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The accurate prediction of remaining useful life for fleets of engineering assets is an increasingly 

important task in prognostics and health management (PHM). This is because the accurate 

prediction of time to failure allows for improved planning, scheduling and decision-making of 

maintenance tasks for fleets of engineering assets. Accurate prediction of remaining useful life 

therefore has high potential to increase the reliability, availability, production output, profitability 

and safety, and to decrease downtime, unnecessary maintenance and operating costs for fleets of 

engineering assets. 

This work proposes general and convenient prognostics strategies with data-driven deep learning 

models for online remaining useful life prediction for fleets of engineering assets, where historical 

run-to-failure condition monitoring measurements with trendable exponential degradation 

trajectories are available. 

The modeling of long-term sequence information in condition monitoring measurements has 

previously been shown to be very challenging and crucial for effective data-driven prognostics. 

Long short-term memory (LSTM) and gated recurrent unit (GRU) recurrent neural network 

(RNN) deep learning models are currently the state-of-the-art sequence modeling techniques and 

can effectively model long-term sequence information. These gated recurrent neural networks 

have however to date not been comprehensively investigated and compared for data-driven 

prognostics for fleets of engineering assets. 

In this work we investigate data sets which include a general asset degradation data set, turbofan 

engine degradation data set and turbofan engine degradation benchmarking data sets. The 

investigated data sets all simulate the exponential degradation trajectories and condition 

monitoring measurements for fleets of engineering assets that were run to failure, where each 
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asset had either univariate or multivariate condition monitoring sensor measurements performed 

at fixed time intervals over its lifetime.  

The data sets investigated include training set examples and testing set examples. The training set 

examples represent historical (previously seen) engineering assets with condition monitoring 

measurements that were run to failure. The testing set examples represent future (completely 

unseen) general engineering assets with condition monitoring sensor measurements that were 

run to failure. The objective and challenge is therefore to propose a prognostics strategy and train 

a model on the condition monitoring measurements of the training set examples offline. The 

proposed prognostics strategy and trained model must then predict the remaining useful life from 

the condition monitoring measurements of the testing set examples fully online. The turbofan 

engine degradation benchmarking data sets allow for simple and effective prognostics 

performance comparisons between publications with different prognostics strategies and models. 

The proposed general prognostics strategies for this work include a prognostics classification 

strategy and prognostics regression strategy. 

The proposed prognostics classification strategy is to structure the remaining useful life modeling 

problem as a sequence-to-sequence classification deep learning problem, where the input 

sequence is the univariate or multivariate condition monitoring measurement time series and the 

target sequence is the remaining useful life classification time series. The remaining useful life 

classification time series for each individual training and testing set example consists of remaining 

useful life classes with different degradation levels that are based on its linearly decreasing 

remaining useful life time series with an applied threshold.  

The prognostics regression strategy is to structure the remaining useful life modeling problem as 

a sequence-to-sequence regression deep learning problem, where the input sequence is the 

univariate or multivariate condition monitoring measurement time series and the target sequence 

is the remaining useful life regression time series. The remaining useful life regression time series 

for each individual training and testing set example consists of remaining useful life values that 

are based on its linearly decreasing remaining useful life time series with an applied threshold. 

The sequence-to-sequence classification and regression deep learning models then learns and 

generalizes the mapping between the condition monitoring measurement time series and the 

remaining useful life classification and regression time series for all the training set examples 

offline. The trained sequence-to-sequence classification and regression deep learning models is 

then used to predict the remaining useful life classification and regression time series from the 

condition monitoring measurement time series for all the testing set examples fully online. 

The proposed sequence-to-sequence deep learning classification and regression model 

architectures that are investigated and compared for the proposed prognostics classification and 

regression strategies include a feedforward neural network (FNN), simple recurrent neural 
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network (S-RNN), long short-term memory recurrent neural network (LSTM-RNN) and gated 

recurrent unit recurrent neural network (GRU-RNN). 

The sequence-to-sequence deep learning classification and regression model architectures are 

trained on the training sets of the investigated data sets with the new and effective Adam 

algorithm. The deep learning models are also regularized with a combination of the early 

stopping, weight decay and dropout regularization techniques in order to reduce overfitting and 

improve generalization and prediction performance. 

The prognostics classification and regression strategies were successfully applied on the 

investigated data sets with the FNN, S-RNN, LSTM-RNN and GRU-RNN classification and 

regression model architectures. The LSTM-RNN and GRU-RNN models drastically outperformed 

the FNN and S-RNN models as expected. The GRU-RNN models slightly outperformed the LSTM-

RNN models and the S-RNN models significantly outperformed the FNN models on average.  

The prognostics regression strategy and LSTM-RNN and GRU-RNN regression models achieved 

very competitive results when compared with other state-of-the-art publications on the turbofan 

engine degradation benchmarking data sets. The prognostics regression strategy and GRU-RNN 

regression model achieved a very competitive benchmarking score of 589 on the PHM08 turbofan 

degradation benchmarking data set. 
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Abbreviations 

 

C  Class 

FNN  Feedforward Neural Network 

GRU  Gated Recurrent Unit 

GRU-RNN Gated Recurrent Unit Recurrent Neural Network 

LSTM  Long Short-Term Memory 

LSTM-RNN Long Short-Term Memory Recurrent Neural Network 

PHM  Prognostics and Health Management 

RUL   Remaining Useful Life 

S  Sensor 

S-RNN  Simple Recurrent Neural Network 
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Nomenclature 

 

Roman Letters 

𝑎, 𝑏, 𝑐, 𝑑 Stochastic Exponential Degradation Model Parameters 

𝐴𝑇  Applied Threshold 

𝐵𝑛  Bounds 

𝐶  Dimension of the Remaining Useful Life Class Target Vector 

𝐶𝐸  Cross-Entropy 

𝐷  Dimension of Condition Monitoring Measurement Input Vector 

𝑓  Model Architecture 

𝑔  Gradient 

𝐻  Number of Selected Hidden Units 

𝐼  Length of the Output Vector from the Previous Layer 

ℒ  Loss Function 

ℒ𝐶𝐸   Cross-Entropy Loss Function 

ℒ𝑀𝑆𝐸   Mean Squared Error Loss Function 

𝑀  Variable Number of Time Steps for a Training or Testing Set Example 

𝑀𝐴𝐸  Mean Absolute Error   

𝑀𝑆𝐸  Mean Squared Error   

𝑁  Total Number of Training or Testing Examples 

𝒩  Normal Distribution 

𝑃  Total Number of Time Steps for all the Training or Testing Set Examples Combined 

𝑟  Biased Second Moment Estimate 

𝑟̂  Bias Corrected Second Moment Estimate 

𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅   Benchmarking Root Mean Squared Error 

𝑠  Biased First Moment Estimate 

𝑠̂  Bias Corrected First Moment Estimate 

𝑆̅   Benchmarking Score 

𝑡  Time Step 
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𝑇𝑂𝐹  Time of Failure 

𝑥  Training Set Input Example 

𝑥̂  Testing Set Input Example 

𝑋  Training Set Input Examples 

𝑋̂  Testing Set Input Examples 

𝑦𝐶𝑁  Training Set Classification Target Example 

𝑦𝑅𝑁  Training Set Regression Target Example 

𝑦̂𝐶𝑁  Testing Set Classification Target Example 

𝑦̂𝑅𝑁  Testing Set Regression Target Example 

𝑌𝐶𝑁  Training Set Classification Target Examples 

𝑌𝑅𝑁   Training Set Regression Target Examples 

𝑌̂𝐶𝑁  Testing Set Classification Target Examples 

𝑌̂𝑅𝑁  Testing Set Regression Target Examples 

 

Greek Letters 

𝛿  Numerical Stability Constant 

∆𝜃  Model Parameter Update 

𝜖  Global Learning Rate  

𝜃  Model Parameter 

𝜆  Weight Decay Parameter 

𝜇  Normal Distribution Mean 

𝜌2  Exponential Decay Rate for the Second Moment Estimate 

𝜌1  Exponential Decay Rate for the First Moment Estimate 

𝜎  Normal Distribution Standard Deviation 

𝜏  Dropout Fraction 
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Superscripts 

𝐶  Dimension of the Remaining Useful Life Class Target Vector 

𝐷  Dimension of Condition Monitoring Measurement Input Vector 

𝑓  Forget Gate 

𝐻  Number of Selected Hidden Units 

(𝑖)  Example 

𝐼  Length of the Output Vector from the Previous Layer 

[𝑛]  Current Layer 

[𝑛 − 1]  Previous Layer 

(𝑛)  Current Iteration 

(𝑛 + 1)  Next Iteration 

𝑜  Output Gate 

(𝑡)  Current Time Step 

(𝑡 − 1)  Previous Time Step   

(𝑡 + 1)  Next Time Step   

𝑟  Reset Gate 

𝑢  Update Gate 

 

Subscripts 

𝐶𝐸  Cross-Entropy 

𝐶𝑁  Classifcation 

𝑀𝑆𝐸  Mean Squared Error   

𝑅𝑁  Regression 

 

Activation Functions 

𝐸  Softmax Activation Function 

𝐿   Linear Activation Function 

𝑆   Sigmoid Activation Function 

𝑇  Hyperbolic Tangent Activation Function 
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Model Parameters 

𝑏𝑖   Bias Vector 

𝑅𝑖,𝑗   Recurrent Weight Matrix 

𝑊𝑖,𝑗   Weight Matrix 

 

Model Vectors 

𝑐𝑖   Cell State Vector 

𝐶𝑀𝑖   Condition Monitoring Measurement Input Vector 

𝑓𝑖   Forget Gate Vector 

ℎ𝑖   Output Vector   

𝑜𝑖   Output Gate Vector 

𝑟𝑖   Reset Gate Vector 

𝑅𝑈𝐿𝑖,𝐶𝑁 Remaining Useful Life Class Target Vector 

𝑅𝑈𝐿𝑖,𝑅𝑁 Remaining Useful Life Value Target Vector 

𝑠𝑖  Candidate Cell State Vector 

𝑢𝑖   Update Gate Vector 

𝑧𝑖   Any Vector 

 

Time Series 

𝐶𝑀(𝑡)    Univariate or Multivariate Condition Monitoring Measurement Time Series 

𝐷𝑇(𝑡)  Degradation Trajectory Time Series 

𝐻𝐼(𝑡)  Health Index Time Series 

𝑅𝑈𝐿(𝑡)  Remaining Useful Life Time Series 

𝑅𝑈𝐿𝐶𝑁(𝑡)  Remaining Useful Life Classification Time Series 

𝑅𝑈𝐿𝑅𝑁(𝑡) Remaining Useful Life Regression Time Series 

𝑆1(𝑡)  Generated Univariate Condition Monitoring Sensor Measurement Time Series 

𝑡  Time [Cycles] 
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1 Introduction and Background 

 

1.1 Background 

The accurate prediction of remaining useful life for fleets of engineering assets is an increasingly 

important task in prognostics and health management (PHM). This is because the accurate 

prediction of time to failure allows for improved planning, scheduling and decision-making of 

maintenance tasks for fleets of engineering assets. Accurate prediction of remaining useful life 

therefore has high potential to increase the reliability, availability, production output, profitability 

and safety, and to decrease downtime, unnecessary maintenance and operating costs for fleets of 

engineering assets (Jardine, et al., 2006). These fleets of engineering assets can include military, 

mining, aeronautical, medical, automotive, manufacturing, aerospace and power plant machines 

and equipment, that degrade at a large scale and over long periods of time with condition 

monitoring measurements. 

The remaining useful life predictions for a degrading general engineering asset are generally 

based on univariate or multivariate condition monitoring sensor measurements and a prognostics 

model (Lei, et al., 2018). The univariate or multivariate condition monitoring sensor 

measurements can include temperature, vibration, pressure, noise, stress, strain, efficiency or any 

other measurements that are accurate, convenient, safe, inexpensive and reliable (Lei, et al., 

2018). The condition monitoring sensor measurements must however be trendable and 

representative of the true health of the degrading engineering asset for effective and accurate 

remaining useful life predictions. It is very important to point out that the condition monitoring 

sensor measurements in this work refers to the already extracted features (health indicators) 

from raw sensor measurements. 

The prognostics model can generally be a physical model, data-driven model or hybrid model 

(Mishra, et al., 2014). Physical models generally require physical understanding of the 

degradation trajectories of the engineering assets and can be very useful when not enough run-

to-failure data is available for data-driven models. The challenge with physical models however is 

that it can be very difficult, time consuming and expensive to understand and model the complex 

physics present in the degradation trajectories of engineering assets. Data-driven models 

generally require large amounts of run-to-failure data in order to model the degradation 

trajectories of the engineering assets, but can be very useful when the complex physics present in 

the degradation trajectories are too difficult, time consuming and expensive to understand. The 

challenge with data-driven models however is that the required run-to-failure data is not always 

available. Hybrid models combine physical models and data-driven models in order to overcome 

these challenges, but can be very challenging and expensive to implement properly (Mishra, et al., 

2014). 
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There has recently been increased interest in applying pattern recognition and machine learning 

techniques (artificial intelligence) to numerous industries that require human intelligence and 

effort for the automation of complex and repetitive tasks at a large scale and over long periods of 

time. The main motivation for the increased interest in artificial intelligence is to reduce the cost 

and time required for complex and repetitive tasks that would traditionally be performed by 

humans.  

The use of anomaly detection, diagnostics and prognostics applications in condition-based 

maintenance for fleets of engineering assets at a large scale and over long periods of time has also 

become more popular recently. Here the main motivation is increasing the reliability and reducing 

the operating costs for fleets of engineering assets. This increase in condition monitoring for fleets 

of engineering assets generally results in very large data sets that include trendable run-to-failure 

data, which can therefore motivate and justify data-driven prognostics models with pattern 

recognition and machine learning techniques. 

The currently most popular pattern recognition and machine learning approach is known as deep 

learning (Goodfellow, et al., 2016). Deep learning models are neural networks that consist of 

multiple stacked layers with trainable parameters and nonlinear activation functions. This gives 

deep learning models the capacity and ability to learn very complex and nonlinear input to output 

mappings for very large data sets. The most popular tasks for supervised deep learning models 

are classification and regression. Deep learning classification models learn the mapping between 

inputs and associated output classes, where deep learning regression models learn the mapping 

between inputs and associated output values. The most popular deep learning model 

architectures include feedforward neural networks for general modeling, convolution neural 

networks for image modeling and recurrent neural networks sequence modeling (Chollet, 2018).  

Deep learning models have recently achieved state-of-the-art performance on numerous complex 

modeling tasks including image classification, speech recognition, handwriting transcription, 

machine translation, autonomous driving, text-to-speech conversion, natural language 

processing, superhuman gaming, etc. Deep learning models also scale exceptionally well with very 

large data sets when compared with traditional pattern recognition and machine learning 

techniques (Chollet, 2018). Recurrent neural networks are however the most applicable and 

powerful deep learning models for data-driven prognostics, because condition monitoring 

measurements are generally continuous time series that contain important long-term sequence 

information.  

Long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) and gated recurrent unit 

(GRU) (Cho, et al., 2014) recurrent neural networks are currently the state-of-the-art sequence 

modeling techniques and can effectively model important long-term sequence information 

(Goodfellow, et al., 2016). These gated recurrent neural networks have however to date not been 

comprehensively investigated for data-driven prognostics for fleets of engineering assets. 
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The recent increase in popularity of deep learning models is mainly due to algorithmic and 

software advances, increased availability of very large data sets, model benchmarking and 

increased computational resources in the form of graphics cards (Chollet, 2018). 

 

1.2 Problem Statement 

The problem statement for this work is to propose general and convenient prognostics strategies 

with data-driven deep learning models for online remaining useful life prediction for fleets of 

engineering assets, where historical run-to-failure condition monitoring measurements with 

trendable exponential degradation trajectories are available. 

The proposed prognostics strategies with deep learning models have to automatically learn 

(model) the complex nonlinear mapping between the historical run-to-failure condition 

monitoring sensor measurements and the remaining useful life for the fleet of historical 

engineering assets. The trained deep learning models then have to predict the remaining useful 

life for the fleet of future engineering assets from their future condition monitoring sensor 

measurements fully online. This requires the deep learning models to learn (model) important 

long-term sequence information in the historical run-to-failure condition monitoring sensor 

measurement time series.  

The implemented prognostics strategies and deep learning models have to be fully online for 

remaining useful life prediction at a large scale and over long periods of time for the fleet of 

engineering assets. This means that the prognostics strategies and trained deep learning models 

have to automatically predict the remaining useful life for the fleet of engineering assets live from 

their condition monitoring sensor measurements at each time step throughout their lifetime, 

without any additional online human intelligence and effort. The prognostics strategies with deep 

learning models therefore also have to automatically ignore healthy and light degradation 

condition monitoring sensor measurements for which the accurate remaining useful life is very 

difficult (impossible) and not important to model and predict. The fully online predicted 

remaining useful life could then be used for automated planning, scheduling and decision-making 

of maintenance tasks for the fleet of engineering assets if required. 

The prognostics strategies with deep learning models have to be compatible with univariate or 

multivariate condition monitoring sensor measurements. This means that the prognostics 

strategies with deep learning models have to automatically weight the importance (trendability) 

of the different condition monitoring sensor measurements with respect to the remaining useful 

life for the fleet of engineering assets. The prognostics strategies with deep learning models also 

have to automatically ignore irrelevant condition monitoring sensor measurements with respect 

to the remaining useful life for the fleet of engineering assets. 
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The prognostics strategies with deep learning models have to be robust to noise in the condition 

monitoring sensor measurements of the engineering assets. This means that the condition 

monitoring sensor measurements did not require filtering and minimal preprocessing for 

remaining useful life modeling and prediction with the prognostics strategies with deep learning 

models. 

The prognostics strategies with deep learning models have to be robust to different operating 

conditions and fault modes in the condition monitoring sensor measurements of the engineering 

assets. This means that the same trained deep learning model have to automatically predict and 

model the remaining useful life of the engineering assets with different operating conditions and 

fault modes, without having to train different models for different operating conditions and 

different fault modes. 

The prognostics strategies with deep learning models have to be robust to variations in operating 

conditions, fault modes, process noise, manufacturing and assembly for the fleet of engineering 

assets. This requires the prognostics strategies with deep learning models to generalize very well 

between historical (previously seen) and future (completely unseen) engineering assets, when 

modeling and predicting their remaining useful life form their condition monitoring sensor 

measurements. 

The prognostics strategies with deep learning models have to be general and applicable to future 

fleets of engineering assets with trendable exponential degradation and available historical run-

to-failure condition monitoring measurements. The prognostics strategies with deep learning 

models did therefore not have to be specialized for a specific engineering problem or asset. 

The prognostics strategies with deep learning models also have to be competitive with other 

publications on the turbofan engine degradation benchmarking data sets (Saxena & Goebel, 2008) 

for accurate remaining useful life prediction. 

 

1.3 Literature Review 

There are numerous comprehensive literature reviews on the broad field of prognostics. (Jardine, 

et al., 2006) provided a broad review on machinery diagnostics and prognostics implementing 

condition-based maintenance. (Lei, et al., 2018) more recently provided a broad systematic 

review on machinery prognostics from data acquisition to remaining useful life prediction. This 

literature review however specifically focuses on data-driven prognostics for fleets of engineering 

assets. 

The turbofan engine degradation benchmarking data sets (Saxena & Goebel, 2008) are by far the 

most popular publically available data sets for data-driven prognostics research (Ramasso & 

Saxena, 2014). The turbofan degradation benchmarking data sets include five data sets namely 

the FD001, FD002, FD003, FD004 and PHM08 turbofan degradation benchmarking data set 
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respectively. The turbofan engine degradation benchmarking data sets each simulate the 

exponential degradation and condition monitoring measurements for a fleet of turbofan engines 

that were run to failure under different combinations of operating conditions and fault modes. 

Each individual turbofan engine example had 24 multivariate condition monitoring sensor 

measurements performed at fixed time intervals over its lifetime. 

The turbofan engine degradation benchmarking data sets include training set examples and 

censored testing set examples. The training set examples represent historical (previously seen) 

turbofan engines that were run to failure with condition monitoring measurements. The censored 

testing set examples represent future (completely unseen) turbofan engines that were run to 

failure, but with condition monitoring sensor measurements that were censored for a random 

number of cycles before failure for each individual turbofan engine. With the idea of then 

predicting the censored number of cycles before failure (remaining useful life value) for each 

individual turbofan engine example in the testing set from its available (non-censored) condition 

monitoring measurements. 

The objective and challenge for each turbofan engine degradation benchmarking data set is 

therefore to propose a prognostics strategy and train a model on the condition monitoring 

measurements of the training set examples. The prognostics strategy and trained model then have 

to predict the remaining useful life value for each individual turbofan engine example in the 

testing set from its available condition monitoring measurements. 

The accuracy of the predicted remaining useful life values for each turbofan engine degradation 

benchmarking data set were then evaluated by calculating the benchmarking score and 

benchmarking root mean square error (Saxena, et al., 2008). This allowed for simple and effective 

prognostics performance comparisons between different publications with different prognostics 

strategies and models on the turbofan degradation benchmarking data sets.  

(Ramasso & Saxena, 2014) performed an extensive literature review on previous prognostics 

strategies and models applied on the turbofan engine degradation benchmarking data sets. 

An effective prognostics strategy for the turbofan engine degradation benchmarking data sets is 

to structure the remaining useful life modeling problem as a similarity-based matching problem. 

The condition monitoring measurements for the turbofan engines with known failure times are 

used to create a degradation trajectory library. The library can then be used for remaining useful 

life prediction of turbofan engines with similar condition monitoring measurements (Ramasso & 

Saxena, 2014).  

(Wang, et al., 2008) and (Ramasso, 2014) both proposed similarity-based approaches that 

achieved very good results on the turbofan engine degradation benchmarking data sets. These 

similarity-based approaches were however outside the scope of this work, but are powerful 

approaches that can be investigated in future research. 
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An alternative prognostics strategy for the turbofan engine degradation benchmarking data sets 

is to structure the remaining useful life modeling problem as a sequence-to-sequence 

classification problem with different degradation classes for the turbofan engines as 

demonstrated by (Ramasso & Gouriveau, 2010) and (Ramasso & Gouriveau, 2014). 

The most popular, straightforward and effective prognostics strategy however for the turbofan 

engine degradation benchmarking data sets is to structure the remaining useful life modeling 

problem as a sequence-to-sequence regression machine learning problem. The input sequence is 

the 24 multivariate condition monitoring measurement time series and the target sequence is a 

linearly decreasing remaining useful life time series with an applied threshold. The linearly 

decreasing remaining useful life time series with an applied threshold is also known as the knee 

(Heimes, 2008), kink (Lim, et al., 2014), elbow point (Rigamonti, et al., 2016) and piece-wise 

(Zheng, et al., 2017) approach. 

The sequence-to-sequence regression machine learning model then learns and generalizes the 

mapping between the condition monitoring measurement time series and the linearly decreasing 

remaining useful life time series with an applied threshold, for all the training set examples offline. 

The trained sequence-to-sequence regression machine learning model is then be used to predict 

the linearly decreasing remaining useful life time series for the time steps below the applied 

threshold from the condition monitoring measurement time series, for all the testing set examples 

fully online. The big difference between publications on the turbofan engine degradation 

benchmarking data sets however was the type of regression machine learning model (technique) 

that was proposed, trained and applied. 

(Lim, et al., 2014) proposed a switching Kalman filter neural network ensemble and compared it 

to an multi-layer perceptron feedforward neural networks and Kalman filter neural network 

ensemble. The switching Kalman filter neural network ensemble outperformed the multi-layer 

perceptron feedforward neural networks and Kalman filter neural network ensemble. 

(Babu, et al., 2016) proposed a convolutional neural network and compared it to an multi-layer 

perceptron feedforward neural network, support vector regression and relevance vector 

regression. The convolutional neural network outperformed the multi-layer perceptron 

feedforward neural network, support vector regression and relevance vector regression on the 

turbofan engine degradation benchmarking data sets. 

(Zhang, et al., 2017) proposed a multi-objective deep belief networks ensemble and compared it 

with eleven other popular regression machine learning models which include gradient boosting 

and random forests. The multi-objective deep belief networks ensemble outperformed the eleven 

other popular regression machine learning models. 
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(Li, et al., 2018) similarly proposed a deep convolutional neural network and compared it to an 

neural network, deep neural network, recurrent neural network and long short-term memory 

recurrent neural network. The deep convolutional neural network outperformed the neural 

network, deep neural network, recurrent neural network and long short-term memory recurrent 

neural network on the turbofan engine degradation benchmarking data sets (for this publication). 

The problem with the applied regression models and strategies by (Babu, et al., 2016), (Zhang, et 

al., 2017) and (Li, et al., 2018) is that they all use a sliding window of condition monitoring 

measurements with a certain length as their input. The applied regression models can therefore 

only model the condition monitoring measurement in the relatively short sliding window and is 

therefore not able to model long-term sequence information. Another problem with the sliding 

window approach is that its length is another hyperparameter that needs to be tuned with trial 

and error (Li, et al., 2018). Another practical problem with the sliding window approach is that it 

requires waiting the length of the sliding window before a remaining useful life prediction can be 

made online. Recurrent neural networks can however model long-term sequence information, do 

not require a sliding window and generally outperform the above-mentioned approaches. 

(Heimes, 2008) proposed a advanced recurrent neural network and compared it to an multi-layer 

perceptron feedforward neural network, where both models were trained with the extended 

Kalman filter algorithm. The advanced recurrent neural network drastically outperformed the 

multi-layer perceptron feedforward neural network. The advanced recurrent neural network was 

able to achieve second place in the IEEE 2008 PHM conference challenge problem. This is also 

known as the PHM08 turbofan degradation benchmarking data set (Saxena & Goebel, 2008). 

(Rigamonti, et al., 2016) proposed a echo state network (recurrent neural network variant) that 

was trained with the differential evolution algorithm. The echo state network was found to be less 

computationally expensive than traditional recurrent neural networks. A strategy for determining 

the elbow point (applied threshold value) with a filtering approach was also proposed. 

(Zheng, et al., 2017) and (Hsu & Jiang, 2018) both proposed long short-term memory recurrent 

neural networks that were trained with the RMSProp algorithm and both achieved very good 

results on the turbofan engine degradation benchmarking data sets. 

It is therefore clear that the above-mentioned recurrent neural network regression models 

proposed by (Heimes, 2008), (Rigamonti, et al., 2016), (Zheng, et al., 2017) and (Hsu & Jiang, 2018) 

perform very well on the turbofan engine degradation benchmarking data sets. These recurrent 

neural networks could however be further improved upon with newer and better recurrent 

neural network architectures, training algorithms and regularization techniques that will be 

discussed and explained in chapter 3.  
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1.4 Research Scope 

The research scope for this work is therefore to propose general and convenient prognostics 

strategies with data-driven deep learning models for online remaining useful life prediction for 

fleets of engineering assets, where historical run-to-failure condition monitoring measurements 

with trendable exponential degradation trajectories are available. 

The modeling of long-term sequence information in condition monitoring measurements has 

previously been shown (Heimes, 2008) to be very challenging and crucial for effective data-driven 

prognostics. Long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) and gated 

recurrent unit (GRU) (Cho, et al., 2014) recurrent neural network (RNN) deep learning models are 

currently the state-of-the-art sequence modeling techniques (Goodfellow, et al., 2016) (Chollet, 

2018) and can effectively model long-term sequence information. These gated recurrent neural 

networks have however to date not been comprehensively investigated and compared for data-

driven prognostics for fleets of engineering assets.  

The data sets investigated in this work include a general asset degradation data set, turbofan 

engine degradation data set and turbofan engine degradation benchmarking data sets (Saxena & 

Goebel, 2008). The investigated data sets all simulate the exponential degradation trajectories and 

condition monitoring measurements for a fleet of engineering assets that were run to failure, 

where each general engineering asset had either univariate or multivariate condition monitoring 

sensor measurements performed at fixed time intervals over its lifetime. The univariate or 

multivariate condition monitoring measurements contained underlying asset health index 

information that was representative of the true asset health and was trendable with respect to the 

remaining useful life of the asset. It is very important to point out that the condition monitoring 

sensor measurements in this work refers to the already extracted features (health indicators) 

from raw sensor measurements. How these features (health indicators) are extracted from raw 

sensor measurements is however outside the scope of this research.  

The data sets investigated include training set examples and testing set examples. The training set 

examples represent historical (previously seen) engineering assets with condition monitoring 

measurements that were run to failure. The testing set examples represent future (completely 

unseen) general engineering assets with condition monitoring sensor measurements that were 

run to failure. The objective and challenge is therefore to propose a prognostics strategy and train 

a model on the condition monitoring measurements of the training set examples offline. The 

proposed prognostics strategy and trained model must then predict the remaining useful life from 

the condition monitoring measurements of the testing set examples fully online. The turbofan 

engine degradation benchmarking data sets allow for simple and effective prognostics 

performance comparisons between publications with different prognostics strategies and models. 

The proposed general prognostics strategies for this work include a prognostics classification 

strategy and prognostics regression strategy. 
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The proposed prognostics classification strategy is to structure the remaining useful life modeling 

problem as a sequence-to-sequence classification deep learning problem, where the input 

sequence is the univariate or multivariate condition monitoring measurement time series and the 

target sequence is the remaining useful life classification time series. The remaining useful life 

classification time series for each individual training and testing set example consists of remaining 

useful life classes with different degradation levels that are based on its linearly decreasing 

remaining useful life time series with an applied threshold. This is similar to the classification 

strategy proposed by (Ramasso & Gouriveau, 2010) and (Ramasso & Gouriveau, 2014). 

The prognostics regression strategy is to structure the remaining useful life modeling problem as 

a sequence-to-sequence regression deep learning problem, where the input sequence is the 

univariate or multivariate condition monitoring measurement time series and the target sequence 

is the remaining useful life regression time series. The remaining useful life regression time series 

for each individual training and testing set example consists of remaining useful life values that 

are based on its linearly decreasing remaining useful life time series with an applied threshold. 

This is similar to the regression strategy proposed by (Heimes, 2008) and (Zheng, et al., 2017). 

The sequence-to-sequence classification and regression deep learning models then learns and 

generalizes the mapping between the condition monitoring measurement time series and the 

remaining useful life classification and regression time series for all the training set examples 

offline. The trained sequence-to-sequence classification and regression deep learning models is 

then used to predict the remaining useful life classification and regression time series from the 

condition monitoring measurement time series for all the testing set examples fully online. 

The proposed sequence-to-sequence deep learning classification and regression model 

architectures that are investigated and compared for the proposed prognostics classification and 

regression strategies include a feedforward neural network (FNN), simple recurrent neural 

network (S-RNN), long short-term memory recurrent neural network (LSTM-RNN) and gated 

recurrent unit recurrent neural network (GRU-RNN). 

The sequence-to-sequence deep learning classification and regression model architectures are 

trained on the training sets of the investigated data sets with the new and effective Adam 

algorithm (Kingma & Ba, 2015). The deep learning models are also regularized with a combination 

of the early stopping, weight decay and dropout (Srivastava, et al., 2014) regularization 

techniques in order to reduce overfitting and improve generalization and prediction performance 

(Goodfellow, et al., 2016).  

Practical considerations and recommendations for applying the general prognostics strategies 

with the data-driven deep learning models on future data sets are also provided. This includes the 

motivation for the applied threshold, how to select the applied threshold and the importance of a 

consistent definition of failure for effective remaining useful life prediction and modeling for fleets 

of engineering assets. 
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Fleets of engineering assets with available historical run-to-failure condition monitoring 

measurements and trendable degradation trajectories are the specific focus of this work. This is 

because fleets of engineering assets that degrade at a large scale and over long periods of time 

with condition monitoring measurements has recently become very popular in numerous 

industries and generally results in very large data sets that include trendable run-to-failure data. 

The data-driven deep learning models that are investigated in this work also require these large 

amounts of trendable historical run-to-failure data in order to accurately model the nonlinear 

degradation trajectories and to accurately predict the remaining useful life of future engineering 

assets. The main motivation for specifically predicting the remaining useful life for fleets of 

engineering assets is to increase the reliability and decrease the operating costs for an entire fleet 

of assets at a large scale. Deep learning (artificial intelligence) models are especially useful for the 

automation of the complex and repetitive tasks like condition monitoring pattern recognition and 

remaining useful life prediction for fleets of engineering assets at a large scale and over long 

periods of time. 

The novelty and contribution of this research is that the state-of-the-art proposed LSTM-RNN and 

GRU-RNN deep learning models have to date not been comprehensively investigated and 

compared for data-driven prognostics for fleets of engineering assets. GRU-RNN deep learning 

models have especially never been investigated or applied for data-driven prognostics for fleets 

of engineering assets.  

The deep learning models are regularized with a combination of the early stopping, weight decay 

and dropout regularization techniques. Regularization can drastically reduce overfitting and 

improve the generalization and prediction performance of deep learning models, but is however 

rarely discussed or applied in previous work. The deep learning models are also trained with the 

new and effective Adam algorithm, which is more popular, numerically efficient and robust when 

compared with other traditional training algorithms used in previous work.  

The mathematical background of the investigated deep learning models is also provided and 

discussed in detail, which is generally omitted or very briefly discussed in previous work. 

The author also generated a prognostics data set (general asset degradation data set) that is very 

representative of a fleet of general engineering assets that are run-to-failure, where previous 

work generally only focuses data sets provided by other authors like the turbofan engine 

degradation data sets. 

The majority of previous work structure the remaining useful life modeling problem as a 

sequence-to-sequence regression machine learning problem. There has however been very 

limited previous work done that structure the remaining useful life modeling problem as a 

sequence-to-sequence classification machine learning problem, which can be more convenient in 

practice and has other advantages that will be discussed later. This work therefore investigates 
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and compares both these prognostics classification and regression strategies with state-of-the-art 

deep learning models. 

The motivation and reason for the applied threshold is provided and a simple strategy to 

determine the value of the applied threshold for the proposed prognostics classification and 

regression strategies is also provided, which is generally not discussed clearly in previous work. 

The proposed prognostics classification and regression strategies are very general, clear and 

simple and can therefore easily be applied to future fleets of general engineering assets with 

trendable historical run-to-failure condition monitoring measurements, where previous work 

generally only focuses on one specific asset. The author also provides practical considerations and 

recommendations for applying the proposed general prognostics strategies with the proposed 

deep learning models on future data sets, which is generally omitted in previous work. 

The proposed prognostics strategies and deep learning models were implemented with the open-

source (free) Tensorflow (Google Brain, 2016) and easy to use Keras (Chollet, 2015) application 

programming interfaces (APIs) in Python. The software used in previous work is rarely discussed 

or generally requires complex and expensive proprietary software. 

It is obvious but important to point out that the abovementioned claims on the novelty and 

contribution of this research are all to the best of the author’s knowledge. 

 

1.5 Dissertation Overview 

The chapters of this work have the following layout and logic: The second chapter provides 

background and describes the investigated prognostics data sets. The third chapter describes and 

motivates the proposed prognostics strategies and deep learning models. Chapter four presents 

the results of the proposed prognostics classification strategy and deep learning classification 

models applied on the investigated data sets. Chapter five presents the results of the proposed 

prognostics regression strategy and deep learning regression models applied on the investigated 

data sets. The last chapter discusses the conclusions and recommendations for the prognostics 

strategies, deep learning models and future work. 
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2 Prognostics Data Sets 

 

2.1 Motivation for Simulated Data Sets  

The biggest challenge in the development and benchmarking of data-driven prognostics strategies 

and models is the lack of complete run-to-failure condition monitoring sensor measurements for 

fleets of engineering assets. The reason for this is that the proper procurement of complete run-

to-failure condition monitoring sensor measurements is generally a very expensive and time-

consuming task. Therefore researchers that do procure complete run-to-failure condition 

monitoring sensor measurements understandably often withhold their data sets due to 

proprietary and competitive reasons (Saxena, et al., 2008). The selection of trendable condition 

monitoring sensor measurements that are representative of true asset health can also be a 

challenging, expensive and time-consuming task. 

It can generally be assumed that the degradation trajectory (fault evolution) of mechanical and 

general engineering assets is exponential (Saxena, et al., 2008). The degradation trajectories for 

many physical models like the Arrhenius and Eyring chemical reaction models and the Coffin-

Mason mechanical crack growth model are exponential. The degradation trajectories for many 

other mechanical crack growth models like the Paris-Erdogan, Foreman, Walker and McEvily 

power law models can also be interpreted as semi-exponential (Mishra, et al., 2014). These 

physical models therefore further justify the exponential degradation assumption. The data sets 

investigated in this work therefore all assume exponential degradation and simulate condition 

monitoring measurements for a fleet of engineering assets that are run to failure. 

 

2.2 General Asset Degradation Data Set 

The general asset degradation data set was generated by the author and simulate the exponential 

degradation trajectories and condition monitoring measurements for a fleet of general assets that 

were run to failure. Each individual general asset example had univariate condition monitoring 

sensor measurements at fixed time intervals (arbitrarily measured in cycles) over its lifetime. 

The general asset degradation data set includes 80 training set examples and 20 testing set 

examples. The training set examples represent 80 historical (previously seen) general assets with 

condition monitoring measurements that were run to failure. The testing set examples represent 

20 future (completely unseen) general assets with condition monitoring sensor measurements 

that were run to failure. 
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The objective and challenge for the general asset degradation data set is therefore to propose a 

prognostics strategy and train a model on the condition monitoring measurements of the training 

set examples offline. The prognostics strategy and trained model then have to predict the 

remaining useful life from the condition monitoring measurements of the testing set examples 

fully online. 

The univariate condition monitoring sensor measurement time series 𝑆1(𝑡) was generated by 

adding noise to the health index time series 𝐻𝐼(𝑡) for each individual general asset example. The 

health index time series 𝐻𝐼(𝑡) consist of a healthy segment and a degradation segment, which 

represents the health of the general asset before and after a fault manifests respectively. The 

degradation segment was generated with a degradation trajectory time series 𝐷𝑇(𝑡) and the 

healthy segment was a horizontal line of random length with its value equal to the initial value of 

the degradation trajectory time series. 

The degradation trajectory time series 𝐷𝑇(𝑡) for each individual general asset example was 

generated with a stochastic exponential degradation model as shown in equation (2-1). The 

stochastic exponential degradation model parameters 𝑎, 𝑏 and 𝑐 were randomly sampled from 

normal distributions 𝒩 for each individual general asset example that was run to failure. The 

degradation trajectory time series values were all between one and zero, where zero represented 

general asset failure. 

 𝐷𝑇(𝑡) = 1 − 𝑎𝑒
(
𝑡
𝑏
)
− 𝑐,with 𝑎 = 𝒩(𝜇𝑎 , 𝜎𝑎), 𝑏 = 𝒩(𝜇𝑏 , 𝜎𝑏) and 𝑐 = 𝒩(𝜇𝑐 , 𝜎𝑐) (2-1) 

The stochastic exponential degradation model parameter 𝑎 randomly scales the degradation 

trajectories vertically. The stochastic exponential degradation model parameter 𝑏 randomly 

scales the degradation trajectories horizontally. The stochastic exponential degradation model 

parameter 𝑐 randomly adds an offset to the degradation trajectories. The stochastic degradation 

model parameters were therefore unique for each individual general asset example and made the 

degradation trajectories significantly more realistic and challenging to model. 

The health index time series 𝐻𝐼(𝑡) for each individual general asset example was then generated 

with its degradation trajectory time series 𝐷𝑇(𝑡) as shown in equation (2-2). The random model 

parameter 𝑑 was sampled from a normal distribution for each individual general asset example.  

 𝐻𝐼(𝑡) = {
𝐷𝑇(0)         for 𝑡 < 𝑑,with 𝑑 = 𝒩(𝜇𝑑 , 𝜎𝑑) 

𝐷𝑇(𝑡 − 𝑑) for 𝑡 ≥ 𝑑                                         
 (2-2) 

The healthy segment of the health index time series was generated with the initial value of the 

degradation trajectory time series for 𝑑 time steps. The degradation segment of the health index 

time series was generated with the shifted degradation trajectory time series of 𝑑 time steps. 
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The univariate condition monitoring sensor measurement time series 𝑆1(𝑡) for each individual 

general asset example was then generated as shown in equation (2-3). Noise that was sampled 

from a normal distribution, was added to the health index time series 𝐻𝐼(𝑡) at each time step.  

 𝑆1(𝑡) = 𝐻𝐼(𝑡) +𝒩(𝜇𝑛, 𝜎𝑛)(𝑡) (2-3) 

The definition of failure for each individual general asset example was when its health index time 

series 𝐻𝐼(𝑡) decreased to zero. The fixed time intervals between the condition monitoring sensor 

measurements and the time of failure for the general assets were arbitrarily measured in cycles. 

The S1 condition monitoring measurements for five randomly selected general asset examples in 

general asset degradation data set are shown in Figure 2-1. The presented S1 condition 

monitoring measurements were normalized with min-max scaling between 0 and 1 for the entire 

training and testing set. This was done to effectively present the variation in condition monitoring 

measurements across all the training and testing set examples.  

 

 

Figure 2-1: The S1 condition monitoring measurements for five randomly selected general asset 

examples in general asset degradation data set. 

 

From Figure 2-1 it can be concluded that the S1 condition monitoring measurements is very noisy 

and that there is significant variance in the time of failure and degradation trajectories of the five 

randomly selected general asset examples. There is however definitely an observable trend in the 

S1 condition monitoring measurements of the five randomly selected general asset examples. 
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The mean, standard deviation, minimum and maximum statistics for the time of failure (measured 

in cycles) for the general asset examples in the training and testing set of the general asset 

degradation data set are shown in Table 2-1. 

 

Table 2-1: The mean, standard deviation, minimum and maximum statistics for the time of failure 

(measured in cycles) of the general asset examples in the training and testing set of the general 

asset degradation data set. 

Data Set Mean 
Standard  
Deviation 

Minimum Maximum 

Training Set 2524.75 496.8644 1457 3434 
Testing Set 2361.45 589.8072 1357 3198 

 

From Table 2-1 it can be concluded that that there is significant variance in the time of failure for 

the general asset examples in the training and testing set of the general asset degradation data 

set. Remaining useful life prediction for a predictive maintenance or condition-based maintenance 

strategy would therefore be highly applicable and useful for this data set.  

 

2.3 Turbofan Engine Degradation Data Set 

The turbofan engine degradation data set simulate the exponential degradation trajectories and 

condition monitoring measurements for a fleet of turbofan engines that were run to failure. Each 

individual turbofan engine example had 24 multivariate condition monitoring sensor 

measurements at fixed time intervals (arbitrarily measured in cycles) over its lifetime. The 

turbofan engine degradation data set was based on the training set of the FD003 turbofan engine 

degradation benchmarking data set (Saxena & Goebel, 2008). This was because the testing set of 

the FD003 turbofan engine degradation benchmarking data set was censored and did contain full 

run-to-failure condition monitoring measurements for each individual turbofan engine. The 

turbofan engines in the FD003 turbofan engine degradation benchmarking data set are operated 

at one operating condition and have two fault modes namely high-pressure compressor 

degradation and fan degradation. The training set of the FD003 turbofan degradation 

benchmarking data set includes 100 examples that are split into 80 training set examples and 20 

testing set examples and is referred to as the turbofan engine degradation data set for the rest of 

this work. 

The turbofan engine degradation data set therefore include 80 training set examples and 20 

testing set examples. The training set examples represent 80 historical (previously seen) turbofan 

engines with condition monitoring measurements that were run to failure. The testing set 

examples represent 20 future (completely unseen) turbofan engines with condition monitoring 

sensor measurements that were run to failure. 
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The objective and challenge for the turbofan engine degradation data set is therefore to propose 

a prognostics strategy and train a model on the condition monitoring measurements of the 

training set examples offline. The prognostics strategy and trained model then have to predict the 

remaining useful life from the condition monitoring measurements of the testing set examples 

fully online. 

The turbofan engines that were run to failure each had 24 condition monitoring sensor 

measurements that were measured at fixed time intervals. The condition monitoring 

measurement description for each sensor in the turbofan engine degradation data set is shown in 

Table 2-2 (Saxena, et al., 2008). The condition monitoring measurements were also contaminated 

with sensor noise. 

 

Table 2-2: The condition monitoring measurement description for each sensor in the turbofan 

engine degradation data set.  

Sensor Condition Monitoring Measurement Description 
S1 Altitude 
S2 Mach Number 
S3 Throttle Resolver Angle 
S4 Total Temperature At Fan Inlet 
S5 Total Temperature At Low-Pressure Compressor Outlet 
S6 Total Temperature At High-Pressure Compressor Outlet 
S7 Total Temperature At Low-Pressure Turbine Outlet 
S8 Pressure At Fan Inlet 
S9 Total Pressure In Bypass-Duct 

S10 Total Pressure At High-Pressure Compressor Outlet 
S11 Physical Fan Speed 
S12 Physical Core Speed 
S13 Engine Pressure Ratio 
S14 Static Pressure At High-Pressure Compressor Outlet 
S15 Ratio of Fuel Flow To Static Pressure At High-Pressure Compressor Outlet 
S16 Corrected Fan Speed 
S17 Corrected Core Speed 
S18 Bypass Ratio 
S19 Burner Fuel-Air Ratio 
S20 Bleed Enthalpy 
S21 Demanded Fan Speed 
S22 Demanded Corrected Fan Speed 
S23 High-Pressure Turbine Coolant Bleed 
S24 Low-Pressure Turbine Coolant Bleed 
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The units of the condition monitoring sensor measurements are not important for degradation 

modeling, but are given in (Saxena, et al., 2008). It is however only important that the units of the 

condition monitoring sensor measurements are consistent between the turbofan engine examples 

in the training and testing set. More information on how the multivariate condition monitoring 

measurements and exponential degradation trajectories for the fleet of turbofan engines were 

generated is also given in (Saxena, et al., 2008).  

The health index time series for each individual turbofan engine example was however censored 

and not directly included in its 24 multivariate condition monitoring sensor measurements. The 

definition of failure for each individual turbofan engine example was when its censored health 

index time series decreased to zero. The fixed time intervals between the condition monitoring 

sensor measurements and the time of failure for the turbofan engines were arbitrarily measured 

in cycles. 

The S10 condition monitoring measurements for five randomly selected turbofan engine 

examples with high-pressure compressor degradation in the turbofan engine degradation data 

set are shown in Figure 2-2. The presented S10 condition monitoring measurements were 

normalized with min-max scaling between 0 and 1 for the entire training and testing set. This was 

done to effectively present the variation in condition monitoring measurements across all the 

training and testing set examples.  

 

 

Figure 2-2: The S10 condition monitoring measurements for five randomly selected turbofan 

engine examples with high-pressure compressor degradation in the turbofan engine degradation 

data set. 
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The S10 condition monitoring measurements for five randomly selected turbofan engine 

examples with fan degradation in the turbofan engine degradation data set are shown in Figure 

2-3. 

 

 

Figure 2-3: The S10 condition monitoring measurements for five randomly selected turbofan 

engine examples with fan degradation in the turbofan engine degradation data set. 

 

From Figure 2-2 and Figure 2-3 it can be concluded that the S10 condition monitoring 

measurements are very noisy and that there is significant variance in the time of failure and 

degradation trajectories of the ten randomly selected turbofan engine examples. The S10 

condition monitoring measurements for the turbofan engines with high-pressure compressor 

degradation decreased over time and the S10 condition monitoring measurements for the 

turbofan engines with fan degradation increased over time. There is however definitely an 

observable trend in the S10 condition monitoring measurements of the ten randomly selected 

turbofan engine examples.  

The mean, standard deviation, minimum and maximum statistics for the time of failure (measured 

in cycles) for the turbofan engine examples in the training and testing set of the turbofan engine 

degradation data set are shown in Table 2-3. 
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Table 2-3: The mean, standard deviation, minimum and maximum statistics for the time of failure 

(measured in cycles) of the turbofan engine examples in the training and testing set of the 

turbofan engine degradation data set.  

Data Set Mean 
Standard  
Deviation 

Minimum Maximum 

Training Set 246.2375 84.0318 146 524 
Testing Set 246.0500 93.6901 144 490 

 

From Table 2-3 it can be concluded that that there is significant variance in the time of failure for 

the turbofan engine examples in the training and testing set of the turbofan engine degradation 

data set. Remaining useful life prediction for a predictive maintenance or condition-based 

maintenance strategy would therefore be highly applicable and useful for this data set. 

The biggest differences and challenges between the general asset degradation data set and 

turbofan engine degradation data set are as follows: The general asset degradation data set only 

has univariate condition monitoring sensor measurements, where the turbofan engine 

degradation data set has 24 multivariate condition monitoring sensor measurements that are 

significantly more complex to model. The general asset degradation data set has significantly 

longer and noisy condition monitoring sensor measurement time series than the turbofan engine 

degradation data set that are significantly more complex to model. The general asset degradation 

data set has significant amounts of healthy condition monitoring sensor measurements that has 

to be ignored for remaining useful life modeling and prediction when compared to the turbofan 

engine degradation data set that has less amounts of healthy condition monitoring sensor 

measurements. The turbofan engine degradation data set has two different fault modes when 

compared to the general asset degradation data set that only has one fault mode. 

The motivation for investigating both the general asset degradation data set and turbofan engine 

degradation data set is to demonstrate that the proposed prognostics strategies and deep learning 

models presented in chapter 3 are very general and can therefore be applied to future data sets. 

 

2.4 Turbofan Engine Degradation Benchmarking Data Sets 

The turbofan engine degradation benchmarking data sets (Saxena & Goebel, 2008) simulate the 

exponential degradation trajectories and condition monitoring measurements for a fleet of 

turbofan engines that were run to failure under different combinations of operating conditions 

and fault modes. Each individual turbofan engine example also had 24 multivariate condition 

monitoring sensor measurements at fixed time intervals (arbitrarily measured in cycles) over its 

lifetime (exactly similar to the turbofan engine degradation data set in the previous section). 

The turbofan degradation benchmarking data sets include five data sets namely the FD001, 

FD002, FD003, FD004 and PHM08 turbofan degradation benchmarking data set respectively. 
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The FD001 turbofan degradation benchmarking data set includes 100 training set examples and 

100 censored testing set examples. The turbofan engines in the FD001 turbofan degradation 

benchmarking data set are operated at one operating condition and have one fault mode namely 

high-pressure compressor degradation. 

The FD002 turbofan degradation benchmarking data set includes 260 training set examples and 

259 censored testing set examples. The turbofan engines in the FD002 turbofan degradation 

benchmarking data set are operated at six different operating conditions and have one fault mode 

namely high-pressure compressor degradation. 

The FD003 turbofan degradation benchmarking data set includes 100 training set examples and 

100 censored testing set examples. The turbofan engines in the FD003 turbofan degradation 

benchmarking data set are operated at one operating condition and have two different fault 

modes namely high-pressure compressor degradation and fan degradation. 

The FD004 turbofan degradation benchmarking data set includes 248 training set examples and 

249 censored testing set examples. The turbofan engines in the FD004 turbofan degradation 

benchmarking data set are operated at six different operating condition and have two different 

fault modes namely high-pressure compressor degradation and fan degradation. 

The PHM08 turbofan degradation benchmarking data set includes 218 training set examples and 

218 censored testing set examples. The turbofan engines in the PHM08 turbofan degradation 

benchmarking data set are operated at six different operating condition and have one fault mode 

namely high-pressure compressor degradation. 

The training set examples represent historical (previously seen) turbofan engines that were run 

to failure with condition monitoring measurements. The censored testing set examples represent 

future (completely unseen) turbofan engines that were run to failure, but with condition 

monitoring sensor measurements that were censored for a random number of cycles before 

failure for each individual turbofan engine. With the idea of then predicting the censored number 

of cycles before failure (remaining useful life value) for each individual turbofan engine example 

in the testing set from its available (non-censored) condition monitoring measurements. 

The objective and challenge for each turbofan engine degradation benchmarking data set is 

therefore to propose a prognostics strategy and train a model on the condition monitoring 

measurements of the training set examples. The prognostics strategy and trained model then have 

to predict the remaining useful life value for each individual turbofan engine example in the 

testing set from its available condition monitoring measurements. 
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The benchmarking score 𝑆̅ for each turbofan degradation benchmarking data set is calculated with 

the predicted remaining useful life value for each individual turbofan engine example in the 

testing set as shown in equation (2-4) (Saxena, et al., 2008). 𝑎(𝑖) is the difference between the 

predicted remaining useful life value 𝑟̂(𝑖) and actual remaining useful life value 𝑟(𝑖) for each 

individual turbofan engine example in the testing set. 𝑁 is the number of turbofan engines in the 

testing set. The benchmarking score therefore penalizes incorrect predictions exponentially, with 

late predictions that are penalized more than early predictions. A lower benchmarking score 

therefore indicates more accurately predicted remaining useful life values for the turbofan 

engines in the testing set. 

 
𝑆̅ = ∑{

𝑒
−(
𝑎(𝑖)

13
)
− 1, for 𝑎(𝑖) < 0,with 𝑎(𝑖) = 𝑟̂(𝑖) − 𝑟(𝑖) 

𝑒
(
𝑎(𝑖)

10
)
− 1, for 𝑎(𝑖) ≥ 0,with 𝑎(𝑖) = 𝑟̂(𝑖) − 𝑟(𝑖)   

𝑁

𝑖=1

 (2-4) 

The predicted remaining useful life values for the turbofan engine examples in the testing set of 

the PHM08 turbofan degradation benchmarking data set were uploaded to the NASA Prognostics 

Data Repository (NASA, 2018) website. The benchmarking score was then returned. The NASA 

Prognostics Data Repository website however only allowed for one attempt (submission) per day.  

It is however important to point out that the author benchmarked each data-driven model only 

once on the testing set for each turbofan degradation benchmarking data set, in the spirit of the 

competition and ethics. Multiple submissions would allow each data-driven model to be tuned on 

the testing set and would therefore not be representative of real world conditions. 

The benchmarking root mean squared error 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  for each turbofan degradation benchmarking 

data set is calculated similarly with the predicted remaining useful life value for each individual 

turbofan engine example in the testing set as shown in equation (2-5). The benchmarking root 

mean squared error however only penalized incorrect predictions quadratically. The motivation 

for the benchmarking root mean squared error over the benchmarking score was that it penalized 

remaining useful value predictions that were very inaccurate less severely and was therefore a 

better indication of model performance on the entire testing set fleet on average. A lower 

benchmarking root mean squared error therefore indicated more accurately predicted remaining 

useful life values for the turbofan engines in the testing set on average. 

 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ = √
1

𝑁
∑(𝑟̂𝑖 − 𝑟𝑖)

2

𝑁

𝑖=1

 (2-5) 

The benchmarking score and benchmarking root mean squared error allowed for simple and 

effective prognostics performance comparisons between publications with different prognostics 

strategies and models on the turbofan degradation benchmarking data sets. 
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3 Prognostics Strategies and Deep Learning Models 

 

3.1 Prognostics Strategies 

This section explains the proposed prognostics classification and regression strategies and 

discuss their important practical considerations. 

 

3.1.1 Remaining Useful Life Definition 

The linearly decreasing remaining useful life time series 𝑅𝑈𝐿(𝑡) for each individual training and 

testing set example in each investigated data set is defined and calculated with its time of failure 

𝑇𝑂𝐹 as shown in equation (3-1). 

 𝑅𝑈𝐿(𝑡) = 𝑇𝑂𝐹 − 𝑡 (3-1) 

 

3.1.2 Prognostics Classification Strategy 

The proposed prognostics classification strategy is to structure the remaining useful life modeling 

problem as a sequence-to-sequence classification deep learning problem. The input sequence is 

the univariate or multivariate condition monitoring measurement time series 𝐶𝑀(𝑡) and the 

target sequence is the remaining useful life classification time series 𝑅𝑈𝐿𝐶𝑁(𝑡). The remaining 

useful life classification time series for each individual training and testing set example consists 

of remaining useful life classes with different degradation levels that are based on its linearly 

decreasing remaining useful life time series with an applied threshold. 

The remaining useful life classification time series 𝑅𝑈𝐿𝐶𝑁(𝑡) for each individual training and 

testing set example in each investigated data set is defined and labeled as shown in equation (3-2). 

Different sections of the linearly decreasing remaining useful life time series 𝑅𝑈𝐿(𝑡) defined in 

equation (3-1) are given a number 𝑛 of different class labels 𝐶𝑛 with an applied threshold 𝐴𝑇 and 

different bounds 𝐵𝑛. It is important to point out that the applied threshold and different bounds 

are constant for all the training and testing set examples in each investigated data set. 

 

𝑅𝑈𝐿𝐶𝑁(𝑡) =

{
 
 

 
 
𝐶1, for 𝑅𝑈𝐿(𝑡) > 𝐴𝑇               

𝐶2, for 𝐵1 < 𝑅𝑈𝐿(𝑡) ≤ 𝐴𝑇    

𝐶3, for 𝐵2 < 𝑅𝑈𝐿(𝑡) ≤ 𝐵1     

𝐶4, for 𝐵𝑛−2 < 𝑅𝑈𝐿(𝑡) ≤ 𝐵2
⋮   

𝐶𝑛, for 𝑅𝑈𝐿(𝑡) ≤ 𝐵𝑛−2               

 (3-2) 
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The sequence-to-sequence classification deep learning model then learns and generalizes the 

mapping between the condition monitoring measurement time series and the remaining useful 

life classification time series for all the training set examples offline. The trained sequence-to-

sequence classification deep learning model is then used to predict the remaining useful life 

classification time series from the condition monitoring measurement time series for all the 

testing set examples fully online. This is similar to the classification strategy proposed by 

(Ramasso & Gouriveau, 2010) and (Ramasso & Gouriveau, 2014). 

 

3.1.3 Prognostics Regression Strategy 

The proposed prognostics regression strategy is to structure the remaining useful life modeling 

problem as a sequence-to-sequence regression deep learning problem. The input sequence is the 

univariate or multivariate condition monitoring measurement time series 𝐶𝑀(𝑡) and the target 

sequence is the remaining useful life regression time series 𝑅𝑈𝐿𝑅𝑁(𝑡). The remaining useful life 

regression time series for each individual training and testing set example consists of remaining 

useful life values that are based on its linearly decreasing remaining useful life time series with an 

applied threshold. 

The remaining useful life regression time series 𝑅𝑈𝐿𝑅𝑁(𝑡) for each individual training and testing 

set example in each investigated data set is defined and labeled as shown in equation (3-3). The 

linearly decreasing remaining useful life time series 𝑅𝑈𝐿(𝑡) defined in equation (3-1) is given an 

applied threshold 𝐴𝑇. It is important to point out that the applied threshold is constant for all the 

training and testing set examples in each investigated data set. 

 𝑅𝑈𝐿𝑅𝑁(𝑡) = {
𝑅𝑈𝐿(𝑡), for 𝑅𝑈𝐿(𝑡) ≤ 𝐴𝑇
𝐴𝑇, for 𝑅𝑈𝐿(𝑡) > 𝐴𝑇        

 (3-3) 

The sequence-to-sequence regression deep learning model then learns and generalizes the 

mapping between the condition monitoring measurement time series and the remaining useful 

life regression time series for all the training set examples offline. The trained sequence-to-

sequence regression deep learning model is then used to predict the remaining useful life 

regression time series from the condition monitoring measurement time series for all the testing 

set examples fully online. This is similar to the regression strategy proposed by (Heimes, 2008), 

(Lim, et al., 2014), (Rigamonti, et al., 2016) and (Zheng, et al., 2017). 
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3.1.4 Motivation for Applied Threshold  

The condition monitoring measurement time series for the training and testing set examples in 

the investigated data sets include healthy and light degradation condition monitoring 

measurements that generally have very little to no trend as shown in Figure 2-1, Figure 2-2 and 

Figure 2-3. It is therefore understandably very difficult for the sequence-to-sequence 

classification and regression deep learning models to learn and generalize the mapping between 

the healthy and light degradation condition monitoring measurement time series and the linearly 

decreasing remaining useful life time series with no applied threshold. The applied threshold 

therefore gave the healthy and light degradation condition monitoring measurements the same 

remaining useful life class or value target label. This implied that the healthy and light degradation 

condition monitoring measurements were ignored for remaining useful life class and value 

modeling. This made it significantly simpler and less confusing for the sequence-to-sequence 

classification and regression deep learning models to learn and generalize the mapping between 

the condition monitoring measurement time series and the remaining useful life classification and 

regression time series. The applied threshold also resulted in sequence-to-sequence classification 

and regression deep learning models that are more conservative, fully online, easier to train, 

generalize better and made more accurate predictions below the applied threshold, compared to 

when no threshold is applied. The value of the applied threshold is a hyperparameter for the 

prognostics classification and regression strategies that has to be tuned for each investigated data 

set. The strategy to determine the applied threshold value is proposed and explained in section 

3.6.9. 

 

3.1.5 Importance of the Definition of Failure  

The objective of the sequence-to-sequence classification and regression deep learning models is 

to learn and generalize the mapping between the condition monitoring measurement time series 

and the remaining useful life classification and regression time series for the training and testing 

set examples in each investigated data set. The condition monitoring measurement time series 

contains underlying asset health index information and the remaining useful life classification and 

regression time series are based on the time of failure. It is therefore critical that the definition of 

failure is consistent with respect to the condition monitoring measurement time series and the 

underlying asset health index information between the training and testing set examples for each 

data set. The definition of failure was however consistent between training and testing set 

examples for each data set as discussed in chapter 2, but is important to point out when applying 

the prognostics regression and classification strategies on future data sets. 
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3.1.6 Comparison of Strategies  

The prognostics regression strategy has the advantage that it can be more useful to know the exact 

predicted remaining useful life value for maintenance planning and scheduling, than the predicted 

remaining useful life class. The prognostics classification strategy however has the advantage that 

it can be more convenient to interpret the predicted remaining useful life class as a degradation 

severity level for online maintenance decision-making, than the predicted remaining useful life 

value. The prognostics classification strategy also has the advantage that it can be used for fault 

mode classification for maintenance decision-making and is a significantly simpler problem to 

model than the prognostics regression strategy. The prognostics regression and classification 

strategies therefore both have their merits and limitations depending on the predictive 

maintenance requirements. 

 

3.2 Deep Learning Models 

This section provides an overview of the proposed sequence-to-sequence deep learning model 

architectures that are investigated and compared for the prognostics classification and regression 

strategies. The provided deep learning mathematical background and rationale for the rest of this 

chapter is mainly based on the work of (Goodfellow, et al., 2016). The author also provides general 

deep learning modeling advice, conclusions and recommendations that are not always validated 

and motivated with results, as the focus of this work was on prognostics and not deep learning. 

 

3.2.1 Background 

The deep learning model architectures that are investigated and compared for the prognostics 

classification and regression strategies consist of multiple stacked layers with trainable 

parameters and nonlinear activation functions. This makes it possible for deep learning model 

architectures to learn and generalize the complex nonlinear mapping between the condition 

monitoring measurement time series and the remaining useful life classification and regression 

time series for the training and testing set examples in each data set. The model layers that are 

applied in the proposed model architectures include an input layer, fully-connected hidden layer, 

simple recurrent hidden layer, LSTM hidden layer, GRU hidden layer, regression output layer and 

classification output layer. The mathematical background and rationale for these model layers are 

provided in section 3.4. The activation functions that are applied in the layers of the proposed 

model architectures include the hyperbolic tangent activation function, sigmoid activation 

function, linear activation function and softmax activation function. The mathematical 

background and rationale for these model activation functions are provided in section 3.3.  
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3.2.2 Classification Model Architectures 

The proposed classification model architectures that are investigated and compared for the 

prognostics classification strategy include a feedforward neural network (FNN), simple recurrent 

neural network (S-RNN), long short-term memory recurrent neural network (LSTM-RNN) and 

gated recurrent unit recurrent neural network (GRU-RNN). The mathematical background for the 

classification model architectures is provided in section 3.5. 

The FNN classification model architecture consists of an input layer, three fully-connected hidden 

layers and classification output layer from input to output.  

The S-RNN classification model architecture consists of an input layer, fully-connected hidden 

layer, simple recurrent hidden layer, fully-connected hidden layer and classification output layer 

from input to output.  

The LSTM-RNN classification model architecture consists of an input layer, fully-connected 

hidden layer, LSTM hidden layer, fully-connected hidden layer and classification output layer from 

input to output.  

The GRU-RNN classification model architecture consists of an input layer, fully-connected hidden 

layer, GRU hidden layer, fully-connected hidden layer and classification output layer from input 

to output.  

 

3.2.3 Regression Model Architectures 

The proposed regression model architectures that are investigated and compared for the 

prognostics regression strategy also include a feedforward neural network (FNN), simple 

recurrent neural network (S-RNN), long short-term memory recurrent neural network (LSTM-

RNN) and gated recurrent unit recurrent neural network (GRU-RNN). The mathematical 

background for the regression model architectures is also provided in section 3.5. 

The FNN, S-RNN, LSTM-RNN and GRU-RNN regression model architectures were exactly the same 

as the classification model architectures, except that the last classification output layer was a 

regression output layer for the regression model architectures. 

 

3.2.4 Model Input and Target Vectors 

The classification and regression deep learning models all have input vectors and associated 

target vectors for each time step. It is therefore important to clarify how the input condition 

monitoring measurement time series 𝐶𝑀(𝑡), target remaining useful life classification time series 

𝑅𝑈𝐿𝐶𝑁(𝑡) and target remaining useful life regression time series 𝑅𝑈𝐿𝑅𝑁(𝑡) were encoded as input 

vectors and associated target vectors for each time step.  
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The input condition monitoring measurement time series 𝐶𝑀(𝑡) for each individual training and 

testing set example is encoded as a sequence of condition monitoring measurement input vectors 

(𝐶𝑀𝑖
(𝑡)
, 𝐶𝑀𝑖

(𝑡+1)
, 𝐶𝑀𝑖

(𝑡+2)
, … , 𝐶𝑀𝑖

(𝑡+𝑀−1)
). The condition monitoring measurement input vector 

for the current time step 𝐶𝑀𝑖
(𝑡)
∈ ℝ𝐷×1 includes all the condition monitoring sensor 

measurements for the current time step. 𝑀 is the variable number of time steps for each individual 

training and testing set example in each data set and 𝐷 is the total number of condition monitoring 

sensor measurements.  

The target remaining useful life classification time series 𝑅𝑈𝐿𝐶𝑁(𝑡) for each individual training 

and testing set example is encoded as a sequence of remaining useful life class target vectors 

(𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡)

, 𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡+1)

, 𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡+2)

, … , 𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡+𝑀−1)

). The remaining useful life class target vector for the 

current time step 𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡)

∈ ℝ𝐶×1 is the categorically encoded class vector for the current time 

step. 𝐶 is the number of possible target classes. Examples of categorically encoded class vectors 

for a hypothetical data set with four possible target classes are shown below: 

𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡)

= [

1
0
0
0

] , for 𝐶1       𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡)

= [

0
1
0
0

] , for 𝐶2       𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡)

= [

0
0
1
0

] , for 𝐶3       𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡)

= [

0
0
0
1

] , for 𝐶4 

The target remaining useful life regression time series 𝑅𝑈𝐿𝑅𝑁(𝑡) for each individual training and 

testing set example is encoded as a sequence of remaining useful life value target vectors 

(𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡)

, 𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡+1)

, 𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡+2)

, … , 𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡+𝑀−1)

). The remaining useful life value target vector for the 

current time step 𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡)

∈ ℝ1×1 is the remaining useful life value for the current time step.  

 

3.3 Model Activation Functions 

This section describes the activation functions that are applied in the hidden and output layers of 

the proposed model architectures. The activation functions include the hyperbolic tangent 

activation function, sigmoid activation function, linear activation function and softmax activation 

function. 

 

3.3.1 Hyperbolic Tangent Activation Function 

The hyperbolic tangent activation function (Bishop, 2006) is used to introduce nonlinearity to the 

fully-connected, simple recurrent, LSTM and GRU hidden layers. The hyperbolic tangent 

activation function 𝑇 is calculated element-wise for any vector 𝑧𝑖  as shown in equation (3-4) and 

scales the vector elements between -1 and 1. 

 𝑇(𝑧𝑖) =
𝑒𝑧𝑖 − 𝑒−𝑧𝑖

𝑒𝑧𝑖 + 𝑒−𝑧𝑖
 (3-4) 
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3.3.2 Sigmoid Activation Function 

The sigmoid activation function (Bishop, 2006) is used for gating operations in the LSTM and GRU 

hidden layers. The sigmoid activation function 𝑆 is calculated element-wise for any vector 𝑧𝑖  as 

shown in equation (3-5) and scales the vector elements between 0 and 1. 

 𝑆(𝑧𝑖) =
1

1 + 𝑒−𝑧𝑖
 (3-5) 

 

3.3.3 Softmax Activation Function 

The softmax activation function (Bishop, 2006) is used in the classification output layer of the 

classification model architectures. The softmax activation function 𝐸 is calculated element-wise 

for any vector 𝑧𝑖  as shown in equation (3-6). The softmax activation function applies an 

exponential operation to the vector elements and scales all vector elements such that their sum 

adds up to one. The length of the arbitrary vector 𝑧𝑖  is equal to the number of target classes 𝐶 for 

the classification strategy. 

 𝐸(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐶
𝑗=1

 (3-6) 

 

3.3.4 Linear Activation Function 

The linear activation function 𝐿 is used in the regression output layer of the regression model 

architectures. The linear activation function 𝐿 is calculated element-wise for any vector 𝑧𝑖  as 

shown in equation (3-7) and applies a linear operation to the vector elements. 

 𝐿(𝑧𝑖) = 𝑧𝑖  (3-7) 

 

3.4 Model Layers 

This section describes the model layers that are applied in the model architectures presented in 

section 3.5. The applied layers include an input layer, fully-connected hidden layer, simple 

recurrent hidden layer, LSTM hidden layer, GRU hidden layer, regression output layer and 

classification output layer. The superscript [𝑛] in this section is used to distinguish between 

different stacked layers and their respective trainable parameters for the proposed model 

architectures presented in section 3.5.  
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3.4.1 Input Layer 

The input layer is the first layer in all the model architectures. The output vector of the input layer 

does not have any trainable parameters, but its length is determined by the dimension of condition 

monitoring measurement input vector 𝐷.  

The input vector of the input layer is the condition monitoring measurement input vector for the 

current time step 𝐶𝑀𝑖
(𝑡)
∈ ℝ𝐷×1. The output vector of the input layer for the current time step 

ℎ𝑖
(𝑡),[𝑛]

∈ ℝ𝐷×1 is calculated as shown in equation (3-8).  

 ℎ𝑖
(𝑡),[𝑛]

= 𝐶𝑀𝑖
(𝑡)

 (3-8) 

 

3.4.2 Fully-Connected Hidden Layer 

The fully-connected hidden layer (Bishop, 2006) is used in all the classification and regression 

model architectures. The fully-connected hidden layer is very simple and can model general 

nonlinear input to output mappings, but cannot model sequence information from previous time 

steps. The size of the trainable parameters for the fully-connected hidden layer is determined by 

the length of the output vector from the previous layer 𝐼 and the number of selected hidden units 

𝐻 for the layer. 

The input vector of the fully-connected hidden layer is the output vector from the previous layer 

for the current time step ℎ𝑗
(𝑡),[𝑛−1]

∈ ℝ𝐼×1. The output vector of the fully-connected hidden layer 

for the current time step ℎ𝑖
(𝑡),[𝑛]

∈ ℝ𝐻×1 is calculated element-wise with the hyperbolic tangent 

activation function 𝑇 as shown in equation (3-9). The trainable parameters for the output vector 

of the fully-connected hidden layer is its weight matrix 𝑊𝑖,𝑗
[𝑛]
∈ ℝ𝐻×𝐼 and bias vector 𝑏𝑖

[𝑛]
∈ ℝ𝐻×1. 

 ℎ𝑖
(𝑡),[𝑛]

= 𝑇(∑𝑊𝑖,𝑗
[𝑛]
ℎ𝑗
(𝑡),[𝑛−1]

𝑗

+ 𝑏𝑖
[𝑛]
) (3-9) 

 

3.4.3 Simple Recurrent Hidden Layer 

The simple recurrent hidden layer (Elman, 1990) is used in the simple recurrent neural network 

classification and regression model architectures. The simple recurrent hidden layer is very 

simple and can model general nonlinear input to output mappings and sequence information from 

previous time steps. The simple recurrent hidden layer does however suffer from the vanishing 

and exploding gradient problem (Hochreiter & Schmidhuber, 1997) during model training, which 

drastically limits its capacity to model long-term sequence information. The size of the trainable 

parameters for the simple recurrent hidden layer is determined by the length of the output vector 

from the previous layer 𝐼 and the number of selected hidden units 𝐻 for the layer.  
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The input vectors of the simple recurrent hidden layer is its output vector from the previous time 

step ℎ𝑗
(𝑡−1),[𝑛]

∈ ℝ𝐻×1 and the output vector from the previous layer for the current time step 

ℎ𝑗
(𝑡),[𝑛−1]

∈ ℝ𝐼×1. The output vector of the simple recurrent hidden layer for the current time step 

ℎ𝑖
(𝑡),[𝑛]

∈ ℝ𝐻×1 is calculated element-wise with the hyperbolic tangent activation function 𝑇 as 

shown in equation (3-10). The trainable parameters for the output vector of the simple recurrent 

hidden layer is its weight matrix 𝑊𝑖,𝑗
[𝑛]
∈ ℝ𝐻×𝐼 , recurrent weight matrix 𝑅𝑖,𝑗

[𝑛]
∈ ℝ𝐻×𝐻 and bias 

vector 𝑏𝑖
[𝑛]
∈ ℝ𝐻×1. 

 ℎ𝑖
(𝑡),[𝑛]

= 𝑇(∑𝑊𝑖,𝑗
[𝑛]
ℎ𝑗
(𝑡),[𝑛−1]

𝑗

+∑𝑅𝑖,𝑗
[𝑛]
ℎ𝑗
(𝑡−1),[𝑛]

𝑗

+ 𝑏𝑖
[𝑛]
) (3-10) 

 

3.4.4 Long Short-Term Memory (LSTM) Hidden Layer 

The long short-term memory (LSTM) hidden layer (Hochreiter & Schmidhuber, 1997) is used in 

the LSTM-RNN classification and regression model architectures. The LSTM hidden layer can 

model general nonlinear input to output mappings and long-term sequence information from 

previous time steps. The LSTM hidden layer introduced the concept of a cell state with an update 

gate, forget gate, candidate cell state and output gate to manage the vanishing and exploding 

gradient problem (Hochreiter & Schmidhuber, 1997) during model training, which drastically 

increased its capacity to model long-term sequence information. The LSTM hidden layer is 

however significantly more complex than the simple recurrent hidden layer. The size of the 

trainable parameters for the LSTM hidden layer is determined by the length of the output vector 

from the previous layer 𝐼 and the number of selected hidden units 𝐻 for the layer. 

The input vectors of the LSTM hidden layer is its output vector from the previous time step 

ℎ𝑗
(𝑡−1),[𝑛]

∈ ℝ𝐻×1, its cell state vector from the previous time step 𝑐𝑖
(𝑡−1),[𝑛]

∈ ℝ𝐻×1 and the output 

vector from the previous layer for the current time step ℎ𝑗
(𝑡),[𝑛−1]

∈ ℝ𝐼×1. 

The update gate vector of the LSTM hidden layer for the current time step 𝑢𝑖
(𝑡),[𝑛]

∈ ℝ𝐻×1 is 

calculated element-wise with the sigmoid activation function 𝑆 as shown in equation (3-11). The 

trainable parameters for the update gate vector of the LSTM hidden layer is its update gate weight 

matrix 𝑊𝑖,𝑗
𝑢,[𝑛]

∈ ℝ𝐻×𝐼 , update gate recurrent weight matrix 𝑅𝑖,𝑗
𝑢,[𝑛]

∈ ℝ𝐻×𝐻 and update gate bias 

vector 𝑏𝑖
𝑢,[𝑛]

∈ ℝ𝐻×1. 

 𝑢𝑖
(𝑡),[𝑛]

= 𝑆(∑𝑊𝑖,𝑗
𝑢,[𝑛]

ℎ𝑗
(𝑡),[𝑛−1]

𝑗

+∑𝑅𝑖,𝑗
𝑢,[𝑛]

ℎ𝑗
(𝑡−1),[𝑛]

+ 𝑏𝑖
𝑢,[𝑛]

𝑗

) (3-11) 

 

 

 



Chapter 3 Prognostics Strategies and Deep Learning Models CJ Louw 

© University of Pretoria 31 November 2018 

The forget gate vector of the LSTM hidden layer for the current time step 𝑓𝑖
(𝑡),[𝑛]

∈ ℝ𝐻×1 is 

calculated element-wise with the sigmoid activation function 𝑆 as shown in equation (3-12). The 

trainable parameters for the forget gate vector of the LSTM hidden layer is its forget gate weight 

matrix 𝑊𝑖,𝑗
𝑓,[𝑛]

∈ ℝ𝐻×𝐼 , forget gate recurrent weight matrix 𝑅𝑖,𝑗
𝑓,[𝑛]

∈ ℝ𝐻×𝐻  and forget gate bias 

vector 𝑏𝑖
𝑓,[𝑛]

∈ ℝ𝐻×1. 

 𝑓𝑖
(𝑡),[𝑛]

= 𝑆(∑𝑊𝑖,𝑗
𝑓,[𝑛]

ℎ𝑗
(𝑡),[𝑛−1]

𝑗

+∑𝑅𝑖,𝑗
𝑓,[𝑛]

ℎ𝑗
(𝑡−1),[𝑛]

+ 𝑏𝑖
𝑓,[𝑛]

𝑗

) (3-12) 

The candidate cell state vector of the LSTM hidden layer for the current time step 𝑠𝑖
(𝑡),[𝑛]

∈ ℝ𝐻×1 

is calculated element-wise with the hyperbolic tangent activation function 𝑇 as shown in equation 

(3-13). The trainable parameters for the candidate cell state vector of the LSTM hidden layer is its 

candidate cell state weight matrix 𝑊𝑖,𝑗
𝑠,[𝑛]

∈ ℝ𝐻×𝐼 , candidate cell state recurrent weight matrix 

 𝑅𝑖,𝑗
𝑠,[𝑛]

∈ ℝ𝐻×𝐻 and candidate cell state bias vector 𝑏𝑖
𝑠,[𝑛]

∈ ℝ𝐻×1. 

 𝑠𝑖
(𝑡),[𝑛]

= 𝑇(∑𝑊𝑖,𝑗
𝑠,[𝑛]

ℎ𝑗
(𝑡),[𝑛−1]

𝑗

+∑𝑅𝑖,𝑗
𝑠,[𝑛]

ℎ𝑗
(𝑡−1),[𝑛]

+ 𝑏𝑖
𝑠,[𝑛]

𝑗

) (3-13) 

The cell state vector of the LSTM hidden layer for the current time step 𝑐𝑖
(𝑡),[𝑛]

∈ ℝ𝐻×1 is updated 

as shown in equation (3-14). 

 𝑐𝑖
(𝑡),[𝑛]

= 𝑢𝑖
(𝑡),[𝑛]

𝑠𝑖
(𝑡),[𝑛]

+ 𝑓𝑖
(𝑡),[𝑛]

𝑐𝑖
(𝑡−1),[𝑛]

 (3-14) 

The output gate vector of the LSTM hidden layer for the current time step 𝑜𝑖
(𝑡),[𝑛]

∈ ℝ𝐻×1 is 

calculated element-wise with the sigmoid activation function 𝑆 as shown in equation (3-15). The 

trainable parameters for the output gate vector of the LSTM hidden layer is its output gate weight 

matrix 𝑊𝑖,𝑗
𝑜,[𝑛]

∈ ℝ𝐻×𝐼 , output gate recurrent weight matrix 𝑅𝑖,𝑗
𝑜,[𝑛]

∈ ℝ𝐻×𝐻 and output gate bias 

vector 𝑏𝑖
𝑜,[𝑛]

∈ ℝ𝐻×1. 

 𝑜𝑖
(𝑡),[𝑛]

= 𝑆(∑𝑊𝑖,𝑗
𝑜,[𝑛]

ℎ𝑗
(𝑡),[𝑛−1]

𝑗

+∑𝑅𝑖,𝑗
𝑜,[𝑛]

ℎ𝑗
(𝑡−1),[𝑛]

+ 𝑏𝑖
𝑜,[𝑛]

𝑗

) (3-15) 

The output vector of the LSTM hidden layer for the current time step ℎ𝑖
(𝑡),[𝑛]

∈ ℝ𝐻×1 is calculated 

element-wise with the hyperbolic tangent activation function 𝑇 as shown in equation (3-16). 

 ℎ𝑖
(𝑡),[𝑛]

= 𝑜𝑖
(𝑡),[𝑛]

𝑇 (𝑐𝑖
(𝑡),[𝑛]

) (3-16) 
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3.4.5 Gated Recurrent Unit (GRU) Hidden Layer 

The gated recurrent unit (GRU) hidden layer (Cho, et al., 2014) is used in the GRU-RNN 

classification and regression model architectures. The GRU hidden layer can model general 

nonlinear input to output mappings and long-term sequence information from previous time 

steps. The GRU hidden layer also introduced the concept of a cell state with an update gate, reset 

gate and candidate cell state to manage the vanishing and exploding gradient problem (Hochreiter 

& Schmidhuber, 1997) during model training, which drastically increased its capacity to model 

long-term sequence information. The GRU hidden layer is slightly less complex with fewer 

trainable parameters when compared to the LSTM hidden layer, since it does not have an output 

gate. The GRU hidden layer is therefore less prone to overfitting. The GRU hidden layer has also 

been shown to outperform and generalize better on smaller data sets when compared to the LSTM 

hidden layer (Chung, et al., 2014). The size of the trainable parameters for the GRU hidden layer 

is determined by the length of the output vector from the previous layer 𝐼 and the number of 

selected hidden units 𝐻 for the layer. 

The input vectors of the GRU hidden layer is its output vector from the previous time step 

ℎ𝑗
(𝑡−1),[𝑛]

∈ ℝ𝐻×1, its cell state vector from the previous time step 𝑐𝑖
(𝑡−1),[𝑛]

∈ ℝ𝐻×1 and the output 

vector from the previous layer for the current time step ℎ𝑗
(𝑡),[𝑛−1]

∈ ℝ𝐼×1. 

The update gate vector of the GRU hidden layer for the current time step 𝑢𝑖
(𝑡),[𝑛]

∈ ℝ𝐻×1 is 

calculated element-wise with the sigmoid activation function 𝑆 as shown in equation (3-17). The 

trainable parameters for the update gate vector of the GRU hidden layer is its update gate weight 

matrix 𝑊𝑖,𝑗
𝑢,[𝑛]

∈ ℝ𝐻×𝐼 , update gate recurrent weight matrix 𝑅𝑖,𝑗
𝑢,[𝑛]

∈ ℝ𝐻×𝐻 and update gate bias 

vector 𝑏𝑖
𝑢,[𝑛]

∈ ℝ𝐻×1. 

 𝑢𝑖
(𝑡),[𝑛]

= 𝑆(∑𝑊𝑖,𝑗
𝑢,[𝑛]

ℎ𝑗
(𝑡),[𝑛−1]

𝑗

+∑𝑅𝑖,𝑗
𝑢,[𝑛]

ℎ𝑗
(𝑡−1),[𝑛]

+ 𝑏𝑖
𝑢,[𝑛]

𝑗

) (3-17) 

The reset gate vector of the GRU hidden layer for the current time step 𝑓𝑖
(𝑡),[𝑛]

∈ ℝ𝐻×1 is calculated 

element-wise with the sigmoid activation function 𝑆 as shown in equation (3-18). The trainable 

parameters for the reset gate vector of the GRU hidden layer is its reset gate weight matrix 

𝑊𝑖,𝑗
𝑟,[𝑛]

∈ ℝ𝐻×𝐼 , reset gate recurrent weight matrix 𝑅𝑖,𝑗
𝑟,[𝑛]

∈ ℝ𝐻×𝐻  and reset gate bias vector 𝑏𝑖
𝑟,[𝑛]

∈

ℝ𝐻×1. 

 𝑟𝑖
(𝑡),[𝑛]

= 𝑆(∑𝑊𝑖,𝑗
𝑟,[𝑛]

ℎ𝑗
(𝑡),[𝑛−1]

𝑗

+∑𝑅𝑖,𝑗
𝑟,[𝑛]

ℎ𝑗
(𝑡−1),[𝑛]

+ 𝑏𝑖
𝑟,[𝑛]

𝑗

) (3-18) 
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The candidate cell state vector of the GRU hidden layer for the current time step 𝑠𝑖
(𝑡),[𝑛]

∈ ℝ𝐻×1 is 

calculated element-wise with the hyperbolic tangent activation function 𝑇 as shown in equation 

(3-19). The trainable parameters for the candidate cell state vector of the GRU hidden layer is its 

candidate cell state weight matrix 𝑊𝑖,𝑗
𝑠,[𝑛]

∈ ℝ𝐻×𝐼 , candidate cell state recurrent weight matrix 

 𝑅𝑖,𝑗
𝑠,[𝑛]

∈ ℝ𝐻×𝐻 and candidate cell state bias vector 𝑏𝑖
𝑠,[𝑛]

∈ ℝ𝐻×1. 

 𝑠𝑖
(𝑡),[𝑛]

= 𝑇(∑𝑊𝑖,𝑗
𝑠,[𝑛]

ℎ𝑗
(𝑡),[𝑛−1]

𝑗

+∑𝑅𝑖,𝑗
𝑠,[𝑛]

𝑟𝑗
(𝑡),[𝑛]

ℎ𝑗
(𝑡−1),[𝑛]

+ 𝑏𝑖
𝑠,[𝑛]

𝑗

) (3-19) 

The cell state vector of the GRU hidden layer for the current time step 𝑐𝑖
(𝑡),[𝑛]

∈ ℝ𝐻×1 is updated 

as shown in equation (3-20). 

 𝑐𝑖
(𝑡),[𝑛]

= 𝑢𝑖
(𝑡),[𝑛]

𝑠𝑖
(𝑡),[𝑛]

+ (1 − 𝑢𝑖
(𝑡),[𝑛]

) 𝑐𝑖
(𝑡−1),[𝑛]

 (3-20) 

The output vector of the GRU hidden layer for the current time step ℎ𝑖
(𝑡),[𝑛]

∈ ℝ𝐻×1 is calculated 

as shown in equation (3-21). 

 ℎ𝑖
(𝑡),[𝑛]

= 𝑐𝑖
(𝑡),[𝑛]

 (3-21) 

 

3.4.6 Classification Output Layer 

The classification output layer is the last layer in all the classification model architectures. The 

size of the trainable parameters for the classification output layer is determined by the length of 

the output vector from the previous layer 𝐼 and the dimension of the remaining useful life class 

target vector 𝐶. 

The input vector of the classification output layer is the output vector from the previous layer for 

the current time step ℎ𝑗
(𝑡),[𝑛−1]

∈ ℝ𝐼×1. The remaining useful life class target vector for the current 

time step 𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡)

∈ ℝ𝐶×1 is calculated element-wise with the softmax activation function 𝐸 as 

shown in equation (3-22). The trainable parameters for the remaining useful life class target 

vector of the classification output layer is its weight matrix 𝑊𝑖,𝑗
[𝑛]
∈ ℝ𝐶×𝐼 and bias vector 𝑏𝑖

[𝑛]
∈

ℝ𝐶×1. 

 𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡)

= 𝐸 (∑𝑊𝑖,𝑗
[𝑛]
ℎ𝑗
(𝑡),[𝑛−1]

𝑗

+ 𝑏𝑖
[𝑛]
) (3-22) 
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3.4.7 Regression Output Layer 

The regression output layer is the last layer in all the regression model architectures. The size of 

the trainable parameters for the regression output layer is determined by the length of the output 

vector from the previous layer 𝐼 and the dimension of the remaining useful life value target vector, 

which is equal to 1. 

The input vector of the regression output layer is the output vector from the previous layer for 

the current time step ℎ𝑗
(𝑡),[𝑛−1]

∈ ℝ𝐼×1. The remaining useful life value target vector for the current 

time step 𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡)

∈ ℝ1×1 is calculated element-wise with the linear activation function 𝐿 as 

shown in equation (3-23). The trainable parameters for the remaining useful life value target 

vector of the regression output layer is its weight matrix 𝑊𝑖,𝑗
[𝑛]
∈ ℝ1×𝐼 and bias vector 𝑏𝑖

[𝑛]
∈ ℝ1×1. 

 𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡)

= 𝐿(∑𝑊𝑖,𝑗
[𝑛]
ℎ𝑗
(𝑡),[𝑛−1]

𝑗

+ 𝑏𝑖
[𝑛]
) (3-23) 

 

3.5 Model Architectures 

This section describes the proposed classification and regression model architectures from 

section 3.2.2 and section 3.2.3 respectively. It presents how the trained classification model 

architectures calculate the remaining useful life class target vector for the current time step 

𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡)

∈ ℝ𝐶×1 from the condition monitoring measurement input vector for the current time 

step 𝐶𝑀𝑖
(𝑡)
∈ ℝ𝐷×1. This section also presents how the trained regression model architectures 

calculate the remaining useful life value target vector for the current time step 𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡)

∈ ℝ1×1 

from the condition monitoring measurement input vector for the current time step 𝐶𝑀𝑖
(𝑡)
∈ ℝ𝐷×1. 

It is again important to point out that only the last layer is different between the classification and 

regression model architectures. The classification and regression model architectures were 

however trained completely independent from each other with different loss functions on the 

training set of each data set. 

 

3.5.1 Feedforward Neural Network (FNN) Architectures 

The first layer of the FNN regression and classification model architectures is an input layer and 

is calculated as shown in equation (3-24). 

 ℎ𝑖
(𝑡),[1]

= 𝐶𝑀𝑖
(𝑡)

 (3-24) 
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The second layer of the FNN regression and classification model architectures is an fully-

connected hidden layer and is calculated as shown in equation (3-25). 

 

ℎ𝑖
(𝑡),[2]

= 𝑇(∑𝑊𝑖,𝑗
[2]
ℎ𝑗
(𝑡),[1]

𝑗

+ 𝑏𝑖
[2]
) (3-25) 

The third layer of the FNN regression and classification model architectures is another fully-

connected hidden layer and is calculated as shown in equation (3-26). 

 

ℎ𝑖
(𝑡),[3]

= 𝑇(∑𝑊𝑖,𝑗
[3]
ℎ𝑗
(𝑡),[2]

𝑗

+ 𝑏𝑖
[3]
) (3-26) 

The fourth layer of the FNN regression and classification model architectures is another fully-

connected hidden layer and is calculated as shown in equation (3-27). 

 

ℎ𝑖
(𝑡),[4]

= 𝑇(∑𝑊𝑖,𝑗
[4]
ℎ𝑗
(𝑡),[3]

𝑗

+ 𝑏𝑖
[4]
) (3-27) 

The fifth layer of the FNN classification model architecture is an classification output layer and is 

calculated as shown in equation (3-28). 

 

𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡)

= 𝐸 (∑𝑊𝑖,𝑗
[5]
ℎ𝑗
(𝑡),[4]

𝑗

+ 𝑏𝑖
[5]
) (3-28) 

The fifth layer of the FNN regression model architecture is an regression output layer and is 

calculated as shown in equation (3-29). 

 

𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡)

= 𝐿(∑𝑊𝑖,𝑗
[5]
ℎ𝑗
(𝑡),[4]

𝑗

+ 𝑏𝑖
[5]
) (3-29) 

 

3.5.2 Simple Recurrent Neural Network (S-RNN) Architectures 

The first layer of the S-RNN regression and classification model architectures is an input layer and 

is calculated as shown in equation (3-30). 

 ℎ𝑖
(𝑡),[1]

= 𝐶𝑀𝑖
(𝑡)

 (3-30) 

The second layer of the S-RNN regression and classification model architectures is an fully-

connected hidden layer and is calculated as shown in equation (3-31). 

 

ℎ𝑖
(𝑡),[2]

= 𝑇(∑𝑊𝑖,𝑗
[2]
ℎ𝑗
(𝑡),[1]

𝑗

+ 𝑏𝑖
[2]
) (3-31) 
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The third layer of the S-RNN regression and classification model architectures is an simple 

recurrent hidden layer and is calculated as shown in equation (3-32). 

 ℎ𝑖
(𝑡),[3]

= 𝑇(∑𝑊𝑖,𝑗
[3]
ℎ𝑗
(𝑡),[2]

𝑗

+∑𝑅𝑖,𝑗
[3]
ℎ𝑗
(𝑡−1),[3]

𝑗

+ 𝑏𝑖
[3]
) (3-32) 

The fourth layer of the S-RNN regression and classification model architectures is an fully-

connected hidden layer and is calculated as shown in equation (3-33). 

 

ℎ𝑖
(𝑡),[4]

= 𝑇(∑𝑊𝑖,𝑗
[4]
ℎ𝑗
(𝑡),[3]

𝑗

+ 𝑏𝑖
[4]
) (3-33) 

The fifth layer of the S-RNN classification model architecture is an classification output layer and 

is calculated as shown in equation (3-34). 

 

𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡)

= 𝐸 (∑𝑊𝑖,𝑗
[5]
ℎ𝑗
(𝑡),[4]

𝑗

+ 𝑏𝑖
[5]
) (3-34) 

The fifth layer of the S-RNN regression model architecture is an regression output layer and is 

calculated as shown in equation (3-35). 

 

𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡)

= 𝐿(∑𝑊𝑖,𝑗
[5]
ℎ𝑗
(𝑡),[4]

𝑗

+ 𝑏𝑖
[5]
) (3-35) 

 

3.5.3 Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) 

Architectures 

The first layer of LSTM-RNN regression and classification model architectures is an input layer 

and is calculated as shown in equation (3-36). 

 ℎ𝑖
(𝑡),[1]

= 𝐶𝑀𝑖
(𝑡)

 (3-36) 

The second layer of the LSTM-RNN regression and classification model architectures is an fully-

connected hidden layer and is calculated as shown in equation (3-37). 

 

ℎ𝑖
(𝑡),[2]

= 𝑇(∑𝑊𝑖,𝑗
[2]
ℎ𝑗
(𝑡),[1]

𝑗

+ 𝑏𝑖
[2]
) (3-37) 
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The third layer of the LSTM-RNN regression and classification model architectures is an LSTM 

hidden layer and is calculated as shown in equations (3-38)–(3-43). 

 

𝑢𝑖
(𝑡),[3]

= 𝑆(∑𝑊𝑖,𝑗
𝑢,[3]

ℎ𝑗
(𝑡),[2]

𝑗

+∑𝑅𝑖,𝑗
𝑢,[3]

ℎ𝑗
(𝑡−1),[3]

+ 𝑏𝑖
𝑢,[3]

𝑗

) (3-38) 

 

𝑓𝑖
(𝑡),[3]

= 𝑆(∑𝑊𝑖,𝑗
𝑓,[3]

ℎ𝑗
(𝑡),[2]

𝑗

+∑𝑅𝑖,𝑗
𝑓,[3]

ℎ𝑗
(𝑡−1),[3]

+ 𝑏𝑖
𝑓,[3]

𝑗

) (3-39) 

 

𝑠𝑖
(𝑡),[3]

= 𝑇(∑𝑊𝑖,𝑗
𝑠,[3]

ℎ𝑗
(𝑡),[2]

𝑗

+∑𝑅𝑖,𝑗
𝑠,[3]

ℎ𝑗
(𝑡−1),[3]

+ 𝑏𝑖
𝑠,[3]

𝑗

) (3-40) 

 𝑐𝑖
(𝑡),[3]

= 𝑢𝑖
(𝑡),[3]

𝑠𝑖
(𝑡),[3]

+ 𝑓𝑖
(𝑡),[3]

𝑐𝑖
(𝑡−1),[3]

 (3-41) 

 

𝑜𝑖
(𝑡),[3]

= 𝑆(∑𝑊𝑖,𝑗
𝑜,[3]

ℎ𝑗
(𝑡),[2]

𝑗

+∑𝑅𝑖,𝑗
𝑜,[3]

ℎ𝑗
(𝑡−1),[3]

+ 𝑏𝑖
𝑜,[3]

𝑗

) (3-42) 

 ℎ𝑖
(𝑡),[3]

= 𝑜𝑖
(𝑡),[3]

𝑇 (𝑐𝑖
(𝑡),[3]

) (3-43) 

The fourth layer of the LSTM-RNN regression and classification model architectures is an fully-

connected hidden layer and is calculated as shown in equation (3-44). 

 

ℎ𝑖
(𝑡),[4]

= 𝑇(∑𝑊𝑖,𝑗
[4]
ℎ𝑗
(𝑡),[3]

𝑗

+ 𝑏𝑖
[4]
) (3-44) 

The fifth layer of the LSTM-RNN classification model architecture is an classification output layer 

and is calculated as shown in equation (3-45). 

 

𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡)

= 𝐸 (∑𝑊𝑖,𝑗
[5]
ℎ𝑗
(𝑡),[4]

𝑗

+ 𝑏𝑖
[5]
) (3-45) 

The fifth layer of the LSTM-RNN regression model architecture is an regression output layer and 

is calculated as shown in equation (3-46). 

 

𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡)

= 𝐿(∑𝑊𝑖,𝑗
[5]
ℎ𝑗
(𝑡),[4]

𝑗

+ 𝑏𝑖
[5]
) (3-46) 

 

3.5.4 Gated Recurrent Unit Recurrent Neural Network (GRU-RNN) Architectures 

The first layer of the GRU-RNN regression and classification model architectures is an input layer 

and is calculated as shown in equation (3-47). 

 ℎ𝑖
(𝑡),[1]

= 𝐶𝑀𝑖
(𝑡)

 (3-47) 
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The second layer of the GRU-RNN regression and classification model architectures is an fully-

connected hidden layer and is calculated as shown in equation (3-48). 

 

ℎ𝑖
(𝑡),[2]

= 𝑇(∑𝑊𝑖,𝑗
[2]
ℎ𝑗
(𝑡),[1]

𝑗

+ 𝑏𝑖
[2]
) (3-48) 

The third layer of the GRU-RNN regression and classification model architectures is an GRU 

hidden layer and is calculated as shown in equations (3-49)–(3-53). 

 𝑢𝑖
(𝑡),[3]

= 𝑆(∑𝑊𝑖,𝑗
𝑢,[3]

ℎ𝑗
(𝑡),[2]

𝑗

+∑𝑅𝑖,𝑗
𝑢,[3]

ℎ𝑗
(𝑡−1),[3]

+ 𝑏𝑖
𝑢,[3]

𝑗

) (3-49) 

 

𝑟𝑖
(𝑡),[3]

= 𝑆(∑𝑊𝑖,𝑗
𝑟,[3]

ℎ𝑗
(𝑡),[2]

𝑗

+∑𝑅𝑖,𝑗
𝑟,[3]

ℎ𝑗
(𝑡−1),[3]

+ 𝑏𝑖
𝑟,[3]

𝑗

) (3-50) 

 𝑠𝑖
(𝑡),[3]

= 𝑇(∑𝑊𝑖,𝑗
𝑠,[3]

ℎ𝑗
(𝑡),[2]

𝑗

+∑𝑅𝑖,𝑗
𝑠,[3]

𝑟𝑗
(𝑡),[3]

ℎ𝑗
(𝑡−1),[3]

+ 𝑏𝑖
𝑠,[3]

𝑗

) (3-51) 

 𝑐𝑖
(𝑡),[3]

= 𝑢𝑖
(𝑡),[3]

𝑠𝑖
(𝑡),[3]

+ (1 − 𝑢𝑖
(𝑡),[3]

) 𝑐𝑖
(𝑡−1),[3]

 (3-52) 

 ℎ𝑖
(𝑡),[3]

= 𝑐𝑖
(𝑡),[3]

 (3-53) 

The fourth layer of the GRU-RNN regression and classification model architectures is an fully-

connected hidden layer and is calculated as shown in equation (3-54). 

 

ℎ𝑖
(𝑡),[4]

= 𝑇(∑𝑊𝑖,𝑗
[4]
ℎ𝑗
(𝑡),[3]

𝑗

+ 𝑏𝑖
[4]
) (3-54) 

The fifth layer of the GRU-RNN classification model architecture is an classification output layer 

and is calculated as shown in equation (3-55). 

 

𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡)

= 𝐸 (∑𝑊𝑖,𝑗
[5]
ℎ𝑗
(𝑡),[4]

𝑗

+ 𝑏𝑖
[5]
) (3-55) 

The fifth layer of the GRU-RNN regression model architecture is an regression output layer and is 

calculated as shown in equation (3-56). 

 

𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡)

= 𝐿(∑𝑊𝑖,𝑗
[5]
ℎ𝑗
(𝑡),[4]

𝑗

+ 𝑏𝑖
[5]
) (3-56) 
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It was found that adding fully-connected hidden layers before and after the simple recurrent, 

LSTM and GRU hidden layers in the recurrent neural network architectures resulted in a 

significant increase in model training and testing performance, when compared to not adding 

fully-connected hidden layers before and after these layers. It was also found that stacking 

numerous LSTM or GRU hidden layers did not drastically improve the model testing performance 

for the data sets, and in some cases even reduced the model testing performance. 

It is very important to point out that the LSTM-RNN and GRU-RNN architectures were the main 

focus of this work, as only these architectures were able to manage the vanishing and exploding 

gradient problem (Hochreiter & Schmidhuber, 1997) during model training with numerous gating 

operations. This drastically increased the capacity of the LSTM-RNN and GRU-RNN architectures 

to model long-term sequence information from previous time steps. The FNN architectures cannot 

model sequence information and the S-RNN architectures cannot model long-term sequence 

information. The FNN and S-RNN architectures were therefore only investigated to demonstrate 

the importance of modeling long-term sequence information in condition monitoring 

measurements for degradation modeling and effective data-driven prognostics. 

 

3.6 Model Training and Testing 

This section describes how the proposed model architectures were trained and tested on the 

investigated data sets.  

 

3.6.1 Preprocessing  

The training and testing set input feature values (condition monitoring measurements) for each 

data set were preprocessed with min-max normalization between -1 and 1, based on the minimum 

and maximum input feature values in the training set (Goodfellow, et al., 2016). Min-max 

normalization between -1 and 1 was found to significantly improve the model training and testing 

performance when compared to no normalization, standard normalization and min-max 

normalization between 0 and 1. 

 

3.6.2 Model Parameter Initialization Strategies 

The uniform random Glorot initialization strategy (Glorot & Bengio, 2010) is used to initialize the 

weight matrices for all the model architectures. The orthogonal random initialization strategy 

(Saxe, et al., 2014) with a gain of one is used to initialize the recurrent weight matrices for all the 

model architectures. The zeros initialization strategy (Goodfellow, et al., 2016) is used to initialize 

the bias vectors for all the model architectures. These model parameter initialization strategies 

are generally considered as best practice for the proposed model architectures (Chollet, 2015).  
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3.6.3 Training, Validation and Testing Sets 

The investigated data sets each include a training set and testing set. The training set represents 

historical (previously seen) assets with condition monitoring sensor measurements that were run 

to failure and are used to train the classification and regression model architectures. The testing 

set represents future (completely unseen) assets with condition monitoring sensor 

measurements that were run to failure and are used to test the classification and regression model 

architectures. An individual training or testing set example refers to an individual asset. 

The training set for each data set includes training set input examples 𝑋 = {𝑥(1), 𝑥(2), 𝑥(3), … , 𝑥(𝑁)} 

and corresponding training set classification target examples 𝑌𝐶𝑁 = {𝑦𝐶𝑁
(1)
, 𝑦𝐶𝑁
(2)
, 𝑦𝐶𝑁
(3)
, … , 𝑦𝐶𝑁

(𝑁)
} for 

the classification model architectures, and training set regression target examples 𝑌𝑅𝑁 =

{𝑦𝑅𝑁
(1)
, 𝑦𝑅𝑁
(2)
, 𝑦𝑅𝑁
(3)
, … , 𝑦𝑅𝑁

(𝑁)
} for the regression model architectures. 𝑁 is the number of training set 

examples. A training set input example 𝑥(1) consists of a sequence of condition monitoring 

measurement input vectors (𝐶𝑀𝑖
(𝑡)
, 𝐶𝑀𝑖

(𝑡+1)
, 𝐶𝑀𝑖

(𝑡+2)
, … , 𝐶𝑀𝑖

(𝑡+𝑀−1)
). A corresponding training 

set classification target example 𝑦𝐶𝑁
(1)

 consists of a sequence of remaining useful life class target 

vectors (𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡)

, 𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡+1)

, 𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡+2)

, … , 𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡+𝑀−1)

). A corresponding training set regression 

target example 𝑦𝑅𝑁
(1)

 consists of a sequence of remaining useful life value target vectors 

(𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡)

, 𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡+1)

, 𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡+2)

, … , 𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡+𝑀−1)

). 𝑀 is the variable number of time steps for the 

individual training set example. 

Similar to the training set, the testing set for each data set includes testing set input examples 𝑋̂ =

{𝑥(1), 𝑥̂(2), 𝑥̂(3), … , 𝑥̂(𝑁)} and corresponding testing set classification target examples 𝑌̂𝐶𝑁 =

{𝑦̂𝐶𝑁
(1)
, 𝑦̂𝐶𝑁
(2)
, 𝑦̂𝐶𝑁
(3)
, … , 𝑦̂𝐶𝑁

(𝑁)
} for the classification model architectures, and testing set regression 

target examples 𝑌̂𝑅𝑁 = {𝑦̂𝑅𝑁
(1)
, 𝑦̂𝑅𝑁
(2)
, 𝑦̂𝑅𝑁
(3)
, … , 𝑦̂𝑅𝑁

(𝑁)
} for the regression model architectures. 𝑁 is the 

number of testing set examples. A testing set input example 𝑥̂(1) similarly consists of a sequence 

of condition monitoring measurement input vectors (𝐶𝑀𝑖
(𝑡)
, 𝐶𝑀𝑖

(𝑡+1)
, 𝐶𝑀𝑖

(𝑡+2)
, … , 𝐶𝑀𝑖

(𝑡+𝑀−1)
). A 

corresponding testing set classification target example 𝑦̂𝐶𝑁
(1)

 similarly consists of a sequence of 

remaining useful life class target vectors (𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡)

, 𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡+1)

, 𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡+2)

, … , 𝑅𝑈𝐿𝑖,𝐶𝑁
(𝑡+𝑀−1)

). A 

corresponding testing set regression target example 𝑦̂𝑅𝑁
(1)

 similarly consists of a sequence of 

remaining useful life value target vectors (𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡)

, 𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡+1)

, 𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡+2)

, … , 𝑅𝑈𝐿𝑖,𝑅𝑁
(𝑡+𝑀−1)

). 𝑀 is the 

variable number of time steps for the individual testing set example. 

It is very important to point out that the testing set inputs and targets were completely unseen by 

the classification and regression model architectures during model training and were only used 

for model testing. The training set for each data set was however split into a new training and 

validation set with an 80% to 20% ratio. The validation set is then used as a trail testing set in 

order to tune the hyperparameters of the model architectures and prognostics strategies during 

model training, with the hope and assumption that prediction performance on the completely 

unseen testing set will be similar to that of the validation set. This is also known as simple hold-
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out validation (Chollet, 2018). The validation set is also used for the early stopping regularization 

technique (Goodfellow, et al., 2016) that is explained in section 3.6.5. 

 

3.6.4 Model Loss Functions 

The recommended cross-entropy loss function is minimized in order to train the model 

parameters of classification model architectures on the training set of each data set (Bishop, 2006) 

(Goodfellow, et al., 2016). The cross-entropy loss function ℒ𝐶𝐸  is defined as shown in equation 

(3-57) and is minimized in order to train the model parameters 𝜃 of a classification model 

architecture 𝑓 on the training set input examples 𝑋 = {𝑥(1), 𝑥(2), 𝑥(3), … , 𝑥(𝑁)} and the 

corresponding training set classification target examples 𝑌𝐶𝑁 = {𝑦𝐶𝑁
(1)
, 𝑦𝐶𝑁
(2)
, 𝑦𝐶𝑁
(3)
, … , 𝑦𝐶𝑁

(𝑁)
} of a data 

set. 𝑁 is the total number of training set examples, 𝑀 is the variable number of time steps for each 

individual training set example, 𝐶 is number of target classes and 𝑃 is the total number of time 

steps for all the training set examples combined. 

 ℒ𝐶𝐸(𝑓(𝑋, 𝜃), 𝑌𝐶𝑁) = −
1

𝑃
∑∑∑𝑦𝐶𝑁

(𝑖,𝑗,𝑘)
log(𝑓(𝑥, 𝜃)(𝑖,𝑗,𝑘))

𝐶

𝑘=1

𝑀

𝑗=1

𝑁

𝑖=1

 (3-57) 

The recommended mean squared error loss function is minimized in order to train the model 

parameters of regression model architectures on the training set of each data set (Bishop, 2006) 

(Goodfellow, et al., 2016). The mean squared error loss function ℒ𝑀𝑆𝐸  is defined as shown in 

equation (3-58) and is minimized in order to train the model parameters 𝜃 of a regression model 

architecture 𝑓 on the training set input examples 𝑋 = {𝑥(1), 𝑥(2), 𝑥(3), … , 𝑥(𝑁)} and the 

corresponding training set regression target examples 𝑌𝑅𝑁 = {𝑦𝑅𝑁
(1)
, 𝑦𝑅𝑁
(2)
, 𝑦𝑅𝑁
(3)
, … , 𝑦𝑅𝑁

(𝑁)
} of a data 

set. 𝑁 is the total number of training set examples, 𝑀 is the variable number of time steps for each 

individual training set example and 𝑃 is the total number of time steps for all the training set 

examples combined. 

 ℒ𝑀𝑆𝐸(𝑓(𝑋, 𝜃), 𝑌𝑅𝑁) =
1

𝑃
∑∑(𝑦𝑅𝑁

(𝑖,𝑗)
− 𝑓(𝑥, 𝜃)(𝑖,𝑗))

2
𝑀

𝑗=1

𝑁

𝑖=1

 (3-58) 

 

3.6.5 Model Training Algorithms 

The popular, robust, new and effective Adam algorithm (Kingma & Ba, 2015) is used minimize the 

model loss functions and train the model parameters of the model architectures on the training 

set of each data set (Goodfellow, et al., 2016). The Adam (Adaptive Moments) algorithm is an 

adaptive learning rate optimization algorithm similar to the popular AdaGrad (Adaptive Gradient) 

algorithm (Duchi, et al., 2011) and RMSProp (Root Mean Square Propagation) algorithm (Hinton, 

et al., 2012). This means the Adam algorithm automatically adapts the learning rate for each 
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individual model parameter during model training, which drastically improves the model training 

and testing performance when compared with traditional algorithms. The recommended 

hyperparameters for adaptive learning rate optimization algorithms are also generally very 

robust for different data sets and model architectures and do generally not significantly benefit 

from further tuning. This makes them significantly more convenient to implement when 

compared with traditional algorithms that generally require extensive manual hyperparameter 

tuning. 

The Adam algorithm is a Gradient Decent (Cauchy, 1847) based optimization algorithm. This 

means the Adam algorithm only uses gradient information in order to minimize the model loss 

functions and train the model parameters of the model architectures. 

The Adam algorithm is also a mini-batch algorithm that can be used to train the model 

architectures on mini-batches of training set examples instead of the full-batch of training set 

examples, for increased computational efficiency. This is especially important when training the 

model architectures on very large future data sets. The model architectures were however trained 

on the full-batch of training set examples for the investigated data sets that were relatively small 

in a deep learning context. 

The Adam algorithm is shown in equations (3-59)–(3-66) and can be interpreted as a combination 

between the very popular Momentum (Gradient Decent with Momentum) algorithm (Polyak, 

1964) and RMSProp algorithm. The Adam algorithm incorporates the exponentially weighted 

accumulated gradients from previous iterations in order to calculate the biased first moment 

estimate. This is similar to the Momentum algorithm that also uses the exponentially weighted 

accumulated gradients from previous iterations in order to calculate the updates of the model 

parameters.  

The Adam algorithm also incorporates the exponentially weighted accumulated squared 

gradients from previous iterations in order to calculate the biased second moment estimate. This 

is similar to the RMSProp algorithm that also uses the exponentially weighted accumulated 

squared gradients from previous iterations in order to calculate the updates of the model 

parameters. The Adam algorithm however also corrects the biased first and second moment 

estimates to account for their initialization at the origin (zero). The updates of the model 

parameters for the Adam algorithm are also calculated similarly to that of the RMSProp algorithm. 

The Adam algorithm recommends the following constant hyperparameters for model training: 

global learning rate 𝜖 = 0.001, exponential decay rate for the first moment estimate 𝜌1 = 0.9, 

exponential decay rate for the second moment estimate 𝜌2 = 0.999 and numerical stability 

constant 𝛿 = 10−8 (prevents zero division). These recommended constant parameters for model 

training were used to for all the model architectures and data sets. 
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The Adam algorithm requires the following parameters for initialization: initial model parameters 

𝜃(𝑛), initial biased first moment estimate 𝑠(𝑛) = 0, initial biased second moment estimate 𝑟(𝑛) =

0 and initial time step 𝑡(𝑛) = 0. 

The Adam algorithm also requires the following for each training iteration: The model 

architecture 𝑓, model parameters 𝜃, loss function ℒ, full-batch of training set example inputs 𝑋 =

{𝑥(1), 𝑥(2), 𝑥(3), … , 𝑥(𝑁)} and corresponding targets 𝑌 = {𝑦(1), 𝑦(2), 𝑦(3), … , 𝑦(𝑁)}, where 𝑁 is the 

number of training set examples. Alternatively, mini-batches of training set examples for large 

data sets can also be used for each training iteration. 

The Adam algorithm iteratively updates each individual model parameter 𝜃 for each training 

iteration 𝑛 as follows: 

The gradient 𝑔(𝑛) is calculated as shown in equation (3-59). The partial derivative of the loss 

function with respect to the model parameter of the model architecture is derived, evaluated and 

averaged for all the training set examples (including all time steps). 

 𝑔(𝑛) =
1

𝑁
∑

𝜕

𝜕𝜃
(ℒ(𝑓(𝑥(𝑖), 𝜃(𝑛)), 𝑦(𝑖)))

𝑁

𝑖=1

 (3-59) 

The time step 𝑡(𝑛+1) is updated as shown in equation (3-60). 

 𝑡(𝑛+1) = 𝑡(𝑛) + 1 (3-60) 

The biased first moment estimate 𝑠(𝑛+1) is updated as shown in equation (3-61). 

 𝑠(𝑛+1) = 𝜌1𝑠
(𝑛) + (1 − 𝜌1)𝑔

(𝑛) (3-61) 

The bias corrected first moment estimate 𝑠̂(𝑛+1) is calculated as shown in equation (3-62). 

 𝑠̂(𝑛+1) =
𝑠(𝑛+1)

1 − 𝜌1
𝑡(𝑛+1)

 (3-62) 

The biased second moment estimate 𝑟(𝑛+1) is updated as shown in equation (3-63). 

 𝑟(𝑛+1) = 𝜌2𝑟
(𝑛) + (1 − 𝜌2)𝑔

(𝑛)𝑔(𝑛) (3-63) 

The bias corrected second moment estimate 𝑟̂(𝑛+1) is calculated as shown in equation (3-64). 

 𝑟̂(𝑛+1) =
𝑟(𝑛+1)

1 − 𝜌2
𝑡(𝑛+1)

 (3-64) 

The model parameter update ∆𝜃(𝑛) is calculated as shown in equation (3-65). 

 ∆𝜃(𝑛) = −𝜖
𝑠̂(𝑛+1)

√𝑟̂(𝑛+1) + 𝛿
 (3-65) 
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The model parameter 𝜃(𝑛+1) is then finally updated as shown in equation (3-66). 

 𝜃(𝑛+1) = 𝜃(𝑛) + ∆𝜃(𝑛) (3-66) 

The Adam algorithm is then repeated for numerous training iterations until the stopping criterion 

is met. The stopping criterion was set to 10,000 training iterations for all the model architectures 

and data sets, as the deep learning models all converged long before 10,000 training iterations. It 

is important to point out that convergence in this context refers to when the value of the model 

loss function on the training set stops drastically decreasing and the model loss function on the 

validation set starts increasing. 

The gradient calculations that are required in equation (3-59) of the Adam algorithm are very 

involved for the model architectures, especially for the recurrent neural networks that have to be 

unrolled over time (Goodfellow, et al., 2016). The model architectures were therefore trained on 

the data sets with the open-source (free) Tensorflow (Google Brain, 2016) and easy to use Keras 

(Chollet, 2015) application programming interfaces (APIs) in Python that could perform these 

required gradient calculations automatically with automatic differentiation (Baydin, et al., 2018).  

The full-batch of training set and validation examples were post zero padded to be the same length 

of the longest training set or validation set example. This made it possible to parallelize the 

required gradient calculations, which drastically improved the training time of the deep learning 

models. The training time of 10,000 training iterations for the LSTM-RNN and GRU-RNN 

architectures were approximately 32 minutes for the general asset degradation data set and 

approximately 8 minutes for the turbofan engine degradation data set on a desktop PC with an 

Intel i7-6700 CPU, Nvidia GTX 1070 GPU and Samsung 850 EVO SSD. 

The Adam algorithm was also compared with the popular Gradient Decent, Momentum, AdaGrad 

and RMSProp algorithms. The training set mean squared error loss function value for the GRU-

RNN regression model architecture after each model training iteration with the Gradient Decent, 

Momentum, AdaGrad, RMSProp and Adam algorithms on the turbofan engine degradation data 

set are compared Figure 3-1. The validation set mean squared error loss function value for the 

GRU-RNN regression model architecture after each model training iteration with the Gradient 

Decent, Momentum, AdaGrad, RMSProp and Adam algorithms on the turbofan engine degradation 

data set are compared Figure 3-2. The following hyperparameters were used for the different 

model training algorithms: Gradient Decent with a manually tuned global learning rate 𝜖 =

0.0001. Momentum with a manually tuned global learning rate 𝜖 = 0.0001 and momentum 

parameter 𝛼 = 0.9. AdaGrad with a recommended global learning rate 𝜖 = 0.01. RMSProp with a 

recommended global learning rate 𝜖 = 0.001 and decay rate 𝜌 = 0.9. Adam with a recommended 

global learning rate 𝜖 = 0.001, exponential decay rate for the first moment estimate 𝜌1 = 0.9, 

exponential decay rate for the second moment estimate 𝜌2 = 0.999. 



Chapter 3 Prognostics Strategies and Deep Learning Models CJ Louw 

© University of Pretoria 45 November 2018 

 

Figure 3-1: The training set mean squared error loss function value for the GRU-RNN regression 

model architecture after each model training iteration with the Gradient Decent, Momentum, 

AdaGrad, RMSProp and Adam algorithms on the turbofan engine degradation data set. 

 

Figure 3-2: The validation set mean squared error loss function value for the GRU-RNN regression 

model architecture after each model training iteration with the Gradient Decent, Momentum, 

AdaGrad, RMSProp and Adam algorithms on the turbofan engine degradation data set. 
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From Figure 3-1 and Figure 3-2 it can be concluded that the Adam algorithm achieved the lowest  

mean squared error loss function values (best fit) for the GRU-RNN regression model architecture 

on the training set and validation set of the turbofan engine degradation data set. The Adam 

algorithm is also generally more stable, robust and converges in fewer training iterations when 

compared to the Gradient Decent, Momentum, AdaGrad and RMSProp algorithms. The Adam 

algorithm achieved similar results on all the other classification and regression model 

architectures and data sets. The recommended constant hyperparameters for the Adam algorithm 

were also found to be robust for all the data sets and model architectures and did not significantly 

benefit from further tuning. 

 

3.6.6 Model Regularization Techniques 

The biggest challenge for effectively training deep learning models that perform well on the 

completely unseen testing set is overfitting (Bishop, 2006). Overfitting is when a deep learning 

model can very accurately predict previously seen training set targets from the training set inputs, 

but cannot generalize and accurately predict the completely unseen testing set targets from the 

testing set inputs. 

The model architectures were therefore regularized with a combination of the popular early 

stopping, weight decay and dropout regularization techniques in order to reduce overfitting.  

The early stopping regularization technique (Goodfellow, et al., 2016) monitors the value of the 

model loss function on the training set and validation set after each model training iteration. The 

value of the model loss function on the training set will generally decrease with the number of 

model training iterations. The value of the model loss function on the validation set will however 

generally initially decrease and then start to increase with the number of model training 

iterations, as the model starts to overfit on the training set. The early stopping regularization 

technique then uses the setting of the model parameters when the value of the model loss function 

on the validation set was at a minimum, with the hope and assumption that the model loss 

function on the completely unseen testing set would also be at a minimum and would therefore 

result in a model with increased testing and prediction performance. 

The weight decay regularization technique (also known as L2 regularization, ridge regression and 

Tikhonov regularization) (Goodfellow, et al., 2016) adds the squared norm of a model parameter 

‖𝜃‖2 multiplied by a weight decay parameter 𝜆 to the model loss function during model training. 

This constrains and drives the model parameter 𝜃 towards the origin (zero) during model training 

and therefore reduces overfitting on the training set. The weight decay parameter 𝜆 is however 

also a hyperparameter that has to be tuned. The weight decay regularization technique was 

applied to all the model parameters of the model architectures. The weight decay parameter 𝜆 

was however assumed to be the same for all the model parameters of a model architecture and 
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tuned on the validation set. The LSTM-RNN and GRU-RNN architectures were generally more 

prone to overfitting due to their increased sequence modeling capacity and therefore required 

higher weight decay parameters than the FNN and S-RNN architectures. The manually tuned and 

selected weight decay parameters 𝜆 for the data sets, prognostics strategies and model 

architectures is shown in Table 3-1. 

 

Table 3-1: The manually tuned and selected weight decay parameters 𝜆 for the data sets, 

prognostics strategies and model architectures. 

Data Set Strategy Architectures 𝝀 

General Asset Degradation Data 
Set 

Classification 
FNN and S-RNN 0.000001 

LSTM-RNN and GRU-RNN 0.00001 

Regression 
FNN and S-RNN 0.001 

LSTM-RNN and GRU-RNN 0.01 

Turbofan Engine Degradation 
Data Set 

Classification 
FNN and S-RNN 0.0001 

LSTM-RNN and GRU-RNN 0.001 

Regression 
FNN and S-RNN 0.1 

LSTM-RNN and GRU-RNN 1 
Turbofan Engine Degradation 

Benchmarking Data Sets 
Regression 

FNN and S-RNN 0.1 
LSTM-RNN and GRU-RNN 1 

 

The dropout regularization technique (Srivastava, et al., 2014) deactivates a random fraction 𝜏 of 

output vector elements for a hidden layer before a model training iteration and then reactivates 

the same random fraction of output vector elements after the model training iteration. This 

process is then repeated for each model training iteration. The model architecture is therefore 

slightly different during each model training iteration and can therefore be interpreted as a very 

efficient ensemble learning (model-averaging) technique. Traditional ensemble learning 

techniques generally require training numerous models independently on the training set and 

then averaging the predictions of the models on the testing set in order to improve model 

regularization and reduce overfitting. The dropout regularization technique therefore 

approximates these traditional ensemble learning techniques by changing the model architecture 

slightly during each training iteration, but is computationally drastically less expensive, since only 

one model needs to be trained. The dropout fraction 𝜏 for each hidden layer is however also a 

hyperparameter that has to be tuned. The dropout regularization technique was applied to all the 

hidden layers of the model architectures. The dropout fraction was assumed to be the same for all 

the hidden layers of a model architecture. The manually tuned and selected dropout fraction of 

𝜏 = 0.2 was applied to all the hidden layers of the model architectures.  

The combination of these regularization strategies were found to drastically increase the 

prediction performance of all the model architectures on the validation and testing sets of the 

investigated data sets when compared with no regularization. 
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The prediction performance improvement of the early stopping, weight decay and dropout 

regularization techniques (and combinations thereof) over no regularization is demonstrated for 

the GRU-RNN regression model on the training set (including validation set) and testing set of the 

turbofan engine degradation data set. The mean squared error and mean absolute error between 

the target and GRU-RNN regression model predicted remaining useful life values 120 cycles 

before failure with different combinations of regularization techniques for all the training set and 

testing set examples is shown in Table 3-2. 

 

Table 3-2: The mean squared error and mean absolute error between the target and GRU-RNN 

regression model predicted remaining useful life values 120 cycles before failure with different 

combinations of regularization techniques for all the training set and testing set examples. 

Regularization 
Technique 

Training Set 
Mean Squared 

Error 

Testing Set 
Mean Squared 

Error 

Training Set 
Mean Absolute 

Error 

Testing Set 
Mean Absolute 

Error 
No 

Regularization 
3.6392 313.3261 1.0011 12.7686 

Early  
Stopping 

85.0043 143.3062 6.6942 8.7714 

Dropout and 
Early Stopping 

61.0528 110.3704 5.3521 7.3505 

Weight Decay 
and Early 
Stopping 

85.2189 79.0641 6.4801 6.3396 

Dropout, Weight 
Decay and Early 

Stopping 
62.7665 76.2654 5.5248 6.1194 

 

From Table 3-2 it can be concluded that the combination of the early stopping, weight decay and 

dropout regularization techniques drastically improved the prediction performance of the GRU-

RNN regression model on the completely unseen testing set of the turbofan engine degradation 

data set when compared with no regularization. The combination of the early stopping, weight 

decay and dropout regularization techniques achieved similar prediction performance 

improvements for all the other classification and regression model architectures and data sets. 

 

 

 

 

 

 



Chapter 3 Prognostics Strategies and Deep Learning Models CJ Louw 

© University of Pretoria 49 November 2018 

3.6.7 Number of Selected Hidden Units 

The number of selected hidden units 𝐻 for the model parameters of the model architectures also 

had a significant influence on the model prediction performance on the validation and testing set 

of the investigated data sets. This is because the number of selected hidden units determines the 

size and capacity of the model parameters. The model architectures have limited modeling 

capacity when the number of selected hidden units is too low, but are more prone to overfitting 

when the number of selected hidden units is too high. The computational expense of training the 

model architectures also increased significantly as the number of selected hidden units increased. 

The number of selected hidden units was however manually tuned and selected as 𝐻 = 128 units 

for all the hidden layers of the model architectures. 

 

3.6.8 Model Testing 

The prediction performance of the trained classification model architectures were compared by 

calculating and comparing the cross-entropy, accuracy and confusion matrix for the training set 

and testing set of the investigated data sets. 

The cross-entropy 𝐶𝐸 is calculated for a trained classification model architecture 𝑓 with trained 

model parameters 𝜃 on the testing set input examples 𝑋̂ = {𝑥̂(1), 𝑥̂(2), 𝑥̂(3), … , 𝑥̂(𝑁)} and 

corresponding testing set classification target examples 𝑌̂𝐶𝑁 = {𝑦̂𝐶𝑁
(1)
, 𝑦̂𝐶𝑁
(2)
, 𝑦̂𝐶𝑁
(3)
, … , 𝑦̂𝐶𝑁

(𝑁)
} as shown 

in equation (3-67). 𝑁 is the total number of testing set examples, 𝑀 is the variable number of time 

steps for each individual testing set example, 𝐶 is number of target classes and 𝑃 is the total 

number of time steps for all the testing set examples combined. The cross-entropy is calculated 

similarly for the training set input examples 𝑋 = {𝑥(1), 𝑥(2), 𝑥(3), … , 𝑥(𝑁)} and corresponding 

training set classification target examples 𝑌𝐶𝑁 = {𝑦𝐶𝑁
(1)
, 𝑦𝐶𝑁
(2)
, 𝑦𝐶𝑁
(3)
, … , 𝑦𝐶𝑁

(𝑁)
}. 

 𝐶𝐸(𝑓(𝑋̂, 𝜃), 𝑌̂𝐶𝑁) = −
1

𝑃
∑∑∑𝑦̂𝐶𝑁

(𝑖,𝑗,𝑘)
log(𝑓(𝑥̂, 𝜃)(𝑖,𝑗,𝑘))

𝐶

𝑘=1

𝑀

𝑗=1

𝑁

𝑖=1

 (3-67) 

The argmax function is used to convert the softmax predicted categorically encoded class vectors 

to predicted classes in order to calculate the accuracy and present the confusion matrix for the 

training set and testing set of each data set. Examples of the argmax function applied to the 

softmax predicted categorically encoded class vectors for a hypothetical data set with four 

possible target classes are shown below: 

argmax [

0.94
0.02
0.01
0.03

] → 𝐶1           argmax [

0.04
0.88
0.02
0.06

] → 𝐶2           argmax [

0.02
0.01
0.94
0.03

] → 𝐶3           argmax [

0.04
0.02
0.06
0.88

] → 𝐶4 
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The accuracy is calculated for the training and testing set as the ratio between the total number 

of correctly predicted classes and the total number of correctly and incorrectly predicted classes. 

The confusion matrix presents the target classes versus the predicted classes for the number of 

correctly and incorrectly predicted classes (for each time step) in the training or testing set. 

The prediction performance of the trained regression model architectures were compared by 

calculating and comparing the mean squared error and mean absolute error for the training set 

and testing set of the investigated data sets. 

The mean squared error 𝑀𝑆𝐸 is calculated for a trained regression model architecture 𝑓 with 

trained model parameters 𝜃 on the testing set input examples 𝑋̂ = {𝑥̂(1), 𝑥̂(2), 𝑥̂(3), … , 𝑥̂(𝑁)} and 

corresponding testing set regression target examples 𝑌̂𝑅𝑁 = {𝑦̂𝑅𝑁
(1)
, 𝑦̂𝑅𝑁
(2)
, 𝑦̂𝑅𝑁
(3)
, … , 𝑦̂𝑅𝑁

(𝑁)
} as shown in 

equation (3-68). 𝑁 is the total number of testing set examples, 𝑀 is the variable number of time 

steps for each individual testing set example and 𝑃 is the total number of time steps for all the 

testing set examples combined. 

 𝑀𝑆𝐸(𝑓(𝑋̂, 𝜃), 𝑌̂𝑅𝑁) =
1

𝑃
∑∑(𝑦̂𝑅𝑁

(𝑖,𝑗)
− 𝑓(𝑥̂, 𝜃)(𝑖,𝑗))

2
𝑀

𝑗=1

𝑁

𝑖=1

 (3-68) 

The mean absolute error 𝑀𝐴𝐸 is calculated for a trained regression model architecture 𝑓 with 

trained model parameters 𝜃 on the testing set input examples 𝑋̂ = {𝑥̂(1), 𝑥̂(2), 𝑥̂(3), … , 𝑥̂(𝑁)} and 

corresponding testing set regression target examples 𝑌̂𝑅𝑁 = {𝑦̂𝑅𝑁
(1)
, 𝑦̂𝑅𝑁
(2)
, 𝑦̂𝑅𝑁
(3)
, … , 𝑦̂𝑅𝑁

(𝑁)
} as shown in 

equation (3-69).  

 𝑀𝐴𝐸(𝑓(𝑋̂, 𝜃), 𝑌̂𝑅𝑁) =
1

𝑃
∑∑|𝑦̂𝑅𝑁

(𝑖,𝑗)
− 𝑓(𝑥̂, 𝜃)(𝑖,𝑗)|

𝑀

𝑗=1

𝑁

𝑖=1

 (3-69) 

The mean squared error and mean absolute error is calculated similarly for the training set input 

examples 𝑋 = {𝑥(1), 𝑥(2), 𝑥(3), … , 𝑥(𝑁)} and corresponding training set regression target examples 

𝑌𝑅𝑁 = {𝑦𝑅𝑁
(1)
, 𝑦𝑅𝑁
(2)
, 𝑦𝑅𝑁
(3)
, … , 𝑦𝑅𝑁

(𝑁)
}.  

It is obvious but important to point out that a higher accuracy and a lower cross-entropy, mean 

squared error and mean absolute error indicated better model testing and prediction 

performance.  
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3.6.9 Applied Threshold Selection Strategy 

The value of the applied threshold for the prognostics classification and regression strategies is 

also a hyperparameter that has to be tuned for each data set. When the value of the applied 

threshold is too high the classification and regression models are difficult to train and do not 

generalize well between the training and validation set. However, when the value of the applied 

threshold is too low the classification and regression models are easier to train and generalize 

better, but are less useful and can only predict the remaining useful life classes and values close 

to failure. It is therefore important to tune the value of the applied threshold for each data set. The 

value of the applied threshold for each data set is manually tuned by training numerous 

classification and regression models with different applied thresholds. The cross-entropy (for 

classification models) or mean squared error (for regression models) is then recalculated for the 

time steps below the applied threshold for the numerous trained classification and regression 

models on the training and validation set. This is because the prediction performance for the time 

steps below the applied threshold is more important and representative of the model 

performance close to failure. The value of the applied threshold is then manually tuned and 

increased until the cross-entropy or mean squared error for the time steps below the applied 

threshold on the training and validation sets starts increasing drastically. The value of the applied 

threshold is also manually tuned and increased until the difference between the cross-entropy or 

mean squared error for the time steps below the applied threshold on training and validation sets 

starts diverging drastically. The applied threshold therefore improved the generalization ability 

of the classification and regression models between the training and validation sets, and hopefully 

the testing set. 
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4 Prognostics Classification Strategy Results 

 

4.1 General Asset Degradation Data Set 

This section presents the results of the prognostics classification strategy and classification deep 

learning model architectures applied on the general asset degradation data set. 

 

4.1.1 Strategy and Model Description 

The applied threshold for the prognostics classification strategy was tuned and selected as 𝐴𝑇 =

600 cycles for the general asset degradation data set. The selected remaining useful life definition 

and corresponding degradation level for the different classes of the prognostics classification 

strategy applied on the general asset degradation data set is shown in Table 4-1. 

 

Table 4-1: The selected remaining useful life definition and corresponding degradation level for 

the different classes of the prognostics classification strategy applied on the general asset 

degradation data set. 

Class Degradation Level Remaining Useful Life Definition 
C1 Healthy and Light Degradation RUL > 600 Cycles 
C2 Medium Degradation 400 Cycles < RUL ≤ 600 Cycles 
C3 Heavy Degradation 200 Cycles < RUL ≤ 400 Cycles 
C4 Extreme Degradation RUL ≤ 200 Cycles 

 

The FNN, S-RNN, LSTM-RNN and GRU-RNN classification model architectures were trained on the 

training set of the general asset degradation data set with the Adam algorithm and regularized 

with a combination of the early stopping, weight decay and dropout regularization techniques. 

 

4.1.2 Training Set Examples 

The objective of this section is to present and compare how accurately the trained FNN, S-RNN, 

LSTM-RNN and GRU-RNN classification models could predict the remaining useful life classes 

from the condition monitoring measurements for two randomly selected training set examples in 

the general asset degradation data set fully online. The two randomly selected training set 

examples represent two historical (previously seen) general assets that were run to failure. 
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It is important to point out that the trained FNN, S-RNN, LSTM-RNN and GRU-RNN classification 

models only used the condition monitoring measurements for the current time step (and previous 

time steps for the recurrent models) to predict the remaining useful life class for the current time 

step. The classification models therefore predicted the remaining useful life classes from the 

condition monitoring measurements fully online. The presented S1 condition monitoring 

measurements were normalized with min-max scaling between 0 and 1 for the entire training and 

testing set. This was done to effectively present the variation in condition monitoring 

measurements across all the training and testing set examples.  

 

Training Set Example 1 

The S1 condition monitoring measurements versus time for training set example 1 are shown in 

Figure 4-1. The target and FNN, S-RNN, LSTM-RNN and GRU-RNN classification model predicted 

remaining useful life classes versus time for training set example 1 are shown in Figure 4-2, Figure 

4-3, Figure 4-4 and Figure 4-5 respectively. 

 

 

Figure 4-1: The S1 condition monitoring measurements versus time for training set example 1. 
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Figure 4-2: The target and FNN classification model predicted remaining useful life classes versus 

time for training set example 1. 

 

 

Figure 4-3: The target and S-RNN classification model predicted remaining useful life classes 

versus time for training set example 1. 
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Figure 4-4: The target and LSTM-RNN classification model predicted remaining useful life classes 

versus time for training set example 1. 

 

 

Figure 4-5: The target and GRU-RNN classification model predicted remaining useful life classes 

versus time for training set example 1. 
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Training Set Example 2 

The S1 condition monitoring measurements versus time for training set example 2 are shown in 

Figure 4-6. The target and FNN, S-RNN, LSTM-RNN and GRU-RNN classification model predicted 

remaining useful life classes versus time for training set example 2 are shown in Figure 4-7, Figure 

4-8, Figure 4-9 and Figure 4-10 respectively. 

 

 

Figure 4-6: The S1 condition monitoring measurements versus time for training set example 2. 
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Figure 4-7: The target and FNN classification model predicted remaining useful life classes versus 

time for training set example 2. 

 

 

Figure 4-8: The target and S-RNN classification model predicted remaining useful life classes 

versus time for training set example 2. 
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Figure 4-9: The target and LSTM-RNN classification model predicted remaining useful life classes 

versus time for training set example 2. 

 

 

Figure 4-10: The target and GRU-RNN classification model predicted remaining useful life classes 

versus time for training set example 2. 
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4.1.3 Testing Set Examples 

The objective of this section is to present and compare how accurately the trained FNN, S-RNN, 

LSTM-RNN and GRU-RNN classification models could predict the remaining useful life classes 

from the condition monitoring measurements for two randomly selected testing set examples in 

the general asset degradation data set fully online. The two randomly selected testing set 

examples represent two future (completely unseen) general assets that were run to failure. 

 

Testing Set Example 1 

The S1 condition monitoring measurements versus time for testing set example 1 are shown in 

Figure 4-11. The target and FNN, S-RNN, LSTM-RNN and GRU-RNN classification model predicted 

remaining useful life classes versus time for testing set example 1 are shown in Figure 4-12, Figure 

4-13, Figure 4-14 and Figure 4-15 respectively. 

 

 

Figure 4-11: The S1 condition monitoring measurements versus time for testing set example 1. 
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Figure 4-12: The target and FNN classification model predicted remaining useful life classes 

versus time for testing set example 1. 

 

 

Figure 4-13: The target and S-RNN classification model predicted remaining useful life classes 

versus time for testing set example 1. 
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Figure 4-14: The target and LSTM-RNN classification model predicted remaining useful life classes 

versus time for testing set example 1. 

 

 

Figure 4-15: The target and GRU-RNN classification model predicted remaining useful life classes 

versus time for testing set example 1. 
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Testing Set Example 2 

The S1 condition monitoring measurements versus time for testing set example 2 are shown in 

Figure 4-16. The target and FNN, S-RNN, LSTM-RNN and GRU-RNN classification model predicted 

remaining useful life classes versus time for testing set example 2 are shown in Figure 4-17, Figure 

4-18, Figure 4-19 and Figure 4-20 respectively. 

 

 

Figure 4-16: The S1 condition monitoring measurements versus time for testing set example 2. 
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Figure 4-17: The target and FNN classification model predicted remaining useful life classes 

versus time for testing set example 2. 

 

 

Figure 4-18: The target and S-RNN classification model predicted remaining useful life classes 

versus time for testing set example 2. 
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Figure 4-19: The target and LSTM-RNN classification model predicted remaining useful life classes 

versus time for testing set example 2. 

 

 

Figure 4-20: The target and GRU-RNN classification model predicted remaining useful life classes 

versus time for testing set example 2. 
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From Figure 4-1–Figure 4-20 it can be concluded that the prognostics classification strategy and 

trained FNN, S-RNN, LSTM-RNN and GRU-RNN classification models can successfully predict the 

remaining useful life classes from the condition monitoring measurements for the two randomly 

selected training and testing set examples in the general asset degradation data set fully online. 

The LSTM-RNN and GRU-RNN classification models drastically outperformed the FNN and S-RNN 

classification models on the two randomly selected training and testing set examples as expected. 

The GRU-RNN classification model slightly outperformed the LSTM-RNN classification model and 

the S-RNN classification model significantly outperformed the FNN classification model on 

average. The predicted remaining useful life classes of the FNN classification model were also 

drastically more noisy than that of the S-RNN, LSTM-RNN and GRU-RNN classification models. The 

predicted remaining useful life classes of the FNN, S-RNN, LSTM-RNN and GRU-RNN classification 

models were also significantly more accurate close to failure as the trendability of the condition 

monitoring measurements increased. 

 

4.1.4 Model Performance Comparison 

The performance of the FNN, S-RNN, LSTM-RNN and GRU-RNN classification models were 

compared by presenting the confusion matrix between the target and predicted remaining useful 

life classes for all the training set and testing set examples in the general asset degradation data 

set. The confusion matrix between the target and FNN, S-RNN, LSTM-RNN and GRU-RNN 

classification model predicted remaining useful life classes for all the training set examples are 

shown in Table 4-2, Table 4-3, Table 4-4 and Table 4-5 respectively. 

 

Table 4-2: The confusion matrix between the target and FNN classification model predicted 

remaining useful life classes for all the training set examples. 

  Predicted Class 
  C1 C2 C3 C4 

Target 
Class 

C1 152330 0 1730 0 
C2 13190 0 2810 0 
C3 4685 0 10135 1180 
C4 71 0 2023 13906 

 

Table 4-3: The confusion matrix between the target and S-RNN classification model predicted 

remaining useful life classes for all the training set examples. 

  Predicted Class 
  C1 C2 C3 C4 

Target 
Class 

C1 152262 1018 780 0 
C2 12257 1164 2579 0 
C3 3206 999 10955 840 
C4 41 25 2090 13844 
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Table 4-4: The confusion matrix between the target and LSTM-RNN classification model predicted 

remaining useful life classes for all the training set examples. 

  Predicted Class 
  C1 C2 C3 C4 

Target 
Class 

C1 152256 1797 0 7 
C2 3493 10660 1847 0 
C3 184 1599 13574 643 
C4 0 0 560 15440 

 

Table 4-5: The confusion matrix between the target and GRU-RNN classification model predicted 

remaining useful life classes for all the training set examples. 

  Predicted Class 
  C1 C2 C3 C4 

Target 
Class 

C1 151910 2141 9 0 
C2 3427 11713 860 0 
C3 89 2080 13425 406 
C4 0 0 389 15611 

 

The confusion matrix between the target and FNN, S-RNN, LSTM-RNN and GRU-RNN classification 

model predicted remaining useful life classes for all the testing set examples are shown in Table 

4-6, Table 4-7, Table 4-8, Table 4-9 and respectively. 

 

Table 4-6: The confusion matrix between the target and FNN classification model predicted 

remaining useful life classes for all the testing set examples. 

  Predicted Class 
  C1 C2 C3 C4 

Target 
Class 

C1 34895 0 354 0 
C2 3345 0 655 0 
C3 1284 0 2445 271 
C4 11 0 558 3431 

 

Table 4-7: The confusion matrix between the target and S-RNN classification model predicted 

remaining useful life classes for all the testing set examples. 

  Predicted Class 
  C1 C2 C3 C4 

Target 
Class 

C1 35021 161 67 0 
C2 3169 228 603 0 
C3 899 306 2580 215 
C4 0 1 569 3430 
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Table 4-8: The confusion matrix between the target and LSTM-RNN classification model predicted 

remaining useful life classes for all the testing set examples. 

  Predicted Class 
  C1 C2 C3 C4 

Target 
Class 

C1 34623 626 0 0 
C2 1054 2408 538 0 
C3 19 526 3349 106 
C4 0 0 128 3872 

 

Table 4-9: The confusion matrix between the target and GRU-RNN classification model predicted 

remaining useful life classes for all the testing set examples. 

  Predicted Class 
  C1 C2 C3 C4 

Target 
Class 

C1 34621 628 0 0 
C2 970 2693 337 0 
C3 0 396 3509 95 
C4 0 0 48 3952 

 

From Table 4-2–Table 4-9 it can be concluded that the LSTM-RNN and GRU-RNN classification 

models drastically outperformed the FNN and S-RNN classification models on the training set and 

testing set as expected. The GRU-RNN classification model slightly outperformed the LSTM-RNN 

classification model and the S-RNN classification model significantly outperformed the FNN 

classification model. The predicted remaining useful life classes of the FNN, S-RNN, LSTM-RNN 

and GRU-RNN classification models were also significantly more accurate close to failure (with 

less confusion between target and predicted classes) as the trendability of the condition 

monitoring measurements increased.  

The performance of the FNN, S-RNN, LSTM-RNN and GRU-RNN classification models were also 

compared by calculating the cross-entropy and accuracy between the target and predicted 

remaining useful life classes for all the training set and testing set examples in the general asset 

degradation data set. The cross-entropy and accuracy between the target and FNN, S-RNN, LSTM-

RNN and GRU-RNN classification model predicted remaining useful life classes for all the training 

set and testing set examples is shown in Table 4-10. 

 

Table 4-10: The cross-entropy and accuracy between the target and FNN, S-RNN, LSTM-RNN and 

GRU-RNN classification model predicted remaining useful life classes for all the training set and 

testing set examples. 

Classification 
Model 

Training Set 
Cross-Entropy 

Testing Set 
Cross-Entropy 

Training Set 
Accuracy 

Testing Set 
Accuracy 

FNN 0.3769 0.4014 0.8729 0.8629 
S-RNN 0.3322 0.3635 0.8820 0.8732 

LSTM-RNN 0.1307 0.1668 0.9499 0.9366 
GRU-RNN 0.1218 0.1324 0.9535 0.9476 
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The performance of the FNN, S-RNN, LSTM-RNN and GRU-RNN classification models were also 

compared by recalculating the cross-entropy and accuracy between the target and predicted 

remaining useful life classes 600 cycles before failure for all the training set and testing set 

examples in the general asset degradation data set. This is because it excluded the remaining 

useful life classes above the applied target threshold and was therefore more representative of 

the classification model performance close to failure. The cross-entropy and accuracy between 

the target and FNN, S-RNN, LSTM-RNN and GRU-RNN classification model predicted remaining 

useful life classes 600 cycles before failure for all the training set and testing set examples is shown 

in Table 4-11. 

 

Table 4-11: The cross-entropy and accuracy between the target and FNN, S-RNN, LSTM-RNN and 

GRU-RNN classification model predicted remaining useful life classes 600 cycles before failure for 

all the training set and testing set examples. 

Classification 
Model 

Training Set 
Cross-Entropy 

Testing Set 
Cross-Entropy 

Training Set 
Accuracy 

Testing Set 
Accuracy 

FNN 1.1713 1.200 0.4993 0.4880 
S-RNN 1.1649 1.2181 0.5409 0.5198 

LSTM-RNN 0.4450 0.5199 0.8265 0.8024 
GRU-RNN 0.3876 0.3862 0.8489 0.8462 

 

From Table 4-10 and Table 4-11 it can be concluded that the LSTM-RNN and GRU-RNN 

classification models drastically outperformed the FNN and S-RNN classification models on the 

training set and testing set as expected. The GRU-RNN classification model slightly outperformed 

the LSTM-RNN classification model and the S-RNN classification model significantly 

outperformed the FNN classification model. The difference between the training set and testing 

set cross-entropy and accuracy for the FNN, S-RNN, LSTM-RNN and GRU-RNN classification 

models 600 cycles before failure was also relatively small, which indicated good model 

regularization and an appropriately selected threshold for the prognostics classification strategy. 

The GRU-RNN classification model therefore had a very respectable accuracy of 0.8462 for the 

completely unseen testing set in the general asset degradation data set 600 cycles before failure. 
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4.2 Turbofan Engine Degradation Data Set 

This section presents the results of the prognostics classification strategy and classification deep 

learning model architectures applied on the turbofan engine degradation data set. 

 

4.2.1 Strategy and Model Description 

The applied threshold for the prognostics classification strategy was tuned and selected as 𝐴𝑇 =

120 cycles for the turbofan engine degradation data set. The selected remaining useful life 

definition and corresponding degradation level and fault mode for the different classes of the 

prognostics classification strategy applied on the turbofan engine degradation data set is shown 

in Table 4-12. 

 

Table 4-12: The selected remaining useful life definition and corresponding degradation level and 

fault mode for the different classes of the prognostics classification strategy applied on the 

turbofan engine degradation data set. 

Class Degradation Level and Fault Mode Remaining Useful Life Definition 
C1 Light High Pressure Compressor Degradation RUL > 120 Cycles 
C2 Medium High Pressure Compressor Degradation 80 Cycles < RUL ≤ 120 Cycles 
C3 Heavy High Pressure Compressor Degradation 40 Cycles < RUL ≤ 80 Cycles 
C4 Extreme High Pressure Compressor Degradation RUL ≤ 40 Cycles 
C5 Light Fan Degradation RUL > 120 Cycles 
C6 Medium Fan Degradation 80 Cycles < RUL ≤ 120 Cycles 
C7 Heavy Fan Degradation 40 Cycles < RUL ≤ 80 Cycles 
C8 Extreme Fan Degradation RUL ≤ 40 Cycles 

 

The FNN, S-RNN, LSTM-RNN and GRU-RNN classification model architectures were trained on the 

training set of the turbofan engine degradation data set with the Adam algorithm and regularized 

with a combination of the early stopping, weight decay and dropout regularization techniques. 

 

4.2.2 Training Set Examples 

The objective of this section is to present and compare how accurately the trained FNN, S-RNN, 

LSTM-RNN and GRU-RNN classification models could predict the remaining useful life classes 

from the condition monitoring measurements for two randomly selected training set examples in 

the turbofan engine degradation data set fully online. The two randomly selected training set 

examples had different fault modes and represent two historical (previously seen) turbofan 

engines that were run to failure. 
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It is important to point out that the trained FNN, S-RNN, LSTM-RNN and GRU-RNN classification 

models only used the condition monitoring measurements for the current time step (and previous 

time steps for the recurrent models) to predict the remaining useful life class for the current time 

step. The classification models therefore predicted the remaining useful life classes from the 

condition monitoring measurements fully online. The presented S6, S10, S12, S18 and S24 

condition monitoring measurements were normalized with min-max scaling between 0 and 1 for 

the entire training and testing set. This was done to effectively present the variation in condition 

monitoring measurements across all the training and testing set examples. It is important to point 

out that the classification models were however trained and tested on all S1-S24 condition 

monitoring measurements for the turbofan engine degradation data set. 

 

Training Set Example 1 

The S6, S10, S12, S18 and S24 condition monitoring measurements versus time for training set 

example 1 are shown in Figure 4-21. The target and FNN, S-RNN, LSTM-RNN and GRU-RNN 

classification model predicted remaining useful life classes versus time for training set example 1 

are shown in Figure 4-22, Figure 4-23, Figure 4-24 and Figure 4-25 respectively. The fault mode 

for training set example 1 is high-pressure compressor degradation. 

 

 

Figure 4-21: The S6, S10, S12, S18 and S24 condition monitoring measurements versus time for 

training set example 1. 
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Figure 4-22: The target and FNN classification model predicted remaining useful life classes 

versus time for training set example 1. 

 

 

Figure 4-23: The target and S-RNN classification model predicted remaining useful life classes 

versus time for training set example 1. 
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Figure 4-24: The target and LSTM-RNN classification model predicted remaining useful life classes 

versus time for training set example 1. 

 

 

Figure 4-25: The target and GRU-RNN classification model predicted remaining useful life classes 

versus time for training set example 1. 
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Training Set Example 2 

The S6, S10, S12, S18 and S24 condition monitoring measurements versus time for training set 

example 2 are shown in Figure 4-26. The target and FNN, S-RNN, LSTM-RNN and GRU-RNN 

classification model predicted remaining useful life classes versus time for training set example 2 

are shown in Figure 4-27, Figure 4-28, Figure 4-29 and Figure 4-30 respectively. The fault mode 

for training set example 2 is fan degradation. 

 

 

Figure 4-26: The S6, S10, S12, S18 and S24 condition monitoring measurements versus time for 

training set example 2. 
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Figure 4-27: The target and FNN classification model predicted remaining useful life classes 

versus time for training set example 2. 

 

 

Figure 4-28: The target and S-RNN classification model predicted remaining useful life classes 

versus time for training set example 2. 
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Figure 4-29: The target and LSTM-RNN classification model predicted remaining useful life classes 

versus time for training set example 2. 

 

 

Figure 4-30: The target and GRU-RNN classification model predicted remaining useful life classes 

versus time for training set example 2. 
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4.2.3 Testing Set Examples 

The objective of this section is to present and compare how accurately the trained FNN, S-RNN, 

LSTM-RNN and GRU-RNN classification models could predict the remaining useful life classes 

from the condition monitoring measurements for two randomly selected testing set examples in 

the turbofan engine degradation data set fully online. The two randomly selected testing set 

examples had different fault modes and represent two future (completely unseen) turbofan 

engines that were run to failure. 

 

Testing Set Example 1 

The S6, S10, S12, S18 and S24 condition monitoring measurements versus time for testing set 

example 1 are shown in Figure 4-31. The target and FNN, S-RNN, LSTM-RNN and GRU-RNN 

classification model predicted remaining useful life classes versus time for testing set example 1 

are shown in Figure 4-32, Figure 4-33, Figure 4-34 and Figure 4-35 respectively. The fault mode 

for testing set example 1 is high-pressure compressor degradation. 

 

 

Figure 4-31: The S6, S10, S12, S18 and S24 condition monitoring measurements versus time for 

testing set example 1. 
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Figure 4-32: The target and FNN classification model predicted remaining useful life classes 

versus time for testing set example 1. 

 

 

Figure 4-33: The target and S-RNN classification model predicted remaining useful life classes 

versus time for testing set example 1. 
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Figure 4-34: The target and LSTM-RNN classification model predicted remaining useful life classes 

versus time for testing set example 1. 

 

 

Figure 4-35: The target and GRU-RNN classification model predicted remaining useful life classes 

versus time for testing set example 1. 
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Testing Set Example 2 

The S6, S10, S12, S18 and S24 condition monitoring measurements versus time for testing set 

example 1 are shown in Figure 4-36. The target and FNN, S-RNN, LSTM-RNN and GRU-RNN 

classification model predicted remaining useful life classes versus time for testing set example 2 

are shown in Figure 4-37, Figure 4-38, Figure 4-39 and Figure 4-40 respectively. The fault mode 

for testing set example 2 is fan degradation. 

 

 

Figure 4-36: The S6, S10, S12, S18 and S24 condition monitoring measurements versus time for 

testing set example 2. 
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Figure 4-37: The target and FNN classification model predicted remaining useful life classes 

versus time for testing set example 2. 

 

 

Figure 4-38: The target and S-RNN classification model predicted remaining useful life classes 

versus time for testing set example 2. 
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Figure 4-39: The target and LSTM-RNN classification model predicted remaining useful life classes 

versus time for testing set example 2. 

 

 

Figure 4-40: The target and GRU-RNN classification model predicted remaining useful life classes 

versus time for testing set example 2. 
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From Figure 4-21–Figure 4-40 it can be concluded that the prognostics classification strategy and 

trained FNN, S-RNN, LSTM-RNN and GRU-RNN classification models can successfully predict the 

remaining useful life classes from the condition monitoring measurements for the two randomly 

selected training and testing set examples in the turbofan engine degradation data set fully online. 

The LSTM-RNN and GRU-RNN classification models drastically outperformed the FNN and S-RNN 

classification models on the two randomly selected training and testing set examples as expected. 

The GRU-RNN classification model slightly outperformed the LSTM-RNN classification model and 

the S-RNN classification model significantly outperformed the FNN classification model on 

average. The predicted remaining useful life classes of the FNN classification model were also 

drastically more noisy than that of the S-RNN, LSTM-RNN and GRU-RNN classification models. The 

predicted remaining useful life classes of the FNN, S-RNN, LSTM-RNN and GRU-RNN classification 

models were also significantly more accurate close to failure as the trendability of the condition 

monitoring measurements increased. 

 

4.2.4 Model Performance Comparison 

The performance of the FNN, S-RNN, LSTM-RNN and GRU-RNN classification models were 

compared by presenting the confusion matrix between the target and predicted remaining useful 

life classes for all the training set and testing set examples in the turbofan engine degradation data 

set. The confusion matrix between the target and FNN, S-RNN, LSTM-RNN and GRU-RNN 

classification model predicted remaining useful life classes for all the training set examples are 

shown in Table 4-13, Table 4-14, Table 4-15 and Table 4-16 respectively. 

 

Table 4-13: The confusion matrix between the target and FNN classification model predicted 

remaining useful life classes for all the training set examples. 

  Predicted Class 
  C1 C2 C3 C4 C5 C6 C7 C8 

Target 
Class 

C1 3632 234 76 0 30 0 0 0 
C2 1143 353 342 2 0 0 0 0 
C3 365 203 1100 172 0 0 0 0 
C4 10 6 236 1588 0 0 0 0 
C5 26 0 0 0 6057 92 32 0 
C6 0 0 0 0 820 352 188 0 
C7 0 0 0 0 232 264 770 94 
C8 0 0 0 0 0 5 236 1119 
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Table 4-14: The confusion matrix between the target and S-RNN classification model predicted 

remaining useful life classes for all the training set examples. 

  Predicted Class 
  C1 C2 C3 C4 C5 C6 C7 C8 

Target 
Class 

C1 3508 343 116 0 5 0 0 0 
C2 814 665 357 4 0 0 0 0 
C3 63 298 1277 202 0 0 0 0 
C4 0 0 199 1641 0 0 0 0 
C5 14 0 0 0 6102 77 14 0 
C6 0 0 0 0 750 450 160 0 
C7 0 0 0 0 88 307 856 109 
C8 0 0 0 0 0 0 233 1127 

 

Table 4-15: The confusion matrix between the target and LSTM-RNN classification model 

predicted remaining useful life classes for all the training set examples. 

  Predicted Class 
  C1 C2 C3 C4 C5 C6 C7 C8 

Target 
Class 

C1 3698 271 0 0 3 0 0 0 
C2 435 1243 162 0 0 0 0 0 
C3 11 208 1541 80 0 0 0 0 
C4 0 0 125 1715 0 0 0 0 
C5 6 0 0 0 6119 82 0 0 
C6 0 0 0 0 103 1205 52 0 
C7 0 0 0 0 0 94 1266 0 
C8 0 0 0 0 0 0 145 1215 

 

Table 4-16: The confusion matrix between the target and GRU-RNN classification model predicted 

remaining useful life classes for all the training set examples. 

  Predicted Class 
  C1 C2 C3 C4 C5 C6 C7 C8 

Target 
Class 

C1 3629 321 0 0 22 0 0 0 
C2 344 1290 206 0 0 0 0 0 
C3 2 179 1586 73 0 0 0 0 
C4 0 0 118 1722 0 0 0 0 
C5 9 0 0 0 6020 178 0 0 
C6 0 0 0 0 92 1161 107 0 
C7 0 0 0 0 0 75 1267 18 
C8 0 0 0 0 0 0 140 1220 
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The confusion matrix between the target and FNN, S-RNN, LSTM-RNN and GRU-RNN classification 

model predicted remaining useful life classes for all the testing set examples are shown in Table 

4-17, Table 4-18, Table 4-19 and Table 4-20 respectively. 

 

Table 4-17: The confusion matrix between the target and FNN classification model predicted 

remaining useful life classes for all the testing set examples. 

  Predicted Class 
  C1 C2 C3 C4 C5 C6 C7 C8 

Target 
Class 

C1 584 21 13 0 5 0 0 0 
C2 300 40 60 0 0 0 0 0 
C3 83 72 217 28 0 0 0 0 
C4 0 2 73 325 0 0 0 0 
C5 0 0 0 0 1747 120 51 0 
C6 0 0 0 0 159 139 102 0 
C7 0 0 0 0 32 56 257 55 
C8 0 0 0 0 0 2 49 349 

 

Table 4-18: The confusion matrix between the target and S-RNN classification model predicted 

remaining useful life classes for all the testing set examples. 

  Predicted Class 
  C1 C2 C3 C4 C5 C6 C7 C8 

Target 
Class 

C1 547 62 14 0 0 0 0 0 
C2 228 113 59 0 0 0 0 0 
C3 21 76 279 24 0 0 0 0 
C4 0 0 50 350 0 0 0 0 
C5 2 0 0 0 1786 116 14 0 
C6 0 0 0 0 182 123 95 0 
C7 0 0 0 0 16 62 256 66 
C8 0 0 0 0 0 0 38 362 

 

Table 4-19: The confusion matrix between the target and LSTM-RNN classification model 

predicted remaining useful life classes for all the testing set examples. 

  Predicted Class 
  C1 C2 C3 C4 C5 C6 C7 C8 

Target 
Class 

C1 601 22 0 0 0 0 0 0 
C2 238 143 19 0 0 0 0 0 
C3 7 116 259 18 0 0 0 0 
C4 0 0 66 334 0 0 0 0 
C5 4 0 0 0 1858 56 0 0 
C6 0 0 0 0 68 292 40 0 
C7 0 0 0 0 0 47 349 4 
C8 0 0 0 0 0 0 48 352 
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Table 4-20: The confusion matrix between the target and GRU-RNN classification model predicted 

remaining useful life classes for all the testing set examples. 

  Predicted Class 
  C1 C2 C3 C4 C5 C6 C7 C8 

Target 
Class 

C1 602 21 0 0 0 0 0 0 
C2 190 166 44 0 0 0 0 0 
C3 9 69 306 16 0 0 0 0 
C4 0 0 51 349 0 0 0 0 
C5 0 0 0 0 1820 98 0 0 
C6 0 0 0 0 46 335 19 0 
C7 0 0 0 0 0 25 372 3 
C8 0 0 0 0 0 0 42 358 

 

From Table 4-13–Table 4-20 it can be concluded that the LSTM-RNN and GRU-RNN classification 

models drastically outperformed the FNN and S-RNN classification models on the training set and 

testing set as expected. The GRU-RNN classification model slightly outperformed the LSTM-RNN 

classification model and the S-RNN classification model significantly outperformed the FNN 

classification model. The predicted remaining useful life classes of the FNN, S-RNN, LSTM-RNN 

and GRU-RNN classification models were also significantly more accurate close to failure with less 

confusion between target and predicted classes, as the trendability of the condition monitoring 

measurements increased. It is important to point out that the there was very little confusion 

between the two different fault modes (C1–C4 for high pressure compressor degradation and C5–

C8 for fan degradation) for all the classification models.  

The performance of the FNN, S-RNN, LSTM-RNN and GRU-RNN classification models were also 

compared by calculating the cross-entropy and accuracy between the target and predicted 

remaining useful life classes for all the training set and testing set examples in the turbofan engine 

degradation data set. The cross-entropy and accuracy between the target and FNN, S-RNN, LSTM-

RNN and GRU-RNN classification model predicted remaining useful life classes for all the training 

set and testing set examples is shown in Table 4-21. 

 

Table 4-21: The cross-entropy and accuracy between the target and FNN, S-RNN, LSTM-RNN and 

GRU-RNN classification model predicted remaining useful life classes for all the training set and 

testing set examples. 

Classification 
Model 

Training Set 
Cross-Entropy 

Testing Set 
Cross-Entropy 

Training Set 
Accuracy 

Testing Set 
Accuracy 

FNN 0.5651 0.6567 0.7569 0.7403 
S-RNN 0.4937 0.5448 0.7900 0.7723 

LSTM-RNN 0.2341 0.3684 0.9101 0.8476 
GRU-RNN 0.2580 0.3247 0.9047 0.8718 
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The performance of the FNN, S-RNN, LSTM-RNN and GRU-RNN classification models were also 

compared by recalculating the cross-entropy and accuracy between the target and predicted 

remaining useful life classes 120 cycles before failure for all the training set and testing set 

examples in the turbofan engine degradation data set. This is because it excluded the remaining 

useful life classes above the applied target threshold and was therefore more representative of 

the classification model performance close to failure. The cross-entropy and accuracy between 

the target and FNN, S-RNN, LSTM-RNN and GRU-RNN classification model predicted remaining 

useful life classes 120 cycles before failure for all the training set and testing set examples is shown 

in Table 4-22. 

 

Table 4-22: The cross-entropy and accuracy between the target and FNN, S-RNN, LSTM-RNN and 

GRU-RNN classification model predicted remaining useful life classes 120 cycles before failure for 

all the training set and testing set examples. 

Classification 
Model 

Training Set 
Cross-Entropy 

Testing Set 
Cross-Entropy 

Training Set 
Accuracy 

Testing Set 
Accuracy 

FNN 0.8714 0.8944 0.5502 0.5529 
S-RNN 0.7684 0.8190 0.6266 0.6179 

LSTM-RNN 0.3619 0.6154 0.8526 0.7204 
GRU-RNN 0.3682 0.5112 0.8589 0.7858 

 

From Table 4-21 and Table 4-22 it can be concluded that the LSTM-RNN and GRU-RNN 

classification models drastically outperformed the FNN and S-RNN classification models on the 

training set and testing set as expected. The GRU-RNN classification model slightly outperformed 

the LSTM-RNN classification model and the S-RNN classification model significantly 

outperformed the FNN classification model. The difference between the training set and testing 

set cross-entropy and accuracy for the FNN, S-RNN, LSTM-RNN and GRU-RNN classification 

models 120 cycles before failure was also relatively small, which indicated good model 

regularization and an appropriately selected threshold for the prognostics classification strategy. 

The GRU-RNN classification model therefore had a very respectable accuracy of 0.7858 for the 

completely unseen testing set in the turbofan engine degradation data set 120 cycles before 

failure. 
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5 Prognostics Regression Strategy Results 

 

5.1 General Asset Degradation Data Set Results 

This section presents the results of the prognostics regression strategy and regression deep 

learning model architectures applied on the general asset degradation data set. 

 

5.1.1 Strategy and Model Description 

The applied threshold for the prognostics regression strategy was tuned and selected as 𝐴𝑇 =

600 cycles for the general asset degradation data set. The FNN, S-RNN, LSTM-RNN and GRU-RNN 

regression model architectures were trained on the training set of the general asset degradation 

data set with the Adam algorithm and regularized with a combination of the early stopping, weight 

decay and dropout regularization techniques.  

 

5.1.2 Training Set Examples 

The objective of this section is to present and compare how accurately the trained FNN, S-RNN, 

LSTM-RNN and GRU-RNN regression models could predict the remaining useful life values from 

the condition monitoring measurements for two randomly selected training set examples in the 

general asset degradation data set fully online. The two randomly selected training set examples 

represent two historical (previously seen) general assets that were run to failure. 

It is important to point out that the trained FNN, S-RNN, LSTM-RNN and GRU-RNN regression 

models only used the condition monitoring measurements for the current time step (and previous 

time steps for the recurrent models) to predict the remaining useful life value for the current time 

step. The regression models therefore predicted the remaining useful life values from the 

condition monitoring measurements fully online. The presented S1 condition monitoring 

measurements were normalized with min-max scaling between 0 and 1 for the entire training and 

testing set. This was done to effectively present the variation in condition monitoring 

measurements across all the training and testing set examples. 
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Training Set Example 1 

The S1 condition monitoring measurements versus time for training set example 1 are shown in 

Figure 5-1. The target and FNN, S-RNN, LSTM-RNN and GRU-RNN regression model predicted 

remaining useful life values versus time for training set example 1 are shown in Figure 5-2, Figure 

5-3, Figure 5-4 and Figure 5-5 respectively. 

 

 

Figure 5-1: The S1 condition monitoring measurements versus time for training set example 1. 
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Figure 5-2: The target and FNN regression model predicted remaining useful life values versus 

time for training set example 1. 

 

 

Figure 5-3: The target and S-RNN regression model predicted remaining useful life values versus 

time for training set example 1. 
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Figure 5-4: The target and LSTM-RNN regression model predicted remaining useful life values 

versus time for training set example 1. 

 

 

Figure 5-5: The target and GRU-RNN regression model predicted remaining useful life values 

versus time for training set example 1. 
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Training Set Example 2 

The S1 condition monitoring measurements versus time for training set example 2 are shown in 

Figure 5-6. The target and FNN, S-RNN, LSTM-RNN and GRU-RNN regression model predicted 

remaining useful life values versus time for training set example 2 are shown in Figure 5-7, Figure 

5-8, Figure 5-9 and Figure 5-10 respectively. 

 

 

Figure 5-6: The S1 condition monitoring measurements versus time for training set example 2. 
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Figure 5-7: The target and FNN regression model predicted remaining useful life values versus 

time for training set example 2. 

 

 

Figure 5-8: The target and S-RNN regression model predicted remaining useful life values versus 

time for training set example 2. 
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Figure 5-9: The target and LSTM-RNN regression model predicted remaining useful life values 

versus time for training set example 2. 

 

 

Figure 5-10: The target and GRU-RNN regression model predicted remaining useful life values 

versus time for training set example 2. 



Chapter 5 Prognostics Regression Strategy Results CJ Louw 

© University of Pretoria 94 November 2018 

5.1.3 Testing Set Examples 

The objective of this section is to present and compare how accurately the trained FNN, S-RNN, 

LSTM-RNN and GRU-RNN regression models could predict the remaining useful life values from 

the condition monitoring measurements for two randomly selected testing set examples in the 

general asset degradation data set fully online. The two randomly selected testing set examples 

represent two future (completely unseen) general assets that were run to failure. 

 

Testing Set Example 1 

The S1 condition monitoring measurements versus time for testing set example 1 are shown in 

Figure 5-11. The target and FNN, S-RNN, LSTM-RNN and GRU-RNN regression model predicted 

remaining useful life values versus time for testing set example 1 are shown in Figure 5-12, Figure 

5-13, Figure 5-14 and Figure 5-15 respectively. 

 

 

Figure 5-11: The S1 condition monitoring measurements versus time for testing set example 1. 
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Figure 5-12: The target and FNN regression model predicted remaining useful life values versus 

time for testing set example 1. 

 

 

Figure 5-13: The target and S-RNN regression model predicted remaining useful life values versus 

time for testing set example 1. 
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Figure 5-14: The target and LSTM-RNN regression model predicted remaining useful life values 

versus time for testing set example 1. 

 

 

Figure 5-15: The target and GRU-RNN regression model predicted remaining useful life values 

versus time for testing set example 1. 
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Testing Set Example 2 

The S1 condition monitoring measurements versus time for testing set example 2 are shown in 

Figure 5-16. The target and FNN, S-RNN, LSTM-RNN and GRU-RNN regression model predicted 

remaining useful life values versus time for testing set example 2 are shown in Figure 5-17, Figure 

5-18, Figure 5-19 and Figure 5-20 respectively. 

 

 

Figure 5-16: The S1 condition monitoring measurements versus time for testing set example 2. 
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Figure 5-17: The target and FNN regression model predicted remaining useful life values versus 

time for testing set example 2. 

 

 

Figure 5-18: The target and S-RNN regression model predicted remaining useful life values versus 

time for testing set example 2. 
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Figure 5-19: The target and LSTM-RNN regression model predicted remaining useful life values 

versus time for testing set example 2. 

 

 

Figure 5-20: The target and GRU-RNN regression model predicted remaining useful life values 

versus time for testing set example 2. 
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From Figure 5-1–Figure 5-20 it can be concluded that the prognostics regression strategy and 

trained FNN, S-RNN, LSTM-RNN and GRU-RNN regression models can successfully predict the 

remaining useful life values from the condition monitoring measurements for the two randomly 

selected training and testing set examples in the general asset degradation data set fully online. 

The LSTM-RNN and GRU-RNN regression models drastically outperformed the FNN and S-RNN 

regression models on the two randomly selected training and testing set examples as expected. 

The GRU-RNN regression model slightly outperformed the LSTM-RNN regression model and the 

S-RNN regression model significantly outperformed the FNN regression model on average. The 

predicted remaining useful life values of the FNN regression model were also drastically more 

noisy than that of the S-RNN, LSTM-RNN and GRU-RNN regression models. The predicted 

remaining useful life values of the FNN, S-RNN, LSTM-RNN and GRU-RNN regression models were 

also significantly more accurate close to failure as the trendability of the condition monitoring 

measurements increased. 

 

5.1.4 Model Performance Comparison 

The performance of the FNN, S-RNN, LSTM-RNN and GRU-RNN regression models were compared 

by calculating the mean squared error and mean absolute error between the target and predicted 

remaining useful life values for all the training set and testing set examples in the general asset 

degradation data set. The mean squared error and mean absolute error between the target and 

FNN, S-RNN, LSTM-RNN and GRU-RNN regression model predicted remaining useful life values 

for all the training set and testing set examples is shown in Table 5-1. 

 

Table 5-1: The mean squared error and mean absolute error between the target and FNN, S-RNN, 

LSTM-RNN and GRU-RNN regression model predicted remaining useful life values, for all the 

training set and testing set examples. 

Regression 
Model 

Training Set 
Mean Squared 

Error 

Testing Set 
Mean Squared 

Error 

Training Set 
Mean Absolute 

Error 

Testing Set 
Mean Absolute 

Error 
FNN 2938.1995 3200.3494 28.4593 30.1844 

S-RNN 2138.7568 2332.6064 22.5138 24.2983 
LSTM-RNN 478.8184 548.7399 9.6622 10.5086 
GRU-RNN 343.2641 425.7216 8.3489 9.7803 
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The performance of the FNN, S-RNN, LSTM-RNN and GRU-RNN regression models were also 

compared by recalculating the mean squared error and mean absolute error between the target 

and predicted remaining useful life values 600 cycles before failure for all the training set and 

testing set examples in the general asset degradation data set. This is because it excluded the 

remaining useful life values above the applied target threshold and was therefore more 

representative of the regression model performance close to failure. The mean squared error and 

mean absolute error between the target and FNN, S-RNN, LSTM-RNN and GRU-RNN regression 

model predicted remaining useful life values 600 cycles before failure for all the training set and 

testing set examples is shown in Table 5-2. 

 

Table 5-2: The mean squared error and mean absolute error between the target and FNN, S-RNN, 

LSTM-RNN and GRU-RNN regression model predicted remaining useful life values 600 cycles 

before failure for all the training set and testing set examples. 

Regression 
Model 

Training Set 
Mean Squared 

Error 

Testing Set 
Mean Squared 

Error 

Training Set 
Mean Absolute 

Error 

Testing Set 
Mean Absolute 

Error 
FNN 9530.8240 10081.4460 69.5024 72.6187 

S-RNN 7524.6170 8073.2160 60.5562 64.4089 
LSTM-RNN 1644.8540 1835.0643 26.7006 28.5671 
GRU-RNN 1214.5525 1497.8778 21.2855 26.1174 

 

From Table 5-1 and Table 5-2 it can be concluded that the LSTM-RNN and GRU-RNN regression 

models drastically outperformed the FNN and S-RNN regression models on the training set and 

testing set as expected. The GRU-RNN regression model slightly outperformed the LSTM-RNN 

regression model and the S-RNN regression model significantly outperformed the FNN regression 

model. The difference between the training set and testing set mean squared error and mean 

absolute error for the FNN, S-RNN, LSTM-RNN and GRU-RNN regression models 600 cycles before 

failure was also relatively small, which indicated good model regularization and an appropriately 

selected threshold for the prognostics regression strategy. The GRU-RNN regression model 

therefore made a very respectable mean absolute error of only 26.1174 cycles for the completely 

unseen testing set in the general asset degradation data set 600 cycles before failure. 
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5.2 Turbofan Engine Degradation Data Set 

This section presents the results of the prognostics regression strategy and regression deep 

learning model architectures applied on the turbofan engine degradation data set. 

 

5.2.1 Strategy and Model Description 

The applied threshold for the prognostics regression strategy was tuned and selected as 𝐴𝑇 =

120 cycles for the turbofan engine degradation data set. The FNN, S-RNN, LSTM-RNN and GRU-

RNN regression model architectures were trained on the training set of the turbofan engine 

degradation data set with the Adam algorithm and regularized with a combination of the early 

stopping, weight decay and dropout regularization techniques.  

 

5.2.2 Training Set Examples 

The objective of this section is to present and compare how accurately the trained FNN, S-RNN, 

LSTM-RNN and GRU-RNN regression models could predict the remaining useful life values from 

the condition monitoring measurements for two randomly selected training set examples in the 

turbofan engine degradation data set fully online. The two randomly selected training set 

examples had different fault modes and represent two historical (previously seen) turbofan 

engines that were run to failure. 

It is important to point out that the trained FNN, S-RNN, LSTM-RNN and GRU-RNN regression 

models only used the condition monitoring measurements for the current time step (and previous 

time steps for the recurrent models) to predict the remaining useful life value for the current time 

step. The regression models therefore predicted the remaining useful life values from the 

condition monitoring measurements fully online. The presented S6, S10, S12, S18 and S24 

condition monitoring measurements were normalized with min-max scaling between 0 and 1 for 

the entire training and testing set. This was done to effectively present the variation in condition 

monitoring measurements across all the training and testing set examples. It is important to point 

out that the regression models were however trained and tested on all S1-S24 condition 

monitoring measurements for the turbofan engine degradation data set. 
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Training Set Example 1 

The S6, S10, S12, S18 and S24 condition monitoring measurements versus time for training set 

example 1 are shown in Figure 5-21. The target and FNN, S-RNN, LSTM-RNN and GRU-RNN 

regression model predicted remaining useful life values versus time for training set example 1 are 

shown in Figure 5-22, Figure 5-23, Figure 5-24 and Figure 5-25 respectively. The fault mode for 

training set example 1 is high-pressure compressor degradation. 

 

 

Figure 5-21: The S6, S10, S12, S18 and S24 condition monitoring measurements versus time for 

training set example 1. 
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Figure 5-22: The target and FNN regression model predicted remaining useful life values versus 

time for training set example 1. 

 

 

Figure 5-23: The target and S-RNN regression model predicted remaining useful life values versus 

time for training set example 1. 



Chapter 5 Prognostics Regression Strategy Results CJ Louw 

© University of Pretoria 105 November 2018 

 

Figure 5-24: The target and LSTM-RNN regression model predicted remaining useful life values 

versus time for training set example 1. 

 

 

Figure 5-25: The target and GRU-RNN regression model predicted remaining useful life values 

versus time for training set example 1. 
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Training Set Example 2 

The S6, S10, S12, S18 and S24 condition monitoring measurements versus time for training set 

example 2 are shown in Figure 5-26. The target and FNN, S-RNN, LSTM-RNN and GRU-RNN 

regression model predicted remaining useful life values versus time for training set example 2 are 

shown in Figure 5-27, Figure 5-28, Figure 5-29 and Figure 5-30 respectively. The fault mode for 

training set example 2 is fan degradation. 

 

 

Figure 5-26: The S6, S10, S12, S18 and S24 condition monitoring measurements versus time for 

training set example 2. 
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Figure 5-27: The target and FNN regression model predicted remaining useful life values versus 

time for training set example 2. 

 

 

Figure 5-28: The target and S-RNN regression model predicted remaining useful life values versus 

time for training set example 2. 
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Figure 5-29: The target and LSTM-RNN regression model predicted remaining useful life values 

versus time for training set example 2. 

 

 

Figure 5-30: The target and GRU-RNN regression model predicted remaining useful life values 

versus time for training set example 2. 
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5.2.3 Testing Set Examples 

The objective of this section is to present and compare how accurately the trained FNN, S-RNN, 

LSTM-RNN and GRU-RNN regression models could predict the remaining useful life values from 

the condition monitoring measurements for two randomly selected testing set examples in the 

turbofan engine degradation data set fully online. The two randomly selected testing set examples 

had different fault modes and represent two future (completely unseen) turbofan engines that 

were run to failure. 

 

Testing Set Example 1 

The S6, S10, S12, S18 and S24 condition monitoring measurements versus time for testing set 

example 1 are shown in Figure 5-31. The target and FNN, S-RNN, LSTM-RNN and GRU-RNN 

regression model predicted remaining useful life values versus time for testing set example 1 are 

shown in Figure 5-32, Figure 5-33, Figure 5-34 and Figure 5-35 respectively. The fault mode for 

testing set example 1 is high-pressure compressor degradation. 

 

 

Figure 5-31: The S6, S10, S12, S18 and S24 condition monitoring measurements versus time for 

testing set example 1. 
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Figure 5-32: The target and FNN regression model predicted remaining useful life values versus 

time for testing set example 1. 

 

 

Figure 5-33: The target and S-RNN regression model predicted remaining useful life values versus 

time for testing set example 1. 
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Figure 5-34: The target and LSTM-RNN regression model predicted remaining useful life values 

versus time for testing set example 1. 

 

 

Figure 5-35: The target and GRU-RNN regression model predicted remaining useful life values 

versus time for testing set example 1. 
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Testing Set Example 2 

The S6, S10, S12, S18 and S24 condition monitoring measurements versus time for testing set 

example 2 are shown in Figure 5-36. The target and FNN, S-RNN, LSTM-RNN and GRU-RNN 

regression model predicted remaining useful life values versus time for testing set example 2 are 

shown in Figure 5-37, Figure 5-38, Figure 5-39 and Figure 5-40 respectively. The fault mode for 

testing set example 2 is fan degradation. 

 

 

Figure 5-36: The S6, S10, S12, S18 and S24 condition monitoring measurements versus time for 

testing set example 2. 



Chapter 5 Prognostics Regression Strategy Results CJ Louw 

© University of Pretoria 113 November 2018 

 

Figure 5-37: The target and FNN regression model predicted remaining useful life values versus 

time for testing set example 2. 

 

 

Figure 5-38: The target and S-RNN regression model predicted remaining useful life values versus 

time for testing set example 2. 
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Figure 5-39: The target and LSTM-RNN regression model predicted remaining useful life values 

versus time for testing set example 2. 

 

 

Figure 5-40: The target and GRU-RNN regression model predicted remaining useful life values 

versus time for testing set example 2. 
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From Figure 5-21–Figure 5-40 it can be concluded that the prognostics regression strategy and 

trained FNN, S-RNN, LSTM-RNN and GRU-RNN regression models can successfully predict the 

remaining useful life values from the condition monitoring measurements for the two randomly 

selected training and testing set examples in the turbofan engine degradation data set fully online. 

The LSTM-RNN and GRU-RNN regression models drastically outperformed the FNN and S-RNN 

regression models on the two randomly selected training and testing set examples as expected. 

The GRU-RNN regression model slightly outperformed the LSTM-RNN regression model and the 

S-RNN regression model significantly outperformed the FNN regression model on average. The 

predicted remaining useful life values of the FNN regression model were also drastically more 

noisy than that of the S-RNN, LSTM-RNN and GRU-RNN regression models. The predicted 

remaining useful life values of the FNN, S-RNN, LSTM-RNN and GRU-RNN regression models were 

also significantly more accurate close to failure as the trendability of the condition monitoring 

measurements increased. 

 

5.2.4 Model Performance Comparison 

The performance of the FNN, S-RNN, LSTM-RNN and GRU-RNN regression models were compared 

by calculating the mean squared error and mean absolute error between the target and predicted 

remaining useful life values for all the training set and testing set examples in the turbofan engine 

degradation data set. The mean squared error and mean absolute error between the target and 

FNN, S-RNN, LSTM-RNN and GRU-RNN regression model predicted remaining useful life values 

for all the training set and testing set examples is shown in Table 5-3. 

 

Table 5-3: The mean squared error and mean absolute error between the target and FNN, S-RNN, 

LSTM-RNN and GRU-RNN regression model predicted remaining useful life values for all the 

training set and testing set examples. 

Regression 
Model 

Training Set 
Mean Squared 

Error 

Testing Set 
Mean Squared 

Error 

Training Set 
Mean Absolute 

Error 

Testing Set 
Mean Absolute 

Error 
FNN 208.4586 259.4999 10.2555 11.9651 

S-RNN 147.9586 178.8964 8.0579 9.4524 
LSTM-RNN 55.0477 65.9575 4.0908 4.7173 
GRU-RNN 52.3379 55.4918 4.4563 4.6575 
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The performance of the FNN, S-RNN, LSTM-RNN and GRU-RNN regression models were also 

compared by recalculating the mean squared error and mean absolute error between the target 

and predicted remaining useful life values 120 cycles before failure for all the training set and 

testing set examples in the turbofan engine degradation data set. This is because it excluded the 

remaining useful life values above the applied target threshold and was therefore more 

representative of the regression model performance close to failure. The mean squared error and 

mean absolute error between the target and FNN, S-RNN, LSTM-RNN and GRU-RNN regression 

model predicted remaining useful life values 120 cycles before failure for all the training set and 

testing set examples is shown in Table 5-4. 

 

Table 5-4: The mean squared error and mean absolute error between the target and FNN, S-RNN, 

LSTM-RNN and GRU-RNN regression model predicted remaining useful life values 120 cycles 

before failure for all the training set and testing set examples. 

Regression 
Model 

Training Set 
Mean Squared 

Error 

Testing Set 
Mean Squared 

Error 

Training Set 
Mean Absolute 

Error 

Testing Set 
Mean Absolute 

Error 
FNN 312.6298 337.2173 12.829 13.3103 

S-RNN 215.6306 233.4553 10.5511 11.0255 
LSTM-RNN 53.9481 79.9956 5.07800 6.3836 
GRU-RNN 62.7665 76.2654 5.5248 6.1194 

 

From Table 5-3 and Table 5-4 it can be concluded that the LSTM-RNN and GRU-RNN regression 

models drastically outperformed the FNN and S-RNN regression models on the training set and 

testing set as expected. The GRU-RNN regression model slightly outperformed the LSTM-RNN 

regression model and the S-RNN regression model significantly outperformed the FNN regression 

model. The difference between the training set and testing set mean squared error and mean 

absolute error for the FNN, S-RNN, LSTM-RNN and GRU-RNN regression models 120 cycles before 

failure was also relatively small, which indicated good model regularization and an appropriately 

selected threshold for the prognostics regression strategy. The GRU-RNN regression model 

therefore made a very respectable mean absolute error of only 6.1194 cycles for the completely 

unseen testing set in the turbofan engine degradation data set 120 cycles before failure.  
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5.3 Turbofan Engine Degradation Benchmarking Data Sets 

This section presents the results of the prognostics regression strategy and regression deep 

learning model architectures applied on the turbofan engine degradation benchmarking data sets. 

 

5.3.1 Strategy and Model Description 

The tuned and selected applied threshold 𝐴𝑇 for the prognostics regression strategy on the 

FD001, FD002, FD003, FD004 and PHM08 turbofan engine degradation benchmarking data sets 

are shown in Table 5-5. 

 

Table 5-5: The tuned and selected applied threshold 𝐴𝑇 for the prognostics regression strategy 

on the FD001, FD002, FD003, FD004 and PHM08 turbofan engine degradation benchmarking data 

sets. 

Data Set 𝑨𝑻 [Cycles] 
FD001 120 
FD002 140 
FD003 120 
FD004 140 
PHM08 120 

 

The FNN, S-RNN, LSTM-RNN and GRU-RNN regression model architectures were trained 

individually on the training sets of the FD001, FD002, FD003, FD004 and PHM08 turbofan engine 

degradation benchmarking data sets with the Adam algorithm and regularized with a combination 

of the early stopping, weight decay and dropout regularization techniques.  
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5.3.2 Model Performance Benchmarking 

The performance of the FNN, S-RNN, LSTM-RNN and GRU-RNN regression models for this work 

were compared with other state-of-the-art publications (discussed in the literature review) by 

calculating the benchmarking root mean square error and benchmarking score for the FD001, 

FD002, FD003 and FD004 turbofan engine degradation benchmarking data sets. A lower 

benchmarking root mean square error and benchmarking score indicated more accurately 

predicted remaining useful life values for the turbofan engines in the testing set on average. The 

benchmarking root mean square errors 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  of the FNN, S-RNN, LSTM-RNN and GRU-RNN 

regression models for this work and other state-of-the-art publications on the FD001, FD002, 

FD003 and FD004 turbofan engine degradation benchmarking data sets are shown in Table 5-6.  

 

Table 5-6: The benchmarking root mean square errors 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  of the FNN, S-RNN, LSTM-RNN and 

GRU-RNN regression models for this work and other state-of-the-art publications on the FD001, 

FD002, FD003 and FD004 turbofan engine degradation benchmarking data sets. 

Publication Model FD001 FD002 FD003 FD004 

This Work 

FNN 17.6940 28.5912 20.4740 31.0186 
S-RNN 16.6734 26.2828 16.6373 28.2799 

LSTM-RNN 12.6448 21.8212 13.2569 22.3102 
GRU-RNN 12.2703 21.7622 12.4001 21.6811 

(Babu, et al., 2016) 

MLP 37.5629 80.0301 37.3853 77.3688 
SVR 20.9640 41.9963 21.0480 45.3475 
RVR 23.7985 31.2956 22.3678 34.3403 
CNN 18.4480 30.2944 19.8174 29.1568 

(Hsu & Jiang, 2018) LSTM 16.7372 29.4325 18.0694 28.3958 

(Li, et al., 2018) 

NN 14.8000 25.6400 15.2200 25.8000 
DNN 13.5600 24.6100 13.9300 24.3100 
RNN 13.4400 24.0300 13.3600 24.0200 

LSTM 13.5200 24.4200 13.5400 24.2100 
DCNN 12.6100 22.3600 12.6400 23.3100 

(Ramasso, 2014) RULCLIPPER 13.2665 22.8910 16.0000 24.3311 

(Zhang, et al., 2017) 
GB 15.6700 29.0900 16.8400 29.0100 
RF 17.9100 29.5900 20.2700 31.1200 

MODBNE 15.0400 25.0500 12.5100 28.6600 
(Zheng, et al., 2017) LSTM 16.1400 24.4900 16.1800 28.1700 
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The benchmarking scores 𝑆̅ of the FNN, S-RNN, LSTM-RNN and GRU-RNN regression models for 

this work and other state-of-the-art publications on the FD001, FD002, FD003 and FD004 

turbofan engine degradation benchmarking data sets are shown in Table 5-7.  

 

Table 5-7: The benchmarking scores 𝑆̅ of the FNN, S-RNN, LSTM-RNN and GRU-RNN regression 

models for this work and other state-of-the-art publications on the FD001, FD002, FD003 and 

FD004 turbofan engine degradation benchmarking data sets. 

Publication Model FD001 FD002 FD003 FD004 

This Work 

FNN 655 13075 1307 12190 
S-RNN 539 6579 791 5624 

LSTM-RNN 224 3111 262 2832 
GRU-RNN 203 3032 222 2458 

(Babu, et al., 2016) 

MLP 17972 7802800 17409 5616600 
SVR 1382 589900 1598 371140 
RVR 1503 17423 1432 26509 
CNN 1287 13570 1596 7886 

(Hsu & Jiang, 2018) LSTM 389 10654 822 6371 

(Li, et al., 2018) 

NN 496 18255 522 20422 
DNN 348 15622 364 16223 
RNN 339 14245 316 13931 

LSTM 432 14459 347 14322 
DCNN 274 10412 284 12466 

(Ramasso, 2014) RULCLIPPER 216 2796 317 3132 

(Zhang, et al., 2017) 
GB 474 87280 577 17818 
RF 480 70457 711 46568 

MODBNE 334 5585 422 6558 
(Zheng, et al., 2017) LSTM 338 4450 852 5550 

 

The performance of the FNN, S-RNN, LSTM-RNN and GRU-RNN regression models for this work 

were also compared with other state-of-the-art publications on the PHM08 turbofan engine 

degradation benchmarking data set. The predicted remaining useful life values for the turbofan 

engine examples in the testing set of the PHM08 turbofan degradation benchmarking data set 

were uploaded to the NASA Prognostics Data Repository (NASA, 2018) website. The 

benchmarking score was then returned. The NASA Prognostics Data Repository website however 

only allowed for one attempt (submission) per day. The benchmarking scores 𝑆̅ of the FNN, S-

RNN, LSTM-RNN and GRU-RNN regression models for this work and other state-of-the-art 

publications on the PHM08 turbofan engine degradation benchmarking data set are shown in 

Table 5-8. 
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Table 5-8: The benchmarking scores 𝑆̅ of the FNN, S-RNN, LSTM-RNN and GRU-RNN regression 

models for this work and other state-of-the-art publications on the PHM08 turbofan engine 

degradation benchmarking data set. 

Publication Model PHM08 

This Work 

FNN 4231 
S-RNN 2327 

LSTM-RNN 688 
GRU-RNN 589 

(Babu, et al., 2016) 

MLP 3212 
SVR 15886 
RVR 8242 
CNN 2056 

(Heimes, 2008) RNN 512 

(Lim, et al., 2014) 

MLP (Linear) 118338 
MLP (Kink) 6103 

KF Ensemble 5590 
SKF Ensemble 2922 

(Ramasso, 2014) RULCLIPPER 752 
(Wang, et al., 2008) SBPA 737 
(Zheng, et al., 2017) LSTM 1862 

 

From Table 5-6, Table 5-7 and Table 5-8 it can be concluded that the benchmarking scores and 

root mean square errors achieved by the prognostics regression strategy and LSTM-RNN and 

GRU-RNN regression model architectures were very competitive with other state-of-the-art 

publications on the FD001, FD002, FD003, FD004 and PHM08 turbofan engine degradation 

benchmarking data sets. 

It is however important to point out that the author benchmarked each data-driven model only 

once on the testing set for each turbofan degradation benchmarking data set, in the spirit of the 

competition and ethics. This is because multiple submissions would allow each data-driven model 

to be tuned on the testing set and would therefore not be representative to the real world 

conditions. This was however not the case for other publications like (Heimes, 2008), where 

multiple submissions were made.  

The files for the FNN, S-RNN, LSTM-RNN and GRU-RNN regression models that were uploaded to 

the NASA Prognostics Data Repository (NASA, 2018) website under the heading “7. PHM08 

Challenge Data Set” are also provided digitally (Louw, 2018) if the reader wishes to validate the 

author’s benchmarking scores. 
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6 Conclusions and Recommendations 

 

6.1 Conclusions 

The prognostics classification and regression strategies were successfully applied on both the 

univariate general asset degradation data set and the multivariate turbofan engine degradation 

data set with the FNN, S-RNN, LSTM-RNN and GRU-RNN classification and regression model 

architectures. The LSTM-RNN and GRU-RNN models drastically outperformed the FNN and S-RNN 

models as expected. The GRU-RNN models slightly outperformed the LSTM-RNN models and the 

S-RNN models significantly outperformed the FNN models on average.  

The FNN, S-RNN, LSTM-RNN and GRU-RNN classification and regression models could 

successfully predict the remaining useful life classes and values from the condition monitoring 

measurements for the randomly selected training and testing set examples in the investigated 

data sets fully online. The predicted remaining useful life classes and values of the FNN, S-RNN, 

LSTM-RNN and GRU-RNN classification and regression models were significantly more accurate 

close to failure as the trendability of the condition monitoring measurements increased. 

The FNN, S-RNN, LSTM-RNN and GRU-RNN classification and regression model architectures 

were successfully trained on the training sets of the investigated data sets with the Adam 

algorithm and successfully regularized with a combination of the early stopping, weight decay and 

dropout regularization techniques.  

The Adam algorithm was also compared with the popular Gradient Decent, Momentum, AdaGrad 

and RMSProp algorithms. Surprisingly, the model training and testing performance for all the 

algorithms on the investigated data sets were very similar. The Adam algorithm was however 

found to be more stable, robust and to converge in fewer training iterations when compared to 

the Gradient Decent, Momentum, AdaGrad and RMSProp algorithms. The combination of the early 

stopping, weight decay and dropout regularization techniques were found to drastically increase 

the prediction performance of all the model architectures on the validation and testing sets of the 

investigated data sets when compared with no regularization.  

It was found that adding fully-connected hidden layers before and after the simple recurrent, 

LSTM and GRU hidden layers in the recurrent neural network architectures resulted in a 

significant increase in model training and testing performance, when compared to not adding 

fully-connected hidden layers before and after these hidden layers. It was also found that stacking 

numerous LSTM or GRU hidden layers did not drastically improve the model testing performance 

for the data sets, and in some cases even reduced the model testing performance. 

The proposed prognostics regression and classification strategies both have their merits and 

limitations depending on the predictive maintenance requirements. The prognostics regression 

strategy has the advantage that it can be more useful to know the exact predicted remaining useful 
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life value for maintenance planning and scheduling, than the predicted remaining useful life class. 

The prognostics classification strategy however has the advantage that it can be more convenient 

to interpret the predicted remaining useful life class as a degradation severity level for online 

maintenance decision-making, than the predicted remaining useful life value. The prognostics 

classification strategy also has the advantage that it can be used for fault mode classification for 

maintenance decision-making and is a significantly simpler problem to model than the 

prognostics regression strategy.  

The applied threshold for the prognostics classification and regression strategies resulted in 

classification and regression deep learning models that are more conservative, fully online, easier 

to train, generalized better and made more accurate predictions below the applied threshold, 

compared to when no threshold is applied. The motivation for the applied threshold was that the 

condition monitoring measurement time series for the training and testing set examples in the 

investigated data sets include healthy and light degradation condition monitoring measurements 

that generally had very little to no trend. It was therefore very difficult for the classification and 

regression deep learning models to learn and generalize the mapping between the healthy and 

light degradation condition monitoring measurement time series and the linearly decreasing 

remaining useful life time series with no applied threshold. The applied threshold gave the healthy 

and light degradation condition monitoring measurements the same remaining useful life class or 

value target label. This implied that the healthy and light degradation condition monitoring 

measurements were ignored for remaining useful life class and value modeling. This made it 

significantly simpler and less confusing for the classification and regression deep learning models 

to learn and generalize the mapping between the condition monitoring measurement time series 

and the remaining useful life classification and regression time series.  

When the value of the applied threshold was too high the classification and regression models 

were difficult to train and did not generalize well between the training and validation sets. When 

the value of the applied threshold was too low the classification and regression models were easy 

to train and generalized better, but were less useful and could only predict the remaining useful 

life classes and values close to failure. It was therefore important to tune the value of the applied 

threshold for each investigated data set. The strategy for selecting the value of the applied 

threshold for each investigated data set was successful and improved the generalization ability of 

the deep learning models between the training, validation and testing sets.  

The objective of the classification and regression deep learning models was to learn and 

generalize the mapping between the condition monitoring measurement time series and the 

remaining useful life classification and regression time series for the training and testing set 

examples in each investigated data set. The condition monitoring measurement time series 

contains underlying asset health index information and the remaining useful life classification and 

regression time series were based on the time of failure. It was therefore very important that the 
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definition of failure was consistent with respect to the condition monitoring measurement time 

series and the underlying asset health index information between the training and testing set 

examples in each investigated data set. The definition of failure was however consistent between 

training and testing set examples in each investigated data set, but is important to point out when 

applying the prognostics regression and classification strategies on future data sets. 

The prognostics regression strategy was successfully applied on the investigated FD001, FD002, 

FD003, FD004 and PHM08 turbofan engine degradation benchmarking data sets with the FNN, S-

RNN, LSTM-RNN and GRU-RNN regression model architectures. The LSTM-RNN and GRU-RNN 

models again drastically outperformed the FNN and S-RNN models as expected. The GRU-RNN 

models again slightly outperformed the LSTM-RNN models and the S-RNN models again 

significantly outperformed the FNN models on average. The benchmarking scores and root mean 

square errors achieved by the prognostics regression strategy and LSTM-RNN and GRU-RNN 

regression model architectures were very competitive with other state-of-the-art publications on 

the FD001, FD002, FD003, FD004 and PHM08 turbofan engine degradation benchmarking data 

sets. The prognostics regression strategy and GRU-RNN regression model achieved a very 

competitive benchmarking score of 589 on the PHM08 turbofan degradation benchmarking data 

set. 

The S-RNN, LSTM-RNN and GRU-RNN models significantly outperformed the FNN models for all 

the investigated data sets. This was because the S-RNN, LSTM-RNN and GRU-RNN models could 

model sequence information from previous time steps, where the FNN models could not. It was 

therefore concluded that sequence information is very important for degradation modeling. 

The LSTM-RNN and GRU-RNN models significantly outperformed S-RNN models for all the 

investigated data sets. This was because the LSTM-RNN and GRU-RNN models were able to 

manage the vanishing and exploding gradient problem (Hochreiter & Schmidhuber, 1997) during 

model training with numerous gating operations. This drastically increased their capacity to 

model long-term sequence information from previous time steps, where the S-RNN models could 

not. It was therefore concluded that long-term sequence information is very important for 

degradation modeling. 

The GRU-RNN models were found to outperform the LSTM-RNN models for all the investigated 

data sets. This was because the GRU hidden layer was slightly less complex with fewer trainable 

parameters when compared to the LSTM hidden layer, since it did not have an output gate. The 

GRU hidden layer was therefore less prone to overfitting when compared to the LSTM hidden 

layer. The GRU hidden layer has also been shown to outperform and generalize better on other 

smaller data sets when compared to LSTM hidden layer (Chung, et al., 2014). 

The novelty and contribution of this research is that the state-of-the-art proposed LSTM-RNN and 

GRU-RNN deep learning models have to date not been comprehensively investigated and 

compared for data-driven prognostics for fleets of engineering assets. GRU-RNN deep learning 
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models have especially never been investigated or applied for data-driven prognostics for fleets 

of engineering assets.  

The LSTM-RNN and GRU-RNN models were both very robust to the substantial noise present in 

the condition monitoring measurements of the investigated data sets. This was a big advantage, 

since the complex underlying asset health index information in the noisy condition monitoring 

measurements for the investigated data sets could easily be lost with filtering. 

It can be argued that human intelligence can be used instead of the LSTM-RNN and GRU-RNN 

artificial intelligence models for the prognostics strategies. The problem with human intelligence 

however is that it generally struggles with high dimensional, noisy and nonlinear condition 

monitoring measurements for the prognostics of numerous assets at a large scale and over long 

periods of time. Another problem with human intelligence is that it is very expensive in time and 

money when compared to the LSTM-RNN and GRU-RNN artificial intelligence models. 

Additionally, human intelligence is also subject to human error. It was therefore concluded that 

the automated LSTM-RNN and GRU-RNN artificial intelligence models have numerous advantages 

over human intelligence for fully online prognostics and maintenances for fleets of assets at a large 

scale and over long periods of time. The LSTM-RNN and GRU-RNN artificial intelligence models 

could therefore be used as very powerful automated pattern recognition tools for automated 

planning, scheduling and decision-making of maintenance tasks for fleets of engineering assets. 

The deep learning models were completely data-driven and did therefore not require any physical 

models, understanding or assumptions for the complex degradation trajectories of the assets in 

the investigated data sets. The deep learning models also had enough capacity to model numerous 

failure modes and operating conditions for the turbofan engines in the investigated turbofan 

engine degradation benchmarking data sets. This was a big advantage, since the same deep 

learning model could be used for numerous fault modes and operating conditions fully online. 

The deep learning models were able to automatically discriminate between relevant and 

irrelevant condition monitoring sensor measurements for the investigated turbofan engine 

degradation data set. The prognostics classification and regression strategies did not require any 

sensor fusion between the multivariate condition monitoring sensor measurements. This was a 

big advantage, since the important and complex underlying asset health index information in the 

multivariate condition monitoring sensor measurements can easily by lost with sensor fusion.  

The trained regression models can all be interpreted as functions. The partial derivative and 

gradient of the model predicted remaining useful life value with respect to the multivariate 

condition monitoring sensor measurements can therefore be calculated numerically at each time 

step for the trained regression models. The trendability and importance of each condition 

monitoring sensor measurement with respect to the model predicted remaining useful life value 

at each time step can therefore be ranked. This is therefore an effective method that can be used 
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to determine the usefulness of expensive, difficult or unsafe condition monitoring measurements 

with the trained regression models. 

The prognostics classification and regression strategies were very general, clear, simple, 

conservative and could easily be applied to any future engineering assets with historical run-to-

failure condition monitoring measurements for fully online and automated remaining useful life 

prediction of future assets. It was however very important that the definition of failure was 

consistent between historical and future assets for the proposed prognostics strategies. It was 

also very important that the univariate or multivariate condition monitoring measurements 

contains underlying asset health index information that was representative of the true asset 

health and was trendable with respect to the remaining useful life of the asset.  

The prognostics classification and regression strategies were intended for fleets of assets with 

historical run-to-failure condition monitoring measurements and trendable degradation 

trajectories. The biggest limitation of the prognostics classification and regression strategies is 

therefore that they cannot be applied to assets with no historical run-to-failure condition 

monitoring measurements or assets with non-trendable degradation trajectories. 

 

6.2 Recommendations and Future Work 

The investigated general asset degradation and turbofan engine degradation data sets were both 

simulated data sets with realistic exponential degradation trajectories. It would however still be 

interesting and important to see how the proposed prognostics classification and regression 

strategies and deep learning models would perform on real-world data sets in future work. 

The prognostics regression strategy and deep learning models can easily be extended for 

forecasting (extrapolating) the trendable condition monitoring measurements of a degrading 

asset to an assumed threshold, when no historical run-to-failure condition monitoring 

measurements are available. The difference between the forecasted threshold time and the 

current time would then be the remaining useful life of the degrading asset. For these forecasting 

deep learning models the input would be the condition monitoring measurements for the current 

time step and the target would be the condition monitoring measurements for the next time step. 

These forecasting deep learning models would therefore be trained on the available historical 

condition monitoring measurements and learn the degradation pattern in the available historical 

condition monitoring measurements. The trained forecasting deep learning models would then 

be used to forecast (extrapolate) the historical condition monitoring measurements for numerous 

time steps into the future until the assumed threshold is reached. This is however very difficult, 

because the degradation rate of exponentially degrading assets are constantly increasing and 

would therefore result in numerous late remaining useful life predictions (not conservative). The 

author would however not recommend these forecasting deep learning models if historical run-
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to-failure condition monitoring measurements are available. This is because they are less 

convenient, less accurate, more computationally expensive, less conservative and not fully online 

when compared to the proposed prognostics classification and regression strategies and deep 

learning models. 

The prognostics classification strategy and deep learning models can easily be extended for 

diagnostics (fault mode classification) on future data sets, as shown for the turbofan engine 

degradation data set. The classification deep learning models were all able to very accurately 

discriminate and classify between high-pressure compressor degradation and fan degradation for 

all the turbofan engines, which can be very beneficial for maintenance decision-making. It is 

therefore recommended to record the fault modes along with the condition monitoring 

measurements when implementing the prognostics classification strategy and deep learning 

models on future data sets.  

The loss functions that were minimized in order to train the model parameters of the deep 

learning model architectures on each investigated data set, can also be weighted in order to 

penalize late remaining useful life predictions more than early remaining useful life predictions. 

This would result in more conservative trained deep learning models. 

(Wang, et al., 2008) and (Ramasso, 2014) both proposed similarity-based approaches that 

achieved very good results on the turbofan engine degradation benchmarking data sets. These 

similarity-based approaches were outside the scope of this work, but are powerful approaches 

that can be investigated in future research. 

The model parameters of the deep learning model architectures were successfully trained with 

the gradient decent based Adam algorithm, but can however also be trained with an extended 

Kalman filter (Heimes, 2008). Recurrent neural networks trained with the extended Kalman filter 

have been shown to outperform recurrent neural networks trained with gradient decent based 

algorithms (Perez-Ortiz, et al., 2003). The extended Kalman filter can therefore be investigated for 

training the model parameters of the deep learning model architectures in future work. 

The hyperparameters of the implemented deep learning models were manually tuned by training 

numerous models with different hyperparameters and validating the performance (validation 

error) of the numerous trained models on the validation set of an investigated data set. This is 

also known as simple hold-out validation (Chollet, 2018). There are however more sophisticated 

methods for validating the hyperparameters of the deep learning models, for example k-fold 

cross-validation and iterated k-fold cross-validation with shuffling that can be used to further 

improve model regularization and generalization performance (Chollet, 2018). These approaches 

are however significantly more computationally expensive compared to simple hold-out 

validation approach that was used. There are also more sophisticated methods for optimizing the 

model hyperparameters than manual tuning. For example, the differential evolution optimization 

algorithm (Storn, 1996) can be investigated in future work to automatically tune the model 
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hyperparameters. This is because the validation error is generally a highly multi-modal function 

with respect to the hyperparameters of a model (Heimes, 2008). 

It is important that the time intervals between the condition monitoring measurements are 

chosen sensibly for the prognostics strategies and deep learning models. If the time intervals 

between the condition monitoring measurements are unnecessarily short, the deep learning 

models will be significantly more difficult and computationally expensive to train. However, if the 

time intervals between the condition monitoring measurements are unnecessarily long, the deep 

learning models will be less practical and less convenient due to long waiting times between 

predictions. 

The prognostics strategies and deep learning models will however only be practically and 

financially useful for assets where the degradation is trendable over relatively long periods of 

time, the cost of condition monitoring sensible and historical run-to-failure condition monitoring 

measurements of similar assets are available. It is therefore very important to investigate if these 

requirements are met before implementing the proposed prognostics strategies and deep 

learning models in industry. It is can also be very beneficial to perform a cost-benefit analysis 

before implementing the prognostics strategies and deep learning models in industry. For 

example, it would be totally viable to use a traditional time based preventative maintenance 

strategy over the data-driven prognostics strategies for assets that fail stochastically with no 

trendable degradation and where the cost of condition monitoring is very high. It will also be 

interesting to see how the prediction performance of the trained LSTM-RNN and GRU-RNN deep 

learning models (artificial intelligence techniques) compares with human intelligence in future 

work. 

It is important to have a convenient standardized format for recording the condition monitoring 

measurements at a large scale and over long periods of time for the prognostics strategies and 

deep learning models in practice. It is also important to continuously record new condition 

monitoring measurements for new assets, such that the deep learning models can be continuously 

updated and improved. 

Although the GRU-RNN model architectures were found to outperform the LSTM-RNN model 

architectures on the relatively small investigated data sets in a deep learning context, the author 

would still recommend attempting and comparing both model architectures on future data sets. 

The LSTM-RNN model architectures still have higher sequence modeling capacity (more trainable 

parameters) and might therefore perform better on larger data sets when compared to the GRU-

RNN model architectures. The author would however still recommend the GRU-RNN model 

architectures for smaller data sets where the LSTM-RNN model architectures would be more 

prone to overfitting. Variations of the LSTM hidden layer (Greff, et al., 2016) and GRU hidden layer 

(Dey & Salem, 2017) can also be investigated in future work for possible increased model training 

and testing performance. 
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The classification and regression deep learning models can also be applied for numerous other 

surrogate modeling, machine learning and inference problems in mechanical engineering for 

future work. The data-driven LSTM-RNN and GRU-RNN models would especially achieve state-of-

the-art modeling results on any complex sequence-to-sequence classification or regression 

modeling problem. 

The author would highly recommend implementing the prognostics strategies and deep learning 

models with the open-source (free) Tensorflow (Google Brain, 2016) and easy to use Keras 

(Chollet, 2015) application programming interfaces (APIs) in Python. The prognostics strategies 

and some of the deep learning models can however also be implemented with the proprietary 

Deep Learning Toolbox (MathWorks, 2017) in MATLAB. The author would also highly recommend 

using a Nvidia graphics card that can parallelize and greatly speed up the required computations 

when training and testing the deep learning models on future data sets. 

It is important to point out that the prognostics strategies and deep learning models in this work 

are very general and can therefore easily be applied to any similar future data sets. It is also 

important to point out that the deep learning models scale exceptionally well with very large data 

sets when compared with traditional machine learning techniques (Chollet, 2018). 
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