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Abstract We use a system of first-order partial differential equations that
characterize the moment generating function of the d-variate standard normal
distribution to construct a class of affine invariant tests for normality in any
dimension. We derive the limit null distribution of the resulting test statistics,
and we prove consistency of the tests against general alternatives. In the case
d > 1, a certain limit of these tests is connected with two measures of multivari-
ate skewness. The new tests show strong power performance when compared
to well-known competitors, especially against heavy-tailed distributions, and
they are illustrated by means of a real data set.

Keywords Moment generating function · test for multivariate normality ·
direct sum of Hilbert spaces · multivariate skewness · weighted L2-statistic

1 Introduction

It is often of interest to check whether an observed d-dimensional dataset is
compatible with the assumption of coming from a multivariate normal dis-
tribution. Such a model check is of practical interest to researchers, as many
multivariate techniques rely on the assumption of multivariate normality (for
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short: multinormality). As a consequence, it is not surprising that there is
ongoing interest in testing for multinormality, as can be witnessed by various
recent papers on the subject, see for example Mecklin and Mundfrom (2005),
Székely and Rizzo (2005), Farrell et al. (2007) and Joenssen and Vogel (2014)
as well as the references therein. Research into the practical implementation
of these tests is also undertaken regularly, see, e.g., Korkmaz et al. (2014)
and Joenssen and Vogel (2014) regarding the implementation in the statistical
software package R.

The purpose of this paper is not to review the multitude of tests that
hitherto has been proposed (for an account of the state of the art regarding
affine invariant procedures before 2002, see Henze (2002)), but to introduce
and study a new class of tests that is based on a certain partial differential
equation. To be specific, let X1, X2, . . . , Xn, . . . be independent and identically
distributed (i.i.d.) copies of a d-dimensional random (column) vector X , the
distribution of which is assumed to be absolutely continuous with respect to
d-dimensional Lebesgue measure. All random vectors are defined on a common
probability space (Ω,A,P).

Writing Nd(µ,Σ) for the d-dimensional normal distribution with mean vec-
tor µ and non-degenerate covariance matrix Σ and Nd for the class of all non-
degenerate d-variate normal distributions, a classical problem is to test the
null hypothesis

H0 : The law of X belongs to Nd, (1)

against general alternatives. Since the class Nd is closed with respect to full
rank affine transformations, any genuine test statistic Tn = Tn(X1, . . . , Xn)
based on X1, . . . , Xn should also be invariant with respect to such transfor-
mations, i.e., we should have Tn(AX1 + b, . . . , AXn + b) = Tn(X1, . . . , Xn)
for each nonsingular (d × d)-matrix A and each b ∈ R

d, see Henze (2002) for
an account of the importance of affine invariance in connection with testing
for multivariate normality. Writing Xn = n−1

∑n
j=1 Xj for the sample mean

and Sn = n−1
∑n

j=1(Xj −Xn)(Xj −Xn)
⊤ for the sample covariance matrix

of X1, . . . , Xn, where the superscript ⊤ denotes the transpose of vectors and
matrices, a necessary and sufficient condition for a test statistic Tn to be affine
invariant is that it is based on the scalar products

Y ⊤
n,iYn,j = (Xi −Xn)

⊤S−1
n (Xj −Xn), i, j ∈ {1, . . . , n},

where Yn,j = S
−1/2
n (Xj −Xn), j = 1, . . . , n, are the so-called scaled residuals

of X1, . . . , Xn, see Henze (2002). Here, S
−1/2
n denotes the unique symmetric

square root of S−1
n which, due to the absolute continuity of the distribution

of X , exists with probability one if n ≥ d+ 1, see Eaton and Perlman (1973).
The latter condition is tacitly assumed to hold in what follows.

The novel idea for constructing a test of H0 is the following: Suppose X
is a d-dimensional random vector, and assume that the moment generating
function (MGF) m(t) = E[exp(t⊤X)] exists for each t ∈ R

d and satisfies the
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system of partial differential equations

∂m(t)

∂tj
= tjm(t), t = (t1, . . . , td)

⊤ ∈ R
d, j = 1, . . . , d. (2)

Writing y′(t) for the gradient of a function y : R
d → R at t, (2) may be

succinctly written as m′(t) = tm(t), t ∈ R
d. Taking into account that m(0) =

1, the unique solution of this equation in the case d = 1 is m(t) = exp(t2/2),
which is the MGF of the standard normal distribution. If d > 1, and we fix
t2, . . . , td, the solution of (2) for j = 1 is

m(t) = c2(t2, . . . , td) · et
2
1/2 (3)

for some function c2 : Rd−1 → R. We thus have c2(t2, . . . , td) = e−t21/2 ·m(t),
t ∈ R

d, which shows that c2 is differentiable. Moreover,

∂

∂t2
c2(t2, . . . , td) = e−t21/2 · ∂

∂t2
m(t).

Using (2) with j = 2 then gives

t2 =
∂
∂t2

c2(t2, . . . , td)

c2(t2, . . . , td)
, t ∈ R

d,

the solution of which is c2(t2, . . . , td) = c3(t3, . . . , td) · exp(t22/2) for some func-
tion c3 : Rd−2 → R. Inserting this expression into (3) and continuing this way,
we finally obtain

m(t) =
d∏

j=1

et
2
j/2 = e‖t‖

2/2, t ∈ R
d,

where ‖ · ‖ denotes the Euclidean norm in R
d. Notice that this unique solution

of (2) is the MGF of the standard normal distribution Nd(0, Id), where Id is
the unit matrix of order d.

If X has some non-degenerate normal distribution, the scaled residuals
Yn,1, . . . , Yn,n should be approximately independent, with a distribution close
to Nd(0, Id), at least for large n. Hence, a natural approach for testing H0 is
to consider the empirical MGF

Mn(t) =
1

n

n∑

j=1

et
⊤Yn,j (4)

of Yn,1, . . . , Yn,n, and to employ the weighted L2-statistic

Tn,γ := n

∫

Rd

‖M ′
n(t)− tMn(t)‖2 wγ(t) dt, (5)

where
wγ(t) = exp

(
−γ‖t‖2

)
, t ∈ R

d. (6)
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Rejection of H0 is for large values of Tn,γ .
We stress that other choices than wγ are conceivable in (5). The extremely

appealing feature of using the weight function wγ , however, is that with this
choice the test statistic Tn,γ allows for an explicit form that does not involve
any integration and is given below. The role of γ > 0 will be discussed later.

Using the relations

∫

Rd

et
⊤α wγ(t) dt =

(
π

γ

)d/2

exp

(‖α‖2
4γ

)
, (7)

∫

Rd

et
⊤α t⊤αwγ(t) dt =

(
π

γ

)d/2 ‖α‖2
2γ

exp

(‖α‖2
4γ

)
,

∫

Rd

et
⊤α ‖t‖2wγ(t) dt =

(
π

γ

)d/2

exp

(‖α‖2
4γ

)(
d

2γ
+

‖α‖2
4γ2

)
, (8)

and putting Y +
n,j,k = Yn,j+Yn,k, the test statistic defined in (5) takes the form

Tn,γ=
1

n

(
π

γ

)d/2 n∑

j,k=1

exp

(
‖Y +

n,j,k‖2
4γ

)(
Y ⊤
n,jYn,k−

‖Y +
n,j,k‖2
2γ

+
d

2γ
+
‖Y +

n,j,k‖2
4γ2

)
,

(9)
which is amenable to computational purposes. Notice that Tn,γ is affine in-
variant.

The remainder of this paper is structured as follows: Section 2 deals with
the convergence in distribution of Tn,γ under H0, and Section 3 is devoted
to the problem of consistency of the new test (which seems to be new even
in the univariate case). In Section 4 we let γ tend to infinity while keeping
n fixed. Under this setting, Tn,γ converges to a certain linear combination of
two well-known measures of multivariate skewness. In Section 5 we compare
the finite-sample power behavior of the new test to that of several classical
and recent tests for both univariate and multivariate normality. Section 6
illustrates the procedures by means of a real data set. Section 7 presents some
conclusions, while Section 8 contains several technical proofs which do not
form part of the main text.

2 The limit null distribution of Tn,γ

In this section, we derive the limit distribution of the test statistic Tn,γ defined
in (5) under the null hypothesis (1). In view of affine invariance, we will assume
E (X) = 0 and E

(
XX⊤

)
= Id. Put

Wn(t) :=
√
n (M ′

n(t)− tMn(t)) =
1√
n

n∑

j=1

et
⊤Yn,j (Yn,j − t) , t ∈ R

d,

(10)
and let L2 := L2(Rd,Bd, wγ(t)dt) denote the separable Hilbert space of (equiv-
alence classes of) measurable functions f : Rd → R that are square integrable
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with respect to the finite measure on the σ-field Bd of Borel sets of Rd, given
by the weight function wγ . The inner product and the resulting norm on L2

will be denoted by

〈f, g〉 =
∫

Rd

f(t) g(t)wγ(t) dt, ‖f‖L2 =
√
〈f, f〉,

respectively. Since Wn(t) in (10) is R
d-valued, we consider the Hilbert space

H, which is the d-fold (orthogonal) direct sum H := L2⊕· · ·⊕L2, consisting of
all ordered d-tuples f = (f1, . . . , fd) ∈ L2 × · · · × L2, equipped with the inner
product

〈f, g〉⊕ := 〈f1, g1〉L2 + . . .+ 〈fd, gd〉L2 ,

where f = (f1, . . . , fd), g = (g1, . . . , gd) ∈ H. Notice that the norm ‖ · ‖⊕ on
H satisfies

‖f‖2⊕ =

d∑

i=1

‖fi‖2L2 =

∫

Rd

‖f(t)‖2wγ(t) dt, f = (f1, . . . , fd) ∈ H.

Since Wn is a random element of H and Tn = ‖Wn‖2⊕, the aim is to prove

Wn
D−→ W for some centred Gaussian random element of H. By the Con-

tinuous Mapping Theorem (CMT), we would then have Tn
D−→ ‖W‖2⊕. Here

and in the sequel,
D−→ denotes convergence in distribution of random ele-

ments (especially: of random variables). Moreover, oP(1) refers to convergence
in probability to zero of random elements H. The main result of this section
is as follows.

Theorem 1 (Convergence of Wn)
Suppose that X has some non-degenerate d-variate normal distribution. If
the weight function wγ in (6) satisfies γ > 2, there is some centred Gaus-
sian random element W of H having covariance (matrix) kernel K(s, t) =
E
[
W (s)W (t)⊤

]
, where

K(s, t) = e(‖s‖
2+‖t‖2)/2

(
es

⊤t
(
ts⊤ + Id

)
− ts⊤ − (1 + s⊤t) Id

)
, (11)

s, t ∈ R
d, so that Wn

D−→ W as n → ∞.

Corollary 1 The limit distribution of Tn,γ as n → ∞ under H0 is that of

‖W‖2⊕ =

∫

Rd

‖W (t)‖2 wγ(t) dt.

Proof of Theorem 1. To highlight the main idea of the proof, let

Zj(t) := et
⊤Yn,j (Yn,j − t) , Z◦

j (t) := et
⊤Xj (Xj − t) , (12)
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and put

W ◦
n(t) :=

1√
n

n∑

j=1

Z◦
j (t), t ∈ R

d. (13)

Notice that Z◦
1 , Z

◦
2 , . . . are i.i.d. (centred) random elements ofH. Writing X :=

X1, and putting ρ := 2(π/γ)d/2, the definition of Z◦
1 and (7), (8) give

E‖Z◦
1‖2⊕ = E

[ ∫

Rd

e2t
⊤X‖X − t‖2wγ(t) dt

]
(14)

≤ 2E
[
‖X‖2

∫

Rd

e2t
⊤Xwγ(t) dt

]
+ 2E

[ ∫

Rd

e2t
⊤X‖t‖2wγ(t) dt

]

= ρE

[
‖X‖2 exp

(‖X‖2
γ

)]
+ ρE

[
‖X‖2 exp

(‖X‖2
γ

)(
d

2γ
+
‖X‖2
γ2

)]
.

Since X has a standard normal distribution in R
d, the first expectation on the

right-hand side is

1

(2π)d/2

∫

Rd

‖x‖2 exp
(
−
(
1

2
− 1

γ

)
‖x‖2

)
dt.

This is finite if, and only if, γ > 2. Since the same conclusion can be drawn
for the second expectation, the condition γ > 2 implies E‖Z◦

1‖2⊕ < ∞.

By a Hilbert space central limit theorem (CLT), see e.g. Kundu et al.
(2000), there is some centred Gaussian random element W ◦ of H such that

W ◦
n

D−→ W ◦. The idea now is to approximate Wn by a suitable random el-

ement W̃n of H so that ‖Wn − W̃n‖⊕ = oP(1) as n → ∞, and W̃n(t) =

n−1/2
∑n

j=1 Z̃j(t), where Z̃1, Z̃2, . . . are i.i.d. centred random elements of H
satisfying E‖Z̃1‖2⊕ < ∞. The assertion would then follow from the CLT in
Hilbert spaces and Slutzky’s lemma. To this end, put

∆n,j = Yn,j −Xj =
(
S−1/2
n − Id

)
Xj − S−1/2

n Xn, j = 1, . . . , n. (15)

A Taylor expansion gives

et
⊤∆n,j = 1 + t⊤∆n,j +

1

2

(
t⊤∆n,j

)2
exp

(
Θn,jt

⊤∆n,j

)
, (16)

where |Θn,j | ≤ 1. By some algebra, it follows that

Wn(t) =
1√
n

n∑

j=1

et
⊤Xj (Xj − t) +An(t) +Bn(t) + Cn(t), (17)
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where

An(t) =
1√
n

n∑

j=1

et
⊤Xj t⊤∆n,j (Xj − t), (18)

Bn(t) =
1√
n

n∑

j=1

et
⊤Xj

(
1 + t⊤∆n,j

)
∆n,j, (19)

Cn(t) =
1√
n

n∑

j=1

et
⊤Xj

1

2

(
t⊤∆n,j

)2
exp

(
Θn,jt

⊤∆n,j

)
(Xj − t+∆n,j) .(20)

Notice that the first term on the right-hand side of (17) is W ◦
n(t), as given in

(13). By Proposition 1, we have ‖Cn‖⊕ = oP(1), and Proposition 2 yields

Bn(t) = − 1√
n

exp

(‖t‖2
2

) n∑

j=1

(
XjX

⊤
j t− t

2
+Xj

)
+ oP(1).

In view of Proposition 3, (17) implies Wn(t) = n−1/2
∑n

j=1 Z̃j(t)+oP(1), where

Z̃j(t) = et
⊤Xj (Xj − t)− e‖t‖

2/2
(
XjX

⊤
j t− t+Xj

)
. (21)

A straightforward calculation gives EZ̃j(t) = 0, t ∈ R
d. To show that E‖Z̃j‖2⊕ <

∞, notice that (21) reads (for j = 1 and putting X := X1) Z̃1(t) = Z◦
1 (t) −

U(t), where Z◦
1 (t) is given in (12), and U(t) = e‖t‖

2/2
(
XX⊤t− t+X

)
. Then

E‖Z̃1‖2⊕ = E

[ ∫

Rd

‖Z◦
1 (t)− U(t)‖2wγ(t) dt

]

≤ 2E
[ ∫

Rd

‖Z◦
1 (t)‖2wγ(t) dt

]
+ 2E

[ ∫

Rd

‖U(t)‖2wγ(t) dt
]
.

The first expectation on the right-hand side was tackled in (14) and was seen
to be finite if γ > 2. As for the second expectation, notice that, by the Cauchy-
Schwarz-inequality, ‖U(t‖2 ≤ 2e‖t‖

2

(‖X − t‖2 + ‖t‖2‖X‖4). In view of ‖X −
t‖2 ≤ 2‖X‖2 + 2‖t‖2, the second expectation on the right-hand side is easily
seen to be finite if γ > 1. Thus, in view of the condition γ > 2, we have
E‖Z̃j‖2⊕ < ∞. Hence, Z̃1, Z̃2, . . . are i.i.d. centred random elements of H, and
the CLT in Hilbert spaces yields the assertion, since the kernel K figuring in
(11) is given by K(s, t) = E[Z̃1(s)Z̃1(t)

⊤] (for details in computing K(s, t), see
Proposition 4). ⊓⊔

The following result provides some information on the limit null distribu-
tion of Tn,γ .

Theorem 2 Let T∞,γ be a random variable with the distribution of ‖W‖2⊕,
where W is given in Theorem 1. We then have

E(T∞,γ) =

(
π

γ − 2

)d/2(
d+

d

2(γ − 2)

)
−
(
d(d+ 1)

2(γ − 1)
+ d

) (
π

γ − 1

)d/2

.
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γ 2.5 3 4 5 7
E(T∞,γ) 2.6013 0.7787 0.2022 0.0861 0.0277
V(T∞,γ) 4.7153 0.5430 0.0458 0.0094 0.0011

Table 1: Expectation and variance of the limit null distribution when d = 1

Proof. By Fubini’s theorem, it follows that

E [T∞,γ ] =

∫

Rd

E‖W (t)‖2 wγ(t) dt.

Writing tr(D) for the trace of a square matrix D, we have

E‖W (t)‖2 = E
[
W (t)⊤W (t)

]
= E

[
tr(W (t)⊤W (t))

]

= E
[
tr(W (t)W (t)⊤)

]
= tr

(
E
[
W (t)W (t)⊤

])
= tr (K(t, t))

= e‖t‖
2
(
e‖t‖

2 (
d+ ‖t‖2

)
−
(
‖t‖2 + d‖t‖2

)
− d
)
.

Now, some straightforward algebra yields the assertion. ⊓⊔

In the univariate case d = 1, we also obtained an explicit expression for
the variance of T∞,γ , by using the relation

V(T∞,γ) = 2

∫∫

R2

K2(s, t)wγ(s)wγ(t) dsdt.

By tedious calculations, it follows that

V(T∞,γ) = 2π

(
β−1 + β−3 + δ + δ3 +

1

4
(β2+2)δ5 − 4η − 12η3 − 16(2β2+1)η5

)
,

where β = γ − 1, δ = (β2 − 1)−1/2 and η = (4β2 − 1)−1/2.
Table 1 contains expectation and variance of T∞,γ in the univariate case

for various values of γ.

3 Consistency

In this section, let X have an absolutely continuous distribution, and suppose
that m(t) = E[exp(t⊤X)] exists for each t ∈ R

d. Notice that, by Lebesgue’s
dominated convergence theorem, this (strong) assumption implies that m is
differentiable on R

d, with a continuous derivative. In view of affine invariance,
let without loss of generality E[X ] = 0 and E[XX⊤] = Id.

Theorem 3 We have

lim inf
n→∞

Tn,γ

n
≥
∫

Rd

‖m′(t)− tm(t)‖2 wγ(t) dt P−almost surely. (22)
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Proof. Fix K > 0, and put S(K) := {t ∈ R
d : ‖t‖ ≤ K}. Let B(K) be the

Banach space of continuous functions f : S(K) → R, equipped with the norm
‖f‖∞ = max‖t‖≤K |f(t)|. Recall Mn(t) from (4), and put

Mn,0(t) =
1

n

n∑

j=1

et
⊤Xj , t ∈ R

d.

Let ξn = maxj=1,...,n ‖∆n,j‖, where ∆n,j is given in (15). From (15) we obtain

ξn ≤
∥∥S−1/2

n − Id‖2 · max
1≤j≤n

‖Xj‖+ ‖S−1/2
n ‖2 · ‖Xn‖. (23)

Since the existence of m(t) implies E‖X‖4 < ∞, Theorem 5.2 of Barndorff-
Nielsen (1963) yields

n−1/4 max
1≤j≤n

‖Xj‖ → 0 P-almost surely. (24)

From Sn−Id = n−1
∑n

j=1(XjX
⊤
j −Id)−XnX

⊤

n and Kolmogorov’s variance cri-

terion for averages (see Kallenberg (2002), p. 73), we have limn→∞ n1/2−ε‖Sn−
Id‖2 = 0 P-a.s. for each ε > 0. Hence Proposition 5 implies

lim
n→∞

ξn = 0 P-a.s. (25)

Using the notation ‖f‖∞ = max‖t‖≤K ‖f(t)‖ also for a function f : Rd → R
d,

(16) gives

‖Mn −Mn,0‖∞ ≤ ‖Mn,0‖∞ · ξn ·K ·
(
1 +

Kξn
2

eKξn

)
. (26)

By the strong law of large numbers (SLLN) in B(K), the first factor on the
right-hand side converges almost surely to ‖m‖∞, and thus (25) entails

lim
n→∞

‖Mn −Mn,0‖∞ = 0 P-a.s. (27)

Putting
Fn = max

j=1,...,n
‖Xj‖, (28)

the triangle inequality gives

‖M ′
n −M ′

n,0‖∞ ≤ (ξn + Fn) · ‖Mn −Mn,0‖∞ + ξn · ‖Mn,0‖∞.

Invoking (26), (23), (24) and Proposition 5, we have

lim
n→∞

‖M ′
n −M ′

n,0‖∞ = 0 P-a.s. (29)

Writing id for the identity function on R
d, the triangle inequality yields

‖M ′

n− id ·Mn‖∞ ≤ ‖M ′
n−M ′

n,0‖∞+‖M ′
n,0− id ·Mn,0‖∞+K ·‖Mn,0−Mn‖∞.
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From (27), (29) and the SLLN in B(K) it follows that

lim sup
n→∞

‖M ′

n − id ·Mn‖∞ ≤ ‖m′ − id ·m‖∞ P-a.s. (30)

Likewise, we have

‖M ′

n,0− id ·Mn,0‖∞ ≤ ‖M ′
n,0−M ′

n‖∞+‖M ′
n− id ·Mn‖∞+K · ‖Mn−Mn,0‖∞

and thus

‖m′ − id ·m‖∞ ≤ lim inf
n→∞

‖M ′

n − id ·Mn‖∞ P-a.s. (31)

Upon combining (30) and (31), and using Fatou’s lemma, we obtain

lim inf
n→∞

Tn,γ

n
≥ lim inf

n→∞

∫

S(K)

‖M ′
n(t)− tMn(t)‖2 wγ(t) dt

≥
∫

S(K)

lim inf
n→∞

‖M ′
n(t)− tMn(t)‖2 wγ(t) dt

=

∫

S(K)

‖m′(t)− tm(t)‖2 wγ(t) dt P-a.s.

Since K was arbitrary, the assertion follows. ⊓⊔

Remark 1 IfX has some non-degenerate non-normal distribution with existing
moment generating function, then m′(t) 6= tm(t) for at least one t. Since the
weight function wγ is strictly positive on R

d and the function m′(t) − tm(t),
t ∈ R

d, is continuous, the right-hand side of (22) is strictly positive, and thus

lim
n→∞

Tn,γ = ∞ P-a.s. (32)

Hence, the test is consistent against each such alternative. We conjecture that
(32) holds for any non-normal alternative distribution. A proof of such a result,
however, remains an open problem.

Remark 2 Regarding consistency, one may relax the assumption that Eet
⊤X <

∞ for each t ∈ R
d. If Eet

⊤X < ∞ for each t ∈ N , where N is some open
neighborhood of the origin in R

d, the proof given above yields

lim inf
n→∞

Tn,γ

n
≥
∫

N

‖m′(t)− tm(t)‖2 wγ(t) dt P-a.s.,

since, mutatis mutandis, this inequality holds if N is replaced by any compact
subset of N . If m′(t) 6= tm(t) for at least one t ∈ N , then (32) continues to
hold.
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4 The limit γ → ∞

In this section, we will show that, for fixed n, the statistic Tn,γ , after a suit-
able scaling, approaches a linear combination of two well-known measures of
multivariate skewness as γ → ∞.

Theorem 4 We have (pointwise on the underlying probability space)

lim
γ→∞

γ2+d/2 16Tn,γ

nπd/2
= 2b1,d + b̃1,d,

where

b1,d =
1

n2

n∑

j,k=1

(Y ⊤
n,jYn,k)

3 (33)

is nonnegative invariant sample skewness in the sense of Mardia (1970), and

b̃1,d =
1

n2

n∑

j,k=1

Y ⊤
n,jYn,k ‖Yn,j‖2 ‖Yn,k‖2

denotes sample skewness in the sense of Móri, Rohatgi and Székely, as defined
in Móri et al. (1993).

Proof. We start with (9) and use

exp

(‖Yn,j + Yn,k‖2
4γ

)
= 1 +

‖Yn,j + Yn,k‖2
4γ

+
‖Yn,j + Yn,k‖4

32γ2
+O

(
γ−3

)

as γ → ∞. Multiplying this expression with the term within the rightmost
bracket of (9), and using the relations

∑n
j=1 Yn,j = 0,

∑n
j=1 ‖Yn,j‖2 = nd,∑n

j,k=1 ‖Yn,j + Yn,k‖2 = 2n2d,

n∑

j,k=1

‖Yn,j + Yn,k‖4 = 2n2


 1

n

n∑

j=1

‖Yn,j‖4 + d2 + 2d


 ,

n∑

j,k=1

‖Yn,j + Yn,k‖4Y ⊤
n,jYn,k = 8

n∑

j,k=1

(
Y ⊤
n,jYn,k

)2 ‖Yn,j‖2 + 4n2b1,d + 2n2b̃1,d
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as well as

n∑

j,k=1

(
Y ⊤
n,jYn,k

)2 ‖Yn,j‖2 =

n∑

j,k=1

tr
(
Y ⊤
n,jYn,kY

⊤
n,kYn,j ‖Yn,j‖2

)

= tr




n∑

k=1

Yn,kY
⊤
n,k

n∑

j=1

Yn,jY
⊤
n,j‖Yn,j‖2




= tr


nId

n∑

j=1

Yn,jY
⊤
n,j‖Yn,j‖2




= n

n∑

k=1

tr
(
Y ⊤
n,jYn,j‖Yn,j‖2

)

= n
n∑

j=1

‖Yn,j‖4,

the result follows by tedious but straightforward algebra. ⊓⊔

Remark 3 It is interesting to note a similarity between Theorem 4 and Theo-
rem 2.1 of Henze (1997), who showed that the BHEP-statistic for testing for
multivariate normality, after suitable rescaling, approaches the linear combi-
nation 2b1,d + 3b̃1,d as a smoothing parameter (called β in that paper) tends
to 0. Since β and γ are related by β = γ−1/2, this corresponds to letting γ
tend to infinity. The same linear combination 2b1,d + 3b̃1,d also showed up as
a limit statistic in Henze et al. (2018). Notice that, in the univariate case, the
limit statistic figuring in Theorem 4 is nothing but three times squared sam-
ple skewness. It should be stressed that tests for multivariate normality based
on b1,d or b̃1,d (or on related measures of multivariate skewness and kurtosis)
lack consistency against general alternatives, see, e.g., Baringhaus and Henze
(1991), Baringhaus and Henze (1992), Henze (1994a), and Henze (1994b).

5 Monte Carlo results

In this section we compare the finite-sample power performance of the newly
proposed test to those of several competing tests for normality, both for the
univariate and the multivariate case. In the case d = 1 the competing proce-
dures are

a) the Cramér-von Mises (CvM) test,
b) the Anderson-Darling (AD) test,
c) the Shapiro-Wilk (SW ) test,
d) the Jarque-Bera (JB) test,
e) the Zghoul (Z) test.

The R package nortest contains the functions cvm.test and ad.test, which
can be used in order to calculate the test statistic and the associated p-value
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for each of the first two tests mentioned above, see Gross and Ligges (2015).
The Shapiro-Wilk test can be performed using the Shapiro.test function in-
cluded in the stats package. The R package tseries contains a function called
jarque.bera.test, which can be used in order to calculate the test statistic and
p-value associated with the fourth test mentioned above, see Trapletti and
Hornik (2017). Each of these tests are well-known and will not be discussed
further.

The test of Zghoul (see Zghoul (2010)) is based on the empirical moment
generating function. Zghoul (2010) includes a Monte Carlo study which indi-
cates that the finite-sample power performance of the test compares favorably
to that of its competitors, especially against symmetric alternatives with kur-
tosis higher than that of the normal distribution. However, the mentioned
paper fails to provide the mathematical theory underlying this test. Henze
and Koch (2017) more recently provided this theory, including a proof that
the test is consistent against general alternatives.

The test statistic of Zghoul is a weighted L2-statistic, given by

Zn(γ) = n

∫

R

(Mn(t)−m(t))2exp(−γt2)dt,

where γ > 2 is a smoothing parameter. Based on the finite-sample performance
reported in Zghoul (2010), the author recommended setting γ equal to either
3 or 15. The numerical results presented below include the powers obtained
using both of these values for the smoothing parameter; the resulting tests are
denoted by Z3 and Z15 respectively. The test statistic Zn(γ) can be rewritten
in the computationally amenable form

Zn(γ) =
√
π


 n√

β
− 2√

γ− 1
2

n∑

i=1

exp

(
Y 2
n,i

4β+2

)
+

1

n
√
γ

n∑

i,j=1

exp

(
(Yn,i+Yn,i)

2

4γ

)
 ,

where β = γ−1. This test rejects normality for large values of the test statistic.
Turning our attention to the multivariate case, we consider the finite-

sample power performance of the newly proposed test to those of some promi-
nent competing tests, and to two very recent tests for multinormality. These
procedures are

a) Mardia’s tests based on skewness and kurtosis,
b) the Henze-Zirkler test,
c) the energy test of Székely and Rizzo,
d) a recent test of Henze, Jiménez-Gamero and Meintanis,
e) a recent test of Henze and Jiménez-Gamero.

a): Mardia’s tests based on skewness and kurtosis

Mardia’s test for multinormality based on sample skewness rejects H0 for
large values of b1,d, where b1,d is given in (33). Notice that b1,d is a consistent
estimator of β1,d = E(X⊤

1 X2)
3. Under normality we have β1,d = 0, and the

limit distribution of nb1,d as n → ∞ is 6χ2
d(d+1)(d+2)/6, see Mardia (1970).
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The limit distribution of nb1,d under elliptical symmetriy has been derived by
Baringhaus and Henze (1992).

Sample kurtosis in the sense of Mardia is given by

b2,d =
1

n

n∑

j=1

‖Yn,j‖4,

which is an estimator of β2,d = E‖X1‖4.
Under normality, we have β2,d = d(d + 2), and the limit null distribution

of
√
n(b2,d − d(d + 2)) is the normal distribution N(0, 8d(d + 2)), see Mardia

(1970). The test based on b2,d rejects H0 for large and small values of β2,d.
The R package QuantPsyc contains a function mult.norm, which calcu-

lates both Mardia’s skewness and kurtosis measures as well as the p-values as-
sociated with the corresponding tests from multivariate normality, see Fletcher
(2012). Below we denote the tests based on Mardia’s skewness and kurtosis by
MSn and MKn, respectively.

We stress that there are several other measures of skewness and kurtosis,
see Sections 3 and 4 of Henze (2002). The deficiences of such measures as
statistics for supposedly “directed tests” for multivariate normality have been
addressed in Baringhaus and Henze (1991), Baringhaus and Henze (1992),
Henze (1994a) as well as Henze (1994b).

b): The Henze-Zirkler test

Writing Ψn(t) = n−1
∑n

k=1 exp(it
⊤Yn,k) for the empirical characteristic func-

tion of the scaled residuals Yn,1, . . . , Yn,n, Henze and Zirkler (1990) proposed
the test statistic

HZn(γ) = (2πγ2)−d/2

∫

Rd

∣∣∣∣Ψn(t)− exp

(
−‖t|2

2

) ∣∣∣∣
2

exp

(
−‖t‖2

2γ2

)
dt,

for some fixed γ > 0. The test statistic can be rewritten as

HZn(γ) =
1

n2

n∑

j,k=1

exp

(
−γ2

2
‖Yn,j − Yn,k‖2

)

−2(1 + γ2)−d/2 1

n

n∑

j=1

exp

(
−γ2‖Yn,j‖2
2(1 + γ2)

)
+ (1 + 2γ2)−d/2.

The Henze-Zirkler test is obtained by setting

γ =
1√
2

(
(2d+ 1)n

4

)1/(d+4)

.

This choice of γ corresponds to the optimal bandwidth for a multivariate non-
parametric density estimator with a Gaussian kernel. The Henze-Zirkler test
is included because of its impressive power performance reported in previous
studies, see, e.g., Mecklin and Mundfrom (2005).
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The Henze-Zirkler test (denoted HZn below) is programmed in the func-
tion hzTest in the R package MVN , see Korkmaz et al. (2014). This test
rejects normality for large values of the test statistic. HZn is equivalent to a
test by Bowman and Foster (1993), as remarked in Henze (2002).

c): The energy test

Székely and Rizzo (2005) proposed the test statistic

ENn = n


2

n

n∑

j=1

E‖Yn,j−Z‖ − 2Γ ((d+ 1)/2)

Γ (d/2)
− 1

n2

n∑

j,k=1

E‖Yn,j−Yn,k‖


 .

Here, the first expectation is with respect to a random vector Z, which is
independent of Yn,j and has the distribution Nd(0, Id), and

E‖a− Z‖ =
√
2
2Γ ((d+ 1)/2)

Γ (d/2)
+

√
2

π

∞∑

k=0

{
(−1)k

k!2k
‖a‖2k+2

(2k+1)(2k+2)

×2Γ ((d+ 1)/2)Γ (k+1.5)

Γ ((d/2)+k+ 1)

}
.

This test, denoted by ENn, is known as the energy test. Rejection of H0 is
for large values of ENn. The function mvnorm.etest in the R package energy
calculates this test statistic as well as the corresponding p-value, see Rizzo
and Székely (2016). The energy test is also reported to have excellent power
performance, see Joenssen and Vogel (2014).

d): The Henze–Jiménez-Gamero–Meintanis test

By generalizing a characterization of normality involving both the character-
istic and the moment generating function (see Volkmer (2014)) to the multi-
variate case, Henze et al. (2018) proposed to base a test of H0 on the weighted
L2-statistic

HMn = n

∫

Rd


 1

n2

n∑

j=1

cos
(
t⊤Yn,j

) n∑

j=1

exp
(
t⊤Yn,j

)
− 1




2

exp
(
−γ‖t‖2

)
dt,

for some parameter γ > 1. Putting Y ±
jk = Yn,j ± Yn,k, HMn can be rewritten

as

HMn =

(
π

γ

)d/2




1

2n3

n∑

j,k,ℓ,m=1

{
exp

(
‖Y +

jk‖2 − ‖Y −
ℓm‖2

4γ

)
cos

(
Y +⊤
jk Y −

ℓm

2γ

)

+exp

(
‖Y +

jk‖2 − ‖Y +
ℓm‖2

4γ

)
cos

(
Y +⊤
jk Y +

ℓm

2γ

)}

− 2

n

n∑

j,k=1

exp

(
‖Yn,j‖2 − ‖Yn,k‖2

4γ
cos

(
Y ⊤
n,jYn,k

2γ

)
+ n

)
 .
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The test based on HMn uses an upper rejection region.
A disadvantage of this test is the need to calculate a four-fold sum in order

to evaluate the test statistic. Hence, the amount of computer time required in
order to perform this test is substantially more than the time required for the
other tests under consideration.

e): The Henze–Jiménez-Gamero test

Henze and Jiménez–Gamero (2018) present a multivariate generalization of
a recent class of tests for univariate normality (see Henze and Koch (2017))
based on the empirical moment generating function. The test statistic is

HJn = n

∫

Rd

(Mn(t)−m(t))
2
exp

(
−β‖t‖2

)
dt,

where β > 1 is a fixed parameter. An alternative representation of HJn is

HJn = πd/2





1

n

n∑

j,k=1

1

βd/2
exp

(‖Yn,j + Yn,j‖2
4β

)
+

n

(β − 1)d/2

−2
n∑

j=1

1

(β − 1/2)d/2
exp

(‖Yn,j‖2
4β − 2

)
 ,

which is amenable to computation. This test rejects H0 for large values of the
test statistic.

5.1 Power results

This subsection contains the results of a power study that comprises several
univariate and multivariate distributions, using the software package R, see
R Core Team (2015). With the exception of the computer-intensive statistic
HMn, critical values are each based on 106 replications under H0 (for HMn

we used 105 replications). Each power estimate presented below is based on
10 000 replications.

Power results are reported for a sample size of n = 50 and d ∈ {1, 2, 3, 5}.
A nominal significance level of α = 0.05 is used throughout. As is pointed
out in Mecklin and Mundfrom (2005), the maximum possible standard error
for each power estimate is 0.005. Thus, the 99% confidence interval for each
reported power estimate is contained in the interval obtained by subtracting
1% from, and adding 1% to, the stated power.

The results for the univariate case are given in Table 2. The entries are per-
centages of rejection of H0, rounded to the nearest integer. The power against
the standard normal distribution shows that the nominal level is maintained
very closely. As for the alternative distributions, NMIX1 and NMIX2 denote
mixtures of the normal distributions N(0, 1) and N(0, 4). The mixture NMIX1
gives equal weight to these distributions, while NMIX2 is obtained when the
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probability of sampling from the standard normal distribution is 0.75. The re-
maining alternative distributions considered are t-distributions with 3, 5 and
10 degress of freedom, the lognormal distributions with parameters (0, 1/2)
and (0, 1/4) (denoted by LN(·)), the χ2-distributions with 5 and 15 degrees
of freedom, the standard logistic distribution, the Weibull distributions with
shape parameters 10 and 20, the Pearson type VII distributions with 5 and
10 degrees of freedom (denoted by PV II(·)), and the skew-normal law with
skewness parameters 3 and 5 (denoted by SN(·)), see Azzalini (1985).

The R Package PearsonDS contains the function rpearsonV II, which can
be employed to simulate random variables from this distribution, see Becker
and Klößner (2017). The R Package sn disposes of the function rsn, which
can be used to simulate random variates from the skew normal distribution,
see Azzalini (2017).

Tables 2, 3, 4 and 5 report the powers calculated in the cases where d
equals 1, 2, 3 and 5, respectively. Note that the subscript n in the names of
the test statistics is omitted in the tables in order to save space.

CvM AD SW JB Z3 Z15 T2.5 T5 T10 T∞

N(0, 1) 5 5 5 5 5 5 5 5 5 5
NMIX1 18 20 21 28 24 20 24 23 21 18
NMIX2 19 22 28 37 34 28 34 32 30 26
t(3) 58 61 63 69 65 57 65 63 60 52
t(5) 28 31 37 44 41 35 41 39 37 32
t(10) 12 13 16 21 20 17 20 20 19 17
LN(0, 1

2
) 83 87 93 85 80 89 76 85 88 91

LN(0, 1

4
) 31 35 44 39 37 45 34 40 44 47

χ2(5) 74 81 89 75 69 82 62 74 80 83
χ2(15) 30 34 43 36 34 43 31 38 41 45
Logistic(0, 1) 14 16 19 26 24 20 24 23 21 19
Weibull(10) 25 28 34 30 28 36 25 31 35 37
Weibull(20) 39 44 53 46 44 53 40 48 52 55
PV II (5) 27 30 36 43 40 35 41 39 37 32
PV II (10) 10 12 16 21 20 17 20 19 18 16
SN(3) 31 34 40 32 30 39 25 33 37 41
SN(5) 53 59 67 49 43 58 36 49 55 61

Table 2: Monte Carlo power estimates in the univariate case, α = 0.05

The results shown in Table 2 indicate that the newly proposed class of tests
exhibit substantial power against the distributions considered. T∞ outperforms
each of the competing tests in terms of the estimated powers against the
LN(0, 1/4), χ2(15) and SN(3) laws, as well as both of the Weibull distributions
considered. The newly proposed tests also proves to be serious competitors
against each of the remaining distributions considered, especially for small
values of γ (in which case Tn,γ is often only outperformed by the Jarque-Bera
test).

We now turn our attention to the case d > 1. As was the case for the
univariate tests, the powers against 16 alternative distributions are reported
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for each of the data dimensions considered. The powers of each of the tests
against the standard normal distribution are also included in the relevant ta-
bles. The alternative distributions considered include mixtures of normal laws,
distributions with independent marginals, distributions where each marginal
is normal except for one, a spherically symmetric distribution, and a distribu-
tion for which every marginal is normal, but the joint distribution does not
follow the normal law.

The parameter combinations used for the mixtures of normal distributions
were taken from Székely and Rizzo (2005). Let pNd(µ1, Σ1)+(1−p)Nd(µ2, Σ2)
denote a normal mixture, where the probability of sampling from Nd(µ1, Σ1) is
p and the probability of sampling from Nd(µ2, Σ2) is 1−p. Let µ = 0 and µ = 3
denote d-dimensional column vectors of 0’s and 3’s, respectively, and let Bd

denote a (d×d)-matrix containing 1’s on the main diagonal and 0.9’s on each off
diagonal entry. The normal mixtures are constructed by combining Nd(0, Id),
Nd(3, Id) and Nd(0, Bd). The first mixture, denoted by NMIX1, is 0.9Nd(0, Id)+
0.1Nd(3, Id). This distribution is skewed with heavy tails. The second mixture,
denoted by NMIX2, is 0.9Nd(0, Bd)+0.1Nd(0, Id). This is a symmetric, heavy-
tailed distribution. In addition, we included two multivariate t-distributions;
the tν(0, Id)-distribution for ν = 5 and ν = 10. Next, we included distributions
with independent marginals, the latter being the χ2-distribution with 15 and
20 degrees of freedom respectively, the logistic(0, 1) distribution, the gamma
distributions with parameters (5, 1) and (4, 2), as well as the Pearson Type
VII distributions with 10 and 20 degrees of freedom.

Three d-dimensional distributions are obtained by combining d − 1 inde-
pendent standard normal marginals with one non-normal distribution. This
distribution is denoted by N(0, 1)d−1 ⊗ F , where F denotes the non-normal
marginal distribution. The three alternatives considered for F are the χ2-
distributions with 5 and 10 degrees of freedom, respectively, as well as the
t-distribution with 3 degrees of freedom.

Spherically symmetric distributions can be defined in R using the Elliptical
Distribution function from the R package distrEllipse, see Ruckdeschel et al.
(2006). Tables 3–5 display the estimated powers of the various tests considered
against the d-dimensional spherically symmetric distribution, where the radius
of the distribution follows a lognormal distribution with parameters 0 and 0.5.
This distribution is denoted by Sd(LN(0, 1/2)).

Let ρd and ρ′d denote positive definite (d×d)-matrices with 1’s on the main
diagonal, where ρd has the constant ρ and ρ′d the constant −ρ on each off di-
agonal entry. The final distribution considered is the mixture 0.5Nd(0, ρd) +
0.5Nd(0, ρ

′
d). This distribution is a non-normal d-variate distribution with nor-

mal marginals.
As was the case in the univariate setting, the newly proposed test is associ-

ated with several high powers reported in Tables 3, 4, and 5. When comparing
the results for the distributions with independent marginals, we see that T∞

outperforms each of the competitors against both of the distributions with χ2

marginals as well as both of the distributions with gamma marginals consid-
ered. This is also the case aginst the N(0, 1)d−1⊗χ2(5) and N(0, 1)d−1⊗χ2(10)
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MS MK HZ EN HM HJ T2.5 T5 T10 T∞

N(0, 1) 5 5 5 5 5 5 5 5 5 5
NMIX1 85 34 75 82 57 73 48 69 80 86
NMIX2 44 48 29 38 57 53 55 54 52 44
t5(0, I2) 53 62 42 51 67 60 60 60 58 53
t10(0, I2) 24 26 14 19 32 29 29 29 28 25
(χ2(15))2 49 19 34 42 26 41 30 39 45 52
(χ2(20))2 40 16 27 33 24 34 25 32 37 42
Logistic(0, 1)2 24 27 15 19 33 28 28 29 28 25
Gamma(5, 1)2 67 27 52 61 38 57 41 54 62 70
Gamma(4, 2)2 76 32 64 72 42 66 48 62 71 78
PV II (10)

2 20 21 11 14 27 23 24 24 23 20
PV II (20)

2 11 10 7 8 14 12 13 13 12 12
N(0, 1)⊗t(3) 47 52 42 49 61 55 56 56 54 47
N(0, 1)⊗χ2(5) 63 25 52 60 36 52 39 49 57 65
N(0, 1)⊗χ2(10) 38 15 26 32 21 32 24 30 35 40
S2(LN(0, 1

2
)) 26 25 15 21 29 30 31 31 29 26

NM2(ρ = 0.2) 6 6 5 6 6 6 6 6 6 6

Table 3: Monte Carlo power estimates in the multivariate case for d = 2

MS MK HZ EN HM HJ T2.5 T5 T10 T∞

N(0, 1)3 5 5 5 5 5 5 5 5 5 5
NMIX1 89 36 81 91 59 72 43 66 82 91
NMIX2 71 76 49 66 79 79 79 80 78 72
t5(0, I3) 68 78 55 68 77 73 71 73 73 69
t10(0, I3) 34 38 18 27 35 38 36 38 38 34
(χ2(15))3 52 21 35 49 27 42 31 39 47 55
(χ2(20))3 40 16 26 37 21 33 24 30 36 44
Logistic(0, 1)3 28 30 15 22 33 31 30 31 31 28
Gamma(5, 1)3 72 30 53 69 39 58 41 53 65 75
Gamma(4, 2)3 80 36 65 79 46 66 47 61 73 83
PV II (10)

3 22 22 10 16 24 25 25 26 25 23
PV II (20)

3 12 10 6 8 14 13 13 13 13 12
N(0, 1)2⊗t(3) 42 43 29 40 54 48 49 49 48 43
N(0, 1)2⊗χ2(5) 47 18 33 46 28 39 29 36 43 51
N(0, 1)2⊗χ2(10) 26 12 17 24 16 22 17 21 24 28
S3(LN(0, 1

2
)) 53 58 18 43 62 58 57 58 58 54

NM3(ρ = 0.2) 8 7 5 6 7 8 8 8 8 8

Table 4: Monte Carlo power estimates in the multivariate case for d = 3

distributions. The mentioned predominance is for each of the data dimensions
considered. Furthermore, the newly proposed test statistic shows high power
against the remaining distributions for finite values of γ. Specifically, when
d = 2 the new test outperforms its competitors against the spherically sym-
metric distribution. In the case d = 3, none of the competing tests are able to
outperform the newly proposed class of tests against the second normal mix-
ture considered, the t-distribution with 10 degrees of freedom or the PV II(10)
distribution. The corresponding list of distributions in the case where d = 5
is obtained by substituting the t-distribution with 10 degrees of freedom for
the t-distribution with 5 degrees of freedom and adding the PV II(20) distri-
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MS MK HZ EN HM HJ T2.5 T5 T10 T∞

N(0, 1)5 5 5 5 5 5 5 5 5 5 5
NMIX1 82 33 74 94 43 58 34 51 68 86
NMIX2 94 94 68 89 95 95 95 96 95 94
t5(0, I5) 88 94 72 88 89 90 86 89 90 89
t10(0, I5) 54 58 23 45 51 55 51 55 57 55
χ2(15)5 51 22 30 52 26 39 29 36 44 56
χ2(20)5 39 16 22 39 20 30 23 28 33 42
Logistic(0, 1)5 33 34 13 25 31 34 31 34 36 33
Gamma(5, 1)5 72 33 49 74 37 55 40 51 63 76
Gamma(4, 2)5 81 40 60 84 40 64 47 59 72 85
PV II (10)

5 27 25 9 19 26 28 26 28 29 27
PV II (20)

5 12 9 6 9 12 12 11 12 12 12
N(0, 1)4⊗t(3) 35 32 16 30 42 39 38 39 39 35
N(0, 1)4⊗χ2(5) 28 13 16 28 19 23 19 22 25 31
N(0, 1)4⊗χ2(10) 16 8 10 15 13 14 12 13 15 18
S5(LN(0, 1

2
)) 89 95 77 90 90 90 86 90 91 89

NM5(ρ = 0.2) 12 9 5 11 12 13 12 13 13 12

Table 5: Monte Carlo power estimates in the multivariate case for d = 5

bution. Finally, none of the competing tests is able to outperform the newly
proposed class of tests against the NMd(ρ = 0.2) distribution.

In most of the cases considered, the power of the newly proposed class of
tests is a monotone function of γ. Based on the numerical results presented, it is
recommeded that γ = 5 be used when performing the test as this value results
in reasonably high power against the majority of the alternatve distributions
considered.

6 A real data example

The payoff function of certain types of financial derivatives depends on the
joint behaviour of multiple stocks or indexes; an important example is the class
of basket options. When calculating the price of a basket option, it is often
assumed that the log-returns of the stocks or indexes considered are realized
from a multivariate normal distribution (this assumption is an extention of the
celebrated Black-Merton-Scholes model for options on a single stock or index).
As a result, testing the hypothesis that observed financial log-returns follow a
multivariate normal law is of interest when pricing basket options. For more
details regarding the pricing of these options, the interested reader is referred
to Caldana et al. (2016).

As a practical application, we consider the log-returns associated with three
major indexes traded in the financial market of the United States. 50 daily
log-returns were calculated for the period ending 29 December 2017, the rel-
evant prices were downloaded from http://finance.yahoo.com. The first index
considered is the Dow Jones Industrial Average (DJIA) index; this index is
comprised of a price-weighted average of 30 large publicly owned companies.
The second is the Standard & Poor 500 (S&P 500); a market-capitalization
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weighted index comprising 500 large companies. Finally, we consider the log-
returns of the National Association of Securities Dealers Automated Quota-
tions (NASDAQ) composite index. We are interested in testing the hypothesis
that the log-returns are realized from a multivariate normal distribution using
the newly proposed test.

Table 6 shows the estimated p-values associated with the newly proposed
tests for various values of γ, the reported p-values were obtained using one
million Monte Carlo simulations in each case. The results indicate that the
hypothesis of multivariate normality is rejected at a 1% significance level for
each value of γ considered.

γ = 2.5 γ = 3 γ = 4 γ = 5 γ = 7 γ = 10 γ = ∞

0.0072 0.0061 0.0044 0.0033 0.00210 0.0013 0.0002

Table 6: p-values associated with the newly proposed tests

7 Conclusion

We proposed and studied a new class of affine invariant tests for normality in
any dimension that are based on a partial differential equation involving the
moment generating function. Some properties of the limit null distribution of
the test statistic Tn,γ have been derived, and the consistency of this class of
tests against general alternatives has been proved under some mild conditions.
For fixed n, the test statistic Tn,γ , after suitable scaling, approaches a linear
combination of two measures of multivariate skewness as γ → ∞.

A Monte Carlo study investigates the finite-sample performance of Tn,γ

compared to those of competing tests in the univariate and multivariate set-
tings. The competing tests considered for univariate normality comprise four
well-known tests, while, in the multivariate case, we include four prominent
classical tests for multinormality and two very recent tests. The numerical
results indicate that Tn,γ often exhibits power greater than those associated
with several of its competitors, both in univariate and multivariate settings.
Based on the numerical results obtained, it is recommended that γ = 5 is used
when performing the test.

8 Appendix: Technical proofs

Proposition 1 We have ‖Cn‖⊕ = oP(1), where Cn is given in (20).

Proof. Putting ξj(t) := exp(t⊤Xj

(
t⊤∆n,j

)2
exp

(
Θn,jt

⊤∆n,j

)
/2, we have

‖Cn(t)‖2 =
1

n

n∑

j,k=1

ξj(t)ξk(t) (Xj − t+∆n,j)
⊤
(Xk − t+∆n,k) .
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Recall Fn from (28) and put Λn := ‖S−1/2
n − Id‖2Fn + ‖S−1/2

n ‖2‖Xn‖. We
have |Θn,jt

⊤∆n,j | ≤ ‖t‖Λn. Furthermore, using |t⊤(Xj +Xk)| ≤ 2 ‖t‖Fn and

(
t⊤∆n,j

)2 ≤ 2‖t‖2 ‖S−1/2
n − Id‖22 ‖Xj‖2 + 2‖t‖2 ‖S−1/2

n ‖22 ‖Xn‖2,

as well as

| (Xj−t+∆n,j)
⊤(Xk−t+∆n,k) | ≤ (‖Xj‖+‖t‖+‖∆n,j‖) (‖Xk‖+‖t‖+‖∆n,k‖) ,

we obtain

‖Cn(t)‖2 ≤ e2‖t‖Γn
1

n

n∑

j,k=1

({
‖t‖2 ‖S−1/2

n − Id‖22 ‖Xj‖2 + ‖t‖2 ‖S−1/2
n ‖22 ‖Xn‖2

}

×
{
‖t‖2 ‖S−1/2

n − Id‖22 ‖Xk‖2 + ‖t‖2 ‖S−1/2
n ‖22 ‖Xn‖2

}

×
{
‖Xj‖+ ‖t‖+ ‖∆n,j‖

}{
‖Xk‖+ ‖t‖+ ‖∆n,k‖

})
,

where Γn = Fn + Λn. Expanding the curly brackets, the leading terms are
those that do not involve any of ∆n,j . We concentrate on

Sn(t) := e2‖t‖Γn
1

n

n∑

j,k=1

(
‖t‖4 ‖S−1/2

n − Id‖42 ‖Xj‖3 ‖Xk‖3
)
,

which originates from choosing the first term within each of the curly brackets.
The other terms are treated similarly. Notice that

∫

Rd

Sn(t)wγ(t) dt = ‖S−1/2
n −Id‖42 ·n·

( 1
n

n∑

j=1

‖Xj‖3
)2

·
∫

Rd

‖t‖4e2‖t‖Γn wγ(t) dt,

and that ‖S−1/2
n − Id‖22 = OP(n

−2), n−1
∑n

j=1 ‖Xj‖ = OP(1). By Proposition

10.2 of Henze et al. (2018), the integral is of order OP(Γ
d+3
n ) exp(Γ 2

n/γ) (no-
tice that 1 + γ in that paper corresponds to (our) γ). From display (10.6)
and display (10.7) of Henze et al. (2018) we have Γn = OP(

√
logn) and

exp
(
Γ 2
n/γ

)
= n2/γ · (logn)(d−2)/γ

OP(1). Since γ > 2, it follows that

∫

Rd

Sn(t)wγ(t) dt = OP

(
n

2
γ
−1
)
OP

(
(logn)

d+3

2
+ d−2

γ

)
= oP(1). ⊓⊔

Proposition 2 For Bn given in (19), we have

Bn(t) = − 1√
n

exp

(‖t‖2
2

) n∑

j=1

(
XjX

⊤
j t− t

2
+Xj

)
+ oP(1).
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Proof. Observe that Bn(t) = n−1/2
∑n

j=1 exp(t
⊤Xj)∆n,j +Rn(t), where

Rn(t) =
1√
n

n∑

j=1

et
⊤Xj (t⊤∆n,j)∆n,j .

Use

‖Rn(t)‖2 ≤
( 1
n

n∑

j=1

et
⊤Xj

)2
n ‖t‖2 max

i=1,...,n
‖∆n,i‖4

and ‖∆n,j‖ ≤ ‖S−1/2
n − Id‖2 ‖Fn‖ + ‖S−1/2

n ‖ ‖Xn‖ with Fn given in (28) to-
gether with Fn = OP(

√
logn) (see Prop. 10.1. of Henze et al. (2018)) and

E

[( 1
n

n∑

j=1

et
⊤Xj

)2]
= E

[ 1

n2

n∑

j,k=1

et
⊤(Xj+Xk)

]
≤ e2‖t‖

2

+ e‖t‖
2

(34)

to show Rn = oP(1). Next, Bn(t)−Rn(t) = Bn,1(t)−Bn,2(t)−Bn,3(t), where

Bn,1(t) =
1√
n

n∑

j=1

et
⊤Xj

(
S−1/2
n − Id

)
Xj ,

Bn,2(t) =
1√
n

n∑

j=1

et
⊤Xj

(
S−1/2
n − Id

)
Xn, Bn,3(t) =

1√
n

n∑

j=1

et
⊤XjXn.

Since

‖Bn,2(t)‖2 ≤
( 1
n

n∑

j=1

et
⊤Xj

)2
‖√n

(
S−1/2
n − Id

)
‖22 · ‖Xn‖2

and ‖√n
(
S
−1/2
n − Id

)
‖22 · ‖Xn‖2 = OP(n

−1), one may use (34) and Fubini’s

theorem to show Bn,2 = oP(1). To proceed, rewrite Bn,3(t) in the form

Bn,3(t) =
1

n

n∑

j=1

et
⊤Xj · 1√

n

n∑

j=1

Xj .

Since replacing the first factor with its expectation exp(‖t‖2/2) means adding
a term that is asymptotically negligible, we have

Bn,3(t) = e‖t‖
2/2 1√

n

n∑

j=1

Xj + oP(1). (35)

To tackle Bn,1(t), we rewrite its transpose in the form

Bn,1(t)
⊤ =

1

n

n∑

j=1

et
⊤XjX⊤

j

√
n
(
S−1/2
n − Id

)
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and use display (2.13) of Henze and Wagner (1997), according to which

√
n
(
S−1/2
n − Id

)
= − 1

2
√
n

n∑

j=1

(
XjX

⊤
j − Id

)
+Dn, (36)

where Dn = OP(n
−1/2). Putting

E(t) = E

[
et

⊤X1X1

]
=

d

dt
e‖t‖

2/2 = e‖t‖
2/2 · t (37)

and Yn(t) = n−1
∑n

j=1

(
exp(t⊤Xj)Xj − E(t)

)
, we have

Bn,1(t)
⊤ = (Yn(t) + E(t))⊤

{
− 1

2
√
n

n∑

j=1

(
XjX

⊤
j − Id

)
+Dn

}
. (38)

Abbreviating the matrix within curly brackets by Sn, we have ‖SnYn(t)‖2 ≤
‖Sn‖22 ‖Yn(t)‖2. Since ‖Sn‖22 = OP(1), it follows that

∫

Rd

‖SnYn(t)‖2 wγ(t) dt ≤ OP(1)

∫

Rd

‖Yn(t)‖2 wγ(t) dt.

Now, observe that Yn(t) is a mean of centred random vectors, and invoking
Fubini’s theorem the expectation of the integral is seen to be of order O(n−1).
Thus, ‖SnYn‖⊕ = oP(1), and hence (since the matrix Dn figuring in (38) is
asymptotically negligible) we have

Bn,1(t) = − 1

2
√
n

n∑

j=1

(
XjX

⊤
j − Id

)
E(t) + oP(1).

Upon combing this result with (35) and (37), the assertion follows. ⊓⊔

Proposition 3 For An given in (18), we have

An(t) = − 1√
n

e‖t‖
2/2

2

n∑

j=1

(
XjX

⊤
j t− t

)
+ oP(1).

Proof. Notice that An(t) = An,1(t)−An,2(t)−An,3(t), where

An,1(t) =
1√
n

n∑

j=1

et
⊤Xj t⊤

(
S−1/2
n − Id

)
Xj(Xj − t),

An,2(t) =
1√
n

n∑

j=1

et
⊤Xj t⊤

(
S−1/2
n − Id

)
Xn(Xj − t),

An,3(t) =
1√
n

n∑

j=1

et
⊤Xj t⊤Xn(Xj − t).
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To show An,2 = oP(1), use n
∥∥S−1/2

n − Id
∥∥2
2
‖Xn‖2 = OP(n

−1) together with

‖An,2(t)‖2 ≤
∥∥∥ 1
n

n∑

j=1

et
⊤Xj (Xj − t)

∥∥∥
2

· ‖t‖2 · n
∥∥S−1/2

n − Id
∥∥2
2
· ‖Xn‖2

and Fubini’s theorem, since E
∥∥n−1

∑n
j=1 exp(t

⊤Xj)(Xj − t)
∥∥2 = O(n−1), due

to the fact that the summands are centred random vectors. Likewise,

‖An,3(t)‖2 =
1

n3

n∑

i,j,k,ℓ=1

et
⊤Xi(Xi − t)⊤ · et⊤Xj (Xj − t) · t⊤Xk · t⊤Xℓ.

Since each of the summands is a product of centred random vectors or random
variables, we have E‖An,3(t)‖2 = O(1/n), and Fubini’s theorem yields An,3 =
oP(1). To conclude the proof, observe that, by (36),

An,1(t) = − 1

2
√
n

n∑

j=1

∆n(t)Vj(t) +∆n(t)Dn t, (39)

where ∆n(t) = n−1
∑n

i=1 exp(t
⊤Xi)(Xi − t)X⊤

i , Vj(t) = XjX
⊤
j t − t. Notice

that ∆n(t) is a mean of i.i.d. random matrices, and that

E

[
et

⊤X1(X1 − t)X⊤
1

]
= e‖t‖

2

Id.

Straightforward calculations show that replacing ∆n(t) with the right-hand
side of the last equation means adding a term that is asymptotically negligible.
Hence, the first term on the right-hand side of (39) is

− 1√
n

e‖t‖
2/2

2

n∑

j=1

(
XjX

⊤
j t− t

)
+ oP(1).

The second term is oP(1) since Dn = OP(n
−1/2). ⊓⊔

Proposition 4 (Calculation of K(s, t))

Recall Z̃1(t) from (21). Putting m(s) = exp(‖s‖2/2) and X1 = X , we have

Z̃1(s)Z̃1(t)
⊤=e(s+t)⊤X(X − s)(X − t)⊤ −m(s)et

⊤X(XX⊤s− s)(X − t)⊤

−m(s)et
⊤XX(X − t)⊤ −m(t)es

⊤X(X − s)(t⊤XX⊤ − t⊤)

+m(s)m(t) (XX⊤s−s)(t⊤XX⊤−t⊤)

+m(s)m(t)X (t⊤XX⊤−t⊤)−m(t)es
⊤X(X−s)X⊤

+m(s)m(t)(XX⊤s−s)X⊤+m(s)m(t)XX⊤.
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Writing 0 for the zero matrix of order d, we have

E

[
e(s+t)⊤X(X − s)(X − t)⊤

]
= e‖s+t‖2/2

(
Id + ts⊤

)
,

E

[
et

⊤X(XX⊤s− s)(X − t)⊤
]
= e‖t‖

2/2
(
ts⊤ + s⊤t Id

)
,

E

[
et

⊤XX(X − t)⊤
]
= e‖t‖

2/2Id,

E

[
es

⊤X(X − s)(t⊤XX⊤ − t⊤)
]
= e‖s‖

2/2
(
ts⊤ + s⊤t Id

)
,

E
[
(XX⊤s−s)(t⊤XX⊤−t⊤)

]
= ts⊤ + s⊤t Id,

E
[
X (t⊤XX⊤−t⊤)

]
= 0,

E

[
es

⊤X(X−s)X⊤
]
= e‖s‖

2/2 Id,

E
[
(XX⊤s−s)X⊤

]
= 0,

E
[
XX⊤

]
= Id.

The assertion now follows from straightforward calculations.

Proposition 5 Let (An) be a sequence of symmetric positive definite (d×d)-
matrices and (bn) an increasing sequence of positive real numbers satisfying
limn→∞ bn = ∞ so that

lim
n→∞

bn‖An − Id‖2 = 0.

We then have limn→∞ bn‖A−1/2
n − Id‖2 = 0.

Proof. Let Λn = diag(λ1, . . . , λn) be the diagonal matrix consisting of the
positive eigenvalues of An so that ‖An‖2 = maxi=1,...,n λi and

‖(A1/2
n + Id)

−1‖2 = max
i=1,...,n

(
λ
1/2
i + 1

)−1

< 1. (40)

Since the assumptions imply ‖An − Id‖2 → 0, choose n0 so large that ‖An −
Id‖2 ≤ 1/2 for each n ≥ n0. Putting Tn = Id −An, we have

‖A−1
n ‖2 = ‖(Id − Tn)

−1‖2 ≤ 1

1− ‖Tn‖2
≤ 1

1− 1/2
= 2, n ≥ n0,

and thus ‖A−1/2
n ‖2 ≤

√
2, n ≥ n0. Now, An− Id = (A

1/2
n +Id)A

1/2
n (Id−A

−1/2
n )

implies Id −A
−1/2
n = A

−1/2
n (A

1/2
n + Id)

−1(An − Id), whence

‖A−1/2
n − Id‖2 = ‖Id −A−1/2

n ‖2 ≤ ‖A−1/2
n ‖2 · ‖(A1/2

n + Id)
−1‖2 · ‖An − Id‖2.

In view of (40) and ‖A−1/2
n ‖2 ≤

√
2, n ≥ n0, the assertion follows. ⊓⊔
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