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ABSTRACT 
THE DEVELOPMENT OF A MINING METHOD SELECTION MODEL THROUGH A DETAILED 

ASSESSMENT OF MULTI-CRITERIA DECISION METHODS 

In the past decades, attempts were made to build a systematic approach to mining method 

selection (MMS) Ooriad et al, (2018). This is because MMS is a complex and irreversible 

process. Since it can affect the economic potential of a project, the approach must be as 

thorough, precise, and accurate as possible. The key challenges of the previously established 

techniques such as the Nicholas and Laubscher method are that, there was a lack of 

engineering judgement in the process of selecting a mining method. In other instances, not all 

the parameters required in the mining method selection process were considered; i.e. 

economics would be the basis of the final decision of a mining method without taking into 

consideration other factors such as geology (Bogdanovic et al, 2012). While other techniques 

just considered a few parameters and a limited number of mining methods as alternatives 

(Namin, 2008). Some techniques were customised procedures for a specific orebody (Namin 

et al, 2009). Each orebody is unique; therefore, the approach of just adopting the same mining 

method for similar commodities was not always an effective or realistic approach Therefore, 

the existing procedures were found to be inadequate and not applicable for consideration in 

all MMS processes.  

To solve the challenges stated above, an up-to-date approach to MMS is the use of multi-
criteria decision-making (MCDM) tools to aid in the process. The MCDM are effective in 
facilitating a decision-making process; however, the use of MCDM has not gained enough 
popularity across countries and in the mining industry especially in MMS (Mardani et al, 2015). 
Their successful implementation in other industries such as in manufacturing companies, 
water management, quality control, transportation, and product design (Lee et al, 
2007)present an opportunity for further exploration in MMS. In this research, these MCDMs 
were further explored as starting point to solving the challenge faced in MMS.   

With the aim of developing a systematic and an unbiased approach that caters for subjective 
and objective analysis in MMS, this study investigated 10 MCDMs- TOPSIS, TODIM, VIKOR, 
GRA, PROMETHEE, OCRA, ARAS, COPRAS, SAW, and CP with potential to solve the MMS 
challenge. The study focused on deriving a model where the MCDMs can be integrated and 
be successfully used for MMS. Included in the research are factors and mining methods that 
are necessary MMS. The aim was to use the factors and mining methods as inputs to the 
developed MMSM.  

In the result section, case studies were used to analyse the MCDMs following a descriptive 
and a statistical analysis (sensitivity analysis, spearman correlation, and Kendall’s 
coefficient.). PROMETHEE, TOPSIS, and TODIM stood out as methods for use in the 
selection of mining method in the coal mining industry. From the research findings, it was 
generally concluded that OCRA, ARAS, CP, SAW, and COPRAS are simplified approaches 
of the afore-mentioned methods. VIKOR’s rankings were outlying and the conclusion was that 
it was not a suitable method for MMS. GRA’s conclusion based on the literature view was that 
there remain many unanswered questions about its mathematical foundations.  

The MMSM was developed using the results obtained. In the MMSM, first, the user defines 
the problem. The approach is of case-based reasoning (CBR); where the user can retrieve, 
re-use, revise and then retain the information (in the database) for future use. The user can 
always search within the database for a similar problem to select a MCDM, factors and 
methods; and this may be one of the future areas of improvement on the developed MMSM 
because there are a number of factors, MCDMs, and mining methods that the user may need 



 

 

to go through before getting to the relevant MCDM. One of the recommendations made by the 
author was that the user must understand the theoretical background of the MCDM before 
using it in the MMSM. In future studies, algorithms for selection of a suitable MCDM in the 
MMSM can be developed so that once the problem has been defined and structured; the user 
may not struggle with knowing which method to use amongst the suggested. Also, an 
application-based approach may be investigated further. 

Key Words:  MCDM, MMSM, MMS, factors, mining methods
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1. CHAPTER ONE: MOTIVATION FOR THE STUDY  
 

The aim of Chapter 1 is to provide a general understanding of a coal mining method selection 

(MMS) process; how it has evolved over time. Chapter 1 also present a brief review of the 

models used in selecting the right mining method for a given deposit. Again, the need for an 

unbiased mining method selection model (MMSM) is emphasised by detailing how the future 

of coal mining in South Africa- its contribution to GDP, and export markets would need a 

reliable model for MMS, to preserve and increase the level of confidence for the future of coal 

mining. The need of a MMSM given the shortcomings of the current methods is presented. 

Chapter 1 also presents the problem statement, research questions, objectives of the 

research, how the research was conducted, and the potential it has in the coal mining industry. 

The organisation of the whole research document is presented as a conclusion of the first 

chapter. Figure 1 shows a summary of what the first chapter entails.  

1.1. INTRODUCTION TO MINING METHOD SELECTION (MMS) 
 

There were attempts to build a systematic approach to mining method selection (MMS) in the 

past. MMS is a process of selecting an extraction method for a defined deposit (coal or other 

minerals) (Ooriad et al, 2018). A mining method is selected through proper planning, research, 

and informed decisions in the presence of experts such as mining engineers and geologists. 

The process of MMS is one of the most challenging and complex processes. Ooriad et al. 

(2018) mentions that what makes the process a critical and complex one is that, many factors 

(such as technical, economical, geological, environmental, and geotechnical) form part of the 

decision-process. In addition, the nature of each orebody is unique; therefore, the approach 

of just adopting the same mining method is not always an effective or a realistic approach. 

Sometimes in the process, the drawbacks that exist are a lack of engineering judgement from 

experienced experts (Ooriad et al, 2018). While engineering judgement is available for some 

processes, there are instances where the studies of the MMS process are inadequate or 
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Figure 1: Summary of the first chapter (Baloyi, 2018) 
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incomplete; also, the process would not consider all the important aspect to MMS (Ataei & 

Bitarafan, 2004). There is also no existing specific formula for making decisions on MMS. 

Despite the challenges presented, it is still of utmost importance to select the right mining 

method to ensure safety and productivity for the prevailing economic circumstances. 

There are four stages in the life of a mine; prospecting, exploration, development and 

exploitation. In the first two stages, there are tests, examinations, and evaluations to quantify 

and qualify the possibility of pursuing a mining project. The development process commences 

thereafter. Development is a means that makes it possible to exploit the orebody deposit. 

Therefore, the development and exploitation largely depend on the mining method selected 

for the orebody. Figure 2 shows the four stages of the life of mine. The braces indicate the 

stages whose dependency is largely on the type of mining method used. 

 

Figure 2: Stages in a life of a mine (Baloyi, 2018) 

 

The braced ({}) stages make the MMS a critical process because the process is irreversible. 

It is the mining method chosen, which dictates terms on how mining will take place, the type 

of technology, cycle times, and risks associated with the method and other decisions including 

personnel to work in the mine (Kant, 2016). Therefore, the process of MMS must be as 

thorough, precise, and accurate as possible because of its ability to affect the economic 

potential of a project. (Dehghani et al, 2016). Whichever method chosen, the goal must be 

clear: to maximise profit, maximise recovery of the deposit, provision of a safe working area 

for the employees, and adherence to the regulations in place.  

In addition, there are different mining methods that form part of the selection process. Input 

variables/factors that are controllable (e.g. cost) and non-controllable (e.g. geology) are 

obtained to compare the mining methods; and these factors are studied in detail to understand 

their influence in the process (Guray et al, 2003). The motivation to study scientifically and 

technically the used variables is because some deposits and nature of a mining project can 

only be understood through a detailed analysis of the available data. It must also be 

understood that every deposit has inherent problems that are unique and must be considered 

in the MMS process (Ataei & Bitarafan, 2004).  

 

Prospecting/

exploration 

Development

Extraction

Mine closure
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1.2. THE NEED FOR MINING METHOD SELECTION MODELS 
(MMSM) 

 

To facilitate and manage MMS, there have been extensive studies (As it would be shown in 

the current study) conducted to find a suitable process of MMS. Different techniques have also 

been practiced. Sometimes the process of selection would be done by taking into 

consideration the mining operations within the same area to be developed (As practised in 

many South African mines). Other times, available decision-making tools, softwares, and 

logical reasoning from mining experts would be used. Namin et al. (2008) separates these 

selection methods under three categories: 1. profile and checklist methods, 2. numerical 

ranking, and 3. decision-making models. All these MMSM have unique drawbacks. The 

following are some of the unique drawbacks from different MMSM: Some techniques such as 

Nicholas, Morrison, Hartman and Laubscher methods consider one aspect (such as geology) 

and neglect the others (Economical, Geotechnical, and Environmental, hydrological, surface 

topography, and infrastructure). While others (Boshkov & Wright Method) just consider a few 

parameters. This makes the existing MMSM inadequate and not applicable for consideration 

in all MMS processes. (Ooriad et al, 2018) 

Research indicates that the ability of a MMSM to identify and address factors that influence a 

choice of a mining method will determine the success of the process of selection; and most 

importantly, the success of the implementation and operation of a mine from cradle to grave. 

Ataei and Bitarafan (2004) further makes an emphasis of factors in the following statement, 

“Each factor in the method selection can become the principal determining factor, but the 

obvious predominance of one consideration should not preclude careful evaluations of all 

parameters.” In addition, in making a mining method choice, it must be noted that there may 

not be only one feasible method. Therefore, a logical decision must be made (Ooriad et al, 

2018). 

 

The following section will summarise some of the MMS approaches; where they have been 

previously applied and what makes them stand out. Figure 3 is a summary of the outcomes of 

the previously established MMS techniques, and the need for the research project. All the 

information presented in the diagram is explained in Section 1.2. Section 1.3 shows the 

research potential of addressing the need in Section 1.2.  
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1.2.1. PREVIOUSLY DEVELOPED AND CURRENT BEST PRACTICE MMSM 
 

In the literature, the development of effective MMSM dates to the 1960s. The techno-economic 

model was used in the late 1960’s and early 1970’s for MMS. The procedure is divided into 

two phases; preliminary MMS and selection of the most suitable method from amongst a group 

of methods that are deemed applicable. Its basis is on financial estimations of the financial 

effects that will result if a specific mining method was selected. Therefore, the mining method 

whose effects are favourable would be chosen. The method was inadequate because it had 

its basis on the financial side of implementation and neglected other key parameters 

(Bogdanovic et al, 2012). 

 

In the early 70s, Boshkov and Wright proposed a qualitative classification for underground 

mining methods. In this method, geotechnical and geological factors are considered. The 

selected mining methods, as alternatives, are those which have been applied in similar 

geological conditions. In addition, up to four methods can be identified as applicable or suitable 

mining methods (Namin et al, 2009). The limitation in the number of mining method as 

1. The future of coal 
mining indirectly 
depends on this 
process. A selected 
MM must fully realise 
the potential of a 
deposit for better 
returns and 
employment.

2. A systematic and 
logical approach to 
MMS which is neither 
objective nor 
subjective-dominant 
can improve the 
quality of MMS.

3. To avoid early mine 
closures, and ensuring 
continuity of 
operation within an 
integrated mining 
process, long term 
planning of extraction 
system is necessary.

4. A developed 
MMSM is a steping 
stone to novel mining 
methods.

5. The level of 
confidence in MCDM 
can be increased. 

6. Unlimited number 
of alternatives and 
factors can be inputs 
in  MCDMs.

Why should  MCDM be 
further researched?

1. The MCDM are 
effective in 
facilitating a 
decision-making 
process.

2. However, they 
are not widely 
applied across 
countries in the 
mining industry 
especially in MMS.

3. Their 
shortcomings 
makes them 
unreliable and 
time-consuming.

5. However, They 
present an 
opportunity for 
further exploration 
for use in MMS. 

MCDM Outcomes

An up-to-date 
approach is the use 
of multi-criteria 
decision making 
(MCDM) tools to 
aid in the mining 
industry and across 
other sectors to 
make decisions. 

MCDM

1. Adopting the 
same mining 
method within the 
same region was 
not always effective 
and was not a 
realistic approach 
due to the 
uniqueness of each 
orebody.

2. Lack of 
engineering 
judgement.

3. No existing 
formula for MMS.

4. Limited number 
of alternatives and 
factors in decision-
making.

5. one predominant 
factor led to the 
exclusion of the 
other factors.

Why?

The techniques and 
methods were 
found to be 
inadequate, and 
incomplete.

Outcome

Attempts were 
made in the past 
(1970-1995) to 
build qualitative 
and quantitative  
effective MMSM. 

Previously established 
MMS techniques

Figure 3: Summary of the need to pursue this study (Baloyi, 2018) 
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alternatives is its drawback (Nicholas, 1993). In 1976, Morrison suggested a classification 

system that is based on ground conditions only. Laubscher method (method named after his 

last name) followed in 1981, which was based on the rock mass. His emphasis was on the 

cavability of the rock mass. The methods in consideration are block caving and stoping 

methods. Whether one of the methods is used will depend on the rock quality designation 

(RQD) and the joint characteristics. Laubscher believed that the RQD would determine the 

ease of cavability (Namin et al, 2009). 

 

The first quantitative approach for underground mining methods was presented in 1981. 

Nicholas approached the MMS by using a numerical rating. In his quantitative approach, he 

identified geometry, grade of the orebody and rock mass strength as the most important 

factors in MMS. In weight assigning, the rock mechanics characteristics are studied. If they 

make a mining method more suitable, such a method is given a higher point (Guray, 2003). 

The Nicholas procedure is not currently preferred because of the limitations in the number of 

parameters used in the process. In addition, on the Nicholas method, the MM alternatives do 

not leave the decision-makers with enough options. Only 10 MM can be selected; while there 

are numerous available MM (Namin, 2008). 

 

In 1987, Hartman also developed his own selection method. His qualitative method considers 

the ground conditions and geometry of the deposit to be the most important parameters to 

consider (Namin et al, 2009). Appendix 1 presents different flowcharts for these traditional 

methods.  

 

From the assessed researches, the methods (numerical and checklists) in Figure 4 are 

considered inadequate to be used in MMS. (Bogdanovic et al, 2012). Their common 

disadvantage is that they consider a limited number of methods and influencing factors. 

(Ooriad et al, 2018). 

 

 

Figure 4: MMS development timeline (Baloyi, 2018) 

late 60's

•Techno-economic models

1973

•Boshkov and wright 
classfication method

1976

•Morrison classification 
method

1981

•Nicholas quantitative 
approach

•Laubscher classification 
system

1987

•Hartman classification system

1995

•University of British Columbia 
(UBC) approach
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An up-to-date approach, which has proven to be effective, is the use of multi-criteria decision-

making (MCDM) tools to aid in the mining industry and across other sectors to make decisions. 

Decision-making is considered as a selection process in which the best alternative is chosen. 

In the process, a problem/opportunity is specified; alternatives and criteria are identified. The 

criteria are then used to evaluate the alternatives for selection of a preferred alternative (Namin 

et al, 2009). These techniques are often reliable, and studies have been conducted to increase 

the level of confidence in applying them to the mining industry (Musungwini, 2016).  

Improvements in the MMS process have been seen because of adopting MCDMs to aid in 

MMS. All factors necessary for a selection of a method can now be considered in the process. 

MCDMs do not limit the user with a specific number of alternatives to use in the MMS process.  

However, a general drawback of these recent models is that they are time-consuming because 

of the calculations to be performed and in understanding the underlying mathematical 

foundations. They are not widely applied. Lastly, they each have inherent problems that will 

be presented in Chapter 2 (Namin et al, 2008). The following are some of the MCDM 

techniques that have gained acceptance within the mining industry and other industries.  

Thomas L. Saaty developed the Analytic Hierarchy Process (AHP) in 1980 to aid in 

incorporating qualitative and quantitative factors where decision-making is concerned. AHP is 

an easy to use tool and it is accommodative if the number of criteria is large (Velasquez et al, 

2013). A hierarchy is developed and at the top part of the structure is the goal of the decision. 

Through the intermediate levels, the relative importance of the criteria is assessed, and 

alternatives are compared with respect to each criterion (Bogdanovic et al, 2012).  

This is performed through a constructed pair-wise comparison matrix (Saaty, 2008). The AHP 

has been widely used in the mining industry and other industries. Although it ranks as one of 

the most used MCDM, it is unsuitable in some areas because of the independence when the 

considered criteria are rated in isolation; thus, making judgement to be inconsistent 

(Musungwini, 2016). AHP has successfully assisted in the selection of mining methods such 

as the Jajarm Bauxite mine, In Iran. 

In 1981, Yoon and Hwang proposed the Technique for Order Preferences by Similarity to Ideal 

Solutions (TOPSIS). Ranking of alternatives is based on the ideal solution and ideal similarity. 

If the alternative is more similar to the ideal solution, then it is more acceptable (Ooriad et al, 

2018) because it uses distances to identify and rank alternatives, it fails to include the 

correlation of the criterion (Velasquez et al, 2013). However, it is a simple and easy to use 

method that is applicable in the mining industry; and has been used to select a mining method 

at Tazerah coal mine (Ooriad et al, 2018) 

Incomplete data and problems with a major part of uncertainty can be solved by a 

mathematical theory, the Grey Analysis Method that was proposed in 1982 by Deng. It was 

successfully used to select a mining method in Gol-e-Gohar mine, Iran. Its advantage is that 

it can produce the results of the best and worst alternative of a mining method (Dehghani et 

al, 2017). The drawback of using GRA is that its mathematical foundation has not been fully 

proven.    

Later, a trend was recognised in the use of Multi Criteria Decision Making Methods (MCDM); 

it was such that two or more methods would be combined. In some of the previous work, AHP 

and PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation) 

methods were combined with the aim of selecting a method to mine Coka Marin underground 

mine in Serbia (Bogdanovic et al, 2012). 

The integration of the methods was such the AHP was used for determining the weights of the 

criteria and to structure the selection process. PROMETHEE on the other side was used to 
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rank the alternatives in the final selection, and to perform a sensitivity analysis by changing 

the weights of the criteria. The approach was found to be effective because of the added 

advantages that PROMETHEE has over other MCDM. (Bogdanovic et al, 2012) 

Other MCDM such as, Case-Based Reasoning (CBR), Compromise Programming (CP), 

ELECTREE (Elimination and choice expressing reality), PROMETHEE, VIKOR, COPRAS, 

OCRA, and SAW (Simple Additive Weighting) have been developed to be used in and out of 

the mining industry for different decision-making processes. The success and failure of the 

MCDMs has been visible over the years as shown in the literature study. However, they are 

not widely accepted for decision-making; hence the need to study them and assess the 

possibility of their application in MMS. 

 

1.2.2. WHY IS IT NECESSARY ASSESS AND ANALYSE THE APPLICATION OF 
MCDM BEFORE THE DEVELOPMENT MMSM? 

 

Over time, any mining enterprise would want to know if the applied mining methods are still 

as effective as the time they were when initially implemented. In addition, if not, what can be 

done to correct the initial decisions to maximise production at the prevailing economic 

circumstance. This would imply that the current coal extraction methods would have to 

undergo evaluations, audits and assessments to check their effectiveness; and to give proof 

of which mining method can best suit the current conditions of the deposit.  A MMS process 

can carry out such evaluation. Why is this process important? Additionally, why is it necessary 

to carry out this research? The following are reasons to quantify the need for the research.  

 

A. Coal Mining’s contribution to the economy. 
Mining has helped to shape the economy of South Africa largely. Infrastructure was 

established, foreign investment attracted, and the employment rate of S.A increased because 

of the existence of this industry. Even though it is not the highest contributor to the GDP 

(Mining at 7.3% while finance is at 20%) of the country currently, it still accounts for a major 

proportion (16%) on foreign direct investments (Chamber of Mines, 2017). Coal accounted for 

28% as the largest on a total of almost R460 billion for local and foreign mineral sales in 2017 

as shown in Figure 5 (Stats SA, 2017). This means that coal was the largest generator of 

revenue in the year 2017 in South Africa. 
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Figure 5: South Africa mineral sales in 2017 (Statistics SA, 2017) 

 

The dependency of South Africa on coal is further validated by the following statistics: 92% of 

electricity is generated from coal, and over 34% of the liquid fuels used are generated using 

coal (Fisher et al, 2015). Eskom has 16 running power stations and two more be operational 

by 2021 (Chamber of mines, 2018). Over 90 000 people have been employed by the coal 

sector. The fuel import bill would be higher if the country was not richly endowed with hard 

coal that has been estimated by the Department of Mineral Resource in 2016 to be 30 billion 

of tons, which represent 3.5% of the world’s coal resource. The country is also one of the 

leading coal export nations and rank as the sixth in the list of exporting nations (Chamber of 

Mines, 2016). The coal mined is delivered to the Pacific and Atlantic steam coal market. 

Overall, liquid fuels, basic iron and steel industry, and electricity account for more than 80% 

of domestic coal demand together (Chamber of Mines, 2018).  

Looking into the future, the global demand for coal is expected to rise despite the shift to 

renewables that is occurring globally. In the December 2017 issue of Pacific Standard 

Magazine, it is said that the demand for coal in 2022 will increase by 3% or 117 million tons of 

coal. The forecast is due to the increase demand from India and other countries who depend 

on coal. The Chamber of Mines coal strategy report of 2018 confirms that India accounts for 

almost half of the country’s total export in terms of volumes. The reasons for the expected 

growth in demand for India is its dependency on coal for electricity generation. On the other 

hand, its local supply has not kept up with the growth in demand, hence the need for imports 

(Chamber of Mines, 2018) 

On the contrary, the renewables (wind energy, solar energy, etc.) as alternatives are gaining 

momentum in most part of the world; such as China, South Korean, Indonesia, Peru, etc. 

(Steyn et al, 2017). The Department of Energy also intends on reducing the share of coal-

generated power in the country’s electricity mix from 82% to 31% by 2051. However, until 

then, coal will continue to play a significant role (Chamber of Mines, 2018). Therefore, the 

ever-increasing needs of energy, calls for the renewable energy and coal industry to 

concentrate on innovation, improvements, and new developments of mining methods (for 

coal).  

One such improvement that can be made is to improve the process of selecting the mining 

methods. Even though it is not yet an issue in the South African coal, the improvement will 
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help emerging coal companies. This is because if the studies of a discovered deposit do not 

get it right regardless, mining method selection, the expected production yields may be 

compromised. This section serves as a reminder that even though the renewable energy is 

gaining momentum, coal will still play a major role in meeting the energy demands. Therefore, 

existing, and upcoming mining projects must be as effectively as possible and start by an 

appropriate MMS.  

 

B. Improve the quality of MMS. 
An alternative to the traditional approach of adopting a mining method based on the existing 

mines within the same region, the MMSM can cater for the uniqueness of each deposit. In this 

manner, operational and financial difficulties can be eliminated or reduced during the early 

stages of the mining project.  

Owing to its multi-disciplinary nature, the mining industry has been greatly challenged where 

decision-making is concerned. There are lot of factors to be considered when a decision needs 

to be made. Based on the literature studies it is believed that by developing a MMSM, the 

quality of MMS will be improved. The MMSM that follows a multi criteria decision analysis 

(MCDA) approach will be essential. This is because the approach can successfully facilitate 

decision-making where many criteria (factors to be considered in MMS) must be considered 

to arrive at an optimal choice from amongst a collection of alternatives (Balt, 2015). Therefore, 

in each situation, decision-makers will be able to consider all available alternatives based on 

a systematic approach (MMSM). 

The lack of a quantitative approach in subjective judgement contributed in making the MMS 

process to be unreliable. Therefore, MMSM as a logical decision-making process will reduce 

the uncertainty, and present both qualitative and quantitative data before a decision is made. 

Thus, reliability and dependency on a formal process will be improved.  

 

C. Improve long-term planning of the mine.  
When a mining method is selected, the intention must be such that it remains relevant for the 

life of mine. If adjustments are to be made from one mining method to another, the first mining 

method must not hinder a successful transition. To ensure the possibilities of a continuous 

operation until the end of the life of mine, long-term planning is essential. As said by Osanlo 

et al. (2016), “The risk of an early closure of mine is reduced by a robust mine planning.” 

Therefore, it is through planning that both the short and the long-term needs of a deposit are 

catered for. The MMSM will aid in making that possible by providing relevant solutions where 

the choice of a mining method is concerned.  

Fourie et al. (2001) indicated that, “It is the main objective of any mining plan to effectively 

integrate the activities that are involved in the mining process.” For ease of understanding and 

use, a well-structured and systematic manner must be followed to approach planning of an 

operation. Therefore, the MMSM enhances planning by identifying factors that are critical in 

the specific deposit, and after identification, the factors can be effectively integrated in the 

planning section. Epstein et al. (2012) also attests that a MMSM will ensure that there is an 

integration between the chosen mining method and the other downstream processes. 

Therefore, a well-developed MMSM will also serve as a checklist in the planning phase of a 

mining project.  
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D. Diagnose existing problems in the existing mining method. 
As extraction process evolves, there may exist a gap between what was initially planned and 

what is done due to unplanned or unforeseen circumstances. Marle et al. (2012) said in his 

study of project risk management method selection, “If the risks are not managed pro-actively 

in a structured approach, then they can result in serious consequences for the project.” 

Therefore, the MMSM’s ability to evaluate critical factors that poses a greater risk of 

jeopardising a project is essential. This will result in time and cost savings for any mining 

project to be undertaken in the future. Again, it will aid in the existing mining extraction systems 

for the mining companies to assess themselves against the MMSM to confirm and validate 

their initial decisions of a mining method.  

 

E. Investigate and consider main factors related to MMS. 
The MMSM will ensure that any mine planner or decision maker is aware of the main factors 

that will not just affect the mining method selection process, but the operational life of the mine. 

For example, the commodity prices are always fluctuating. Their volatile nature affects 

parameters such as the cut-off grade; that eventually affects the mining process. If the price 

fall, the low -grade blocks may change to waste and thus reduce the number of blocks to be 

mined. This in turn affect the long and short-term planning of a mine (Osanloo et al, 2016). 

Therefore, it is important that the factors affecting the life of a mine be investigated in detail. 

An MMSM that can evaluate all available factors and prioritise the ones that are critical to the 

existence of a project will save and preserve the future of coal mining. In addition, will help 

foresee operational problems to be expected in the future.  

Owing to the conflicting, contradictory, and competing nature of factors that leads to a choice 

of a mining method, it is important that they be studied in detail to understand how they impact 

on (sensitivity analysis) a given decision. The development of an MMSM in this research will 

help in making the trade-offs decisions by identifying significant factors, and parameters that 

are essential when a mining method must be selected. Solving each factor separate is already 

a complex problem. However, if there is a model that can integrate, eliminate less important 

factors and considers critical ones, then such a model cannot be ignored or left undeveloped.  

 

F. MMSM are a stepping-stone to novel methods of mining.  
As regulations tighten, prices hike up, and mechanisation disrupt the normal way of mining, 

new mining methods may emerge. To effectively benefit from them, it is important that they 

be employed at the right deposit. A MMSM that will include these new mining methods as 

alternatives is essential because the existing approaches have not yet been updated to include 

the newly emerged methods such as coal gasification as an alternative to coal mining. It will 

also help the decision makers into considering all-important aspects before making the final 

decision of the type of a mining method. In addition, through the MMSM, exploring and 

combining mining methods into new methods is made possible.  

 

G. Increase the level of confidence in using MCDM. 
The MMS methods and techniques that have been used in the past are almost similar in their 

process of executions. Therefore, this research seeks to develop an integrated approach to 

MMS by evaluating how successful the methods can be when combined to strengthen their 

advantages while addressing the shortcomings.  The research will examine their common 

applications to assess the correlations that exist. On the same note, Musungwini et al. (2016) 
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assessed MCDM usage in the mining industry through an analysis of 150 case studies. It was 

noted that most of the MCDM methods would become inefficient as the number of criteria 

(factors) increased (especially AHP). In that case, two or more of the MCDM methods would 

be applied to the same problem to increase the level of confidence.  More information on the 

aforementioned research was explained in the literature study.  

Through the literature review it is believed that developing a MMSM is an opportunity to 

combine and integrate the MCDM that have been used in MMS, together with newly gathered 

information that will make them effective for application in the mining industry.  
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1.3. RESEARCH POTENTIAL  
 

Since the expected outcome of the research is a methodology to select coal-mining methods, 

the intention is to provide a guide to all the coal-mining companies. Table 1 gives a summary 

of the research potential. 

Table 1: Beneficiaries and benefits of the research study (Baloyi, 2018) 

Possible beneficiaries from the research 
project are: 
 

Possible benefits from the study to the 
beneficiaries: 
 

 Existing coal mining companies. 

 Upcoming small-scale coal mining 
companies. 

 Existing consulting and research 
organisation. 

 

 Improving the MMS decision-making 
process for the coal mining 
companies. 

 Provision of a systematic and 
unbiased approach that caters for 
subjective and objective analysis in 
MMS. 

 Better insight and understanding of 
factors that affect coal MMS. 

 Review of the potential yet fully 
unexplored mining methods such as 
coal gasification and coal bed 
methane in South Africa. 

 Increased level of confidence of the 
MCDM will help South African Mining 
companies to utilise these models, 
as application has been limited in the 
country’s coal mining.  

 

 

It is the aim of the study to aid in strategic decisions that ought to be made for the future of 

coal mining for coal mines that would find this study useful. Generally, the author 

acknowledges the fact that a one-size fits all model cannot be developed in the mining industry 

due to variations of deposits; however, a general guideline is still a possible solution; especially 

the MCDM approach to solving MMS because there has been limited mining application. Also, 

the country that contributed the most to information on MCDMs was Iran. Even though the 

U.S.A, China, and Australia are some of the largest coal producers in the world, there has not 

been much from them concerning the MCDMs. It must also be noted that the study will follow 

a decision-making approach instead of a problem-solving approach. This means that the focus 

is aimed at the future of coal mining.  
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1.4. RESEARCH QUESTIONS  
 

The research questions used to formulate the research project are shown in  

Figure 6: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Flowchart showing research questions (Baloyi, 2018) 

 

 

 

 

 

 

Problem 

formulation 

Is there an effective way of 

selecting coal-mining 

methods for a given deposit? 

 

YES 

What existing 

techniques/methods have been 

used? 

NO 
Are tools/methods from 

other industry related to 

method selection 

relevant? 

 

How can a MMSM be developed 

based on the existing MMSM and 

tools/methods from other 

industries? 

Develop a 

MMSM 

What input such as 

factors necessary in MMS 

and mining methods can 

be incorporated in the 

development?  

YES 

NO 

Discard 

the 

methods 

 What are the available 

factors in evaluating 

MMSM? 

 How can the importance of 

factors in mining method 

selection be ranked? 

 What are the available 

mining methods that can be 

investigated as alternatives 

for coal mining? 

 

 



28 

 

 

  



29 

 

 

1.5. PROBLEM STATEMENT  
 

It is evident that extensive work regarding mining method selection has been done in the past. 

Decision making models and ranking methods have also been established to assist in building 

a preferable mining method solution for a selected deposit. MCDA have also been widely 

applied in the mining industry where decision with a considerable number of criteria and 

alternatives had to be made. Despite the perceived benefits from the above approaches, a 

systematic approach towards mining method selection remains a missing link between 

subjective and objective decision-making. Hence, some mining method selection decisions 

are based on experience where the outcome of the method adopted is the one similar to the 

deposit without fully catering for the uniqueness of the deposit in question. 

Consequently, the mining industry cannot place much confidence on the previously applied 

approaches. Most of the decisions cannot be quantified, hence the need of a systematic 

approach to mining method selection.  To address such a need, the author sees it fit to conduct 

a research that focuses on the development of a mining method selection model.  

The project statement states: 

To develop a mining method selection model/methodology through a critical analysis and 

assessment of the application of MCDA. This is done to address the shortcomings of the 

existing traditional approaches of MMS.  

The overall aim of the methodology/ model is that it must serve as a checklist in conducting a 

retrospective critique on existing coal mining methods operations.   

Again, the decision-making approach must be able to offer a guideline for new coal mining 

projects on how an optimum mining method can be selected while considering factors that 

affect MMS.  
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1.6. OBJECTIVES AND METHODOLOGY OF THE STUDY  
 

The objective that were set for the study and the methodologies are shown.  

Table 2: Objectives and methodology of the study 

Objectives Methodology 

1. Conduct a comprehensive literature 
review on the existing MMSM and other 
approaches of method selection from 
other industries. 

a. Investigation of the 
functionality of each. 

b. Review the application of 
each to check for correlation 
amongst methods. 

c. Identify the shortcomings 
and strength of each 
method. 

2. Provide summaries of the techniques and 
methods of coal mining locally and 
internationally, to be used as input 
alternatives in the developed MMSM. 

3. Investigate and identify factors that are 
considered when evaluating a MMSM. 
 
 

QUALITATIVE RESEARCH 
 

 A huge part (1) – (3) of the research 
will be based on literature; therefore, 
the study is classified as a desktop 
study. The following sources will be 
used for attaining information: 
Journal databases, Library 
catalogue, Websites. 
 

 

1. Conduct a descriptive and statistical 
analysis for the selected MCDMs.  

2. Conduct a sensitivity analysis on each 
method selection technique. 

3. Determine a procedure of integrating the 
results of the MCDMs. 

QUANTITATIVE APPROACH 
 

 DATA ANALYISIS: Each method will 
be evaluated for stability and 
consistency using existing case 
studies. The correlation that exists 
between the methods will 
determined. An attempt to resolve 
conflicts amongst the MCDM will be 
suggested. 

4. Propose a mining method selection 
model/methodology. 
 

QUALITATIVE + QUANTITATIVE 
APPROACH 

 
Necessary information derived from (1) – 
(5) will be used to develop a MMS decision-
making approach. 
 

 

 

  



31 

 

 

Literature review of existing 

decision-making theory, tools, 

approaches, and mining methods. 

 

Result and result analysis based 

on the gathered information.  

Description of the proposed 

procedure/methodology based 

on the results obtained. 

The research will be concluded by 

summarising the purpose of the 

study and the results thereof.  

 

Recommendations and 

suggestions for future work will 

be done to enhance the research 

findings. 

 

1.7. ORGANISATION OF THE RESEARCH 
 

Chapter 1 has presented the background of the project, and the objectives as well as the 

methodology to be used to meet the aim of the research. To meet the objectives set for the 

research study, a flow chart of the dissertation is presented in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Organisation of the research (Baloyi, 2018) 
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2. LITERATURE REVIEW  
 

2.1. INTRODUCTION 
 

The literature was obtained from different sources; from journal databases to library 

catalogues. The information collected is presented to form part of the building blocks of the 

development of an MMSM. The information consists of the previously established techniques, 

factors as well as underground MM. A summarised version of Chapter 2 is presented in Table 

3. 

Table 3: Overview of Chapter 2 

Sub-
section 

Description Breakdown 

2.2. 

Existing approaches to Mining method selection, 
and non-mining method selection 

2.2.1. Mining method 
selection techniques 

 Boshkov and Wright 

 Morrison, Laubscher 

 Hartman, Nicholas 

 UBC, AHP, TOPSIS 

 TODIM, GRA 

 PROMETHEE, HPV, 
VIKOR, ELECTREE 

2.2.2. Non-mining method 
selection techniques 

 OCRA, ARAS 

 COPRAS, SAW, CP 

2.3 

Established coal mining methods 

 Bord and Pillar  

 Pillar extraction 

 Long wall mining 

 Short wall mining 

 Other Caving 
methods 

2.4 
Potential coal mining methods 

 UCG 

 Coal Bed Methane 

2.5 

Factors in mining method selection 

Different factors (critical and 
non-critical) gathered from 
different studies are 
presented  

2.6 
Significance of the literature review 

The section gives a 
summary of the importance 
of the literature review 

2.7 List of references  
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2.2. EXISTING APPROACHES TO MMS 
 

The following section present different methods that have been previously used to select 

mining methods. The first part of the section describes method and classification systems that 

were adopted in the 1990’s. The latter part introduces MCDM, which may have been used in 

the mining industry for methods selection. For each method, the functionality, application in 

mining and other industries, shortcomings and strength are presented.  

2.2.1. TECHNIQUES USED IN THE MINING INDUSTRY  
 

A.  BOSHKOV & WRIGHT  
The method is one of the first qualitative classification developed for the underground mining 

method selection because of its assumption that surface mining is already eliminated as an 

option. Boshkov & Wright’s method of 1971 uses factors such as the ore dip, ore strength, ore 

thickness, strength of the walls (hanging & footwall) and many more. The method provides up 

to four mining methods as the most suitable to mine a specific deposit. However, the limitations 

are that it only looks at geological factors. In addition, there is a limited number of mining 

methods. One of the major disadvantages is that it uses the shortcomings of the mining 

methods to eliminate them to narrow the selection (Nicholas, 1993). The table for mining 

method selection using Boshkov & Wright classification system is shown in Table 4.  
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Table 4: Support Table for the MMS tool of Boshkov and Wright (Source: SME Mining Engineering 
Handbook, 1993) 

Type of 

Orebody 
Dip Strength of ore 

Strength of 

walls 
Common Application 

Thin beds Flat 
Strong Strong 

Open stopes with casual 

pillars, long wall 

Room-and-pillar, long wall 

Weak or strong Weak long wall 

Thick beds Flat 

Strong Strong 

Open stopes with casual 

pillars 

Room and pillar 

Weak or strong Weak Top slicing, Sublevel caving. 

Weak or strong Strong Underground glory hole 

Very thick 

beds 
N/A N/A N/A Same as for “Masses” below 

Very narrow 

veins 
Steep 

Strong and 

weak 

Strong and 

weak 
Re-suing 

Narrow veins 

(width up to 

economic 

length of stull) 

Flat N/A N/A Same as for thin beds 

Steep 

Strong 

Strong 
Open stopes, Shrinkage 

stopes, Cut-and-fill stopes 

Weak 
Cut-and-fill stopes, Square-

set stopes 

Weak Strong 
Open underhand stopes, 

Square-set stopes 

 Weak 
Top slicing, Square-set 

stopes 

Wide veins 

Flat N/A N/A 
Same as for thick beds or 

mases 

Steep 

Strong 

Strong 

Open underhand stopes, 

Underground glory hole, 

Shrinkage stopes, Sublevel 

stoping, Cut-and-fill stopes, 

Combined method 

Weak 

Cut-and-fill stopes, Top 

slicing, Sublevel caving, 

Square-set stopes, 

Combined methods 

Weak Strong Open underhand stopes, 

Top slicing, Sublevel caving, 
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Block caving, Square-set 

stopes, Combined methods 

Weak 

Top slicing, Sublevel caving, 

Square-set stopes, 

Combined methods 

Masses 

N/A Strong Strong 

Underground glory hole, 

Shrinkage stopes, Sublevel 

stoping, Cut-and-fill stopes, 

Combined methods 

N/A Weak Weak or Strong 

Top slicing, Sublevel caving, 

Block caving, Square-set 

stopes, Combined methods 

N/A: Not Applicable 

 

A. MORRISON 
The 1976’s classification system of Morrison divides different underground mining methods 

into 3 groups. 1. Rigid pillar support, 2. Controlled Subsidence, and 3. Caving methods. Then 

criteria consisting of ore widths, support types and strain energy accumulation is used to select 

the suitable mining method (Kabwe and Yiming, 2015). The classification figure is shown in 

Appendix 1, Figure 47. Morrison’s classification systems also select mining methods based 

on a limited number of geological factors. 

B. NICHOLAS METHOD 
Nicholas proposed a quantitative selection tool in 1981 that considers rock mechanics 

characteristics as the most important factors to be considered in MMS of both surface and 

underground methods. It uses 13 criteria such as orebody characteristics, hanging and 

footwall, rock strength, fracture spacing and fracture strength. Points are assigned using a 

numerical ranking from zero (the least preferred) to four (Most preferred). - 49 is used to rule 

out a method (Guray et al, 2003). The ultimate weight of each mining method is obtained by 

summing up the scores. Wrong defects in the definition of the weights and a small scoring 

domain are some of the disadvantages associated with Nicholas method (Azadeh et al, 2010). 

The support tables for Nicholas method are shown from Table 5 to Table 8. 
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Table 5: Weighting procedure of the Nicholas MMS technique: Ore geometry attributes (Azadeh et al, 
2010) 

Alternatives Criteria 

General shape Ore thickness Ore plunge Grade 
distribution 

M T/P I N I T VT F I S U G E 

Open pit 
mining  

3 2 3 2 3 4 4 3 3 4 3 3 3 

Block 
Caving 

4 2 0 -49 0 2 4 3 2 4 4 2 0 

Sublevel 
stoping 

2 2 1 1 2 4 3 2 1 4 3 3 1 

Sublevel 
caving 

3 4 1 -49 0 4 4 1 1 4 4 2 0 

Long wall 
mining  

-49 4 -49 4 0 -49 -49 4 0 -49 4 2 0 

Room and 
pillar 

0 4 2 4 2 -49 -49 4 1 0 3 3 3 

Shrinkage 
stoping 

2 2 1 1 2 4 3 2 1 4 3 2 1 

Cut and fill 0 4 2 4 4 0 0 0 3 4 3 3 3 

Top slicing 3 3 0 -49 0 3 4 4 1 2 4 2 0 

Stull stoping 0 2 4 4 4 1 1 2 3 3 3 3 3 

M: Massive; T/P: Tabular or Platy; I: Irregular; N: Narrow (<10 m); I: Intermediate (<10-
30m); T: Thick (<30- 100m); VT: Very Thick (<100m); F: Flat (< 20°); I: Intermediate (20- 
55°); S:steep (> 55°); U: Uniform; G: gradational; E:erratic 
 

 

Table 6: Weighting procedure of the Nicholas MMS technique: Ore zone attribute (Azadeh et al, 2010) 

Alternatives Criteria 

Rock substance 
strength 

Fracture Spacing Fracture strength 

W M S VC C W VW W M S 

Open pit 
mining 

3 4 4 2 3 4 4 2 3 4 

Block caving 4 1 1 4 4 3 0 4 3 0 

Sublevel 
stoping 

-49 3 4 0 0 1 4 0 2 4 

Sublevel 
caving 

0 3 3 0 2 4 4 0 2 2 

Long wall 
mining 

4 1 0 4 4 0 0 4 3 0 

Room and 
pillar 

0 3 4 0 1 2 4 0 2 4 

Shrinkage 
stoping 

1 3 4 0 1 3 4 0 2 4 

Cut and fill 3 2 2 3 3 2 2 3 3 2 

Top slicing 2 3 3 1 1 2 4 1 2 4 

Stull stoping 4 1 1 4 4 2 1 4 3 2 

Rock substance strength- fracture strength: W: weak (<8); M: moderate (8-15); S: strong 
(>15); fracture spacing: VC: Very close (0-20); C: close (21-40); W: Wide (41-70); VW: Very 
Wide (71-100). 
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Table 7: Weighting procedure of Nicholas MMS technique: Hanging wall attributes (Azadeh et al, 2010) 

Alternatives Criteria 

 Rock substance 
strength 

Fracture spacing  Fracture strength 

 W M S VC C W VW W M S 

Open pit 
mining  

3 4 4 2 3 4 4 2 3 4 

Block mining  4 2 1 3 4 3 0 4 2 0 

Sublevel 
stoping 

-49 3 4 -49 0 1 4 0 2 4 

Sublevel 
caving 

3 2 1 3 4 3 1 4 2 0 

Long wall 
mining  

4 2 0 4 4 3 0 4 2 0 

Room and 
pillar 

0 3 4 0 1 2 4 0 2 4 

Shrinkage 
stoping 

4 2 1 4 4 3 0 4 2 0 

Cut and fill 3 2 2 3 3 2 2 4 3 2 

Top slicing 4 2 1 3 3 3 0 4 2 0 

Stull stoping 3 2 2 3 3 2 2 4 3 2 

 

Table 8: Weighting procedure of the Nicholas MMS technique: Footwall attributes (Azadeh et al, 2010) 

Alternatives Criteria 

Rock substance 
strength 

Fracture spacing Fracture strength 

W M S VC C W VW W M S 

Open pit 
mining 

3 4 4 2 3 4 4 2 3 4 

Block caving 2 3 3 1 3 3 3 1 3 0 

Sublevel 
stoping 

0 2 4 0 0 2 4 0 1 4 

Sublevel 
caving 

0 2 4 0 1 3 4 0 2 4 

Long wall 
mining 

2 3 3 1 2 4 3 1 3 3 

Room and 
pillar 

0 2 4 0 1 3 3 0 3 3 

Shrinkage 
stoping 

2 3 3 2 3 3 2 2 2 3 

Cut and fill  4 2 2 4 4 2 2 4 4 2 

Top slicing  2 3 3 1 3 3 3 1 2 3 

Stull stoping 4 2 2 4 4 2 2 4 4 2 

 

C. LAUBSCHER METHOD 
This 1981 method focuses on selection of mass mining methods (Block caving and stoping 

methods). The system examines the degree of fracturing, and the Rock Quality Designation 

(RQD), and from the analysis, block caving or stoping methods may be the suitable method. 

However, a lack of information prompts the decision maker to rely on guessing which poses a 
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limitation in applying this method (Kabwe and Yiming, 2015). In 1990, the system was modified 

to relate the hydraulic radius to rock mass rating. If the area available for undercutting is 

enough, cavability becomes feasible for a more competent rock when the hydraulic radius is 

included. (Namin et al, 2009). The classification figures for 1981 and 1990 are shown in Figure 

48 and Figure 49 of Appendix 1. Even though Labuscher’s method may seem irrelevant in the 

coal mining industry because it focuses on mass mining methods, the author believes that it 

is necessary to include it for two reasons. Firstly, it is a method of selection and it is thus 

importance for comparison purposes. Secondly, mass mining method may have a potential 

for future use in the coal mining industry.  

 

A. HARTMAN  
The Hartman method of 1987 is developed on a flowchart that is based on the geometry of 

the deposit, and the ground conditions of the ore zone. It is used for both underground and 

surface mining; and unlike Boshkov & Wright, the results are more specific to a mining method 

than offering four options. Some of the assumptions made on Hartman’s method is that the 

ore strength and rock strength is known, then a method that best suits the ground conditions 

is chosen (Hartman & Mutmansky, 2002). The one limitation that is visible with this method is 

that it is neither enough nor complete to decide on a mining method (Kabwe and Yiming, 

2015). The flow chart is shown in Error! Reference source not found.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Hartman and Mutmansky selection chart (Alpay and Iphar, 2008) 

DEPOSIT SHAPE 

TABULAR 

WEAK 

CAVING METHODS 

1. Longwall mining  

2. Sublevel caving 

3. Block caving with 

square sets 

4. Pillar caving 

5. Top Slicing 

STRONG 

ROCK STRENGTH 

WEAK 

SUPPORTED METHODS 

 

1. Cut and fill stoping 

2. Stull stoping 

3. Square-set stoping 

 

STRONG 

MASSIVE 

ORE STRENGTH 

STRONG WEAK 

UNSUPPORTED 

METHODS 

1. Room and pillar 

mining 

2. Stope and pillar 

mining  

3. Shrinkage stoping 

4. Sublevel stoping 

5. Underhand open 

stoping 

CAVING METHODS 

1. Sublevel caving 

2. Block caving 

3. Block mining with 

square-sets 

4. Top slicing 

5. Mitchell slicing 

ORE STRENGTH 
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B. UNIVERSITY OF BRITISH COLUMBIA (UBC) METHOD 

UBC was developed in 1995 by Miller-Tait as a modification of the Nicholas method. The 

scoring domain of the Nicholas method that is between the maximum and minimum was 

extended (Azadeh et al, 2010). It emphasises the stoping method rather than the mass-mining 

techniques. This is because it was designed to represent the typical Canadian practice, which 

is a limitation for use outside Canada (Namin et al, 2009). Additionally, the importance of the 

criteria was not taken into consideration (Azadeh et al, 2010).  The selection process is similar 

to the Nicholas method procedure. The rankings and characteristics except for grade 

distribution and plunge are different. The ranking in UBC range from zero to six. Six is given 

to the characteristic of the most suitable mining method. Additionally, -10 was introduced to 

the method to strongly discount a method without fully eliminating it There is also an 

improvement in the rock mechanics ratings since the internationally recognised rock mass 

rating is used (Meech et al, 2001). Table 82 in Appendix 1 shows the support chart for the 

UBC method. A toolkit that utilises the UBC method has been developed and made available 

in www.edumine.com. It is easy to use given that the user has the required information. 

However, since the development of UBC was for Canadian practices, the number of mining 

methods listed are limited. The screen information that appears when the toolkit is launched 

for use are shown. Figure 9 shows the orebody characteristics criteria. The user can insert the 

available deposit information, and the orebody cartoon in Figure 11, will show the user how 

the orebody will look like. The mining methods are then ranked from the best to worst in Figure 

10. 

 

Figure 9: UBC toolkit screenshot 1 
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Figure 11: UBC toolkit screenshot 2 

Figure 10: UBC toolkit screenshot 3 
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2.2.2. MCDM USED IN THE MINING INDUSTRY 
 

C. ANALYTICAL HIERARCHY PROCESS (AHP) 
 

The development of AHP by Thomas Saaty dates to the 80s. The main purpose of its 

development was to assist decision makers to make decisions in an organised manner. This 

is a method that can handle an ill-structured and complicated problem; and still be effective in 

facilitating the decision- making process (Maletic et al, 2014). AHP’s ability to represent the 

elements of a problem in a hierarchy form allows the problem to be broken down into smaller 

constituents’ part; with the objective/goal of the decision-making process on top (Balt, 2015). 

In their article, Ataei et al. (2009) described the hierarchy as a dominance structure whereby 

the elements within the same level can be compared and evaluated against each other. This 

allows for a relative contribution of each element to the level above them. The following figure 

is an illustration of a dominance hierarchy formed during the AHP decision-making process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: illustration of AHP dominance hierarchy (Balt, 2015) 

To simplify how AHP uses a hierarchy: the top level describes the objective of the process. It 

must be clearly defined what the problem is and why AHP would be an appropriate method 

for handling the process (Cheng & Li, 2001). The second level will then be evaluated based 

on the first level. Since criterion (1), (2), and (3) are on the same level, they will be evaluated 

against each other to check their contribution to the level above, which is the objective. The 

evaluation is done in pairs; (1) and (2), (1) and (3), finally (2) and (3) will all be compared and 

their contribution and priorities to the objective will be determined. The last level on the 

hierarchy consist of alternatives. Each alternative is evaluated according to the criteria from 

the previous level (Ataei, 2009). The evaluation is subjective in that it relies on the judgements 

of experts (Velasquez & Hester, 2013). Therefore, users of AHP will express and rate their 

preferences of the elements in the hierarchy using Saaty’s scale of measurement indicated in 

Table 9. 

OBJECTIVE 

CRITERION 2 CRITERION 1 CRITERION 3 

ALTERNATIVE 

4 

ALTERNATIVE 

3 

ALTERNATIVE 

2 

ALTERNATIVE 

1 
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Table 9: Fundamental scale for pairwise comparison (cited in Balt 2015) 

Intensity of importance Definition Explanation 

1 Equal importance Two activities contribute 
equally to the objective 

3 Moderate importance Judgement favour one over 
another 

5 Strong importance Judgement strongly favour 
one over another 

7 Very strong importance Strongly favoured and its 
dominance is demonstrated 
in practice 

9 Absolute importance The importance of one over 
another affirmed on the 
highest possible order 

2, 4, 6, 8 Intermediate values Used to represent 
compromise between the 
priorities listed above 

Source: Saaty (2012) 

 

A pairwise comparison or judgement matrix is then formed from the second level’s determined 

relative contribution and priority. When dealing with AHP, it must be noted that the matrix 

works on a reciprocal and transitivity basis. With reciprocity, if criterion (1) is twice as important 

as criterion (2), logic dictates that criterion (2) is then half as important as criterion (1). With 

transitivity, Musungwini and Minnitt (2008) detailed that a relationship is transitive if the relative 

importance is multiplicative such that, if criterion (2) is said to be twice as important as criterion 

(1), and criterion (3) is three times is important as criterion (2), then the relationship that exist 

between criterion (3) and (1) is that (3) is six times as important as criterion (1). It is believed 

that transitivity yields consistent judgement (Musungwini & Minitt, 2008).  

As an additional characteristic to AHP, it can calculate the level of consistency from the 

pairwise comparison. A consistency ratio (CR) below 10% is acceptable; anything greater is 

regarded as inconsistent unless there are adequate justifications for its acceptability 

(Musungwini & Minitt, 2008). In case of inconsistency, the decision-makers should review their 

expressed preferences in the matrix as well as the objective of the process (Maletic et al, 

2014). The following is an equation to calculate the CR: 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
                                                                                                                                                               (1) 

Where CI is the consistency index of the matrix in question and calculated as 
(λmax−𝑛)

𝑛−1
  

where λmax is the maximal or principal Eigen value and n is the size of the matrix. RI is the 

consistency index of a random matrix size of n. The established RI are shown on the table 

below. The choice of RI is dependent on the size of the matrix. For example, for a 3 x 3 matrix, 

RI would be 0.58.  

Table 10: Random Index (RI) For n-th matrix (Cited in Musungwini and Minnit, 2008) 

Matrix 
order 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59 

Source: (Saaty, 1980) 
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After performing the consistency test, the global weights of all the criteria are calculated and 

alternatives can be ranked (Cheng & Li, 2001). AHP also allows a sensitivity analysis to be 

performed to show the effect of altering weights of the criteria on the final ranking of 

alternatives (Maletic et al, 2014). 

According to Velasquez and Hester (2013), the advantages of AHP are that it is easy to use 

and flexible in that its’ size can be adjusted to accommodate different decision-making 

problems.  AHP is also not data-intensive like other MCDA methods. Its ability to handle both 

qualitative and quantitative criteria has led to its popularity (Ataei et al, 2008). Data can be 

normalised when measured in different scales, and can later be aggregated (Musungwini & 

Minnitt, 2008). Moreover. Cheng and Li (2001) believes that AHP is accurate in making 

business decisions because of its ability to check the consistency of the expert’s judgement.  

Although it has gained power and use across different industries, it has also been criticised 

because of how its standard consistency test function (Maletic et al, 2014). In their research, 

Maletic et al. (2014) proposed that a quality control approach could be used to conduct the 

consistency test. Musungwini and Minnitt (2008) also identified three limitations of this method. 

Firstly, calculations can be rendered complex if the number of criteria to be compared 

increases. This is illustrated in Table 11.   

Table 11: Relationships of criteria with number of pairwise comparison (Cited in Musungwini and Minnit, 
2008) 

Number of criteria 1 2 3 4 5 6 7 n 

Number of 
comparisons 

0 1 3 6 10 15 21 𝑛(𝑛 − 1)

2
 

Source: (Kardi, 2006) 

 

The recommended maximum number of criteria is nine; so, its total comparisons will be 36. If 

criteria are greater than nine are, the matrix may be complex and difficult to solve.  Secondly, 

the final decision (ranking of alternatives) can be affected if the scale of relative importance 

was to be increased. Lastly, AHP only works with a positive reciprocal matrix as explained 

earlier in the section.  Additionally, Hester and Velasquez (2013) indicated that AHP is 

susceptible to rank reversal in that, if alternatives are added at the end of the process, the 

final; rankings could flip or reverse.   

Because of its flexibility and ease of use, AHP has over 1000 doctoral dissertations and 1300 

papers released and used by different industries (from the beer industry to transport industry) 

for the process decision-making (Balt, 2015).  Its use has extended to the mining industry, 

particularly in the mining equipment and planning section (Mahase et al, 2016). Ataei et al. 

(2008) summarised the application of mining in Table 12. 

From the table, it is seen that AHP has been used for selection of an underground mining 

method by Alpay and Yavuz (2007) where the number of mining methods alternatives were 

five, and the number of criteria with 36 sub-criteria. Bitarafan and Ateai (2004) also used it to 

select mining method. Yavuz (2015), used AHP in combination with Yager’ method to select 

an underground method. Bogdanovic et al. (2012) used it in combination with PROMETHEE. 

The pie chart in Figure 13 shows the frequent use of AHP in combination to other method 

where it was used in the mining industry. Because of the existence of AHP, decisions based 

on gut feel and intuition can be supported by a structured approach (Mahase et al, 2016).  It 

must be noted that in this study, AHP will only be used for weight elicitation. 
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Figure 13: Combination of different methods with AHP in the mining industry (Mahase et al, 2016) 

Table 12: Summary of Application of AHP in the mining industry (Ataei et al, 2008) 

 

  

8%
5%

4%

20%

12%16%
6%

29%

Different methods constituting 
combination of MCDA methods

AHP, PROMETHEE

AHP, Yager;s
method

AHP, TOPSIS

AHP, and other
methods

NO Application areas No. of 
attributes 

(No. of 
sub-

attributes) 

No. of 
alternatives 

Proposed by 

1 Site selection for limestone 
quarry expansion 

4 (13) 3 Kumar Dey, 2008 

2 Optimum support design 
selection 

8 9 Yavuz et al. 2008 

3 Environmental reclamation 
of an open pit mine 

9 4 Bascetin, 2007 

4 Underground mining 
method selection 

6 (36) 5 Alpay & Yavuz, 2007 

5 Rock mass classification on 
tunnel engineering 

11 3 Chen & Liu, 2006 

6 Alumina-cement plant 
location 

5  5 Ataei, 2005 

7 Equipment selection at 
open pit 

4 (10) 4 Bascetin, 2004 

8 Mining method selection 15  7 Bitarafan & Ataei, 
2004 

9 Implementation of the AHP 
with VBA and AroGIS 

4 2 Marinoni, 2004 

10 Drilling waste discharges 3 (5) 8 Sadiq, 2004 

11 Optimal equipment 
selection in open pit mining 

2 (4) 4 Bascetin, 2003 

12 Selection opencast mining 
equipment 

7 5 Samanta et al, 2002 

13 Evaluating the 
environmental impact of 

products 

5 6 Hertwich, 1997 
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D. TOPSIS  
Hwang and Yoon proposed technique for Order preferences by Similarity to Ideal Solution 

widely known as TOPSIS in 1981. Amongst the MCDM, TOPSIS is the most straightforward 

technique (Lee et al, 2007). There is limited subjective input that is needed in TOPSIS expect 

for weights. The main aim of the method is to ensure that the distance between the best 

alternative and positive ideal alternative is minimized, while maximising the distance to the 

negative ideal solution (Olson, 2004).  

Unlike AHP, TOPSIS does not have a component to check for the inconsistency of the 

judgement and expressed preferences. In addition, TOPSIS must rely on other weighting 

methods such as AHP since it cannot elicit weights. As a result, it can handle large numbers 

of alternatives (at least 15) and criteria (over 27) (Lee et al, 2007). Therefore, this means that 

if the weights are not accurate weights, using TOPSIS method may not be viable (Olson, 

2004). Like AHP, TOPSIS can also cause rank reversal where the preferences of alternative 

can change if more criteria are added/removed. However, among many methods, it has the 

fewest rank reversals (Lee et al, 2007). 

On a positive note, TOPSIS can identify the best alternative quicker than many MCDM (Olson, 

2004). Its logic is rational and understandable. In addition, the importance of weights can be 

incorporated into the comparison procedure (Lamata & Garci-Cascales, 2012). The 

performance of alternatives and criteria can be visualised on a polyhedron; and the 

computation process can easily be done using a spreadsheet (Lee et al, 2007).  

Over 100 papers have been published where TOPSIS was applied (Zavadskas et al, 2016). 

Because of its ability to accommodate many alternatives and criteria, it has been applied in 

various areas such as in manufacturing companies, water management, quality control 

transportation, and product design. (Lee et al, 2007). TOPSIS has also been used to compare 

financial performances of companies (Olson, 2004). Additionally, Hester and Vasquez (2013) 

confirm its use in the supply chain management, logistics, engineering, marketing and 

environmental management.  

Tajvidi et al. (2015) used TOPSIS in selecting an optimum tunnel support system, combining 

it with methods like SAW. Aghajani and Osanloo (2007) applied the method in combination 

with AHP when selecting a loading and transportation system for an open pit mine. Ooriad et 

al, (2018) has used the TOPSIS method to select a suitable mining method for Tazareh Coal 

Mine (Iran). Amongst 14 mining methods, evaluated against 12 criteria, long wall mining was 

selected as the most suitable mining method. Table 13 shows more application of the TOPSIS 

Method. 

Table 13: Application of TOPSIS (Shih et al, 2007) 

No Application Areas No. of 
attributes 

No. of 
alternatives 

Proposed 
by  

1 Company financial ratio 
comparisons 

4 7 Deng et al. 

2 Expatriate host country 
selection 

6 (25 sub) 10 Chen & 
Tzeng 

3 Facility location selection 5 4 Chu 

4 Gear material selection 5 9 Milani et al 

5 High-speed transport 
system selection 

15 3 Janic 

6 Manufacturing plant location 
analysis 

5 (16) 5 Yoon and 
Hwang 
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7 Multiple response selection 2 18 Yang and 
chou 

8 Rapid prototyping process 
selection 

6 6 Byun and 
Lee 

9 Robot selection 4 27 Parkan and 
Wu 

10 Solid waste management 12 11 Cheng et al 

11 Water management 6 12 Srdjevic et al 

 

The process of TOPSIS in application is as follows:  

Step 1 

Develop a matrix like the one shown on the first step. The matrix must have ‘m’ feasible 

alternatives [A, A1, A2…Am] row-wise and ‘n’ evaluation criteria [x1, x2, …. xn] column-wise. 𝑋𝑖𝑗  

represent the performance of an alternative Ai under criterion 𝑋𝑗 , and 𝑊𝑗 is the weight of the 

criterion such that ∑ 𝑤𝑗 = 1
𝑛
𝑗=1  (Lamata &Garcia-Cascales, 2012).  

 

(

 
 

𝑋11 𝑋12 ⋯ 𝑋1𝑛
𝑋21 𝑋22 ⋯ 𝑋2𝑛
⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋯ ⋮
𝑋𝑚1 𝑋𝑚2 ⋯ 𝑋𝑚𝑛)

 
 

 

Step 2 

Normalize the decision matrix using the equation below. Normalization is the process of 

converting all the scores on the matrix to conform to a norm or standard by removing varying 

measurements.  The normalised values are obtained column-wise and must be positive 

numbers between zero and one (Shih et al, 2007). It must be noted that the criteria can either 

be a benefit (increasing effect) or cost criteria (decreasing effect). Their different effects are 

shown in calculations. The normalised values (rij ) will then be calculated using the following 

formula:  

rij = 
𝑋𝑖𝑗

√∑ 𝑋𝑖𝑗
2𝑚

𝑖=1

 𝑖 = 1,2, . . . 𝑛, 𝑗 = 1,2, . . . 𝑛                                                (2) 

Step 3 

This step shows how important a criterion is over another. The weights can be obtained from 

AHP or other weighting methods, (Lamata & Garcia-Cascales, 2012). The weighted 

normalised matrix (𝑎𝑖𝑗) is then determined from using the following:  

 

𝑎𝑖𝑗 = 𝑤𝑗𝑟𝑖𝑗 𝑖 = 1,2, . . 𝑚 𝑎𝑛𝑑 𝑗 = 1,2, . . . 𝑛 

 

(

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

) 
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Step 4 

The positive (𝐴+ ) and negative (𝐴−) ideal solution can be determined from the weighted 

normalised matrix: 

 

𝐴+ = (𝑎1
+, 𝑎2

+, 𝑎3
+), 𝑖 = 1,2,… . 𝑛 

𝐴− = (𝑎1
−, 𝑎2

−, 𝑎3
−), 𝑖 = 1,2, . . . 𝑛 

 

Note that  𝐴+{𝑚𝑎𝑥𝑖  𝑎𝑖𝑗,   𝑚𝑖𝑛𝑖𝑎𝑖𝑗} 𝑖𝑓 𝑗, 𝑖𝑠 𝑎 𝑏𝒆𝒏𝒆𝒇𝒊𝒕 𝒂𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆(𝑙𝑎𝑟𝑔𝑒𝑟 𝑖𝑠 𝑏𝑒𝑡𝑡𝑒𝑟) 

and 𝐴− = {𝑚𝑎𝑥𝑖𝑎𝑖𝑗 , 𝑚𝑖𝑛𝑖𝑎𝑖𝑗} 𝑖𝑓 𝑗, 𝑖𝑠 𝑎 𝒄𝒐𝒔𝒕 𝒂𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆 (𝑆𝑚𝑎𝑙𝑙𝑒𝑟 𝑖𝑠 𝑏𝑒𝑡𝑡𝑒𝑟) 

Step 5 

Euclidean distance formula is then used to calculate the distance between the ith-alternative 

and the ideal alternative as well as the non-ideal alternative solution the following way: 

𝐷𝑖
+ = √∑ (𝑎𝑖𝑗 − 𝑎𝑗

+)
𝑛

𝑗=1

2

𝑖 = 1,2, . . . 𝑚                                                            (3) 

𝐷𝑖
− = √∑ (𝑎𝑖𝑗 − 𝑎𝑗

−)2  𝑖 = 1,2, . . . 𝑚
𝑛

𝑗=1
                                                             (4) 

Step 6 

The last step involves calculating the relative closeness (𝐶𝑖) to the ideal solution of each 

alternative. The higher the value, the greater the preferences on the list of alternatives.  

𝐶𝑖 =
𝐷𝑖
−

𝐷𝑖
− + 𝐷𝑖

+ ; 0 ≤ 𝐶𝑖 ≤ 1, 𝑖 = 1,2, . . . 𝑚                                                          (5) 

For ease of understanding, a graphical representative of the TOPSIS method is presented 

below. A-E represent alternatives that are a result of the decision made based on criterion C1 

and C2. The ideal and anti-ideal are identified. Using the Euclidian distance, the C point is the 

closest one to the ideal and, while D would be the furthest alternative from the anti-ideal variant 

(Vavrek et al, 2017). 

 

Figure 14:  Graphical represenation of the TOPSIS Method (Vavrek et al, 2017) 
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E. TODIM 
 

TODIM (Tomada de Decisao Interative Multicriterio in Portuguese) means “Interactive and 

Multi-Criteria Decision Making” method. It is a distinct method that has its basis on the 

prospect theory (Zindani et al, 2017). Gomes and Lima to assist in ranking of alternatives 

where the decision maker has to effectively formulate a decision in the face of risk 

(Chakraborty, A & Chakraborty S, 2018) founded it in the early 90s.  

The prospect theory was derived from a joint research of two Israeli psychologists whose 

objective of the research was to evaluate the behaviour of human being when a decision that 

involves risk must be made. From the research, the psychologists observed that when people 

are faced with a risk, they often opt for a smaller gain to ensure security against the risk instead 

of running a risk to obtain a greater gain. It was also observed that when humans must make 

a decision that involves a loss, then people would rather run the risk of a greater loss than to 

accept a smaller secure risk (Gomes et al, 2011). 

A value function of this method is shown in Figure 15 and is similar to the prospect theory gain 

and loss function. The s-curved function shows a concave curve above the horizontal line that 

represent the gains. A strong dislike (aversion to risk) is reflected on the concave, while a 

propensity to risk is represent on the convex side of the graph below the horizontal line 

(Dehghani et al, 2017). The function is simple constructed from the differences perceived by 

the decision maker between two alternatives (Gomes et al, 2011)  

 

Figure 15: Value function of the Todim / prospect theory (Ozturkcan & Sengun, 2016) 

The advantage of TODIM is that it is effective in behavioural decision-making. This is because 

the decision maker’s psychological character is taken into account and can capture loss and 

again under uncertainty (Huang et al, 2017). The attenuation factor, which can be adjusted, 

can reflect the risk preference of the decision maker (Yu et al, 2018). 

Even professionals without a concrete background of MCDA (Rangel et al, 2009) define the 

method as a tool that is easy to implement. It can work with both qualitative and quantitative 

criteria. Other than TODIM the existing MCDA methods look for a solution corresponding to a 

global measure of a value, while in TODIM, the concept of global measurement is calculated 

while applying the prospect theory (Chakraborty, A & Chakraborty S, 2018). 
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TODIM’s application has been limited. Adali et al. (2016) have adopted it as a method of 

choice to select elective courses for the undergraduate student where the criteria involved the 

student’s interest and ability. Again, its use has extended to robot selection, material selection, 

exploration of the importance and performance levels in supply chain practices, and evaluation 

of real estate properties (Zindani et al, 2017). Chakraborty A and Chakraborty S (2018) applied 

TODIM in housing project selection. To evaluate broadband internet plans, Rangel et al. 

(2011) applied TODIM. There has been limited application in the mining industry. However, 

Dehghani et al. (2017) used the method in a mining method selection process.  

 

TODIM consist of six easy steps to implement: 

Step 1 

Given that n and m are number of alternatives and criteria respectively, a decision matrix 

showing the evaluation (𝑥𝑖𝑗) of ith alternative on the criteria is constructed: 

 

[

𝑥11 𝑥12 ⋯ 𝑥1𝑚
𝑥21 𝑥22 ⋯ 𝑥2𝑚
⋯ ⋯ ⋯ ⋯
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑚

] (𝑖 = 1,2, . . . 𝑛;  𝑗 = 1,2, . . . 𝑚) 

Step 2 

Like in TOPSIS, the decision matrix is normalised to become dimensionless to allow all the 

elements to be comparable. To normalise beneficial criteria, the following equation is used:  

 

𝑃𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑛
𝑖=1

                                                                                                                (6) 

 

Non-beneficial (cost) criteria uses the following equation for normalisation: 

 

𝑃𝑖𝑗 =

1
𝑥𝑖𝑗⁄

∑ 1
𝑥𝑖𝑗⁄𝑛

𝑖=1

                                                                                                                        (7) 

Step 3 

This step involves the calculation of weights (𝑤𝑗 ) for each of the criterion. Shannon entropy 

or AHP can be used to calculate the relative importance of the criteria. The reference criterion 

𝐶𝑟  is then determined by selecting the criterion with the maximum weight𝑤𝑟, the weight of the 

reference criterion. The relative weight is calculated as: 

𝑊𝑐𝑟 =
𝑊𝑐
𝑊𝑟
                                                                                                                               (8) 

When the relative weight is determined, all pairs of differences between performance 

measurements can be translated to the same dimensions (reference criterion) (Chakraborty, 

A & Chakraborty S, 2018). 
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Step 4 

The dominance degree of one alternative over another can then be calculated using the 

following formula: 

δ(𝐴𝑖 , 𝐴𝑗) =∑ ∅𝑐(𝐴𝑖, 𝐴𝑗)                                                                                       (9) 
𝑚

𝑐=1
 

The evaluation of the degree of dominance calculated above is performed using the following 

equation. It is the sum over all the criteria of both relative gains, loss or zeros values 

(Chakraborty, A & Chakraborty S, 2018). 

∅𝑐(𝐴𝑖𝐴𝑗) = {√
𝑤𝑐𝑟(𝑃𝑖𝑐 − 𝑃𝑗𝑐)

∑ 𝑤𝑐𝑟
𝑚
𝑐=1

 𝒊𝒇(𝑷𝒊𝒄 − 𝑷𝒋𝒄) > 𝟎 𝒓𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕 𝒂 𝒈𝒂𝒊𝒏                (10) 

 

OR 

 

∅𝑐(𝐴𝑖𝐴𝑗) =     {0 𝒊𝒇(𝑷𝒊𝒄 −𝑷𝒋𝒄) = 𝟎  𝒆𝒒𝒖𝒂𝒍 𝒄𝒐𝒏𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏                                    (11) 

 

OR 

 

∅𝑐(𝐴𝑖𝐴𝑗) = {
−1

𝜃
√
(∑ 𝑤𝑐𝑟

𝑚
𝑐=1 )(𝑃𝑖𝑐 − 𝑃𝑗𝑐)

𝑤𝑐𝑟
𝒊𝒇 (𝑷𝒊𝒄 − 𝑷𝒋𝒄) < 𝟎 𝒓𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕 𝒂 𝒍𝒐𝒔𝒔     (12) 

Where: 

𝑷𝒊𝒄 and 𝑷𝒋𝒄 represent the performances of the alternatives 𝐴𝑖 and 𝐴𝑗 for the criterion, 𝒄. 𝜽 is the 

attenuation factor that is used to represent the scattering of points because of the decision 

maker’s perception of loss on the adjusted S-curve. It ranges between 0 and 10. The negative 

quadrant of the prospect theoretical function is affected by this factor and different shapes 

results from its different values (Zindani, et al, 2017). ∅𝑐(𝑨𝒊𝑨𝒋)  represent the parcel of 

contribution of criterion c to function 𝛅(𝑨𝒊, 𝑨𝒋). It is the expression ∅𝒄(𝑨𝒊𝑨𝒋) that allows the 

adjustment of data to the value function of the prospect theory (Chakraborty, A & Chakraborty 

S, 2018). 

Step 5 

The overall dominance degree of alternative 𝐴𝑖 (ȿ𝑖) is determined to rank alternatives. The 

alternative with a dominating score becomes the best choice. To calculate ȿ𝑖: 

ȿ𝑖 =
∑ 𝛿(𝐴𝑖 , 𝐴𝑗) −𝑚𝑖𝑛∑ 𝛿(𝐴𝑖, 𝐴𝑗)

𝑛
𝑗=1

𝑛
𝑗=1

𝑚𝑎𝑥∑ 𝛿(𝐴𝑖, 𝐴𝑗) − 𝑚𝑖𝑛∑ 𝛿(𝐴𝑖, 𝐴𝑗)
𝑛
𝑗=1

𝑛
𝑗=1

                                                            (13) 

Step 6 

To check the robustness and stability of the final rankings, a sensitivity analysis can be carried 

out. The elements that can be subjected to changes is the attenuation factor, the choice of the 

reference criterion, weights and the preference evaluations (Kazancoglu & Burmaoglu, 2013). 
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F.  VIKOR 
 

According to Hayati et al. (2015), VIKOR is a Serbian phrase that means ‘Vlse Kriterijumsk 

Optimizacija Kompromisno Resenje’, which means “Multi-Criteria Optimization and 

Compromise Solution”. The method was developed in 1894 to select an alternative as a 

compromised solution from a list of alternatives in order to make a final decision. According to 

the method, the closest valid solution to the ideal solution is the compromise solution (Hayati 

et al, 2015). The VIKOR method ranks alternative according to three scalar quantities (S𝑖, 

R𝑖 and Q𝑖) which are independently evaluated against the criteria (Caterino et al, 2008).  

Unlike AHP, there is no pairwise comparison of the criteria in the VIKOR because criterion can 

be evaluated independently. In addition, the computations can be less in the face of several 

criterion.   (Hayati et al, 2015). Apart from weight determination, VIKOR only requires the 

decision maker’s intervention where the coefficient ‘v’ value must be chosen. The TOPSIS 

and VIKOR have the same approach except that VIKOR allows for weight change through the 

coefficient ‘v’ (Caterino, et al 2008). 

Another added advantage to VIKOR method is that it allows the decision maker to check how 

far the second-best alternative is from the first. If the method finds that the best alternative in 

terms of 𝑄𝑖 is the best in terms of the global criteria performance only (𝑆𝑖) or in terms of the 

performance measurement of single criterion (𝑅𝑖) only, then the first best alternative cannot 

be considered as the best in isolation, but with other alternatives in a subgroup. Therefore, 

VIKOR gives satisfaction to acceptability of the final rankings. (Caterino, et al 2008). The 

method is a useful tool especially where the decision maker is unable to express his/her 

preferences at the beginning of the process (Thiagarasu & Rengaraj, 2015). 

VIKOR has been used in many applications as recorded by Moghassem and Fallahpour 

(2012). It was used in 2016 by Wang et al. for renewable energy resources selection in China. 

Kuo et al (2011) to evaluate the quality of airports service used VIKOR again. The successful 

application of VIKOR has extended too many fields such as manufacturing, material selection, 

marketing, construction, risk and financial management, supply chain, health-care, 

performance evaluation and many other areas (Mardani et al, 2015). In the mining industry, 

there has been limited application of VIKOR. Mahase et al. (2016) identified two areas dealing 

with mine planning and related studies to have applied this method. Azimi et al used VIKOR 

in evaluating the strategies of the Iranian mining sector in 2013. To derive the preference order 

of open pit mines equipment, Bazzazi et al. (2011) applied a modified version of VIKOR. There 

are over 176 papers published between 2004 and 2015 where VIKOR was applied; either 

alone or through an integrated approach (Mardani et al, 2015).  

 

VIKOR is performed through the following process: 

Step 1 

Establish a decision matrix like the previous matrix constructed in the other MCDMs. 

 

 

Step 2 

Compute the utility (satisfaction-S) and regret (Rejection-R) measures respectively: 



54 

 

 

𝑆𝑗 =∑ 𝑤𝑖
(𝑓𝑖
∗ − 𝑓𝑖𝑗)

(𝑓𝑖
∗ − 𝑓𝑖

−)

𝑛

𝑖=1
                                                                                          (14) 

 

 

𝑅𝑗 = 𝑚𝑎𝑥𝑖 [𝑤𝑖
(𝑓𝑖
∗ − 𝑓𝑖𝑗)

(𝑓𝑖
∗ − 𝑓𝑖

−)
]                                                                                         (15) 

The satisfaction (S) value indicates the distance of the alternative from the ideal point. So, the 

S-value is obtained for each alternative against a criterion. The sum of all the alternatives 

against the criteria gives us the 𝑆𝑗 option. The R-value represent the maximum rejection of the 

alternative because of the distance from the ideal point. Therefore, the highest value (𝑆𝑗) of 

each option per criterion represent the rejection index (𝑅𝑗) of that alternative (Hayati et al, 

2015).  

Step 3 

Calculate the VIKOR index 𝑄𝑖 : 

𝑄𝑖 = v
(𝑆𝑗 − 𝑆

∗)

(𝑆− − 𝑆∗)
+ (1 − 𝑣)

(𝑅𝑗 − 𝑅
∗)

(𝑅− − 𝑅∗)
                                                              (16) 

 

Where𝑆∗ = 𝑚𝑖𝑛𝑗𝑆𝑗;𝑆
− = 𝑚𝑎𝑥𝑗𝑆𝑗;𝑅

∗ = 𝑚𝑖𝑛𝑗𝑅𝑗;𝑅
− = 𝑚𝑎𝑥𝑗𝑅𝑗. The parameter ‘v’ is chosen by the 

decision maker and must be between zero and one. Common practice is such that a ‘v’>0.5 

is chosen when the decision maker wants to give more importance to the utility measure. A 

‘v’< 0.5 is used when the regret measure wants to be given more weight. However, when the 

two terms are considered equally relevant, then a ‘v’ that equals 0.5 should be used (Caterino 

et al, 2008). 

 

Step 4 

Rank the order of preferences: 

The alternative with the smallest value of Q is determined as the best solution in the VIKOR 

and ranked as the best alternative (Q minimum) only if the following conditions are met: 

 

Condition 1: Acceptable advantage: Q(A′′) − Q(A′) ≥ DQ                                                (17) 

Where A′ and A′′ are the first and second alternatives respectively with the best rankings in 

the Q list. DQ=
1

𝑚−1
; m is the number of alternatives. 

 

Condition 2: Acceptable stability in decision-making:  

In the second condition, A′ must be recognised as the best ranked in S and/or R groups.  

 

So, if one of the conditions is not satisfied, the n compromised solutions are proposed as 

follows: 
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 Alternatives A′ and A′′ will be the best option if condition two is not satisfied 

 If one of these conditions is not satisfied, then it will not be possible to select the 

best solution of the set. A subset, of options that are preferable will be defined. In 

the subset A′ and A′′must be included (Caterino et al, 2008). 
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G. GREY RELATIONAL ANALYSIS (GRA) 
 

Grey Theory is a mathematical theory that was proposed in 1982 by Deng to solve problems 

with uncertainty and incomplete information. The grey theory consists of five parts; Grey 

prediction model, Grey relational analysis (GRA), Grey decision, Grey programming, and Grey 

control. The area of interest for decision makers is the GRA. This technique treats each 

alternative as a sequence of data. It then analyses the relational degree between each 

alternative and the reference sequence (Kuang, 2014). 

The reference sequence is the ideal solution that is represented as the best performance when 

measured against the criteria (Kuang, 2014). The main idea of the GRA is to compare the 

geometrical similarity between the reference sequence and the data sequences of several 

alternatives. A higher relational degree means that the sequences (data and reference) are 

close to each other (Dai et al, 2014). This is illustrated in the reproduced graph from Kuang 

(2014). In the case of the graph, Alternative 1 would be the best option since it is closer to the 

reference sequence.  

 

Figure 16: Grey relational degree illustration (Kuang, 2014) 

GRA application has been significant; from agriculture to environment and engineering (in 

decision-making). Wu (2017) used it for decision making in credit risk analysis. Hasani et al. 

(2012) determined the optimum process parameters for open-end spinning yarns by applying 

GRA. To find the most suitable watermarking scheme, Lin et al (2011) used GRA. Kandasamy 

and Vinodh (2017) applied GRA in material and end of life strategy selection. GRA has also 

been used in combination with other MCDA methods such as in evaluating the customer 

perceptions on in-flight service quality using a fuzzy-grey method by Chen et al (2010). To 

optimize multi-response simulation problems, Kuo et al (2008) used a grey-based Taguchi 

method. Although it has been successfully applied, GRA has also been criticized for its lack 

of mathematical foundation (root) to explain its origin, laws and constraints (Lu, 2015). 

 In the mining industry, Dehghani et al. (2017) used GRA to select a mining method. To assess 

mine safety, Xu Q and Xi K (2018) used GRA in combination with bow tie. GRA was used to 

study the coalmines accidents by Shuai and Jin-Long (2008). In 2018, Bao et al. applied GRA 

in combination to DEA model to evaluating the safety benefits of the mining industry 

occupational health and safety management systems.  
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The steps in GRA are as follows: 

Step 1 

Construction of a matrix: 

Like in the previous methods, a matrix of alternatives evaluated against the chosen criteria is 

drawn.  

 

Step 2 

Data pre-processing: 

This is a process of transferring data sequences to comparable sequences so that by default, 

GRA may not yield wrong results. Comparable sequences are normalised sequences ranging 

between zero and one (Sallehuddin, n.d.). The following three approaches are used:  

 If a higher performance is better: 

𝑥∗(𝑘) =
𝑥𝑖
0(𝑘) − 𝑚𝑖𝑛 𝑥𝑖

0(𝑘)

𝑚𝑎𝑥 𝑥𝑖
0(𝑘) − 𝑚𝑖𝑛 𝑥𝑖

0(𝑘)
                                                                (18) 

 If a lower performance is better: 

𝑥∗(𝑘) =
𝑚𝑎𝑥 𝑥𝑖

0(𝑘) − 𝑥𝑖
0(𝑘)

𝑚𝑎𝑥 𝑥𝑖
0(𝑘) − 𝑚𝑖𝑛 𝑥𝑖

0(𝑘)
                                                                    (19) 

  If the value to be calculated is closer to a target value 𝑥∎(𝑘) 

where 𝑚𝑖𝑛 𝑥𝑖
0(𝑘)  ≤ 𝑥∎(𝑘) ≤ 𝑚𝑎𝑥 𝑥𝑖

0(𝑘) 

 

𝑥∗(𝑘) =
1 − |𝑥𝑖

0(𝑘) − 𝑥∎(𝑘)|

𝑚𝑎𝑥{𝑚𝑎𝑥 𝑥𝑖
0(𝑘) − 𝑥∎(𝑘), 𝑥∎(𝑘) − 𝑚𝑖𝑛 𝑥𝑖

0(𝑘)}
                          (20) 

 

Where: 

i = 1, . . . m     k = 1, . . n 

m represent the number of criteria. 

n represent the number of alternatives. 

𝑥𝑖
0(𝑘) represent the original sequence. 

𝑥∗(𝑘)represent the comparability sequence. 

 

Step 3 

Derive the reference sequence: 

The maximum value (𝑥0𝑗
~ ) on the column of each criterion becomes the reference value; 

collectively, the values make up a reference sequence denoted as: 

 

𝑥0𝑗
~ = (𝑥01

~ , 𝑥02
~ , 𝑥03

~ , 𝑥04
~ , . . . . . . 𝑥0𝑚

~ ) 

The reference sequence is basically the best performance sequence that any sequence could 

achieve (Kandasamy & Vinodh, 2017).  

Step 4 

Generate and calculate the grey relational coefficient: 



58 

 

 

The measure of similarities between the reference sequence (𝑥0𝑗
~ ) and the comparability 

sequence (𝑥∗(𝑘)) are then calculated to establish the relational coefficient. The following 

equation is used: 

𝛾𝑖𝑗(𝑥0𝑗
~ , 𝑥∗(𝑘)) =  

∆𝑚𝑖𝑛 + 𝛿∆𝑚𝑎𝑥

∆0,𝑗 + 𝛿∆max
                                                           (21) 

Where: 

∆𝑚𝑖𝑛 =  𝑚𝑖𝑛 𝑚𝑖𝑛 |𝑥0𝑗
~ − 𝑥∗(𝑘)|  

∆𝑚𝑎𝑥  = max max |𝑥0𝑗
~ − 𝑥∗(𝑘)|  

∆0,𝑗 = |𝑥0𝑗
~ − 𝑥∗(𝑘)| , which represent the deviation of the comparability sequence from the 

reference sequence. 

𝛿 ∈ [0,1] is the identification coefficient that is used to adjust the significance of the ∆𝑚𝑎𝑥 

value. Its role is to make a better distinction between the comparable and the reference 

sequence by changing the magnitude of the relational coefficient without necessarily changing 

the rankings. A value of 0.5 is the typically used value because it gives a moderate 

distinguishing effect as well as stability (Sallehuddin, n.d.). 

 

Step 5 

Generation of the Grey Relational Degree (GRD) 

The grey relational degree of an alternative with respect to the reference sequence can then 

be calculated by averaging the grey relational coefficients. This is the level of correlation 

between the alternatives and the reference sequence. The comparability sequence that is 

most similar to the reference sequence will have the highest GRD. Therefore, the 

corresponding alternative of that comparability sequence is the one highly rated (Kandasamy 

& Vinodh, 2017). The higher the value, the better the ranking of the alternative (Kuang, 2014). 

 

The formula for obtaining the GRD is: γ(𝐴0, 𝐴𝑖) = ∑ 𝑤𝑗𝛾(𝑥0𝑗
~ , 𝑥∗(𝑘))𝑚

𝑗=1  where the sum of the 

weights equal one. 
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H. PROMETHEE 
 

PROMETHEE which stands for Preference Ranking Organisation Method of Enrichment 

Evaluation was been developed in 1982 by Brans. Since then, PROMETHEE I to VI have 

been developed to function as outranking methods. Alternatives are compared in pairs with 

respect to each criterion (Tomic, 2011). A preference function approach is followed in 

PROMETHEE. A preference function P 𝑗(a, b) for alternatives ‘a’ and ‘b’ depends on the 

determined difference [𝑑𝑗(𝑎, 𝑏)] of the alternatives for a chosen criterion, j. additionally, it 

depends on the preference functions that are shown in Table 14. The parameter q𝑗and p𝑗  

represent the indifference (the largest difference when comparing alternatives below which 

the decision maker considers the alternatives negligible) and preference (smallest difference 

that justifies strict preference) respectively. 

Table 14: generalized preference functions of PROMETHEE.  (Lerch et al, 2017) 

 

  

Using the following steps, PROMETHEE can rank a finite set of alternatives against conflicting 

criteria. PROMETHEE II and I are used for partial and complete ranking respectively (Iphar & 

Alpay, 2018).  

Step 1 

Construct an evaluation matrix where the performance of the alternatives (i = 1,2,3, … m) can 

be evaluated using quantitative and qualitative criteria (j-1,2,3…n). 
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Step 2 

Compute the pairwise performance difference between the alternatives for each criterion: 

𝑑𝑗(𝑎, 𝑏) = 𝑓𝑗(𝑎) − 𝑓𝑗(𝑏)                                                                                     (22) 

Step 3 

Choose the type of criterion function; indifference, and/or the preference function threshold 

values for each criterion. The six types of preference functions are used.  

In choosing the functions, some of the tips to consider are presented by Kumar and Sultana 

(2012) as follows: 

 The V-shape (Type 3) and the Linear (Type 5) can best work with quantitative 

criteria (Price, costs, and power). 

 Gaussian (Type 6) is hardly used because it is difficult to find its (reversal point) 

parameter. 

 Usual (Type 1) and Level (Type 4) are best for Yes/No (qualitative) criteria 

scales. 

 Level (Type 4) can also be used to differentiate smaller deviations from larger 

ones.  

 The U-shape or Quasi (Type 2) is a special case of the Type 4 preference 

function and hardly used.  

The indifference and preference function are based on the user’s own judgement but must be 

consistent with the previous studies and a sensitivity analysis can be performed to check for 

consistency and stability (Kumar & Sultana, 2012). 

 

Step 4 

Compute the Multi-criterion preference index: 

π(𝑎, 𝑏) =∑ 𝑃𝑗(𝑎, 𝑏)𝑤𝑗       
𝑘

𝑗
                                                                                        (23) 

This is the overall performance of ‘a’ over ‘b’ for the criteria. 𝑤𝑗 denotes the weight of the jth 

criterion. If the calculated value is closer to one, then the greater the preference (Brans & 

Vincke, 1985). 

Step 5 

The positive and negative outranking flow of alternative a, in a set of alternatives is then 

calculated and partially ranks the alternatives (PROMETHEE I): 

𝜙+(𝑎) =
1

𝑛 − 1
∑ 𝜋(𝑎, 𝑥)

𝑥∈𝐴
 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑜𝑢𝑡𝑟𝑎𝑛𝑘𝑖𝑛𝑔 𝑓𝑙𝑜𝑤                            (24) 

The Positive Outranking flow expresses the extent of how an alternative outranks the others. 

If this value is high, then the alternative is better. (Deshmukh, 2013)  

𝜙−(𝑎) =
1

𝑛 − 1
∑ 𝜋(𝑥, 𝑎)

𝑥∈𝐴
 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑜𝑢𝑡𝑟𝑎𝑛𝑘𝑖𝑛𝑔 𝑓𝑙𝑜𝑤                           (25) 
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The Negative Outranking flow expresses the extent of how an alternative is outranked 

(dominated) by the other alternatives. If this value is small, the better the alternative. 

(Deshmukh, 2013). 

Step 6 

𝜙(𝑎)  represent the net outranking flow of total ranking (PROMETHEE II). The highest value 

amongst all the alternatives makes that alternative the most attractive.  

 

𝜙(𝑎) = 𝜙+(𝑎)−𝜙−(𝑎)                                                                                 (26) 

As a last step, a sensitivity analysis can be performed to verify the stability of the alternative 

rankings when the weight, indifference and preference functions are altered (Giurca et al, 

2014).  

Giurca et al (2014) used PROMETHEE in selection of Photovoltaic Panels. PROMETHEE has 

been successfully applied in strategic planning of natural resources (Kangas et al, 2001). 

Energy technologies have been previously assessed using PROMETHEE (Oberschmidt et al, 

2010). PROMETHEE has also been implemented in the Robotics field (Taillandier & 

Stinckwich, 2011).  

Zooming into application in the mining industry, PROMETHEE was used for a Chromite mine 

in Turkey to select the most suitable underground ore transport system (Elevli & Demirci, 

2004). Bogdanovic et al. (2012) integrated AHP with PROMETHEE for mining method 

selection. Elevli and Dermici (2004) applied PROMETHEE to select the most suitable 

underground ore transport. For selecting an underground mining method, Balusa et al, (2018) 

integrated WPM and PROMETHEE.  

 

A clear advantage the PROMETHEE method has over AHP and other MCDMs is that there is 

no need to perform a pair-wise comparison when alternatives are removed or added in the 

evaluation process (Athawale & Chakraborty, 2010). Hyde et al (2003) highlighted some of 

the limitations of PROMETHEE to include the following: Decision makers finds it difficult to 

define the preference and indifference thresholds because of limited availability of selection 

guidelines. The uncertainty of the chosen thresholds is also not fully accounted even though 

a sensitivity analysis is later performed. The subjective input of the preferences introduces yet 

uncertainty.  Additionally, Hyde et al (2003) further advises the user to note the fact that the 

six criterion functions introduced do not address the imprecision of the decision matrix 

constructed from expert judgement. So, difficulties may still be encountered in the process of 

using PROMETHEE because of these limitations and a considerable amount of uncertainty 

remains in the ranking process (Hyde et al, 2003). 
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I. ELECTRE 
 

ELECTRE (Elimination Et Choix Traduisant la REalite) translated to mean: Elimination and 

Choice Expressing Reality was developed in 1968 by Bernard Roy. Since then, different 

ELECTRE methods have been developed. ELECTRE I & ELECTRE IS were developed for 

selection problems. ELECTRE TRI is for sorting problems, and ELECTRE II, III, and IV are 

for ranking problems (Kangas et al, 2001). The method is used for analysing data in a 

decision matrix to rank a set of alternatives. Like PROMETHEE, the are indexes 

(concordance and discordance) that are used in the pairwise comparison between 

alternatives (Yavuz, 2013). The following are steps involved in ELECTRE I: 

Step 1 

Construction, normalization, and establishing the weighted matrix of the decision matrix.  

The step is like the previous ones for the other MCDM methods. The constructed matrix 

(𝑅𝑖𝑗) is normalized using equation (27) for benefit criteria.  While non-benefit criteria can be 

normalised by subtracting equation (27) from 1.  

𝑟𝑖𝑗 =
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, . . . , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2, . . . , 𝑚                                           (27) 

Like previously, the normalised matrix is multiplied to the weight to give the weighted matrix. 

Step 2 

The Ascertainment of concordance and discordance interval sets (Yavuz, 2013). 

In a set of alternatives, A= {a, b, c….}, the concordance (𝐶𝑎𝑏) and discordance (𝐷𝑎𝑏) sets 

are: 

𝐶𝑎𝑏 = {𝑗|𝑥𝑎𝑗 ≥ 𝑥𝑏𝑗}                                                                                                           (28) 

𝐷𝑎𝑏 = {𝑗|𝑥𝑎𝑗 < 𝑥𝑏𝑗} = 𝐽 − 𝐶𝑎𝑏                                                                                       (29) 

 

Every pair of alternatives either belongs to a concordance or discordance subset. 

Concordance set consists of all attributes for which ‘a’ is preferred over ‘b’. The complement 

set, discordance consist of all attributes for which ‘b’ is preferred over ‘a’.  

Step 3 

Calculate the concordance interval matrix: 

𝐶𝑎𝑏 =∑ 𝑤𝑗
𝑗∈𝐶𝑎𝑏

                                                                                              (30) 

 

𝐶 = [

− 𝑐(1,2) ⋯ 𝑐(1,𝑚)
𝑐(2,1) − ⋯ 𝑐(2,𝑚)
⋮ ⋮ − ⋮

𝑐(𝑚, 1) 𝑐(𝑚, 2) ⋯ −

] 
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𝐶𝑎𝑏 represent the degree of confidence in the pair wise judgements of (a, b) (Azadnia et al, 

2011).  

Step 4 

Calculate the discordance interval matrix, which represent the degree of disagreement: 

𝐷𝑎𝑏 =
𝑚𝑎𝑥𝑗∈𝐷𝑎𝑏|𝑥𝑎𝑗 − 𝑥|

𝑚𝑎𝑥𝑗∈𝐽,𝑚,𝑛∈𝐼|𝑥𝑚𝑗 − 𝑥𝑛𝑗|
                                                                      (31) 

The maximum in the numerator is from the discordance set. The maximum in the 

denominator is from the overall sets (concordance and discordance). 

D = [

− 𝑑(1,2) ⋯ 𝑑(1,𝑚)

𝑑(2,1) − ⋯
⋮ ⋮ − ⋮

𝑑(𝑚, 1) 𝑑(𝑚, 2) ⋯ −

] 

Step 5 

Determine the concordance matrix index: 

𝑐− = ∑∑ 𝑐(𝑎, 𝑏) 𝑚(𝑚 − 1)                                                                    (32)⁄
𝑚

𝑏=1

𝑚

𝑎=1

 

 

In addition, the Boolean Matrix (E) is given by: 

{
𝑒(𝑎, 𝑏) = 1 𝑖𝑓 𝑐(𝑎, 𝑏) ≥ 𝑐−

𝑒(𝑎, 𝑏) = 0 𝑖𝑓 𝑐(𝑎, 𝑏)  < 𝑐−
 

Step 6 

Determine the discordance index matrix: 

𝑑− =
∑ ∑ 𝑑(𝑎, 𝑏)𝑚

𝑏=1
𝑚
𝑎=1

𝑚(𝑚 − 1)
 𝑤ℎ𝑒𝑟𝑒 𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥        (33) 

The discordance index (F) matrix is given by: 

{
𝑓(𝑎, 𝑏) = 1 𝑖𝑓 𝑑(𝑎, 𝑏)  ≥ 𝑑−

𝑓(𝑎, 𝑏) = 0 𝑖𝑓 𝑑(𝑎, 𝑏) < 𝑑−
 

Step 7 

Determine the aggregate dominance matrix, G. It is determined by multiplying 

corresponding elements of Matrix E and F from step 5 and 6.  

Step 8 

Eliminate and rank the alternatives. 

In this step, all the columns are checked, and the column with the least amount of number 

‘1’s should be chosen as the best (Afshari et al, 2010). If two alternatives have the same 

amount of number ‘1’, a sensitivity analysis can be performed by changing the concordance 

and discordance indices since it is an approximate threshold value (Peng et al, 2014). For 
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better accuracy, Peng et al (2014) suggest that approaches or ways of finding optimal 

values of the thresholds may be researched further.  

One common advantage for many decision-making methods is the ability to handle both 

qualitative and quantitative criteria. ELECTRE possess such ability. Sometimes ELECTRE 

fails to sort the alternatives in different ranks, in those cases a hybrid approach may be 

necessary (Ashfari et al, 2010). A hybrid approach is a process of integrating MCDMs 

methods to reach a final ranking.  

Hobbs and Meier (2000) have used ELECTRE in the civil and environmental engineering. 

Ashfari et al (2010) used it for personnel selection. Over 540 papers where ELECTRE was 

applied have been published. The papers represent fields such as energy management, 

natural resources, environmental management, health, safety, medicine, design, and 

mechanical engineering. To select optimal technology for surface mining, Stojanovic et al. 

(2017) applied an integrated AHP-ELECTRE. Bodziony et al. (2016) used ELECTRE to 

select surface mining haul trucks.  
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J. HIERARCHIAL PREFERENCE VOTING SYSTEM (HPVS) 
 

The Preference voting system (PVS) allows voters to select ‘m’ number of candidates from 

among ‘n’ candidates so that the selected can be ranked from the most to the least preferred. 

Different ranking places are determined, and each candidate may receive votes from the 

determined ranking places. To calculate the total score for the candidate, the weighted votes 

are summed; and the preferred candidate is the one with the highest score (Wang et al, 2007). 

The formula for calculating the total score is shown below: 

𝑍𝑖 =∑ 𝑣𝑖𝑗𝑤𝑗
𝑚

𝑗=1
                                                                                                 (34) 

Where 𝑤𝑗 is the importance weight of the jth (1, 2, …m) ranking place. 𝑣𝑖𝑗 represent the vote 

of the candidate ‘i’ that is being ranked in the jth place. The table below illustrate the structure 

of PVS (Nourali et al, 2012). 

Table 15: Structure of PVS (Nourali et al, 2012) 

   

Candidates Ranking places Total Score 

P 1 ⋯ P j ⋯ P m 

Weights of the ranking places 

W 1 ⋯ W j ⋯ W m 

Votes of each candidate 

Candidate1 V 11 ⋯ V 1j ⋯ V 1m 𝑍𝑖 =∑ 𝑣𝑖𝑗𝑤𝑗
𝑚

𝑗=1
 

 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Candidaten V n1 ⋯ V nj ⋯ V nm 𝑍𝑛

=∑ 𝑣𝑛𝑗𝑤𝑗
𝑚

𝑗=1
 

 

 

The main key to ranking in PVS is to determine the weights associated with the ranking places. 

Different approaches have been used for determining weights; such as the Broda-Kendall 

(BK) method. The method has been widely used because of its simplicity. It assigns weights 

from the highest to the lowest ranking place. The first place is given a weight of ‘m’; the second 

place is given m −  1 , followed by m - 2, …, 2. The last place is given a weight of one. Though 

simple, the production of weights in this method is subjective. As a result, in 1990 Cook and 

Kress suggested the application of DEA-Data Envelopment Analysis, which reduces 

subjectivity (Nourali et al, 2012). 

In DEA, the candidate can choose his/her own weights such that the overall rating is 

maximised (Vencheh, 2014). A candidate is said to be DEA efficient when they have the 

highest score. Because of the freedom to choose weights, often there may be more than one 

candidate who is DEA efficient. Consequently, Cook and Kress suggested that the gap 

between weights must be maximised such that only one candidate will be DEA efficient. The 
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suggestion implied that a discrimination intensity function ε would need to be determined 

subjectively; and it may be difficult for the candidate to do so. The suggestion was found to be 

equivalent to imposing common weights like the BK method (Wang et al, 2007). Therefore, 

three new models proposed by Wang et al (2007) proved to reduce the difficulty in choosing 

weights; and all of them lead to a stable full ranking. The models are presented in Table 16. 

Table 16: HPV weight models proposed by Wang et al (2007) 

Model 1: 
Maximize α 
 
Subject to: 

𝒁𝒊 =∑ 𝒗𝒊𝒋𝒘𝒋 ≥ 𝜶   𝒊
𝒎

𝒋=𝟏

= 𝟏, . 𝒏 
 

𝒘𝟏 ≥ 𝟐𝒘𝟐 ≥ ⋯𝒎𝒘𝒎 ≥ 𝟎 

∑ 𝒘𝒋 = 𝟏
𝒎

𝒋=𝟏
 

Model 2: 
Maximize α 
 
Subject to: 

𝜶 ≤ 𝒁𝒊 =∑ 𝒗𝒊𝒋𝒘𝒋 ≤ 𝟏   
𝒎

𝒋=𝟏
 

 

𝒘𝟏 ≥ 𝟐𝒘𝟐 ≥ ⋯𝒎𝒘𝒎 ≥ 𝟎 

Model 3 
Maximize: 

𝒁𝒊 =∑ 𝒗𝒊𝒋𝒘𝒋
𝒎

𝒋=𝟏
 

 

𝒘𝟏 ≥ 𝟐𝒘𝟐 ≥ ⋯𝒎𝒘𝒎 ≥ 𝟎 

∑ 𝒘𝒋
𝟐 = 𝟏

𝒏

𝒋=𝟏
 

 

Model 1 uses a linear DEA model to determine the weights. The model maximises the 

common lower bound of the total scores. It is suitable for studies with many candidates 

because it is easy to compute. Model 2 is the same as Model 1 except that the upper bound 

of the total score equal 1.  Model 3 uses nonlinear DEA model. (Nourali et al, 2012).  

 

Nourali et al, (2012) for MMS developed a modified PVS system. It was considered that an 

MMS problem is hierarchical in nature and could be divided into two objectives. Firstly, a 

ranking of criteria and determination of their relative weights. Secondly, alternatives are ranked 

with respect to each criterion. The first and second objectives are illustrated within Table 17 

and Table 18. 

The relative importance (p) of each criterion is characterised; from the most (IL 1) to the least 

(IL p). Decision makers are then asked to assess each criterion in terms of the importance 

levels. The number of decision makers assessing each criterion are represented by  V jk 

appearing within the dotted lines (Nourali et al, 2012). Given the weights associated with each 

importance level, the total score of the criterion can be obtained using the following formula: 

𝑇𝐶𝑗 =∑ 𝑣𝑗𝑘𝑤𝑗                                                                                 (35)
𝑝

𝑘=1
 

 

Table 17: PVS for criteria (Nourali et al, 2012) 

    

Criteria 

Importance Levels 

Total Score Weights 
IL 1 ⋯ IL K ⋯ IL p 

Weights of importance level 

W 1 ⋯ W k ⋯ W p 
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The same process is followed for alternatives. Priorities of alternatives are represented in the 

ranking place from the most to the least and they overall number is represented by hj. Let v1𝑗ℎ 

be the vote of alternative i. being ranked in the hth ranking place. Then the total score can be 

calculated as shown in the ultimate score column of Table 18. The highest ultimate score will 

be the preferred alternative (Nourali et al, 2012). 

 

Table 18: PVS for alternatives (Nourali et al, 2012) 

 

 

Nourali et al (2012) have only used HPV in selection of a mining method. Its application is 

limited and will not be further tested in this study because of the impossibility of applying it 

without voters. However, it was mentioned as part of the research so that readers may be 

aware of its existence.  

  

Votes of each criterion in each ranking place 

C1 V 11 ⋯ V 1k ⋯ V 1p 
𝑇𝐶1 =∑ 𝑣𝑖𝑘𝑤𝑗

𝑚

𝑗=1
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Weights of each ranking place 

w11 ⋯ w1h1 ⋯ wj1 ⋯ wjhj ⋯ wm1 ⋯ wmhm 

Votes of each criterion in each ranking place 

A1 V 11h1 ⋯ V 1j1 ⋯ V 1mhm 
𝑈𝑇1 =∑ ∑ (𝑣1𝑗ℎ𝑤𝑗ℎ)𝑊𝑗

ℎ𝑗

ℎ=1

𝑚

𝑗=1
 

 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

An V n11 ⋯ V nj1 ⋯ V nmhm 
𝑈𝑇𝑛 =∑ ∑ (𝑣𝑛𝑗ℎ𝑤𝑗ℎ)𝑊𝑗

ℎ𝑗

ℎ=1

𝑚

𝑗=1
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2.2.3. TECHNIQUES IN OTHER INDUSTRIES 
 

A. OPERATIONAL COMPETIIVENESS RATING ANALYSIS (OCRA) 
 

Like the other MCDM, OCRA was developed in 1991 by Parkan to calculate the performance 

of alternatives. It uses an intuitive approach to incorporate the preferences of the decision 

maker about the relative importance of the criteria (Madic et al, 2015). The decision maker’s 

preferences for the criteria is reflected by the preference ratings of the alternatives (Chatterjee 

& Chakraborty, 2012).  

The advantage of OCRA over some MCDM is that, one can deal with both beneficial and non-

beneficial criteria separately without having to lose some information in the process. The 

method is not a parametric approach and that implies that it is not affected by additional 

parameters in the process and less steps are required for the whole procedure (Madic et al, 

2015). Also, Chakraborty and Chatterjee (2012) add that OCRA can deal with situations where 

there is a dependency between the relative weights of the criteria and the alternatives.  

The following is a procedure for the OCRA method as presented by Madic et al (2015): 

Step 1 

Construct a decision matrix 

Step 2  

The preference rating of the decision maker for the non-beneficial criteria for each alternative 

is determined. The aggregate performance of the alternative with respect to all non-beneficial 

criteria is calculated using the following formula: 

𝐼𝑖̅ =∑ 𝑤𝑘 ×
𝑚𝑎𝑥(𝑥𝑖

𝑘) − 𝑥𝑖
𝑘

𝑚𝑖𝑛 (𝑥𝑖
𝑘)

                                                                                          (36)
𝑞

𝑘=1
 

𝑞 represents the number of non-beneficial criteria 

𝐼𝑖̅ represents the measure of the relative performance of the i-th alternative. 

𝑥𝑖
𝑘 represents the performance score of the i-th alternative for the k-th criterion.  

𝑤𝑘 is the weight of the non-beneficial criterion.  

If the i-th alternative is preferred over m-th alternative with respect to the k-th criterion, then  

𝑥𝑖
𝑘 < 𝑥𝑚

𝑘  

 

Step 3 

A linear preference rating for the non-beneficial criteria is the determined, so that a zero rating 

can be assigned to the least preferable alternative. The formula used is:  

𝐼 ̿̅𝑖 = 𝐼𝑖̅ −𝑚𝑖𝑛 (𝐼𝑖̅)                                                                                                  (37) 

Where by, 𝐼𝑖̅ represent the aggregate preference rating for the i-th alternative with respect to 

the criteria.  
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Step 4 

The preference rating of the decision maker for the beneficial criteria for each alternative is 

determined. The aggregate performance of the alternative with respect to all non-beneficial 

criteria is calculated using the following formula: 

𝑂̅𝑖 =∑ 𝑤ℎ
𝑏

ℎ=1
×
𝑥𝑖
ℎ −𝑚𝑖𝑛 (𝑥𝑖

ℎ)

𝑚𝑖𝑛 (𝑥𝑖
ℎ)

, 𝑖 = 1,2, . . . , 𝑚                                                                (38) 

Where: 

𝑏 represents the number of beneficial criterion and the weight is represented by 𝑤ℎ.A higher 

score implies that the alternative is preferred more.  

 

Step 5 

A liner preference rating for beneficial criteria is determined.  

𝑂̿𝑖 = 𝑂̅𝑖 −𝑚𝑖𝑛(𝑂̅𝑖)                                                                                                                (39) 

Step 6 

The overall performance ratings of competitive alternative are then computed: 

𝑃𝑖 = 𝐼𝑖̿ + 𝑂̿𝑖 −𝑚𝑖𝑛(𝐼𝑚̿ + 𝑂̿𝑚)                                                                                            (40) 

 

The highest overall performance ratings represent the alternative, which is the best choice.  

 

In application, Madic et al (2015) used the method to select non-conventional machining 

processes using the OCRA method. Parkan used it in 2002 to measure the operational 

performance of a public transit company. Chakraborty et al (2013) applied OCRA with other 

MCDM to selection location of distribution centres. For Biomass selection, Martinez et al 

(2016) used OCRA method with TOPSIS. There has been limited application of the method in 

the engineering field, especially in the mining industry.  
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B. ADDITIVE RATIO ASSESMENT (ARAS) 
 

According to Adali and Isik (2016), ARAS is a method that determines the performance as 

well as compare alternatives with a chosen ideal alternative. Zavadskas and Turksis 

developed it in 2010 with an emphasis that a degree of optimality is obtained by determining 

the ratio of the sum of the weighted normalised values of an alternative to the sum of the 

values of the weighted normalised of the optimal alternative with respect to criteria (Adali & 

Isik, 2016). The method is simple and can be performed in excel. Therefore, the fact that it 

does not have a complex theoretical background like AHP and the rest makes it favourable to 

those who wants a simplistic answer (Kocak et al, 2018).  

 

The following is the procedure of the ARAS method as described by Zavadskas and Turskis 

(2010): 

Step 1  

The first stage is to develop a decision matrix like in the previous methods; where the 𝑥𝑖𝑗  𝑖𝑠 the 

performance of the alternative, 𝑖 in respect to the criterion,𝑗. ‘N’ represents the number of 

alternatives, while ‘m’ represents the number of criteria.  

𝑋 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑚
𝑥21 𝑥22 ⋯ 𝑥2𝑚
⋯ ⋯ ⋯ ⋯
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑚

] (𝑖 = 1,2, . . . 𝑛;  𝑗 = 1,2, . . . 𝑚) 

The optimal performance 𝑥0𝑗is determined. It may be given. If not, then for the benefit criteria, 

the maximum value is assumed as the optimal performance. For the non-beneficial criteria, a 

minimum value on the column of the criteria is determined as the optimal performance. The 

equation below shows how the optimal performance for beneficial and non-beneficial criteria 

can be determined respectively: 

𝑥0𝑗 = 𝑚𝑎𝑥𝑗𝑥𝑖𝑗 

𝑥0𝑗 = 𝑚𝑖𝑛𝑗𝑥𝑖𝑗
∗  

 

Step 2  

In step 2, a normalised decision matrix is constructed, to turn the criteria to dimensionless 

values.  The beneficial criteria are normalised as follows: 

𝑥𝑖𝑗̅̅̅̅ =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=0

                                                                                                                        (41) 

The non-beneficial criteria are normalised by applying the 2-stage procedure as follows: 

𝑥𝑖𝑗 =
1

𝑥𝑖𝑗
∗                                                                                                                                  (42) 

The reciprocal of each criterion is determined and then used in the following equation 

𝑥𝑖𝑗̅̅̅̅ =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=0

                                                                                                                      (43) 
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Step 3  

The weighted normalised matrix is constructed. Note that the weights must be determined as 

carefully as possible because they influence the solution. Weights must sum up to one. 

∑ 𝑤𝑗 = 1
𝑛

𝑗=1
 

The normalised-weighted values are determined as follows: 

𝑥𝑖𝑗 ̂ = 𝑥𝑖𝑗̅̅̅̅ × 𝑤𝑗                                                                                                                                      (44) 

Step 4 

The optimality function (𝑆𝑖) is then determined for each alternative as follows: 

𝑆𝑖 =∑ 𝑥𝑖𝑗 ̂                                                                                                                                     (45)
𝑚

𝑗=1
 

Amongst all alternatives, the highest optimality function becomes the best; and the least 

becomes the worst. Therefore, the higher the optimality function, there more effective an 

alternative is.   

Step 5 

A utility function value (𝐾𝑖) is then determined.  This value determines the relative efficiency of 

an alternative over the optimal alternative. The value ranges between 0% to 100% (Adali & 

Isik, 2016).  The alternative with the highest utility function is the best choice.  

𝐾𝑖 =
𝑆𝑖
𝑆0
 𝑤ℎ𝑒𝑟𝑒 𝑆0  𝑖𝑠 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑜𝑟𝑒 𝑏𝑒𝑠𝑡 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒.   (46) 

The application of ARAS method has been evident over the years. Zavadskas and Turskis 

(2010) used the method for the first time to evaluate the microclimate in office rooms. Kocak 

et al (2018) used the method to select a subcontractor in the construction industry. It was used 

to rank Serbian banks in 2013 by Stanujkic et al. Dahooie et al. (2018) applied ARAS in 

evaluating oil and gas well drilling projects. Adali and Isik (2016) applied ARAS in an air 

conditioner selection problem. Nguyen et al (2016) carried a conveyor equipment evaluation 

out using ARAS and AHP. Like OCRA, there is few or no application in the engineering field, 

especially mining field.  
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C. CASE-BASED REASONING (CBR) 
 

The approach to problem solving is often guided by rule-based systems such as the MCDAs, 

which have been discussed earlier. As successful as these systems have been, their 

weakness is that all the known information must be encoded into rules, formalised, validate 

and verified for suitable computing. The process is said to be prone to errors, intentions can 

be missed because of ill-posed questions, misinterpretations, and misrepresentation. Because 

of this weakness, Case-Based Reasoning (CBR) was introduced (Wu, 2008 & Becerra-

Fernandez et al, 2004). 

The starting point of CBR is from the 1982 reminding of Schank who argues that people are 

automatically reminded of past encounters when faced with a similar situation. He adds that if 

the encounters are adequately similar, then their solutions are the same (Wu, 2008 & Becerra-

Fernandez et al, 2004). CBR works by gathering knowledge and information from previously 

worked-on cases and store it in memory. The stored cases can be used to derive solutions for 

new problems. This is done by going back into the information storage (referred to database) 

and evaluate similar cases’ solutions (Ziba, 2015).  

Therefore, the solution of the most suitable case can be adapted to be the solution of the new 

problem. If necessary, adjustments, and transformations can be made to the solution to 

perfectly fit it in for the new problem. CBR systems also have instruments, which helps in 

implementing the algorithms, which can compare cases, as well as adapting solutions. 

Therefore, the underlying bases of the method is the presumption that similar cases have 

similar solutions. (Ziba, 2015) 

The application of CBR can be summarised as an operation cycle in Figure 17. 

 

Figure 17: A cycle of CBR (Ziba, 2015) 

The advantage CBR has in application is that it has a database of previous information; 

consequently, its solution-finding capabilities are high. There is also continuous learning 

where CBR is adopted because new cases are always being added into the database and 

• Asses and evaluate how 
useful the information you 
obtained from the cases 
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need to transform/ adapt 
the proposed solution

• After solving, store the 
new case in the data base 
for future similar cases

• Make use of the 
information in the case for 
finding a solution to the 
new problem

• search and find similar 
cases to the problem you 
are faced with (using 
indexing techniques)

Retrieve Reuse

ReviseRetain



73 

 

 

accessible for solving future cases (Ziba, 2015). Application of CBR leads to avoiding personal 

influence of individual experts when decisions must be made. Experience is not generalised 

into rules with the use of CBR (Wu, 2008 & Becerra-Fernandez et al, 2004) 

Some of the setbacks of the CBR system are that it may be difficult to calculate (compute) the 

similarity distance between the new case (actual) and the old case (desired). However, there 

are methods such as Euclidean distance, Jaccard Method, and Tversky method that can be 

used to calculate the similarity degree (Mulyana et al, 2015). Some cases are poorly 

documented, and that means inaccurate information may rollover the new cases. In addition, 

if there is too little diversity in the many cases stored in the database, then significant gap 

coverage may result. Sometimes solutions may conflict with each other (Wu, 2008 & Becerra-

Fernandez et al, 2004).  

CBR has gain much popularity especially in the financial sector. Zima (2015) has used it in 

performing a cost estimation of a construction project. The application has extended vastly to 

the health field. Mulyana et al (2015) used the method with input text processing to diagnose 

mood disorders. Drilling engineering has successfully applied case based reasoning and 

different applications in petroleum engineering is present by Shokouhi et al (2012). In Korea, 

it has been used as a decision-making support system to select a method for a construction 

project (Yoon et al, 2016). Bjuren (2013) has used it to predict energy usage. There has not 

been much recorded use in the engineering field except where CBR was used as a Decision 

support method. Figure 18 shows in a broad perspective where CBR can be applied.  

 

Figure 18: Application of CBR (Gabel T, 2010) 

 

University of Stirling (2015) identified some indicators that can be used to judge if CBR is 

suitable for use in the given problem. These indicators are:  

 Existing records of previously solved cases. 

 There is often referral to historical cases when solving new cases. 

 Rather than referring to general rules or policies, human experts tend to talk 

about the problem domain in terms of examples. 

 A problem that is not well defined and difficult to understand. 

 Experience is seen as valuable as textbook knowledge. 

 

In applying CBR, the similarity degree of the cases can be calculated using different methods 

like the ones shown below. It has been suggested that the Modified-Tversky method 

outperforms the Jaccard and the Tversky method in terms of consistency (Mulyana et al, 2015) 
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 Let Sim (X, Y) represent similarity between two cases with a finite no of criteria, the following 

formulas can then be used: 

Jiccard Method: 

Sim(X, Y) =
|𝑋 ∩ 𝑌|

|𝑋 ∪ 𝑌|
=

#𝑆𝐴𝑀𝐸(𝑋, 𝑌)

#𝑆𝐴𝑀𝐸(𝑋, 𝑌) + #𝐷𝐼𝐹𝐹𝐸𝑅(𝑋, 𝑌)
 

Where SAME represent the number of features that are similar in the cases and DIFFER 

refers to the features that differ.  

Tversky Method: 

Sim(X, Y) =
𝛼|𝑋 ∩ 𝑌|

𝛼|𝑋 ∩ 𝑌| + 𝛽|𝑋∅𝑌|
=

𝛼(#𝑆𝐴𝑀𝐸(𝑋, 𝑌))

𝛼(#𝑆𝐴𝑀𝐸(𝑋, 𝑌)) + 𝛽(#𝐷𝐼𝐹𝐹𝐸𝑅(𝑋, 𝑌))
 

Where: |𝑋∅𝑌| = |𝑋 ∪ 𝑌| − |𝑋 ∩ 𝑌| and the value α and β are formulated by experts parallel to 

their respective significance of value (Mulyana et al, 2015) 

And the Modified Tversky Method with an addition of weight is calculated as follows: 

Sim(X, Y) =
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
=

2𝛼(#𝑆𝐴𝑀𝐸(𝑋, 𝑌))

2𝛼(#𝑆𝐴𝑀𝐸(𝑋, 𝑌)) + 𝛽(#𝐷𝐼𝐹𝐹𝐸𝑅(𝑋, 𝑌))
 

The method described above cannot be used as an MCDM; however, in the development of 

the MMSM, it can aid as storage for the previously conducted studies that relate to mining 

method.  
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D. COMPLEX PROPORTIONAL ASSESSMENT (COPRAS) 
 

The development of COPRAS by Zavadskas and other researchers dates to 1996. It is a fast-

developed method to deal with real problems. The method can be performed without difficulty 

even when the attribute and alternatives are large; and it can handle both qualitative and 

quantitative criteria (Mousavi-Nasabi & Sotoudeh-Anvari, 2017). However, COPRAS is less 

stable when a sensitivity analysis is performed and gives different rankings when there are 

changes in the weights (Podvezko, 2011). 

 It has been applied in a supplier selection problem because of its simplicity and advantage of 

plugging values onto EXCEL for a faster implementation (Madic et al, 2014). Chatterjee and 

Charaborty (2014) used it to for a manufacturing firm to select the most appropriate flexible 

manufacturing system. Assessment of road design has been done by COPRAS (Zavadskas 

et al, 2007). In combination with the fuzzy AHP, Das et al (2012) used COPRAS to measure 

the relative performance of Indian technical institution. It has also successfully been applied 

in the construction as well as property management (Petkovic et al, 2015). 

The procedure of COPRAS is best presented by Madic et al. (2014) in the following way: 

Step 1 

Construct a matrix, X. where the 𝑥𝑖𝑡ℎ 𝑖𝑠 the performance of the alternative, 𝑖 in respect to the 

criterion,𝑗. 

𝑋 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑚
𝑥21 𝑥22 ⋯ 𝑥2𝑚
⋯ ⋯ ⋯ ⋯
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑚

] (𝑖 = 1,2, . . . 𝑛;  𝑗 = 1,2, . . . 𝑚) 

 

Step 2 

Normalize the constructed matrix, R. 

R = 𝑟𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

                                                                                                                    (47) 

 

Step 3 

Determine the weighted normalised matrix, D; by multiplying the elements of the matrix with 

the weights. The sum of the new elements must always equal the weight of the criterion.  

D = 𝑦𝑖𝑗 = 𝑟𝑖𝑗 × 𝑤𝑗                                                                                                                (48) 

∑ 𝑦𝑖𝑗 = 𝑤𝑗
𝑚

𝑖=1
 

Step 4 

Calculate the sum of the benefit and non-beneficial criteria for each alternative: 

𝑆+𝑖 =∑ 𝑦+𝑖𝑗  𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎; , 𝑆−𝑖 =∑ 𝑦−𝑖𝑗 𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎
𝑛

𝑗=1

𝑛

𝑗=1
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Step 5 

Establish the relative significance value of the alternatives that shows the priority of an 

alternative. 

𝑄𝑖 = 𝑆+𝑖 +
𝑆−𝑚𝑖𝑛 ∙ ∑ 𝑆−𝑖

𝑚
𝑖=1

𝑆−𝑖 ∙ ∑ (
𝑆−𝑚𝑖𝑛
𝑆−𝑖

)𝑚
𝑖=1

 𝑖 = 1,2, . . . 𝑛;  𝑗 = 1,2, . . . 𝑚,                                                                    (49) 

Where  𝑆−𝑚𝑖𝑛is the minimum value of 𝑆−𝑖.  

 

Step 6 

Calculate the quantitative utility for each alternative: 

𝑈𝑖 =
𝑄𝑖
𝑄𝑚𝑎𝑥

∙ 100%,                                                                                                                                       (50)  

Where 𝑄𝑚𝑎𝑥 is the maximum relative significance value. 

The utility values thus range from 0% to 100%. A higher value implies that the alternative is 

ranked higher.  
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E. SIMPLE ADDITIVE WEIGHTING (SAW)  
 

Hwang and Yoon suggested the SAW method in 1981. It is also called the weighted linear 

combination method (Tajvidi et al, 2015). It is described as one of the most straight-forward 

MCDM methods. Its application is usually for benchmarking; to evaluate results from other 

techniques (Mousavi-Nasabi & Sotoudeh-Anvari, 2017).  

The advantages of the method is that it is intuitive to decision makers, and there is no need 

for any complex compute program as the computations are easy. However, the drawbacks 

are that the criteria should be a maximizing criterion before any calculation; this means that 

minimizing criteria must be turned to maximizing, and that leads to the method not reflecting 

real situation problems. As a result, the results obtained may not be logical. Despite the 

drawbacks, the application of SAW ranges from water management, to business and financial 

management (Velasquez & Hester, 2013). Afshari et al. (2010) applied the method in 

personnel selection problems. Setyani and Saputra to determine flood-prone area at 

Semarang City used the SAW method in 2016. There has been limited use of SAW in the 

mining industry. 

Tajvidi et al (2015) present the procedure for ranking alternatives using SAW as follows: 

Step 1 

Construct a matrix as previously explained using other methods such as AHP. 

Step 2 

Normalization of the matrix is performed using positive and negative linear method 

respectively for the criterion: 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

𝑚𝑎𝑥𝑖{𝑥𝑖𝑗
 𝑖 = 1, . . . 𝑚 𝑎𝑛𝑑 𝑗 = 1, . . . 𝑛                                                                   (51) 

𝑟𝑖𝑗 =
𝑚𝑖𝑛𝑖{𝑥𝑖𝑗

𝑥𝑖𝑗
                                                                                                                       (52) 

Step 3 

Determine the weight of each criterion, 𝑤𝑗 : AHP or any other determining weights method can 

be used to determine the weights (relative importance) of the criterion.  

Step 4 

Calculate the evaluation score: The alternatives’ evaluation 𝐴𝑖 , score as explained by Afshari 

et al (2010), is calculated by multiplying the normalised value with the weight of the criterion. 

It is then followed by summing the products of all criteria for each alternative. The following 

formula is used: 

𝐴𝑖 =∑ 𝑤𝑗𝑟𝑖𝑗                                                                                                                   (53)
𝑚

𝑗=1
 

Step 5 

Rank the alternatives: The alternative with the highest evaluation score is the suitable choice.  
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F. COMPROMISE PROGRAMMING (CP) 
 

According to Park et al. (2015), Zeleny proposed CP in the 70s for identification of an 

alternative that is closest to the ideal solution based on the distance measure𝐿𝑝. Poff et al 

(2010) applied CP to evaluate forest management approaches. Park et al (2015) emphasised 

that CP is effective in solving environmental problems. It has also been used in the field of 

water resource management. However, when compared with other methods, it is significantly 

less used (Stanujkic et al, 2013). The method has proven to be robust and sensitive to the 

weight and the ‘p’ value chosen by the decision maker. It is therefore advisable to perform a 

sensitivity analysis to check for stability in the answers obtained (Poff et al, 2010).  

 

The procedure of the CP is as follows as presented by Kumar (N.D): 

Step 1: 

Construct a decision matrix of alternative ‘a’ with respect to the j-th criterion with a value of 

F𝑗(𝑎).  

Step 2: 

Determine the weight of each criterion, 𝑤𝑗  

Step 3: 

Specify the parameter ‘p’. 

The parameter p reflects the decision maker’s choice (weight) on how he/she compensate for 

the deviations. It governs the distance between the ideal point and the solution. This non-

dominated parameter takes on the values between one and any largest deviations such that 

1 ≤ p ≤ ∞ (Park et al, 2015). Whenp = 1, all the deviations from the ideal value are taken in 

direct proportion to their magnitude. When  p = ∞, the largest deviation from the ideal is 

considered to have the greatest weight (Kumar, N.D).  

Step 4: 

Compute the distance metric of the alternative𝐿𝑝, which is used to estimate the degree of 

closeness between points in multi-dimensional space (Li et al, 2013). 

𝐿𝑝(a) = [∑ 𝑤𝑗
𝑝
|
𝑀𝑗 − 𝐹𝑗(𝑎)

𝑀𝑗 −𝑚𝑗
|

𝑝𝐽

𝑗=1
]

1
𝑝

                                                                                        (54) 

Where 𝐿𝑝(a) represent the distance metric of the alternative ‘a’. J represent the total number 

of criteria. 𝑀𝑗 represent the best (maximum) value in the criterion set, and 𝑚𝑗 represent the 

worst (minimum) value  

Step 5: 

Rank alternatives based on the distance metric of the alternative. The best alternative will 

have the lowest𝐿𝑝. Which implies that it is closest to the ideal solution.  
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2.3. EXISTING COAL MINING METHODS 
 

In the following section, different underground coal mining methods are discussed for a better 

understanding of these operations. 

2.3.1. BORD-AND-PILLAR MINING 
Bord-and-pillar, known as ‘room and pillar’ mining is developed by extracting coal in a series 

of narrow roads. It is a checker-board method. These roadways are separated by a block of 

coal that is parallel to them. At the right angle to the roadways, the second set of roadways 

are established and connected to the first ones. Square pillars, whose size depends on the 

depth and width of the roadways are formed between these roadways (Raghavan et al, 2014). 

At times, depillaring or pillar extraction may be performed. This is a process where pillars are 

mined/taken out and the roof is allowed to collapse on its own into an area known as the goaf 

(Nayak & Dalai, 2010). 

The process of mining in Bord-and-Pillar layout was previously performed by the conventional 

method of drilling and blasting. However, the introduction of Continuous Miners (CM) has 

improved the conventional way of mining. The coal is extracted using a continuous miner (CM) 

whose components, such as the rotating drum with sharp picks, allows it to cut and load the 

coal simultaneously. The extracted coal is then loaded onto shuttle cars and/or conveyor belts; 

it will then be transported to surface. A roof bolter is used to install support to the mining face. 

Figure 19, illustrates the workings of bord-and-pillar operations.  

 

 

Figure 19: Typical Bord-and-Pillar layout (Harraz, 2014) 

According to Nayak and Dalai (2010), bord-and-pillar, mining is suitable for flat or gently 

dipping deposits whose seam thickness is greater than 1.5m. Raghavan et al (2014) argues 

that the method has been successful in thinner seams (1.2) and thicker seams (up to 4.8m). 
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Bord-and-Pillar is performed at depths less than 300m because greater depths may induce 

pillar crushing. However, in India depth of 600m has been reached because of a higher coal 

thickness (Raghavan et al (2014). The seam type must be such that there are free or minimum 

stone or dirt bands are not gassy,and have a strong roof and floor which can stand for longer 

periods even after the development is completed (Nayak & Dalai, 2010).  

 

The following are the advantages and disadvantage of bord-and-pillar mining as quoted from 

Wagner (1980) and Singh (2004): 

 Bord-and-pillar provides flexible operating procedures. Therefore, if need be, the initial 

planning can be modified if geological disturbances are encountered.  

 The capital investments are low.  

 The method is not sensitive to geological disturbances, which implies that it can deal 

well with variability in geology unlike methods such as Long wall mining.  

 The integrity of the roof strata is maintained.  

 The sequence of extraction is visible.  

 Since the pillars are left behind as support, there are cost reductions for supports. 

The following are drawbacks: 

 An increase in depth requires large pillars for support.  

 As a result, the extraction percentage reduces as depth increases.  

 It is difficult to control ventilation in the system because of numerous connections. 

 Subsidence can sometimes be experienced.  

 There is a higher risk of spontaneous combustion. 

The method has been widely used in the United States of America (USA). In the 1970’s, 50% 

of the production was accounted for by bord and pillar. Brazilian underground coal mines 

employ bord-and-pillar for extraction. The wide use of the method is because it can be used 

in hard rock (limestone, dolomite, metals such as lead, copper, zinc and gold) and in soft rock 

such as coal, potash and salt. The recovery can reach 85% (Harraz, 2015). Most of the South 

African underground coal mines also employs bord-and-pillar because of the advantages 

mentioned above. .  

 

2.3.2. PILLAR EXTRACTION 
As previously, mention, pillars left behind during bord-and-pillar can be mined to increase the 

ratio of extraction, especially as the depth increases. There must be an increased safety factor 

since a support (pillar) is being extracted in these high extraction methods. The overlying strata 

is allowed to come in (goaf) and that may result in negative impacts such as surface 

subsidence and damage to the underground water structure leading to inflows of water into 

the workings. It is therefore necessary that in planning such aspects should be taken into 

consideration (University of Pretoria, 2018). It must also be noted that total pillar recovery’s 

application has been curtailed in most countries due to increased risk (Spearing, 2019).   

The following are some of the pillar extraction methods that exist: 

A. ANGULAR CUT PILLAR EXTRACTION 
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In angular cut pillar extraction, diagonal cuts are made through the pillar. The focus was on 

maximum recovery of the pillar. That has changed. The current method ensures that critical 

intersections are protected by leaving a rib (1m) or snook along the diagonal after three cuts 

have been made. This is done to protect the CM during the cutting process. It is applicable to 

depth of up to 30m and pillars with a safety factor of 1.6. A good production is achieved 

(University of Pretoria, 2018). The figure below illustrates the angled cut method sequence. 

Pillars are extracted from left to right in a straight line.   

3

1

2

Roofbolt breaker 

line Warning sticks

 

Figure 20: Left: Angled cut pillar EXTRACTION SEQUENCE and ventilation layout. Right: cutting sequence 
in angled pillar extraction (University of Pretoria, 2018) 

 

B. SPLIT AND FENDER METHOD 
 

It the commonly practiced method in the South African mines. The pillar in a pre-developed 

panel is split into two or three ribs (fenders) and are then extracted in a similar manner to rib 

pillar mining. Approximately pillar sizes of 18m are favourable; and an overall extraction that 

varies from 66% to 80%. The main driver behind the pillar design is that the geometry must 

be able to allow the splitting of the pillar into fenders of 6m. The safety factor must be above 

1.6 (University of Pretoria, 2018). Pillars are then extracted from left to right as depicted in 

 

Figure 21: Left: Extraction and ventilation layout in Split and fender method. Right: cutting sequence of 
split and fender method 
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C. NEVID METHOD OF EXTRACTION 
 

The Nevid method was developed to overcome most of problems encountered when 

extracting pillars in horizontal stressed zones. A flexible method can be applied in all 

circumstances. The top middle pillars are split as shown in the figure below. However, they 

are not fully mined to prevent goafing. Extraction of 60% to 64% is achieved through the Nevid 

method (University of Pretoria, 2018) 

 

Figure 22: The Nevid method sequence (University of Pretoria, 2018) 

 

2.3.3. LONG WALL MINING 
 

Long wall mining involves the removal of coal in large blocks using a mechanized shearer. 

The panels can be as wide as 5km in length.  The shearer used for coal extraction is mounted 

on rails, which serve as a guide in moving the shearer back and forth along the coal face. 

Once the coal is cut, the Armoured Face Conveyor (AFC) transport the coal to the adjoining 

road that the coal may be conveyed to surface. Hydraulic shields are used to support the roof 

above the working area. The shields advances as mining proceeds, and that causes the roof 

behind the shields to collapse since it is not supported (Ralston et al, 2017). 
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Figure 23: long wall mining (https://www.911metallurgist.com/longwall-mining/, accessed in 2019) 

Long wall mining is characterized by high productivity (Vardhan & Kumar, 2017). 95% of 

recovery rate is expected in such operations (Scott et al, 2010). Higher productivity and 

recovery rate are because of its ability to operate at greater depths of greater than 300m. It is 

also less labour intensive unlike room and pillar mining. Because of the connection between 

the equipment working in a long wall, it is almost a continuous process (Scott et al, 2010).  

Long wall mining can either retreat or advance depending on the mine planning. In the 

advance method, development or the opening of the passageways and panel extraction take 

place simultaneously. However, the development moves slightly ahead of the face. On retreat 

mining, which is the mostly preferred by Americans (Holman, 1999), developments are driven 

all the way to the end; and extraction process starts at the far end and move towards the main 

entries. (Kgweetsi, 2016) 

 

Longwall is unsuitable where the geology is irregular. In irregular and harsh working 

conditions, the machinery used can be subjected to shock and vibrations, which may lead to 

either unplanned maintenance or total replacement of the parts. This may be time-consuming 

and financially unviable. Another drawback is that once there is a breakage in the machinery, 

the whole production is stopped. Automation of the mining process in long wall aims to address 

some of the shortcomings of the method (Vardhan & Kumar, 2017). In addition, there is 

substantial subsidence with this method. As coal extraction progresses, subsidence begins. It 

is dependent on time, depth of mining, thickness of the coal bed and the strength of the 

overlying rock (Kgweetsi, 2016).  Long wall mining is capital intensive. 

 

Long wall mining method is one of the two methods that are used to mine underground coal; 

and the most common underground method in Australia and China (Scott et al, 2010). It is 

best suited for almost all geological conditions, especially thinner seams of less than 1.8m 

thickness. Greater depth, gassy seams, and seams prone to spontaneous heating can be 

mined using this without difficulty (Raghavan et al, 2014).  
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2.3.4. SHORT WALL MINING 
 

When the depths of a coal seam are such that bord-and-pillar cannot be employed, and there 

are geological features limiting the use of long wall mining, short wall mining is introduced to 

overcome the shortcomings of the two methods. A CM, shuttle cars, and hydraulic supports 

are used to extract pillars during the initial development to form panels. A wall of 90m would 

be economically optimum to perform short wall mining (Kushwaha & Banerjee, 2005). In 

addition, coal face heights of short wall mining typically range between 4.5m to 6.0m (Yu-de 

et al, 2008). Short wall mining was developed to overcome the disadvantages of long-wall and 

bord-and-pillar mining. A typical layout of a short wall panel is shown in Figure 25. 

 

Figure 24: Short Wall Mining Trueman (1984) 

The advantages of short wall mining method in use are the following as presented by 

Fauconnier (1982).  

 Hydraulic support shields personnel from fall of grounds.  

 Ventilation systems makes the environment conducive for working. 

 Less strenuous work and labour in a panel.  
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 Higher productivity and recovery rate (approximately 85%). 

The limitations as a result off little consideration given to the overall strata control factors are 

presented below: 

 There are abutment stresses build-up that result in continuous miners being less 

efficient. Consequently, the supports would tilt towards the previously extracted panels 

and a loss of support is observed. This is a major consideration hence it has only 

limited application and mainly in South Africa (Spearing, 2019) 

 

2.4. POTENTIAL COAL MINING METHODS 
 

The following methods have not been assessed in any of the existing MMSM. However, it is 

necessary to take them into consideration because they have the potential  to grow in the coal 

mining industry. The methods are underground coal gasification, and coal bed methane.  

2.4.1. UNDERGOUND COAL GASIFICATION (UCG) 
 

UCG is one of the most effective method in converting coal to useful forms of energy. The 

process of conversion is much cleaner than in normal combustion processes, which releases 

hazardous pollutants. In coal gasification, solid coal is converted to combustible gases through 

scientific reactions without the need to mine it (Dzimba, 2011).  

The process of UCG is in several steps. Firstly, series of boreholes are drilled into the coal 

seam in situ. These bore holes are connected underground by either directional drilling or 

fracturing (Dzimba, 2011). Coal is then ignited by injecting highly pressured oxidants such as 

air, steam or oxygen. The combustion of coal and the oxidant forms carbon dioxide and heat. 

The heat produced is used in the subsequent reaction in which the carbon dioxide reacts with 

steam to form hydrogen gas, carbon monoxide, carbon dioxide and methane (Sajjad & Rasul, 

2014).  

Gases produced (syngas) are collected through the production wells. It is then distributed 

through pipes to its destination for various applications (Dzimba, 2011). Syngas can be used 

directly as fuel, to power gas turbines for electricity generation, chemical feedstock to produce 

liquid fuels (South African coal road map, 2011). So, it is evident that UCG is influenced by 

factors such as temperature, type and composition of coal, coal seam thickness, water 

incoming rate to the gasification chamber, pressure and the length and section of the 

gasification channel (Sajjad & Rasul, 2014) Water in the coal seam flows in the gasification 

cavity so that it can be utilized for the gasification process (Shafirovich et al, 2008). 
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Figure 25: Underground coal gasification illustration (Source: unknown, 2018) 

The advantages associated with UCG as highlighted by Sajjad & Rasul (2014).), are that: 

UCG increases efficiency in electricity generation by using waste heat from the product gas. 

There are fewer emissions of gases such as SO2, NOx and CO2. UCG is applicable in coal 

seams that would even be deemed sub-economic, un-mineable and unsafe. Personnel only 

work from surface to drill wells and this means the UCG working environment is safe. There 

are low capital investment costs unlike in conventional coal mining. The gasification cavity can 

be used for carbon dioxide sequestration (Shafirovich et al, 2008).  

 

However, in deeper coal seams, the costs of drilling, operating pressure, injection of oxidants 

may increase. While on shallow depths, surface subsidence may occur because of UCG 

(Sajjad & Rasul, 2014). There may be difficulties experienced in linking the wells if the coal 

seam thickness is insufficient. Potential loss of control over UCG could result in uncontrolled 

underground coal fires. Fortunately, most of the drawbacks can be resolved such as obtaining 

reliable geological data and using specialized linkage technologies for wells. Also, ground 

water pollution may be the result if the coal seams are located closer to the underground water 

table (Shafirovich et al, 2008).  
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2.4.2. COAL BED METHANE (CBM) 
 

Coal bed methane is a natural gas formed during coalification where it remains trapped under 

pressure in the coal seam and the host rock. It is composed of methane, carbon dioxide, 

elemental nitrogen, and heavier carbon compounds such as ethane, traces of propane, and 

butanes.  Coal rank and coal seam depth determines the amount of methane trapped. The 

higher the coal rank, the higher the amount of methane. At greater depth, coal seams contain 

a higher amount of methane than a shallower seam of the same rank. When coal seams are 

injected with a high-pressure water, foam, and sand mix, the coal around the borehole 

fractures. The water and gas will then flow to the surface when fractures are kept opened by 

the sand mix (Xaba and Jeffrey, 2002). 

 Like UCCG, it provides an opportunity to exploit coal resources that were previously referred 

to as uneconomic and unmineable. Fortunately, with CBM, there is no surface subsidence. 

The methane produced is of good quality and can be fed directedly to the gas distribution 

network owing to its low carbon dioxide content. Gases like methane can be reduced prior to 

mining activities (Xaba and Jeffrey, 2002). There are low emissions of carbon dioxide, no ash 

or toxins. It offers profit opportunities in unmineable coal where it is not possible to mine with 

high-volume mining equipment in thinner seams with poor quality of coal and difficult mining 

conditions. Since there is a growing demand for natural gas, CB is also growing to be more 

attractive as a fuel (Thakur and Steve, 2014). 

Factors that have been hindering the development of CBM are geotechnical in nature such as 

low coal permeability, variation, and low-quality gas. Economics and institutional barriers are 

a hindrance to the development. (Xaba and Jeffrey, 2002). Knowledge of the origin of coalbed 

has become a prerequisite for successful CBM exploration (Thakur and Steve, 2014).  

It is applied in Belgium, Australia, USA and China. South Africa has the potential to use CBM; 

if extracted, methane would prevent the future import needs for natural gas (Xaba and Jeffrey, 

2002). The strong economic potential of CBM renders it viable for exploration. It can be used 

in electricity generation or co-fired with coal at power plants to reduce SOx and NOx. CBM can 

also be used in turbines or fuel cells for power generation (Thakur and Steve, 2014).  
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2.5. FACTORS CONSIDERED IN MMS 
 

A number of research studies have been carried out to list factors that are important in the 

selection of a mining method. In his research, Jianpu (2011) stated that the main influencing 

factors on safe coal mining and eventually coal mining method selection are the coal seam 

thickness, stability, and the structure of the coal seam, its physical properties, place of 

occurrence, variation of the coal seams as well as the coal seam roof and floor. Thick coal 

seams that are structurally simple have large reserves and may be easy to mine. He further 

argued that thin coal seams that changes abruptly and if the structure is complicated, might 

pose mining difficulties. All these properties also assist in selecting mining machinery. It is 

further stated that the occurrence of a coal seam is of importance to the design, construction, 

and production of the shaft (Jianpu, 2011).  

In the study conducted by Jeffrey (2002), geotechnical factors that had an impact on 

secondary extraction of two of the South African coalfields were identified and ranked. He 

further went on to indicate factors that were identified to have a major impact on the selection 

of a mining method (for secondary extraction). These are: the size of the remaining reserves, 

surface infrastructure, period since primary extraction, the thickness and lithology of the 

overburden, depth below surface, extractable thickness, multi-seam extraction, coal strength, 

geological features such as dykes & sills, primary mining method, equipment, safety factor 

and mining history (Jeffrey, 2002). 

In a mining method selection study conducted by Balusa and Singam (2017), it was indicated 

that factors that affect underground selection of mining method can be grouped as: physical 

parameters, mechanical parameters, economical parameters and technical parameters. The 

parameters that were used in the selection process were the dip of the deposit, its shape, its 

thickness, the Rock Mass Rating (RMR) of the ore, footwall and hanging wall, technology, 

orebody depth, ore uniformity, dilution, production, and recovery (Balusa and Singam, 2017). 

In comparing two most used underground mining method within Australia, Scott et al. (2009) 

reviewed capital cost, productivity, recovery, versatility, and mine safety as necessary in 

mining method selection.  

 

Namin et al. (2009) confirmed the practical application of decision-making techniques in 

selecting mining methods in Iran. It was indicated that underground factors that affect the 

mining method selection are deposit geometry (size , shape, depth), geology, hydrology 

conditions (mineralogy, petrology, uniformity, alteration and weathering), geotechnical 

properties (elasticity, state of stress, competency and physical properties), economic 

considerations (mining costs, rate of production, reserves tonnage, life of mine, productivity), 

and technological factors (mine recovery, dilution, flexibility, selectivity, concentration of 

workings, capital, labour, and mechanization). Lastly, environmental factors such as ground 

control surface subsidence and atmospheric control. 

Williams (2005) indicated in a presentation that the following physical features are key factors 

in selecting coal underground mining methods: coal seam thickness, depth of the overburden 

and its characteristics, reserve configuration, geologic features, surface features, previous 

mining activities, obstacles, regulation, mobility, flexibility and lastly, capital commitment.  

Ooriad et al. (2018) stated that engineers and geologists must work together to identify factors 

that affect the mining method selection. The factors that are of major impact as stated are: 

physical and mechanical characteristics of the deposit such as the ground conditions of the 
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ore seam, the hanging and foot wall, thickness of the seam, general shape, dip, plunge and 

depth below the surface, how grade is distributed and the quality of resources. Capital costs, 

the operating costs, mineable ore tonnages and mineral value were stated as major economic 

factors. Technical (mine recovery, flexibility, machinery, and mining rate) and productivity 

(annual productivity, equipment, and environmental conditions) factors also play a role. The 

same factors were used in selecting a Tazerah underground coal mine. (Ooriad et al, 2018), 

bauxite mine (Mohsen et al, 2009); underground coal mine by Yavuz (2015), and a Columbian 

coal mine (Gelvez and Aldana, 2014). 

 

Bashari et al. (2013stated that for the Angouran Zinc-Lead mine located in Iran that the factors 

considered must fully cover the problem at hand. The main characteristics are the orebody 

thickness, dip, shape, and depth, RSS (ore, hanging and footwall), RMR (ore, hanging and 

footwall). The same criteria were chosen and defined in detail for a successful selection of an 

underground fluorine mine in Iran (Javanshirgiv and Safari, 2017). An iron mine using fuzzy 

dominance method by Bitafaran and Ataei (2004) used the same criteria. Karadogan et al. 

(2008) also used the criteria mentioned previously, but in addition, the subsidence effect, 

nearness of the residential area, and existence of methane were used as criteria.  

Bogdanovic et al. (2012) classified the most important factors to consider for underground 

mining method selection into three main groups: geological, technical, and economic. It was 

further stated that MMS is a difficult process because of relationship that exist between these 

factors. While one mining method may perform well in the geological factors rating, it may not 

be justified as the best from the financial point of view. Hence the need of effective MMSM 

that can be used by decision makers. In Gol-e-gohar iron mine in 2015, Deghani et al (2017) 

used the geological factors previously mentioned to select a mining method using the Todim 

and Grey analysis. 32 factors were used in selecting a mining method for a coal mine in Iran. 

Some of the factors that have not been mentioned above are the climate of the area, ability to 

mechanise and occupational considerations (Nourali et al, 2012).  

From the results above, important factors were derived. They will be shown in  table format in 

the result section and was used in the developed MMSM.  
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2.6. SIGNIFICANCE OF THE LITERATURE REVIEW 
 

Chapter 2 is divided into three sections. The first section focused on studying the approaches 

available for method selection. Different approaches and techniques that have been used in 

the mining industry across different commodities have been reviewed to understand their 

functionality and how they will be of aid in developing a coal MMSM. The study was not limited 

to the mining methods selection techniques only,but has expanded into other industries to 

understand how decisions of method selection are handled given the complex nature 

presented in such procedures. 

The methods identified in this section can be evaluated according to their ability of handling 

complex, conflicting and contradicting information. This is done so that the methods are 

compared in terms of functionality, application, shortcomings and strength. The results arising 

from the comparison was used to assist the author in developing a MMSM without 

compromising the strength of each method.  

A MMSM must be developed that can deal with complex data to assist the user in making a 

mining method selection decision. The overall focus will be on how to integrate and maximise 

the strength the techniques have in order to overcome their individual disadvantages. 

 

The second section introduced the mining methods that can be used as input alternatives to 

the MMSM. The significance of this section was to introduce the number of alternative coal 

mining methods that have recently been developed. Previously developed MMS techniques 

have not been updated to include these recent methods. Also, to understand the requirements 

and functionality of each mining method so that the background information can form part of 

the MMSM database.  

The last section focused on the factors/ parameters that are considered in selecting a coal 

mining method. The aim of studying the factors was that they could be ranked, based on their 

importance, and can be used as input criteria in the MMSM to qualify an optimal mining method 

amongst alternatives in the decision-making process.  
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3. RESULT & RESULT ANALYSIS 
 

3.1. INTRODUCTION 
 

Chapter 3 will summarise the findings from studying the method selection techniques, factors, 

and mining methods. It is the aim of this chapter to class approaches and techniques to 

methods selection, to test the techniques against each other in different case studies, to check 

for consistency in decision making, and stability of the final rankings of alternatives. Two 

analysis approaches will be carried out; statistical and descriptive. A summary of factors that 

have been found consistently used in the previous MMSM will be presented so that they can 

be used as inputs to the proposed MMSM. 

 

The information from chapter 3 will be used to develop the proposed MMSM in chapter 4. Its 

capability and applicability will be detailed. The process of getting to the model and all the 

calculations will be shown. Chapter 5 6, and 7 will conclude the study, recommend, and 

suggest to the interested parties in the coal industry what can be done to further refine the 

study.  

The results section will be divided into two section; a descriptive and statistical approach to 

comparing the MCDM. Factors and coal mining methods will be presented as conclusions of 

this chapter.  

 

3.2. CASE STUDY EVALUATION 
The following two case studies will be used to evaluate the MCDM methods that were 

introduced in the previous section. Saaty & Ergu introduced a set of criteria that will be used 

to evaluate the MCDMs. The Saaty & Ergu list of criteria was used because it highlights major 

criteria that can be used for comparison. The set is shown in Table 19. In addition to the 

criteria, the MCDMs’ extent of application will be evaluated as well.  

Table 19: Criteria to evaluate MCDMs (Zavadaskas et al, 2016) 

Criteria 

1. Simplicity of execution 

2. Logical mathematical procedure 

3. Input parameters 

4. Synthesis of judgements with merging 
function 

5. Rank of tangibles 

6. Generalizability to ranking intangibles 

7. Rank preservation and reversal 

8. Sensitivity analysis 

9. Conflict resolution 

10. Trustworthiness and validity of the approach 
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3.2.1. CASE STUDY 1: INTEGRATED APPROACH TO MMS 
 

This case study illustrates the process of selecting a mining method through an integrated 

approach. A fuzzy AHP and TOPSIS were applied to facilitate the decision-making process.  

The case study uses information from: Shariat S, Yazdani-chamzini A, Bashari B.P, 2013, 

Mining method selection using an integrated model, International research journal of applied 

and Basic Sciences, 6(2): 199-214. The mine that was investigated is located in the Wester 

Zanjn province in Iran. It forms part of the major producers of zinc. The orebody is located 

within a metamorphic basement plunging east ward at 10-20. It is 600m long in the N-S line 

and 200-400m across. 

In this case, a fuzzy AHP determined the weights of the criteria (shown in Table 20), and the 

criteria were used to rate and rank the importance of the mining method alternatives in the 

TOPSIS model. Amongst the alternatives, cut and fill method ranked the highest and was 

confirmed through a sensitivity analysis. The selection process was performed for an 

Angouran Zn-Pb mine in Iran.  

The significance of the selected case study was that it illustrated the decision process of MMS 

by using TOPSIS as one of the investigated MCDM in the literature of this current study. Even 

though it is not a coal mining example, it better illustrated the use of MCDMs in decision 

making, especially where a mining method had to be selected. 

The mine started as an open pit. However, as depth increased (to 2880m), it was required that 

a mining method be suggested for continued operations. The criteria used for this specific 

problem and the alternatives are summarised in Table 20. 

Table 20: Criteria and Alternatives of Case study one 

Criteria Weights Alternatives 

 C1: Orebody thickness 

 C2: Orebody dip 

 C3: Orebody shape 

 C4: Grade distribution 

 C5: Orebody depth 

 C6: Orebody RSS 

 C7: Footwall RSS 

 C8: Hanging wall RSS 

 C9: Orebody RMR 

 C10: Footwall RMR 

 C11: Hanging wall RMR 

 0.005 

 0.244 

 0.048 

 0.051 

 0.147 

 0.092 

 0.048 

 0.096 

 0.074 

 0.134 

 0.013 

 A1: Block Caving 

 A2: Sublevel Stoping 

 A3: Sublevel Caving  

 A4: Cut & Fill 

 A5: Top Slicing 

 A6: Square Set Stoping 

 

To illustrate how TOPSIS was applied, the information from the selected case study will be 

shown in seven steps that TOPSIS comprises of. 

Step 1: Development of a Matrix 

Fifteen decision makers were involved in evaluating alternative mining methods based on the 

given criteria (Table 20) for the selected case study 1. All the criteria are benefit criteria and 

the higher the score, the better the performance of the mining method (Shariati et al, 2013). 

For example, A2 (sub-level caving), was given a rating of four based on the judgement of the 

decision makers on the mine information provided. The rating is higher amongst the 

alternatives in the criterion 4. The rating means that the grade distribution (C4) performed 
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better than the other criteria for alternative (A2). How the TOPSIS method work is explained 

in the literature review. Combined ratings of the 15 decision makers are shown below.  

Table 21: Performance ratings of alternatives from case study 1 (Shariati et al, 2013) 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A1 3 2 4 2 2 0 0 1 2 3 3 

A2 4 1 3 4 3 4 5 3 4 3 2 

A3 4 1 3 2 3 2 1 2 3 3 3 

A4 1 3 1 3 2 3 2 2 2 4 2 

A5 2 2 1 1 2 0 2 1 1 2 1 

A6 0 3 0 1 1 0 0 0 1 1 0 

 

Step 2: Normalisation of the Matrix 

Equation (2) was used to normalise the scores. As initially explained, the scores in Table 21 

are not necessarily similar in terms of measurements; therefore, normalisation converts all the 

scores to conform to the standard for ease and fair comparison. Table 22 shows the 

normalised values.  

Table 22: Normalised performance rating (Baloyi, 2018) 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A1 0,442 0,378 0,667 0,338 0,359 0,000 0,000 0,229 0,338 0,433 0,577 

A2 0,590 0,189 0,500 0,676 0,539 0,743 0,857 0,688 0,676 0,433 0,385 

A3 0,590 0,189 0,500 0,338 0,539 0,371 0,171 0,459 0,507 0,433 0,577 

A4 0,147 0,567 0,167 0,507 0,359 0,557 0,343 0,459 0,338 0,577 0,385 

A5 0,295 0,378 0,167 0,169 0,359 0,000 0,343 0,229 0,169 0,289 0,192 

A6 0,000 0,567 0,000 0,169 0,180 0,000 0,000 0,000 0,169 0,144 0,000 

 

Step 3: Weighted normalised matrix 

The weights obtained by the Fuzzy AHP for each of the 11 criteria, are now applied on the 

normalised matrix by multiplying each normalised value with the corresponding weight. The 

results are shown on Table 23: 

  

Table 23: Weighted Normalised Matrix 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

Weights 0,055 0,244 0,048 0,051 0,147 0,092 0,048 0,095 0,074 0,134 0,013 

A1 0,024 0,092 0,032 0,017 0,053 0,000 0,000 0,022 0,025 0,058 0,008 

A2 0,032 0,046 0,024 0,034 0,079 0,068 0,041 0,065 0,050 0,058 0,005 

A3 0,032 0,046 0,024 0,017 0,079 0,034 0,008 0,044 0,038 0,058 0,008 

A4 0,008 0,138 0,008 0,026 0,053 0,051 0,016 0,044 0,025 0,077 0,005 

A5 0,016 0,092 0,008 0,009 0,053 0,000 0,016 0,022 0,013 0,039 0,003 

A6 0,000 0,138 0,000 0,009 0,026 0,000 0,000 0,000 0,013 0,019 0,000 
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Step 4: Determine the Positive and negative ideal solution. 

In this step, the ideal solutions are derived from each column. It must be noted that all the 

criteria are benefit criteria; which means that a higher score is a better performance and will 

make up the positive ideal. The negative ideal implies that a lower performance is a better 

performance. The derived scores are shown for each criterion in Table 24. 

Table 24: Positive and Negative ideal solutions 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

+ 0,032 0,138 0,032 0,034 0,079 0,068 0,041 0,065 0,050 0,077 0,008 

- 0,000 0,046 0,000 0,009 0,026 0,000 0,000 0,000 0,013 0,019 0,000 

 

Step 5: Distance calculation from the ideal solution  

The distance of each alternative from the ideal solution is calculated. This separation measure 

indicates by how much the alternatives are further from the ideal solutions. Table 25 shows 

the obtained distance measures from the positive and negative ideal solutions. The equations 

used are (3) and (4):  

Table 25: Distance Measures from the ideal solution 

  𝑫𝒊
+ 𝑫𝒊

− 

A1 0,1116 0,0818 

A2 0,0946 0,1366 

A3 0,1101 0,0990 

A4 0,0628 0,1341 

A5 0,1202 0,0654 

A6 0,1449 0,0922 

 

Step 6: Calculation of the relative closeness 

The alternative with the highest relative closeness is rated as the preferred alternative. 

Equation (5) was used to obtain the relative closeness. A4 (Cut and Fill Method) was chosen 

as the most suitable to exploit the given deposit. While the least preferred option is A5.  

Table 26: TOPSIS Final ranking for 
alternatives 

 𝑪𝒊 Rank 

A1 0,4231 4 

A2 0,5908 2 

A3 0,4735 3 

A4 0,6809 1 

A5 0,3524 6 

A6 0,3889 5 

 

A sensitivity analysis was conducted to check the robustness of the results. The parameters 

that were chosen for the analysis were the weights of the criteria. The weights were increased 
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0.8000
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Topsis Ranking Case study 1

Figure 26: TOPSIS final ranking Case study one 



105 

 

 

by 20% and it was concluded that the results were not sensitive to the change because A4 

still emerged as the most suitable.  

To compare the performances of the MCDM, the author saw it fit to use the case study for the 

other methods with the following aim in mind: to check for consistency in the above results. 

Also, how further apart are the results. To illustrate how the other methods are applied, in this 

case study, all the steps of the other methods will be shown. In case study 2, only the results 

of the ranking will be shown.  

 

 

 

TODIM RANKING CASE STUDY 1 

Step 1: Development of a Matrix 

The matrix is already developed and shown in Table 21. 

Step 2: Normalisation of the Matrix 

The evaluations in the matrix are evaluated using equation (6) for beneficial and (7) for non-

beneficial criteria. In the above case study, it was noted that all criteria are beneficial; 

therefore, equation (6) is applicable. The results of the normalised values are shown.  

Table 27: TODIM normalised matrix case study 1 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A1 0,214 0,167 0,333 0,154 0,154 0,000 0,000 0,111 0,154 0,188 0,273 

A2 0,286 0,083 0,250 0,308 0,231 0,444 0,500 0,333 0,308 0,188 0,182 

A3 0,286 0,083 0,250 0,154 0,231 0,222 0,100 0,222 0,231 0,188 0,273 

A4 0,071 0,250 0,083 0,231 0,154 0,333 0,200 0,222 0,154 0,250 0,182 

A5 0,143 0,167 0,083 0,077 0,154 0,000 0,200 0,111 0,077 0,125 0,091 

A6 0,000 0,250 0,000 0,077 0,077 0,000 0,000 0,000 0,077 0,063 0,000 

 

Step 3: Calculation of weights 

Once weights are determined, the reference criterion, which is the criterion with the highest 

weight rating, is determined. The relative weight can then be calculated using equation (8).  

Table 28: TODIM Relative weights Case study 1 

𝑾𝒓

= 𝟎, 𝟐𝟒𝟒 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

𝑾𝒄 0,055 0,244 0,048 0,051 0,147 0,092 0,048 0,095 0,074 0,134 0,013 

𝑾𝒄𝒓 0,225 1,000 0,197 0,209 0,602 0,377 0,197 0,389 0,303 0,549 0,053 

 

Step 4: Dominance degree calculation 

Equation (9) to (12) are then used in calculating the dominance degree. The degree is 

calculated to determine the extent of which one alternative dominates the other; and it is 
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calculated for every alternative. The following tables from Table 29 to Table 34 shows the 

results of dominance. 

Table 29: The dominance of A1 over other alternatives for case study 1 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A1-A1 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 

A1-A2 -1,140 0,143 0,063 -1,738 -0,724 -2,199 -3,229 -1,530 -1,443 0,000 0,034 

A1-A3 -1,140 0,143 0,063 0,000 -0,724 -1,555 -1,444 -1,082 -1,020 0,000 0,000 

A1-A4 0,143 -0,585 0,109 -1,229 0,000 -1,904 -2,042 -1,082 0,000 -0,683 0,034 

A1-A5 0,063 0,000 0,109 0,063 0,000 0,000 -2,042 0,000 0,075 0,091 0,049 

A1-A6 0,109 -0,585 0,126 0,063 0,106 0,000 0,000 0,103 0,075 0,129 0,060 

 

Table 30: The dominance of A2 over other alternatives for case study 1 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A2-A1 0,063 -0,585 -1,318 0,089 0,106 0,202 0,155 0,145 0,107 0,000 -2,646 

A2-A3 0,000 0,000 0,000 0,089 0,000 0,143 0,138 0,103 0,075 0,000 -2,646 

A2-A4 0,109 -0,827 0,089 0,063 0,106 0,101 0,120 0,103 0,107 -0,683 0,000 

A2-A5 0,089 -0,585 0,089 0,108 0,106 0,202 0,120 0,145 0,131 0,091 0,034 

A2-A6 0,125 -0,827 0,109 0,108 0,150 0,202 0,155 0,178 0,131 0,129 0,049 

A2-A2 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 

 

Table 31: The dominance of A3 over other alternatives for case study 1 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A3-A1 0,063 -0,585 -1,318 0,000 0,106 0,143 0,069 0,103 0,075 0,000 0,000 

A3-A2 0,000 0,000 0,000 -1,738 0,000 -1,555 -2,888 -1,082 -1,020 0,000 0,034 

A3-A4 0,109 -0,827 0,089 -1,229 0,106 -1,100 -1,444 0,000 0,075 -0,683 0,034 

A3-A5 0,089 -0,585 0,089 0,063 0,106 0,143 -1,444 0,103 0,107 0,091 0,049 

A3-A6 0,125 -0,827 0,109 0,063 0,150 0,143 0,069 0,145 0,107 0,129 0,060 

A3-A3 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 

 

Table 32: The dominance of A4 over other alternatives for case study 1 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A4-A1 -1,612 0,143 -2,283 0,063 0,000 0,175 0,098 0,103 0,000 0,091 -2,646 

A4-A2 -1,975 0,202 -1,864 -1,229 -0,724 -1,100 -2,501 -1,082 -1,443 0,091 0,000 

A4-A3 -1,975 0,202 -1,864 0,101 -1,738 0,101 0,069 0,000 -1,020 0,091 -2,646 

A4-A5 -1,140 0,143 0,000 0,089 0,000 0,175 0,000 0,103 0,075 0,129 0,034 

A4-A6 0,063 0,000 0,063 0,089 0,106 0,175 0,098 0,145 0,075 0,158 0,049 

A4-A4 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 
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Table 33: The dominance of A5 over other alternatives for case study 1 

 

Table 34: The dominance of A6 over other alternatives for case study 1 

 

Step 5: Calculation of the overall dominance degree 

The overall dominance degree is calculated using equation (13) and the alternatives are 

ranked based on the scores. The alternative with the highest score dominates the other 

alternatives. The results are shown below:  

Table 35: TODIM rankings for Case 
study one 

 

 

According to the result obtained from using TODIM, A2, which is Sub-level Stoping, dominates 

the rest of the alternatives. A4, which was proven as the best in TOPSIS (original data) and 

after the sensitivity analysis, is dominated by two more methods in TODIM. Even though the 

ranking of the above two methods differ, a sensitivity analysis is yet to be carried out for TODIM 

to validate its results. 

 The following method to be checked is VIKOR.  

VIKOR Case study 1 

Step 1: establishment of the matrix 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A5-A1 -1,140 0,000 -2,283 -1,229 0,000 0,000 0,098 0,000 -1,020 -0,683 -3,742 

A5-A2 -1,612 0,143 -1,864 -2,128 -0,724 -2,199 -0,585 -1,530 -1,767 -0,683 -2,646 

A5-A3 -1,612 0,143 -1,864 -1,229 -0,724 -1,555 0,069 -1,082 -1,443 -0,683 -3,742 

A5-A4 0,063 -0,585 0,000 -1,738 0,000 -1,904 0,000 -1,082 -1,020 -0,966 -2,646 

A5-A6 0,089 -0,585 0,063 0,000 0,106 0,000 0,098 0,103 0,000 0,091 0,034 

A5-A5 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A6-A1 -1,975 0,143 -2,637 -1,229 -0,724 0,000 0,000 -1,082 -1,020 -0,966 -4,583 

A6-A2 -2,280 0,202 -2,283 -2,128 -1,024 -2,199 -3,229 -1,874 -1,767 -0,966 -3,742 

A6-A3 -2,280 0,202 -2,283 -1,229 -1,024 -1,555 -1,444 -1,530 -1,443 -0,966 -4,583 

A6-A4 -1,140 0,000 -1,318 -1,738 -0,724 -1,904 -2,042 -1,530 -1,020 -1,183 -3,742 

A6-A5 -1,612 0,143 -1,318 0,000 -0,724 0,000 -2,042 -1,082 0,000 -0,683 -2,646 

A6-A6 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 

 
Final Rank 

A1 0,708 4 

A2 1,000 1 

A3 0,867 2 

A4 0,730 3 

A5 0,412 5 

A6 0,000 6 
0
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Figure 27: TODIM final rankings Case Study 1 
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See Table 21 

Step 2: determine the best and worst criterion 

In Step 2, the best criterion is represented by the maximum criterion, and the worst is 

represented by the minimum criterion as shown in Error! Reference source not found. 

 

Table 36: Vikor's best and worst criterion 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

4,0000 3,0000 4,0000 4,0000 3,0000 4,0000 5,0000 3,0000 4,0000 4,0000 3,0000 

0,0000 1,0000 0,0000 1,0000 1,0000 0,0000 0,0000 0,0000 1,0000 1,0000 0,0000 

 

Step 3: computation of the utility and regret measures: 

The utility (S) values are shown in Error! Reference source not found., and they indicate 

he distance of the alternative from an ideal point. While the regret measure (R) is the maximum 

distance amongst the utility values from the ideal point. Equation (15) and (16) were used to 

perform the calculations: 

 

Table 37: Utility and regret measures 

  S_J R_J 

A1 0,541 0,122 

A2 0,305 0,244 

A3 0,475 0,244 

A4 0,305 0,074 

A5 0,666 0,122 

A6 0,757 0,147 

 

Step 5: calculation of the VIKOR index 𝑸𝒊 

The VIKOR index is calculated for each alternative for the final ranking. The alternative with 

the smallest index will be determined as the best. However, it must be able to meet the 

following conditions: 

Condition 1: Acceptable advantage: Q(A′′) − Q(A′) ≥ DQ 

Where A′ and A′′ are the first and second alternatives respectively with the best rankings in 

the Q list. DQ=
1

𝑚−1
; m is the number of alternatives. 

Condition 2: Acceptable stability in decision-making:  

In the second condition, A′ must be recognised as the best ranked in S and/or R groups. 

 

In this case study, VIKOR Index were calculated and are shown on Error! Reference source 

ot found.. The coefficient ‘v’ of 0, 5 was chosen. 
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Table 38: Vikor indeces 

Alternatives Q_I Rank 

A1 0,403 2 

A2 0,500 3 

A3 0,689 5 

A4 0,000 1 

A5 0,542 4 

A6 0,716 6 

 

A4 has the lowest index, and therefore it is the best option. A4 must therefore meet the above-

stated conditions to be qualified as the best option.  

For condition 1:  

𝑄(𝐴′′) − 𝑄(𝐴′) ≥ 𝐷𝑄  

𝑄(𝐴1) − 𝑄(𝐴4) ≥
1

6 − 1
 

0,403 − 0,000 ≥ 0,2 

For condition 2:  

S(𝐴4) =0,305 and R (𝐴4)=0,074. 

Therefore, all conditions are met. From the calculated index, A4 (Cut and Fill method) is 

confirmed to be the best by the VIKOR method. This confirms the TOPSIS results. However, 

whether the results are robust or will change if any of the parameters were changed will be 

confirmed by sensitivity analysis. 

 The following method to be applied in the case study is Grey Relational Analysis 

GRA Case Study 1 

Step 1: Construction of a Matrix 

Like in the previous methods, a matrix is constructed and shown in Table 21. 

Step 2: Normalisation of a Matrix 

The evaluation scores are normalised using equation (18) - (20). Error! Reference source 

ot found. below shows the normalised values. It must be noted that each row is referred to a 

comparability sequence.  

Table 39: GRA's normalised matrix 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A1 0,75 0,50 1,00 0,33 0,50 0,00 0,00 0,33 0,33 0,67 1,00 

A2 1,00 0,00 0,75 1,00 1,00 1,00 1,00 1,00 1,00 0,67 0,67 

A3 1,00 0,00 0,75 0,33 1,00 0,50 0,20 0,67 0,67 0,67 1,00 

A4 0,25 1,00 0,25 0,67 0,50 0,75 0,40 0,67 0,33 1,00 0,67 

A5 0,50 0,50 0,25 0,00 0,50 0,00 0,40 0,33 0,00 0,33 0,33 
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A6 0,00 1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

 

Step 3: Derivation of the Reference sequence 

The reference sequence is determined by looking for the maximum value in each column. The 

following are the results for the above-normalised values: 

 

Table 40: GRA's reference sequence 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

Ref C 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 

 

 

Step 4: generation and calculation of the grey relational coefficient: 

The relational coefficient measures the similarities between the reference sequence and the 

comparability sequences. A value of zero, 5 is used as the identification coefficient in the 

equation (21) that is used to calculate the Grey relational coefficient shown in Error! 

eference source not found.. 

 

Table 41:GRA's coefficiet 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A1 0,667 0,500 1,000 0,429 0,500 0,333 0,333 0,429 0,429 0,600 1,000 

A2 1,000 0,333 0,667 1,000 1,000 1,000 1,000 1,000 1,000 0,600 0,600 

A3 1,000 0,333 0,667 0,429 1,000 0,500 0,385 0,600 0,600 0,600 1,000 

A4 0,400 1,000 0,400 0,600 0,500 0,667 0,455 0,600 0,429 1,000 0,600 

A5 0,500 0,500 0,400 0,333 0,500 0,333 0,455 0,429 0,333 0,429 0,429 

A6 0,333 1,000 0,333 0,333 0,333 0,333 0,333 0,333 0,333 0,333 0,333 

 

Step 6: Generation of the GRD 

The grey relational coefficients are then averaged to obtain the grey relational degree. This 

degree shows the similarity of the comparability and reference sequence. The higher the value 

of the GRD, the better the ranking. The calculated GRD are shown in Table 42. A2 (sub-level 

stoping) is the highly ranked; then A4 comes second. A5 is the least preferred alternative. The 

results will further be validated by a sensitivity analysis.  

Table 42: GRA alternatives ranking for Case Study 1 

 
GRD Rank 

A1 0,515 4 

A2 0,764 1 

A3 0,596 3 

A4 0,703 2 
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The following methods to be evaluated on Case study 1 are PROMETHEE I and II which will 

give us a partial and complete ranking respectively. A Visual PROMETHEE software was used 

to perform the rankings and the results are shown in the following procedure.  

 

PROMETHEE Case Study 1 

Step 1: construction of a matrix 

The matrix table has already been constructed and is shown in Table 21. 

 

Step 2: Pairwise performance difference 

The pairwise performance was calculated within the Visual PROMETHEE software. If manual 

calculations were carried out, Equation (22) would have been used.  

Step 3: Choosing criteria function 

The criteria function chosen for all criterion is the Level (type 4) function. The choice was 

motivated by previous studies such as the integrated approach into mining method selection 

by Bogdanovic et al (2012). The choice of the criteria function will influence whether the 

indifference (q) and preference (p) functions are to be chosen. These functions are based on 

the evaluator’s judgment, as long as they are consistent with previous studies, then they can 

be accepted. A sensitivity analysis can still be performed to check the robustness of the results 

(Kumar & Sultana, 2012). 

In the case of the case study 1: q=1, and p=2. 

Step 4: Multi-criterion preference index 

Step 4 was calculated within the Visual PROMETHEE software. Manual calculations would 

have been carried out using equation (23). 

 

Step 5: Calculation of the positive and negative outranking 

The out rankings were calculated within the software and are depicted by Figure 29. These 

outranking flows partially ranks the alternatives. A2 is a better alternative amongst the 6, since 

a higher positive value expresses the extent of how an alternative outranks the others. What 

the exact values are is shown by the PROMETHEE network in Figure 30. The negative 

A5 0,440 6 

A6 0,496 5 

0

0.2

0.4

0.6

0.8

1

A1 A2 A3 A4 A5 A6

GRA ranking case study 1

Figure 28: GRA final ranking for case study 1 
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outranking shows that A4 is a better alternative because its value is smaller, and it expresses 

the extent of how an alternative is outranked by the others. In this case, the others outrank 

A6.  

 

Figure 29: PROMETHEE I partial ranking of alternatives for Case Study 1 

 

 

Figure 30: PROMETHEE's diamond network ranking of alternatives for Case Study 1 

 

Step 6: determination of the net outranking flow 
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The total ranking is performed and A2 was found as the alternative that outranks the others. 

A4 in this case came second. A sensitivity analysis will be performed to validate these results. 

The total rankings are shown in Figure 31. 

 

Figure 31: PROMETHEE II final ranking of alternatives for Case Study 1 

 

ELECTREE case study 1 

ELECTREE is also one of the MCDM under investigation. Its steps are as follows: 

Step 1: Construct, normalise, and establish a weighted matrix 

The matrix referred to is in Table 21. 

The weighted normalised matrix is like that of TOPSIS in Table 23 

Step 2: Determine the concordance and discordance sets 

In step 2, the concordance and discordance sets are determined according to equation (28) 

and (29). It must be noted that either ever pair of alternatives belongs to a concordance subset 

where alternative ‘a’ is preferred over ‘b’ or a complement set (discordance). This is illustrated 

in the following tables from Table 43 to Table 48. 

Table 43: A1's concordance and discordance set for case study 1 

A1 C=1 C=2 C=3 C=4 C=5 C=6 C=7 C=8 C=9 C=10 C=11   D 

C (1,2) - 1 1 - - - - - - 1 1 D (1,2) 1,4,5,6,7,8,9 

C (1,3) - 1 1 1 - - - - - 1 1 D (1,3) 1,5,6,7,8,9 

C (1,4) 1 - 1 - 1 - - - 1 - 1 D (1,4) 2,4,6,7,8,10 

C (1,5) 1 1 1 1 1 1 - 1 1 1 1 D (1,5) 7 

C (1,6) 1 - 1 1 1 1 1 1 1 1 1 D (1,6) 2 
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Table 44: A2's concordance and discordance set for case study 1 

A2 C=1 C=2 C=3 C=4 C=5 C=6 C=7 C=8 C=9 C=10 C=11   D 

C (2,1) 1 - - 1 1 1 1 1 1 1 - D (2,1) 2, 3, 11 

C (2,2) 1 1 1 1 1 1 1 1 1 1 1 D (2,2)   

C (2,3) 1 1 1 1 1 1 1 1 1 1 - D (2,3) 11 

C (2,4) 1 - 1 1 1 1 1 1 1 - 1 D (2,4) 2, 10 

C (2,5) 1 - 1 1 1 1 1 1 1 1 1 D (2,5) 2 

C (2,6) 1 - 1 1 1 1 1 1 1 1 1 D (2,6) 2 

 

Table 45: A3's concordance and discordance set for case study 1 

A3 C=1 C=2 C=3 C=4 C=5 C=6 C=7 C=8 C=9 C=10 C=11   D 

C (3,1) 1 - - 1 1 1 1 1 1 1 1 D (3,1) 2, 3 

C (3, 2) 1 1 1 - 1 - - - - 1 1 D (3,2) 4, 6, 7, 8, 9 

C (3,3) 1 1 1 1 1 1 1 1 1 1 1 D (3,3)   

C (3,4) 1 - 1 - 1 - - 1 1 - 1 D (3,4) 2, 4, 6, 7, 10 

C (3,5) 1 - 1 1 1 1 - 1 1 1 1 D (3,5) 2, 7 

C (3,6) 1 - 1 1 1 1 1 1 1 1 1 D (3,6) 2 

 

 

 

Table 46:A4's concordance and discordance set for case study 1 

A4 C=1 C=2 C=3 C=4 C=5 C=6 C=7 C=8 C=9 C=10 C=11   D 

C (4, 1) - 1 - 1 1 1 1 1 1 1 - D (4,1) 1, 3, 11 

C (4, 2) - 1 - - - - - - - 1 1 D (4,2) 1, 3, 4, 5, 6, 7, 
8, 9 

C (4,3) - 1 - 1 - 1 1 1 - 1 - D (4,3) 1, 3, 5, 9, 11 

C (4, 4) 1 1 1 1 1 1 1 1 1 1 1 D (4,4)   

C (4, 5) - 1 1 1 1 1 1 1 1 1 1 D (4,5) 1 

C (4,6) 1 1 1 1 1 1 1 1 1 1 1 D (4,6)   

 

Table 47: A5's concordance and discordance set for case study 1 

A5 C=1 C=2 C=3 C=4 C=5 C=6 C=7 C=8 C=9 C=10 C=11   D 

C (5,1) - 1 - - 1 1 1 1 - - - D 
(5,1) 

1, 3, 4, 9, 10, 11 

C (5,2) - 1 - - - - - - - - - D 
(5,2) 

1, 3, 4, 5, 6, 7, 8, 9, 
10, 11 

C (5,3) - 1 - - - - 1 - - - - D 
(5,3) 

1, 3, 4, 5, 6, 8, 9, 10, 
11 

C (5,4) 1 - 1 - 1 - 1 - - - - D 
(5,4) 

2, 4, 6, 8, 9, 10, 11 

C (5,5) 1 1 1 1 1 1 1 1 1 1 1 D 
(5,5) 
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C (5,6) 1 - 1 1 1 1 1 1 1 1 1 D 
(5,6) 

2 

 

Table 48: A6's concordance and discordance set for case study 1 

A6 C=1 C=2 C=3 C=4 C=5 C=6 C=7 C=8 C=9 C=10 C=11   D 

C (6,1) - 1 - - - 1 1 - - - - D 
(6,1) 

1, 3, 4, 5, 8, 9, 10, 11 

C (6,2) - 1 - - - - - - - - - D 
(6,2) 

1, 3, 4, 5, 6, 7, 8, 9, 
10, 11 

C (6,3) - 1 - - - - - - - - - D 
(6,3) 

1, 3, 4, 5, 6, 7, 8, 9, 
10, 12 

C (6,4) - 1 - - - - - - - - - D 
(6,4) 

1, 3, 4, 5, 6, 7, 8, 9, 
10, 13 

C (6,5) - 1 - 1 - 1 - - 1 - - D 
(6,5) 

1, 3, 5, 7, 8, 10, 11 

C (6,6) 1 1 1 1 1 1 1 1 1 1 1 D 
(6,6) 

  

 

Step 3: Concordance interval Matrix 

For every concordance set occurring in a similar row, all the weights where ‘a’ is preferred 

over ‘b’ are summed using equation (30). The summations are shown as follows: 

 

Table 49: Concordance interval matrix for case study 1 

  A1 A2 A3 A4 A5 A6 

A1 0,000 0,439 0,490 0,337 0,953 0,757 

A2 0,696 0,000 0,988 0,623 0,757 1,001 

A3 0,709 0,641 0,000 0,432 0,709 0,757 

A4 0,885 0,391 0,664 0,000 0,946 1,001 

A5 0,626 0,244 0,292 0,298 0,000 0,757 

A6 0,384 0,244 0,244 0,244 0,461 0,000 

 

Step 4: Discordance interval matrix 

The discordance matrix is formed from the discordance set using equation (31), and the results 

are represented as follows: 

Table 50: Discordance interval matrix for case study 1 

  A1 A2 A3 A4 A5 A6 

A1 0,00 1,00 0,74 1,00 0,69 1,00 

A2 0,67 0,00 0,07 1,00 0,67 1,00 

A3 1,00 1,00 0,00 1,00 1,00 1,00 

A4 0,47 0,29 0,29 0,00 0,16 0,00 

A5 1,00 1,00 0,74 1,00 0,00 1,00 

A6 0,84 0,74 0,57 1,00 0,57 0,00 
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Step 5: Determination of the concordance matrix index 

Using Equation (32), the concordance index was calculated to be 0,599. In addition, the 

Boolean Matrix is shown in Table 51. 

 

Table 51: Boolean Matrix for Case study 1 

  A1 A2 A3 A4 A5 A6 

A1 0 0 0 0 1 1 

A2 1 0 1 1 1 1 

A3 1 1 0 0 1 1 

A4 1 0 1 0 1 1 

A5 1 0 0 0 0 1 

A6 0 0 0 0 0 0 

 

 

Step 6: Determination of the discordance matrix index 

Equation (33) was used to determine the discordance index (0,750) and its matrix is shown in 

Table 52. 

Table 52: Discordance matrix for case study 1 

 
A1 A2 A3 A4 A5 A6 

A1 0 1 0 1 0 1 

A2 0 0 0 1 0 1 

A3 1 1 0 1 1 1 

A4 0 0 0 0 0 0 

A5 1 1 0 1 0 1 

A6 1 0 0 1 0 0 

 

STEP 7: AGGREGATE THE DOMINANCE MATRIX 

The final matrix is obtained by multiplying the matrix in Step 5 and 6.  

Table 53: Aggregated dominance matrix for Case Study 1 

 
A1 A2 A3 A4 A5 A6 

A1 0 0 0 0 0 1 

A2 0 0 0 1 0 1 

A3 1 1 0 0 1 1 

A4 0 0 0 0 0 0 

A5 1 0 0 0 0 1 

A6 0 0 0 0 0 0 
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From the Aggregate dominance matrix, all the columns are checked. The column with the 

least amount of ‘1’, its alternative will be chosen as the best. From the Matrix, A3 only has 

zeroes, therefore is the best alternative. A2, A4, and A5 have the same number of ‘1’. In this 

case, a sensitivity analysis can be carried out by changing the indexes in Step 5 and Step 6 

since those values are threshold values. A1 follows and lastly, the least preferred method is 

A6. A sensitivity analysis will be performed since ELECTRE failed to sort the alternatives in 

different ranks.  

The following methods have not been used before in the MMS process. However, they are 

included for comparison purposes. They are OCRA, ARAS, CORPAS, CP and SAW. Their 

processes of reaching a final ranking will be detailed in the following pages.  

OCRA Case study 1 

OCRA is carried out in 6 straightforward steps: 

Step 1: Construction of a matrix 

A matrix used is in Table 21. 

Step 2/3: Preference rating for non-beneficial criteria 

Since in the given case study, there are non-beneficial criterion, then step 2 and 3 are not 

applicable. However, for their calculations, Equation (36) and (37) would have been used.  

Step 4: Preference rating for beneficial 

Preferential ratings for each alternative with respect to the criteria are calculated using 

equation (38). The results are shown in Table 54. 

Table 54: Preference rating for case study 1 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A1 1,595 0,244 1,872 0,051 0,147 0,000 0,000 0,855 0,074 0,268 0,377 

A2 2,145 0,000 1,392 0,153 0,294 3,588 2,352 2,755 0,222 0,268 0,247 

A3 2,145 0,000 1,392 0,051 0,294 1,748 0,432 1,805 0,148 0,268 0,377 

A4 0,495 0,488 0,432 0,102 0,147 2,668 0,912 1,805 0,074 0,402 0,247 

A5 1,045 0,244 0,432 0,000 0,147 0,000 0,912 0,855 0,000 0,134 0,117 

A6 0,000 0,488 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 

 

Step 5: Linear preference rating for beneficial 

Linear preference ratings are determined according to equation (39) and they are shown in 

Table 55. 

Table 55: Linear preference rating for case study 1 

 
linear P 

A1 5,483 

A2 13,416 

A3 8,66 

A4 7,698 

A5 3,886 

A6 0,488 
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STEP 6: OVERALL PERFORMANCE RATING 

The overall ratings of the alternatives are determined using equation (40) and are shown 

below. A2 is the alternative with the highest overall performance; followed by A3. The worst 

performing alternative is A6. A sensitivity analysis will be carried out to check the robustness 

of the answer if weights and other possible parameters were altered.  

Table 56: OCRA Final ranking for case study 1 

 

 

 

 

 

 

 

 

ARAS case study 1 

Like OCRA, Aras is straightforward with only 5 steps: 

Step 1: Develop a Decision Matrix 

A developed Matrix is shown in Table 21. 

Step 2: Normalisation of the Matrix 

The matrix in Table 57, was normalised using equation (41-43).  

Table 57: ARAS' normalised matrix for case study 1 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A1 0,214 0,167 0,333 0,154 0,154 0,000 0,000 0,111 0,154 0,188 0,273 

A2 0,286 0,083 0,250 0,308 0,231 0,444 0,500 0,333 0,308 0,188 0,182 

A3 0,286 0,083 0,250 0,154 0,231 0,222 0,100 0,222 0,231 0,188 0,273 

A4 0,071 0,250 0,083 0,231 0,154 0,333 0,200 0,222 0,154 0,250 0,182 

A5 0,143 0,167 0,083 0,077 0,154 0,000 0,200 0,111 0,077 0,125 0,091 

A6 0,000 0,250 0,000 0,077 0,077 0,000 0,000 0,000 0,077 0,063 0,000 

 

Step 3: Weighted Normalised Matrix 

Like in the previous MCDMs, a weighted normalised matrix was constructed by multiplying the 

weight with each score from step 3. The results are shown in Table 58. 

Table 58: ARAS weighted normalised matrix 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

w 0,055 0,244 0,048 0,051 0,147 0,092 0,048 0,095 0,074 0,134 0,013 

A1 0,012 0,041 0,016 0,008 0,023 0,000 0,000 0,011 0,011 0,025 0,004 

A2 0,016 0,020 0,012 0,016 0,034 0,041 0,024 0,032 0,023 0,025 0,002 

  Rank 

A1 4 

A2 1 

A3 2 

A4 3 

A5 5 

A6 6 
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OCRA ranking case study 1

Figure 32: OCRA ranking case study 1 
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A3 0,016 0,020 0,012 0,008 0,034 0,020 0,005 0,021 0,017 0,025 0,004 

A4 0,004 0,061 0,004 0,012 0,023 0,031 0,010 0,021 0,011 0,034 0,002 

A5 0,008 0,041 0,004 0,004 0,023 0,000 0,010 0,011 0,006 0,017 0,001 

A6 0,000 0,061 0,000 0,004 0,011 0,000 0,000 0,000 0,006 0,008 0,000 

 

Step 4: Determine an optimality function (OF) 

The higher the optimality function, the more effective an alternative is. The calculated OFs are 

shown in Table 59. 

Table 59: Optimality function for case study 1 

 

 

 

 

 

 

Step 5: Determine and rank utility function values 

The alternatives are then ranked through the utility function value. This value determined the 

relative efficiency of an alternative over the optimal alternative. The results are shown below. 

A2 is rated as the best choice, followed by A4. The worst choice is A6. The graph in Figure 

36, depicts the results.  

Table 60: Ranking of utility 
function values for case study 1 

A1 61% 4 

A2 100% 1 

A3 74% 3 

A4 87% 2 

A5 50% 5 

A6 37% 6 

 

COPRAS case study 1 

CORPAS’ procedure is similar to that of ARAS with a few differences towards the final steps.  

Step 1: Construct a matrix 

See Table 21 

Step 2: Normalise the constructed matrix 

See Table 57 

Step 3: Weighted normalise matrix 

See Table 58 

  OF 

A1 0,150 

A2 0,244 

A3 0,182 

A4 0,212 

A5 0,123 

A6 0,090 
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ARAS Case study 1

Figure 33 : ARAS ranking for case study 1 
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Step 4-5-6: sum of beneficial and non-beneficial, determine the relative significance 

value (Q), and calculation of quantitative utility (U). 

Once the beneficial criteria are summed up, a relative significance value of the alternative that 

shows the priority of the alternatives can then be calculated using (49). From the calculations, 

a quantitative utility value can then be calculated using equation (50). A higher value implies 

a higher ranking. In the rankings shown in Table 61 and  

Figure 34, A2 emerged as the winning option. While A6 was ranked the worst amongst the 

alternatives. The results will be further validated by a sensitivity analysis.  

Table 61: COPRAS' ranking for case study 1 

 
Sum Q U Rank 

A1 0,150 0,150 61% 4 

A2 0,244 0,244 100% 1 

A3 0,182 0,182 74% 3 

A4 0,212 0,212 87% 2 

A5 0,123 0,123 50% 5 

A6 0,090 0,090 37% 6 

 

 

 

 

 

 

 

Figure 34: COPRAS final ranking for case study 1 

CP case study 1 

The following is a procedure used in CP, a method that determines alternatives based on a 

distance measure.  

Step 1: establish a matrix 

See Table 21. 

Step 2: determine the weight of each criterion 

The weights have been determined in the original case study and they are shown in the 

TOPSIS procedure.  

Step 3: specify parameter, p 

The parameter ‘p’ reflects the decision maker’s choice and how deviations are compensated. 

It ranges between 1 and infinity. The choice in this case is that of 1, which implies that 

deviations from the ideal value are taken in direct proportion to their magnitude.  

p=1 
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COPRAS ranking case study 1
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Step 4: computation of the distance metric 

The distance metric is then computed using equation (54). The measure will then be used to 

estimate how close an alternative is to the ideal solution. They are shown in Table 62. 

Table 62: Computation of distance metric for case study 1 

P=1 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A1 0,014 0,122 0,000 0,034 0,074 0,092 0,048 0,063 0,049 0,045 0,000 

A2 0,000 0,244 0,012 0,000 0,000 0,000 0,000 0,000 0,000 0,045 0,004 

A3 0,000 0,244 0,012 0,034 0,000 0,046 0,038 0,032 0,025 0,045 0,000 

A4 0,041 0,000 0,036 0,017 0,074 0,023 0,029 0,032 0,049 0,000 0,004 

A5 0,028 0,122 0,036 0,051 0,074 0,092 0,029 0,063 0,074 0,089 0,009 

A6 0,055 0,000 0,048 0,051 0,147 0,092 0,048 0,095 0,074 0,134 0,013 

 

 

 

 

Step 5: Ranking of alternatives 

The alternatives are then ranked based on the calculations performed in Step 4. The best 

alternative will have the lowest distance metric, and that implies that it is closest to the ideal 

solution. A4 appears slightly lower than A2, but they are both closest to the ideal solution 

compared to the rest of the alternatives, with A6 being the furthest. The results are depicted 

in Table 63 and Figure 35. 

Table 63: CP ranking for case study 1 

 L_P Rank 

A1 0,541 4 

A2 0,3050 2 

A3 0,475 3 

A4 0,3049 1 

A5 0,666 5 

A6 0,757 6 
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CP ranking Case study 1

Figure 35 CP final alternatives ranking for case study 1: 
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SAW Case study 1 

The last MCDM to be compared is SAW. The following procedure is followed for this method.  

Step 1: Construction of a matrix 

See Table 21. 

 

Step 2: Normalisation of a matrix 

The SAW matrix is normalised using equation (51) and (52). The results are as follows. 

Table 64: SAW's normalised matrix for case study 1 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A1 0,750 0,667 1,000 0,500 0,667 0,000 0,000 0,333 0,500 0,750 1,000 

A2 1,000 0,333 0,750 1,000 1,000 1,000 1,000 1,000 1,000 0,750 0,667 

A3 1,000 0,333 0,750 0,500 1,000 0,500 0,200 0,667 0,750 0,750 1,000 

A4 0,250 1,000 0,250 0,750 0,667 0,750 0,400 0,667 0,500 1,000 0,667 

A5 0,500 0,667 0,250 0,250 0,667 0,000 0,400 0,333 0,250 0,500 0,333 

A6 0,000 1,000 0,000 0,250 0,333 0,000 0,000 0,000 0,250 0,250 0,000 

 

Step 3: Weight determination 

Weights were determined in the original case study method, which in this case is the TOPSIS 

method.  

Step 4: Calculations of evaluations score 

The evaluation scores are simply calculated by multiplying each score with the weight. Then, 

all these new values are summed up for each alternative and will give the final score of the 

alternative. This is shown by Table 65. 

Table 65: SAW’s evaluation score for case study 1 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A1 0,041 0,163 0,048 0,026 0,098 0,000 0,000 0,032 0,037 0,101 0,013 

A2 0,055 0,081 0,036 0,051 0,147 0,092 0,048 0,095 0,074 0,101 0,009 

A3 0,055 0,081 0,036 0,026 0,147 0,046 0,010 0,063 0,056 0,101 0,013 

A4 0,014 0,244 0,012 0,038 0,098 0,069 0,019 0,063 0,037 0,134 0,009 

A5 0,028 0,163 0,012 0,013 0,098 0,000 0,019 0,032 0,019 0,067 0,004 

A6 0,000 0,244 0,000 0,013 0,049 0,000 0,000 0,000 0,019 0,034 0,000 

 

Step 5 Ranking of alternatives 

The alternative with the highest score is the most suitable. In this case, A2 appears to be the 

highest followed by A4. A6 with a score of 0,358 is the least preferred option.  
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Table 66: SAW's final ranking of alternatives 

 
SUM RANK 

A1 0,558 4 

A2 0,789 1 

A3 0,633 3 

A4 0,737 2 

A5 0,454 5 

A6 0,358 6 

 

Conclusion of Case Study 1 

The combined results of all the 10 MCDM yield the following frequency of ratings. The table 

shows how many times each alternative appeared in a rank. A2 from the combined MCDM 

results was rated as the best option because it emerged as the most suitable method in 7 out 

of the 10 rating methods; while A6 emerged as the worst option in 8 out 10 ratings.  

Table 67: Ranking frequencies of MCDM in case study 1 

 Ranks 1 2 3 4 5 6 

A
lte

rn
a
tiv

e
s
 

A1 0 1 0 9 0 0 

A2 7 2 1 0 0 0 

A3 0 2 7 0 1 0 

A4 3 5 2 0 0 0 

A5 0 0 0 1 7 2 

A6 0 0 0 0 2 8 

 

A2 > A4 > A3 > A1 > A5 > A6 

The following is a table that sorts the MCDM’s according to the results of their ratings. Group 

1 shows the MCDM with the same rankings of alternatives and so on. This information will 

help the author in checking for consistency when the other case studies are assessed.  

Table 68: Grouping of MCDM case study 1 

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

 PROMETHEE 

 CORPAS 

 ARAS 

 SAW 

 TODIM 

 OCRA 

 TOPSIS  CP  GRA  VIKOR 

 

A sensitivity analysis was conducted for each method and the results are shown in section 

3.2.5.  

 

3.2.2. CASE STUDY 2 AHP AND PROMETHEE APPROACH TO MMS 
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The second case study is an example of the use of two MCDM: AHP and PROMETHEE. Like 

in the previous case study, AHP was used for determining the weights of the criteria. 

PROMETHEE was used for ranking purposes. This approach was performed for ‘Coka Marin’ 

underground mine in Serbia. Using this case study, gave the author an opportunity to 

differentiate the performances of the MCDM methods where non-beneficial (such as cost) and 

beneficial (such as production rate) criteria were used. In conclusion, the methods are grouped 

according to their similarities, and a final ranking that resolve the conflict is given.  

Five possible mining methods and eleven criteria were used in evaluating the MMS process; 

and are shown in Table 69. 

Table 69: Criteria and Alternatives of Case study 2 

Criteria Alternatives 

 C1: Thickness 

 C2: Dip 

 C3: Rock Substance strength of ore 

 C4: Crack system of ore 

 C5: Shape 

 C6: Coefficient of development 

 C7: Ore excavation efficiency 

 C8: Ore dilution 

 C9: Excavation costs 

 C10: Work safety 

 C11: Terrain surface preservation 

 A1: Room and pillar 

 A2: Room and pillar with fill 

 A3: Shrinkage 

 A4: Cut and fill 

 A5: Sublevel caving 

 

The mine under consideration is located in Serbia with total ore reserves of 1 160 000 tons. 

The commodities extracted are Copper, Lead, Zinc, Gold and Silver. The physical properties 

of the ‘Coka Marin’ underground mine are shown in Table 70. 

Table 70: Physical properties of 'Coka Marin' Deposityt (Bogdanovi et al, 2012) 

Parameter  Unit Ore Footwall Hanging wall 

Volumetric mass t/m3 4.07 2.68 2.55 

Porosity  % 3.1 4.57 3.09 

Uniaxial compressive strength MPa 64.7 42.1 56.1 

Tensile strength  MPa 9.1 5.2 7.3 

Inner frictional angle Degree 34 35 35 

Module of elasticity  GPa 37.4858 21.1705 25.5683 

Module of deformation GPa 36.207 19.9077 23.847 

Poisson coefficient   0.189 0.22 0.214 

Cohesion MPa 17.5 11.6 11.2 

Thickness M 40-50m - - 

Dip Degree 65-75 - - 

Type  Massive - - 

Depth M 20-270 - - 

 

After calculations were performed for each MCDMs, the following results were obtained. The 

tables show rankings of different alternatives based on the MCDM used. Since the initial study 

used PROMETHEE, the calculations were repeated to confirm the results of the case study. 

The initial results of case study 2 were A5>A3>A1>A4>A2. The following table’s shows results 

of different case MCDMs applied in case study 2 problem.  
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Table 71: MCDMs results for case study 2 
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From the rankings depicted by the graphs above, the following conclusions can be extracted. 

The frequency of occurrences in each ranking are shown by Table 72. In addition, Table 73 

shows the groupings of MCDM in terms of similarities in how they ranked the alternatives. It 

is visible that the groupings are not the same as the groupings of case study 1. There is a 

level of inconsistency that is detected so far. However, the results will be confirmed by a 

sensitivity analysis. For this case study, the combined rankings of the MCDMs have been 

obtained as A5>A3>A1>A4>A2; where 8 out of 10 methods rated A5 as the best, and 8 out 

10 methods rated A2 as the worst method. The results confirm the initial obtained results of 

case study 2 since the rankings did not change.  

 

Table 72: Frequency of rankings for case study 2 

Ranks  1 2 3 4 5 

A
lte

rn
a
tiv

e
s
 

A1 0 0 6 1 3 

A2 0 0 1 2 7 

A3 2 8 0 0 0 

A4 0 0 3 7 0 

A5 8 2 0 0 0 
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Table 73: Groups of MCDMs for case study 2 

Group 1 Group 2 Group 3 Group 4 Group 5 

 PROMETHEE 

 CORPAS 

 ARAS 

 SAW 

 VIKOR 

 TOPSIS 

 TODIM 
 

 OCRA  CP  GRA 

 

In the following section, method will be analysed based on descriptions and will be rated on a 

scale of Low, Medium and High.  

 

3.2.3. DESCRIPTIVE ANALYSIS OF THE MCDM 
Saaty and Ergu described a set of criteria that can be used to evaluate different MCDMs in 

order to answer the question: “When is a Decision-Making method trustworthy?” The following 

set of criteria are evaluated against the MCDMs described in the literature review. 

 

A. SIMPLICITY OF EXECUTION 
In simplicity of execution, Saaty and Ergu (2015) suggested that the user of the   

MCDM must be able to perform the decision-making process without the need of an 

expert to supervise the process. The mathematics and underlying logic of the 

procedure must not hinder a successful decision-making process. A scale to rate the 

ease of use for the methods is given as, low: if the method’s logic is complicated and 

not suitable to be used by non-expert; medium if there is much effort that goes into 

learning it; high if it can be implemented in almost all studies and can be easily 

understood by layman.  

The author has assessed the methods as follows: 

 

 TOPSIS 

From the current research experience with the application of TOPSIS, the method 

is user friendly and one experiences a high simplicity of use. This claim is backed 

up by the extent of application of the TOPSIS. It was been previously mentioned in 

this current research that over 100 papers have been published where TOPSIS is 

applied. The following are some of the comments from the previous users of 

TOPSIS.  

 

Pavic and Novoselac (2013) attest to the simplicity of TOPSIS in their publication; 

that the method has a simple mathematical model and is a practical method since 

the user can rely on computer support for computations. Yavuz (2012) confirmed 

the ease of use of TOPSIS compared to the other MCDM methods when he used 

it for wheel loader selection in a coalmine. The computational process of TOPSIS 

is said to be straightforward by Garcia-Cascales & Lamata (2012). 

 

 

 

 

 TODIM 
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From the current research experience, the author found that the method is simple 

to use once the user understands the procedure. However, there can be 

computational mistakes in the process because of the effort that goes onto its 

implementation. In terms of the pre-defined ratings of simplicity of execution, 

TODIM is rated medium. It was previously mentioned in the literature review that 

Rangel et al (2009) said the method is easy to be implemented even by users who 

are not professionals.  

 VIKOR 

According to the current research, VIKOR is simple to use and is rated highly. 

However, the need for user input of some other parameters such as the ‘v’ 

parameter may make the process tedious.  

 GRA 

Wu (2002) mentioned some of the advantages of GRA. Amongst them was the 

simplicity in computations and the straight forwardness of the method. In this 

current research. GRA was used, and the author found the method easy to 

implement. The rating GRA is given in this study is a high rating. 

 PROMETHEE 

The simplicity of PROMETHEE in application and conception has led to its 

widespread use and a fast-growth (Balali et al, 2014). However, the difficulty of 

PROMETHEE shows up when the preference function has to be chosen; and may 

be difficult when the decision maker has no experience of using this MCDM. 

Therefore, the simplicity is given a medium rating. 

 ELECTRE 

ELECTRE is a complex method and difficult for non-experts. Balali et al (2014) 

attest that ELECTRE does suffer from sophisticated mathematical formulation. A 

low rating is given to ELECTRE. 

 OCRA, ARAS, COPRAS, SAW, and CP. 

The above methods are simple to execute in decision-making and will therefore be 

given a high rating of simplicity. 

 

B. LOGICAL, MATHEMATICAL PROCEDURE 
This criterion simply means that a method must have a mathematical representation, 

logical reasoning behind the theory and justification. A low rating is given to a method 

with just a simple mathematical logical procedure; a medium rating is given to a method 

that uses reference sequences or relative difference to rank alternatives; and high 

rating for methods using pairwise comparison technique to determine the dominance 

of one criterion over another.  

 TOPSIS 

The mathematical approach of TOPSIS is well structured and uses relative 

difference of the distances for ranking. Therefore, it is given a medium rating. 

 TODIM 

TODIM uses pairwise comparison to determine the dominance of one criterion 

over another. In addition, from tits equations, it can eliminate inconsistencies 

that do arise from the pairwise comparison technique. Therefore, it is given a 

high rating.  

 

 

 

 VIKOR 
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There are no pairwise comparisons in the VIKOR method and criterion can be 

evaluated independently. A relative difference is thus used at the final ranking 

of the alternatives; and VIKOR is rated medium in this case. 

 GRA 

According to Lu (2015), the theory behind GRA does not have any solid 

foundation in mathematics. The assumption made in GRA is that the data is 

exponential; however, there are no further explanations on why such a claim is 

made. This makes it difficult to know the interpretations if the data is not 

exponential. Some other challenges faced and could be the reason for limited 

application of GRA are the quality of English as well as the writing style, the 

limitation in the theory application and limitation if the audience (readers). A low 

rating is given. 

 PROMETHEE 

It does not consider discordance but does use the pairwise comparison to 

determine the dominance degree of one alternative over the other. 

PROMETHEE therefore receives a high rating.   

 ELECTRE 

 It does consider discordance and does use the pairwise comparison to 

determine the dominance degree of one alternative over the other. A high rating 

is therefore given to ELECTRE. 

 OCRA, COPRAS, SAW, ARAS 

These methods are given a low rating because they just use a simple 

mathematical equation to show and justify their procedure 

 CP 

CP’s procedure uses a relative difference and is therefore given a medium 

rating.  

C. INPUT PARAMETERS 
A method must be justified in at least three ways; in its procedures, consequence of 

the procedures and approaches. If there are input parameters, there must be justifiable 

theory behind. A low rating is given to methods without any justifications of the 

parameters; Medium rating if it involves parameters in some part, and high if it involves 

complete and logical reasoning to input parameters.  

 TOPSIS 

The only input on the TOPSIS method are the weights given by the decision 

maker to each criterion. This means that subjectivity is further reduced on this 

method and therefore it is given a high rating.  

 TODIM 

In TODIM, the input parameters are the weights of the criterion and the 

attenuation factor. This factor can be adjusted between 1 and 10. 1 is usually 

used because it signifies that the losses would contribute with their real values. 

The reasoning for both the parameters is logical; therefore, a high rating is 

given to TODIM. 

 VIKOR  

A decision maker intervenes in the VIKOR process to determine the weights of 

the criteria and to choose the value of the coefficient ‘v’, which should be 

between 0 and 1. This parameter gives the importance of weight of the 

measures. A v equal 0.5 is usually chosen so that both the utility and regret 

measures are given equal weight. A value less than 0.5 gives more weight to 

the regret measure; while a value greater than 0.5 places more importance to 
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the utility measure. The parameter is logical and therefore VIKOR is given a 

high rating.  

 GRA 

There is a lack of axiomatic foundation for GRA. In addition, it was noted that 

there is missing proof of reliability of the method by theoretical research. 

Clarification needs to be done or it may hinder adoption in many industries for 

application. Thus, a low rating is given 

 PROMETHEE 

There are thresholds as input of the decision maker’s preference. It was 

suggested that the use of the thresholds must be based on previous studies for 

guidance. That justifies the use of preferences in PROMETHEE. In addition, 

one of the studies that formed part of the research suggested two ways of 

setting the thresholds; one is to set the indifference to zero and preference 

threshold as the maximum evaluation between the alternatives. The other 

approach suggested by the author was to set the indifference as the minimum 

and preference as the maximum alternative. PROMETHEE is given a medium 

rating.  

 ELECTRE 

In the procedure of ELECTRE, there are threshold (c and d) that the decision 

process depends on. The values of these thresholds depend on the Decision 

maker. It is believed that these values have an influence on the final ranking, 

and the fact that it is not ensured that using a higher c and a lower d will lead 

to small number of non-dominated solutions (Caterino et al, 2008), it is not 

suggested that ELECTRE be used for decision making process for MMS.  

 OCRA, ARAS, COPRAS and SAW 

The above listed methods do not have any other input parameter except the 

weights. Medium ratings are given to these methods.  

 CP 

The weights of the criteria and the p-parameters are the input of the decision 

maker in the CP process. The p-parameter shows how the decision maker 

compensate for the deviations in the process of decision-making. Medium 

rating is given to CP 

 

D. SYNTHESIS OF JUDGEMENTS WITH MERGING FUNCTIONS 
In this criterion, the judgements from different experts are synthesised. To obtain an 

overall rank, the evaluations must be synthesised. If a method synthesizes the 

evaluations by averaging weights, it is rated low. A method will be rated medium if a 

simple weighted method is used. A high rating is given if there is a rigorous merging 

function with reasonable weights used. 

 

 TOPSIS 

In the aggregation process, TOPSIS uses an equation that considers the 

distance from the positive ideal and from the negative ideal. TOPSIS does not 

consider the relative importance of this distance between the alternatives. A 

high rating is given to TOPSIS. 

 TODIM 

TODIM measures the dominance degree of each alternative by calculating the 

partial and overall dominance of each alternative. From the dominance degree, 

rankings can be made. It follows a rigorous procedure and can be highly rated.  
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 VIKOR 

In the aggregation process of VIKOR, a Lp -metric, which is a distance function, 

is calculated. It represents group regret that an idea cannot be chosen. L1 is 

represented by S-group as the sum of all the individual regrets. While L∞ 

represent the R-group. That is the maximum regret that an alternative could 

have (Tseng & Opricovic, 2007). Q aggregates the S- and R-group with the ‘v’ 

parameter. The method is therefore rated highly because of the rigorous 

merging process.  

 GRA 

The magnitude of correlation between alternatives and the reference sequence 

is calculated using the grey relational degree. A high rating is given to GRA. 

 

 PROMETHEE 

A net preference flow is introduced as an aggregating utility function, and the 

equations used are shown the previous mentioned steps for PROMETHEE. 

Research found that the foundation of net flow if PROMETHEE and the S-

Group of VIKOR have the same foundation (Tseng & Opricovic, 2007); and 

their results are similar if PROMETHEE uses its Linear (Type 5) function. A 

high rating is given. A high rating is given 

 ELECTRE 

The output of the ELECTRE process is a set of concordance of alternatives, 

which indicates how one alternative dominates the other. The ranking is partial 

in ELECTRE because some alternatives remains incomparable. Medium rating 

is given 

 OCRA, ARAS, COPRAS, CP, SAW 

Medium ratings are given to the methods above because while others average 

weights in their process, simple weighted methods are used.  

 

E. RANKING OF TANGIBLES 
Alternatives are ranked either higher, lower or equal to the other alternatives they are 

competing with on the evaluation of the tangible criteria. If a method does not involve 

ranking, it is ranked low. If it uses ordinal scale, it uses medium and high if cardinal 

scale is used to rank alternatives. 

 All the methods can deal with both quantitate and qualitative data and uses 

cardinal scale; therefore, they are rated highly in this criterion.  

F. GENERALIZATION TO RANKING OF INTANGIBLES 
Intangible criteria are often part of a decision problem; and they need to be quantified. 

If a method is applicable to both tangibles and intangibles, and asses the intangibles 

by using pairwise comparison technique, it is then rated high. If it transforms 

intangibles into cardinal numbers by using interval. Ratio/absolute scale, it is rated 

medium; and if it just assigns arbitrary ordinary numbers to quantify the intangibles, it 

is rated low.  

 PROMETHEE AND ELECTRE 

Alternatives are evaluated on a pairwise comparison technique. The deviations 

between two evaluations of alternatives are considered. They are therefore 

given a high rating.  
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 TOPSIS, TODIM, VIKOR, GRA, CORPAS, ARAS, CP, SAW, OCRA: Medium 

rating since they use a cardinal absolute scale, but not a pairwise comparison 

technique.  

G. RANK PRESERVATION AND REVERSAL 
 

MCDMs’ one of the significant drawbacks is due to the phenomenon called: rank 

reversal. This phenomenon explains the change of alternatives ranking if one or more 

alternatives are added or removed from a decision problem. Sometimes the best 

alternative can become the worst alternative, especially where the rank reversal totally 

inverts the ordering. A method which does not deal with rank reversal at all is rated 

low; one which basically deals with it is rated medium, and one which implements ways 

in its procedure for interpreting reasons for rank preservation and reversal is rated 

highly. 

 

 TOPSIS 

The above-mentioned phenomenon has made the validity of TOPSIS 

debatable. Because rank reversal would clearly mean that a better 

decision/alternative depends on the number of alternatives. Fortunately, 

Garcia-cascales & Lamata (2012) identified two points that causes rank 

reversal in TOPSIS. Namely; the ideal solutions and the normalisation process. 

In their research, they modified the above-mentioned points and rank reversal 

was dealt with. Because there have been previous attempts to deal with rank 

reservation and preservation, TOPSIS would therefore be rated medium 

because the solution has not yet been widely accepted and when applied, it 

gives different rankings compared to the original TOPSIS.  

 TODIM, ARAS, CORPAS, GRA, VIKOR 

TODIM is also mentioned as one of the methods that do suffer from rank 

reversal, however, a solution for it is its normalisation procedure. Therefore, it 

is rated medium. 

 PROMETHEE 

There has been limited studies concerning rank reversal for PROMETHEE. 

The first people to address it were De Keyser & Peeters in 1996. It was only in 

2013 that Veryl and De Smet investigated the probability of rank reversal in 

PROMETHEE I and II. It was shown that these two classes of PROMETHEE 

do suffer from rank reversal. However, in 2016, Brans & De Smet showed that 

the removal or additions of alternatives does not lead to rank reversal in 

PROMETHEE. Therefore, it was tested in the current studies and found that it 

is stable. So, a high rating is given to PROMETHEE concerning rank reversal. 

 ELECTRE 

In ELECTRE, the rank reversal is caused by the pairwise comparison. It is also 

noted that rank reversal probability of occurrences increases as the number of 

alternatives are increased. Also, under equal weights for criteria, there is more 

rank reversal. Therefore, the method is rated low because there is no proven 

method to deal with rank reversal in ELECTRE. 

 SAW, OCRA 

Because of its Normalisation procedure, SAW and OCRA suffers less from rank 

reversal. A medium rating is given. 

 CP  

CP suffers from rank reversals and has been proven in this study as sensitivity 

analysis was carried out. Therefore, a low rating is given. 



133 

 

 

 

 

H. SENSITIVITY ANALYSIS 
A method is rated low if it only asses a single parameter; medium if it works on two to 

three parameters; and high if it can assess more parameters. 

 

 TOPSIS 

A medium rating is given to TOPSIS because it can assess the weights of the 

criterion and the evaluations of each criterion against the alternatives.  

 TODIM 

A high rating for TODIM is given because it can assess the following 

parameters for sensitivity: attenuation factor, criteria weights, the choice of the 

reference criterion, and the performance evaluations of the alternatives.  

 VIKOR 

The v-parameter and weights can be changed in VIKOR. Therefore, a medium 

rating is given to the method.  

 GRA 

Only two parameters can be varied in this method; weights of the criterion and 

the identification coefficient. Therefore, a medium rating is given to GRA 

 PROMETHEE 

In PROMETHEE, preference, indifference, preference functions, and the 

weights of the criterion can be changed to see asses the influences of each. 

Therefore, a high rating is given to PROMETHEE.  

 ELECTRE 

ELECTRE assesses 3 parameters; concordance and discordance index, as 

well as the weights. It is therefore given a high rating. 

 OCRA, ARAS, COPRAS and SAW 

These methods do not have special input parameters except the weights of 

the criterion. Since they only asses one parameter, they are given a low rating.  

 CP 

Only two parameters can be varied; the ‘p’ value and the weights. Therefore, 

CP is given a medium rating. 

 

I. APPLICABILITY TO CONFLICT RESOLUTION  
A method must be able to resolve the conflict that exist within the criteria of making a 

decision. There must be fair trade offs in the process; such as normalisation to find the 

best solution where conflict is concerned. A low rating is given to methods which use 

a simple mathematical compensation technique; medium rating for methods using 

analytical methods, and high rating for methods providing an understandable, 

acceptable, practical and flexible way of resolving the conflicts in criteria.  

 TOPSIS 

TOPSIS process of normalising uses a vector normalisation. It must be noted 

that the normalised value could be different for different evaluation unit of a 

criterion (Tseng & Opricovic, 2004). For example, if a problem with two 

alternatives is evaluated against 3 criteria and the evaluations are 3, 4, and 5 

for A1 and 2, 3, 9 for A2: the normalised values of 3 will be different. Therefore, 

TOPSIS is given a medium rating 

 TODIM 

A high rating is given to the normalisation procedure of TODIM.  
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 VIKOR 

In the normalisation procedure of VIKOR, a linear transformation is used; and 

it does not depend on the unit of the criterion, or whether it is a minimum or 

maximum criterion. The normalisation procedure is aggregated in calculation 

the utility and regret measures.  

 PROMETHEE 

Conflict resolution is resolved in the aggregation process. A high rating is given. 

 GRA, ELECTRE, OCRA, ARAS, COPRAS, CP, SAW 

They all can resolve conflict that exist in the criteria and they are all given a 

high rating in this case.  

 

J. TRUSTWORTHINESS AND VALIDITY OF THE APPROACH 
The quality of a method and what makes it trustworthy must be considered. Questions to 

be asked are: can the method yield the choices that accurately reflect the values of the 

user? If a method has been widely applied, it provides a platform to be trusted and can be 

rated high. Medium ranking is for methods which have limited application, and low rating 

is for methods which have not been applied in the field of question.  

 TOPSIS 

TOPSIS has proven itself and has provided it’s on platform for future 

applications in almost all industries. The number of papers that have been 

published where TOPSIS was applied are over 100. In different journals such 

as expert systems with applications, applied soft computing, knowledge-based 

systems, information sciences, and many more. Therefore, in terms of 

trustworthiness and validity of the approach, TOPSIS is highly rated. 

 TODIM 

Limited application of TODIM in mining method selection. Medium rating is 

given. 

 VIKOR 

There is limited application of VIKOR in mining method selection. Medium 

rating is given. 

 GRA 

GRA has enjoyed wide application in agriculture, environment, and marketing 

industry. However, there is limited application in the mining method selection 

industry. Medium rating is given. 

 ELECTRE 

The disadvantages of ELECTRE makes it unsuitable for use in the mining 

industry because in the ranking process, it often does not lead to one solution. 

It is therefore suitable for decision problems that have few alternatives and less 

criteria. Low rating is given. 

 PROMETHEE 

A high rating is given to PROMETHEE like TOPSIS because there have been 

numerous applications in the mining method selection industry.  

 OCRA, ARAS, COPRAS, CP, SAW 

The methods have not been applied in mining method selection before and 

therefore, they are given low rating since there is no proof of application and 

the level of confidence is low. 
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3.2.4. RANK AND ELIMINATE LESS PREFERRED MMSM 
The last section of 3.2 will summarise the finds based on the descriptive analysis performed 

in 3.2.3 

Firstly, the descriptive analysis results based on the ratings from Section 3.2.3 are shown. As 

rated H- represent High, M-Medium and L-Low. From the results presented, the author has 

low confidence in ELECTRE, SAW, COPRAS, ARAS, OCRA, and CP. The methods that stand 

out as a result of the descriptive analysis are TOPSIS, and PROMETHEE. VIKOR, GRA, and 

TODIM’s confidence is neither low nor high; and will therefore be assessed based on the final 

decision of the author considering the other analysis performed.  It must be noted that 

ELECTREE was eliminated in the first stages because of its inability to rank results and 

therefore could not be analysed with the other methods except in descriptive analysis since it 

is based on literature and the author’s experience in application of the methods. 

Table 74: Descriptive analysis rating results 
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D. Synthesis of 
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tangibles  
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G. Rank preservation 
and reversal 
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I. Applicability to 
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M H H H H H H H H H H 

J. Trustworthiness 
and validity of the 
approach 

H M M M H L L L L L L 
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3.2.5. STATISTICAL ANALYSIS 
A. SENSITIVITY ANALYSIS 

 

Sensitivity analysis is of paramount importance for the MCDMs because of their nature of input 

parameters that are subjective. The ability to test for the robustness, and uncertainty is 

relevant where group decision making is concerned. The results from the sensitivity analysis 

help in increasing confidence, and credibility of the results. Also, the overall risk associated 

with the decision-making process is thus reduced. It was found by Triantaphyllou (2000) that 

the most sensitive criterion in decision problem is the one with the highest weight if weight 

changes are measured in relative terms (%). To relate the rest of the criteria to match the 

changes of the critical criterion weight, the equation taken from Leoneti (2016) was used. 

However, the author modified the critical criterion percentage from just considering 10% to 

considering any percentage for a good stability check and to ensure that the sum of the final 

weights would still equal 1.   

𝑤𝑛
∗ =

𝑤𝑛(1 − 𝑤𝑖
∗)

(1 − 𝑤𝑖)
 

Where  

𝑤𝑖  represent the original weighting of the critical criterion. 

𝑤𝑖
∗ represent the original weighting of the critical criterion plus the % change 

𝑤𝑛 represent the original weight of criterion n 

𝑤𝑛
∗  recalculated weighting for criterion.  

Case study 1 results will be used for performing a sensitivity analysis. The first method to be 

evaluated was TOPSIS. Only the weights of the method were modified between -50% and 

50% changes. The results obtained are depicted Figure 36.  
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Figure 36: TOPSIS sensitivity analysis 

The radar graph shows the changes in rankings when weights are adjusted. It is observed that 

A1’s ranking did not change throughout the adjustments; while A5 changed between rank 5 

and 6. A6 recorded the most changes by moving around all the ranks except for rank 1. 

The changes became stable as the weights were being reduced. At +10% and -10%, there 

were no changes in rankings; however, as the weights were further reduced by 20% to 50%, 

a stable ranking was observed and has been taken as the final rank for TOPSIS. 
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ranking 

  Ranking after 
sensitivity  
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TODIM allows for changes in weights of the criterion, the attenuation factor which ranges 

between 1 and 10, reference criterion, and the performance evaluation. The weights of the 

criteria were changed as per the formula presented above. Adjustments of the weights were 

made from -50% to +50% and there were no changes in the rankings of the alternatives. The 

reference criterion was also changed. Initially, the highest weighted criterion was chosen as 

the reference criterion. In sensitivity analysis, the lowest criterion was checked, and it did not 

lead to changes in the rankings. Since for this study, the performance evaluations of the 

alternatives against the criteria will not be analysed because the author wants to maintain the 

original evaluations, the last parameter to be checked was the attenuation factor. The factor 
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was ranged between 1 and 10, and even though there were changes in the final values, they 

were too minimal to cause changes in the rankings. The following table shows the initial 

rankings, and the rankings after the performing sensitivity analysis.  

 

4   4 

1   1 

2   2 

3   3 

5   5 

6   6 

VIKOR’s input parameters were also check for stability in their rankings. The v-parameter 

ranges from 0 to 1. For the initial rankings, a value of 0,5 was used. The values were varied 

between 0 and 1 and a stable ranking could not be obtained. The rankings were similar 

between 0,0 and 0,3. At 0,4 and 0,5 the rankings were different. Between 0,6 and 0,8 the 

rankings were similar again and changed at 0,9 but remained constant to 1. The results 

indicated that the rank depends on the ‘v’ that is used, and one cannot depend on the rankings 

of VIKOR to base the final decision. The results of the ranks are shown Figure 37. 

  

Figure 37: VIKOR's sensitivity analysis with varying ‘v’ parameters 

 

The weight variations were the input parameters that were checked as well. Initially, the ‘v’ 

parameter was kept constant as the weights were varied. However, a stable ranking could not 

be obtained. The results of variation of weights were v=0,5 are shown in Appendix 2 in Figure 

50. The ‘v’ parameter was changed to 1 since the ranks using v=1 showed similarity with the 

ranks of other MCDM. The results from v=1, were found to be stable. The instability was 

considered negligible and the final rankings of VIKOR were determined from v=1 with weight 

variations Figure 38. 
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Figure 38: Sensitivity analysis of VIKOR with weight variations 

  

The final rankings have been chosen as shown in Error! Reference source not found.. 
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GRA’s rankings were then checked against weight variations as well the grey coefficients. 

Firstly, the weights were varied between -50% and +50%. A6 was found to be the most 

unstable as the weights were changed. It moved from rank 6 at -50% change to rank 3 at 

+50% change. Variation of weights resulted in a lot of instability, but only outside the -10% to 

10% change. The results of the sensitivity analysis for varying weights are shown Figure 39. 
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Figure 39: GRA sensitivity analysis for varying weights 

The Grey coefficient was varied between 0,1 and 1. The changes were minimal and were only 

between A4 an A6 as shown in Figure 40. The overall changes when the grey coefficients and 

weights were varied were negligible. Therefore, the results of GRA are stable and were not 

changed as shown in Error! Reference source not found.. 

 

Figure 40: GRA sensitivity analysis for varying coefficients 

 

 

 

      

4   4 

1   1 

4 4 4 4 4 4 4

5 5 5 5

1 1 1 1 1 1 1 1

2 2 2

3 3 3 3 3 3 3 3 3 3

4

2 2 2 2 2 2 2 2

1 1 1

5 5

6 6 6 6 6 6 6 6 66 6

5 5 5 5 5

4 4 4

3

-50 -40 -30 -20 -10 0 10 20 30 40 50

R
an

ks

Varying weights

A1 A2 A3 A4 A5 A6

5 5 5

4 4 4 4 4 4 4

1 1 1 1 1 1 1 1 1 1

3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2

6 6 6 6 6 6 6 6 6 6

4 4 4

5 5 5 5 5 5 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
an

ks

Varying grey coefficients

A1 A2 A3 A4 A5 A6



141 

 

 

3   3 

2   2 

6   6 

5   5 

 

The Stability of OCRA’s ranking was assessed and there were no changes even when the 

weights were varied from -50% to 50%. The rankings remained the same. In the case of 

OCRA, a stability check was done on equal weights of the criterion since no other input 

parameter could be varied. The rankings changed. However, they will not be considered as 

the final rankings of OCRA since it was stable in weight variations. The results are shown 

below: 

 

initial ranking   Rankings after 
sensitivity 
analysis 

equal weights 
ranking 

4 4 3 

1 1 1 

2 2 2 

3 3 4 

5 5 5 

6 6 6 

ARAS stability check was also on the variation of weights. The rankings remained stable; and 

the equal weight criterion rating were checked. The only change observed was a swap 

between A3 and A4. The rest of the rankings remained stable. 

 

Initial rankings   Rankings after 
sensitvity 
analysis 

Equal weights 
rankings  

4   4 4 

1   1 1 

3   3 2 

2   2 3 

5   5 5 

6   6 6 

 

In CORPAS stability check, the input parameter were the weights variations. The sensitivity 

results of weight variation between -50% and 50% were all the same but different from the 

initial rankings because of a swap of A3 and A4. The equal weight results are similar to initial 

rankings. However, the rankings after the sensitivity analysis will be used.  
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6   6 6 

CP method was checked. The input parameter ‘v’ was checked at p=1, p=2, and p=10, 20, 

100 (which represent infinity). The rankings only became stable at p=10 as shown in Figure 

41. 

 

Figure 41: CP sensitivity analysis foe varying 'p' parameters 

Varying weights were checked at the different p’s (1, 2, and 10). P=2 and p=10 did not provide 

stable rankings and can be seen in appendix 2. The results shown in Figure 42 are those of 

varying weights where p=1. At p=1, the weights were not similar. As the weights were reduced, 

the ratings were similar but different from the initial rankings. As the weights were being 

increased, the ratings remained similar to the original ratings. Both sides of the +/-10% are 

shown Error! Reference source not found.. 

 

Figure 42: CP sensitivity analysis for varying weights 

The rankings accepted as the final rankings were the initial rankings shown in Error! 

eference source not found.. 
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2 1 1 

5 5 5 

6 6 6 

SAW method’s stability was checked based on weight variations between -50% and 50%. The 

changes were minimal such that the initial rankings were accepted as the final ranking of 

alternatives.  

  

Figure 43: SAW sensitivity analysis 

PROMETHEE was the last method to be checked for its stability. The VISUAL PROMETHEE 

was used and the results are shown Figure 44: PROMETHEE sensitivity analysis. The input 

parameters that were varied were the preference and indifference thresholds as explained in 

the descriptive analysis of PROMETHEE. On weights, the equal weights, -10%, and +10% 

weight scenarios were checked. The overall ratings indicate that PROMETHEE is stable even 

after parameter changes. Though the values changed and there was a swap between A4 and 

A3, the changes were not enough to effect changes of the ranks.  
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Figure 44: PROMETHEE sensitivity analysis 

 

To conclude on the sensitivity analysis, the new rankings from the sensitivity analysis of all 

the 10 MCDMs are shown in Table 75. The initial ratings of the following methods have 

changed: TOPSIS and VIKOR. TODIM, GRA, PROMETHE, OCRA, ARAS, SAW and CP’s 

overall rankings were stable and therefore did not change. However, out of the 10 methods, 6 

methods have the same rankings unlike before sensitivity. It can therefore be concluded that 

the ratings for case study 1 should have been A2>A4>A3>A1>A5>A6. This confirms the 

frequency of ratings of case study 1.   

Table 75: Aggregated Final sensitivity analysis. 

 TOPSIS TODIM VIKOR GRA PROMETHEE OCRA ARAS CORPAS SAW CP 

A1 4 4 4 4 4 4 4 4 4 4 

A2 1 1 1 1 1 1 1 1 1 2 

A3 3 2 3 3 3 2 3 3 3 3 

A4 2 3 2 2 2 3 2 2 2 1 

A5 5 5 5 6 5 5 5 5 5 5 

A6 6 6 6 5 6 6 6 6 6 6 

 

B. SPEARMAN CORRELATION 
The 10 MCDMs that have been investigated and detailed in the previous pages will now be 

compared based on their final performances that led to the rankings. The spearman correlation 

coefficient (rho) will be used in this case. The coefficient helps to determine the strength of the 

relationships between the MCDMs. In other words, it is used to measure the similarities 

between two sets of rankings. The value obtained from the correlation ranges between -1 and 
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+1. If the value is large and closer to +1, it then indicates a good agreement between the 

MCDMs. The formula below is used to calculate this coefficient:  

                                     𝑟𝑠 = 1 −
6∑ 𝑑𝑖

2𝑛
𝑖

𝑛2 − 𝑛
                                                                                       (49) 

Where: 

𝑑𝑖 represent the difference between MCDM ranks 

𝑛 represent the sample size (in this case; the alternatives) 

For case study 1, the spearman correlation coefficients were calculated for the 10 MCDMs 

and are shown in Table 76. According to the observations, the coefficients range between 

0,371 and 1,000. TODIM is similar to OCRA. PROMETHEE is similar to ARAS, CORPAS, and 

SAW. And according to the Table 83 of the characteristics of co-efficient R in Appendix 2, the 

methods have a very strong relationship. The results of TOPSIS compared to GRA, and CP 

are satisfactory. However, VIKOR shows to be an outlier and its similarity to the rest of the 

methods is low and depicted by the black lined-graph in Figure 45: Spearman correlation 

MCDM comparisons. 

 

Table 76: Spearman's correlation results 

Method TOPSIS TODIM VIKOR GRA PROMETHEE OCRA ARAS CORPAS CP SAW 

TOPSIS 1,000 0,771 0,600 0,943 0,886 0,771 0,886 0,886 0,943 0,886 

TODIM   1,000 0,371 0,886 0,943 1,000 0,943 0,943 0,829 0,943 

VIKOR     1,000 0,486 0,600 0,371 0,600 0,600 0,714 0,600 

GRA       1,000 0,943 0,886 0,943 0,943 0,886 0,943 

PROMETHEE         1,000 0,943 1,000 1,000 0,943 1,000 

OCRA           1,000 0,943 0,943 0,829 0,943 

ARAS             1,000 1,000 0,943 1,000 

CORPAS               1,000 0,943 1,000 

CP                 1,000 0,943 

SAW                   1,000 
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Figure 45: Spearman correlation MCDM comparisons 

C. KENDALL’S COEFFICIENT  
To check for the overall similarity of the rankings, the Kendall’s coefficient is calculated for the 

overall rankings using the formula below. This value ranges between 0 and 1; with 0 indicating 

that there is no agreement and 1 shows the agreement between the MCDMs. Table 77 shows 

the summary of the calculations. The coefficient was calculated as 0,866 which suggest that 

there is almost a perfect agreement between all the considered MCDMs. According to the 

Kendall’s coefficient of concordance interpretation shown in Appendix 2, Table 84, and a 

coefficient great than 0.7 shows a strong agreement.  

𝑊 =
12∑ 𝑑𝑖

2𝑛
𝑖

𝑚2 × 𝑛(𝑛2 − 1)
 

Where:  

𝑚 is the number of judges/rate(rs); in this case, the MCDMs. 

𝑛 id the number of alternatives 

𝑑 shows the differences of the ranks 

Table 77: Kendall's coefficient for the 10 MCDMs 

W 0,866 

chi-square 43,31 

Degrees of freedom 5 

p-value 0,00 

 

A Null Hypothesis: H0 means that there is no statistically significant degree of agreement 

amongst the MCDM; while H1 means that there is a statistically significant degree of 

agreement between the MCDM. The P-value that indicates the level of significance has been 
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calculated to be 0, 00 in Table 77. The hypothesis says if p < 0, 05, the null hypothesis is 

rejected, and the alternative hypothesis is accepted.  

D. AGREEMENT ON THE TOP 3 RANKS 
In this section, the test based on the agreement of the top 3 ranked alternatives is performed. 

(1, 2, 3) means the first three ranks match. (1, 2, #) means the first two ranks match, and (#, 

#, #) means that there is no match. In the rankings of MCDMs for case study 1, the table 

shows that the following sets match in their first 3 ranks: TOPSIS and CP; TODIM and OCRA; 

GRA, PROMETHEE, ARAS, COPRAS and SAW.VIKOR results in the maximum number of 

mismatches because its first three ranked alternatives do not match with any of the other 

MCDMs. 

Table 78: Agreement on Top 3 ranks 

 
TOPSIS TODIM VIKOR GRA PROMETHEE OCRA ARAS CORPAS CP SAW 

TOPSIS 1,2,3 1, #, # #,#,# 1,#,3 1,#,3 1,#,# 1,#,3 1,#,3 1,2,3 1,#,3 

TODIM 
 

1,2,3 #,#,# 1,2,# 1,2,# 1,2,3 1,2,# 1,2,# 1,#,# 1,2,# 

VIKOR 
  

1,2,3 #,#,# #,#,# #,#,# #,#,# #,#,# #,#,# #,#,# 

GRA 
   

1,2,3 1,2,3 1,2,# 1,2,3 1,2,3 1,#,3 1,2,3 

PROMETHEE 
    

1,2,3 1,2,# 1,2,3 1,2,3 1,#,3 1,2,3 

OCRA 
     

1,2,3 1,2,# 1,2,# 1,#,# 1,2,# 

ARAS 
      

1,2,3 1,2,3 1,#,3 1,2,3 

CORPAS 
       

1,2,3 1,#,3 1,2,3 

CP 
        

1,2,3 1,#,3 

SAW 
         

1,2,3 

 

 

E.  RANKS MATCHING PERCENTAGE 
The test in this section refers to the number of ranks matched (1-6) expressed as the 

percentage of the number of alternatives. The only methods with 100% matches are between 

TODIM and OCRA; PROMETHEE, ARAS, COPRAS, and SAW. Even though TOPSIS and 

CP match in the first three ranks, overall, the match is only 67%. VIKOR and GRA’s rankings 

do not have 100% matches with any of the MCDMs. The highest match percentage for VIKOR 

is 33% with CP.  
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Table 79: Ranks matching percentage 

  TOPSIS TODIM VIKOR GRA PROMETHEE OCRA ARAS COPRAS CP SAW 

TOPSIS 100% 17% 17% 67% 33% 17% 33% 33% 67% 33% 

TODIM   100% 17% 33% 67% 100% 67% 67% 67% 67% 

VIKOR     100% 0% 17% 17% 17% 17% 33% 17% 

GRA       100% 67% 33% 67% 67% 33% 67% 

PROMETHEE         100% 67% 100% 100% 67% 100% 

OCRA           100% 67% 67% 50% 67% 

ARAS             100% 100% 67% 100% 

CORPAS               100% 67% 100% 

CP                 100% 67% 

SAW                   100% 

 

 

3.2.6. RESOLVING CONFLICTING MCDMs 
A. GROUP DECISION MAKING 

On the previous pages, different MCDMs resulted in different rankings of alternatives. This is 

because the decision-process of each method is different. Another way of resolving conflicting 

results from the MCDMs is to use group decision making (GDM). In GDM, individual interests 

are reduced and integrated to form a group preference (Banarjee & Ghosh, 2013). Two rules 

are used; additive ranking rule and multiplicative ranking rule. In additive ranking rule, the 

rankings are summed up and an average of the rankings is obtained as the final rank. In 

multiplicative rankings, a product of the rankings from the MCDMs is raised to the power of 

1/MCDMs. The following are the results of the group decision making for case study 1. 

Table 80: Group decision making 

Alternatives Additive ranking Multiplicative ranking 

A1 3,800 4 3,732 4 

A2 1,400 1 1,282 1 

A3 3,000 3 2,911 3 

A4 1,900 2 1,761 2 

A5 5,100 5 5,071 5 

A6 5,800 6 5,785 6 

  

The results obtained from either additive or multiplicative confirms the results of the sensitivity 

analysis. The results agree with 6 out of the 10 studied MCDMs. Therefore, a conclusion of 

which method is less preferred will be made in the following pages.  

 

3.3. FACTORS THAT CAN BE USED IN MMSM 
 

The factors that affect mining method selection were also part of the study. Different 

researchers’ results were analysed and below are factors that can be used for selection of 

coal mining method. Table 81 shows the factors identified in different researches.  
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It is observed that the most selected factors common in all the studies are ore thickness, ore 

depth, deposit dip, and orebody shape. The least used are life of mine, place of occurrence of 

the coal seam, nearness to the residential area and the existence of methane.  These table 

can be used should future researches need to select a coal mining method. Also, the to-be 

developed MMSM will use these factors as input criteria.  
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Table 81: Factors that can be used in MMS 

RESEARCH Jianpu 
(2011) 

Jeffrey 
(2002) 

Balusa 
& 

Singam 
(2017) 

Scott 
et al 

(2009) 

Namin 
et al 

(2009) 

Gelvez 
& 

Aldana 
(2014) 

Yavuz 
(2015) 

Mohsen 
et al 

(2009) 

Ooriad 
et al 

(2018) 

Bashani 
et al 

(2013) 

Javanshirgiv 
& Safari 
(2017) 

Bitafaran 
& Ataei 
(2017) 

Karadogan 
et al 

(2008) 

Ore thickness              

Ore depth              

Deposit dip              

Seam stability               

RSS/RMR 
Hanging wall 

             

RSS/RMR 
Foot wall 

             

RSS/RMS ore 
zone 

             

Place of 
occurrence 

             

Coal strength              

Geological 
features 

             

Ore uniformity              

Dilution              

Production              

Recovery              

Orebody 
shape 

             

Capital cost              

Versatility              

Mine safety              

Elasticity               

Labour              

Selectivity              
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Subsidence              

Atmospheric 
control 

             

Reserve 
tonnage 

             

Life of mine              

Ore plunge              

Grade 
distribution 

             

Operating 
costs 

             

Mining costs              

Machinery              

Nearness to 
residential 
area 

             

Existence of 
methane 

             
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3.4. SELECTION OF COAL MINING METHODS  
Different mining methods that have been used in the coal industry have been identified and 

can be used as part of the data base in the MMSM. The methods are: 

 Bord-and-Pillar 

 Pillar extraction 

 Long wall 

 Short wall 

 Underground coal gasification 

 Coal bed methane. 

 

These methods will be used as input in the developed coal mining method selection model in 

the next chapter. For more information on what the method can do, their advantages and 

disadvantages are mentioned in the Literature Survey in 2.3 and 2.4.  

3.5. SIGNIFICANCE OF THE RESULTS 
The result presented above are important in the development of the mining method selection 

model. The MCDMs were studied and analysed. This will help in choosing which MCDMs can 

be used in the MMSM. Also, the results provide a good starting point for future research about 

the existing MCDMs. Factors and mining methods were also presented. In Chapter 4, a Mining 

Method Selection Model will be presented based on the information from chapter 3 and the 

literature review. The functionality, as well as the advantages and disadvantages of the model 

will be presented.  
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4. PROPOSED MMSM PROCEDURE 
4.1. INTRODUCTION TO THE PROPOSED MMSM  

 

Using the results obtained, and the literature reviewed, the author developed the MMSM. This 

chapter introduces the MMSM. The testing of the MCDM was not necessary since each 

MCDM was tested in the result section and the functionality of each have been explained. The 

result section analysed the MCDMs using different analysis methods, and the MCDM methods 

that emerged as the best were then used to develop the MMSM.  

Case study 1 and 2 were used to test the functionality of the MCDMs. Initially, there were 

variations in the rankings. The results were used for the statistical analysis in section 3.2.5.  

A sensitivity analysis was performed. The results from the sensitivity analysis helped in 

increasing confidence, and credibility of the results. Also, the overall risk associated with the 

decision-making process is thus reduced. It was found by Triantaphyllou (2000) that the most 

sensitive criterion in decision problem is the one with the highest weight if weight changes are 

measured in relative terms (%). To relate the rest of the criteria to match the changes of the 

critical criterion weight, the equation taken from Leoneti (2016) was used. However, the author 

modified the critical criterion percentage from just considering 10% to considering any 

percentage for a good stability check and to ensure that the sum of the final weights would 

still equal 1.  

From the sensitivity analysis (3.2.5-A), all 6 of the methods except TODIM, GRA, CP, and 

OCRA agreed on the rankings. Initially, the groupings of the MCDMs in case study 1 results 

also showed that VIKOR and TOPSIS’ ratings were different, and they were grouped 

differently. However, after the sensitivity analysis, their ratings changed and agreed with the 

4 methods to make up 6 agreeing methods. It was then concluded that 6 out of 10 methods 

are fit to be used in the MCDM. The results and application of these methods can only be 

validated by an actual mining problem as this is theoretical approach.  

From the Spearman correlation test in section 3.2.5-B, 1 (VIKOR) of the six methods did not 

correlate with the rest of the methods; and ranked between low and moderate in terms of its 

agreement with the rest of the methods. TOPSIS did not have a 100% correlation with the 

remaining 4 (PROMETHEE, ARAS, COPRAS, and SAW) methods but showed a very high 

correlation which represent a strong relationship and will therefore not be eliminated. In the 

first three ranks test (3.2.5-D) and the ranks percentage match test (3.2.5-E), the four 

remaining method were still in agreement. However, CP and TOPSIS had similar first three 

ranks. GRA agreed with the four methods. VIKOR still remained an outlier. According to the 

ranking % match, the 4 methods agreed and had 100% match. GRA, TODIM, OCRA and CP 

had a 67% agreement. TOPSIS and VIKOR’s percentage agreement with the 4 were low at 

33% and 17% respectively.  

Saaty and Ergu described a set of criteria that can be used to evaluate different MCDMs in 

order to answer the question: “When is a Decision-Making method trustworthy?” In this study, 

a section of descriptive analysis (3.2.3) used the criteria to compare the 10 MCDMs. The 

MCDMs were checked on simplicity of execution and rated based on the author’s experience. 

The logical and mathematical procedure used in each method was assessed. Some methods 

were found to be simpler than others. While some had no mathematical foundation to base 

their existence. How each method synthesises and merge judgements to produce final ranking 

was also analysed. MCDMs have a tendency of not preserving rankings when new information 
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is added or removed from the systems. So, a criterion: rank preservation and reversal was 

used to rate how each method deals with the phenomenon of ranking reversal.  

From the descriptive analysis, the author has high confidence in PROMETHEE, TOPSIS, and 

TODIM. The author does not recommend the rest of the methods. The following conclusion 

can be made. CP is a simplified approach between VIKOR and TOPSIS. OCRA is a simplified 

version of TODIM. COPRAS, ARAS, and SAW are simplified versions of PROMETHEE. 

GRA’s lack of a mathematical foundation, explanation, and the proven fact that it does not 

match with any MCDM’s rankings makes it impossible to be included in the model.  

Therefore, the methods to be included in the model are TOPSIS, PROMETHEE, and TODIM. 

This does not mean these methods do not have shortcomings, however, they are less risky to 

use. It must be noted that their shortcomings will form part of future studies. For example, in 

PROMETHEE, there are thresholds that must be used as inputs, and they form part of the 

user’s preferences/choice. That makes the method subjective and difficult in that an 

inexperienced user may not know what or how to choose the thresholds. To deal with such a 

short coming, a solution has been introduced in section 3.2.3 (C). With TODIM, the author’s 

experience in using the method is that the method is prone to errors because of the complexity 

in computations. On the other side, TOPSIS has rank reversal problems. So, all these methods 

still have shortcomings even though they are suggested for use. 

4.2. DEVELOPMENT PROCESS OF THE MMSM 
 

The model has been developed and is below. Each step of the model is broken down below: 

 

 

The first thing the users of the model must do is to define the problem at hand. The users must 

define the mine under investigation, its geological and any other information that will be critical 

when selecting a mining method. An ill-structured problem may prove difficult to solve. When 

the problem has been sufficiently defined, the users must identify the decision goal. It is 

recommended that a neutral third party facilitates the decision-process. Key players such as 

geologists, mine planners, engineers, and other relevant parties must be brought together for 

the decision to be made.  

 

 

 

 

 

 

The approach is of case-based reasoning (CBR); where the user can retrieve, re-use, revise 

and then retain the information for future use. The user can always search within the database 

for a similar problem before selecting a MCDM. The author recommends PROMETHEE, 

TOPSIS, and TODIM to be used. However, depending on the nature of the problem, any other 

MCDM can be used. 

1. Form a decision-making team and define the problem. 

2. Search in MMS Database for a similar problem. 

2.1. Previous 
solved MMS cases 

Database 
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The reason the author suggests the CBR approach on the developed MMSM is because 

CBR offers a platform for continuous learning as each solved problem is added to the data 

base. Its solution-finding capabilities are high because the user can always find a similar 

problem within the database and that saves time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Form a decision-making team and define the problem. 

2. Search in MMS Database for a similar problem 

3. Select MCDM method 

4. Select suitable factors as criteria 

5. Identify suitable alternative mining methods 

6. Calculate and assign weights to the criteria 

7. Evaluate alternatives 

against the criteria in 

MCDM 

8. Perform a sensitivity 
analysis 

9. Select the preferred 
alternative 

4.1. MM and 
5.1.Factors 
Database 

2.1. Previous 
solved MMS cases 

Database 
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Problems that are difficult to solve can always be compared to similar ones in the database to 

reach a solution. A CBR process is illustrated and what each step entail is shown in Figure 46. 

 

Figure 46: Illustration of the MMSM Database 

 

 

 

After the problems in the data base have been searched and compared to the defined 

problem, a MCDM must be selected. It is recommended that TODIM, PROMETHHE, or 

TOPSIS be used for the MMS problems.  The background principles of selecting an alternative 

when using MCDMs are similar. The processes of the 3 recommended MCDM are shown 

below. See section 2.2.2 for more details. A Matrix is constructed based on the preferences 

of the decision makers. Weights are determined, and the normalised matrix is calculated. The 

user must take note of the type of criteria when selecting the criterion in step 4 of the developed 

model. The correct formulas must be used for the type (benefit or cost criteria) of criteria. An 

ideal solution for TOPSIS, relative criterion for TODIM, and criterion function, preference, and 

indifference parameter are identified as explained in the literature. Then the preferences are 

calculated. The higher the value, the more an alternative is preferred.  

Method TOPSIS TODIM PROMETHEE 
Step 1 Construct a Matrix Construct a Matrix Construct a Matrix 
Step 2 Normalise a Matrix Normalise a Matrix Compute pairwise 

performances 
Step 3 Determine the weighted 

Normalised Matrix 
Determine the weighted 

Normalised Matrix 
Choose a criterion function, 

indifference, and preference 

Step 4 Identify an ideal solution Identify a relative criterion Determine the multi-criteria 

preference index 
Step 5 Calculate the Euclidian 

distance   
Determine the dominance 

degree of each alternative 
Calculate the outranking flows 

3. Select MCDM method 
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Step 6 Determine the relative 

closeness 
Determine the overall 

dominance degree 
Calculate the net outranking 

flows 

 

 

 

From the factors and mining method database, the user can then select suitable criteria and 

alternatives respectively. The CBR approach is still utilised for both mining method and factors 

data bases. Even though factors are many and different, the discussed factors can be grouped 

under these categories: 

 Geological and hydrological factors 

 Geotechnical factors 

 Environmental factors 

 Economic factors 

 Technological factors 

 Spatial characteristics of the investigated deposit.  

So, as more factors are added into the decision-process, they can be stored under the 

aforementioned categories for ease of searching in the future. More categories can be added 

should the need arise. The same applies for the mining methods. This MMSM does not limit 

the user to the described mining methods only, and that is an added advantage compared to 

the traditional techniques of MMS.  

 

 

 

To perform the evaluation process, weights must be assigned to the criteria. In the literature 

review, AHP was introduced as one of the MCDMs. However, AHP was used for weight 

assigning in this study. In AHP, the decision makers construct a pairwise comparison matrix, 

and find the relative priorities of the criteria. The calculation of weights is a subjective process; 

fortunately, AHP allows for a consistency ratio to be calculated for accuracy. Should the 

weight-assigning process be found to be inconsistent, the decision-makers need to evaluate 

their priority ratings and make necessary changes. 

 

 

 

 

 

 

 

In step 7, the alternatives are then evaluated against the criteria. Rankings will be derived from 

the evaluations. The are two routes after obtaining the rankings; the user can perform a 

statistical analysis or take the rankings as the final decision. In the statistical analysis, three 

4. Select suitable factors as criteria 5. Identify suitable alternative mining 
methods 

6. Calculate and assign weights to the criteria 

7. Evaluate 

alternatives against 

the criteria in MCDM 
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tests are performed; Spearman correlation (7.1.a), agreement of the first 3 ranks (7.2.a), and 

rank match percentages (7.3.a). 

 

 

The spearman correlation determines the strength of the relationships of the MCDMs by 

calculating the similarity between two set of rankings.  The test is based on the agreement of 

the top 3 ranked alternatives. (1, 2, 3) means the first three ranks match; (1, 2, #) means the 

first two ranks match, and (#, #, #) means that there is no match. The last test refers to the 

number of ranks matched expressed as % of the no. of alternatives. This route is applicable if 

more than 1 MCDM were used to obtain the rankings.  

 

 

A Kendall coefficient is then calculated in 7.5a to check for the agreement in the MCDMs. If 

the coefficient equal 1, then the process is ended, and the final rankings will then be derived 

based on all the tests. If the coefficient is less than 1, then a conflict resolution can be applied. 

In conflict resolution, additive and multiplicative rankings are determined, and the rankings are 

obtained. A sensitivity analysis is then performed, then the final decision is taken. 

 

 

 

 

 

 

Alternatively, after the evaluations of the alternative against the criteria in step 7, a sensitivity 

analysis can be performed directly without doing a statistical analysis. In sensitivity analysis, 

weights are re-assigned based on the agreement of the decision-makers. Other scenarios 

based on the controllable variables within each MCDM can be created in the process to 

confirm the results. For example; in TODIM, other than the weights, the attenuation factor and 

the choice of the reference criterion can be adjusted.  

 

 

 

 

 

 

After observing the effects of the changes on the final rankings through a sensitivity analysis, 

the process comes to an end. In step 9, a decision is reached. A preferred alternative will be 

taken as the mining method to be used in the specific mine. The users can always confirm the 

final rankings with experiential knowledge.  

7.1a 7.2a &7.3a 7.4a 

7.5a 

7.1. B 

8. Perform a 

sensitivity analysis 

9. Select the preferred 

alternative 
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Some of the advantages of the developed MMSM 

 The MMSM allows the user freedom to choose MCDM; so the user is not limited to a 

single method with its shortcomings.  

 The user can easily compare the results after using multiple MCDMs. 

 The information used can be stored into the database for future use. 

 There is no limitation on the number of criteria and alternatives that can be used as 

inputs in the system.  

 The procedure provides a good platform for future developments into an app-based 

format or software  

 The MMSM can be used even for other commodities outside coal mining. 

The disadvantage of the MMSM: 

 Users need to understand the theoretical background of the MCDMs before making a 

choice on which one to use for the decision-process. However, in future studies the 

author intends to develop an application-based procedure so that the functionality of 

each MCDM may be built in and the user will just insert the evaluation performance of 

alternatives against criteria to obtain the final rankings.  
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5. CONCLUSIONS 
 

The aim of project was to develop a mining method selection model through a detailed 

assessment of MCDAs. This is because attempts to build a systematic approach to mining 

method selection have been made in the past. However, there has been limitation from the 

traditional approaches presented. Therefore, objectives were set to achieve the aim of the 

project. The main aim was to study in detail the MCDMs that were previously used in decision-

making in and outside the mining industry.  

Ten MCDMs- TOPSIS, TODIM, VIKOR, GRA, PROMETHEE, OCRA, ARAS, COPRAS, SAW, 

and CP were studied in detail; their application, functionality, advantages and disadvantages. 

ELECTRE and HPV were also introduced. However, they could not be studied in detail and 

are not recommended. ELECTRE fails to sort the alternatives ratings in ranks. While HPV 

cannot be implemented in the absence of voters. AHP was introduced as well. However, in 

this study, it was only used for weight elicitation since the introduced MCDM cannot assign 

weights.  

In the results section, the MCDMs were analysed following a descriptive and a statistical 

analysis. In the descriptive analysis, a set of criteria was introduced and used to evaluate the 

MCDMs. In the statistical analysis, tools such as sensitivity analysis, spearman correlation, 

and Kendall’s coefficient were used. Two ways (additive, and multiplicative) of resolving 

conflict in the ranks were introduced and the final ranking of the combined MCDM was 

obtained. After such a comprehensive analysis, it was found that PROMETHEE, TOPSIS, and 

TODIM stand out and can be successfully used in the selection of mining method in the coal 

mining industry. The other methods (OCRA, ARAS, CP, SAW, and COPRAS) have been 

found to be simplified approaches of the aforementioned methods. VIKOR’s rankings were 

outlying and it was concluded that it is not a suitable method for MMS. GRA’s conclusion 

based on the literature view is that there is no founded mathematical explanation behind its 

existence because there remain may unanswered questions about its foundations.  

Factors such as ore thickness, depth, ore plunge, and mining methods such as bord-and-

pillar, long wall, gasification, and coal bed methane were presented, were also studied ad 

presented as part of the literature review. They formed part of the database of the CBR in the 

developed MMSM.  

The potential this study has is that it will be a provision of a systematic approach that caters 

for subjective and objective analysis in MMS. Also, it will result in an increased level of 

confidence of the MCDM so that South African Mining companies can utilise these models as 

application has been limited in the country’s coal mining industry. 

The last section of the project presented a MMSM procedure of choosing a mining method. 

The approach has been simplified and can be implemented by any user given that the 

background information presented in this research is understood.  
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6. RECOMMENDATIONS  
 The user must understand the discussed MCDMs and must acknowledge that the 

model developed is a simplified approach and can only be useful if there is an 

understanding of the theoretical background behind the MCDMs.  

 Fit-for-purpose criteria and alternatives may be added in the database for the specific 

problem being investigated, should the factors and methods in the results section be 

insufficient. 

 For effective and reliable results, at least 2 of the MCDMs can be used in the MMSM 

to observe and record any variations in the final ranks.  

  In MMSM, A problem or an objective must be defined appropriately before the MMSM 

is used to avoid inconsistency in the final rankings.  

7. SUGGESTIONS FOR FURTHER WORK 
 A limitation in the study is that only AHP was used to elicit weights. This means that a 

room for other methods with capabilities to elicit and calculate weights is left. 

Therefore, a future study could be to investigate other weight elicitation methods and 

their influence on the final ranks.   

 One of the limitations in the study is that some of the articles, and journals reviewed 

were a translation from other languages to English. Therefore, in future, more articles 

from other languages can also be reviewed for more information on MCDMs.  

 In future studies, algorithms for selection of a suitable MCDM in the MMSM can be 

developed so that once the problem has been defined and structured, the user may 

not struggle with knowing which method to use amongst the suggested.  

 Since all the MCDMs have their unique strengths ad shortcomings, it is suggested that 

a group-decision making approach be further refined.  

 A sensitivity analysis approach may need to be refined or specifically developed for 

the MMSM.   

 To develop an application-based procedure so that the functionality of each MCDM 

may be built in and the user will just insert the evaluation performance of alternatives 

against criteria to obtain the final rankings 
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APPENDICES 
APPENDIX 1 
 

The classification and support systems for the traditional approaches to mining method 

selection are presented in this appendix.  

 

 

Figure 47: Support chart for MMS tool by Morrison (Peskens, 2013) 
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Figure 48: support graph developed by Laubscher in 1981 Source: peskens (2013) 

 

 

Figure 49: Support Graph developed by Laubscher in 1990. Source: Peskens (2013) 

 



166 

 

 

Table 82: Support Table for UBC MMS by Miller- Tait of 1995 (Peskens, 2013) 

General shape 

Equi-dimensional All dimensions are of the same order 

Platy-tabular Two dimensions are larger than the 
thickness  

Irregular Dimension vary 

Orebody thickness 

Narrow  <10m 

Intermediate 10 – 30m 

Thick 30 – 100m  

Very Thick  >100m 

Deposit plunge 

Flat <20° 

Intermediate 20° – 55° 

Steep >55° 

Grade distribution 

Uniform Grade is equal to the mean grade 
throughout the orebody 

Gradational Grade has a zonal characteristic which 
gradually changes from zone to zone  

Erratic Grade can change quickly over distance 
without any pattern 

Deposit depth 

Shallow  < 100m 

Intermediate 100- 600m 

Deep >600m 

RMR 

Very weak 0 – 20 

Weak 20 – 40  

Medium  40 – 60 

Strong 60 – 80 

Very strong 80 – 100 

Rock Substance Strength (RSS) (uniaxial strength/ overburden pressure) 

Very Weak <5 

Weak 5 – 10 

Medium 10 – 15 

Strong >15 
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APPENDIX 2 
In this appendix, tables and figures that support the results section. Table 83 shows the 

characteristics of the spearman correlation. Table 84 shows the characteristics of the Kendall’s 

coefficient. Figure 51-53 supports the sensitivity analysis in the results section.  

Table 83: Characteristics of Co-efficient R (Banerjee & Ghosh, 2013) 

Correlation Nature of correlation Remark 

0.9-1.0 Very High Very strong relationship 

0.7-0.9 High Marked relationship 

0.4-0.7 Moderate Substantial relationship 

0.2-0.4 Low  Definite relationship 

<0.2 Slight Small relationship 

 

Table 84: Characteristics of Co-efficient W 

W Interpretation 

W<=0.3 Weak agreement 

0.3<W<=0.5 Moderate agreement 

0.5<W<=0.7 Good agreement 

W>0.7 Strong agreement  

 

 

Figure 50: Sensitivity analysis of VIKOR @ v=0, 5 with varying weights 
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Figure 51: CP sensitivity analysis for varying weights at p=2 

 

Figure 52: CP sensitivity analysis for varying weights at p=10 
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