resolution. In this case the resolution is increased 15 fold, from 96 range bins to 96×15 = 1440 range

samples. The original zero padded data is convolved with the filter, thus interpolating the data.

Figure 4.11 illustrates the frequency response of the applied filter. Note the very steep cut-off frequency,

preventing side-lobes from inserting non-relevant data into the filtered data in the form of over-fitted
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information. The ripple obtained by the optimised filter is shown in Figure 4.12 and estimated to be

around |H(ω)Ripplep2p |= 0.01 dB.
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Figure 4.11. Frequency response of FIR filter illustrating a steep cut-off frequency with 60 dB drop.
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Figure 4.12. Ripple response of passband for the given FIR filter.

Figure 4.13 shows the original data points overlaid together with the interpolated data. It clearly

illustrates the fitting accuracy, showing little to no over fitting due to the steep passband with a very
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low stopband response of the filter. Further, the data indicates the increased resolution obtained and

the respective zero padding for a single range bin, in this case range bin number 45.
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−2

−1.5

−1

−0.5

0

0.5

Sample

A
m

pl
itu

de

Original
Zero padded
Filtered

Figure 4.13. CFA16_002 CLS filter interpolated data points illustrating the filtered data matching the

original sample points.

4.3.4.3 FIR output

The output of the generated data, plotted together with the original radar measured data on an in-

phase and quadrature components (IQ) plot, shows the original data passing through the complex

filter |H(ω)|, where in-phase and quadrature components respectively refer to the real and imaginary

components of the complex signal. This is shown in Figure 4.14 for the first 10 measured data points

indicated in black, with red marking the start of the sequence. As mentioned above, due to the relaxed

constraint on the maximum sampling frequency f smax, not all data points are accurately pass through.

This was done so that no over fitting occurs, preventing the filter’s side-lobes from adding non-realistic

data into the interpolated output results.
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Figure 4.14. CFA16_002 IQ plot showing data points passing through the filter.

Figure 4.15 emphasises the real and imaginary components of the output result separately over time.

The increased resolution data shown in green is plotted against the original data points shown in black.

A section of 26 original resolution data points and 400 high resolution data points have been illustrated

in Figure 4.15 in both the real and imaginary domains.
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Figure 4.15. CFA16_002 output result from FIR based interpolation along (a) the real axis and (b) the

imaginary axis.

4.3.5 Filter selection

In order to determine which filter method best suits the application, the fast Fourier transform (FFT)

was applied to the interpolated data. This provides insights into the response spectrum of the filter

and the effects the interpolation may have on the result spectrum for a given dataset. The FFT (with

DC component) was performed over all 1440 range bins and then averaged to give a representative

spectrum response as shown in Figure 4.16.

The difference in the spectrum is shown in Figure 4.17, illustrating the improved performance that

the FIR filter offers over the other two filters. Side-lobe characteristics for the zero order based filter

show recurring undesired harmonics at 10MHz intervals (given by 100 ns sampling time), whilst

the FIR clearly shows improved response with respect to both the zero and first order hold filters.

Based on these outcomes, the FIR was primarily considered for further processing. This selection was

additionally verified by analysing the outcome of the algorithm when the other two filter types were
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Figure 4.16. CFA16_002 comparison of filter response curves for (a) zero order (b) first order and (c)

FIR based filters (full BW of filter is given by 150 MHz).

utilised. The analysis was conducted by comparing the results obtained from the corrected measured

data step of the algorithm.

4.4 RADON TRANSFORM

A specific case of the Hough transform, the Radon transform is required in order to determine the

angle at which the wave crests are approaching the radar over time. The Radon transform identifies the

line-like ocean wave crest structures in the measured radar data over time and leads to the alignment of

these within the output matrix, so that the crest structures are parallel to the x-axis.

4.4.1 Basic principle

In order to align the ocean wave crests to the x-axis in the output matrix, a Radon transform is applied

to determine the angle of the sea wave towards the x-axis. Applied to this two dimensional matrix,

which represents signal intensities over range and time, the Radon transform is broadly defined as
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Figure 4.17. CFA16_002 average FFT magnitude response for a 40 MHz region after interpolation

(full BW of filter is given by 150 MHz).

the intensity given by any line integral (or the projected function sum) at a given angle and offset to

the origin of the transform output matrix. This projection is varied over 180° in order to analyse all

possible rotations of the function data and over a given step size from origin. The intensity is taken to

represent the strength of the function for a particular angle and a particular offset from the center point

of the image [48].

In the case of a two dimensional image given by f (x,y), the Radon transform can represent the image

intensity over all angles and all depths of the image dataset, converting line qualities into point maps.

This characteristic is what makes the Radon transform ideal for the detection and identification of

lateral parallel waves. From this transform it is possible to calculate the equivalent line parameters over

the image, allowing one to compute the motion vector of a given wave or boat, which is mathematically

described by equation (4.8). Due to its symmetric nature, the transform is limited around the angle

range as defined in equation (4.6).

θ ∈ [0°,180°) (4.6)

where 180° is not included as it is identical in result to the angle 0°.
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The Radon transform is given by

ρ = xcosθ + ysinθ (4.7)

R(ρ,θ) =
∫

∞

−∞

∫
∞

−∞

f (x,y) ·δ (ρ− xcosθ − ysinθ)dxdy, (4.8)

where the parameters are illustrated in Figure 4.18 and δ is the Dirac delta function.

x

y

θ 

ρ 

Figure 4.18. Functional illustration of the Radon transform integration lines, indicating the rotation θ

and the perpendicular offset ρ from the center of the transform input matrix, where the shaded gray

lines indicate amplitudes resembling those of ocean wave crests within the dataset.

Figure 4.18 depicts the function of the Radon transform. The block with grey bands illustrates periodic

wave crest amplitudes in the data matrix. θ defines the angle of the dashed line and ρ the length of the

dashed line with respect to the origin of the transform input matrix. The solid line indicates the line

over which the integral is performed. Thus for a given θ and ρ a transform value is determined by

integrating the data matrix values underlying the solid line. This is then completed for all angles and

offsets for the entire input matrix.

The Radon method, due to its line based nature, offers considerable strength over similar image

processing techniques which are commonly used to determined edges. These include techniques such

as Canny and Sobel edge detection [49]. These methods rely on a differential of the input matrix.

Based on the pixel differences between data points, regions are identified where possible edges may

lie. After determining possible edges, an algorithm is required to identify and classify these edges
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into straight lines by linking possible neighbouring pixel points to possible lines [49]. In addition

to this, clutter complicates the detection principle even further by adding severe measurement noise

to the process. The Radon transform, on the other hand, identifies lines through integration, which

produces acceptable results even in heavy noise situations, such as those seen in typical sea clutter data

[50].

A subsection of the input data taken prior to upsampling, shows the highly rectangular matrix form

of the matrix in Figure 4.19. The matrix is plotted on an equal axis system. The dimensions of this

matrix are 1440 × 96 elements. An example of a Radon transform perfomed on this dataset is shown

in Figure 4.20.
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Figure 4.19. TFC15_025 rectangular matrix form illustrated on equal axis system.

In Figure 4.20 the produced Radon transform outputs some interesting points to note. Owing to the

irregular input matrix form, strong side-lobes are identifiable. The ”X”-like shape represents these,

where only the center of the ”X”-shape is actually of interest. The unwanted legs of the ”X” are caused

by the length of the long side of the input matrix. The transform effectively rotates this edge during

integration towards the y-axis. Even though only a small value is returned after integration, the center

region of interest is also distorted by this effect.
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Figure 4.20. TFC15_025 Radon transform of rectangular data matrix θstep = 1◦.

Due to the larger input matrix (see Figure 4.19), the output resolution is more sensitive to the size of

θstep as the y component of the input matrix is longer (tan(θ) = y
x ). For the desired region of interest,

a certain resolution is required to determine enough detail so that crests and troughs can be determined.

This is directly related to the processing power required to determine the transform. Therefore an

optimal θstep size needs to be considered to transform the data with the required resolution.

Figure 4.21 shows an example where the transform is processed with a very low resolution (θstep value

large). The result cannot separate individual troughs and crests sufficiently. This is shown in contrast

to the same input data matrix processed with a higher resolution (θstep value small) as shown in Figure

4.22.

Figure 4.22 shows the data transformed with a smaller θstep size at the cost of increased required

processing power. With a step size larger than θstep = 0.1◦, the individual wave and crest points tend

to be difficult to differentiate. The required step size is also a function of the periodic frequency of the

approaching waves, consequently this should also be considered.

In order to determine a good compromise between required resolution and processing power, relative

resolutions were plotted against the time required to process the data above. This is shown in Figure
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Figure 4.21. TFC15_025 resolution illustration with θstep = 1◦.

85 86 87 88 89 90 91 92 93 94 95

−200

−100

0

100

200

θ [◦] with step resolution: 0.1◦

ρ

0

0.5

1

1.5

2

2.5

·104

A
m

pl
itu

de
(l

in
ea

r)

Figure 4.22. TFC15_025 resolution illustration with θstep = 0.1◦.

4.23. The result indicates that an acceptable resolution is found at a step size of θstep = 0.1◦, as

indicated by the red marker in Figure 4.23.
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Figure 4.23. Resolution given by θstep size vs computational time used to process a 1440 × 96

element matrix, with the red x marking the chosen step size which delivers acceptable performance.

4.4.2 Circular based Radon transform

A critical step in the presented algorithm is to use the FIR filter as described, to increase the fast time (y

component) resolution of the matrix. Applying this filter, the data matrix is changed from an irregular

shape with 1440 × 96 elements to square shape with 1440 × 1440 elements.

By ensuring that the input data is a square matrix, and then applying a circular mask to the input data,

an improved processing of the transform can be achieved. Figure 4.24 illustrates the circular masking

of the square Radon input matrix. In comparison to Figure 4.19, the dimensions of the matrix are now

given to be square with 1440 × 1440 elements.

Further, owing to the circular input data where the outer mask areas are mapped to null-values, the

integration process adds no additional components originating from the outer corners of the input

matrix. This essentially normalises the output of the transform around the center point of the data

and ensures that the integration length is the same for all values of the Radon transform output.

These results show clearer output data, as illustrated in Figure 4.25, in contrast to the previous result.
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Figure 4.24. TFC15_025 Circular masking of square Radon input matrix.

Although independently developed for this dissertation, the filtering of the data so that the corner areas

are discarded in the integral has also been described by [51] and additionally presented in [4].
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Figure 4.25. TFC15_025 Radon transform of circular input matrix highlighting regions of interest,

where the numbered arrows indicate ocean wave crests.

In Figure 4.25, the numbered arrows indicate the ocean wave crests of the transformed data. The

illustrated case shows absolute data, i.e. only positive values are shown. However, this can also be
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applied to negative data making the detection processes more complex, as one then needs to consider

both minimum and maximum limits for threshold filtering.

4.5 EDGE DETECTION

In order to automatically identify the angles corresponding to the result of the Radon transform, an

automatic edge detection processing block was added. The goal of the block is to locate the center of

the Radon islands and return the respective angle from the data needed for further calculations. This

can occur autonomously.

4.5.1 Basic principle

Edge detection, where the input is treated as a two dimensional image, locates edges and/or islands by

analysing each individual pixel with respect to the pixels around it. Various detection methods were

considered and two are discussed below.

In order to isolate the section required, amplitude threshold filtering, which produces binary coded data,

is used. Data below the threshold is represented by a 0 and data above the threshold by a 1. This provides

the algorithm with an input mask, essentially marking the regions of interest. The implementation

of a corresponding threshold value is thus critical as this influences the output significantly. In this

dissertation, an acceptable result was analytically found to be a mask that includes all data above

the mean value of the entire dataset. This is illustrated for a simple Gaussian distribution in Figure

4.26.

In Figure 4.26, the spectrum is represented by the plotted distribution. From this distribution the mean

intensity value is shown by the horizontally dashed line (green). The point where the horizontally

dashed line leaves the right outer edge of the spectrum, results in the automated threshold value used for

amplitude filtering. This filtering removes all non-desired amplitudes below this value. Subsequently

the formula for the threshold value is given to be

Tedge = max( f (x)> mean( f (x))), (4.9)

where f (x) is the returned transform spectrum.
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Figure 4.26. Maximum of the mean of the distribution of interest defining the filtering amplitude

threshold given by the horizontal dashed line in red.

4.5.2 Canny edge detection

This process applies a gradient evaluation algorithm to a Gaussian based smoothed set of input data.

The evaluation algorithm then further tracks the high gradient points and illustrates these as edges.

The final edges are then threshold filtered to emphasise the identified sharp transitions. This filter

is typically used in image processing applications. The filter is computationally expensive and not

ideal for real time applications. Further, the identified edges in this application would still need to be

categorised, requiring additional steps. Results illustrating this are shown in Figure 4.28.

4.5.3 Cluster segmentation detection

Blob detection focuses on the identification of actual islands of data. Using the threshold filter value,

binary data of the Radon result is first obtained as discussed above. This binary data can then be

analysed by a blob filter to successfully identify individual islands or blobs, which represent lines in

the original measured data. The filter considers the data as an image and processes it pixel by pixel,

effectively searching for connected pixels and then marking and tracking these as individual blobs.
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Figure 4.27. TFC15_025 canny edge detection results illustrating the high gradient edges.

Blobs are defined by a connectivity, which is only given if the identified pixel is directly next to the

blob. In the case of no neighbouring pixels being set to a 1, a new blob is spawned.

Different techniques can be applied to find the center of a blob. In this dissertation, two primary

methods known as centroid and weighted centroid locations are considered. The centroid algorithm

calculates the center point to be the mean of the blob’s x-axis and y-axis range. Whereas the weighted

centroid further weights the centroid location based on the underlying measured data values, in order

to create a weighted center value based on signal intensities. For the proposed method the weighted

centroid was implemented.

Figure 4.28 illustrates the results the cluster segmentation algorithm produces when applied to the

output of the radon transform.

4.6 ANGLE CALCULATION

The angle measured in the reduced matrix size (see Section 4.3), obtained by the Radon transform,

needs to be corrected to account for the change in matrix size when it is later applied to the original

measured data matrix. This is a simple trigonometric ratio that multiplies into the measured angle
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Figure 4.28. TFC15_025 cluster segmentation detection, where the identified clusters of interest are

indicated by the blue marked centroids. The weighted centroids represent the center of the island

biased by underlying amplitude intensities.

as determined for the square matrix. This step effectively compensates for the change in matrix size

and allows the correction of the data to take place on the original measured data matrix. Owing to the

difference in matrix size with a factor of 40 plus, the determined angle becomes very sensitive to small

changes, with equation (4.10)

θcorr = arctan
(

tan(θavg−90◦)
scale

)
, (4.10)

where scale represent the multiplication ratio of the sampled data to the interpolated data in the

y-axis.

4.7 WAVE PHASE ALIGNMENT

The alignment of the data towards the x-axis is implemented in the penultimate processing block of the

first data-chain as given in Figure 4.1. Based on the computed angle from the previous step, the original

full dataset is shifted, such that all x-units are moved y-units upwards/downwards (black arrows in

Figure 4.29) on a linear scale within the matrix. This ratio is derived from the correction angle given

by equation (4.10). This then produces the desired output of an ocean wave phase angular corrected

data stream as illustrated in Figure 4.29. The number of y-units changed per x-unit count is given by
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equation (4.11)

CtD =
tan(θcorr) · ts

2
, (4.11)

where CtD represents the columns counted to drop/rise the data in the y-axis, ts is the length of the data

over slow time for which the correction is to be applied, and divide by 2 accounts for the rounding of

the values to integers as needed by the algorithm. For given data length CtD is to be equally dropped or

added, depending on the sign of the angle from equation (4.10).

x x

y y

Figure 4.29. Illustration of the angle correction method, showing the drop/rise in the y-axis over time,

where the measured amplitude of an ocean wave crest is represented by the intensity of the blue within

the matrix.

4.8 STATISTICS

The analysis section of the processing chain as defined by Figure 4.2 relies on the properties and

methods described in Section 3.2. Once the input matrix is aligned to the x-axis, the data is analysed

based on the following two properties:

• probability distribution of the data, and

• data correlation.

4.8.1 Probability distributions

One can consider and analyse individual sub-sections of the wave, as shown by the indicated regions

in Figure 4.30. The region between the oceanwave crests and troughs are split into equally spaced

segments. These segments are then analysed individually.
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Figure 4.30. Ocean wave structural definitions illustrating the crest and trough regions of an ocean

wave together with subdivisions which are statistically analysed over slow time for multiple samples.

Data is analysed and fitted against Rayleigh and K-distributions as previously described in Section

3.2. Individual sections of the wave can be considered, as the data is aligned to the x-axis. This allows

insight into the measured returns based on the input section and type of wave. This approach is novel to

the investigation of breaking waves in littoral environments and allows statistically significant analysis

of a sub-section of a breaking wave using a high sample count of radar returns.

In the next section the following two distributions are considered with respect to correlation

properties:

• Rayleigh distribution, and

• K-distribution.

The respective definitions for the above distributions were provided in Section 3.2.

4.8.2 Correlation

Correlation relates to the statistical relationship between the measured random variables. It provides

insights into possible variable dependencies. In particular, the wave-based structure in itself presents a

strong period and is consequently a correlated structure. Further analysis was conducted to determine

if any additional relationships in range could be determined.

The analysis is performed by applying the discrete autocorrelation function, given by equation (4.12)

for each individual slow time interval.

cτ = lim
N→∞

1
N

N−1

∑
n=0

x(n)x(n− τ), (4.12)
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where x(n) is the discrete signal at time n and τ the lag/lead time.

The generation method, of correlated data with a given distribution, varies for the given

distribution.

4.8.2.1 Rayleigh distribution based correlated data

Two independent Gaussian random number generators are combined to generate random Gaussian

complex numbers. The generated set of random values is then convolved with the filter H(t). H(t) is

obtained by taking the inverse FFT of the square root of the power spectral density (PSD) for a given

set of input data. The algorithm, presented in [52], is based on the originally proposed method by

Smith in [53] for Rayleigh fading of a signal. Figure 4.31 illustrates a structural implementation of

this.

Complex Gaussian noise generator f(µ,σ )

∗H(t) generated output

Figure 4.31. Generation of correlated Rayleigh data using filter H(t) and complex Gaussian noise

generator.

4.8.2.2 K-distribution based correlated data

In [54], Brotse describes a methodology for the generation of an arbitrary distribution with a given

correlation. The process pre-distorts the correlation of the input distribution. This is done so that the

desired distribution, with the desired correlations, can be obtained through the post distribution filter,

which also alters the correlation. The process consists of a linear filter followed by a non-linear filter.

The data is generated through three primary steps:

• determination of the non-linear zero memory filter,

• determination of the autocorrelation of the correlated Gaussian sequence, and
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• determination of the linear memory filter.

First a Gaussian input distribution with narrow correlation is transformed to a uniform distribution

through [54, equation (2)]. This corrupts the autocorrelation of the input data, whilst easily allowing

the uniform distribution to be transformed to a desired output PDF. Thus it is required to pre-distort

the correlation of the input data in such a way that the output generates the desired sequence in terms

of distribution and correlation.

Due to the complexity of determining the pre-distortion coefficients, required by [54, equation (5)] and

then [54, equation (11)], the generation of correlated K-distributed samples is considered out of scope

for this document.
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The results of the individual processing steps of the method described in Section 4.2 are presented

in this Chapter. First the utilised datasets are described in detail in Section 5.1, followed by their

evaluation with respect to the individual algorithm steps in Sections 5.2 to 5.6. Finally, the data

generation process is presented together with the obtained results in Section 5.7. The chapter is

concluded with Section 5.8 which remarks on datasets containing additional boat reflections and their

potential impact on the algorithm.

5.1 RAW DATASETS

Low grazing angle, fixed frequency, pulsed radar, X-band sea clutter data was obtained from the Council

for Scientific and Industrial Research’s (CSIR) online database [11]. Six datasets were considered

in detail. Three of these contain purely periodic sea clutter returns and three have the addition of

a RIB crossing the periodic ocean waves. Only the first, non-boat based dataset (see Figure 5.1) is

presented and discussed in this chapter. Appendix A contains the results of the remaining five datasets.

Reference to these datasets is made at the respective section during the discussion.

The raw measured data from the radar is shown in Figure 5.1. The data reflects returns for a duration of

13 seconds, with 96 range bins, each with a range resolution of 15 m. For this dataset the radar uses a

fixed frequency transmission of 6.9 GHz and a PRF of 5 kHz. The grazing angle for these measurements

is given to be θg = [0.853◦,1.27◦]. Further details regarding the radar and this measurement dataset

is obtainable from the CSIR database for the measurement CFA16_002 [11].An overview of the six

datasets is provided in table 5.1.
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For target data, measurements including the boat location information were also captured using a

Global Positioning System (GPS) data logger onboard the RIB. This information was referenced to

the datasets so that the travelled route could be overlaid. See [11] for additional details regarding the

measurement database. For overview plots of the remaining five datasets in raw format see Figures

A.1, A.16, A.31, A.46 and A.61.

Table 5.1. Dataset overview

Dataset Type TX Freq. PRF θg

CFA16_002 sea clutter 6.9 GHz 5.0 kHz 0.853◦−1.27◦

CFA16_003 sea clutter 6.9 GHz 5.0 kHz 0.427◦−0.525◦

CFA16_004 sea clutter 6.9 GHz 5.0 kHz 0.427◦−0.525◦

TFC15_025 sea clutter + RIB 9.0 GHz 2.5 kHz 0.628◦−0.838◦

TFC15_028 sea clutter + RIB 9.0 GHz 2.5 kHz 0.492◦−0.619◦

TFC15_029 sea clutter + RIB 9.0 GHz 5.0 kHz 0.445◦−0.551◦
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Figure 5.1. CFA16_002 range time plot of 13 s of measured data given in dB full scale (FS), where

the black vertical lines indicate the region used for angle determination.

In order to determine and analyse the approaching periodic breaking wave angle, the first segment of

the data, given by ≈ 0.5 seconds, is considered first. This region is indicated in Figure 5.1 via two
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vertical black lines marking the analysed region. These measurements are re-plotted separately in

Figure 5.2, where the extreme angle of the approaching crests is not directly evident but still contained

within the data. The data now represents a matrix of 96 range bins by 1440 time samples. The length

of 1440 time samples was chosen, so that the interpolation later increases the range resolution by a

factor of 15 (96 × 15 = 1440), thus essentially representing 1 m range resolution.
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Figure 5.2. CFA16_002 range time plot of analysed section of data given by the time interval of [0

0.288] seconds.

5.2 DATA UPSAMPLING

The methods as described in Chapter 4.3, are now applied to the given data and compared. Figure 5.3

shows the results for the same input data across all three filters. The different frequency responses are

identifiable in this figure. Figure 5.3(a) shows higher frequency components compared to the other

two responses. Whereas Figure 5.3(c) shows smoother transitions containing fewer high frequency

components.

Based on the discussion in the previous chapter with regard to the frequency response of the three

types of filters and the results obtained from Figure 4.17, the next steps involved processing all data

using only the FIR interpolation results. This output for the given dataset CFA16_002 is provided in

Figure 5.4.
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Figure 5.3. CFA16_002 post upscale filter output results based on filter types (a) zero order hold, (b)

first order hold and (c) FIR based.

The output from Figure 5.4 illustrates the analysis section of the measurement data up-sampled

using the FIR based interpolation filter. The filter interpolates 15 points between every input point

as mentioned previously. The increased resolution output is then used to allow further processing.

Structural patterns of individual wave crests are identifiable. Worth noting, as stated in Figure 4.1, is

that the only goal of this step is to determine the angle with which to correct the original measured data

so that the crests are parallel to the x-axis. Further processing steps will all take place on the original

full dataset, so as not to influence the distributional properties through filtering.

After interpolation, a desired square matrix with 1440 range bins over 1440 time samples is obtained,

thus making a square input matrix available. This data is illustrated in Figure 5.5(a).
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Figure 5.4. CFA16_002 up-sampled data using second order filter.

5.3 RADON TRANSFORM AND PEAK DETECTION

In order to avoid the effects of longer integration paths along diagonal directions of the image, as

described in Section 4.4, the square matrix is then overlaid with a circular mask. Thus all data points

outside the circle are designated as null values and do not add to the integral. This is equivalent to

removing the outer measurement data and essentially normalising the integration length for the Radon

transform over all angles θ and position offsets ρ . The mask applied prior to the transformation step is

shown in Figure 5.5(b).

In order to illustrate the difference and necessity of the circular processing, the two inputs as given in

Figure 5.5 were processed through a Radon transform and their results are shown in Figure 5.6. As

can be seen in Figure 5.6(a), side-lobes are clearly reflected through the Radon transform onto the

output data when the input is non-circular. This effect is due to the difference in integration length

of the number of samples. Whereas, for the circular input data, the integration length is equal for all

angles θ and offsets ρ , thus the result is normalised and the output improved.

From the circular data, a pattern for the periodic wave structure can already be seen. The offset from

90◦ on the x-axis determines the angle at which the wavefronts in the data are approaching over time.
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Figure 5.5. CFA16_002 non-circular vs circular input processing matrices for Radon transform,

indicating the null data points on the outside of the circular mask.
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Figure 5.6. CFA16_002 Radon transform result illustrating the difference in output result for (a)

non-circular and (b) circular input matrix.

A simple threshold filter is implemented to isolate the effective wave crests and troughs. In order to

determine an effective processing threshold for the binary filter, the measured data distribution was

analysed and the upper percentage was chosen as a filtering factor. Thus, the return data is limited to

the upper returns based on intensity of the transform and corresponds to the strongest periodic wave
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Figure 5.7. CFA16_002 threshold filtering on processed data showing the Radon spectrum f (x) and

respectively the automatically determined threshold Tedge.

structures in the measured data. This is shown in Figure 5.7 and after filtering in Figure 5.8. The

threshold is determined by the equation (4.9).

The black data in Figure 5.8 is what remains after simple threshold filtering of the output of the Radon

transform. This data is then subjected to a blob detection algorithm, where the centroids of the islands

are located and their respective area is calculated. The algorithm for the detection of the islands is

sufficient enough to detect the required information needed to determine the angle so that no further

processing, such as shape classification and or filtering, needs to be implemented. In order to only

include the larger intensity responses, the returned data objects are filtered based on their individual

intensity standard deviations, which result from their underlying measurement data. This allows the

returns below the 6σ limit to be excluded from further consideration.
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Figure 5.8. CFA16_002 blob detection on Radon transform result illustrating the weighted centroids

of the underlying data together with their individual amplitude intensities.

5.4 ANGLE CALCULATION

The angle, with regards to the x-axis, is determined using the centroid locations. The average angle

θavg of the detected islands equates to the angle offset for the square matrix. The region of interest

is determined by examining the average summation as defined by equation (5.1). The summation

plot of the transform determines the region of interest and is indicated by the red region in Figure 5.9.

This parameter may optionally be used to restrict the angle response band obtained from the Radon

transform, preventing outliers from obscuring the correction angle by being included in the angle

average.

Iθ =
ρmax

∑
i=0

f (ρi,θ), (5.1)

Taking the individually determined angles, an improved estimate can be obtained by using the median

value instead of the average value. The median is advantageous as it accounts for a non-Gaussian

distribution of angles, which due to the low number of samples and high sensitivity is beneficial

as singular outliers may occur through the dynamics of measured data. This offset would then be
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Figure 5.9. CFA16_002 peak detection region of interest and threshold filtering.

contained in the output and influence the angular result. This improvement is illustrated in Figure 5.10

Verification of these angles over the input data is achieved by using the inverse Radon transform to

generate lines based on input points given by an angle θin and position ρin values. These results are

overlaid on the original data and shown in Figure 5.11.

As can be seen from Figure 5.11, the two outer wave crest at a range of 3100 m and 4300 m were not

determined. Although not detected, it was evaluated as non-critical since further processing in the

chain does not rely on all individual wave crests being present, but only on the collective median angle

being correct. As stated only the corrective angle is determined from this data.

A summation of the individual range bins over time is shown in Figure 5.12. The comparison illustrates

the difference between the original data vs that of the processed data generated by the inverse Radon

transform. It clearly shows the wave crest identification and isolation as acceptable. As indicated by

Figure 5.12(d), the signal to noise isolation for the individual wave crests is clearly shown in Figure

5.13, which illustrates the regions with the determined wave crests. The amplitude of the wave crest at
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Figure 5.10. CFA16_002 mean and median of determined angles, illustrating the advantage of the

median to exclude outliers.
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Figure 5.11. CFA16_002 overlaid generated data lines (yellow) originating from the inverse Radon

transform illustrating good alignment and visually verifying the detected angles.
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Figure 5.12. CFA16_002 Radon transform results showing (a) original data, (b) the summation of the

original data in horizontal direction, (c) the overlaid generated line data from the inverse Radon

transform, and (d) the summation of the generated inverse Radon transform line data in horizontal

direction.

3900 m is lower due to the Radon transform identifying the incorrect angle. This effectively reduces

the total sum of a given range bin as the angle crosses the other wave crests.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

75



CHAPTER 5 RESULTS AND DISCUSSION

3,000 3,200 3,400 3,600 3,800 4,000 4,200 4,400
0

0.2

0.4

0.6

0.8

1

1.2

Range [m]

N
or

m
al

is
ed

am
pl

itu
de

(l
in

ea
r)

Sum: Measured data (normalised)
Sum: Overlaid data (normalised)

Figure 5.13. CFA16_002 measured vs generated summation data over range, normalised to 1 and

illustrating alignment and detection.

5.5 WAVE PHASE ALIGNMENT

From the angles determined in Figure 5.10, for this case θavg = 90.1612◦, the expanded angle for the

entire dataset is calculated as per equation (4.10) and (4.11) and given to be

θcorr = arctan
(

tan(90.1612−90)
15

)
= 0.0107◦,

(5.2)

where scale is given to be 15 from interpolation. The value 15 was chosen so that the provided data

interpolates to 1 m in range, and

CtD =
tan(θcorr) ·64580

2

=
12.1155

2

≈ 6,

(5.3)

with ts = 64580 samples, the number of time samples for dataset CFA16_002 is ≈ 13 s at a PRF of 5

kHz.
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Figure 5.14. CFA16_002 output of wave-phase corrected data with x-axis aligned waves illustrating 6

clear steps which arise from the value determined by CtD.

Applying this correction value to the original input data rectifies the approaching waves such that they

are parallel to the x-axis. The correction steps are clearly shown when applied to the entire range of

the original data as shown in Figure 5.14.

5.6 ANALYSIS OF ALIGNED WAVES

With all wave crests approaching the radar parallel to the time axis (x-axis), investigations into the

statistical properties of the data can be conducted. This allows for further understanding of the wave

structure and is also required for the parametrisation step needed for generating periodic breaking

waves.

As previously mentioned, the method assumes that a fractional change in grazing angle due to the

angular correction of the measured data is negligible in terms of the clutter statistics. For dataset
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CFA16_002 this difference is calculated from equation (4.1) to be

∆θgr = arcsin
66

6 ·15
(5.4)

≈ 0.014◦.

5.6.1 Spectral analysis of aligned data

This section illustrates the spectral results obtained by analysing separate ranges of the corrected data,

which has wave structures parallel to the x-axis. The statistical distribution analysis of a higher number

of samples over the given wave structure section (range bin) provides insight into the radar returns and

their respective distribution for separate parts of the ocean wave.

There are primarily two main components to consider during the analysis:

• spectral and distribution analysis over fast time, and

• correlation analysis over fast time.

The objective is to obtain parameters for the above characteristics, so that these can later be used during

the generation process to parametrise the system.

After reshaping the two dimensional matrix into a vector, it is shown that the angular corrected PDF and

the original data’s PDF are identical, as shown in Figure 5.15. This merely verifies the data-alignment

step and shows that the algorithm does not disregard any input data during the alignment process and

is included purely for verification purposes.

Further, Figure 5.15 illustrates that the distribution of the entire (wave crest parallel to the x-axis)

dataset considered against multiple fitting algorithms for both the Rayleigh and the K-distribution

does not accurately fit the data. The plot is shown in the log-domain to illustrate the head and tail

inaccuracies. Interestingly, the K-distribution fits the data better than the Rayleigh, although the

number of samples is large.
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Figure 5.15. CFA16_002 PDF comparison of the vector reshaped output, verifying that the measured

and angular aligned data is unchanged in amplitude, illustrating Rayleigh and K-distribution fits in the

log-log domain.

5.6.2 Distribution fitting

The angular aligned data, where the ocean wave crests are parallel to the x-axis, is statistically analysed

in terms of distribution and correlation. The data is split into sections over the fast time axis, so that

each range bin (1 to 96) is individually analysed over several seconds of data (≈ 13 s). Different

distributions are fitted to the data ranges and their fitting parameters are compared and plotted against

each other. For illustrative purposes a range of 180 m is plotted in Figure 5.16 and 5.17. Further plots

can be found in Appendix A.

It can be observed, from Figure 5.16 and 5.17, that the K-distribution suits the dynamic range of the

input data over multiple wave structures and points well in comparison to the other two distributions.

As seen in these figures there are sections of the wave where the K-distribution performs similarly to

the Rayleigh distribution. This is explained by the structure of the K-distribution, which for certain

parameters is Rayleigh in nature. An overview of these fitting parameters for the shape and scale

parameters are shown and discussed later (see Figures 5.26 - 5.28). These summaries provide an

overview of the PDF performance and tendencies for different data ranges, effectively parametrising
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different sections of the periodic wave as it is changing from crests through to troughs.
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Figure 5.16. CFA16_002 distribution fit example at range (a) 3652 m, (b) 3667 m, (c) 3682 m, (d)

3697 m, (e) 3712 m and (f) 3727 m, illustrating the periodic nature of the wave and the respective

fitting of the distributions to different sections of the ocean wave structure.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

81



CHAPTER 5 RESULTS AND DISCUSSION

0 100 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

f(
x)

(a)

Orig
Ray
Log
K

0 100 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

f(
x)

(b)

Orig
Ray
Log
K

0 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

x

f(
x)

(c)

Orig
Ray
Log
K

0 100 200
0

0.2

0.4

0.6

0.8

1

x

f(
x)

(d)

Orig
Ray
Log
K

0 100 200
0

0.5

1

1.5

2

2.5

3

x

f(
x)

(e)

Orig
Ray
Log
K

0 100 200
0

1

2

3

4

5

6

x

f(
x)

(f)

Orig
Ray
Log
K

Figure 5.17. CFA16_002 distribution fit example at range (a) 3742 m, (b) 3757 m, (c) 3772 m, (d)

3787 m, (e) 3802 m and (f) 3817 m, illustrating the respective fitting of the distributions to the

different sections of the ocean wave structure.
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Further, in order to evaluate the goodness of the distributional fit, goodness of fits were visually

observed and plotted. The PDF of the data, together with the fitted PDF of the log-normal, Rayleigh

and K-distribution are also shown on the same figure in subplots (a) of Figures 5.18 - 5.25. The

log-domain allows the inspection of the head and tail section of the distribution and provides insight

into how well the distribution fits the given data. Further, the q-q plot illustrates the fitted distribution

against the actual measured data using the method described in Section 3.2.3.3. This was performed

for each range bin for the log-normal, Rayleigh and K-distribution. Figures 5.18 - 5.25 illustrate a

visual analysis over a range distance of 135 m.
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Figure 5.18. CFA16_002 distribution log-log plot shown in (a) with goodness of fits, shown in (b) for

log-normal, in (c) for Rayleigh, and in (d) for K-distributions at a range of 3682 m (see reference

Figure 5.16(c)), illustrating good K-distribution performance along the slope.
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Figure 5.19. CFA16_002 distribution log-log plot shown in (a) with goodness of fits, shown in (b) for

log-normal, in (c) for Rayleigh, and in (d) for K-distributions at a range of 3697 m (see reference

Figure 5.16(d)) illustrating poor performance in the tail ends and deviating from the slope.
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Figure 5.20. CFA16_002 distribution log-log plot shown in (a) with goodness of fits, shown in (b) for

log-normal, in (c) for Rayleigh, and in (d) for K-distributions at a range of 3712 m (see reference

Figure 5.16(e)) illustrating a similar performance between the Rayleigh and K-distribution.
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Figure 5.21. CFA16_002 distribution log-log plot shown in (a) with goodness of fits, shown in (b) for

log-normal, in (c) for Rayleigh, and in (d) for K-distributions at a range of 3727 m (see reference

Figure 5.16(f)) illustrating good performance by the Rayleigh and K-distributions.
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Figure 5.22. CFA16_002 distribution log-log plot shown in (a) with goodness of fits, shown in (b) for

log-normal, in (c) for Rayleigh, and in (d) for K-distributions at a range of 3772 m (see reference

Figure 5.17(c)) illustrating similar performance for all distributions.
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Figure 5.23. CFA16_002 distribution log-log plot shown in (a) with goodness of fits, shown in (b) for

log-normal, in (c) for Rayleigh, and in (d) for K-distributions at a range of 3787 m (see reference

Figure 5.17(d)) illustrating poor performance in the tail ends for Rayleigh and K-distributions.
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Figure 5.24. CFA16_002 distribution log-log plot shown in (a) with goodness of fits, shown in (b) for

log-normal, in (c) for Rayleigh, and in (d) for K-distributions at a range of 3802 m (see reference

Figure 5.17(e)) illustrating a similar performance by the Rayleigh and K-distributions.
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Figure 5.25. CFA16_002 distribution log-log plot shown in (a) with goodness of fits, shown in (b) for

log-normal, in (c) for Rayleigh, and in (d) for K-distributions at a range of 3817 m (see reference

Figure 5.17(f))illustrating a similarly good performance by the Rayleigh and K-distributions.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

91



CHAPTER 5 RESULTS AND DISCUSSION

The log-normal distribution, as suggested above, offers no sufficient fits to the provided data. This is

supported by Figure 5.26, which illustrates the log-normal fitting parameters (µ and σ ) over the entire

analysed range for the given dataset. The q-q plots of Figures 5.18 to 5.25 show a large deviation from

the ideal slope as shown in the respective (b) subplots of the figures. As expected this coincides with

the (a) distribution plots shown in the same figures, where large sections of the data do not follow the

PDF, especially the tail section of the PDF deviates from the data.

The Rayleigh and K-distributions on the other hand tend to show better fitting results, as the data

points tend to follow the ideal slope line for longer periods (see Figures 5.20(c,d), 5.21(c,d), 5.24(c,d)

and 5.25(c,d)). The parameters of the Rayleigh distribution over the full range are given by Figure

5.27. This again depicts the Rayleigh distribution parametrisation of the analysed dataset over the

entire range. The periodic structure of the ocean waves are identifiable with the fitting parameters, thus

showing how the PDF is adapting to different sections of the ocean wave. This provides insights that

measured radar data is a function of what section of the wave is being returned. In ranges 3000 m to

3800 m clear periodic structures are identifiable. Thereafter, the crests tends to roll-off into one another,

as illustrated in the range-time plot of Figure 5.1. After 4200 m the periodic structure returns.
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Figure 5.26. CFA16_002 log-normal distribution parameters plot illustrating the periodicity of the

distribution fit over range.
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Figure 5.27. CFA16_002 PDF fit for Rayleigh distribution illustrating the σ parameter over range.

As mentioned in Section 3.2.3, the K-distribution is derived from the Rayleigh distribution with a

varying mean power implemented as a random variable that follows the chi-distribution. Due to the

compound structure of this distribution, the K-PDF fit handles the dynamic range of the analysed

input measurements better over the entire range than the other two distributions. The K-distribution

parameters are given in Figure 5.28 for the entire range of the analysed data. The shape parameter

(using equation (3.30)) is given by the variable a and scale parameter by the variable v. As a tends

towards ∞, which corresponds to a poor fit, the distribution becomes more Gaussian oriented. This

implies that a relationship between a wave-phase section and the shape parameter exists. This is

investigated below. The scale parameter v tends to follow the shape parameter a for poor K-distribution

fits.

In order to evaluate these three distributions, an error based comparison is utilised to illustrate the

effectiveness of each distribution against each other. The mean squared error between the actual data

and generated data, based on the respective parametrised distribution, is provided in Figure 5.29. The

log-normal distribution shows the largest error, whilst the Rayleigh and K-distributions show similarly

good performance. The K-distribution offers slightly lower error bands, over the entire measurement

range, than the Rayleigh distribution. The K-distribution also shows very good performance in the

wave crest sections of the ocean wave. In order to illustrate the wave crest section in detail, where

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

93



CHAPTER 5 RESULTS AND DISCUSSION

3,200 3,400 3,600 3,800 4,000 4,200 4,400
0

50

100

Range [m]

Sh
ap

e

3,200 3,400 3,600 3,800 4,000 4,200 4,400
0

5,000

Sc
al

e

Figure 5.28. CFA16_002 K-distribution fit parameters over entire measurement range, where the

shape parameter a is limited to 100 digits in the fitting algorithm, as large shape values correspond to

poor fits and are better suited to Gaussian distributions.

the mean squared error is small, a log-domain plot of the same error band is shown for the three

distributions in Figure 5.30.
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Figure 5.29. CFA16_002 parameter MSE comparing Rayleigh, log-normal and K-distributions over

range, where higher errors relate to poor fits.
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Figure 5.30. CFA16_002 parameter MSE comparison of distributions over range in log-domain,

illustrating the small error obtained by good fits between parameter peaks.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

95



CHAPTER 5 RESULTS AND DISCUSSION

In order to better understand how these parameters follow the structured periodic ocean wave, the

distribution parameters were plotted alongside the original range-time measured radar data. This was

done so that the correlation between radar amplitude, periodic wave and distribution parameters can

be better understood. These are shown in Figures 5.31, 5.32 and 5.33. As the trough of the wave is

reflected, the data is no longer K-distributed and tends towards the noise floor of the radar, implying a

more Gaussian distribution. The K-distribution fits well to data that is reflected off the surface of the

wave crest. The pattern of poor and well fitting sections, shown by the parameters, matches with the

cyclic frequency of the wave crests within the data.
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Figure 5.31. CFA16_002 comparison showing alignment of (a) range-time measured radar data vs (b)

distribution mean squared error, illustrating the periodic nature of good and poor fits with respect to

sections of the ocean wave.
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Figure 5.32. CFA16_002 comparison illustrating alignment of (a) range-time measured radar data vs

(b) distribution mean squared error given in the log-domain to emphasize the good fitting sections.
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Figure 5.33. CFA16_002 comparison showing alignment of range-time measured radar data vs

distribution mean squared error, illustrating good and poor fit sections.

The fitting matches the measured data power with respect to estimated parameters. The peaks in the

shape parameter correspond to troughs in the measured amplitude. This occurs where Gaussian noise
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dominates and causes the shape parameter estimator to tend towards ∞, whereas ocean wave crests

which reflect higher intensity signals match the K-distribution. This results in low shape parameters

and indicates non-Gaussian distributed data. Figure 5.34 presents the alignment over the entire dataset

for convenience.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

3,200

3,400

3,600

3,800

4,000

4,200

4,400

Time [s]

R
an

ge
[m

]

Shape (K-dist)

−60

−40

−20

0

A
m

pl
itu

de
[d

B
FS

]

0 25 50 75 100

0

0.2

0.4

0.6

0.8

1

Shape a

Figure 5.34. CFA16_002 range-time measured radar data aligned with shape parameters from

K-distribution, illustrating trough and crest based parameters.

5.6.3 Correlation

Alongside the distributional properties, the correlation represents the other statistically important

characteristic needed for the generation process. The correlation of each range bin over the full

range of 96 bins is considered. Note that this is correlation in the fast time axis. The spectrum of

the autocorrelation determines the spectrum width and thus the correlation, the wider the response

spectrum the more uncorrelated the data. For a very narrow response a distinct frequency represents a

strong correlation property. The frequency at which the correlation occurs is determined by the phasor,

where positive frequencies represent a wave approaching the radar.

Figure 5.35, 5.36, 5.37 and 5.38 illustrates the correlation responses over a section of a 165 m. The

correlation spectrum is broad for noise or Gaussian based responses, i.e. when the radar signal is
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returned from troughs, and narrower for crest based responses, where the periodicity of the breaking

ocean wave reoccurs.
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Figure 5.35. CFA16_002 correlation at range (a) 3622 m, (b) 3637 m and (c) 3652 m, where (d) to (f)

illustrates a narrow response corresponding to ocean wave crests.
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Figure 5.36. CFA16_002 correlation at range (a) 3667 m, (b) 3682 m and (c) 3697 m, where (d) and

(e) illustrates a wide spectrum corresponding to ocean wave troughs whilst (f) tends towards the

narrow spectrum of a crest.
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Figure 5.37. CFA16_002 correlation at range (a) 3712 m, (b) 3727 m and (c) 3742 m, where (d)

illustrates a crest and (e) to (f) transitions back to a wide spectrum, which corresponds to ocean wave

troughs.
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Figure 5.38. CFA16_002 correlation at range (a) 3757 m, (b) 3772 m and (c) 3787 m, where (d)

illustrates a transition from trough to crest, and (e) and (f) illustrate the crest region again.
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5.7 GENERATION PROCESS

Reversing the analysis processes and using the gained statistical insights, the generation process as

described in Figure 4.3 can now be applied. For convenience this is re-plotted in Figure 5.39. First

the random number generator outputs a sequence of zero mean values with a standard deviation of

one. This is input into the respective generation function. For correlated Rayleigh see Section 4.8.2.1.

K-distributed correlated data, see Section 4.8.2.2, is not simulated as it is considered out of scope

for this document. Finally after the correlated and statistically distributed data has been generated, a

desired ocean wave approach angle, for the range-time plot, can be applied.

Random

generator

Wave generation

function
Angle offset

Parametrisation

Figure 5.39. Process overview of data generation algorithm.

5.7.1 Generation of a Rayleigh parametrised system

First the corrected data is analysed and parametrised. In this particular case, an individual range bin is

considered and analysed in order to evaluate and elaborate the method. The correlation of range bin

45, which corresponds to a range distance of 3667 m in the range-time plots above, is illustrated in

Figure 5.40. The figure, given in dB, illustrates the relatively short correlation intervals of the range

bin, suggesting, as discussed above, that the results stem from the ocean wave crest section. The power
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spectral density indicates that the wave is moving towards the radar with a positive Doppler frequency,

whilst a negative frequency would indicate that the wave is moving away from the radar.
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Figure 5.40. CFA16_002 PSD of angular corrected data at range 3667 m (bin = 45), with (a) showing

a detailed view of the correlation around 0 lag and (b) illustrating the clutter spectral density.

Implementing the generation process mentioned in Section 4.8.2.1, sample data is generated for the

same parameters to verify the generation steps. This is illustrated in Figure 5.41, where the output of

the correlation and clutter power spectral density are compared. This method can then be expanded

and applied to multiple range bins of input data in order to generate statistically correlated ocean wave

data for multiple range bins.

The simulation of the data over time is implemented by applying a filter to data from a random complex

number generator with

• mean µ = 0,

• standard deviation σ = 1,

• ramp-up region to disregard filtered values of 1000 samples and

• and no correlation between I and Q based random values.
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Figure 5.41. CFA16_002 PSD of generated and angular corrected data at range 3667 m (bin = 45),

with (a) showing a detailed difference of the correlation around 0 lag and (b) illustrating the difference

in clutter spectral density.

The random data is transformed as per Figure 4.31 producing a random sequence with given correlation

and statistical distribution. Figure 5.42 compares the spectral content of the original input data to the

generated output data in the time domain. This provides a mere optical comparison of the two datasets

for illustrative purposes. From this figure the similarity between the generated and measured data is

confirmed.
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Figure 5.42. CFA16_002 (a) measured vs (b) generated data in the time domain for one range bin at

range 3667 m (bin = 45).

5.7.2 Rayleigh based generation of 96 range bin data

Applying the foregoing method to all input range-bins, creates a set of output data with a given

statistical and correlational similarity to the original input measurement. Figure 5.43 illustrates the

dataset of the radar measured results that were angular corrected with the process described thus far.

Figure 5.44 illustrates the generation of data using the distribution and correlation properties, obtained

through parametrisation of the input data and the application of the random Gaussian number generator.

The result is created for the same length of data, for purely comparative purposes. However, this

process can easily be expanded for longer times by increasing the number of random generated input

points, which the random function outputs.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

105



CHAPTER 5 RESULTS AND DISCUSSION

50 100 150 200 250 300 350 400

10

20

30

40

50

60

70

80

90

Time [samples]

R
an

ge
[m

]

0

1

2

3

4

5

6

7

A
B

S(
A

m
pl

itu
de

)(
lin

ea
r)

Figure 5.43. CFA16_002 range time plot of measured data after angle correction, illustrating

correction step occurring at sample point 230.
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Figure 5.44. CFA16_002 range time plot of generated data based on Gaussian random variables and

parametrised filter for Rayleigh correlated outputs (last step of angle counter correction not applied).
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5.7.3 Comparison

In order to compare the generated results, the distributions and correlation of the generated data is

compared with the original measured data. As the datasets are of the same length and range depth,

these results can be compared directly to one another.

5.7.3.1 Distribution

The statistical distribution for 8 range bins (a total range of 120 m) illustrates that the Rayleigh

distribution only partially fits the trough sections of the ocean wave well. Crest results, as discussed in

the results above tend towards the K-distribution with a better performance. This is seen in Figures

5.45 to 5.47, in particular 5.47(a), illustrating a crest section of the ocean wave with poor performance

towards the Rayleigh distribution.
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Figure 5.45. CFA16_002 distribution comparison at range bin (a) 40, (b) 41, (c) 42, and (d) 43,

illustrating acceptable performance particularly in trough regions.
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Figure 5.46. CFA16_002 distribution comparison at range bin (a) 44, (b) 45, (c) 46, and (d) 47,

illustrating deviation for crests regions.
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Figure 5.47. CFA16_002 distribution comparison at range bin (a) 48, (b) 49, (c) 50, and (d) 51,

illustrating transition area from crest to trough regions of the ocean wave.
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5.7.3.2 Correlation

The correlation shows that using the method described in Section 4.8.2.1 produces good results with

close fitting and following outputs. This is seen through Figures 5.48 and 5.49.
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Figure 5.48. CFA16_002 correlation comparison at range bin (a) 40, (b) 41, (c) 42, and (d) 43,

illustrating good performance.
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Figure 5.49. CFA16_002 correlation comparison at range bin (a) 44, (b) 45, (c) 46, and (d) 47,

illustrating good performance.

5.8 DATASETS CONTAINING BOAT REFLECTIONS

Out of the six datasets analysed and processed, three contained a RIB crossing the breaking waves.

These were datasets:

• TFC15_025,

• TFC15_028 and

• TFC15_029.

In order to identify the influence of the RIB on the parametrisation of the model, range-bins with strong

boat reflections were considered. In order to analyse this occurrence, a section with strong reflections

was identified. Strong reflections typically occur when the RIB crosses the ocean wave crest, as shown

in Figure 5.50 between 7 and 8 seconds and 4680 range meters. This region is the highlighted area

between the two black lines shown in Figure 5.50.

The region of interest, re-plotted in Figure 5.51, clearly shows the signal amplitude influence associated
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Figure 5.50. TFC15_025 Range time plot illustrating region with strong RIB reflections on ocean

wave crest, where the section between the two black lines indicates the time region where a strong

reflection occurs at 4680 m.

with the RIB crossing the ocean wave crest. The boat reflections can be identified in Figure 5.51 at

4680 m by the strong returns.
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Figure 5.51. TFC15_025 input region illustrating strong boat reflections at a range of 4680 m and at a

time of 7.2 to 7.8 seconds.
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5.8.1 Effects

In the processing chain, the identification of the ocean wave crest angle is determined through the mean

angles, which are obtained from the output of the Radon transform that is applied to the circular-masked

input data. This input data matrix is shown in Figure 5.52 and again illustrates strong intensities at

4680 m which relate to the RIB.
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Figure 5.52. TFC15_025 circular input mask data for Radon transform illustrating strong signal

returns from the RIB at 4680 m.

The output of the Radon transform indicates the boat structure through increased amplitude and width

at the range of 4680 m. In order to elaborate the difference in amplitude from the transform’s response,

the squared output result is illustrated in Figure 5.53.
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Figure 5.53. TFC15_025 Radon transform result of circular input matrix illustrating strong transform

from RIB data at 4680 m and a wide angle spectrum.

Comparing the output angles, results show that the influence of the boat causes no significant change

of the determined mean angle. This is supported by Figure 5.54. Further Figure 5.55 also illustrates

that the largest deviation in the results is not related to the data obtained from the RIB at range 4680

m.
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Figure 5.54. TFC15_025 illustrating results of angle determination illustrating the minimal effect of

the RIB on the mean angle output as given by the detection at range 4680 m.
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Figure 5.55. TFC15_025 illustrating results of angle determination illustrating the minimal effect of

the RIB on the mean angle output as given by the detection at range 4680 m.

The result of the angular corrected ocean wave crest aligned to the x-axis is shown in Figure 5.56,

illustrating good performance despite the input segment containing a strong reflection from a RIB

crossing the ocean wave crest at a different approach angle to the ocean waves. This can be attributed

to the small influence a single angle has on the algorithm together with the low impact a small RIB has

on the measurement data. For larger boats (> 15 m) with stronger trails this may not be the case.
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Figure 5.56. TFC15_025 output of wave-phase corrected data with x-axis aligned waves illustrating

strong boat reflections at a range of 4680 m an at a time of 6 to 8 seconds.
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In order to compare the distributions, the crest containing the boat was compared against similar ocean

wave crest regions from the same angular corrected data matrix. These results are shown in Figures

5.57, 5.58 and 5.59.
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Figure 5.57. TFC15_025 Distribution with RIB crossing wave crests taken from range bins (a) 4665

m, (b) 4680 m, (c) 4695 m and (d) 4710 m.
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Figure 5.58. TFC15_025 Distribution of similar wave crest region containing no-boat data taken from

range bins (a) 5010 m, (b) 5025 m, (c) 5040 m and (d) 5055 m.
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Figure 5.59. TFC15_025 Distribution of similar wave crest region containing no-boat data taken from

range bins (a) 5310 m, (b) 5325 m, (c) 5340 m and (d) 5355 m.
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These results illustrate the algorithm’s robustness and stability for determining the approach angle,

achieved through the parallel analysis of multiple ocean wave crests.
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CHAPTER 6 CONCLUSION AND SUMMARY

6.1 SUMMARY

This dissertation introduced a statistical model for the simulation of periodic breaking sea waves in

a littoral environment. In order to obtain a better understanding of periodic breaking waves in this

environment, first a model was suggested that analyses the different segments of the ocean wave

against the commonly used distributions for sea clutter. These distributions included the log-normal,

the Rayleigh and the K-distribution. The model analysed existing low grazing angle, X-band radar

data obtained from the CSIR, which was measured off the coast of Cape Town, South Africa.

Using this data, the parametrisations of the suggested model was possible. The analysis of the

correlation between wave crests was also included in the model in order to accommodate the periodic

nature of the parallel waves, typically seen in the measurements. This allowed for the generation of

statistically similar periodic breaking wave data, which in turn was validated against the measurement

data in terms of correlational and distributional properties. This elaborated method was applied to six

datasets obtained from the CSIR, which demonstrated the robustness and flexibility of the suggested

model.

The core of the analysis section of the model, is the alignment of the ocean wave crests to the x-axis

of the data matrix. This is obtained through an adapted circular masked use of the Radon transform,

resulting in an accurate determination of the approaching angle of the ocean waves with respect to the

stationary radar position. Using this angle, the measured radar data can be shifted, so that the ocean

wave crests are parallel to the x-axis. This step allows for the statistical analysis of individual segments

of a given ocean wave, effectively statistically differentiating regions from the trough through to the

crest of the wave.
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This information was then applied to parametrise a simulation model, which can generate data

with similar distributional properties generated from a standard Gaussian random noise function.

Furthermore, correlation in fast time was considered in order to capture the periodic nature of the

parallel wave crests. This is also captured and successfully implemented in the generation model.

The Rayleigh distribution provides accurate statistical results, which together with the correlation

properties, accurately generate data from a Gaussian random generator that is used as an input for the

transformational filter.

It is shown that the influence of a RIB does not alter the output of the model. This is due to the minor

impact the measurements have on the returns, further strengthened by the parallel detection scheme

which offers robustness against outliers.

The suggested model provides insights into the statistics of the individual segments of the ocean wave

and allows the simulation of similar data. Simulation is essential for further development of detection

methods needed for such littoral ocean environments. This is critical for the implementation of low

cost policing in these regions and could aid in the reduction of illegal fishing activities as well as

improved border control.

6.2 CONCLUSION OF RESULTS

The results showed that measured radar data can be simulated for a littoral environment through

parametrisation of the suggested model. The statistical similarity was confirmed through the

comparison of generated and measured data and the visual use of the q-q plots. These plots were

utilised to evaluate the accuracy of the applied distribution for the given segment of the ocean wave.

This also provided insights, which support the theory that the returns of the ocean wave are based on

reflections from the ocean wave crests. These crests tend to follow the Rayleigh and K-distribution.

Troughs however, are not seen by the radar as they are obscured by the ocean wave crests. Thus trough

data tend to follow the Gaussian distribution.

The generation model showed that it can accurately reproduce the data in an autonomous way for a

variety of input data. The computational overhead is primarily related to the complexity and resolution

of the Radon transform used for the approaching angle determination process. The advantages of
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the suggested model are the handling of periodic breaking waves through the treatment of individual

segments of the ocean wave with different distributions. This also leads to the advantage of individual

wave identification, which could in future be used to track individual waves and in turn be used for the

detection of anomalies or deviations from common ocean wave movement.
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ADDENDUM A FURTHER RESULTS

The results for the remaining datasets, which were not shown in Chapter 5, are illustrated in this

appendix.

A.1 DATASET OVERVIEW

An overview of the six datasets is provided in the Table 5.1 and is reproduced in Table A.1.

Table A.1. Dataset overview reproduced from Table 5.1.

Dataset Type TX Freq. PRF θg

CFA16_002 sea clutter 6.9 GHz 5 kHz 0.853◦−1.27◦

CFA16_003 sea clutter 6.9 GHz 5 kHz 0.427◦−0.525◦

CFA16_004 sea clutter 6.9 GHz 5 kHz 0.427◦−0.525◦

TFC15_025 sea clutter + RIB 9 GHz 2.5 kHz 0.628◦−0.838◦

TFC15_028 sea clutter + RIB 9 GHz 2.5 kHz 0.492◦−0.619◦

TFC15_029 sea clutter + RIB 9 GHz 5 kHz 0.445◦−0.551◦

Results for the datasets not discussed in Chapter 5 are presented. All key figures, required for the

model, are presented and illustrate the robustness of the implemented model. Reference to these figures

is made in the results and discussion chapter at the respective sections.
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A.2 RESULTS DATASET 2: CFA16_003

A.2.1 Raw data
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Figure A.1. CFA16_003 range-time plot of 13 s of measured data given in dB full scale, where the

black vertical lines indicate the region used for angle determination.
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A.2.2 Radon transform
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Figure A.2. CFA16_003 non-circular vs circular input processing matrices for the Radon transform,

indicating the null data points on the outside of the circular mask.
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Figure A.3. CFA16_003 Radon transform result illustrating the output for the (a) non-circular and (b)

circular input matrix.
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A.2.3 Angle calculation
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Figure A.4. CFA16_003 blob detection on Radon transform result illustrating the weighted centroids

of the underlying data together with their individual amplitude intensities.
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Figure A.5. CFA16_003 mean and median of determined angles, illustrating the advantage of the

median to exclude outliers.
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A.2.4 Wave phase alignment
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Figure A.6. CFA16_003 output of wave-phase corrected data with x-axis aligned waves illustrating

clear steps.
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A.2.5 Distribution fitting
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Figure A.7. CFA16_003 distribution fit example at range bin (a) 44, (b) 45, (c) 46, (d) 47, (e) 48, and

(f) 49.
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Figure A.8. CFA16_003 distribution fit example at range bin (a) 50, (b) 51, (c) 52, (d) 53, (e) 54, and

(f) 55.
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Figure A.9. CFA16_003 PDF fit for Rayleigh distribution illustrating the σ parameter over the entire

response range.
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Figure A.10. CFA16_003 K-distribution fit parameters over entire measurement range, where the

shape parameter a is limited to 100 digits in the fitting algorithm.
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Figure A.11. CFA16_003 parameter MSE comparison of distributions over range in log-domain,

illustrating the small error for good fits between parameter peaks.
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Figure A.12. CFA16_003 comparison illustrating alignment of range-time measured radar data vs

distribution mean squared error, illustrating good and poor fit sections.
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Figure A.13. CFA16_003 correlation at range bin (a) 42, (b) 43, and (c) 44, where (d) to (f) illustrate

the corresponding PSD.
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A.2.6 Rayleigh correlated output
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Figure A.14. CFA16_003 range-time plot of generated data based on Gaussian random variables and

parametrised filter for Rayleigh correlated outputs.
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Figure A.15. CFA16_003 Distribution comparison between measured and generated data at range bin

(a) 44, (b) 45, (c) 46, and (d) 47.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

137



ADDENDUM A FURTHER RESULTS

A.3 RESULTS DATASET 3: CFA16_004

A.3.1 Raw data
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Figure A.16. CFA16_004 range-time plot of 13 s of measured data given in dB full scale, where the

black vertical lines indicate the region used for angle determination.
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A.3.2 Radon transform
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Figure A.17. CFA16_004 non-circular vs circular input processing matrices for the Radon transform,

indicating the null data points on the outside of the circular mask.
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Figure A.18. CFA16_004 Radon transform result illustrating the output result difference for the (a)

non-circular and (b) circular input matrix.
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A.3.3 Angle calculation
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Figure A.19. CFA16_004 blob detection on Radon transform result illustrating the weighted centroids

of the underlying data together with their individual amplitude intensities.
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Figure A.20. CFA16_004 mean and median of determined angles, illustrating the advantage of the

median to exclude outliers.
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A.3.4 Wave phase alignment
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Figure A.21. CFA16_004 output of wave-phase corrected data with x-axis aligned waves illustrating

clear steps.
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A.3.5 Distribution fitting
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Figure A.22. CFA16_004 distribution fit example at range bin (a) 44, (b) 45, (c) 46, (d) 47, (e) 48, and

(f) 49.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

142



ADDENDUM A FURTHER RESULTS

0 10 20
0

0.5

1

1.5

x

f(
x)

(a)

Orig
Log
Ray
K

0 10 20
0

0.2

0.4

0.6

0.8

1

x

f(
x)

(b)

Orig
Log
Ray
K

0 10 20
0

0.5

1

1.5

x

f(
x)

(c)

Orig
Log
Ray
K

0 10 20
0

0.5

1

1.5

x

f(
x)

(d)

Orig
Log
Ray
K

0 10 20
0

0.5

1

1.5

x

f(
x)

(e)

Orig
Log
Ray
K

0 10 20
0

0.5

1

1.5

x

f(
x)

(f)

Orig
Log
Ray
K

Figure A.23. CFA16_004 distribution fit example at range bin (a) 50, (b) 51, (c) 52, (d) 53, (e) 54, and

(f) 55.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

143



ADDENDUM A FURTHER RESULTS

7,200 7,400 7,600 7,800 8,000 8,200 8,400
0

0.5

1

1.5

2

2.5

Range [m]

σ

Figure A.24. CFA16_004 PDF fit for Rayleigh distribution illustrating the σ parameter over the entire

response range.
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Figure A.25. CFA16_004 K-distribution fit parameters over entire measurement range, where the

shape parameter a is limited to 100 digits in the fitting algorithm.
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Figure A.26. CFA16_004 parameter MSE comparison of distributions over range in log-domain,

illustrating the small error for good fits between parameter peaks.
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Figure A.27. CFA16_004 comparison illustrating alignment of range-time measured radar data vs

distribution mean squared error, illustrating good and poor fit sections.
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Figure A.28. CFA16_004 correlation at range bin (a) 42, (b) 43, and (c) 44, where (d) to (f) illustrate

the corresponding PSD.
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A.3.6 Rayleigh correlated output
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Figure A.29. CFA16_004 range-time plot of generated data based on Gaussian random variables and

parametrised filter for Rayleigh correlated outputs.
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Figure A.30. CFA16_004 Distribution comparison between measured and generated data at range bin

(a) 44, (b) 45, (c) 46, and (d) 47.
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A.4 RESULTS DATASET 4: TFC15_025

A.4.1 Raw data

0 2 4 6 8 10 12 14 16 18 20 22 24 26

4,600

4,800

5,000

5,200

5,400

5,600

5,800

Time [s]

R
an

ge
[m

]

Boat GPS

−40

−30

−20

−10

0

10

A
m

pl
itu

de
[d

B
FS

]

Figure A.31. TFC15_025 range-time plot of 26 s of measured data with boat information given in dB

full scale, where the black vertical lines indicate the region used for angle determination.
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A.4.2 Radon transform
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Figure A.32. TFC15_025 non-circular vs circular input processing matrices for Radon transform,

indicating the null data points on the outside of the circular mask.
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Figure A.33. TFC15_025 Radon transform result illustrating the output result difference for the (a)

non-circular and (b) circular input matrix.
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A.4.3 Angle calculation
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Figure A.34. TFC15_025 blob detection on Radon transform result illustrating the weighted centroids

of the underlying data together with their individual amplitude intensities.
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Figure A.35. TFC15_025 mean and median of determined angles, illustrating the advantage of the

median to exclude outliers.
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A.4.4 Wave phase alignment
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Figure A.36. TFC15_025 output of wave-phase corrected data with x-axis aligned waves illustrating

clear steps.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

151



ADDENDUM A FURTHER RESULTS

A.4.5 Distribution fitting
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Figure A.37. TFC15_025 distribution fit example at range bin (a) 44, (b) 45, (c) 46, (d) 47, (e) 48, and

(f) 49.
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Figure A.38. TFC15_025 distribution fit example at range bin (a) 50, (b) 51, (c) 52, (d) 53, (e) 54, and

(f) 55.
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Figure A.39. TFC15_025 PDF fit for Rayleigh distribution illustrating the σ parameter over the entire

response range.
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Figure A.40. TFC15_025 K-distribution fit parameters over entire measurement range, where the

shape parameter a is limited to 100 digits in the fitting algorithm.
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Figure A.41. TFC15_025 parameter MSE comparison of distributions over range in log-domain,

illustrating the small error for good fits between parameter peaks.
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Figure A.42. TFC15_025 comparison illustrating alignment of range-time measured radar data vs

distribution mean squared error, illustrating good and poor fit sections.
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Figure A.43. TFC15_025 correlation at range bin (a) 42, (b) 43, and (c) 44, where (d) to (f) illustrate

the corresponding PSD.
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A.4.6 Rayleigh correlated output
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Figure A.44. TFC15_025 range-time plot of generated data based on Gaussian random variables and

parametrised filter for Rayleigh correlated outputs.
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Figure A.45. TFC15_025 Distribution comparison between measured and generated data at range bin

(a) 44, (b) 45, (c) 46, and (d) 47.
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A.5 RESULTS DATASET 5: TFC15_028

A.5.1 Raw data
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Figure A.46. TFC15_028 range-time plot of 26 s of measured data with boat information given in dB

full scale, where the black vertical lines indicate the region used for angle determination.
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A.5.2 Radon transform

0 0.1 0.2 0.3 0.4 0.5

6,500

7,000

Time [s]

R
an

ge
[m

]

(a)

0 0.1 0.2 0.3 0.4 0.5

6,500

7,000

Time [s]

(b)

0

1

2

3

4

5

A
B

S(
A

m
pl

itu
de

)(
lin

ea
r)

Figure A.47. TFC15_028 non-circular vs circular input processing matrices for Radon transform,

indicating the null data points on the outside of the circular mask.
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Figure A.48. TFC15_028 Radon transform result illustrating the output result difference for the (a)

non-circular and (b) circular input matrix.
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A.5.3 Angle calculation

168.6

128.4

214.4

80.8

58.9

39.6

0 20 40 60 80 100 120 140 160 180

6,000

6,500

7,000

7,500

Angle θ [◦]

R
an

ge
[m

]

Figure A.49. TFC15_028 blob detection on Radon transform result illustrating the weighted centroids

of the underlying data together with their individual amplitude intensities.
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Figure A.50. TFC15_028 mean and median of determined angles, illustrating the advantage of the

median to exclude outliers.
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A.5.4 Wave phase alignment
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Figure A.51. TFC15_028 output of wave-phase corrected data with x-axis aligned waves illustrating

clear steps.
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A.5.5 Distribution fitting
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Figure A.52. TFC15_028 distribution fit example at range bin (a) 44, (b) 45, (c) 46, (d) 47, (e) 48, and

(f) 49.
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Figure A.53. TFC15_028 distribution fit example at range bin (a) 50, (b) 51, (c) 52, (d) 53, (e) 54, and

(f) 55.
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Figure A.54. TFC15_028 PDF fit for Rayleigh distribution illustrating the σ parameter over the entire

response range.
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Figure A.55. TFC15_028 K-distribution fit parameters over entire measurement range, where the

shape parameter a is limited to 100 digits in the fitting algorithm.
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Figure A.56. TFC15_028 parameter MSE comparison of distributions over range in log-domain,

illustrating the small error for good fits between parameter peaks.
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Figure A.57. TFC15_028 comparison illustrating alignment of range-time measured radar data vs

distribution mean squared error, illustrating good and poor fit sections.
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Figure A.58. TFC15_025 correlation at range bin (a) 42, (b) 43, and (c) 44, where (d) to (f) illustrate

the corresponding PSD.
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A.5.6 Rayleigh correlated output
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Figure A.59. TFC15_028 range-time plot of generated data based on Gaussian random variables and

parametrised filter for Rayleigh correlated outputs.
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Figure A.60. TFC15_028 Distribution comparison between measured and generated data at range bin

(a) 44, (b) 45, (c) 46, and (d) 47.
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A.6 RESULTS DATASET 6: TFC15_029

A.6.1 Raw data
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Figure A.61. TFC15_029 range-time plot of 26 s of measured data with boat information given in dB

full scale, where the black vertical lines indicate the region used for angle determination.
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A.6.2 Radon transform
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Figure A.62. TFC15_029 non-circular vs circular input processing matrices for Radon transform,

indicating the null data points on the outside of the circular mask.
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Figure A.63. TFC15_029 Radon transform result illustrating the output result difference for the (a)

non-circular and (b) circular input matrix.
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A.6.3 Angle calculation
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Figure A.64. TFC15_029 blob detection on Radon transform result illustrating the weighted centroids

of the underlying data together with their individual amplitude intensities.
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Figure A.65. TFC15_029 mean and median of determined angles, illustrating the advantage of the

median to exclude outliers.
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A.6.4 Wave phase alignment
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Figure A.66. TFC15_029 output of wave-phase corrected data with x-axis aligned waves illustrating

clear steps.
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A.6.5 Distribution fitting
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Figure A.67. TFC15_029 distribution fit example at range bin (a) 44, (b) 45, (c) 46, (d) 47, (e) 48, and

(f) 49.
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Figure A.68. TFC15_029 distribution fit example at range bin (a) 50, (b) 51, (c) 52, (d) 53, (e) 54, and

(f) 55.
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Figure A.69. TFC15_029 PDF fit for Rayleigh distribution illustrating the σ parameter over the entire

response range.
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Figure A.70. TFC15_029 K-distribution fit parameters over entire measurement range, where the

shape parameter a is limited to 100 digits in the fitting algorithm.
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Figure A.71. TFC15_029 parameter MSE comparison of distributions over range in log-domain,

illustrating the small error for good fits between parameter peaks.
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Figure A.72. TFC15_029 comparison illustrating alignment of range-time measured radar data vs

distribution mean squared error, illustrating good and poor fit sections.
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Figure A.73. TFC15_029 correlation at range bin (a) 42, (b) 43, and (c) 44, where (d) to (f) illustrate

the corresponding PSD.
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A.6.6 Rayleigh correlated output
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Figure A.74. TFC15_029 range-time plot of generated data based on Gaussian random variables and

parametrised filter for Rayleigh correlated outputs.
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Figure A.75. TFC15_029 Distribution comparison between measured and generated data at range bin

(a) 44, (b) 45, (c) 46, and (d) 47.
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