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Deleterious recessive monogenic autosomal conditions are modelled both on an individual 

level, for diagnostic purposes, as well as in large populations, where the establishment, 

dispersion and equilibrium behaviour is investigated. 

 

Data fusion techniques are applied to combine diagnostic data on a more rigorous basis, to 

support the diagnosis of disease in an individual. In this case the focus is specifically on 

cystic fibrosis, which is one of the most common monogenic recessive disorders in humans. 



 

Diagnostic information may be of disparate types and varying verisimilitude, such as 

symptoms, measurements, history, observations, and even opinions. Nonetheless it is 

possible to construct a mathematical framework to synthesise this knowledge into a numeric 

assessment of the probability that the disease may be present. This may be used to guide 

decisions regarding treatment or additional testing, by supporting improved cost-benefit 

analyses.  

 

Considering the population genetics of monogenic variations such as cystic fibrosis, 

analytical and statistical stochastic approaches are used to model and predict the dispersion 

of mutations through a large population. These approaches are used to quantify the 

magnitude of a heterozygous selective advantage of a mutation in the presence of a 

homozygous disadvantage. Random effects such as genetic drift are accounted for, which 

are likely to extinguish even highly advantageous mutations while the prevalence is still low. 

Dunbar’s results regarding the cognitive upper limit of the number of stable social 

relationships that humans can maintain are used to determine a realistic community size - a 

reduced local subset of the total population - from which an individual can select mates. This 

reduction has a dramatic effect on the probability of establishing mutations, as well as the 

eventual equilibrium values that are reached in the case of mutations conferring a 

heterozygous selective advantage, but a homozygous disadvantage, as in the case of cystic 

fibrosis and sickle cell disease. The magnitude of this selective advantage can then be 

estimated based on observed occurrence levels of a specific mutation in a population, 

without requiring prior information regarding its phenotypic manifestation.  

 

It is also demonstrated that the heterozygous carrier levels of monogenic recessive disorders 

are routinely overestimated. 
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Nadelige resessiewe monogeniese afwykings word bestudeer in individue, vir diagnostieke 

doeleindes, asook in groot bevolkings, waar vestiging, verspreiding en ewewigsgedrag 

ondersoek word. 

 

Datafusietegnieke word ingespan om diagnostieke inligting op 'n meer objektiewe wyse te 

kombineer ter ondersteuning van die diagnose van siekte in 'n individu. In hierdie geval word 

spesifiek gefokus op sistiese fibrose, wat die mees algemene menslike monogeniese 

resessiewe afwyking is. Die insetdata kan van uiteenlopende aard wees, met wisselende 



 

grade van geloofbaarheid, soos simptome, metings, waarnemings, geskiedenis, en selfs 

vermoedens. Desnieteenstaande is dit moontlik om 'n wiskundige raamwerk te bou wat al 

hierdie inligting kan kombineer tot 'n numeriese raming van die waarskynlikheid dat die 

toestand teenwoordig mag wees. Dit kan dan gebruik word om besluite rakende behandeling 

of bykomende toetse te rig, deur verbeterde koste-voordeel-ontledings moontlik te maak. 

 

Hierna word die bevolkingsgenetika van monogeniese variasies gemodelleer. Oënskynlik 

nadelige mutasies soos sistiese fibrose en sekelsel-anemie versprei deur menslike bevolkings 

danksy die selektiewe voordeel wat dit aan heterosigotiese draers bied, onderhewig aan 

omgewingstoestande. Namate die voorkoms van so 'n mutasie toeneem, verhoog die 

waarskynlikheid op homosigotiese nageslag daarmee saam, met die geassosieerde 

selektiewe nadeel wat daarmee gepaard gaan, totdat daar 'n ewewig bereik word tussen 

draers en nie-draers. Hierdie navorsing gebruik analitiese en stogastiese tegnieke om die 

absolute grootte van die heterosigotiese voordeel wat so 'n mutasie bied te kwantifiseer. Die 

antropologiese waarnemings van Dunbar rakende die perke op die menslike vermoë tot 

stabiele sosiale verhoudings, gekombineer met sensusdata oor die werklike voorkoms van 

draers, is al wat nodig is om 'n afskatting van die selektiewe heterosigotiese voordeel te 

maak, sonder om enige voorkennis rakende die fisiese meganismes waardeur so 'n voordeel 

gebied word te vereis. Dieselfde model kan dan ook gebruik word om die effek van variasies 

in effektiewe bevolkingsgrootte en selektiewe voordeel op die waarskynlikheid dat 'n 

variasie hoegenaamd gevestig sal raak te kwantifiseer. 

 

Dit word ook aangetoon dat die draervlakke van monogeniese resessiewe afwykings as 'n 

reël oorskat word. 
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CHAPTER 1 INTRODUCTION 

1.1 PROBLEM STATEMENT 

1.1.1 Context of the problem 

Disease diagnosis is a process whereby a number of observations are combined to determine 

a most likely finding, which is then used to inform treatment decisions. All observations 

display some uncertainty or error rate, which may be difficult or impossible to quantify, and 

hence the eventual verdict can itself never be completely certain. Nonetheless, various types 

of evidence are combined until a sufficiently high confidence level is reached. The required 

confidence level itself depends on the impact (i.e. cost and/or risk) of the testing or treatment 

decisions that it may prompt. Medical practitioners do this routinely, rapidly, largely 

subconsciously, and possibly not optimally in all cases.  

 

Cystic fibrosis (CF), one of the most common monogenic recessive disorders in humans [1], 

will be used as a test case to explore evidence combination approaches, to probe the impact 

of uncertainty on the outcome, and also to characterise the contribution of various 

observations to the final conclusion. Additionally, CF is an attractive candidate for 

population modelling purposes, due to its highly deleterious character, which until very 

recently all but guaranteed that homozygous individuals would produce no progeny. 

 

Observing the relative prevalence of ostensibly deleterious genetic variations such as CF and 

sickle cell anaemia leads to the inevitable conclusion that such variations have to offer some 

selective advantage, lest they rapidly be outcompeted by the wild type. Sometimes such 

advantages are known [2]: for example, mutations in the haemoglobin gene can confer 
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enhanced malaria resistance to heterozygous carriers [3], [4], but the outcome is dire for 

homozygous individuals [5]. This limits the prevalence of the allele. However, many 

variations are not quite as dramatic in either their heterozygous advantages or homozygous 

disadvantages, and may be highly dependent on unknown epistasis and epigenetic factors. 

Nonetheless, observations regarding occurrence can be made. This, combined with 

sociological factors, will be used to explore the characteristics of recessive deleterious 

genetic variations in human populations, specifically the likelihood of establishment, the 

eventual equilibrium prevalence levels, updated carrier level estimates, and even the likely 

heterozygous selective advantage that it confers, without requiring any information 

regarding its phenotypic manifestation. 

1.1.2 Research gap 

Current guidelines for the diagnosis of cystic fibrosis suggest a sweat chloride test, followed 

by genetic screening [6]. However, as shall be shown, the rarity of the condition may lead to 

high false positive rates (relative to the incidence of CF), which in turn “can have 

psychosocial consequences that affect entire families” [7]. Furthermore, genetic screening is 

not always available or completely relevant, especially in Africa [8]. CF presents with a wide 

range of variable and often non-specific signs and symptoms [1], which suggests that a more 

objective combination of evidence, based on Bayesian theory, may improve accuracy and 

specificity. 

 

Considering the establishment and dispersion of monogenic variations in a population, much 

effort has been expended to analytically model the effects of local structure, migration, and 

inbreeding [9], [10], [11], [12]. However, there is a strong social dimension to human 

populations, as in most primates [13], [14] – this affects group structure, and hence also 

procreation patterns. Until now this effect has not explicitly been taken into account in 

population genetics models. 
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1.2  RESEARCH QUESTIONS 

Many diseases present with non-specific symptoms, which are merged by a medical 

practitioner to arrive at a diagnosis, which is inevitably at least partially subjective. Because 

rare diseases are particularly challenging to diagnose, the following questions are 

considered: 

 Can a Bayesian network (BN) be used to gain some insights into the ætiology and 

pathology of CF? 

 How does uncertainty in the inputs affect the utility of a BN used for predicting CF? 

At the population level, monogenic variations in humans are studied. Prompted by the 

research gap identified above, the following questions were considered: 

 Why do ostensibly deleterious genetic variations not become extinct? 

 Can human sociological data be used to derive improved values of the heterozygous 

advantage and carrier prevalence associated with homozygous deleterious 

mutations? 

 Can sociological data be used to determine the probability that a genetic variation 

will become established in the human population? 

1.3  APPROACH 

With CF being one of the most common monogenic recessive disorders in humans, this 

disease is used as a primary focus area. A BN is created, to take into account various 

associated risk factors and known symptoms to calculate a probability that a given individual 

is indeed afflicted with homozygous CF. 

 

Then, using known incidence data and realistic community size numbers, a numeric 

population model is created to estimate the heterozygous carrier prevalence as well as the 

selective advantage that a mutation in the CF Transmembrane Regulator (CFTR) gene 

bestows on heterozygotes. 
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1.4  RESEARCH GOALS 

The aim is to create tools to:  

 improve insight into the diagnostic process for CF, that may be used to guide 

decisions regarding tests most likely to add useful data. 

 infer improved estimates of characteristics of CF and other monogenic disorders by 

exploiting sociological and census data. 

1.5  RESEARCH CONTRIBUTION 

The creation of an improved general approach to disease modelling as proposed above may 

result in a tool which can be of use to health administrators and policy makers, by facilitating 

causal predictions regarding the expected effects of interventions, as well as making possible 

improved risk/benefit analyses, which is always relevant when limited resources need to be 

applied to achieve the greatest good. 

 

It is believed that the incorporation of heterogeneous features exhibiting different types of 

uncertainty, as well as a more detailed longitudinal modelling than hitherto reported in the 

literature may lead to a significantly improved result. 

 

On the level of individuals rather than groups, a sufficiently detailed and accurate disease 

model would make truly personalised medicine feasible, by allowing the specific factors 

(genetic or environmental) besetting the patient to be analysed in their complex interactions; 

selection and adjustment of an intervention to the best known level possible for that patient 

then becomes viable.  

 

Furthermore, and more directly, it is expected that the envisaged cystic fibrosis case study 

will result in useful insights regarding improved management of this disease, which should 

lead to better resource management, as well as improved quality of life and/or increased 

lifespan for those afflicted. 
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The combination of sociological and census data in a stochastic model as applied to the 

population genetics of monogenic variations adds a hitherto overlooked dimension to the 

existing body of theory, and is shown to reproduce various known boundary test cases with 

remarkable accuracy, while at the same time obviating the need for a number of postulated 

and usually unknown confounding factors traditionally used in genetic models of 

populations. This model, when set to replicate known CF incidence levels, generates 

estimates of the heterozygous selective advantage and also indicates a significant downward 

adjustment in current carrier prevalence estimates for autosomal monogenic recessive 

disorders. 

 

1.6  RESEARCH OUTPUTS 

Journal paper published in Nature Scientific Methods on 2019-07-17 [15].  

 

1.7  OVERVIEW OF STUDY 

In Chapter 2 the results of two literature reviews are presented, respectively investigating 

data fusion for medical decision support (section 2.2), and the population genetics of 

monogenic variations (section 2.3). In both cases, while a generic viewpoint is presented, 

the applicability to deleterious recessive monogenic variations, and specifically cystic 

fibrosis, is consistently kept in mind. It is found that medical decision support is a fertile area 

especially for artificial intelligence (AI) research, but that despite decades of promising 

results, there is still a paucity of successful applications, due to a number of practical reasons. 

 

Regarding the dissemination of monogenic mutations in large populations, an impressive 

body of experimental data exists, especially on fruit flies, but for obvious reasons human 

experimentation is fraught with practical and ethical limitations, spurring the development 
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of analytical models to predict the behaviour of variations in large homogeneous and 

structured populations.  

 

Chapter 3 then presents the research methods that were applied to disease modelling, 

specifically aimed at the modelling of cystic fibrosis as a test case, by using Bayesian 

networks to integrate environmental, physiological, genetic, historical and even unknown 

(postulated) evidence to arrive at an improved estimate of the likelihood that disease is 

indeed present in an individual. 

 

While Chapter 3 focuses on disease in an individual, Chapter 4 investigates cystic fibrosis 

and similar monogenic variations from a group (population) perspective, and demonstrates 

that incorporation of human sociological data into an essentially Mendelian stochastic model 

can reproduce the results of rather abstruse analytical approaches, while obviating the need 

to estimate several unknown factors, the effects of which appear as emergent features 

instead. It is shown that plausible estimates can be obtained for a fundamental characteristic 

of cystic fibrosis, namely the heterozygous selective advantage, as well as the heterozygous 

carrier frequency, by replicating the known (i.e. observed) homozygous incidence levels.  

 

Chapter 5 presents a conclusion, with several suggestions for future study. 

 



 

 

CHAPTER 2 LITERATURE REVIEW 

2.1  CHAPTER OBJECTIVES 

This chapter is divided into two major parts – the first presents the results of a literature 

study aimed at determining the current state of medical decision support, while the second 

focuses on the theory of population genetics, specifically the establishment and 

dissemination of variations (mutations) in diploid populations. 

2.2  MEDICAL DECISION SUPPORT FOR RISK DETERMINATION, 

DIAGNOSIS AND TREATMENT  

2.2.1 Introduction 

In 1885 Sir Arthur Conan Doyle observed in a short story that “knowledge begets knowledge, 

as money bears interest” [16]. This sentiment, if true, would imply exponential growth in 

knowledge (or at least information), and indeed there have been several studies supporting 

this theory. David T. Durack in 1978 published the results of a project in which the growth 

of the Index Medicus – a database of biomedical journal articles, maintained by the United 

States National Library of Medicine – was determined by simply weighing the tomes that 

had been published over the course of the preceding century [17]. He extrapolated the weight 

(which had stood at about 3kg in 1927 and ten times as much 50 years later) to reach a 

predicted 1000kg by 1985, and concluded that the printed format would inevitably have to 
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make way for something like microfilm or “computer-terminal display”.1 Others have found 

similar trends – Price [18] also looked at indicators like the number of scientists, abstracts 

and journals as well as scientific research expenditure, and concluded that over the preceding 

two centuries there had been an annual growth rate of approximately 5% in the scientific 

literature, far outstripping even human population growth figures. 

 

It is of course an oversimplification to equate the amount of published information directly 

with a growth in knowledge, partly because much of published science also represents 

correction or even replacement of previous wisdom. Ramsey et al in 1991 estimated a half-

life of five years for internal medicine knowledge [19]. Less quantitatively, a quotation, 

popular at higher education institutions (especially medical schools), states that “half of what 

we know (or will teach you) is incorrect, but we unfortunately do not know which half.”2  

 

The foregoing clearly demonstrates that scientific knowledge, and specifically medical 

knowledge, is in a continuous state of flux. While advances are potentially good news for 

the patient, the current knowledge growth and change rates are such that no physician can 

realistically be expected to be properly up-to-date on anything except possibly the narrowest 

of specialisations. This fact all but guarantees that medical diagnoses will be based on less 

than the current state-of-the-art information. Newman-Toker and Pronovost in 2009 

identified diagnostic errors as “the next frontier for patient safety” [21], underlining the need 

for diagnostic decision support tools that can access and meaningfully utilize more of the 

latest knowledge than the physician can. 

 
1 Although growth in the weight of the printed Index Medicus had slowed down somewhat in the 

years after Durack’s investigation, his prediction regarding the publishing format came true – the 

last printed version appeared in 2004, and it is currently only available in on-line digital format. 

Similarly, in 2012 Encyclopaedia Britannica (first published in 1771) announced that its 2010 

printing had been its last physical manifestation. 

2 This is probably a paraphrase of a statement by Samuel Johnson, as recounted in his 1791 biography 

by James Boswell [20]. 
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While attempts at implementing artificial intelligence algorithms for medical decision 

support is almost as old as the development of digital computers themselves, Miller [22] 

points out that “diagnosis is more than the act of associating the name of a disease or 

syndrome with the findings in a patient case”, and he cautions against a brute-force approach 

of “mindlessly eliciting all possible patient data” [23], as the implications of this would be 

“staggering” in terms of effort, cost, time and risk (mainly to the patient). Furthermore, 

diagnostic inputs as used by flesh-and-blood physicians are not just a list of “findings”, but 

very often usefully include temporal data – i.e. information about changes in symptoms, over 

unstipulated time periods, possibly untreated or due to preliminary or exploratory therapy. 

Diagnosis itself is therefore also a process (not just a decision), which, due to the essentially 

unlimited variability in the input and output spaces, cannot easily be formularized, and 

thereby stubbornly defies optimisation. Nonetheless (or maybe specifically because of the 

challenges posed by this complexity), artificial intelligence research has been using medical 

data sets from the very beginning, with the first publications on the subject already appearing 

in the 1950s [24], [25]. 

 

Owing to the fact that the data used in medical decision-making processes are normally 

noisy, quite heterogeneous, and often incomplete, data fusion algorithms able to tolerate such 

variety and uncertainty may assist in improving the decision-making process. Although data 

fusion techniques have historically been developed primarily for military use [26], 

applications are also found in most aspects of civilian life. Since 1998 there has been an 

annual “International Conference on Information Fusion”, organized by the International 

Society of Information Fusion under the aegis of the IEEE. Data fusion entails the 

combination of information from separate sources (on any level from raw data blending to 

decision synthesis [27]), normally with the aim of achieving a result that is in some sense 

better than can be achieved when simply using single-source data. “Better” can refer to 

aspects such as improved accuracy, usability, dependability or completeness, and may also 

include emergent results: for example, stereoscopic combination of data from spatially 

separated image sensors can produce range estimates – something which the individual 

sensors do not supply on their own. 
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2.2.2 Data fusion algorithms 

2.2.2.1 Symbolic learning – expert systems and heuristic algorithms 

The most immediate and obvious approach to mechanizing the expertise of a knowledgeable 

practitioner in a given field is to attempt to capture this proficiency in the form of a set of 

rules that would emulate the decision-making ability of such a person. Decision guidelines 

of the IF-THEN-ELSE form are eminently suitable for computer implementation, but 

unfortunately experts are rarely able to describe their decision-making processes sufficiently 

succinctly to easily allow the required distillation into an unambiguously programmable set 

of rules. Often a physician would have a ‘feeling’ about a patient, which, according to Ledley 

and Lusted [24], is almost certainly based on complex (but often subconscious) reasoning 

processes, including assessments of the patient’s appearance, expression, reliability, and 

history, as well as the more obvious and quantifiable results of medical examinations and 

tests.  

 

Two main building blocks are required to construct an expert system: the knowledge base 

and an inference engine, with the latter ‘reasoning’ about the former, the way a human 

supposedly does. Some of the very first arguably successful artificial intelligence software 

projects were expert systems applied to medical subjects: in the 1960s the Stanford Heuristic 

Programming Project created the DENDRAL project, aimed at studying hypothesis 

formation and scientific discovery (targeting the identification of organic molecules based 

on chemistry knowledge and mass spectra), as well as MYCIN, an expert system built by 

Edward Shortliffe to identify infectious bacteria and recommend suitable antibiotic therapy 

[28],  [29]. 

 

These early programs ran on time-shared mainframe computers, and were coded in Lisp, a 

general-purpose coding language created in 1958, with a strong symbolic computation 

orientation. Prolog (created in 1972), with its built-in inference engine, later replaced Lisp 

as the computer language of choice for artificial intelligence applications. 
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2.2.2.2 Statistical learning 

2.2.2.2.1 Bayes’ theorem 

In 1763 a paper was published in the Philosophical Transactions of the Royal Society of 

London that was to revolutionise statistics and probability theory several centuries later. The 

Reverend Thomas Bayes’s posthumous paper titled “An Essay Towards Solving a Problem 

in the Doctrine of Chances” [30]3 contained a formulation of what has become known as 

Bayes’ Theorem.4 Amongst others, this theorem can be used for inference, by supplying a 

rational foundation for updating a subjective degree of belief to account for evidence. 

According to Sir Harold Jeffreys, Bayes’ Theorem “is to the theory of probability what 

Pythagoras's theorem is to geometry” [32]. 

 

In its most common form Bayes’ theorem as applied to two possible outcomes A and B is 

given by:   

 
𝑃(𝐴|𝐵) =  

𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

(2.1) 

where P(A) denotes the probability of an outcome A and P(A|B) refers to the conditional 

probability of A given B. 

 

Also known as the epistemological interpretation, Bayesian probability indicates the 

progressive updating of belief in a proposition while evidence accrues. For example, a naïve 

person, when shown a cubical die, may initially assume that there is a 50% chance of 

throwing a given number, say a one, in six tries. However, if a trial is done, the actual 

outcome can be used to update the expectation or belief, and, if the die happens to be fair, 

the expectation should eventually, after a large number of trials, settle at about 66.51%. (This 

 
3 edited and published by his friend Richard Price 

4 The possessive form for the singular noun Bayes may have been expected to be Bayes’s – and 

indeed this usage predominated in the 18th and 19th centuries. However, according to Google 

NGrams (http://books.google.com/ngrams) the form Bayes’ has supplanted it in print since the 

middle of the 20th century, and hence this form is used here, for the sake of consistency [31]. 

http://books.google.com/ngrams
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is because the probability of not throwing a specific number in six consecutive attempts 

equals (
5

6
)6 ≈ 33.49%, which is coincidentally close to, but not exactly, one third.) 

 

Application of Bayes’ theorem may also lead to some non-intuitive conclusions. As an 

example, take a hypothetical medical test, with a false positive rate of 1%, and also a false 

negative rate of 1%. In other words, an individual with the disease would, if tested, have a 

99% probability of a correct, positive result (P(A│B) = 0.99), while a healthy person would 

have a 1% probability of a positive (incorrect) result. If, however, the incidence of the disease 

itself is low (affecting say 1 in 2500 people, or 0.04%, which is approximately the situation 

with CF in the United Kingdom [33]), then P(A)= 0.0004, and Equation (2.1) results in the 

possibly startling result that a positive test result only implies a 3.81% probability that the 

specific individual actually has the disease, despite the “99% accuracy” of the test. To 

understand this result it is mainly necessary to realize that a false positive rate of 1% will 

result in ten thousand errors out of a million tests, while actually only 400 (1 in 2500) of the 

same million people are expected to actually have the disease. Additionally the 1% false 

negative rate would lead to an average of 4 of those affected individuals erroneously being 

declared healthy.  

2.2.2.2.2 Dempster-Shafer theory (belief networks) 

The Bayesian approach requires that the relevant probabilities (either modelled or 

statistically determined) for each contributing factor be known; from this the resultant 

probabilities are computed as above – this is also known as the naïve Bayes approach. In 

1968 Arthur P. Dempster published a paper titled “A Generalization of Bayesian Inference” 

[34], which, together with the work of Glenn Shafer some years later [35], [36], has become 

known as the Dempster-Shafer theory. 

 

Dempster-Shafer theory uses what is termed a degree of belief, called a belief function, 

instead of the more conventional Bayesian probability distribution. A belief function assigns 

probability values to sets of possibilities (not necessarily single events). These belief 
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functions use the probabilities of a related question to derive a degree of confidence (or 

belief) for the actual question.  

 

When used for sensor (or data) fusion, this approach entails the determination of subjective 

probabilities for a related question, from which the degree of belief for the actual question is 

derived, as well as Dempster’s rule [34] which governs the combination of such degrees of 

belief, by reflecting the general assumptions about the data. This includes whether the 

degrees of belief are actually constructed from independent evidential information. Such 

combination can even include beliefs based on hints [37], opinions, or preferences [38]. 

 

As an example, suppose we have a friend called Alice, about whom we have subjective 

opinions regarding reliability: we think there is a 90% probability that she is reliable, and a 

10% probability that she is unreliable. If she now tells us that the City Hall burned down 

yesterday, this testimony justifies a degree of belief of 0.9 that this had indeed happened, but 

no (zero) degree of belief that the City Hall had not burned down. This zero does not imply 

that we are quite sure that there had not been a fire at City Hall (as a probability of zero 

would have us conclude); it simply reflects the fact that her statement does not give us any 

reason to believe that there had not been a fire. This is because, if she is reliable, her 

testimony is per definition correct, but, if she is unreliable, it is not automatically untruthful. 

These two numbers (0.9 and 0) constitute our belief function. 

 

Dempster’s combination rule can be demonstrated by introducing a new witness – if our 

friend Ben (who, like Alice, happens to have a subjectively assessed 0.9 probability of 

reliability and 0.1 of unreliability) also claims that the City Hall burned down, we can 

multiply these (independent) probabilities. 

 

Both are reliable :   0.9 x 0.9 = 0.81 

Both are unreliable :   0.1 x 0.1 = 0.01 

At least one is reliable :  1- 0.01 = 0.99 
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Because they said the same thing we can therefore assign a belief of 0.99 to the event as 

claimed. This approach actually predates that of Bayes, with George Hooper already 

publishing monographs on the subject at the end of the 17th century [39]. 

 

Now, if they contradict one another (Ben says there was no fire), they cannot both be right, 

which means that at least one of them is unreliable – and possibly both are. The prior 

probabilities are: 

 

Only Alice is reliable :  0.9 x 0.1 = 0.09 

Only Ben is reliable :   0.09 

Neither one is reliable :  0.01 

 

The posterior probabilities (given that we now know that they cannot both be reliable) are: 

 

Only Alice is reliable :  
0.09

0.09+0.09+0.01
=

9

19
 

Only Ben is reliable :   
9

19
 

Neither one is reliable :  
1

19
 

 

We therefore have a 
9

19
= 0.474 degree of belief that the City Hall burned down (as Alice 

says), and the same degree of belief that it did not (as Ben claims). Note also that there 

remains an element of ignorance – Dempster’s rule does not require the provision of prior 

probabilities that sum to one, such as in the traditional Bayesian approach. 

 

The above demonstrates that we can obtain degrees of belief for one question (did the City 

Hall burn down?) from probabilities for a different question (in this case whether the witness 

is reliable). When we find conflict, the a priori assumption of independence (with respect to 

our subjective assumptions of probability) between the items of evidence is proven to be 

invalid, and has to be updated. 
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Although Dempster-Shafer theory is well suited to describe evidence, in a way which is 

compatible with the methods that humans use, it continues to elicit criticism, some of it from 

quite eminent scholars, such as the late Lotfi A. Zadeh [40] (also see the section on Fuzzy 

Set theory below), Judea Pearl [41], Andrew Gelman [42], and others [43]. These researchers 

claim that belief functions are often difficult to interpret, and that they are inadequate or 

inappropriate, especially when handling incomplete knowledge, because this can be 

demonstrated to lead to contradictions and incorrect decisions. 

 

2.2.2.3 Neural networks and related algorithms 

2.2.2.3.1 Multilayer feedforward artificial neural networks 

 

Figure 2.1 – (a) Perceptron (single neuron), (b) Fully interconnected multilayer feedforward neural 

net, with input nodes, one hidden layer, and output layer. 

 

In 1958 Rosenblatt proposed the perceptron as a biologically inspired model with 

applications in data storage and machine learning [25]. The basic perceptron is a binary 

classifier, mapping an input vector x to a single binary output f(x) using a weight vector w 

and a bias (offset) value b: 
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 𝑓(𝑥) = { 
1    if 𝑤 ∙ 𝑥 + 𝑏 > 0
0   otherwise           

 (2.2) 

 

However, the single-layered perceptron (also sometimes called a “neuron” – see Figure 

2.1(a)) cannot solve non-linear problems (with the Boolean exclusive-OR function as a very 

simple problematic example), so in 1974 Paul Werbos introduced the backpropagation 

algorithm which could be used to “train” a multilayer network of neurons/perceptrons as in 

Figure 2.1(b), by a gradient-descent error-minimisation adjustment of the weight vector 

values. For this to work the Heaviside step function (or threshold) implicit in equation (2.2) 

is replaced by a bounded, continuously differentiable “activation function” to ensure that 

there is indeed a gradient to descend. This function is typically a sigmoid function such as 

the logistic curve 𝑓(𝑥) = 1/(1 + 𝑒−𝑥), or sometimes the hyperbolic tangent function, both 

of which have positive derivatives everywhere [44], [45]. 

 

Other training techniques have also been proposed – Mazzoni et al [46] devised a 

biologically inspired reinforcement learning approach, which they based on measurements 

made on the visual cortex of monkey brains, reporting performance similar to that achieved 

by the backpropagation algorithm. 

 

George V. Cybenko [47] then showed in 1989 that a three-layer network (containing a single 

“hidden layer” of sigmoidally activated neurons) between the input nodes (where the feature 

vector x is applied) and the output layer (which also consists of neurons, one per output of 

the network – see Figure 2.1(b)) is necessary and sufficient to approximate any arbitrary 

nonlinear function. While networks with two and even more hidden layers are sometimes 

used, this is not required, and training of such networks can be challenging.  

 

Nonetheless, the availability of massive computing resources has opened the field of Deep 

Learning, which usually implement several layers, including one or more convolutional 

layers. A convolutional layer is not fully connected, but instead computes the cross-

correlation of its input with a smaller kernel, as inspired by the work of Hubel and Wiesel 
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on the visual systems of animals [48], [49] - for this work they shared one half of the 1981 

Nobel Prize for Physiology and Medicine. In 1980 Fukushima introduced the 

“neocognitron”, consisting of convolutional and downsampling (averaging) layers [50], 

followed by Weng’s cresceptron [51], which uses  max-pooling (finding the maximum value 

instead of the average of a region).  

 

Training a neural network requires a set of tagged (known correctly classified) data which 

sufficiently represents the variability of the data features in the expected application. These 

examples are applied to the network, the actual output is compared with the desired value, 

and the training algorithm then adjusts the interconnection weights w to reduce the error. 

This process is run iteratively until some halting condition is reached.  

 

The main challenge in designing and training a useful neural network is to ensure that it 

generalizes properly – this means that it will correctly handle data examples that it has not 

been presented with during training, which is the whole point of creating a classifier in the 

first place. Failure to achieve this is usually due to insufficiently representative training data, 

or to overtraining, which refers to the situation where the network has “memorized” specific 

examples in the training data, rather than extracting the similarities between examples of the 

same class. An effective way to avoid this phenomenon is to limit the complexity of the 

network (which usually means limiting the number of neurons in the hidden layer) to the 

lowest value which still facilitates the desired or maximal performance. By dividing the data 

into different parts used for training and validation, the point during the training process 

where performance starts declining may be identified, and the process can be halted, at which 

stage the best solution is used, or, preferably, the complexity is reduced (by eliminating 

neurons or connections), and the entire process is restarted, until an optimum is achieved. 

 

Training of a neural network can be very computationally intensive, but this is in general no 

longer a problem (although it used to be a constraint in years past), due to the ever-increasing 

availability of processing power and storage space. Even though training can still consume 

significant amounts of time (especially when large feature spaces and data sets are involved), 
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this happens off-line; the resultant feedforward network is computationally very efficient 

due to the fact that only a relatively small number of multiplications and additions (one each 

per interconnection weight) have to be executed, as well as determination of the activation 

function value for each neuron in the hidden layer (which is usually done very efficiently via 

a lookup table). 

 

Neural networks can handle noisy or incomplete data fairly well (due to the generalization 

characteristic), as long as sufficiently representative training information has been used. It 

does not, however, offer a clear exposition as to why a specific output is chosen [52] – 

although careful inspection of the interconnection weight values and the resultant hidden 

layer outputs may offer some insight, the internal representations of information are usually 

quite abstract, and offer little in the way of elucidation as to why a specific output ensued. 

Neural networks are therefore very much a “black box” type of classifier. 

2.2.2.3.2 Support vector machines 

Support vector machines (or networks) are similar to feedforward neural networks, in that 

they attempt to separate two classes of data by constructing a hyperplane (or set of 

hyperplanes). Originally invented as a linear classifier by Vladimir Vapnik in 1963, the 

current standard soft margin formulation (which allows for mislabelled examples) was 

proposed in 1995 by Cortes and Vapnik [53]. Additionally the so-called “kernel trick” uses 

a nonlinear function to transform the feature space. This allows a maximum-margin 

separating hyperplane which, if transformed back into the original input, may be highly 

nonlinear. This is very similar to what happens in a three-layer feedforward neural network 

as described above.  

 

Support vector machines have been reported to perform well in various medical diagnostic 

applications [54], [55], [56], [57], after supervised training on suitably prepared data sets. 

 

Although they are computationally comparatively cheap to train, support vector machines 

suffer from the same limitation as the feedforward neural network, in that the parameters are 
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not easily interpreted, meaning that results (outputs or decisions) are not really explained – 

it too acts as a “black box” classifier. Furthermore it can only be applied to separation of two 

classes at a time, necessitating the reduction of multi-class problems into a series (or tree) of 

binary decisions. 

2.2.2.3.3 K-Nearest neighbour algorithm 

The k-nearest neighbour algorithm is conceptually a very simple machine learning approach. 

It defers computation until a classification is required; at that point the training set is searched 

to find the k nearest examples (where k is a positive integer, usually small and odd). If k>1, 

a majority vote is taken (thus the preference for an odd value of k) to determine to which 

class the new example should be assigned.5  

 

While the k-nearest neighbour algorithm is simple to implement, it is sensitive to noise, to 

the scaling of features relative to their importance, as well as to irrelevant features. There are 

techniques to optimise feature scaling and also the value of k (for example by using 

evolutionary algorithms [58]), but execution can be computationally demanding, especially 

in the case of a large training set (which is desirable from an error-rate point of view), as the 

training set has to be searched each time to identify the nearest neighbours. 

 

Owing to the fact that the decision is explicitly based on specific known examples, this 

algorithm does have the advantage that it can offer some justification as to why it gave the 

answer it did – the user can easily be referred to similar examples in the training data (one 

or more of the just-identified k nearest neighbours with the same classification as the 

eventual answer). This is often perceived as satisfactory by users [52]. 

 

 
5 A similar approach is sometimes used for regression, where the suitably weighted average of the k 

nearest points is assigned to the new value – in fact this is a generalization of linear interpolation. 
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2.2.2.3.4 Fuzzy set theory 

In 1965 Lotfi A. Zadeh introduced the concept of fuzzy sets [59], which generalises the 

classical idea of sets to allow set elements various degrees of membership, described by a 

membership function ranging over the real unit interval [0,1].6 Fuzzy set theory refers to 

conventional bivalent sets (where an element either belongs, or does not belong) as crisp 

sets. 

 

The definition of a fuzzy set takes the form of a pair (𝑈, 𝑚) with 𝑈 being a set, and the 

membership function 𝑚: 𝑈 → [0,1], where each 𝑥 ∈ 𝑈 has a grade of membership 𝑚(𝑥). 

For an element 𝑥 ∈ 𝑈 with 𝑚(𝑥) = 0, the element is termed not included, while all other 

values constitute what is known as the support of (𝑈, 𝑚) – symbolically this is the set 

{𝑥 ∈ 𝑈|𝑚(𝑥) > 0}. The kernel of (𝑈, 𝑚) consists of the fully included elements, constituting 

the set {𝑥 ∈ 𝑈|𝑚(𝑥) = 1}. 

 

Fuzzy theory is eminently suitable for applications where noisy or incomplete information 

is to be processed – the first publications into the use of fuzzy sets for medical decision 

support were by Hiramatsu et al [61] in 1974 and Wechsler [62] in 1976. 

 

Although fuzzy set theory facilitates manipulation of data with real-valued membership 

functions as defined above, the ambition is usually to arrive at some definite result, such as 

a decision, an action, or a diagnosis. Because an element can be a member of several sets to 

various degrees, techniques have been developed to defuzzify the result. The simplest 

approach would be to choose the highest membership value, in the process discarding all 

other contributions – but such a loss of information is rarely a good idea. 

  

 
6 A further generalisation of this idea was introduced shortly afterwards by Joseph Goguen, a student 

of Zadeh, who extended the idea to intervals other than the unit interval [0,1] – this is known as L-

fuzzy sets [60]. 
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A plethora of defuzzification techniques have been developed to address this issue, and, as 

usual, the best method depends on the application. Van Leekwijck and Kerre [63] conclude 

that the so-called maxima methods fare well in fuzzy reasoning applications, while 

distribution and area methods are suitable for use in fuzzy controllers. 

2.2.3 History of computer-based medical diagnostic or decision support 

The 1959 Science article by Ledley and Lusted titled “Reasoning Foundations of Medical 

Diagnosis” [24] identified most of the methodologies that would be followed subsequently 

by AI researchers attempting to improve medical diagnosis and risk assessment. They also 

anticipated most of the challenges that researchers and medical practitioners would 

encounter. In this paper they discuss symbolic reasoning (as used in expert systems), Bayes 

inference and conditional probabilities, heuristic reasoning, and, very importantly, they 

apply Von Neumann game theory principles to derive a value/risk assessment as additional 

input to the decision-making process. They furthermore realized that even just a few hundred 

diseases and a similar number of findings result in ridiculously large combinatorial spaces, 

which have to be ‘reduced’ to manageable levels – for this they proposed an ingenious 

system of notched filing cards, but clearly they were also aware of the growing possibilities 

of the nascent digital computer. 

 

Shortly afterwards (in 1960-1961) the first operational Bayesian computer-based diagnostic 

decision support system was created by Homer R. Warner, for congenital heart disease 

diagnosis at LDS Hospital in Salt Lake City [64]. A number of important lessons were 

learned in this project. Warner realized that assumptions regarding the independence of 

diseases and symptoms were needed to simplify the Bayes calculations, and to this end he 

developed techniques to eliminate redundant (non-independent) data from case findings. He 

derived the probabilities required for the Bayesian calculations from his own case findings, 

as well as from literature. He also noted that his system was quite sensitive to database errors 

(presumably due to data entering mistakes) as well as to false positive findings, and he 
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identified the need for an independent “gold standard” by which to judge the performance 

of his diagnostic support system. 

 

Warner’s approach required the user to enter all known ‘findings’, after which the computer 

would run through the calculations and produce a differential diagnosis. While this could 

work for a narrowly specialized area, general diagnosis involves too many findings and 

possible diseases to make this practical – this is where heuristic techniques as introduced by 

Gorry and Barnett in 1968 are of value [65], [66]. Their approach uses heuristics7 derived 

from Bayesian analysis – a serial questioning strategy is used to obtain information, resulting 

in a sequential diagnosis model, which takes into account the cost of tests and errors. 

Heuristic programming is used to discard unlikely or irrelevant conclusions – as such it also 

takes into account observed statistics and dependencies, and uses this to reduce the problem 

space to tractable levels. This was also the approach used in the DENDRAL project, started 

by Joshua Lederberg in the mid-1960s [67]. This project is widely accepted as the first 

successful “expert system for scientific hypothesis formation”. 

 

Edward Shortliffe’s MYCIN (which was based on DENDRAL) eventually had a knowledge 

base of about 600 rules and a relatively simple inference engine [28], [29]. It interrogated 

the operator (mainly via a series of yes/no questions), and issued a list of possible diagnoses 

(in this case bacterial infections), in descending order of confidence. Significantly, it would 

also recommend a suitable therapy, and supply its “reasoning”, by listing the questions and 

rules that significantly contributed to the eventual diagnostic decisions and therapeutic 

suggestions. MYCIN used “certainty factors”, because Shortliffe and his co-workers initially 

argued that classical Bayesian statistics would necessitate unrealistic independence 

assumptions, or the determination of an unfeasible amount of conditional probabilities. 

However, it was later shown that the certainty factor model also contains implicit 

assumptions, and that a probabilistic interpretation was indeed possible [68]. 

 
7 Heuristic, from the ancient Greek ‘eureka’ (εὕρηκα), meaning “I have found”, here denotes an 

empirical rule of thumb. 
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MYCIN was found to fare better than infectious disease experts tested on the same criteria. 

It proposed an acceptable therapy in 69% of cases, but it took 30 minutes or more to enter 

the data, and as a result it was never used in practice. 

 

The Quick Medical Reference (QMR) project, created by Miller et al [69] in 1986 eventually 

grew to include approximately 600 “significant diseases” associated with about 4000 

findings, using statistical data as well as an expert knowledge rule base. Reformulated in 

1991 as a probabilistic model (called QMR-DT, for QMR Decision Theoretic) by Shwe and 

Cooper [70], the diagnostic challenge is to start with a subset of findings, and use this to 

infer a disease probability distribution. 

 

Figure 2.2 – QMR-DT as a densely connected graphical network. With observed evidence or 

symptoms (which can be present, absent or unknown), the posterior probability of the diseases 

(hidden nodes) are to be inferred [71]. 

Since the late 1960s there have been a huge number of medical diagnostic support projects, 

and right from the start researchers seem to have felt a compulsion to name their projects. 

This may possibly reflect a hope that it would eventually grow into a viable tool and 

potentially a commercial product or it may simply be because the most visible result of the 

research effort invariably is a computer program, which has to be named to enable the 

Diseases (Hidden = H)

Findings (Evidence = E)
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computer operating system to distinguish it from other programs and files. The following 

table is not comprehensive, but it does list a number of the most significant named efforts: 

Table 2.1 – Notable named diagnostic support projects. 

Title Researchers/Creators Type Year 

CONSIDER Lindberg, Rowland et al [72] Expert System 1968 

MYCIN Shortliffe [28], [29] Expert System 1973 

PIP Pauker, Gorry et al [73] Expert System 1976 

CASNET Weiss, Kulikowski et al [74], [75] Bayes, k-NN 1978 

RECONSIDER Blois, Tuttle, Sherertz [76], [77] Expert System 1981 

CADIAG-2 Adlassnig & Kolarz [78] Fuzzy 1982 

Internist-I/ Caduceus Miller, Pople & Myers [79] Expert System 1982 

AI/COAG & AI/Rheum Gaston, Lindberg et al [80] Expert System 1983 

SEEK Politakis & Weiss [81] Expert System 1984 

Pathfinder Horvitz, Heckerman et al [82] Expert System 1984 

QMR Miller, Masarie & Myers [69] Heuristic/Expert 1986 

DXPlain Barnett, Cimino et al [83] Expert System 1987 

ILIAD Warner et al [84] Bayes/Expert 1988 

DESKNET Yoon et al [85] Neural Net 1988 

Meditel Waxman & Worley [86] Probabilistic/Bayes 1989 

TraumAID Clarke, Niv et al [87] Expert System 1989 

QMR-DT Shwe & Cooper [70] Probabilistic/Bayes 1991 

WebMD Clark & Nigam Unknown 1996 

Wizorder Geissbuhler, Miller [88] Expert System 1998 

NeuroShell Kanagaratnam et al [89] Neural Net 1999 

Renoir & Pneumon-IA Godo et al [90] Fuzzy 2001 

PROCFTN Belacel & Boulassel [91] Fuzzy 2004 

Promedas Wemmenhove, Mooij et al [92] Bayes 2007 

Mediquery Carvalho, Isola et al [93] Neural Net/Bayes 2011 

Symcat Monsen & Do Bayes 2011 

IBM Watson Ferrucci et al [94], [95] Expert/Bayes 2013 
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Graphical models are tools which facilitate the representation and analysis of the relationship 

between arbitrary numbers of complexly-linked random variables [96], [97], [98], which 

have found application in a variety of statistical applications. The QMR-DT network as 

shown in Figure 2.2 consists of a simple graph – on the top level there are approximately 

600 diseases, and on the bottom there are about 4000 potential findings, which are the 

observations that should be used to infer the probability of the (unknown) diseases. The 

problem is that the graph is densely connected – each finding or symptom can be associated 

with many diseases, and vice versa, which results in an inference problem that is NP-hard 

[71]: there are roughly 2600 potential disease hypotheses [99]. This clearly rules out any hope 

of exact inference using brute-force methods on current computer hardware.  

 

A number of approximation techniques have been developed to address this problem – where 

exact inference is impractical the main approaches are sampling algorithms (mostly Markov 

Chain Monte Carlo and importance sampling) and so-called variational algorithms [97]. 

Additionally hybrid approaches are sometimes used, in which local optimisation using exact 

inference is applied in a global sampling or variational framework [100]. 

 

In the mid-1990s the first web-based self-diagnosis tools started appearing (e.g. WebMD, 

and later MSN Health and Fitness8), and with them a new psychiatric condition called 

cyberchondria, which has been described as “the unfounded escalation of concerns about 

common symptomatology, based on the review of search results and literature on the Web” 

[101]. This is hardly surprising, given that if even medical professionals cannot hope to fully 

grasp all possible symptom-disease association probabilities, the layman who suddenly has 

essentially unfiltered access to what used to be esoteric information is quite defenceless. 9 

 
8 Respectively at http://www.webmd.com and http://healthyliving.msn.com 

9 The underlying condition of course long predates the internet – in his 1889 book Three Men in a 

Boat Jerome K. Jerome relates how he supposedly diagnosed himself (from a book) to be suffering 

from “every other known malady in the pharmacology” except housemaid’s knee. His doctor’s terse 

advice: “… don’t stuff up your head with things you don’t understand.”[102]  

http://www.webmd.com/
http://healthyliving.msn.com/
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Furthermore there have been allegations of conflicts of interest, with web-based medical 

advice sites being investigated for preferentially advising the use of products and services 

from partnered pharmaceutical companies, with little if any medical motivation. Such 

“medical” advice should therefore be taken with a healthy dose of scepticism, or not at all.  

2.2.4 Current status 

Currently IBM’s Watson10 project is by far the most visible contender in the race to create a 

practical tool that will improve the quality of medical diagnoses and treatment decisions. 

After defeating the reigning world chess champion Gary Kasparov with their Deep Blue 

chess computer, IBM created a new project in 2006, which they named Deep QA. As their 

primary target they selected the American television quiz program Jeopardy! which required 

that their machine should be able to process natural language, generate hypotheses, and to 

improve using evidence-based learning [95]. In February 2011 they achieved the intended 

spectacular success, when Watson famously defeated two former Jeopardy! champions in a 

televised match, and later that month also overwhelmed five members of the United States 

House of Representatives in a similar quiz match. 

  

Immediately after this highly publicized showcase IBM announced that they would be 

applying the Watson technology to a variety of more practical applications, with health care 

at the top of the list [94], [103]. According to IBM press releases they are grooming Watson 

to take the US Medical Licensing Examination, although they are very careful to stress that 

it is simply a support tool to medical practitioners. Its natural language capability enables 

Watson to absorb massive amounts of unstructured data (information not specifically 

formatted for machines, such as medical research publications, most patient medical records, 

physicians’ notes, and historical medical statistics) and to use that to generate diagnoses and 

treatment suggestions which potentially take into account vastly more current medical 

knowledge than any human practitioner could hope to encompass. In a cooperative 

 
10 Named after IBM’s erstwhile CEO and chairman Thomas J. Watson. 
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agreement with the Memorial Sloan-Kettering Cancer Center, IBM is currently focusing on 

improving lung and breast cancer therapy [103]. 

2.2.5 Critical discussion 

The general move to digitize all information has created a new phenomenon known as Big 

Data (with “big” currently considered to be terabytes up to exabytes in size), that refers to 

the massive on-line data sets which have lately become available. These data sets are 

characterized by the “three V’s” (variety, volume and velocity) [104], [105] and have 

become the focus of many commercial data mining efforts, including finance and economics, 

social networking, meteorology, and medical decision support. Many Big Data efforts are 

commercial in nature, and therefore the developers of these systems – mostly large 

companies such as IBM and Cray (via their Yarcdata subsidiary) – tend to keep the 

algorithmic implementation details proprietary. 

 

In addition to facilitating better diagnosis and treatment, data mining and modelling may 

also offer the potential of uncovering hidden dependencies between factors such as diseases, 

symptoms, living conditions, genes, and even health policy. This should be of great interest 

to clinical researchers, health officials, and possibly even medical aid administrators. 

  

Medical decision support tools have repeatedly been shown to outperform clinicians [29], 

[106], [107], [108], yet only a selected few applications have gained a foothold in medical 

practice, in narrowly focused applications such as interpretation of electrocardiograms, 

arterial blood gas data or pulmonary function tests. A variety of reasons exist for this 

relatively low penetration, despite more than half a century of research – several of these are 

addressed in the following subsections. 

2.2.5.1 User resistance 

Understandably some physicians feel intimidated or threatened by decision support systems; 

this may potentially hinder acceptance of such tools. The IBM publicity machine is careful 
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to stress that Watson is merely a tool being developed “to improve the quality of health care”. 

More than sixty years ago Ledley and Lusted [24] cautioned that their proposed approach 

“in no way implies that a computer can take over the physician’s duties”, but that the task of 

the physician is actually likely to become more complex; the pay-off would hopefully be 

better diagnoses and “a more scientific determination of the treatment plan”. This indeed 

seems to have happened as predicted. 

 

On the other hand, in informal interviews with the author, medical practitioners indicated 

that most of them decry the unfettered access that patients have to medical information, or 

at least the indiscriminate acceptance of any and all information thrown up by an internet 

search or web-based diagnostic tool. Increasingly they report the aggravation of having to 

explain and motivate each of their diagnoses and decisions to cyberchondriacs who lack the 

required background to understand them, and who far too often direct their distrust, 

scepticism and even aggression at their (supposedly qualified and experienced) doctor or 

pharmacist, rather than at Wikipedia or WebMD. 

2.2.5.2 The knowledge acquisition bottleneck 

Shortliffe’s early work on MYCIN highlighted the difficulty of extracting the knowledge 

base from human experts - the ‘knowledge acquisition bottleneck’ [29]. This remains a huge 

challenge – Miller estimates that more than 40 person-years had been expended between 

1973 and 1999 on the knowledge base for INTERNIST-I, later superseded by QMR [22], 

yet both these ventures have been abandoned as active medical decision-support projects. 

2.2.5.3 User interface 

Another stumbling block is the time and effort required to answer questions and enter data 

when handling an actual patient case. Very early on Shortliffe realized that, although his 

MYCIN expert system could arguably outperform humans (at least in its limited field of 

expertise), it remained impractical, due to its cumbersome and time-consuming user 

interface. Only recently, with digital patient records becoming fairly ubiquitous at most 

medical practices, has this limitation started to reduce in significance. Nonetheless, data are 
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still rarely structured for machine understanding, which is why the IBM Watson approach 

most likely represents the rational way forward: accepting that humans mostly communicate 

using natural language, and focusing on understanding that. Hitherto, the only way to use 

decision support tools was for medical personnel to effectively learn a new and restricting 

language. IBM aims to circumvent this limitation. 

2.2.5.4 Computational limits 

The immense challenge posed by the general diagnosis and treatment problem as 

exemplified by the QMR network [69], [99] is undoubtedly a large part of the reason why 

IBM chose to limit the field for their first real-world applications to selected cancer sub-

specialties. Big Data currently being mined by meteorologists, scientists, economists and 

others require massive infrastructure in terms of storage and processing power, which limits 

the field to large players with deep pockets, such as governments, IBM, Microsoft, Cray, 

Amazon, Facebook, and Google (which is probably the biggest of them all, with an estimated 

10 exabytes of data storage capacity spread over at least 13 server farms worldwide).11  

2.2.5.5 Legal and ethical considerations 

Finally there also remain the ethical and legal questions: 

 Who is responsible for a wrong diagnosis or recommendation of incorrect or sub-

optimal therapy? Here it is not foreseen that there will soon be a shift from 

responsibility away from the clinician. While getting medical decision support 

systems to pass a medical licensing examination will be a Turing Test tour de force 

of artificial intelligence [109], the general view is that these systems will for the time 

being remain merely tools, like stethoscopes and magnetic resonance imagers [23], 

[110]. The real risk lies in that medical practitioners may become over-reliant on 

such tools, possibly neglecting to apply the full focus of their attention and 

experience to the patient. 

 
11  See http://www.google.com/about/datacenters/inside/locations/index.html. An exabyte is 1018 

bytes. The volume of all the printed text material in the US Library of Congress is estimated at 

about 10 terabytes (1013 bytes), which means Google can store it a million times over. 

http://www.google.com/about/datacenters/inside/locations/index.html
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 How can privacy and confidentiality be guaranteed? With huge data breaches 

regularly in the news, users are understandably wary of entering potentially sensitive 

personal data into a system. 

 Who owns the data entered into the decision support system? No doubt the large 

players will attempt to monetise their considerable investments into decision support 

system development, but this immediately raises the spectre of conflicts of interest. 

 How can institutional bias be detected and avoided? The great disparity between 

medical care and research spending in different parts of the world has resulted in 

differences in knowledge and diagnostic focus which can easily manifest as 

discriminatory [8].  
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2.3  ESTABLISHMENT AND EQUILIBRIUM LEVELS OF DELETERIOUS 

MUTATIONS IN LARGE POPULATIONS 

The focus is now shifted from inferring the presence of a variation in an individual, by 

amalgamating known symptoms, to deducing the magnitude of possibly unknown 

pathological processes due to genetic variations in entire populations, by exploiting census 

data.  

2.3.1 Introduction 

Heterozygous carriers of some common mutations, e.g. in the cystic fibrosis transmembrane 

conductance regulator (CFTR) gene, seem to have a survival/fecundity advantage compared 

to non-carriers [2], [111], [112], while the homozygous state results in a definite 

disadvantage. An example of a heterozygous advantage that is environmentally dependent 

is malaria resistance as a consequence of specific mutations in the haemoglobin gene [3], 

[4], bringing with it the risk of sickle-cell anaemia in homozygotes. Another common 

example of a heterozygous advantage is the major histocompatibility complex (MHC) in 

vertebrates [113].  

 

The implications of such a benefit (termed ‘selective advantage’) were investigated by 

Haldane, who focused on the mathematical probability of purely beneficial mutations 

becoming established in a population of size N [114]. Haldane’s results were subsequently 

refined by Wright, Kimura, and others [9], [115]. Wright also introduced the notion of 

‘effective population size’ (Ne), to account for effects such as non-random mating, 

inbreeding and unequal sex ratios, which may influence the effectiveness of natural selection 

forces.  

 

For human populations we further extend this approach by drawing on the results of Dunbar 

and Lehmann to propose a realistic range and upper limit to the size of the group from which 

an individual is likely to select a mate [13], [14]. This is analogous to the ‘breeding unit’ 
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introduced by Wright in 1946, which he termed Nn, being the spatially closest individuals in 

a circular area with a radius of 2σ [116]: 

 𝑁n = 4𝜋𝜎2𝑑 (2.3) 

with σ being the standard deviation of a spatially distributed 2-dimensional normal 

distribution around an individual and d the areal distribution density (i.e. individuals per unit 

of 2D space). This reflects the observation that the parents of an individual organism are 

more likely to be proximate than remote, and, as Nunney suggests, that Nn will be relatively 

constant, subject to the assumptions that σ is characteristic of the species and that there is an 

inverse relation between dispersal and density, i.e. that one can normalize for d [10]. This 

leads to a parental probability distribution solely dependent on distance r:  

 
𝑓(𝑟) =  

1

√2𝜋𝜎2
𝑒

−𝑟2

2𝜎2  
(2.4) 

In the case of human populations, we propose that the concept of distance (r) should be 

reinterpreted as social proximity, rather than necessarily physical proximity, due to the 

global mobility (i.e. potentially high dispersal) that has been attained by humans in recent 

times, and which does not necessarily translate into an increase in Nn (which is also the pool 

from which an individual would usually select a mate). 

 

In their work performed on the genetics of guinea pigs and fruit flies, Wright and 

Dobzhansky additionally had to introduce an inbreeding factor F and an immigration index 

m [116], [117], [118], [119], to compensate for the effects of self-fertilization, and the 

postulated (but never quantified) expectation that ‘immigration’ is likely to be local, from 

adjacent localities which will probably resemble the target locality (in a gene frequency 

sense) rather than that of the entire species; this immediately requires yet another estimated 

adjustment to obtain an effective value for m. All these complications are obviated in our 

neighbourhood definition for humans (in which self-fertilization can also be neglected), 

where breeding structure is abstracted to the social dimension, and inbreeding and genetic 

drift become emergent features, rather than arbitrary modifying requirements to force the 

model to fit actual observations. 
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Based on primate studies and the size of the human neocortex, Dunbar posits a nominal 

maximum group size of 148 for humans (usually rounded up to 150), with a 95% confidence 

interval between 100 and 230 [13], but also stresses that this is an upper value, which is only 

approached under extreme environmental stress, where the significant time and energy 

investments of maintaining close social bonds are repaid by the survival benefit realized by 

being part of a larger group. In more prosperous times, group sizes tend to reduce. 

 

This aspect is one of the major novelties of the framework proposed in this thesis, which 

allows the simulation of large populations while modifying the community size (Nn) in order 

to create scenarios to study how local selection affects the pattern of deleterious and/or 

advantageous variants. 

 

The effect of this community size is then explored, in conjunction with the selective 

advantage of a given mutation, on the probability that a mutation will become established in 

the population, and on the eventual equilibrium levels that are reached, especially in the case 

of mutations that are beneficial when heterozygous, but pathogenic (or less beneficial) when 

homozygous. Such mutations do not necessarily become ubiquitous once established, a 

possibility that Wright and Dobzhansky mistakenly dismissed in their seminal work on lethal 

mutations in fruit flies [120]. Conversely, if the occurrence levels of such a mutation in a 

population is known, the model can be used to estimate the selective advantage that it confers 

on heterozygous carriers, without requiring any knowledge of the specific manifestation and 

mechanism of such a selective advantage. 

2.3.2 Establishment of mutations 

For haploids, the selective advantage (also called the selection coefficient) conferred by a 

specific mutation is defined as an additive term s, such that carriers would, on average, have 

(1+s) times the wild-type (i.e. non-carrier) number of offspring [12]. Note that s, normally 

termed a ‘selective advantage’, can also be a negative number, implying a disadvantage by 

resulting in fewer offspring of mutant carriers, whether through lowered fertility, or 
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decreased survival to procreative age (which in some sense is the same thing - irrespective 

of the mechanism, the result being a reduction in the number of offspring compared to wild-

type individuals). Although the case of s < 0 has the physical interpretation of a selective 

disadvantage (also known as purifying selection), the case of s < -1 is meaningless, and 

hence the parameter s should be constrained on the interval [-1,∞). 

 

Using a deterministic model, any beneficial mutation (that is, with s > 0) will inevitably grow 

in prevalence, guaranteeing eventual fixation in the population. However, in reality genetic 

drift causes random fluctuations in the frequency of lineages, which can easily extinguish 

even highly beneficial mutations when their prevalence is low, as will be shown. A stochastic 

treatment is used to analyse such situations, which especially apply whenever a new 

mutation appears de novo in a single individual. The mutation will only be established in the 

population (and only then a deterministic model may be applicable) if this mutation survives 

genetic drift.  

 

During admixture between different populations, ‘new’ alleles are introduced at significant 

levels into both groups. Under such conditions (relatively large populations and high 

prevalence) the alleles could be considered to already be established and therefore to be less 

subject to the vagaries of genetic drift, but rather with their eventual fate dominated by the 

relative selection coefficients that the alleles confer (i.e. closer to the deterministic case). 

 

Addressing the fixation probability P of a single copy of an advantageous allele in a large 

population, Haldane found that 𝑃 ≈ 2𝑠 if 𝑠 is small [114]. Barrett et al [121], drawing on 

this as well as on the subsequent analyses for finite populations by Kimura [122], [123], 

show that 

 𝑃 ≈ 1 − 𝑒−2𝑠 (2.5) 

which also accurately approximates the probability that a single advantageous allele with a 

large positive value of s will survive stochastic loss. Negative or zero values of s always lead 

to eventual extinction. Migration within the population under consideration has no effect, as 

panmixia (where all individuals are equally likely to be mates, irrespective of distance) is 
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implicitly assumed. This implies a homogeneous landscape, whether it be geographic or 

social, and therefore transplanting an allele does not impact its viability. 

2.3.3 The price of success 

2.3.3.1 Homozygosity 

A large number of deleterious recessive monogenic autosomal variations have been 

identified in humans. Many of these have attained wide penetrance, which suggests the 

presence of some heterozygous selective advantage. 

 

Table 2.2 – Some deleterious recessive monogenic autosomal variations. 

Condition Possible heterozygous advantage 

Cystic fibrosis Increased resistance to cholera and typhus [111] 

Sickle-cell disease Increased resistance to malaria [3] 

Thalassaemia Increased resistance to malaria [124] 

Tay-Sachs disease Enhanced resistance to tuberculosis [2] 

Gaucher’s disease Enhanced resistance to tuberculosis [125] 

Spinal muscular atrophy Resistance to poliomyelitis [126] 

Hereditary haemochromatosis 

(‘Celtic Curse’) 

Protection against celiac disease [127], enhanced 

resistance to typhoid fever and tuberculosis [128] 

Oculocutaneous albinism Protection against tuberculosis and leprosy [129] 

Nonsyndromic deafness Thicker skin, resistance to infection [130] 

Bardet-Biedl syndrome Enhanced fat storage [131] 

Phenylketonuria Improved resistance to ochratoxin A, fewer mycotic 

abortions [2] 

Friedreich’s ataxia Increased iron accumulation [132] 

Niemann-Pick Type C Increased resistance to filoviruses (e.g. Ebola and 

Marburg) [2] 

Congenital disorder of 

glycosylation 

Increased resistance to glycosylation-dependent viral 

infections (e.g. influenza, hepatitis C, HIV-1) [133] 
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A mutation that is purely beneficial will completely displace the wild-type allele only if it 

successfully runs the gauntlet of genetic drift while still rare. In a diploid population, 

however, heterozygous carriers may derive a selective advantage from a given mutation, 

while homozygosity results in a reduced selective advantage (or even disadvantage), such as 

in the case of CF, sickle-cell disease and others – see Table 2.2. As the prevalence of such a 

mutation in a population increases, the probability of producing homozygous offspring also 

rises, to the point where the relative disadvantage of homozygosity exactly balances the 

heterozygous advantage. An equilibrium is reached, and this depends on the relative 

magnitudes of the effects, as well as the population parameters, especially the effective 

population size Ne and the neighbourhood size Nn. 

2.3.3.2 Environmental factors 

The striking geographic correlation between the distribution of the sickle-cell allele and the 

prevalence of malaria [3] demonstrates the importance of external factors on the selection 

coefficient of a given genetic variation. As long as the local population is exposed to malaria, 

the sickle-cell mutation (if present) confers an advantage (s > 0) to heterozygous carriers and 

rises to prevalence levels limited by the negative effects caused by the associated increase 

in homozygous individuals. Where malaria is absent, there is no selective advantage (s may 

even be slightly negative), and the allele becomes extinct. Similar correlations between 

infectious diseases and genetic variations have been identified for many of the conditions 

listed in Table 2.2. This goes a long way towards explaining why such apparently deleterious 

alleles have not yet been eliminated through natural selection. 

2.3.3.3 Migration, selection and inbreeding 

A shortcoming of Haldane’s approach is that the population N is assumed to be large, 

constant and with equal sex ratios and random mating (panmixia). This is not normally the 

case. Many subsequent researchers have addressed this [9], [11], [12] and have introduced 

the concept of an effective population size Ne which would result in the same variance as the 

current population under consideration. Usually the effective population size is smaller than 

the census size (Ne < N), and there is the even smaller community size (or neighbourhood 
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number) Nn << Ne which affects genetic differentiation between subpopulations: the smaller 

Nn the larger the differentiation between them, due to the decreased dispersal distance and 

increased genetic drift, considering limited or no gene flow [10]. 

2.3.4 Equilibrium levels 

Surprisingly little has been published on the subject of the prevalence levels of deleterious 

mutations in diploid populations. Even Wright and Dobzhansky, after admitting to the 

possibility that there may be a ‘hypothetical class’ of lethal mutations (i.e. s→-1 when 

homozygous) that benefit from s > 0 when heterozygous, erroneously conclude that “such 

lethals should be detected easily” [120], and, having failed to do that in their seminal fruit 

fly experiments [117], [118], [120], [134], [135], summarily dismissed this possibility. 

Interestingly, in the same era Dubinin [136] and others determined that many Drosophila 

mutations do indeed ‘increase the viability of heterozygotes’. However, even in the 1940s 

they seemed reluctant to directly contradict or criticize Dobzhansky, despite rather strong 

evidence. Dubinin merely acknowledges that their conclusions appear to differ. 



 

 

CHAPTER 3 DISEASE MODELLING AND 

ANALYSIS 

3.1 INTRODUCTION 

Diseases are complex, with many heterogeneous factors playing a role (as causes, results, or 

both). These features are also of different types, with differing types of uncertainty, and often 

there are intricate interactions between known (or postulated) contributing elements, as well 

as with other, unidentified factors; this vastly complicates efforts to analyse the disease. 

Through application of data fusion techniques to disease models, it is hoped to create a 

framework which can be used for study and improved understanding of the condition, its 

causes, and its temporal evolution. This in turn may facilitate improved personal medical 

care and better public health management and policy. 

 

To achieve this goal, data will be gathered and used to build graphical Bayesian models. The 

data to be integrated may be primary measurements, higher-level outputs of probabilistic 

classifiers, or even derived from non-probabilistic sources such as human assessors. The 

generative property of Bayesian networks can then be exploited for “what-if” analyses, by 

conditioning on different possible outcomes and under different situations. 
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3.2 CASE-CONTROL STUDIES 

Medical trials and studies take many forms, usually with the eventual goal of learning 

something about the interaction between diseases, causes and sometimes interventions 

(treatment). Trisha Greenhalgh proposes the following “hierarchy of evidence” ranking the 

relative significance of the different types of primary study which should be considered, 

especially when clinical intervention is planned [137]: 

 

1. Meta-analyses and Systematic Reviews 

2. Randomised controlled trials (with those producing definitive results – i.e. 

with non-overlapping confidence intervals – obviously outranking those 

which do not) 

3. Prospective (cohort) studies12  

4. Retrospective (case-control) studies 

5. Cross-Sectional Surveys 

6. Case Reports 

 

Although case-control studies are ranked below randomized controlled trials and cohort 

studies in the hierarchy of evidence, they are usually faster and cheaper to conduct. Often, 

too, ethical considerations constrain the design of clinical trials, or even the use of data 

gathered during tests which can be considered to have been unethical [138], such as the 

Japanese biological warfare and vivisection experiments [139] and various German 

experiments [140] conducted during the Second World War, as well as several post-war 

American trials such as the Willowbrook study, where children with intellectual disability 

were deliberately infected with the hepatitis virus [141]. Medical researchers are therefore 

 
12  Cohort studies can also be retrospective – gathering and processing data on a population post hoc, 

rather than monitoring them forward over a (typically long) period of time. Although normally 

faster and cheaper to conduct than prospective cohort studies, retrospective cohort studies are 

exposed to significant risk of various types of bias, similar to that faced by case-control studies. 
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often limited to merely observing naturally-occurring events when studying the ætiology of 

disease. 

 

Especially in the case of rare diseases, where cohort studies would require extremely large 

sample sizes and/or very long time windows, case-control studies offer the potential to 

relatively quickly establish a possible link between a disease and some putative cause or risk 

factor. Even though it is often argued that a correlation shown by a case-control study does 

not prove causation [142], a carefully conducted case-control study can strongly suggest 

such a link. An early triumph of this approach was the 1950 demonstration by Richard Doll 

and Bradford Hill of the link between smoking and carcinoma of the lung [143], which was 

subsequently vindicated by cohort studies; for example, it is now accepted that about 87% 

of lung cancer deaths in the United States can be attributed to tobacco smoking [144].  

 

The modern era of case-control studies was arguably initiated by Jerome Cornfield, who 

showed in 1951 that the exposure odds ratio (dividing the number of subjects with the disease 

by the number without, or cases vs. controls) is the same as the disease odds ratio (the ratio 

between those exposed to the postulated risk factor and those not exposed), and that this also 

approximates the relative risk, on the assumption that the disease of interest is rare [145]. 

The requirement for this last assumption was later shown by Olli Miettinen to be “overly 

superficial and restrictive” [146]. Work performed by Harold Dorn [147] and especially by 

Nathan Mantel and William M. Haenszel [148] created the statistical tools that put 

retrospective studies on a firm footing, by addressing and compensating for confounding 

factors. In 1979 Philip Cole referred to Cornfield, Dorn, Mantel and Haenszel when he 

pointed out that the “giants” on whose shoulders epidemiologists have stood during the 

preceding 20 years when doing case-control studies, were all statisticians [149]. 
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3.3 GRAPHICAL MODELS 

3.3.1 Motivation 

One of the problems with an observational study (whether prospective or retrospective) is 

that the gathered evidence only shows what happened under the circumstances that were 

present when the observations were made. Multiple factors interact to result in a specific 

outcome (such as a specific disease diagnosis) which we merely select for when we condition 

on a given variable; the circumstances associated with this outcome did not necessarily cause 

it, and the actual evidence says nothing about what would have happened under different 

conditions, which were not present – so-called “counterfactuals” [142], [150]. 

 

Furthermore, when multiple interacting potential causes and effects are involved, standard 

statistical approaches run into difficulties. Human diagnosticians, however, routinely and 

quickly integrate data of different types, from different sources, to make treatment decisions, 

albeit not always optimally. 

 

What is needed is a way of integrating diverse data into a model, which can be validated 

against observations, and can then be manipulated to explore the expected behaviour when 

one or more parameters are changed; in other words, to make a causal prediction. 

 

Graphical models as described by Judea Pearl [98], [150], and others [71], [96], visually 

represent factors (which can be diseases, symptoms, environmental parameters, treatments 

or any other factor deemed relevant) as nodes, with connections between them denoting 

conditional dependence assumptions, thereby encapsulating the joint probability 

distributions of the various factors. Building on the 250-year-old work of the Reverend 

Thomas Bayes [30] and that of the Russian mathematician Andrey Markov, graphical model 

theory can be and is used for probabilistic inference and causal prediction of three types: 

policy evaluation (the effects of interventions), counterfactuals, and mediation (queries 

regarding indirect and direct effects) [150]. 
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3.3.2 Previous work and current status 

The relatively new fields of “omics” (e.g. genomics, proteomics, and metabolomics) strive 

to unravel the complex interactions between genes and proteins or metabolites. The 

Mendelian inheritance model of dominant and recessive traits turns out to be not quite that 

simple, with epistasis resulting in massively intricate webs of genetic interaction [151], while 

most diseases additionally seem to depend on interactions between genes and environmental 

factors [152], [153], [154]. Graphical models, both Bayesian networks as well as Markov 

networks, are eminently suited to address this problem, and indeed the first publications on 

the subject appeared in the late 1990s.  

 

Currently Jason H. Moore is one of the leading scholars on the subject of computational 

research into epistasis and gene-environment interactions. He uses a wide variety of 

machine-learning approaches, including cellular automata, genetic algorithms, ant colony 

optimisation, neural networks, random forests and especially multifactor dimensionality 

reduction [154], [155], [156], [157], applying them to the problems of determining a suitable 

model structure (as supported or suggested by the data itself), limiting the complexity thereof 

(to contain the curse of dimensionality as far as possible), and then to optimise the resultant 

graphical model, which can subsequently be used for interpretation. 

 

Su et al, in their 2013 paper titled “Using Bayesian networks to discover relations between 

genes, environment, and disease” [153], use the expectation-maximisation algorithm both to 

optimise parameters as well as the network structure itself, using incomplete data. They 

caution, however, against over-enthusiastic application of a Bayesian network learned from 

(and consistent with) observed data for causal interpretation, due to the risk of there being 

unobserved variables which may influence the outcome. As early as 1996 Breslow identified 

graphical networks with latent (hidden/unobserved) variables as a challenging yet promising 

approach to the problem of causal interpretation [158]. 
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There are few publications on studies which also attempt to take into account the temporal 

feature inherent in health care [159] – this seems to be a promising area for further 

exploration, as the longitudinal element inherent in cohort studies may possibly be 

incorporated by the time-dependence of dynamic Bayesian models (of which hidden Markov 

models are a subset [160]). 

 

3.3.3 A graphical model for CF 

3.3.3.1 Purpose 

A Bayesian network has been created as a framework to integrate different types of 

information associated with CF, and to explore some of the complex interactions between 

contributing and resultant factors. This can be achieved by exploiting the generative property 

of Bayesian networks to make causal predictions regarding interventions, counterfactuals 

and mediation.  

 

The information to be used includes observations and measurements, for example symptoms 

and test results, but also information such as sociological data, family history, ethnicity, other 

disease diagnoses, and even unobserved (latent or confounding) postulated variables. 

3.3.3.2 Diagnostic and modelling inputs 

Cystic fibrosis presents with a wide range of often non-specific signs and symptoms [1]. To 

explore and demonstrate the power of the BN, a number of inputs of various types have been 

selected. Because of the difficulty of obtaining observational data required for the joint 

probability distribution functions, not all known sources of evidence were added, but only a 

few examples of each type, for which representative values could be obtained or estimated:  



CHAPTER 3 DISEASE MODELLING AND ANALYSIS 

 

Department of Immunology & Department of Electrical, Electronic and Computer Engineering 44 

University of Pretoria 

3.3.3.2.1 Symptoms 

• In infants and young children: recurrent respiratory symptoms; failure to thrive; 

pancreatic insufficiency (present in up to 90% of cases) leading to steatorrhea, 

diarrhoea, and abdominal distension. 

• Older patients: recurrent respiratory symptoms (often causing clubbing of digits due 

to lowered oxygen levels in the blood); dehydration; liver disease; nasal polyps; 

sinusitis; infertility (especially male); acute pancreatitis; malabsorption; electrolyte 

disturbance. 

3.3.3.2.2 Targeted testing 

• The Sweat Test has for many years been the standard diagnostic test to identify CF. 

Electrolyte levels of >60 mmol/l indicate a high probability of CF [6]. 

• Transepithelial nasal potential difference (TNPD) testing, like the sweat test, 

measures abnormal electrolyte levels, in this case in the respiratory epithelia. 

• Fecal elastase test to detect steatorrhea. 

• Genetic screening for CFTR mutations can identify up to 98.7% of sequence variants 

in the case of full sequencing [161] (which is still expensive). The more common 

targeted mutation analysis uses a panel of common mutations [162], the detection 

rate of which varies according to ethnic background [8]. 

• Immunoreactive trypsinogen testing as part of the Guthrie Test is commonly used in 

the US and Europe for neonatal screening [6]. 

3.3.3.2.3 Inheritance 

• Family history  

• Ethnicity – different CFTR mutations and mutation frequencies are found in various 

ethnic groups. This study used South African census data for 2018 as a starting point 

for the relative ratios between the various major ethnic groups [163]. 
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3.3.3.2.4 Other disease diagnoses 

• CF affects the pancreas; it is therefore not surprising that diagnoses of CF and 

diabetes often overlap.  

• Especially in southern Africa, recurrent respiratory tract infections (one of the more 

common CF symptoms) regularly occur in many HIV- and tuberculosis-positive 

individuals; this represents a far larger percentage of the population than the 

relatively rare incidence of CF. 

3.3.3.2.5 Unobserved (latent) variables 

Latent parameters are to be identified – these are unobserved factors (also sometimes called 

“confounding variables”) which may significantly affect the known parameters in the model, 

and thereby interfere with causal interpretation of the model structure. It is not necessarily 

expected that such latent parameters will be explicitly identifiable (mapping to measurable 

or known parameters); they may be abstract. 

3.3.3.3 Accruing evidence  

Of all the input data available, the single most accurate test is probably full genetic 

sequencing for CFTR mutations, with a sensitivity as high as 98.7% (at least in some 

population groups) [161]. For lack of data to the contrary, the specificity of this test is 

assumed to be the same value – this is unlikely to be accurate, but it can easily be updated 

when more credible information is obtained. 
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Figure 3.1 – Simplified graphical model showing a priori degrees of belief (a), as well as the 

updated values (b) when a positive CFTR mutation sequencing result is combined with the 

presence of a sibling with CF (evidence shown in red). 

 

Figure 3.1(a) shows a simplified graphical model for CF, using only the probabilities that a 

Caucasian person’s parents are carriers of one mutated CFTR gene (3% each – for motivation 

see section 4.3.3.2), CFTR sequencing test results, and sibling CF status. 

 

The chosen parental carrier probabilities yield a 0.04% chance (1 in 2500) that the subject 

would have CF, via Mendelian inheritance. This value, combined with the CFTR mutation 

sequencing test specificity, results in a 1.34% probability that a random person would test 

positive for CFTR mutations in both alleles, as shown in Figure 3.1(a). 

3.3.3.3.1 Adding information 

The graphical network now allows evidence to be entered, replacing the initial statistical 

values with actual knowledge as it becomes available. The effect of this evidence is 

propagated through the network according to the joint probability distribution functions 

connecting the nodes. Evidence can be added to any node. 

 

(a) (b) 
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Owing to the relative rarity of phenotypically manifest CF in the general population, a 

positive CFTR mutation sequencing result (i.e. reporting the presence of two mutant CFTR 

alleles in the same individual) on its own still only implies a probability of 2.95% that the 

patient actually has the condition. 

 

This is the reason behind clinical diagnosis guidelines to combine the results of multiple 

screening and diagnostic tests. If, for example, the CFTR sequencing test result is combined 

with the presence of a sibling with CF, the probability that the patient has the condition goes 

up to 94.47% as shown in Figure 3.1(b). 

 

Note that this information is also propagated upwards to the nodes denoting the parents, 

resulting in a dramatically increased expected likelihood (or belief) that they would be 

carriers of a mutated CFTR gene. 

3.3.3.3.2 Extended BN for CF 

Figure 3.2 presents a network for CF, incorporating all the input data mentioned in section 

3.3.3.2 above. Each node in the graphical network can have two or more states, and the 

interconnections consist of the joint probability distribution functions of the connected node 

states. These functions are based on statistics (specifically the sensitivity and specificity of 

the various diagnostic tests, as far as they are known), expert opinion, genetic (Mendelian) 

theory, and sociological data, resulting in a distribution of node states which initially reflects 

the general population. 
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Figure 3.2 – Graphical model of CF, incorporating observations (consisting of symptoms and test 

results), as well as family history, ethnicity, other disease diagnoses and latent variables.  

 

The joint probability distribution functions in the graphical model of Figure 3.2 were 

populated with estimated data, which should be reasonably accurate for the South African 

context [163]. 
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Figure 3.3 – Default initialised state of CF model.  

 

The incidence of the various CFTR mutations in the different ethnic groups is probably 

inaccurate, due to the dearth of data for especially non-Caucasian individuals [8]. In Figure 

3.3 the green bars indicate the probabilities (expected occurrence rates) of the various states 

for each node. When a specific state becomes known, this can be set, collapsing the 

probabilities for that specific node to 100% of the known state, and 0% for the other(s). 
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Despite the questionable accuracy of the inputs, the model nonetheless plausibly predicts the 

incidence of CF in South Africa at approximately 0.02% of births; this jumps to more than 

0.04% when ‘Ethnicity’ is set to Caucasian (i.e. European), once again agreeing with 

observed reality, where approximately 1 in 2500 Europeans are born with CF [33], [164]. 

 

The node labelled ‘Modifier Genes’ near the middle of the model acknowledges the probable 

presence of epistatic genes which can affect the functionality of the CFTR gene. For lack of 

information three equally likely possible states are defined (‘CF-enhancing’, ‘Neutral’, and 

‘CF-suppressing’) – see Figure 3.3. In reality there are probably a large number of 

contributing factors, resulting in a continuum of possible modifying effects, ranging between 

the extremes as shown. This can be approximated by suitably adjusting these inputs as 

information becomes available. 

 

In the middle, on the right-hand side of the model, another factor that is correlated with 

ethnicity (in South Africa) is shown. Socio-economic class in itself does not cause CF, but 

it is statistically different for the various ethnic groups, and several of the more important 

diagnostic observations (i.e. failure to thrive, and respiratory tract infections – RTIs) also 

tend to be less common among the higher socio-economic classes. The Bayesian model 

automatically takes this into account, if the inputs are known. This factor may become 

irrelevant once accurate genetic diagnosis is achieved in all ethnic groups. 

 

As mentioned in section 2.2.2.2.2 above, the Bayesian combination of evidence as shown is 

only valid if the evidence is independent, i.e. when the tests measure unrelated factors. For 

example, the Sweat test and Transepithelial nasal potential difference (bottom left in Figure 

3.2 and Figure 3.3) are both aimed at detecting atypical electrolyte levels, which are 

indicative of CFTR abnormality – when one of these tests comes back positive, another 

positive result on the other does not add significant additional evidence supporting an 

eventual CF diagnosis. However, confirmatory evidence would be important in the case of 

false positives and negatives. 
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3.3.4 Coding and data availability 

The graphical models presented above were created in Hugin 8.213, and can be found at 

https://github.com/JohanViljoen/Graphical-Models. 

 

3.4 CONCLUSION 

3.4.1 Early detection 

Even though the model presented here has limited diagnostic value due to the difficulty of 

obtaining accurate observational data, two important observations can be made regarding 

the use of a graphical model for diagnostic purposes: 

 All tests and observations are imperfect, with non-zero false-positive and false-

negative rates. Bayesian networks can accommodate such uncertainty rigorously.  

 All diseases, including CF, present with a range of severity in different patients, 

which may vary from acute to imperceptible (in which case it will most likely not 

even be diagnosed). 

Early detection and treatment of disease in general improves the outcome for most 

conditions, including CF [162]. Many First World countries therefore conduct neonatal 

testing for CF [6], [165], [166], [165]. 

3.4.2 Challenges 

The following challenges remain: 

 

• Determining a suitable graphical network structure, reflecting the relationships and 

dependencies between nodes, as shown in the attempt presented in Figure 3.2. 

 
13 See https://www.hugin.com/ 

https://github.com/JohanViljoen/Graphical-Models
https://www.hugin.com/
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• Extracting reasonably accurate conditional dependence tables (the joint probability 

distribution functions connecting nodes) from CF studies and other databases. The 

problem here lies largely in the difficulty of obtaining validation data for healthy (at 

least non-CF) individuals, which is especially difficult in the case of the CF-specific 

and/or more expensive tests. 

• Identifying latent variables which may affect and/or connect known parameters in 

the model, and potentially interfere with causal interpretation. 

3.4.3 Discussion 

The discovery of links and independences hidden in observed medical data may improve 

understanding and therefore also management of diseases, not only in individuals, but in 

populations. When suitably verified this could inter alia contribute to improved personal 

medical care and better public health management and policy, by  

• facilitating causal predictions, such as the outcome of an intervention (treatment as 

well as the management of social and environmental factors), 

• providing suggestions to patients and populations to manage elements of their 

environment which are causally linked to their diseases, symptoms and prognoses, 

• estimating risk or uncertainty inherent in proposed interventions, 

• weighing utility against risk, 

• aiding the determination of policy aimed at improved resource allocation, 

• and making truly personalised medicine feasible. 

 

If the model can be suitably validated against observations, the generative property of 

Bayesian networks may enable causal prediction and simulated experimentation [150], 

which could complement medical interventions on human subjects.  

 



 

 

CHAPTER 4 POPULATION SIMULATION 

4.1 INTRODUCTION 

As alluded to in section 2.3, two important principles are pertinent when considering the 

establishment and dispersion of monogenic variations in a population: the selection 

coefficients conferred by the allele in homozygous and heterozygous forms respectively, as 

well as the size and structure of the population itself. Regarding the latter, much effort has 

been expended to analytically model the effects of local structure, migration, and inbreeding 

[9], [10], [12], [11]. As shall be demonstrated in the following sections, most of these 

‘correction factors’ can be obviated, at least for human populations, by executing a stochastic 

model in which the breeding radius is a normal distribution [10] in social space (see 

Equations (2.3) and (2.4)), constrained to a probabilistic range motivated by the sociological 

work of Dunbar and Lehmann [13], [14]. 

4.2 DESIGN 

4.2.1 Assumptions 

While creating a numeric population simulation tool, a number of assumptions were made: 

 A single autosomal genetic locus (with a mutation/variation that may affect the 

procreation probability of carriers) is considered. This reflects the situation in CF and 

other monogenic variations, including those shown in Table 2.2. 

 Compared to the general (non-carrier) population, heterozygous and homozygous 

carriers of mutated genes can have different survival/fecundity rates. For example, 

homozygous CF results in a selective advantage shom approaching -1. 
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 Individuals select mates for procreation purposes from a limited community Nn, 

which in general is much smaller than the size of the entire population. Nn includes 

the effects of immigration and population structure, eliminating the need to estimate 

these factors. 

 For a population of humans, Dunbar and Lehman motivate an upper cognitive limit 

to the number of stable social relationships that an individual can maintain [13], [14]. 

This is used to inform the realistic community size from which an individual can 

select a mate. Dunbar’s number for humans is estimated to lie in the range of 100 to 

230, with 148 being the nominal value. Values for Nn of this size and smaller are 

considered to be reasonable for human populations. 

 For modelling purposes, a two-dimensional grid lends itself well to processing and 

visualisation; this does not imply that human social networks (of the close, 

meaningful kind, as described by Dunbar, and specifically not the far more tenuous 

constructs found on social media) are necessarily two-dimensional in nature. 

However, the only relevant characteristic of the distribution is the distance r as in 

equation (2.4). Irrespective of the dimensionality of the grid, the correlation between 

the Gaussian parental probability distribution functions of two individuals depends 

solely on the distance r between them, scaled by the standard deviation 𝜎. This 

correlation function, being the convolution of two normal distributions, is of course 

itself a normal distribution, with twice the variance of the parental probability 

function. 

 Constant environmental conditions are assumed across the entire population – 

although provision can be made for different geographical conditions to reflect 

situations such as discussed above. All simulations presented in this document were 

conducted with this assumption of constant conditions in mind. 

 In general the effective population number Ne is assumed to be large and comparable 

to the total population census size N), and specifically much larger than Nn, i.e.           

Ne >> Nn. This is adjustable, however, to allow for exploration of effects in smaller 

populations and genetic isolates. 
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4.2.2 Structure 

The following structure is used for the population itself:  

 A two-dimensional array is created, with every element representing an individual in 

the population. Computational resources now make it feasible to create and process 

simulated populations consisting of millions, and even billions, of individuals. 

 Each individual has one of four possible states: dead, no mutation (i.e. wild-type 

homozygous), heterozygous, or homozygous. 

 The population array is closed upon itself, with edges wrapping around. This 

eliminates any edge effects that discontinuities may otherwise introduce. 

 Physical proximity in the elements of the population array is used as a proxy for 

social closeness – i.e. an individual is more likely to breed with another nearby 

individual than with a remote one, according to a two-dimensional normal (Gaussian) 

probability distribution. 

 The effective size of the community around each individual is changed by varying 

the standard deviation of the normal distribution, with Nn as in Equation (2.3). Also 

see section 4.3.1.4 and Figure 4.5 below. 

4.2.3 Simulation procedure 

For a given set of parameters, the following steps are executed: 

1. Set population size N, community size Nn, initial carrier prevalence, 

advantage/disadvantage for heterozygous and homozygous carriers (shet and 

shom), and de novo mutation probability. 

2. Initialize the population randomly with a desired initial fraction of carriers. 

3. For each individual in the population, change its status to dead with a probability 

dependent on its current status, to statistically reflect the selection coefficient 

associated with its status. This is done by computing a normalised survival 

probability, based on the ratios of the selection coefficients of the three relevant 

non-dead states (wild-type, heterozygous, or homozygous). 
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4. For each element of the population array: 

a. Randomly select two distinct non-dead parents from its community Nn, 

according to the proximity probability distribution as in Equation (2.4). 

b. Generate a status according to Mendelian inheritance probabilities from 

the two parents. 

c. Randomly introduce a de novo mutation with a specified (typically low 

and possibly even zero) probability. 

5. Update population statistics and display. 

6. Return to step 3. 

4.2.4 Coding and data availability 

The simulation was coded in Delphi. The software, instructions and raw data files are 

available on Github at https://github.com/JohanViljoen/PopSim.  

  

https://github.com/JohanViljoen/PopSim
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4.3 RESULTS 

4.3.1 Validation 

4.3.1.1 Establishment rate 

To investigate the statistical fate of a mutation with selective advantage s (for both 

heterozygous and homozygous cases, as assumed by Haldane [114] and Barrett [121], the 

simulation tool was configured to introduce a single mutation in a virtual population 

(population size N = 2.5x105), and then to cycle through the generations until the mutation 

either becomes ubiquitous or extinct.  

 

Figure 4.1 – Establishment probability of a beneficial mutation. Fixation rate for a single mutation 

as a function of (positive) selective advantage in a panmictic population (N=Nn=2.5x105). 

 

This was repeated 200 000 times for each point in the graph shown in Figure 4.1, for a total 

of ~112 million generations. The results confirm Haldane’s prediction, including his caveat 
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that it is only valid for small values of s. The stochastic simulation initially closely follows 

Haldane’s P = 2s line, but then gradually deviates from it as s increases, as predicted by 

Barrett’s approximation in Equation (2.5). This is expected: the fixation probability cannot 

exceed 1; it can only approach unity asymptotically as s grows. 

 

4.3.1.2 Equilibrium levels 

In Addendum A a novel analytic derivation is presented, predicting the eventual equilibrium 

prevalence of a highly deleterious recessive variation such as CF (i.e. where shom = -1) as a 

function of the heterozygous selective advantage shet.  

 

Figure 4.2 – Equilibrium levels of a deleterious mutation. Equilibrium level as a function of 

(positive) heterozygous selective advantage, with homozygous selective advantage = -1 (N=4x106, 

Nn=106, shom=-1). 
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As with Figure 4.1, a stochastic simulation was executed, comparing the results with the 

predicted equilibrium levels as in Equation (A.1). Figure 4.2 demonstrates an excellent 

agreement even up to very high heterozygous selective advantages.  

 

Figure 4.3 – CFTR Carrier prevalence. Results for numerical simulations of mutation 

dissemination in a test case to stabilise at a CFTR mutation carrier frequency of 3%. N=108, with 

each curve the average of four independent simulation runs to 3000 generations. 

 

Figure 4.3 was generated to test the numerical simulation, using two different selective 

advantage values s for heterozygous carriers, with homozygous carriers having a 100% 

disadvantage (shom=-1), i.e. none survive to procreate, which until quite recently 

approximated reality for CF. 

 

In the Caucasian population the prevalence of heterozygous CFTR carriers is often presented 

as approximately 4% [33]. However, as will be demonstrated (see section 4.3.3.2 below), 

this is an overestimate: the actual value is probably closer to 3%, and may even be 

significantly lower, if equilibrium has not been reached, as explored in section 4.3.3.3. To 
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stabilize at a prevalence of 3% requires either panmixia and 𝑠ℎ𝑒𝑡 = 1.581%, or, more 

realistically, a community size of 150 (approximately Dunbar’s number for humans) and 

𝑠 = 2.468%. Both of these scenarios eventually approach heterozygous carrier equilibrium 

at 3%, after hundreds of generations. 

4.3.1.3 Dispersion 

 

Figure 4.4 – Lactase persistence. The spread of a purely beneficial mutation (shet=shom=0.1, 

N=5x106, Nn=150). 

 

Lactase persistence is an autosomal-dominant inherited genetic trait [167], [168], [169] 

associated with the LCT gene (MIM 603202) and is especially prevalent in European 

populations, with evidence of strong recent selection during the last 5000-1000 years [170], 

coinciding with the domestication of cattle and a rise in dairy farming. In such a setting, the 

ability of adults to derive nutrition from dairy confers an obvious advantage. 

 

Bersaglieri et al estimate the selection coefficient for lactase persistence to be in a range 
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allele currently exceeds 80%) [170]. In Figure 4.4 a conservative value of 0.1 (10%) was 

assumed as the selective advantage for both heterozygotes and homozygotes. Starting from 

an initial low base, the prevalence of heterozygotes grows to a maximum value of just over 

30%, by which time it has already been surpassed by homozygotes, which asymptotically 

approach 100%, given enough time (generations). After just more than 200 generations, 80% 

of the population carries the mutation – at a nominal 29 years per generation [171] this 

corresponds to 5800 years, which is near the lower end of the antiquity estimate for dairy 

farming. However, it seems reasonable to assume that dairy farming also took a long time to 

become common, which implies that the availability of milk, and consequently the effective 

selective advantage of LCT, gradually increased to its current value. 

4.3.1.4 Effective community size 

In Equation (2.3) Wright defines the effective size of a two-dimensional Gaussian distributed 

neighbourhood as a circle with radius 2σ [116]. 

 

Figure 4.5 – Gaussian and Flat neighbourhood definitions. (a) Gaussian distribution for Nn=100 → 

σ=2.8209, (b) Flat distribution: Nn = the 100 nearest individuals.14 

 
14  The hue and intensity mapping used in this and subsequent plots has been designed to improve 

accessibility for individuals with colour-deficient vision [172], which is yet another ostensibly 

deleterious genetic variation that has nonetheless achieved significant levels in humans, implying 

some concomitant selective advantage.  
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To test this claim, the simulation was configured with a lethal recessive variation (shom=-1) 

for several different positive values of shet, comparing the equilibrium carrier prevalence 

levels that are reached in a large population for a range of neighbourhood sizes Nn when 

using either a Gaussian distribution as defined (see Figure 4.5(a)), or simply a flat 

distribution as shown in Figure 4.5(b), in which each of the Nn closest neighbours are equally 

likely to be selected as parents.  

 

Figure 4.6 – Comparison of equilibrium levels for Gaussian and flat neighbourhoods for various 

heterozygous selective advantages. (N=2.5x107, shom=-1). 

 

As shown in Figure 4.6, the results match quite closely, except for very small values of Nn. 

This is not unexpected, because a flat distribution requires quantisation – only an integer 

number of individuals can constitute a neighbourhood where all are equally likely to be 
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simulations presented in this document. 
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4.3.2 Population structure 

The neighbourhood shape (shown in Figure 4.5) determines the likelihood that one 

individual will breed with another at a given distance. 

 

Figure 4.7 – Spatial structure of population at 3% heterozygous equilibrium prevalence level. 

Black = heterozygous, Red = homozygous, shom=-1. 

Nn = 4, shet = 0.1863 Nn = 8, shet = 0.1320 Nn = 16, shet = 0.0847

Nn = 32, shet = 0.0540 Nn = 64, shet = 0.0361 Nn = 128, shet = 0.0261

Nn = 256, shet = 0.0210 Nn = 512, shet = 0.0186 Nn = 32768, shet = 0.0158
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When the effective Nn is small, this probability drops off very sharply with distance; mating 

with proximate individuals is far more likely than with remote ones. This leads, 

unsurprisingly, to local structure in the distribution of alleles. 

 

When considering human populations, the space in question remains the social plane as 

introduced in section 2.3.1. Examples of representative emergent spatial structures at various 

community sizes Nn are shown in Figure 4.7, where the attendant shet was adjusted each time 

to result in the same heterozygous equilibrium prevalence level of 3%, for a recessive 

variation that is highly deleterious in the homozygous state (shom=-1), like CF. As Nn 

increases, the spatial distribution of alleles becomes progressively more homogenous, with 

the final panel closely approximating the panmictic situation. 

4.3.3 Homozygous prevalence 

4.3.3.1 Constant heterozygous prevalence 

To maintain a specific prevalence level of a CF-type variation in a population requires an 

increasing shet for decreasing values of Nn, as seen in Figure 4.3 and Figure 4.7.  
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Figure 4.8 – Heterozygous selective advantage shet and homozygous prevalence phom vs community 

size Nn at 3% heterozygous equilibrium prevalence level. (shom=-1.)  

 

It also appears as if the prevalence of homozygosity follows a similar trend, which is 

confirmed when the actual values are displayed on the same graph – see Figure 4.8. 
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Figure 4.9 – Homozygous prevalence vs. heterozygous selective advantage for various equilibrium 

prevalence levels. (shom=-1.) 

 

When the homozygous prevalence is plotted as a function of shet for various heterozygous 

equilibrium prevalence values (including the 3% values shown in Figure 4.8) as in Figure 

4.9, two observations can be made: 

 Approximately straight lines are produced for each heterozygous equilibrium value. 

 The homozygous prevalence seems to scale with the heterozygous equilibrium value. 
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Figure 4.10 – Homozygous fraction phom/phet vs heterozygous selective advantage shet. (shom=-1.) 

 

Normalising the homozygous prevalence by dividing it by the heterozygous equilibrium 

prevalence value as suggested by the second observation above yields the graph shown in 

Figure 4.10. A second-order polynomial fitted through all the points (including the origin) 

results in the following empirical expression (R2=0.9999): 

 𝑝ℎ𝑜𝑚

𝑝ℎ𝑒𝑡
≈ −0.2758𝑠ℎ𝑒𝑡

2 + 0.4956𝑠ℎ𝑒𝑡. (4.1) 

 

For small values of shet Equation (4.1) reduces to 

 𝑝ℎ𝑜𝑚 ≈
𝑝ℎ𝑒𝑡𝑠ℎ𝑒𝑡

2
, (4.2) 

or 

 
𝑠ℎ𝑒𝑡 ≈

2𝑝ℎ𝑜𝑚

𝑝ℎ𝑒𝑡
. 

(4.3) 

y = -0.2758x2 + 0.4956x
R² = 0.9999
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4.3.3.2 Practical implications 

The Republic of Ireland has the highest reported incidence of CF, at 1 per 1353 live births 

with an estimated 1 in 19 (5.26%) Irish people being heterozygous carriers [165]. For the 

USA the corresponding numbers are 1 CF case per 3200 births, with approximately 1 in 29 

people (3.45%) expected to be heterozygous carriers. Substituting these numbers into 

Equation (4.3) results in the Irish shet = 0.028 and the USA shet = 0.018. It is noted, however, 

that the claimed carrier prevalence numbers are suspiciously close to the results that would 

be obtained by merely computing it from simple Mendelian inheritance assumptions   

(𝑝ℎ𝑒𝑡 = 2√𝑝ℎ𝑜𝑚).  

 

When a stochastic simulation is executed with community size Nn = 150, it is found that, to 

reach an equilibrium at the Irish phom of 1 in 1353, shet = 0.0329, under which conditions the 

heterozygous prevalence phet = 4.6%, instead of the estimated 5.26%. 

 

Figure 4.11 – CF in Ireland and the USA. Heterozygous selective advantage shet and carrier 

prevalence phet as a function of community size for a CF incidence phom of 1 in 1353 (Ireland), and 

1 in 3200 (USA). 
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Table 4.1 – Updated CFTR carrier prevalence level estimates for selected European and American 

populations, at effective community sizes of 150 and 100. 

Population phom phet 

panmictic 

phet 

(Nn=150) 

phet 

(Nn=100) 

Reduction 

Ireland 1:1353 5.44% 4.60% 4.33% 14% –20% 

UK 1:2415 4.07% 3.27% 2.93% 19% – 26% 

USA 1:3200 3.54% 2.75% 2.39% 22% – 31% 

Sweden 1:5600 2.67% 1.87% 1.59% 30% – 40% 

Hispanic 1:9200 2.09% 1.28% 1.05% 39% – 50% 

African-American 1:15100 1.63% 0.86% 0.69% 47% – 58% 

Asian-American 1:35100 1.07% 0.40% 0.32% 62% – 70% 

 

When this situation is explored as shown in Figure 4.11, it is found that the actual 

heterozygous CFTR carrier prevalence is almost certainly lower than claimed, which in turn 

implies an increase in the heterozygous selective advantage. Even at the upper community 

size of 150, the values for phet are 4.6% and 2.75% for Ireland and the USA respectively, 

dropping to 4.33% (Ireland) and 2.39% (USA) at a community size of 100. 

 

This suggests that the actual heterozygous CF carrier level in the Caucasian population is at 

least 20% lower than hitherto generally expected. Furthermore, the lower the actual 

incidence, the larger the discrepancy between the commonly used panmictic prevalence 

calculation and the results shown in Table 4.1. This has far-reaching implications for the 

carrier prevalence levels in population groups where the condition is less common, as well 

as for other relatively rare recessive deleterious variations such as those listed in Table 2.2. 
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Figure 4.12 – CF prevalence vs incidence for panmictic conditions and for community sizes of 

Nn=150 and Nn=100. Average of multiple equilibrium runs per point (N=2.5x107, shom = -1). 

 

Figure 4.12 presents a graphical depiction of the data in Table 4.1, illustrating the reduction 

in prevalence relative to the panmictic calculation.  
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Figure 4.13 – Prevalence reduction relative to panmictic conditions for Nn=150 and Nn=100. 

Average of multiple equilibrium runs per point (N=2.5x107, shom = -1). 

 

When the relative prevalence reduction values are plotted against the per-population 

incidence as in Figure 4.13, it becomes clear just how dramatically the carrier prevalence is 

overestimated when using a panmictic assumption, especially when the homozygous disease 

incidence is low, as is the case for many deleterious recessive diseases. 

 

The preceding analysis is only valid for the case where the homozygous selection coefficient 

shom→-1, as was the case for CF until recently. Many of the conditions listed in Table 2.2 

have homozygous selection coefficients somewhat larger than this, implying that a non-zero 

fraction of homozygous individuals may survive and be capable of procreation. If a realistic 

estimate of the applicable homozygous selection coefficient can be obtained, the same 

process that was followed above may be used to determine a credible carrier prevalence.  
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4.3.3.3 Non-equilibrium 

 

Figure 4.14 – Heterozygous prevalence during mutation establishment. Comparison of stochastic 

heterozygous prevalence with panmictic calculation (N=1x108, Nn=150, shet=0.02468, shom=-1). 

 

When a mutation such as CF spreads through a large population, with selection coefficients 

as shown in Figure 4.14, it initially expands outwards from the site of introduction at a 

relatively low rate. As the effective circumference of the affected part of the population 

increases, the growth rate also accelerates. Eventually saturation levels are approached, at 

which point the rate diminishes until equilibrium is reached. This same behaviour can be 

observed in Figure 4.3 and Figure 4.4.  

 

 

While such an allele is still rare, the incidence of homozygous individuals is of course very 
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of the heterozygous prevalence using the panmictic assumption, the results are seen to 
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initially greatly overestimate the actual heterozygous prevalence resulting from the 

stochastic simulation, with the error eventually reducing to the values shown in Table 4.1, 

Figure 4.12, and Figure 4.13. 

 

In other words, when equilibrium has not been reached, a computed estimate of heterozygous 

carriers is likely to be even more inaccurate than shown in section 4.3.3.2 above. 

 

Figure 4.15 – Establishment of a less deleterious variation. Comparison of stochastic heterozygous 

prevalence with panmictic calculation (N=3.6x107, Nn=150, shet=0.0135, shom=-0.5). 

 

Not all of the conditions listed in Table 2.2 are quite as lethal in homozygous form as CF 

was until recently. Arbitrarily assuming shom = -0.5, and repeating the establishment 

experiment as for Figure 4.14 results in shet = 0.0135, to ensure an eventual heterozygous 

equilibrium of ~3%. Significantly, the behaviour as seen in Figure 4.15 is quite similar to 

that of the completely lethal variation considered earlier, leading to the conclusion that the 

carrier prevalence levels of less-lethal but still deleterious recessive mutations are probably 

overestimated to a similar degree as for CF. 
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In Europe the F508del variant of the CFTR gene is by far the most common allele associated 

with CF. According to the European Cystic Fibrosis Society (ECFS), this variant was found 

in 82.4% of 43190 European CF patients seen in 2016 [166]. Half of these (41%) were 

homozygous for F508del. 

 

To determine the prevalence of CFTR mutations in the general population, a list of CF-

associated variations of the CFTR gene (according to the CFTR2 mutations database at 

http://www.umd.be/CFTR/W_CFTR/gene.html) was compiled from the ExAC database 

[173] and the even larger gnomAD [174]. More than half of the humans in these databases 

are classified as ‘European Non-Finnish’, which should correspond reasonably closely with 

the demographics covered by the ECFS. It is found that F508del is indeed the most common 

variation, occurring in 1.06% (ExAC) or 1.24% (gnomAD) of Europeans. This represents 

less than half of the individuals found to carry a CFTR mutation. 

 

If the European population were panmictic, it would be expected that approximately 4% of 

European individuals would be carriers of CFTR variants, instead of the 1.92% found in the 

ExAC database, or 1.84% in gnomAD. For Hispanic (Latino) individuals the corresponding 

numbers are 2.06% (expected) versus 0.89% (ExAC) or 1.07% (gnomAD). These numbers 

are slightly lower than the predicted carrier prevalence values for Nn=100, as shown in Table 

4.1.  

 

These observations support our results by demonstrating a significant overestimation of CF 

carriers, while at the same time indicating that the effective Nn for humans seems to be 

approximately 100, or even slightly less. It also expected that the ever-increasing amounts 

of genomic data currently being gathered will similarly reveal fewer carriers than currently 

expected in other recessive conditions, including those listed in Table 2.2. 

 

http://www.umd.be/CFTR/W_CFTR/gene.html
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4.3.4 Monte Carlo analyses 

The real power of the stochastic simulation tool lies in its Monte Carlo functionality, which 

facilitates the automatic execution of multiple runs, while varying the starting conditions and 

input parameters. This enables the compilation of statistical results over millions of trials. 

4.3.4.1 Establishment of deleterious variations 

 

Figure 4.16 – Rate of establishment as a function of community size and heterozygous selective 

advantage. Monte Carlo run results (N=106, shom = -1). 

 

Figure 4.16 shows the probability that a single mutation will indeed become established, as 

a function of community size and the heterozygous selective advantage that it confers, while 

keeping the homozygous selection coefficient equal to -1, which approximates the case 

found in diseases such as CF. From the data generated by the simulations underlying this 



CHAPTER 4 POPULATION SIMULATION 

 

Department of Immunology & Department of Electrical, Electronic and Computer Engineering 76 

University of Pretoria 

plot one can also extract statistics regarding the average survival (in generations until 

extinction, if this happened) and maximum prevalence that a given mutation attained. 

4.3.4.2 Equilibrium levels 

Figure 4.17 illustrates how the eventual equilibrium prevalence of a mutation (with 

homozygous selection coefficient shom = -1) depends on both the community size and the 

heterozygous advantage that it confers on a carrier. 

 

Figure 4.17 – Equilibrium prevalence as a function of community size and heterozygous selective 

advantage. Monte Carlo run results (N=106, shom = -1, max 10000 generations per point). 

 

Figure 4.2, presented earlier, is valid for large values of Nn and therefore corresponds to a 

vertical cross-section of Figure 4.17 on the right-hand side, while Figure 4.6 consists of four 

horizontal cross-sections through Figure 4.17, at the indicated heterozygous selective 

advantage values. 
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4.3.4.3 Underdominance 

The preceding analyses mostly focused on overdominant mutations, i.e. where the 

heterozygous genotype enjoys a selective advantage over both the homozygous states 

(mutated and wild-type). Underdominance, also known as ‘negative overdominance’ [175], 

[176] is the situation where a heterozygous disadvantage exists, compared to either 

homozygous state. 

 

Figure 4.18 – Establishment rate of an underdominant mutation as a function of community size 

and homozygous selective advantage. Monte Carlo run results (N=2.5x105, shet = swild = 0, total 

number of generations : 3.377x109). 

 

In humans the Rh factor, which is associated with an increased risk of haemolytic disease in 

the newborn, is subject to such selective pressures [177]. The mechanism is also used 

commercially to artificially introduce refractory genes into pest populations [176], [178], 

although in this case the establishment probability is not left to chance, as would be the case 

when a random mutation with potentially underdominant characteristics were to occur. 
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When a selective advantage only manifests in the mutated homozygous case, a single 

mutation is unlikely to become established, due to the effects of genetic drift, which is apt 

to extinguish it before it becomes sufficiently widespread to result in natural selection 

causing the homozygotes to outcompete the wild type. Figure 4.18 illustrates that, in such a 

situation, the likelihood of establishment is maximised when the community size Nn is small, 

i.e. when consanguinity increases the chance that mutant homozygotes may be produced. 



 

 

CHAPTER 5 CONCLUSION 

The Bayesian network presented in Section 3.3.3 amalgamates a number of disparate inputs 

of various types into an estimate of the presence of CF in an individual. While an attempt 

was made to incorporate most of the commonly used diagnostic inputs into the model, it is 

of course by no means complete. The network can easily be extended, if desired, although it 

would probably make more sense to rather focus on improving the joint probability 

distribution functions between existing nodes, as noted in section 3.4.2. Nonetheless, despite 

the questionable nature of some of the underlying assumptions, the model does compute 

plausible probabilities, at least in some boundary cases where reasonably accurate known 

statistics exist.  

 

The model is not presented as a practical diagnostic tool, mainly due to the same limiting 

factors identified in the literature study presented in section 2.2.5. However, interacting with 

the model may be of educational value to health professionals and students, because of the 

sometimes non-intuitive outcomes when evidence is combined, and it could help to guide 

decisions regarding treatment and/or additional testing, by indicating where the most value 

is likely to be added. 

 

The population simulation tool described in Chapter 4 was demonstrated to replicate various 

analytically predicted results, as well as several observations, while only requiring a single 

fairly constrained estimate – the effective neighbourhood size – which is based on 

sociological data for human populations. As far as could be ascertained this is the first time 

that this input has been proposed to augment population genetics models. 
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The described verification results add credibility to the results that are generated by the 

model, starting with a plausible estimate for the heterozygous selective advantage conferred 

by CF and similar deleterious recessive autosomal monogenic conditions, without requiring 

specific knowledge regarding the mechanism by which the selective advantage is achieved. 

 

It is also shown that the generally accepted heterozygous carrier prevalence levels of 

deleterious alleles in various countries and population groups are actually calculated values, 

using specious implicit assumptions of panmixia and equilibrium. These carrier prevalence 

values should be adjusted downwards by a significant margin, implying that there are far 

fewer human carriers of recessive deleterious alleles than previously thought. 

5.1 SUGGESTIONS FOR FUTURE STUDY 

5.1.1 Diagnosis 

The Bayesian network for diagnostic purposes in its current form is limited by the 

availability of observational data, reducing its utility to mostly tutorial value. Even though 

the model is shown to be remarkably robust to noise, more accurate inputs will directly 

improve its performance. A large number of other inputs can also be added, including but 

not limited to those listed by O’Sullivan and Freedman [1] and Farrell et al [6]. 

 

The same lack of data stymied the ambition of incorporating and studying the temporal 

feature inherent in health care [159], which, as stated in section 3.3.2, seems to be a 

promising area for further exploration, because the longitudinal element inherent in cohort 

studies may possibly be incorporated by the time-dependence of dynamic Bayesian models, 

of which hidden Markov models are a subset [160]. 

 

Furthermore attention may be given to the identification of latent variables which may affect 

and/or connect known parameters in the model, and potentially interfere with causal 

interpretation. 
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5.1.2 Population Models 

There are a large number of CFTR alleles associated with cystic fibrosis, each with its own 

heterozygous and homozygous selection coefficients. Currently only one variant is modelled 

at a time. As in the case of the diagnostic network, one of the primary challenges would be 

to obtain accurate observational data, especially for the huge number of potential allele 

combinations that multiple variants would imply. If this could be done, though, it may also 

be feasible to not only model the establishment, dissemination, and equilibrium behaviour, 

but also competition between variants. 

 

The population model currently simulates a single homogeneous population of constant size, 

without any boundaries or discontinuities. It is well known that geographic features and 

changing population sizes affect speciation as well as establishment rates - the model can be 

extended to include these attributes, which should improve its credibility significantly. 
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ADDENDUM A DERIVATION OF 

EQUILIBRIUM 

PREVALENCE LEVELS 

In special cases analytical results, with which one can compare the simulated results, may 

be derived for this model. This section presents, in the case of a large neighbourhood size, a 

heuristic derivation of carrier prevalence which results in a simple relationship between the 

long-term prevalence of the mutation and the heterozygous advantage. The (random) state 

of the individual at grid point (i,j) in the population array can be described as a stochastic 

process (𝑋𝑛
𝑖,𝑗

)𝑛=0
∞ , where n denotes the number of generations from the beginning. We use 

w for the wild-type, e for the heterozygous and m for the homozygous states respectively. 

 

The states of different individuals are distributed identically, in other words they are 

statistically indistinguishable because the development of a specific individual depends only 

on its neighbours and not the absolute position (i,j). (This is due to the fact that the population 

is closed upon itself, so that there are no edges or other position-specific effects.) Hence, we 

can drop the superscripts and denote the state of a generic individual at the nth generation by 

Xn. 

 

Our concern is with the temporal evolution of the quantity 𝑝𝑛: = 𝑃(𝑋𝑛 = 𝑒); that is, the 

probability that a generic individual is a heterozygous carrier of the mutation. Additionally, 

we would like to derive the existence and value of the equilibrium level p where pn = p 

implies pn+1 = p. For large populations, the value of p indicates the prevalence of the 

mutation; that is, the percentage level at which the heterozygous advantage balances out the 

homozygous disadvantage, on average. 

 

We assume, for ease of display, that the homozygous disadvantage is 100% (i.e. shom = -1) 

so that homozygous individuals produce no offspring. We also assume that mutations only 

occur once, at generation n=0. 
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For our generic individual, let Fk be the event that k of its N neighbours are in state e. We 

denote by E00, E10, E01,  and E11 the mutually exclusive events that no parents, the first parent 

only, the second parent only and both parents (respectively) are in state e. (For readability 

we omit the dependence on n from the notation.) We will simply use s for the heterozygous 

selective advantage (shet). 

 

Before we derive the difference equation for (pn), we first compute, for each specific value 

of k, the probability that an individual is heterozygous in the next generation given that k of 

the current neighbours is heterozygous. By the law of total probability we get 

 

𝑃(𝑋𝑛+1 = 𝑒|𝐹𝑘) 

= 0 + 𝑃(𝑋𝑛+1 = 𝑒|𝐸01, 𝐹𝑘) ∙ 𝑃(𝐸01) + 𝑃(𝑋𝑛+1 = 𝑒|𝐸10, 𝐹𝑘) ∙ 𝑃(𝐸10)

+ 𝑃(𝑋𝑛+1 = 𝑒|𝐸11,𝐹𝑘) ∙ 𝑃(𝐸11). 

Using Mendelian inheritance probabilities we have 𝑃(𝑋𝑛+1 = 𝑒|𝐸10) =
1

2
, 

𝑃(𝑋𝑛+1 = 𝑒|𝐸11) =
2

4
=

1

2
 and so on. Thus 

𝑃(𝑋𝑛+1 = 𝑒|𝐹𝑘) =  
1

2
∙

𝑘

𝑁

𝑁 − 𝑘

𝑁 − 1
+

1

2
·

𝑁 − 𝑘

𝑁

𝑘

𝑁 − 1
+

2

4
∙

𝑘

𝑁

𝑘 − 1

𝑁 − 1

=
1

𝑁(𝑁 − 1)
((𝑁 −

1

2
) 𝑘 −

1

2
𝑘2). 

 

Combining these conditional probabilities with the probabilities of the conditions 𝐹𝑘 we get 

𝑝𝑛+1: = 𝑃(𝑋𝑛+1 = 𝑒) = ∑ 𝑃(𝑋𝑛+1 = 𝑒|𝐹𝑘) ∙ 𝑃(𝐹𝑘)

𝑁

𝑘=0

= ∑
1

𝑁(𝑁 − 1)

𝑁

𝑘=0
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1

2
) 𝑘 −
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2
𝑘2)

∙ (
𝑁

𝑘
) [𝑝𝑛

1 + 𝑠

1 + 𝑠𝑝𝑛
]

𝑘

[1 − 𝑝𝑛

1 + 𝑠

1 + 𝑠𝑝𝑛
]

𝑁−𝑘

. 
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Recognizing in this expression the first two moments of the binomial distribution and setting 

𝑞 ≔ 𝑞𝑛 ≔ 𝑝𝑛
1+𝑠

1+𝑠𝑝𝑛
 we get 

 

𝑝𝑛+1 =
𝑁 −

1
2

𝑁(𝑁 − 1)
𝑁𝑞𝑛 −

1

2

1

𝑁(𝑁 − 1)
(𝑁𝑞𝑛 − 𝑁𝑞𝑛

2 + 𝑁2𝑞𝑛
2) = 𝑞𝑛 −

1

2
𝑞𝑛

2

=  𝑝𝑛

1 + 𝑠

1 + 𝑠𝑝𝑛
−

1

2
[𝑝𝑛

1 + 𝑠

1 + 𝑠𝑝𝑛
]

2

. 

 

The equilibrium condition 𝑝 = 𝑝𝑛+1 = 𝑝𝑛 leads to a quadratic equation which can be solved 

easily. 

 

In the case where both s and p are small, the product sp is a second-order term, so a first-

order approximation to the equilibrium value is given by 

𝑝 = 𝑝(1 + 𝑠) −
1

2
[𝑝(1 + 𝑠)]2. 

 

Therefore p = 0 or 

 
𝑝 =

2𝑠

(1 + 𝑠)2
 

(A.1) 



 

 

ADDENDUM B SOFTWARE OPERATION 

INSTRUCTIONS 

B.1 INTRODUCTION 

This software was created to explore the behaviour of monogenic mutations in large 

populations. It allows independent variation of the selection coefficients of homozygous and 

heterozygous individuals, as well as the population size, and the community size – that is, 

the local community from which an individual is likely to select a mate. 

B.2 DISCLAIMER 

Although some effort has been devoted to make the software user-friendly and robust, it is 

absolutely not bullet-proof. This may be due to mere oversight, incompetence of the 

programmer, or possibly because of the significant weight given to speed of execution, 

which may occasionally result in the sacrifice of safety. It has never been the intention to 

reach commercial levels of polish and refinement. 

B.3 DOWNLOADING AND DEPLOYMENT 

The executable is compiled for use on a PC running Windows 7 and up. It may even work 

on WinXP, although that has not been tested. Simply place the *.exe file in a suitable folder 

and run it – no installation required.  

B.4 MAIN SCREEN 

The program starts by displaying a main screen looking something like this: 
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Figure B.1 – Main Screen. 

On the left side, close to the top, are two text boxes containing respectively the heterozygous 

and homozygous selection coefficients. Note that these numbers are in percentages – to the 

right of the text boxes is shown the resultant selective advantage; an individual with a 

selective advantage of s will have, on average, 1+s as many progeny as the wild type. 

Because it is difficult to have fewer than zero children, these numbers are constrained 

between -100% and +infinity (or at least an approximation thereof). 

 

On the right, in the panel labelled ‘Population’ the size of the population can be entered – 

this takes the form of a two-dimensional grid of individuals, wrapping around from top to 

bottom and left to right to avoid any edge effects – topologically this forms a toroid. Below 

these can be found the community size controls: if the ‘Gaussian’ checkbox is selected, the 

breeding unit (local community) from which an individual is likely to select a mate takes the 

shape of a two-dimensional Gaussian distribution, with an effective size that of a circle with 

radius 2σ as defined in Equation (2.4). Proximate individuals are more likely to be selected  
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than remote ones. If ‘Gaussian’ is unchecked, the community is a circle with size (in 

individuals) as shown, with all included individuals equally likely to be selected (i.e. a flat 

distribution). 

 

When the ‘Display’ checkbox is checked, the population will be displayed: 

 

Figure B.2 – Population Display. 

In this specific case the population was initialised to 1% heterozygous prevalence by clicking 

on the ‘Initialise’ button at the top left, with the slider to the right of it set to 1%, of course. 

Heterozygous individuals are shown as green dots, homozygous ones (of which there are 

none in this example) as white dots, while the wild type is shown in black. Right-clicking on 

the population display brings up a menu which can be used to select an alternate colour 

scheme – black heterozygotes on a white background, with homozygotes in red – this was 

used to generate the images shown in Figure 4.7. 
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Clicking on ‘Step’ will now advance the simulation by one generation, using the selective 

advantages and community size settings as specified. If the ‘Graph’ checkbox, just below 

‘Display’ is checked, the graph at the bottom of the main screen will also be updated with 

the relative prevalence numbers of the Homozygous, Heterozygous and Wild Type 

individuals. These graphs can be individually switched on or off by checking the applicable 

checkboxes at the top left of the graph. 

 

If a non-zero number is specified in the ‘De novo’ box, mutations are introduced at that rate 

per generation (see the ‘x10E-6’ next to it, denoting per million). This happens randomly: in 

a million-element population, a de novo rate of n x 10-6 will on average experience n 

spontaneous mutations per generation, according to a Poisson probability distribution. 

 

Repeatedly clicking on ‘Step’ quickly becomes tedious. Click on ‘Run’ at the top right of 

the main screen. This will keep stepping through generations at maximal speed until the 

same button is clicked again (it should be labelled ‘Stop’ while the simulation is running). 

 

Do note that having the population display active will in general slow the simulation down 

significantly. It takes time to update the pixels. Not much, but there are often many of them. 

Also, especially when the population size exceeds that of the actual screen, the simulation 

may become unstable: to speed things up the screen is updated by directly addressing the 

video memory, which sometimes leads to unwanted effects when the display extends off-

screen. 

 

Most of the parameters can be adjusted while the simulation is running – this can be used to 

explore interactively. 
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B.5 MONTE CARLO ANALYSIS 

Because it quickly gets tiresome to keep adjusting parameters, a Monte Carlo function was 

created to automate this process. Click on the ‘Monte Carlo’ button to bring up the control 

panel: 

Figure B.3 – Monte Carlo screen. 
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The very first choice, at the top, is between ‘Mutation Establishment’ and ‘Equilibrium 

Levels’. 

B.5.1 Mutation establishment 

When ‘Mutation Establishment’ is chosen, the screen will look similar to Figure B.3. A run 

involves creating a population sized as shown at the bottom left, initialised to wild type for 

all individuals, and then inserting a single instance of a mutation (i.e. one heterozygous 

carrier) into the population. After this, the simulation is run using the selected parameters 

until one of the stopping criteria is reached. 

 

Multiple simulations are executed sequentially. To avert the possibility, however remote, of 

any given run to continue indefinitely, there has to be stopping criteria. These are: Extinction, 

Prevalence, and Time.  

 Extinction: If the mutated gene becomes extinct, the simulation can be stopped, for 

nothing else will happen after that point. 

 Prevalence: A mutation that does not become extinct tends to grow in prevalence. A 

threshold is set which, if exceeded, is considered to constitute evidence that the 

mutation has gained sufficient traction to make extinction unlikely, i.e. it has become 

established. This is set in the ‘Threshold’ text box at the top of the Monte Carlo 

screen. 

 Time: It may happen that a mutation manages to linger in the population at very low 

prevalence levels (below the threshold set above), yet not become extinct – to prevent 

such situations from locking up the simulation, an upper limit on the number of 

generations is set in the text box labelled ‘Max gens’. 

B.5.2 Community size 

The community size can be automatically stepped from the value set in the ‘Min’ box to the 

value in the ‘Max’ box, with increments as set in the ‘Step Size’ control below it. If the ‘Log’  
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checkbox is checked, the community size will be changed not linearly, but logarithmically, 

with the final step the size of the value in the ‘Step Size’ control. The way this is done is to 

start at the maximum value, then decrement by ‘Step Size’, and for each subsequent run keep 

decrementing by that same ratio, until reaching the minimum value. 

B.5.3 Heterozygous advantage 

This parameter can also be changed automatically, in the same way as the community size. 

Understandably the logarithmic function does not work when negative values are desired. 

B.5.4 Homozygous advantage 

This parameter can also be automated. When the ‘= Heterozygous Adv.’ option is selected, 

it will be linked to the heterozygous advantage, with the same value being used. 

 

Multiple runs with identical parameters can be executed by specifying the number of 

repetitions in the top middle, in the box labelled ‘Runs’. 

 

When a run is completed, a summary of the run is displayed in the panel at the bottom of the 

Monte Carlo screen. This same information is also written to a text file for later analysis. 

The file name starts with ‘MC’, followed by the start time and date, and will be found in the 

same folder as the program itself. 

 

During Monte Carlo runs it is also possible to activate the prevalence graphs, or, even worse, 

the population display. This is rarely a good idea if completion time is important, as it often 

is. 
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B.6 EQUILIBRIUM LEVELS 

 

Figure B.4 – Equilibrium levels. 
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When the ‘Equilibrium levels’ option is selected, the Monte Carlo screen changes to 

something like Figure B.4. Most controls function similarly to the Mutation Establishment 

case, except that, instead of placing a single instance of a mutation in the middle of the 

population at the start of each cycle, the population is randomly initialized to the prevalence 

specified at the top right (clearly labelled ‘Initial prevalence (%)’).  

 

The stopping criteria are Extinction, Prevalence, Time and Stability: 

 Extinction: If the mutated gene becomes extinct, the simulation can be stopped, 

for nothing else will happen after that point. 

 Prevalence: A mutation that does not become extinct tends to grow in prevalence. 

The simulation is stopped when 100% is reached as this is actually identical to 

the Extinction case above, as seem from the wild type’s perspective. 

 Time: It may happen that a mutation manages to linger in the population at 

intermediate prevalence levels, yet not become extinct – to prevent such 

situations from locking up the simulation, an upper limit on the number of 

generations is set in the text box labelled ‘Max gens’. This is unlikely to happen 

though, because of the next item: 

 Stability: If the code detects that the long-term prevalence levels have stabilised 

(somewhere between 0% and 100%, both excluded), the simulation is terminated. 

Due to genetic drift there is always some variability in the levels. The code for 

this is fairly conservative, to reduce false triggers prematurely terminating a run. 

Below the ‘Initial prevalence’ box is found a checkbox named ‘Use previous’. When this is 

checked, the population will only be initialised by the specified prevalence when starting, or 

when the previous run has ended in extinction. This can be useful especially when small 

increments in parameter values are used, which are likely to have similar equilibrium values 

and spatial structures – rather than having to grow or decline from the random initial state 

each time, which may be quite time-consuming. 
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B.7 TEMPLATES 

At the start of each Monte Carlo run a template file is created, containing a summary of the 

run. This is to simplify repetition of an entire run. This file can be used when the ‘Use 

Template’ option is selected – in that case a button named ‘Template File’ appears, which is 

used to select the relevant template file. Do note that the option exists to also use the normal 

result files (starting with ‘MC’) as a template – it may just take slightly longer to analyse if 

it contains many repetitions of each run. Template files are simply text files – they can be 

edited to add or remove items, as long as care is taken to retain lines 3-5 (where the global 

parameters are specified). 
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B.8 PROCESSOR CONTROL 

Monte Carlo runs can take very long to complete, especially when the population size is 

large and/or many runs are desired. Some effort was expended to ensure maximal utilisation 

of processor resources. 

 

During startup the program determines the effective number of processor cores in the host 

computer, and sets its affinity to one of these. This information is displayed in the title bar 

at the top of the main screen. In the example shown in Figure B.1, the program detected a 

four-core processor, and assigned itself to core 0 of those 4 (number 0 is actually the first 

core, because that is how some people, including Intel, count). If a second instance of the 

program is started, it will run on the next available processor core (1, in this case) etc. This 

is to ensure that the program does not compete with itself for processor resources, overriding 

the control exerted by Windows, which will happily let many processes run on one core, 

while others remain essentially idle. If more instances of the program are run than there are 

processor cores, they will of course start at zero again, and be forced to share. This is 

probably not a good idea. 

 

Additionally, the priority of each process can also be controlled using the slider at the right 

of the main screen, just below the ‘Monte Carlo’ button. This is to enable peaceful co-

existence with other programs and users, especially when all cores are being utilised by 

instances of this simulator. Setting the priority to ‘Below Normal’ or even ‘Idle’ means that 

the PC should still remain responsive, and useful for other work, even while all cores are 

kept 100% busy. 

The above can of course also be done using the Windows Task Manager, but this way usually 

saves time and limits mistakes. 

 


