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Many developments have been observed from research into activity recognition. Alongside these

developments, many challenges have also been identified which affect the design, implementation

and evaluation of the activity recognition systems performance. One such challenge is the successful

inclusion of contextual awareness in order to improve the system’s performance. This research seeks to

examine the effect of localising a wearable device, in the activity recognition problem. Three machine

learning models were implemented, which make use of the on-body device location in different ways.

The first model contains no knowledge of the on-body device location, the second model contains

the encoded location of the device as a feature in the dataset, the third model separates each dataset

according to their corresponding location, with each location being treated as an independent problem.

A final fourth model was proposed and implemented which attempts to closely emulate the best

performing model of the previous three, while being fully autonomous. The autonomy is achieved

by applying another classification step to determine the device location and then performing activity

recognition.

The performance of each model was tested using various combinations of feature selection algorithms

and classifiers. When using no location information, model 1 generated a classification accuracy of
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89%; using the location as an encoded feature inserted into the dataset, model 2 yielded a classification

accuracy of 90.2%. Classification of the activities when considering training data only from the location

of the wearable device, model 3 generated an average accuracy of 95.5%. The fully autonomous model

4, which was based on the activity recognition in model 3, managed to achieve a 94.5% classification

accuracy. These results show that using the location of the device to give the system added context,

makes a statically significant impact on the performance of the system.
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CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

Context awareness is the ability of a system to use information about its environment and adapt its

operations accordingly. The assumption of context-aware applications is that the context information

assists in achieving the applications goal. The on-body device location, which in this research provides

context to the activity recognition problem, may be an example of imperfect contextual information [1].

Imperfect contextual information may lead to a negative impact on the activity recognition models’

classification accuracy. Contextual imperfection is characterised into several types, with each having

their own source, persistence and origin of inaccuracy. The first source of contextual imperfection is

called ’sensed’, which is obtained from physical sensors, has low persistence and its inaccuracies arise

from sensor failures, delays and misinterpretations. The next type is called ’static’, which is obtained

from a user, has infinite persistence and is subject to human error.

1.1.2 Research

Several studies have been conducted which examine localisation or activity recognition individually

using various methods. One study has examined the combination of the two ideas of localising and

activity recognition. Each study has been performed using their own choice of locations, activities,

features, feature selection algorithms and classifiers. For this reason there is a large discrepancy

between the results of the studies, with very little in common between them with which to compare

their results.
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CHAPTER 1 INTRODUCTION

This study sought to use a multi-faceted approach by combining several feature selection algorithms,

several classifiers, a generic set of activities, a generic set of on-body device locations and then using

these combinations in several machine learning models. The results for each model can then be

compared to determine each combinations efficacy. The effect of applying the location as contextual

information was investigated in terms of the two types of imperfect contextual information as mentioned

previously. These types will be applied differently for each model.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

The objectives of the study include the implementation and comparison of various activity recognition

models, with each of the three models using the on-body device location differently. A final model will

be developed which autonomously determines the on-body device location and then performs activity

recognition in the same manner as the best performing of the first three models. The implementation of

these models contains several steps including data collection, feature extraction, feature selection and

finally classification. Once all models have been implemented, comparisons will be made using their

classification accuracies, standard deviations, features, feature selection algorithms and classifiers. The

following questions will be investigated during the research:

• Is there a noticeable difference in activity recognition accuracy when using the on-body device

location in various ways?

• Is there a list of features that can completely accurately determine a users activity, regardless of

on-body device location?

• Is a fully automated system capable of achieving results that closely compare to that of a

pre-programmed activity recognition system?

1.3 HYPOTHESIS AND APPROACH

To determine the impact of localisation of nodes for activity recognition, the selected approach was to

use three different machine learning models, each with varying amounts of known location information.

Each model with location information (either known or unknown) will include the on-body location in

one of three ways:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 1 INTRODUCTION

• Model 1 will not use the location in any form.

• Model 2 will have the encoded location appended to the feature space as a feature.

• Model 3 will limit the data used in the training dataset based on the location.

Each model will be tested using various combinations of feature selection algorithms and classifiers, to

remove as much bias as possible, to ensure that results are objective. The results of each combination in

each model will be compared with each other to reveal some answers of research questions. Once this

initial testing is complete, Model 4, will localise the device autonomously and then perform activity

recognition using the location in the same manner as the best performing of the first three models.

Finally the results of all 4 models will be compared.

1.4 RESEARCH GOALS

The goals of the research are to generate a robust set of results that may give some clarity on the various

unknowns of activity recognition and localisation of wearable devices, such as feature subsets, classifier

and feature selection algorithm combinations. A final goal is to produce a fully automated system

capable of generating results that are competitive against systems with prior knowledge or context of

the user or environment. By evaluating the results generated by each model, a better understanding of

the knowledge gain, contribution and effectiveness of the application of a devices on-body location as

contextual information in activity recognition problems, can be obtained.

1.5 RESEARCH CONTRIBUTION

This research is intended for publication and has been submitted to IEEE Sensors for peer review: de

Arruda, D., Hancke, G. and Myburgh, H. (2019). A comparative analysis of the effects of wearable

device localisation on human activity recognition. IEEE Sensors, PP.

1.6 OVERVIEW OF STUDY

This dissertation is divided into six chapters. Chapter 2 is a literature study investigating the current

states of technology, as well as design considerations of systems of this type. These themes include

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 1 INTRODUCTION

sensors, machine learning, wearable devices, human activity recognition and localisation. Chapter 3

explicates the methodology of the study, relating to the implementation of the several stages of all the

machine learning models. These stages include data collection, feature extraction, feature selection

and classification. The implementation of the structure of the machine learning models, experimental

procedure, approach and generation of results are also included in this chapter. Chapter 4 presents the

results generated by each machine learning model, including an examination of the performance of

the features, feature selection algorithms, classifiers, activities and the effect of localisation on the

performance of the system. Chapter 5 presents an analysis of the results presented in Chapter 4, by

considering the various facets of the experiment. Finally, Chapter 6 presents conclusions of the study

linked to the analysis and discussion presented in Chapter 5 as well as final comments regarding the

research questions of the experiment.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2 LITERATURE STUDY

2.1 CHAPTER OVERVIEW

This chapter examines the various facets related to the topic of investigation. Various hardware and

software are discussed which highlight various requirements of all systems of this nature. A discussion

of sensor hardware characteristics and design choices is in Section 2.2. In Section 2.3, machine learning

is defined and various algorithms and types of machine learning are reviewed. The current state and

challenges faced by wearable devices is explored in Section 2.4. Types and factors to consider are

examined for current day human activity recognition in Section 2.5. Section 2.6 contains an overview

of approaches to localisation of devices.

2.2 SENSORS

Sensors are devices that are capable of detecting physical phenomena within the direct environment

of their placement. Essentially a sensor is a transducer that converts some form of signal or stimulus,

into a signal representing information about the system. Types of sensors in broad categories include:

Proximity, Thermal, Force, Pressure, Optical, Navigational, Ionising radiation, Flow, Environmental,

Electrical, Chemical, Automotive and Acoustic. Sensors have significant properties which determine

their quality; These properties are listed in Table 2.1 and 2.2:

Sensors are also divided into categories of Active and Passive sensors. The distinction between the

two categories is quite important to the design of a system as each have their own requirements for

operation. Active sensors operate similarly to other electrical devices such as Operational Amplifiers

or Transistors, where their operation requires the use of an external power supply or excitation voltage.
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CHAPTER 2 LITERATURE STUDY

Table 2.1. Characteristics of Sensors

Characteristic Description

Range Every sensor has a minimum and maximum value of the parameter

it is able to measure. This means that if the input is not in the range

of the sensor, the output will not be accurate.

Drift As a sensor ages or heats up, the input value will not correspond

exactly to the expected output, meaning that there will be an error

in the measured values. This minor shift in expected value to

measured value is the drift.

Sensitivity Sensitivity is defined as the amount the output changes per unit

of the inputs change. Sensitivity of the sensor may be constant or

exponential depending on the composition of the sensor.

Selectivity Selectivity is a characteristic referring to the sensors ability to not

be affected by another property other than the one it is measur-

ing. An example of bad selectivity would be a speed sensor being

affected by air pressure.

Resolution A sensors resolution is the smallest change in the input property

the sensor is able to detect.

Response and Recovery Time The response time of a sensor is a measure of the time it takes to

react to a change in the input property from zero. The recovery

time is the measure of time the sensor takes to react to a change in

the input property to zero.

Linearity Linearity is an expression to determine the extent to which the

sensitivity of the sensor curves. If the sensitivity remains constant

then the sensor is linear, but if the sensitivity curves it is then

non-linear.

Passive sensors however are more similar to Resistors, Inductors or Capacitors. These components

generate signals without any excitation voltage [2, 3].

Sensors can also be either digital or analogue. The choice of this depends on the application. Digital

sensors could for example output a binary representation of a signal, whereas an analogue signal will

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Table 2.2. Continuation of Table 2.1

Characteristic Description

Hysteresis Hysteresis of the sensor is a measure of the sensor’s outputs dependant on the

input parameter increasing or decreasing. If the input parameter is increasing

from zero, the output may not be exactly equal if the input parameter is decreasing

to zero at the same points.

Precision Precision is the ability of the sensor to be able to produce the same output when

repeatedly exposed to the same input. Ideal sensors would produce an identical

output for every measurement with the same input.

Accuracy The accuracy of the sensor is defined as the closeness of the output to the expected

real value.

Offset The offset of a sensor is a measure of the output when the input as at zero. The

output of an ideal sensor should correspond exactly to a zero input.

output a smooth, continuous signal.

Notwithstanding all the characteristics, types, classes etc of sensors, choosing a sensor is affected by

various other factors of the system can which include [4]:

• Physical: This includes considerations in terms of power requirements, weight and size limita-

tions.

• Operating conditions: The main contributor to this characteristic is environmental conditions

which include factors such as temperature.

• Immediate data: Characteristics of the data which may include resolution, framerate, latency etc.

• Capabilities: This is a consideration of the functional applications of the raw and derived data

obtained.

• Calibration: A consideration of the individual and joint sensor calibration information or al-

gorithms.

• Confidence: An important consideration that can ultimately decide whether a system is worth

using.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2 LITERATURE STUDY

2.3 MACHINE LEARNING

Machine Learning (ML) is a paradigm which refers to a method of improving performance of solving a

problem, by learning from past experience. ML is a branch of artificial intelligence which operates on

the assumption that given some data, a machine can learn how to solve a problem. An ML model will

automatically learn without external influence from a human [5]. These types of systems are created

with a specific purpose. It is basically a combination of computer science, statistics and mathematics.

Advancements in the field of ML have inspired many applications or uses in various other fields. Fields

such as speech recognition, computer vision, surveillance, security, automation control or empirical

science experiments are being adapted or make use of ML in some shape or form. The scope of ML is

becoming overwhelmingly large and has inspired many ideas of how to train a model to produce better

results [6]. There are several methods in which an ML model can learn, which include:

• Supervised Learning: Training data is already labelled, meaning the result is known with its

corresponding input.

• Unsupervised Learning: Training data has no label, meaning the results are up for interpretation

by the ML model itself.

• Semi-supervised Learning: Training data for this type of learning has both labelled and unlabelled

data.

• Reinforcement Learning: This type of learning relies on a reward function, where choosing

some action provides the maximum reward based on the input data.

• Learning to Learn: This type of learning, or meta-learning, applies ML to meta data extracted

from ML experiments, with the goal of understanding how to adjust the bias introduced, to learn

better, hence the term ’learning to learn’ [7].

Various algorithms have been designed to physically train a model to predict or classify a target variable.

Some of the algorithms are only applicable to certain types of ML models as described above. These

algorithms include [8, 9]:

• Regression: This type of algorithm analyses the relationship between the target and input

variables. Examples of this type of algorithm amongst others include, Linear Regression,

Ordinary Least Squares Regression and Stepwise Regression.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

8

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 
 
 



CHAPTER 2 LITERATURE STUDY

• Instance-based: This type of algorithm stores instances of training data to develop a definition

for the target. When the algorithm receives new data it determines a result based on previously

previously stored data. Examples of this include k-nearest-neighbours and vector quantization.

• Regularisation: This algorithm tries to counteract the effects of over-fitting. This is typically

paired up with regression algorithms. Examples include Ridge Regression and Least-Angle

Regression.

• Decision Tree: This algorithm creates a tree like structure solving problems based on constraints.

Once a decision is made, it reaches a new set of decisions, until a final decision is made. Example

of this include C4.5 or Classification and Regression Trees.

• Bayesian: This algorithm uses Bayes theory to determine a statistical likeliness between an input

and a target. Examples of this include Naive Bayes and a Bayesian Network.

• Clustering: This algorithm finds patterns in datasets and creates clusters based on those patterns.

Examples include K-Means or Spectral Clustering.

• Neural network: This is modelled after a human brain, passing weighted combinations of inputs

through activation functions to generate a result. Examples of this are Multilayer perceptrons

and Recurrent Neural Networks.

• Dimensionality Reduction: This type of algorithm is used to reduce the complexity of a dataset

while still maintaining its ability to correctly classify data. This is typically used in conjunction

with supervised learning to improve its speed, accuracy and slightly reduce over-fitting due to

the dataset containing less irrelevant data. Examples include Principle Component Analysis and

Correlation Feature Selection.

• Ensemble: This algorithm integrates several models to increase the robustness over an individual

model. An example f this is Bootstrapped Aggregation, more commonly known as Bagging.

The combination of model and algorithm is dependant on the problem that is being solved, or the data

that is available in the system.

Although these methods are actively being researched, over-fitting is a problem that still plagues the

world of ML. Over-fitting occurs when a problem is too complex to solve given some dataset. A

model will fit the data too closely, while the data may contain noisy and outlier samples. This results

in a poor generalisation and the ML algorithm will therefore give inaccurate predictions with new

or unseen data. There are various methods which can be used to combat over-fitting, one of which
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CHAPTER 2 LITERATURE STUDY

includes splitting data into a training and testing set [10]. This split is typically 70% for training and

30% for testing. For this method, training the model is done using the training set and validation or

testing is done using the testing set.

Another method to counter over-fitting is cross-validation, where a model is trained n times where n is

the number of subsets of a dataset, where each subset is used for validation and n−1 subsets are used

for training. This approach tries to make use of as much data as possible to train the model. Another

more brute-force approach to combat over-fitting is training various algorithms and comparing the

performance using an independent dataset. Once the training and testing has been completed, the best

performing model is chosen for use in the system.

Studies performed all make use of instance-based algorithms while making use of dimensionality

reduction techniques, using several combinations of classifiers such as k-Nearest Neighbours, Support

Vector Machines, Hidden Markov Models and Artificial Neural Networks, to increase the effectiveness

of activity recognition system [11–14].

2.4 WEARABLE DEVICES

As smartphones penetrate the worlds markets and are becoming increasingly present in people’s lives,

the trend of physically wearing smart devices is also increasing. These devices are often referred to as

wearable devices or simply, wearables. Examples of these devices include smart phones, smart glasses,

smart watches and even E-Textiles [15].

The purpose of these wearable devices is to typically collect or sense parameters of the users envir-

onment and may often help the user to perform small tasks such as checking text messages or other

viewing information. Example applications include navigation, banking, health monitoring and even

sport analytics. These applications are typically designed to make the user’s task easier. It is estimated

that in 2019, over 200 million wearable devices will be in use worldwide [16].

With the rise in wearable technologies, there has been a rise in the research of the field. This gave rise

to the term Body Area Networks (BAN). A BAN device is typically embedded in or on a person’s

body and is designed to connect these devices to the internet. Once again there are many applications
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CHAPTER 2 LITERATURE STUDY

for this technology such as remote-health monitoring [17]. There are various challenges that BANs

face including:

• Security: Data collected from users may be confidential or private. Therefore it’s important to

protect that information which may only for certain users. There are various ways to secure a

network by ensuring confidentiality, authentication and integrity of data being transferred.

• Interoperability: It is reasonable to assume that at a certain point in the future, people may

be wearing multiple BANs simultaneously, and interoperability will ensure that should it be

necessary, data would be able to transfer seamlessly between devices and or networks.

• Data Management: As BANs are able to sample large amounts of data, the processes for handling

and maintaining it is of utmost importance to ensure its integrity.

• Price: It’s expected that for users to be able to make use of technologies in BANs, they must be

affordable so that not only an elite few are able to afford them.

• Deployment: BANs are required to be lightweight and non-intrusive so that users are not

hindered during their normal activities.

• Performance: Ensuring that BANs operate consistently regardless of environment, including

sensor accuracy and robustness of the network.

Some of these issues listed amongst others are addressed by the IEEE 802.15.6 standard for Wireless

Body Area Networks. However, not all challenges have been addressed because the field is ever

expanding.

2.5 HUMAN ACTIVITY RECOGNITION

Human Activity Recognition (HAR) is a field which has gained particular interest in medical, security

and military applications. For example, patients who suffer of heart problems may be required to follow

certain exercise regiments which form part of their recovery or treatment. This means that the ability

to remotely monitor someone’s activities such as walking or cycling can provide vital information

to an interested party, and may give context to sensor readings which may not have been previously

understood.

There are two categories of HAR systems [12]:
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CHAPTER 2 LITERATURE STUDY

• Vision based activity recognition - This is a classic activity recognition method which relies

on appropriately placed cameras to capture human activity information. This method uses

computer vision techniques. This technique is very susceptible to external interference such as

variable lighting or even amount of people in a frame. It may also be computationally expensive

depending on the quality of images that need to be processed.

• Sensor based activity recognition - This type of activity recognition relies on the deployment of

sensors in an environment. This type of activity recognition is made up of two sub-categories,

namely:

1. Wearable sensor based activity recognition - This type of AR requires sensors to be

physically attached to a person. The type of sensors attached can vary widely depending

on the type of activities which need to be identified.

2. Object usage-based activity recognition - This type of AR attaches sensors to an object

with which a person interacts. This type of AR does not explicitly define an activity like

the wearable sensor’s alternative, it instead infers the activity being performed based on

the object being used. For example, if a person is using weights, it can be assumed they

are exercising.

The type of activity recognition system to be implemented generally has to consider the factors

shown in Table 2.3 and Table 2.4 [11]. Several studies have all made use of wearable sensor activity

recognition [11–14], with these same studies monitoring activities such as drinking, closing windows,

chopping, stirring a bowl, playing tennis, walking, jogging, running, sitting, lying, standing and

climbing up and down stairs. None of these studies individually included combinations of all types

of activities (periodic, sporadic and static). All of the systems described are all executed offline,

with either a stateful or stateless model. They are also typically user independent, with segmented

recognition.

2.6 LOCALISATION

Localisation is the term used for finding the geographical position of a device in an environment.

There are several examples of this technology with the Global Positioning System (GPS) being an

example. This example uses satellites to determine the position of the device world-wide and is used
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CHAPTER 2 LITERATURE STUDY

Table 2.3. Factors to consider in a Human Activity Recognition system

Execution

Offline

The system first records sensor data and then activity recog-

nition is performed. This is typically used in applications

that are non-interactive such as e-Health.

Online

The system collects and processes sensor data in real-time.

This is typically used in activity-based computing or human

and computer interactions within interactive applications

Generalisation

User Independent
The system is capable of operating effectively with many

users.

User Dependant

The system is designed for a specific user. This typically in-

creases the performance in comparison to a user independent

case, however it does not work effectively for other users.

Temporal

The system should compensate for temporal variance intro-

duced by external factors, such as drifting sensor response

and sensor displacement.

Recognition

Continuous
The system is able to distinguish occurrences of activities

within a sensor data input stream.

Segmented

The sensor data is segmented at the beginning and end of an

activity by a third-party. The model classifies the segmented

sensor data into an activity class. The third-party may be an

external system or a user who is conducting the experiment.

for navigation. Localisation by extension also has many applications in Wireless Sensor Networks

(WSN), such as environmental, industrial and medical monitoring applications [18].

Typically, localisation of devices or nodes in a WSN is performed using Radiolocation, which is the

process of determining the location using radio waves. There are several techniques to this approach

such as using the Received Signal Strength Indicator (RSSI), Time of Arrival (TOA) or Angle of

Arrival (AoA). A disadvantage of using this type of localisation is the requirement of having fixed

reference nodes with which to make estimates. In the context of BANs, it is implausible to think that

someone using a BAN in their everyday lives would remain in a position that is reachable by these

fixed reference nodes. It is for this reason that in the use of localisation in BANs that the developer(s)
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CHAPTER 2 LITERATURE STUDY

Table 2.4. Continuation of Table 2.3

Activities

Periodic

This describes activities which are periodic in nature, such as biking,

running or walking. For classification, spatial features and/or sliding

window segmentation are used.

Sporadic

These activities are scattered amongst other activities and occur at

irregular intervals. Segmentation is a key factor as it allows for the

isolation of the activity within the data.

Static
These activities are static in nature, meaning there is no movement

involved. Examples include lying down or sitting.

System Model

Stateless

The system does not include any information regarding the state of

the environment in which it is placed. The activities are classified

only by recognising specific signals from the sensor.

Stateful

The system models the environment and makes use of contextual in-

formation such as the location of objects, to enhance the performance

of the activity recognition model.

makes similar considerations to that of HAR, such as Execution, Generalisation, Recognition and

System Model.

Typically, the accuracy or application specific requirements typically dictate the approach that will

or will not be used to meet those requirements. Localising nodes in a BAN is no exception, meaning

that if the desired outcome is to determine the location of the nodes in a specific environment, then

radiolocation is a possible solution to the problem. However, if it is required that the results be more

specific to determine the exact body part which a BANs nodes are placed, then perhaps a different

approach is necessary.

The added flexibility of placing nodes on a person’s body means that these devices may move while

they perform any given activity. As in [19], the objective was to determine the on-body location of

nodes with the goal of monitoring vital signs on a patient’s body. The decided upon approach was to

measure atmospheric air pressure compared to other nodes without the requirement of fixed reference

nodes. Another example of on-body device localisation in [20] uses inertial sensors to find patterns

in the motion of the BAN node while the user performs activities to determine its on-body location.
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CHAPTER 2 LITERATURE STUDY

Two other studies place the wearable devices on the chest, wrist, hip, thigh, foot, and arms [11, 12].

Two other studies have placed the wearable devices in fixed locations such as the belt or shirt pocket,

making the assumption that those locations provide the most information [13, 14].

2.7 CHAPTER SUMMARY

This chapter begins by investigating various aspects of sensors including characteristics, design

considerations and the various types of sensors available. This is followed by an in-depth look into the

various state of the art algorithms, methods and challenges faced when implementing ML. Furthermore,

the various applications and factors of both wearable devices and HAR models are discussed. Finally,

the design considerations and techniques of device localisation are explored.
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CHAPTER 3 METHODS

3.1 CHAPTER OVERVIEW

This chapter discusses the implementation and approach to be used to investigate the research topic in

detail. The research contains several machine learning models which are further discussed in Section

3.2. The various steps for collecting training data are explained in Section 3.3. A discussion on the

approach to data pre-processing can be found in Section 3.4. In Section 3.5 the methods for feature

selection are expanded upon. A review of various classification algorithms appears in Section 3.6.

Finally the approach to generating results is discussed in Section 3.7.

3.2 MACHINE LEARNING MODELS

This section discusses four configurations of machine learning models with varying amounts of

information known about the location of the device. Each model is separated into two phases, the

training and execution phase. The training phase is used to gather training data, which is then used to

develop the classifiers understanding of the problem. The execution phase is a simpler implementation

of the training phase, because only relevant data is extracted and processed using the already trained

classifier. The execution phase can therefore be viewed as less computationally expensive. The design

considerations of the various stages of each model are discussed in Chapter 2.

3.2.1 Model 1

Model 1 which is shown in Figure 3.1 is a basic machine learning model. In the training phase, data

is collected as described in the experimental setup. After pre-processing, features of the data are
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CHAPTER 3 METHODS

extracted and then the feature selection algorithm decides on the relevant features; These relevant

features are then used to train the classifier. Once training is complete, the system transitions into the

execution phase. During the execution phase, data is collected from randomly placed nodes on the

body. Feature extraction in this phase is different to the training phase. In the training phase, there is

no indication of which features prove the most useful, therefore, a large list of features are extracted

and processed. However, in the execution phase the feature selection algorithm has been trained to

know which features are relevant. This allows the system to only extract features which are relevant

to the problem and ignore all others. These relevant features are then passed into the already trained

classifier, which then determines the activity being performed.

The data being collected and processed in Model 1 has no knowledge of the on-body location of the

nodes. All the data collected is combined into a single, large data set. This means that the feature

selection algorithm must consider a large amount of data, from various locations during all activities

and must find distinguishing features that are independent of the location of the node. Since this model

has the least prior knowledge and a large data set, it is expected that this model will yield the lowest

average classification accuracy.

Data

Collection

Feature

Extraction

Feature

Selection

Activity Classifier

Training

Data

Collection

Feature

Extraction

Activity

Classification

Training Phase

Execution Phase

Figure 3.1. Block diagram for Model 1.

3.2.2 Model 2

Model 2 which is shown in Figure 3.2 is an extension of Model 1. The structure remains the same as

Model 1 up until the feature selection stage in the training phase. Before the feature selection stage in

the training phase, the known location of the sensor node is appended to the extracted feature dataset
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as an encoded integer representation of the location. This was achieved by representing the Left Upper

Arm as 1, Right Upper Arm as 2, etc, until the Right Ankle was represented as an 8.

This approach was used because the classifiers chosen are only capable of processing real-valued

input data. The feature selected dataset including the encoded device location is used to train the

classifier. During the execution phase the same logic is followed, however the user would be expected

to configure the node with the device location before use. This allows the extracted features to be

appended with the corresponding integer representation of the known location of the device.

Similarly to Model 1, this model also makes use of a single large dataset for training. This model uses

the same extracted features as Model 1, with the exception of an added column of data, containing the

location of the device; As a result Model 2 contains more contextual information than Model 1. Even

with a slightly more complex dataset, intuition suggests that this model will yield a higher classification

accuracy than that of Model 1.

Data

Collection

Feature

Extraction

Feature

Selection

Activity Classifier

Training

Known

Location

Data

Collection

Feature

Extraction

Activity

Classification

Known

Location

Training Phase

Execution Phase

Figure 3.2. Block diagram for Model 2.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

18

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



CHAPTER 3 METHODS

3.2.3 Model 3

Model 3 shown in Figure 3.3 is a further extension on Model 2. The premise behind this extension

is that no single feature selection algorithm and classifier combination would completely accurately

model all the activities regardless of the on-body device location. Intuitively it could be said that

each node’s location may require a different feature selection algorithm and classifier combination to

correctly classify the activities. An example of this may be using Correlation Feature Selection (CFS)

with a Support Vector Machine (SVM) to model activities of the Right Ankle with 100% accuracy, but

if the node is instead attached to the Left Wrist, it may only produce results up to 70% accuracy. The

assumption is that there exists some combinations of feature selection algorithm and classifier that can

model the activities for each on-body device location with accuracies of 100%.

In this model, instead of using the on-body location as a feature in the dataset as in Model 2, the

location is used rather to determine which dataset is used for training and which features and classifier

are used for execution. This means there will be eight training datasets, each corresponding to an

on-body device location with each dataset containing data for all activities. Similar to Model 2, this

model requires the user to configure the node for the execution phase so that its location is known.

It is expected that this model will yield the highest average classification accuracy, because the best

performing combination of feature selection algorithm and classifier is used for each specific on-body

device location.

3.2.4 Model 4

The final model, Model 4 is an attempt to replicate as closely as possible the results of the best

performing of the previous models without the need for the user to configure the node before the

execution phase. This model will therefore determine the location of the node and then subsequently

pass that location information to the best performing activity recognition model. Model 4 localisation

is comparable to Model 1, however, instead of the output being an activity, the output is the location

of the node. Depending on which of the previous models is the best overall performer, Model 4 will

make use of one or nine datasets.
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Data

Collection

Feature

Extraction

Feature

Selection Array

Activity Classifiers Array

Training

Known

Location

Data

Collection

Feature

Extraction

Activity

Classifier Array

Known

Location

Training Phase

Execution Phase

Figure 3.3. Block diagram for Model 3.

3.3 DATA COLLECTION

To begin the study, data from the various activities chosen needs to be sampled from test subjects.

The only requirement of the wearable device from which data is collected, is that it contains a triaxial

Accelerometer, Gyroscope and Magnetometer, or a 9 Degree-of-Freedom Inertial Measurement Unit.

To do this, an Android application was created which samples the Accelerometer, Gyroscope and

Magnetometer of a Samsung Galaxy S6 which was running Android Lollipop version 5.1 (API level

22).

To capture all data that may be relevant to the problem, it is important to consider how fast a human

typically moves. A study has shown that an average human can take between 61 and 100 steps a

minute [21]. From this it is possible to extrapolate that a sampling frequency of 2.02Hz to 3.33Hz

is sufficient to meet the Nyquist sampling theorem criteria. The study also showed that while speed-

walking, a person can take up to 300 steps in 1 minute, which effectively triples the sampling frequency

required. This means that a sampling frequency of at least 10Hz is required to capture the motion of a
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Data

Collection

Feature

Extraction

Feature

Selection

Location Classifier

Training

Best Performing Model

Training

Data

Collection

Feature

Extraction

Location

Classification

Best Performing Model

Execution

Training Phase

Execution Phase

Figure 3.4. Block diagram for initial design of Model 4.

step.

In the Android API, it is possible to choose a sensor delay relevant to the purpose of the application [22].

This sensor delay is the interval at which sensor events are sent to the application. The sensor

delays are defined as constants; in ascending order of delay these are: SENSOR_DELAY_FASTEST,

SENSOR_DELAY_GAME, SENSOR_DELAY_NORMAL and SENSOR_DELAY_UI. These delays

correspond to 0 microsecond, 20 000 microseconds, 60 000 microseconds and 200 000 microseconds

respectively. Since it is known that a sampling frequency of approximately only 10Hz is required,

SENSOR_DELAY_GAME with a delay of 20 000 microseconds was chosen. This corresponds to a

sampling frequency of 50Hz, which will account for extreme cases where movements above a 10Hz

sampling frequency threshold would be insufficiently recorded.

In order to isolate the movements, instructions are sent from a server to start and stop recording sensor

samples. This was achieved by creating a multi-threaded Python server, where the Android application

established a connection to the server and awaits instruction. If the Android application receives a
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START instruction, the application stores the X, Y and Z samples of each of the sensors discussed

above in memory after every sensor delay. The sensor orientations for the Samsung Galaxy S6 are

shown in Figure 3.5. Once the application receives a STOP instruction, the application then writes

the values stored in memory to a .csv file, then transfers it for storage on the server. This happens

simultaneously for all devices with a connection to the server, as each connection is maintained in its

own thread. This stored data is then labelled according to the device location and activities performed,

then awaits further processing.

Figure 3.5. Samsung Galaxy S6 sensor orientation indicating positive X (Blue, Pitch), Y (Green, Roll)

and Z (Red, Azimuth) axes.

3.3.1 Experimental setup and procedure

Several experiments were conducted on various test subjects where each test subject had four Samsung

Galaxy S6 smartphones attached to them using a smartphone armband cover that is strapped on

either on the left or right side of their body, at the corresponding positions as shown in Figure 3.6.

These positions (Upper Arms, Wrists, Thighs and Ankles) were chosen because they are the most

common placements of wearable devices [23]. Once the smartphones were attached, each smartphone

established a connection to the multi-threaded Python server over Wi-Fi, where the Wi-Fi access point

and server was created and hosted on a Laptop. Once a connection was established the experiments

could proceed.
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Multithreaded Python Server

Figure 3.6. Python server with wireless communication to sensors placed on the upper arms, wrists,

thighs and ankles.

It is important to note that each test subject obtained medical clearance to participate in these experi-

ments. Each test subject was declared healthy and none suffer from any conditions such as Parkinson’s

disease, which could impair the movement of the individual. Each test subject would perform a series

of movements or activities while the server sent instructions for the smartphones to start and stop

recording. The test subjects were asked to perform each movement three times to allow for multiple

recordings of the same movement. The test subjects were asked to lunge with their right foot forward,

lunge with their left foot forward, squat, hinge, walk, jog, run, stand still and lying down. The ideal

poses for lunges, squats and hinges can be seen in Figure 3.7. Once all the activities were completed,

the smartphones would be taken off and placed on either the left or right side of the test subject,

depending on which side had already been measured. This series of tests would be completed on all

test subjects.

3.4 PRE-PROCESSING

Before the data is classified, pre-processing needs to be applied to the sampled sensor signals. This

section discusses the steps involved in processing the signal, which includes a discussion on applying
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(a) Lunge (b) Squat (c) Hinge

Figure 3.7. Ideal poses for lunges, squats and hinges.

a sliding window and a discussion on the mathematical formulas used to determine discrete temporal

or spatial features of the sampled signals.

3.4.1 Time-shifting

A sliding window or windowing, is a technique which is adapted from the Internets Transmission

Control Protocol (TCP/IP) as a method of controlling the flow of packets between two nodes on a

network1. By using this technique, algorithms are able to evaluate portions of a signal independently

of the remaining portion of the signal. This technique is useful to introduce the ability of the system to

function in a time-delayed environment with signals of unknown length.

A sliding window has a set width, and slides across a signal at a configured sliding interval. An

example of this would be, if a device is attached to a persons leg, the data known to the system may be

a time-delayed version of what the sensors are currently measuring. The system would potentially be

unable to make a proper classification and therefore the systems accuracy could decrease. By using

a sliding window and evaluating individual sections of the movement signal, it is then possible to

1http://searchnetworking.techtarget.com/definition/sliding-windows
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compare that to a windowed time-delayed training signal and therefore increase the system’s accuracy.

This is possible because each windowed section of the signal, still belongs to the leg class.

The Vector in Figure 3.8 is a row vector containing 7 randomly generated movement signal samples of

a random human body part.

[
1 2 3 4 5 6 7

]
Figure 3.8. Vector containing 7 samples of a random movement.

If it is known that the sample rate of the system is 3 samples per second and the system is trained

with 1-second long instances of samples, it is then possible to apply a sliding window to the

original signal and extract every possible one second long instance from that signal. This is done

by creating a window of width 3 and a sliding increment of 1. By applying this window to the

signal and storing the results, the 3 x 5 Matrix in Figure 3.9 is generated. Each row corresponds

to a 1-second long instance of samples in the movement signal and can be further processed individually.



1 2 3

2 3 4

3 4 5

4 5 6

5 6 7


Figure 3.9. Matrix generated after time-shifting the vector in Figure 3.8.

As discussed in Section 3.3, the sensor delay was set to SENSOR_DELAY_GAME, which is a delay

of 20 000 microseconds, corresponding to a 50Hz sampling frequency. For the purposes of this study a

1-second long window, with a sliding interval of 0.02 seconds (1 sample) was chosen. This means that

each window will contain 50 samples, and will have a 98% overlap with adjacent windows.
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3.4.2 Feature extraction

Various studies have so far shown that no definitive list of features produce optimal results for localisa-

tion or activity recognition of the on-body devices [11,23–27]. These papers used various combinations

of Mean, Variance, Skewness, Zero Crossing Rate, Median, Root Mean Square (RMS), Kurtosis,

Mean Crossing Rate, Standard Deviation, Mean Derivatives, Interquartile Range, Maximum Energy,

Mel-Frequency Cepstral Coefficients (MFCC), Spectral Entropy, Sum of Power Wave, Frequency

Range Power, Fast Fourier Transform (FFT) Magnitude and Pairwise Correlation.

For this reason, the Mean, Variance, Median, RMS, Peak-to-Peak Amplitude, Average Power, Funda-

mental Frequency, Peak FFT Amplitude and Interquartile Range have been used as features to solve

the problem, as it is uncertain which features are necessary.

The above mentioned features are extracted from a windowed signal and are combined into a unitless

row vector as shown in (3.1). FXY Zagm represents feature vectors of signals measured by the Accelero-

meter, Gyroscope and Magnetometer, in the X, Y and Z axes. Each combination of measurement

device and axis direction form a separate feature vector. In the equation, µ indicates the Mean, σ2

the Variance, Med the Median, Xrms the RMS, Xpk−pk the Peak-to-Peak amplitude, P the Average

Power, f0 the Fundamental Frequency, XFFTA the Peak FFT Amplitude and IQR the Interquartile Range.

FXY Zagm =

[
µ σ 2 Med Xrms Xpk−pk P f0 XFFTA IQR

]
(3.1)

Each independent feature vector combination as described above is ultimately combined into one

large feature vector FVi, which contains all the features from each sensor, in each direction, in one

single vector; i is determined by the sample number and the sliding window length. The resultant

feature vector FVi is shown in (3.2). This vector is a 1 x n*N vector, where n is the amount of features

extracted from a signal and N is the amount of signals that have been measured. By substituting (3.1)

into (3.2), FV becomes a 1 x 83 vector.

FVi =

[
FXa FYa FZa FXg FY g FZg FXm FY m FZm

]
(3.2)
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CHAPTER 3 METHODS

3.5 FEATURE SELECTION

Dimensionality reduction is the term used to describe the process of reducing the complexity of a

feature space, by reducing the amount of features under consideration. There are multiple benefits that

can be gained by reducing the complexity of the dataset, of which the most important are, reducing

the computational complexity, as well as potentially increasing the accuracy of the system. Feature

selection is a process which examines features and determines their relevance or contribution to solving

the problem and then filters out features deemed irrelevant.

There are three classes of feature selection algorithms (FSA) namely, Filter, Wrapper and Embedded

Methods. Filter methods operate independently of a classifier, therefore presenting a set of generic

features which have some correlation to the target variable. Filter methods are particularly effective

in computation times and are robust against overfitting. Wrapper methods work differently to filter

methods, because they work with a classifier to evaluate the strength of a chosen feature subset. There

are two main disadvantages of using wrapper methods which are: Increased overfitting when there are

too few observations and significant computation time when there are large numbers of variables [28].

Embedded methods are a hybrid between filter and wrapper methods to take advantage of their best

attributes. For the purposes of this study, filter methods will be used as each subsystem is independent

and the goal is to determine the relevance of the location to the problem and not rank the feature

selection algorithms.

3.5.1 Correlation feature selection

Correlation Feature Selection is an example of a filter algorithm, which ranks subsets of features using

a heuristic evaluation function based on correlation. It is based on Pearson’s correlation coefficient

and is developed to favour feature subsets that contain features with high correlation to a class and

low correlation with other individual features [29]. The evaluation function output is known as the

heuristic merit and is expressed in (3.3).

MS =
krc f√

k+ k(k−1)r f f
(3.3)

Equation 3.3 shows MS, which is the heuristic merit of the feature subset, k is the amount of features in
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CHAPTER 3 METHODS

the feature subset, rc f is the average feature to class correlation and r f f is the average feature to feature

correlation. The parameters r f f and rc f are calculated for each feature subset and are a measure of

feature quality.

3.5.1.1 Feature quality

To quantify the quality of features, three different versions of CFS were developed. Each version

makes use of a different quality measuring principle, namely, Relief (CFS-RELIEF), Symmetrical

Uncertainty (CFS-UC) and Minimum Description Length (CFS-MDL). Each version of CFS has

its own advantages and disadvantages when considering the amount of features, classes and sample

size.

Symmetrical Uncertainty develops a model to estimate the probability of a value in a feature. It is

biased towards features with many possible values and quantifies the amount of information gained

after observing events. Entropy is the measure of uncertainty or information gained. The entropy

of feature Y with value y is shown in (3.4) and the entropy of feature Y after observing feature X

with value x is shown in (3.5). The information gain is then expressed in (3.6) and the symmetrical

uncertainty coefficient is shown in (3.7).

H(Y ) =−∑
yεY

p(y)log2(p(y)) (3.4)

H(Y | X) =−∑
xεX

∑
yεY

p(y | x)log2(p(y | x)) (3.5)

gain = H(Y )−H(Y | X) (3.6)

coe f f icient = 2×
(

gain
H(Y )+H(X)

)
(3.7)

Relief is an algorithm that assigns weights to features and is particularly sensitive to interactions

between features. It determines these weights by measuring the difference in probabilities of values

for features in different classes and the probabilities of those values for the same class. Equation 3.8

shows a simplified version of determining the weights for each feature. The average of these weights

is used to determine the correlations described in (3.3).
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Relie fX = P(X | Di f f erentClass)−P(X | SameClass) (3.8)

The minimum description length principle compresses data as much as possible while still modelling a

system, by reducing the length of the data. Operating similarly to symmetric uncertainty, it also uses

entropy to measure the information gain. The MDL quality attribute is shown in (3.9), where PriorMDL

is the description length of class labels prior to partitioning, PostMDL is the description length post

partitioning and n is the number of training samples. Partitioning is performed by separating features

based on values of another feature.

MDL =
PriorMDL−PostMDL

n
(3.9)

A study between CFS-RELIEF, CFS-UC and CFS-MDL showed that CFS-RELIEF and CFS-UC gave

better results for small datasets (Less than 200 samples). However, CFS-MDL gave better results with

larger datasets [30]. For this reason CFS-MDL will be used, as the dataset contains several thousand

samples.

3.5.1.2 Search strategies

To reduce the computational complexity of the algorithm, three search strategies were developed,

which allows a user to decide how they wish to find the best feature subset. The three strategies are,

Forward Selection, Backward Elimination and Best First.

• Forward Selection starts with a feature subset that is empty and adds a random feature at a time,

while evaluating the merit, until no single feature addition results in a subset with higher merit.

• Backwards Elimination works inversely to Forward Selection, where it starts with a full feature

subset and recursively eliminates features until the merit of the feature subset starts degrading.

• The best first search can search backwards or forwards through the feature space and is more

exhaustive than Backwards Elimination or Forward Selection. It will stop searching the feature

space until five successive fully developed subsets do not have higher merit than a previous best.
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CHAPTER 3 METHODS

There is no evidence suggesting that either search strategy outperforms another, so for this work

Forward Selection was chosen.

3.5.2 Minimum-redundancy maximum-relevancy

Mimimum-Redundancy Maximum-Relevancy (mRMR) is a feature selection algorithm that attempts

to rank features with high correlation to the target variable whilst having a low correlation between the

features themselves [31]. It operates by first discretising the feature set and then applying various

formulas to determine their rank. Given two random variables the mutual information is defined in

terms of the probability density function p(x), p(y) and p(x,y), as shown in (3.10).

I(x,y) =
∫ ∫

p(x,y)log
p(x,y)

p(x)p(y)
dxdy (3.10)

Maximum Relevance is a search of features which approximates D(S,c), which is the mean value of

all mutual information between a feature xi and class c in the feature set S as expressed in (3.11).

max D(S,c), D =
1
|S| ∑xi∈S

I(xi,c) (3.11)

If two features are highly dependant on one another, the class discriminating power of the classifier

would not change if one of the features were removed. Therefore, Minimum-redundancy is defined in

(3.12) to select mutually exclusive features where xi and x j are features of the feature set S.

min R(S), R =
1

|S|2 ∑
xi,x j∈S

I(xi;x j) (3.12)

Feature ranking is done by using one of three formulas below, to determine Maximum-Relevance

(MaxRel), Mutual Information Difference (MID) or Mutual Information Quotient (MIQ) which are

represented in (3.13), (3.14) and (3.15) respectively [31, 32].

MaxRel = max Φ(D,R), Φ = D (3.13)

MID = max Φ(D,R), Φ = D−R (3.14)

MIQ = max Φ(D,R), Φ =
D
R

(3.15)
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Given the parameters available when performing mRMR feature selection, a threshold for discretisation

of 0.25 was chosen, as well as using all three feature ranking formulas, MaxRel, MID and MIQ to rank

the features within the feature space.

3.6 CLASSIFICATION

Classification is the process of categorising an idea or object which is recognised. In Machine Learning

a predictive model approximates a function to map input variables to a discrete output variable. In

this section, various classifiers that use supervised learning are discussed. Each classifiers chosen

configurations are then discussed in a later section of the chapter.

3.6.1 K-nearest neighbours

The k-Nearest Neighbour(s) (k-NN) classifier is possibly the simplest classifier to be implemented [33].

It operates by assigning a class to an unlabelled input feature vector based on a majority vote (out of k

votes) from training feature vectors using a given metric. For this classifier there is no specific training

phase, only the storage of training feature vectors in a feature space, with which to compare input

feature vectors.

3.6.1.1 Metrics

For a k-NN classifier there are various metrics available, however each metric is intended for use with

specific types of data within the feature space. The four types of metrics are applicable in real-valued

feature spaces, angular two-dimensional feature spaces, integer-valued feature spaces and boolean-

valued feature spaces [34]. Since the dataset for this work contains real-values, only real-valued feature

space metrics will be considered. Examples of these metrics are the Euclidean distance, Manhattan

distance, Chebyshev distance, Minkowski distance and Mahalanobis distance [35]. In the following set

of equations, X represents an unlabelled input vector and Y represents a labelled training vector.

• Euclidean Distance is the length of the line-segment between points in a space. It is represented

in (3.16).
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d(X,Y) =

√
N

∑
i=1

(xi− yi)2 (3.16)

• Manhattan distance is based on a grid, with multiple paths to traverse between points. The

distance itself is calculated as the sum of differences of each component in the vector and is

represented in (3.17).

d(X,Y) =
N

∑
i=1

(
|xi− yi|

)
(3.17)

• Chebyshev distance is defined as the greatest difference between two coordinates in any

dimension. It is represented in (3.18).

d(X,Y) = max
1≤i≤N

(
|xi− yi|

)
(3.18)

• Minkowski distance is a generalised formula for distance, which can be defined as the

power-mean of the difference between vectors. For p = 1, the distance is equivalent to the

Manhattan distance, for p = 2 the distance is equivalent to the Euclidean distance and for p = ∞

the distance is equivalent to the Chebyshev distance. For the Minkowski distance to be usable as

a metric, p must be larger than or equal to 1. It is represented in (3.19).

d(X,Y) =

( N

∑
i=1
|xi− yi|p

) 1
p

(3.19)

• Mahalanobis distance is a metric of how many Standard Deviations away a vector is from

the Mean of a distribution. It inherently takes into consideration the correlations of a dataset.

Equation 3.20 shows this distance, where #»
µy is the vector of means for each training feature and

S−1 is the inverse covariance matrix. If the covariance matrix is the Identity Matrix, then the

Mahalnobis distance is equivalent to the Euclidean distance.

d(X) =
√
(X− #»

µy)T S−1(X− #»
µy) (3.20)

There is no evidence that suggests any particular one of these metric outperforms an-

other in any given scenario, thus the Euclidean Distance has been chosen for this research [35].
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3.6.1.2 Decision making

As stated previously, k-NN does not have a specific training phase and makes a classification based

on a vote count. When an input vector needs to be classified, the algorithm determines the distance

to every single training vector that has been stored, making it an instance-based learning algorithm.

This makes it an exhaustive algorithm, therefore, using very large datasets can be computationally

expensive. The voting strategy employed by this algorithm counts the k closest training vectors to the

input vector and labels the input vector based on a majority vote. It as been shown that for k ≥ 3 there

is no significant increase in classification accuracy [36].

As the algorithm progresses, it implicitly builds decision boundaries in the n-dimensional feature

space, where each hypersurface contains a class. These hypersurfaces can be visualised as a Voronoi

diagram. An example of this is shown in Figure 3.10, where there are six classes in a two-dimensional

space.

Figure 3.10. Example Voronoi diagram of a random two-dimensional problem with 6 classes.
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3.6.1.3 Tie-breaking

In the case of the vote count between classes being equal, or the distance between the input and training

feature vectors of opposing classes are equal, there are several tie-breaking algorithms that can be

implemented. In the case of vectors that are equally distant from each other, one such solution is to

determine the dot product of the three vectors (one input vector and the two training vectors). Once the

dot product has been performed, the winning vote is awarded to the dot product with the smallest scalar

output. Another solution to the equal distance problem is simply a coin-flip or random assignment.

Since they are equally likely, there is a 50% chance the vote will be incorrect. In the case of equal

amounts of votes, a simple tie-breaker would be to dynamically change the value of k until there is

a clear winner, or similarly to the previous case of equal distance, a coin-flip or random assignment

can be made. However, intuitively, by adjusting k it is assumed that the outcome would have higher

accuracy than a coin-flip.

3.6.2 Naive bayes

Naive Bayes (NB) is a probabilistic classifier which applies Bayes’ theorem to a set of features

to determine the probability of them belonging to a class. This assumes that each feature is

independent of others. Equation 3.21 shows Bayes’ theorem of conditional probability, where X

is the input feature vector and Ck is an instance of a class. All calculations are performed for all

k classes and the predicted class is chosen by maximum likelihood, which is the maximum of P(Ck |X).

P(Ck | X) =
P(X |Ck)P(Ck)

P(X)
(3.21)

Given a set of training data, prior probabilities are able to be calculated. Once all posterior probabilities

for each class have been calculated, the maximum probability over all classes is chosen and a

classification is made. In the unlikely event that the posterior probabilities are equal, the classifier must

employ a tie-breaking algorithm to choose a class. Typically if these probabilities are equal, the class

can be chosen randomly between the tied classes. Another approach is by choosing the class with

the highest prior probability. A major advantage of using the NB classifier is that it requires a small

amount of training data to accurately estimate a class [26]. Figure 3.11 shows an example Bivariate
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Gaussian probability of an input feature vector belonging to a certain class.

−5
0

5 −5

0

5
0

0.5

1

C1
C2

Figure 3.11. Bivariate Gaussian probability distribution of two different example classes.

Various models of the classifier using different probability distributions have been created. These

models are used based on various criteria of the input data. The distributions of features are called the

event model of the classifier.

3.6.2.1 Gaussian naive bayes

When the data is continuous, the assumption is that the values for each class are distributed according

to a Gaussian distribution [37]. The likelihoods are calculated using the expression as shown in (3.22),

where Ck is the class, σCk is the Standard Deviation and µCk is the Mean of the feature distribution and

xi is the input feature.

P(X |Ck) =
1√

2πσCk
2

exp
(
− (xi−µCk)

2

2σCk
2

)
(3.22)

3.6.2.2 Multinomial naive bayes

The Multinomial model is suitable for classification of discrete features, which are typically integers.

The likelihood of observing X given class Ck is shown in (3.23). This equation makes use of (3.24)

and (3.25), where NCki is the amount of times a feature i appears in samples of class Ck in the training
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set T ; NCk is the total count of all features for the class Ck; n is the amount of features in the feature

space and α is a smoothing factor. An α ≥ 0 accounts for features not present in the training samples

and prevents non-zero probabilities in calculations.

P(X |Ck) =
NCki +α

Ny +αn
(3.23)

NCki = ∑
x∈T

xi (3.24)

NCk =
n

∑
i=1

NCki (3.25)

3.6.2.3 Bernoulli naive bayes

The Bernoulli model is suitable for classification with features that are independent boolean inputs.

The likelihood of observing X given class Ck is shown in (3.26), where pki is the probability of the

class Ck generating the term xi.

P(X |Ck) =
N

∏
i=1

pxi
ki(1− pki)

(1−xi) (3.26)

3.6.3 Artificial neural network

An artificial neural network is loosely modelled on how a brain solves problems. The network is

a formation of neurons and the interconnections between them called synapses. Neurons act as a

summation point for data travelling through the synapses. When data moves through the neural network

in only one direction to an output neuron, this is known as a feed-forward neural network.

A single layer perceptron is a neural network which consists of only one layer of output nodes. A

multi-layer perceptron consists of at least three layers, a single input layer, a single output layer and one

or more hidden layers. Every neuron in each layer, is connected through synapses, to every neuron in

adjacent layers, with each synapse having its own corresponding weight. An example of a multi-layer

perceptron is shown in Figure 3.12.
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Figure 3.12. Structure of a fully connected multi-layer perceptron.

The output of a neuron is determined by an activation function and the weighted sum of inputs from its

synapses. A step function, used as an activation function would act only as a binary classifier, however

by using a non-linear "S" shaped function, the output becomes continuous and therefore has infinite

possible outputs. A multi-layer perceptron makes use of these non-linear activation functions and is

therefore used in deep learning [38].

3.6.3.1 Weight initialisation

Once the neural networks structure has been decided, the weights of each synapse are assigned

during an initialisation process. Commonly used approaches for weight initialisation are discussed

below:

• Zero Initialisation - This method sets all weights in the network to 0. However, it means that all

neurons in each layer are performing the exact same calculation.

• Xavier Initialisation - This method sets all the weights in the network randomly according to a

Gaussian distribution. The weights are generated with a zero-mean and the same variance for

every layer [39].
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• He-et-al Initialisation - This method randomises the weights, however the weights are randomised

based on the size of the previous layer of neurons. It is therefore a more controlled initialisation,

and according to the study, leads to more efficient Gradient Descent [40].

3.6.3.2 Activation functions

The activation function of a node defines the output of that node given a set of inputs. There are several

desirable properties of an activation function, which include it being nonlinear, smooth, continuously

differentiable and has a defined range [41]. Listed below are several examples of activation functions

commonly used.

• Rectifier - This activation function, also known is a ramp function was first introduced in

a study of digital circuits [42]. It rose in popularity as the activation function of choice

in deep learning, with other applications in computer vision and speech recognition [43].

It is represented in (3.27). Several problems exist using this activation function, with the

largest being that it is not differentiable at 0, it is not centred around 0 and it is has a range of [0,∞).

f (x) =


0 x < 0

x x≥ 0
(3.27)

• Logistic Sigmoid - This function was first named and used in research that studied population

growth [44]. It introduced non-linearity in neural networks and is capable of limiting the outputs

within a specified range. This function is itself a derivative of the Softplus activation function,

which is a logarithmic, smoothed representation of the Rectifier function. The Sigmoid function

is represented in (3.28). In its standard form, this function is continuously differentiable, is

nonlinear and has a range of (0,1).

f (x) =
1

1+ exp(−x)
(3.28)

• Hyperbolic Tangent - This activation function has its roots in trigonometry. While visually

similar to the ArcTan function, Tanh has properties that are different to ArcTan, but ideal for use

an activation function [45]. It is continuously differentiable and has a range of (-1,1) and is
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represented in (3.29).

f (x) = tanh(x) =
ex− e−x

ex + e−x (3.29)

• Identity - This activation function is essentially the most basic function there is and is represented

in (3.30). It is similar to the Rectifier, however, it is continuously differentiable, is centred

around 0, is linear and has a range of (−∞,∞). This activation function is typically only used in

output neurons [46].

f (x) = x (3.30)

• Softmax - This activation function is a generalised form of the logistic function, it squashes a

vector so that all terms in that vector are in a range of (0,1) and their sum is equal to 1. This

function is exclusively used in output neurons and is commonly used for Multinomial Logistic

Regression and is represented in (3.31) [46].

f (x) =
exp(xi)

N
∑

i=1
exp(xi)

(3.31)

3.6.3.3 Loss functions

To generate an error between the predicted value of the neural network, compared to the actual value, a

loss function must be defined. This loss function is ultimately used to determine how to update the

weights of each synapse. Several mathematical expressions that are commonly used as loss functions

are described below. In all functions listed, n is the number of outputs, y is the actual value, and ŷ is

the predicted value.

• Mean Squared Error (MSE) - This loss function is commonly used in linear regression; A

method of minimising this error is called the Ordinary Least Squares (OLS) [47]. This loss

function is represented in (3.32).

Loss =
1
n

n

∑
i=1

(yi− ŷi)
2 (3.32)
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• Mean Squared Logarithmic Error (MLSE) - This loss function is a variant of MSE, it differs by

taking the difference of log of the predicted and actual values. This aims to minimise the effect

of a large difference between the values. This loss function has a tendency to underestimate the

error. If both the predicted and actual values are small, then the MSE and MLSE will be almost

identical. If either the predicted or actual value is large then the MSE will be much larger than

MLSE. The loss function is represented in (3.33).

Loss =
1
n

n

∑
i=1

(log(yi +1)− log(ŷi +1))2 (3.33)

• Mean Absolute Error (MAE) - This loss function is used to measure the average absolute

distance between the predicted and actual values. Since this loss function negates the square,

compared to MSE, MAE is more robust against outliers, meaning it does not create large errors.

The loss function is represented in (3.34).

Loss =
1
n

n

∑
i=1
|yi− ŷi| (3.34)

• L1 - This loss function stands for Least Absolute Deviations (LAD), which is similar to MAE,

but does not determine the average error. The loss function is shown in (3.35).

Loss =
n

∑
i=1
|yi− ŷi| (3.35)

• L2 - This loss function stands for Least Square Errors (LSE), is similar to MSE, but does not

determine the average error. This function is represented in (3.36).

Loss =
n

∑
i=1

(yi− ŷi)
2 (3.36)

3.6.3.4 Learning

Backpropagation is a means of updating the weights of the synapses between neurons in all layers of

the neural network. Backpropagation is combined with what is called Gradient Descent, which makes

use of the overall error gradient, to minimise the loss of the system. Equations 3.37 to 3.40 show how

the weights from various layers are updated. In (3.37), g′(ink) is the derivative of activation function
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at ink, where ink is the weighted sum of inputs. Errk is the error of the k’th component of the error

vector, where the error vector is determined by the equations discussed in Section 3.6.3.3. In (3.38),

(3.39) and (3.40), w j,k and wi, j are the weights of the different layers, where w j,k refers to the output

layer and wi, j refers to the hidden and input layer weights; a j and ai refer to the output of the previous

layers neurons, and α is the learning rate of the system.

∆k = Errk×g′(ink) (3.37)

w j,k← w j,k +α×a j×∆k (3.38)

∆ j = g′(in j)∑
k

w j,k∆k (3.39)

wi, j← wi, j +α×ai×∆ j (3.40)

3.6.3.5 Stopping criteria

An important consideration for neural networks is when to stop training the network. This is important

because, if the network trains for too many iterations with the same configuration, overfitting may

occur. Overfitting is where the neural network completely fits the training data, but generates errors

when feeding the network with new data. As discussed previously one method of countering overfitting

is by splitting the data up into training and validation sets. Another means of countering overfitting is

by monitoring the error and stopping training once the error stops decreasing. One other method exists

where the neural network is configured to only train over a pre-defined amount of Epochs. An Epoch

is defined as the network having completed a full training cycle on training data.

3.6.4 Support vector machine

The aim of a Support Vector Machine (SVM) is to define the widest straight-line or linear separation

between positive and negative samples of a target class. By definition a SVM is therefore a binary

linear classifier. Since the SVM attempts to find a linear separation between the classes, a decision

rule must be defined. These decision rules are defined in (3.41) to (3.43). Equation 3.41 represents

the optimal hyperplane which separates the training data with a maximal margin. It determines the

direction where the distance between training vectors of two different classes is at a maximum. To
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Figure 3.13. Separation of positive and negative samples by maximum margin hyperplane.

further constrain the problem, (3.42) and (3.43) are satisfied by the vectors xxx+ and xxx− which are

termed support vectors and are positive and negative samples of the target class [48].

www · xxx+b = 0 (3.41)

www · xxx++b = 1 (3.42)

www · xxx−+b =−1 (3.43)

A visual representation of the maximum margin hyperplanes are shown in Figure 3.13. In the figure,

the black circles represent positive samples while the white circles represent negative samples. The red

circles indicate support vectors, or samples which meet the criteria in (3.42) and (3.43). The parameter
2
||www|| , is the distance between the two hyperplanes and is called the Margin. The parameter b

||www|| is the

offset of the optimal hyperplane from the origin, along the normal vector www.

In order to find the vector www, the system is required to solve the optimisation problem shown in (3.44);

The equation shows that the optimal hyperplane is a linear combination of training vectors. The term

yi is +1 for positive samples and -1 for negative samples where xi is the training sample vector; The

parameter α is > 0 for support vectors only.

www = ∑αiyixxxiii (3.44)
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CHAPTER 3 METHODS

After determining the vector www, a final classification is made by using the (3.45). A result that is ≥ 1

yields a positive classification whereas a result that is ≤ -1 yields a negative classification.

f (xxx) = www · xxx+b (3.45)

3.6.4.1 Kernels

The largest problem with a SVM is that if the training samples are not linearly separable then the

optimisation problem will never converge. To combat this, the use of a kernel function transforms the

feature space into a separating space, where xxx→ φ(xxx). The properties of the classifier with vector www

means that (3.44) becomes (3.46).

www = ∑αiyiφ(xxxiii) (3.46)

The kernel function K must satisfy (3.47):

K(xxxiii,xxx jjj) = φ(xxxiii) ·φ(xxx jjj) (3.47)

The linearity of the dot product implies the classification of the input vector changes (3.45) into (3.48).

f (xxx) = www ·φ(xxx)+b = ∑yiαiφ(xxx) ·φ(xxxiii)+b (3.48)

Several examples of kernel functions are presented in (3.49) to (3.52). Equation 3.49 is an example of

a homogeneous polynomial, (3.50) is an example of an in-homogeneous polynomial, (3.51) is the

Gaussian Radial Basis Function (RBF) and (3.52) uses a Hyperbolic tangent. Figure 3.14 shows an

example of applying a kernel to a non-linearly separable feature space, transforming it into a linearly

separable space. Each kernel function has its own advantages however, the RBF shown in (3.51) has

been shown to converge even when thousands of features are in the feature space [49].
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K(xxxiii,xxx jjj) = xxxiii · xxx jjj (3.49)

K(xxxiii,xxx jjj) = (γ(xxxiii · xxx jjj)+ r)d (3.50)

K(xxxiii,xxx jjj) = exp(−γ
∣∣xxxiii− xxx jjj

∣∣2) (3.51)

K(xxxiii,xxx jjj) = tanh(γ(xxxiii · xxx jjj)+ r) (3.52)

φ

Figure 3.14. Transformation of the separation between samples of a non-linear feature space to linear

kernel space.

3.6.4.2 Multiclass classification

Since the SVM is naturally a binary classifier, it is limited to classifying a maximum of 2 classes. The

common approaches to convert the SVM into a multiclass classifier are, One-vs-Rest and One-vs-One.

These strategies reduce a multiclass problem, into multiple binary problems and may also be called

transformation techniques.

• One-vs-Rest (OvR) - This strategy involves training a classifier for each class, by using positive

samples of the target class and all other classes as negative samples of the target class. A

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

44

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



CHAPTER 3 METHODS

requirement for using this strategy is that the classifier does not produce only a label but some

score that gives confidence in its decision. This strategy takes an input sample, classifies it using

all the created classifiers and then assigns the class based on the maximum confidence score

amongst all classifier outputs.

• One-vs-One (OvO) - This strategy creates N× (N−1)/2 binary classifiers, where each classifier

trains with samples of pairs of classes. Unlike OvR this strategy does not require a confidence

score for each classifier, because it is capable of operating with discrete labels assigned to

samples. Given a random input sample, all N× (N−1)/2 classifiers classify the sample. Similar

to the k-NN classifier, a voting scheme is used whereby a tally of the assigned class from each

classifier is taken and the class with the highest amount of votes is ultimately assigned as the

predicted class.

3.7 GENERATING RESULTS

In this section the configurations of the various stages in the machine learning models are presented.

Finally a discussion on the approach of the overall experiment is included.

3.7.1 Configurations

Before being able to generate results the configurations of the various classifiers and feature selection

algorithms need to be set. The feature selection algorithms require little to no configuration with

mRMR needing only a discretisation threshold to be configured. As discussed previously, this threshold

was set to 0.25. The amount of features chosen from the mRMR ranker, will be equal to the amount

of features generated in the CFS feature subset. The CFS algorithm is configured to use the forward

selection search strategy and CFS-MDL for measuring feature quality. The CFS generated dataset will

be labeled CFS, the mRMR datasets generated by the Maximum Relevance ranker will be labelled

MaxRel, mRMR-MID for the Mutual Information Difference ranker and mRMR-MIQ for the Mutual

Information Quotient ranker.

Each classifier also requires various configurations as discussed in their respective sections above.

The 1-NN, 3-NN and 5-NN classifiers use 1, 3 and 5 nearest neighbours respectively. Each of these

k-NN classifiers were configured to use the Euclidean Distance metric between input and training
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vectors. Tie breaking was done by choosing randomly between tied classes. The Naive Bayes classifier

was configured to be a Gaussian Naive Bayes classifier, also using a randomly chosen class for

tie-breaking.

The Multi-Layer Perceptrons were configured to have 1 Hidden Layer containing 100 neurons and 1

Output Layer with an output neuron for each activity or location, while using the Xavier Initialisation

method for weight assignment. Two activation functions will be compared, namely, the Logistic

Sigmoid and Hyperbolic Tangent. The neural network using Logistic Sigmoid will be labelled as

MLP-S and the neural network using the Hyperbolic Tangent will be labelled MLP-T. Both of these

classifiers use the Mean Squared Error as their loss function and use a learning rate of 0.0001. Both

MLPs also use a stopping criteria where the error stops decreasing. The SVM is configured to use a

Radial Basis Function as its kernel and uses a One-vs-Rest approach for multiclass classification; Data

generated by the SVM will be labelled as SVM.

3.7.2 Approach

To generate a robust set of results, it was decided that a brute-force or exhaustive search would be

used. This means that for every input dataset, the data is evaluated using every possible combination of

feature selection algorithm and classifier. To give an example, a diagram showing the interconnections

between the various stages is shown in Figure 3.15. In the Figure the structure resembles that of the

fully connected Neural Network shown in Figure 3.12. However, contrary to the Neural Network,

every path from beginning to end is independent and the results from one path have no effect on the

results of another.

3.8 CHAPTER SUMMARY

In this chapter, the structure of four machine learning models that solve the activity recognition problem

are proposed. Each of the four models are designed to accommodate the on-body device location

differently. The various facets of the implementations for each stage in the machine learning models

are discussed. These stages include data collection, pre-processing, feature selection and classification.

Furthermore, the configurations for each stage are set and the approach to generating comparable

results among models is finalised.
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Left Upper Arm
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3-NN
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Figure 3.15. Diagram for Model 3 results collection.
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CHAPTER 4 RESULTS

4.1 CHAPTER OVERVIEW

In this chapter the results of all machine learning models are presented, compared and analysed. The

results for Model 1 and 2 are presented in Section 4.2 and 4.3 respectively. Furthermore, the results

of each individual location, which make up Model 3, are presented in Section 4.4. A final model for

Model 4 is then generated and its results are evaluated in Section 4.5. Finally the results for each model

are summarised, compared and further analysed in Section 4.6.

4.2 MODEL 1

The following results were obtained for Model 1. The entire dataset is stored in a single file and each

feature selection algorithm and classifier must generalise all activities regardless of the device location.

The results for the classifier accuracies are shown in Figure 4.1.

From Figure 4.1 it is clear that the overall best performing datasets are the ones generated by CFS and

mRMR-MIQ. The CFS dataset performs the best while using the 3 and 5 NN classifiers, while the

mRMR-MIQ dataset performs better when using the NB, 1-NN, MLP-S, MLP-T and SVM classifiers.

The maximum achieved accuracy across all classifiers was the 1-NN classifier using the mMRM-MIQ

dataset with it achieving 89.0% accuracy. This was closely followed by the CFS dataset also using

1-NN with an 88.9% accuracy. The worst performing classifier and dataset combination was the

MLP-S using the mRMR-MID dataset, which achieved a classification accuracy of 41.7%. For the

1-NN classifier and mMRM-MIQ dataset, the weighted average recall was 86.445%, the weighted

average precision is 86.860% and the classification accuracy has a standard deviation of 0.47%.
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Figure 4.1. Classification accuracies for all feature subset and classifier combinations of Model 1.

By considering the confusion matrix in Table A.1 the right leg lunge, left leg lunge, squat and hinge

were misclassified as each other as often as 6.1% of the time. A similar result is observed between

walking, jogging and running with misclassifications occurring in 8.5% of the observations. Standing

and lying down were accurately represented with a misclassification happening in only 0.5% of the

observations.

Table 4.1. Model 1 Features from the mMRMR-MIQ dataset.

Sensor Axis Feature

Accelerometer Y Mean

Accelerometer Y Median

Accelerometer Z Mean

Magnetometer Y RMS

Magnetometer Z RMS

Gyroscope Y Mean

Gyroscope Z Fundamental Frequency

By considering the features in Table 4.1, a total of 7 features were chosen with the accelerometer

appearing in 42.9%, the magnetometer in 28.6% and the gyroscope appearing in 28.6% of all features.
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CHAPTER 4 RESULTS

The axis which was represented the most was the Y axis, appearing in 57.1% of features with the Z

axis appearing in the remaining 42.9%.

4.3 MODEL 2

The following results were obtained for Model 2. This model is identical to that of Model 1, with the

addition of the The known location of the device being appended to the dataset as a feature. The results

for the classifier accuracies are shown in Figure 4.2.
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Figure 4.2. Classification accuracies for all feature subset and classifier combinations of Model 2.

As shown in Figure 4.2 the overall best performing dataset was the CFS dataset, which was the top

performer using 5 of the 7 classifiers. The CFS dataset performed the best using the 1-NN, 3-NN, 5-NN,

MLP-S and MLP-T classifiers, with the mRMR-MID dataset performing the best using the NB classifier

and the MaxRel dataset performing the best using the SVM. The best overall performing dataset

and classifier combination was the CFS dataset with the 1-NN classifier. It achieved a classification

accuracy of 90.2%. The worst performing dataset and classifier combination was the MLP-T with the

mRMR-MIQ dataset, reaching only a 40.6% classification accuracy. The CFS and 1-NN combination

had a weighted average recall of 88.185%, a weighted average precision of 88.627% and has a standard

deviation of 0.37%.
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By considering the confusion matrix in Table A.2, it is clear that all activities except for lying down

were misclassified as eachother, with running being the most misclassified as jogging in 8.6% of

the observations. Apart from the misclassifications between running, jogging and walking, no other

misclassification occured more than 4.5% of the time. Lying down was misclassified as a left leg lunge

in 0.1% of the observations.

Table 4.2. Model 2 Features from the CFS dataset.

Sensor Axis Feature

Accelerometer Y Mean

Accelerometer Y Median

Accelerometer Z Mean

Magnetometer Y RMS

Magnetometer Z RMS

Gyroscope Y Mean

Gyroscope Z Fundamental Frequency

N/A N/A Location

Considering the features listed in Table 4.2, the results are identical to those of Model 1 with the added

exception of including the location of the device as a feature.

4.4 MODEL 3

The following results were obtained for Model 3, where the data for each on-body device location was

stored separately and treated as an individual problem. Each feature selection algorithm and classifier

has to generalise the data for each location individually. For this reason the results are split up by

their location and an average performance for the entire model will be calculated after examining each

location individually. Section 4.4.1 contains results for the upper arms, Section 4.4.2 contains results

for the wrists, Section 4.4.3 contains results for the thighs and finally Section 4.4.4 contains results for

the ankles.
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4.4.1 Upper arms

The results obtained from the various classifiers and datasets for the right and left upper arms are

shown in Figures 4.3 and 4.4 respectively.
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Figure 4.3. Classification accuracies for all feature subset and classifier combinations for the right

upper arm of Model 3.

With reference to Figure 4.3 which presents the classification accuracy for the right upper arm, the

overall best performing dataset is CFS using 6 of the 7 classifiers. The CFS dataset performed the

best using the 1-NN, 3-NN, 5-NN, MLP-S, MLP-T and SVM classifiers, with the mRMR-MIQ

dataset being the top performer using the NB classifier. The worst performing classifier and data set

combination was the MaxRel dataset using the SVM, achieving only 42.7% accuracy. Overall the CFS

dataset with the 1-NN classifier obtained the best result of 98.7% accuracy. It achieved a weighted

average recall of 98.334% and a weighted average precision of 98.473%.

By considering the confusion matrix in Table A.3, only the right leg lunge, squat, jog and run were

classified with 93.6%, 95.1%, 98.8% and 97.5% accuracy respectively while the remaining activities

were all classified with 100% accuracy. The right leg lunge was misclassified as a left leg lunge or

squat, a squat was misclassified as a left leg lunge, a hinge or a jog; A jog was misclassified as a run

and a run was misclassified as a jog.
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Figure 4.4. Classification accuracies for all feature subset and classifier combinations for the left upper

arm of Model 3.

The results for the classification accuracies of the left upper arm are shown in Figure 4.4. The results

show a highly contested top performance between the CFS, mRMR-MID and mRMR-MIQ datasets

when using various classifiers. Overall the top performing dataset was the mRMR-MID dataset using

the 1-NN, 3-NN and 5-NN classifiers. The mRMR-MIQ dataset was the top performer using the

MLP-S and MLP-T classifiers and the CFS dataset was the top performer using the SVM. For the 1-NN

classifier, CFS obtained 99.0% accuracy, mRMR-MID obtained 99.1% accuracy and mRMR-MIQ

obtained 99.0% accuracy. Using the 3-NN classifier the CFS, mRMR-MID and mRMR-MIQ datasets

obtained 98.8%, 98.9% and 98.7% classification accuracies respectively. The worst performing

classifier and dataset combination was the MLP-T using the MaxRel dataset, obtaining a 51.7%

classification accuracy. This of course means the top performing classifier and dataset combination

was the 1-NN classifier with the mRMR-MID dataset. This combination managed to obtain a 98.476%

weighted average recall and 98.668% weighted average precision.

By considering the confusion matrix in Table A.4, the right leg lunge, left leg lunge, hinge and run

obtained a 93.6%, 97.1%, 96.7% and 98.9% classification accuracy respectively. The remaining

activities obtained a 100% classification accuracy. Both lunges were in some cases misclassified as the

lunge using the opposite leg or a hinge. In some cases a hinge was misclassified as a walk and running

was in other cases misclassified as a walk.
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Table 4.3. Left and right upper arm features.

Left - mRMR-MID Right - CFS

Sensor Axis Feature Sensor Axis Feature

Accelerometer X Mean Accelerometer X Mean

Accelerometer Z Median Accelerometer Z Median

Accelerometer X Peak FFT Amplitude Gyroscope Z Median

Gyroscope X Fund. Frequency Gyroscope X Fund. Frequency

Gyroscope Y Peak FFT Amplitude Gyroscope Z RMS

Gyroscope Z Fund. Frequency Gyroscope Z Fund. Frequency

Magnetometer Z RMS

Shares 61.5% of total features

Table 4.3 shows a combined list of features from their own respective best performing datasets, mRMR-

MID for the left upper arm and CFS for the right upper arm. The dataset for the left upper arm

contains 7 features, of which 3 are from the accelerometer (42.9%), 3 from from the gyroscope (42.9%)

and the final feature being from the magnetometer (14.3%). The 7 features contained 3 along the

X axis (42.9%), 1 along the Y axis (14.3%) and the remaining 3 along the Z axis (42.9%). When

examining the right upper arm dataset, 6 features were present. In those features, 2 were taken from

the accelerometer (33.3%) while the remaining 4 features were taken from the gyroscope (66.6%).

Considering those 6 features, 2 features were along the X axis (33.3%) and the remaining 4 were

along the Z axis (66.6%). When considering both datasets together there were a total of 13 combined

features, of which 8 (61.5%) of them were shared.

4.4.2 Wrists

The results obtained from the various classifiers and datasets for the right and left wrists are shown in

Figures 4.5 and 4.6 respectively.

As shown in Figure 4.5, the overall best performer was the MaxRel dataset which obtained the best

results using 5 of the 7 classifiers. MaxRel obtained the best results using the NB, 3-NN, 5-NN, MLP-S

and MLP-T classifiers, while the CFS dataset obtained the best result using the 1-NN classifier and
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Figure 4.5. Classification accuracies for all feature subset and classifier combinations for the right

wrist of Model 3.

mRMR-MID obtained the best result using the SVM. The worst performing classifier and dataset

combination was the MLP-S using the mRMR-MIQ dataset which obtained a classification accuracy

of 46.6%. Although MaxRel was the overall top performer across all classifiers, it did not achieve

the highest classification accuracy. The CFS dataset using the 1-NN classifier managed to obtain a

96.3% classification accuracy with its next closest competitor being MaxRel using the 1-NN classifier

with 92.95% classification accuracy. The CFS and 1-NN combination managed to obtain a weighted

average recall of 96.092% and a weighted average precision of 96.345%.

By considering the confusion matrix in Table A.5, only lying down managed to achieve a 100%

classification accuracy. The worst performing activity was a jog, which obtained 90.7% accuracy and

was occasionally misclassified as a walk or a run.

With reference to Figure 4.6 the overall best performing dataset was the mRMR-MID dataset obtaining

the best result using 4 of the 7 classifiers. The mRMR-MID dataset performed the best using the NB,

3-NN, 5-NN and MLP-S classifiers, with the CFS dataset being the top performer using the 1-NN

and SVM classifiers and the MaxRel dataset performed the best using the MLP-T classifier. The

worst performing classifier and dataset combination was the mRMR-MIQ dataset using the SVM

classifier which obtained a classification accuracy of 48.6%. The combination with the highest average

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

55

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



CHAPTER 4 RESULTS

NB 1-NN 3-NN 5-NN MLP-S MLP-T SVM
0

20

40

60

80

100

Classifiers

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

CFS MaxRel mRMR-MID mRMR-MIQ

Figure 4.6. Classification accuracies for all feature subset and classifier combinations for the left wrist

of Model 3.

accuracy was the CFS dataset with the 1-NN classifier obtaining a classification accuracy of 96.0%.

The combination achieved a weighted average recall of 94.585% and a weighted average precision of

94.306%.

By looking at the confusion maxtrix in Table A.6 once again the only activity achieving a 100%

classification accuracy was lying down. The worst performing activity was squatting which was

misclassified as a left leg lunge, walk, jog or standing still. A similar result is seen for jogging, however

this was misclassified as running in 12.1% of the observations.

Table 4.4 shows the features of the best performing datasets for the left and right wrists, where both

datasets were generated by using the CFS feature selection algorithm. The left wrist dataset contained

9 features, 4 of which were from the accelerometer (44.44%), another 4 from the gyroscope (44.44%)

and the last being from the magnetometer (11.11%). Of those 9 features, 3 of them were along the X

axis (33.33%), 4 were along the Z axis (44.44%) and 2 were along the Y axis (22.22%). For the right

wrist, the dataset contained 10 features. Of these features, 2 were from the accelerometer (20%), 6

were from the gyroscope (60%) and the remaining 2 were from the magnetometer (20%). The features

comprised of 4 along the X axis (40%), 4 along the Y axis (40%) and the remaining 2 along the Z axis

(20%). This results in a total of 19 features when considering both datasets, with 12 of the features
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Table 4.4. Left and right wrist features.

Left - CFS Right - CFS

Sensor Axis Feature Sensor Axis Feature

Accelerometer X Fund. Frequency Accelerometer X Fund. Frequency

Accelerometer Z Mean Accelerometer Y Mean

Accelerometer Z RMS Gyroscope X Variance

Accelerometer Z Fund. Frequency Gyroscope Y Mean

Gyroscope X Fund. Frequency Gyroscope X Fund. Frequency

Gyroscope Y Fund. Frequency Gyroscope Y Fund. Frequency

Gyroscope Z Fund. Frequency Gyroscope Z Fund. Frequency

Gyroscope X Mean Gyroscope X Mean

Magnetometer Y Mean Magnetometer Y Mean

Magnetometer Z Fund. Frequency

Shares 63.2% of total features

being common between both wrists (63.2%).

4.4.3 Thighs

The results obtained from the various classifiers and datasets for the right and left thighs are shown in

Figures 4.7 and 4.8 respectively.

Figure 4.7 shows the classification accuracies for the right thigh. The figure shows the overall top

performing dataset is the CFS dataset, being the top performer using 6 of the 7 classifiers. It was

the best performer using the 1-NN, 3-NN, 5-NN, MLP-S, MLP-T and SVM classifiers with the

mRMR-MID dataset was the top performer using the NB classifier. The worst performing classifier

and dataset combination was the mRMR-MIQ dataset using the MLP-S classifier, which achieved an

average classification accuracy of 49.5%. The best performing combination was the CFS dataset using

the 1-NN classifier, which obtained an average classification accuracy of 96.1%. This combination

achieved a weighted average recall of 95.209% and a weighted average precision of 94.572%.
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Figure 4.7. Classification accuracies for all feature subset and classifier combinations for the right

thigh of Model 3.

By looking at the confusion matrix shown in Table A.7, it is clear to see that the left leg lunge and

lying down obtained a classification accuracy of 100%. The worst performing activity was a hinge

which was misclassified as a right leg lunge, a jog or standing still in 15.6% of the observations. The

next worst performing activity was a right leg lunge which was misclassified as a squat, a hinge or a

jog in 13.3% of the observations.

Figure 4.8 shows the classification accuracies for the left thigh. The figure shows the complete domin-

ance of the MaxRel dataset which was the top performing dataset using all 7 classifier configurations.

The mRMR-MIQ and CFS datasets alternated as the second best performer each being second in 3 of

the 7 configurations. The worst performing dataset and classifier combination was the mRMR-MID

dataset using the MLP-S classifier, with it obtaining a classification accuracy of 37%. The combination

with the highest achieving classification accuracy was the 1-NN classifier with the MaxRel dataset,

achieving a classification accuracy of 96.4%. This combination achieved a weighted average recall of

95.871% and a weighted average precision of 95.938%.

Table A.8 shows a confusion matrix of the best performing classifier and dataset combination. The table

shows that the right leg lunge, walk, jog, run and lying down managed to achieve 100% classification

accuracy. The worst performing activity was the hinge with an accuracy of 87.2%, being misclassified
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Figure 4.8. Classification accuracies for all feature subset and classifier combinations for the left thigh

of Model 3.

as squatting 10.2% of the time or left leg lunges 2.6% of the time. The left leg lunge was misclassified

as a squat or right leg lunge in 4.6% of the observations or a hinge in 1.5% of the observations.

Table 4.5. Left and right thigh features.

Left - MaxRel Right - CFS

Sensor Axis Feature Sensor Axis Feature

Accelerometer Y Mean Accelerometer Y Mean

Gyroscope X Fund. Frequency Gyroscope X Fund. Frequency

Gyroscope Z Median Gyroscope X Median

Gyroscope Z Fund. Frequency Gyroscope Z Fund. Frequency

Gyroscope X Mean Gyroscope Z Mean

Gyroscope Z Variance Magnetometer Y Interquartile Range

Magnetometer Z RMS Magnetometer Z RMS

Shares 57.1% of features

Table 4.5 shows the features obtained from the top performing feature selection algorithm created

datasets for the left and right thighs. The results for the left thigh show that the CFS dataset contained 7

features, of which 1 of them was from the accelerometer (14.3%), 5 were from the gyroscope (71.4%)
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and the remaining 1 was from the magnetometer (14.3%). The results also show that 2 features were

along the X axis (28.6%), 1 was along the Y axis (14.3%) and the remaining 4 were along the Z axis

(57.1%). The results for the right thigh show that the CFS dataset contained 7 features aswell, 1 of

which was from the accelerometer (14.3%), 4 were from the gyroscope (57.1%) and the remaining 2

were from the magnetometer (28.6%). The features consisted of 2 along the X axis (28.6%), 2 along

the Y axis (28.6%) and the remaining 3 along the Z axis (42.9%). By considering the two feature sets

together, there are a total of 14 combined features. Of those 14 features, 8 were shared between the

two datasets (57.1%).

4.4.4 Ankles

The results obtained from the various classifiers and datasets for the right and left ankles are shown in

Figures 4.9 and 4.10 respectively.
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Figure 4.9. Classification accuracies for all feature subset and classifier combinations for the right

ankle of Model 3.

Figure 4.9 shows the classification accuracies for the right ankle of the various datasets and classifiers.

The figure shows that the MaxRel dataset was the top performer using the 1-NN, 3-NN, 5-NN and

SVM classifiers; It also shows that the mRMR-MID dataset performed the best using the NB classifier

and that the mRMR-MIQ dataset performed the best using the MLP-S and MLP-T classifiers. The

worst performing combination was the CFS dataset using the MLP-S classifier, achieving an average
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classification accuracy of 51.8%. The top performing combination was the MaxRel dataset using

the 1-NN classifier which achieved an average classification accuracy of 90.6%. This combination

achieved a weighted average recall of 86.903% and a weighted average precision of 86.406%.

The confusion matrix in A.9 shows that only lying down managed to achieve 100% classification

accuracy. The worst performing activities were running which was misclassified as walking, in 16.5%

of the observations. A similar result was seen for squatting which was misclassified as right leg lunges,

left leg lunges, hinges, running or standing. The only other two activities above a 90% accuracy were

standing still and jogging.
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Figure 4.10. Classification accuracies for all feature subset and classifier combinations for the left

ankle of Model 3.

By looking at Figure 4.10 it’s possible to see that the CFS dataset was the best performing dataset using

all classifiers except NB; Using the NB classifier, the mRMR-MID dataset was the best performer.

The worst performing combination was the mRMR-MIQ dataset using the MLP-T which achieved a

average classification accuracy of 49.7%. The best performing combination was the CFS dataset using

the 1-NN classifier, which achieved an average classification accuracy of 90.9%. The combination

achieved a weighted average recall of 87.168% and a weighted average precision of 87.361%.

By looking at the confusion matrix in Table A.10 the activity of lying down was once again at 100%

classification accuracy. Three other activities were above 90%, standing, walking and a hinge. The
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worst performing activities were running (74.6%), which was misclassified as jogging in 14.1% of

the observations and left leg lunges (79.8%) which were misclassified as right leg lunges, squatting,

hinges, walking, jogging or running.

Table 4.6. Left and right ankle features.

Left - CFS Right - MaxRel

Sensor Axis Feature Sensor Axis Feature

Accelerometer X Mean Accelerometer X Mean

Accelerometer Z Median Accelerometer X Median

Accelerometer Z Mean Accelerometer X Power

Accelerometer Y Fund. Frequency Accelerometer Y Fund. Frequency

Gyroscope X RMS Gyroscope X RMS

Gyroscope Y Fund. Frequency Gyroscope Y Fund. Frequency

Gyroscope Z RMS Gyroscope Z RMS

Gyroscope Z Fund. Frequency Gyroscope Z Power

Shares 75.0% of features

Table 4.6 shows a combined list of features from the left and right ankles. The dataset for the left

ankle was generated using CFS and the dataset for the right ankle was generated using MaxRel. The

left ankle’s dataset contained 8 features, of which, 4 of them were from the accelerometer (50%) and

the remaining 4 were from the gyroscope (50%). Of the 8 features, 2 of them were along the X axis

(25%), 2 were along the Y axis (25%) and the remaining 4 were along the Z axis (50%). The right

ankle’s feature set also contained 8 features. Of the 8 features, 4 of them were from the accelerometer

(50%) and the remaining 4 were from the gyroscope (50%). Of those 8 features, 4 were along the

X axis (50%), 2 were along the Y axis (25%) and the remaining 2 were along the Z axis (25%). By

considering the two datasets together there are a total of 16 features. Of those 16 features, 12 of them

were shared by both datasets (75%).

Table 4.7 shows a summary of the results for all the on-body device locations, containing the best

average performing dataset and classifier for each. Of the results, 5 of the 8 of the datasets were

generated using CFS, 2 of the 8 were generated by MaxRel and only 1 was generated by mRMR-MID.

With regards to the classifiers, the best performing classifier was the 1-NN classifier, being the best

performer for all 8 locations. By considering both left and right components of the same type of
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Table 4.7. Summary of the maximum average classification accuracies for Model 3.

Classification Accuracy Feature Subset Classifier

Right Upper Arm 98.7% CFS 1-NN

Left Upper Arm 99.1% mRMR-MID 1-NN

Right Wrist 96.3% CFS 1-NN

Left Wrist 96.0% CFS 1-NN

Right Thigh 96.1% CFS 1-NN

Left Thigh 96.4% MaxRel 1-NN

Right Ankle 90.6% MaxRel 1-NN

Left Ankle 90.9% CFS 1-NN

Average Accuracy 95.5%

Standard Deviation 0.18%

Average Recall 94.08%

Average Precision 94.01%

location, the upper arms performed the best with an average classification accuracy of 98.9%. The

next best performer was the thighs, which obtained an average classification accuracy of 96.25%.

Following the thighs, the wrists obtained an average classification accuracy of 96.15%. Finally, the

ankles obtained an average classification accuracy of 90.75%. By considering all the data from all the

locations, the weighted average classification accuracy is 95.5% with a standard deviation of 0.18%.

The weighted average recall was 95.51% and the weighted average precision was 95.6%.

By considering the the results in this table, a less complex version of Figure 3.15 can be generated.

This is shown in Figure 4.11, this figure shows the resultant path to obtaining the best results by

considering the device locations independently.

4.5 MODEL 4

The following results were obtained for Model 4, which is a resultant model from the best performing

model between Models 1, 2 or 3. Based on the top performing model, a single dataset or multiple

datasets will be used, as well as single or multiple combinations of classifiers to perform activity
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Figure 4.11. Block diagram for Model 3, post-result evaluation.

recognition. This section is broken into 2 subsections, namely, Localisation and Activity Recognition.

The Localisation subsection covers the results of localising the on-body device before the location is

used in the Activity Recognition section. Afterwards, the results are compared in the same fashion as

all previous models.

4.5.1 Localisation

In this section the results for the localisation process are presented. All data is contained in a single

dataset and feature selection algorithms and classifiers must generalise the dataset in a similar fashion
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to that of Model 1. The algorithms must localise the nodes to the right upper arm, left upper arm, right

wrist, left wrist, right thigh, left thigh, right ankle and left ankle.
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Figure 4.12. Classification accuracies for all feature subset and classifier combinations for the local-

isation of Model 4.

Figure 4.12 shows the results for the localisation of the nodes using the various feature selection

algorithm generated datasets and classifiers. The results show that mRMR-MID is the top performing

dataset using 6 of the 7 classifiers, 1-NN, 3-NN, 5-NN, MLP-S, MLP-T and SVM. The mRMR-MIQ

dataset is the top performer using the NB classifier. The worst performing combination is the NB

classifier using the mRMR-MID dataset, which obtained an average classification accuracy of 47.0%.

The best performing combination is the mRMR-MID dataset using the 1-NN classifier which achieved

an average classification accuracy of 98.8%. This was closely followed by the same dataset using the

SVM which achieved 98.7% average classification accuracy. The top performer obtained a weighted

average recall of 98.811% and a weighted average precision of 98.813%.

Table A.11 shows the confusion matrix of the localisation component of Model 4. To simplify the

diagram, each locations label has been written as an abbreviation, where L and R stand for left and

right respectively, UA stands for upper arm, W stands for wrist, T stands for thigh, and A stands for

ankle. As an example, the label LUA would therefore represent the left upper arm. The results show

all locations obtaining a classification accuracy of above 97%, with the right thigh and right ankle
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both obtaining 97.9% classification accuracy. The best performing location is the right wrist obtaining

99.8% accuracy.

Table 4.8. Model 4 localisation features (mRMR-MID).

Sensor Axis Feature

Accelerometer X Median

Accelerometer Z Median

Accelerometer Z Mean

Magnetometer X Mean

Magnetometer Z Mean

Gyroscope X Median

Gyroscope X Mean

Gyroscope Y Median

Gyroscope Z Mean

Table 4.8 contains a list of features that are present in the mRMR-MID dataset. The dataset contains

a total of 9 features, 3 of which are from the accelerometer (33.33%), 2 of which are from the

magnetometer (22.22%) and the remaining 4 are from the gyroscope (44.44%). Of the same 9 features,

4 are along the X axis (44.44%), 1 is along the Y axis (11.11%) and the remaining 4 are along the Z

axis (44.44%).

4.5.2 Activity recognition

This section presents the results of the activity recognition portion of Model 4. Before the results

could be generated, the model first needed to be developed, which as discussed, would be generated

using the best performing activity recognition model between Models 1, 2 or 3. The results are briefly

considered in Section 4.5.2.1.

4.5.2.1 Model generation

To generate a final model for Model 4, considerations of the previous 3 models need to be made.

Figure 4.13 shows a comparison between the average classification accuracies of Models 1, 2 and 3.
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The results show marginal improvement from each model to the next, with Model 1 achieving 89.0%

average classification accuracy, Model 2 achieving 90.2% and finally Model 3 achieving 95.5% average

classification accuracy. Based on this result, Model 4’s activity recognition stage will be implemented

using the same method as in Model 3. The resultant model for Model 4 is shown in Figure 4.14.
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Figure 4.13. Comparison of average achieved accuracies for Models 1 to 3.

As shown in Figure 4.14 Model 4 is based on a similar approach to Model 3, where each location is

considered individually with each dataset being stored separately and various classifiers and feature

selection algorithms used on each dataset separately. However, instead of the known location being

configured for the execution phase, localisation on the node is performed and the result is then used to

choose a corresponding dataset and classifier combination.

4.5.2.2 Model results

The results for Model 4 are shown in Table 4.9. Since the model is based on Model 3, each location had

to be considered individually. The results show that the upper arms achieved an average classification

accuracy of 98.2%, the wrists obtained an average classification accuracy of 95.9%, the thighs obtained

an average classification accuracy of 94.45% and the ankles obtained an average classification accuracy

of 89.45%. Since the datasets and classifiers used were identical to that of Model 3, those results

have remained the same. Considering the performance of the entire Model 4, it achieved an average
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Figure 4.14. Block diagram for the final design of Model 4.

classification accuracy of 94.5%, a standard deviation of 0.27%, a weighted average recall of 93.08%

and a weighted average precision of 93.01%.

4.6 MODEL COMPARISON

This section shows the results of all models in comparison with each other. It is used to highlight the

differences in performances of the feature selection algorithms, classifiers, activities and a summary of

the results presented in all previous sections.

Table 4.10 shows the performance of all feature selection algorithm generated datasets by averaging

them across the classifiers with which they were used in each model. The results show improvements
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Table 4.9. Summary of maximum average classification accuracies for Model 4 activity recognition.

Classification Accuracy Feature Subset Classifier

Right Upper Arm 98.3% CFS 1-NN

Left Upper Arm 98.1% mRMR-MID 1-NN

Right Wrist 96.0% CFS 1-NN

Left Wrist 95.8% CFS 1-NN

Right Thigh 94.5% CFS 1-NN

Left Thigh 94.4% MaxRel 1-NN

Right Ankle 88.7% MaxRel 1-NN

Left Ankle 90.2% CFS 1-NN

Average Accuracy 94.5%

Standard Deviation 0.27%

Average Recall 93.08%

Average Precision 93.01%

Table 4.10. Average performance of the feature selection algorithms for Models 1 to 4.

Model 1 Model 2 Model 3 Model 4

CFS
Average (%) 71.2 72.5 81 80.1

Std Dev (%) 14.6 13.7 13.8 13.9

MaxRel
Average (%) 52.8 68.6 77.0 76.3

Std Dev (%) 6.6 10.3 14.3 14.2

mRMR-MID
Average (%) 51.2 60.9 74.6 73.9

Std Dev (%) 7.8 7.6 14.3 14.4

mRMR-MIQ
Average (%) 75.2 55 70.6 69.9

Std Dev (%) 11.3 13 14.3 14.2

in average accuracy with all FSAs except mRMR-MIQ from Model 1 to Model 2. The most significant

increase from Model 1 to Model 2 is observed with MaxRel, increasing by 15.8%. A more significant

increase in average accuracy is observed from Model 2 to Model 3, for all FSAs, with the most

significant increase being 16.6% for mRMR-MIQ. Slight decreases are observed from Model 3 to

Model 4, with a consistent standard deviation for both models. The best performing FSA was CFS for
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model 3 (81%), with the worst performing FSA being mRMR-MID for model 1 (51.2%). The FSA

with the lowest standard deviation is MaxRel for model 1 (6.6%), with the highest standard deviation

being mRMR-MID for Model 4 (14.4%).

Table 4.11. Average performance of the classifiers for Models 1 to 4.

Model 1 Model 2 Model 3 Model 4

NB
Average (%) 56.4 57.8 70.7 69.9

Std Dev (%) 4.1 2.0 5.4 5.3

1-NN
Average (%) 73.6 77 86.6 85.6

Std Dev (%) 17.7 9.9 9.7 9.6

3-NN
Average (%) 71.4 73.4 84.0 83.1

Std Dev (%) 16.3 9.7 10.2 10.1

5-NN
Average (%) 70.6 71.5 82.5 81.6

Std Dev (%) 14.1 9.2 9.8 9.7

MLP-S
Average (%) 53.2 52 66.4 65.7

Std Dev (%) 10.6 8.9 14.0 13.8

MLP-T
Average (%) 54 51.1 67.4 66.7

Std Dev (%) 10.6 12.1 13.8 13.6

SVM
Average (%) 59.0 67 73.4 72.7

Std Dev (%) 17.6 8.0 15.3 15.1

Table 4.11 shows the performance of the classifiers when averaged across all feature subsets introduced

to them in each model. The results show minor improvements for all classifiers with the exception of

MLP-S and MLP-T, between Model 1 and Model 2. The standard deviations improve as well with the

exception of MLP-T. The largest difference in average accuracy of 8% is observed with the SVM. A

significant increase in performance for all classifiers is observed between Model 2 and Model 3. Minor

increases are also observed for each classifiers respective standard deviation. The largest increase in

performance of 16.3% is observed for the MLP-T of Model 2 to Model 3. There are slight decreases

in average accuracy from Model 3 to Model 4, with the largest difference being 1% for the 1-NN

classifier.

Table 4.12 shows the average recall for the best performing classifier and FSA combination for all

activities of each model. The average performance of the activities using Model 1 ranged from 76.9%
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Table 4.12. Performance of each activity for Models 1 to 4.

Model 1 Model 2 Model 3 Model 4

Lunge R (%) 83.9 83.9 90.5 89.3

Lunge L (%) 83.0 83.4 92.8 91.6

Squat (%) 84.2 84.2 91.7 90.5

Hinge (%) 80.4 89.4 91.7 90.5

Walk (%) 91.8 91.7 96.9 95.6

Jog (%) 79.4 83.5 93.0 91.8

Run (%) 76.9 80.1 92.4 91.2

Stand (%) 98.4 97.5 97.8 97.6

Lie (%) 99.9 99.9 100 100

for running, to 99.9% for lying down. Two activities achieved below 80% accuracy, four achieved

between 80% and 90% with the remaining three achieving above 90%. Model 2 performed similarly

to Model 1 with increases for the left leg lunge, hinge, jogging and running. Slight decreases were

observed for walking and standing still. The remaining activities performance remained the same.

Significant increases were observed for Model 3, with increases in right leg lunges, left leg lunges,

squats, hinges, walking, jogging, running, standing and lying down. The largest improvement observed

was 12.3% for walking. Minor decreases are observed between Model 3 and 4. The performance of all

models for standing and lying down remained very similar, with Model 1 being the best performer for

standing.

Table 4.13. Average Accuracies for Models 1 to 4 including 1 and 5 standard deviations.

Avg Accuracy (%) 1 Std Dev (%) 5 Std Devs (%)

Model 1 89.0 0.47 2.35

Model 2 90.2 0.37 1.85

Model 3 95.5 0.18 0.9

Model 4 94.4 0.27 1.35

Figure 4.15 and Figure 4.16 show the average performance of the activity recognition models with

one and five standard deviations, these results are also reflected in Table 4.13. Figure 4.15 shows no

overlaps between any of the four models, whereas Figure 4.16 shows a large overlap between Models
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1 and 2 and an overlap between Model 3 and 4, however, no overlap between Model 2 and 3, or 2 and

4 are observed.
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Figure 4.15. Comparison of average achieved accuracies for Models 1 to 4 within 1 standard deviation.
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Figure 4.16. Comparison of average achieved accuracies for Models 1 to 4 within 5 standard deviations.

Table 4.14 shows a summary of the results for Models 1 to 4. It contains such details as the best

performing classifier, best performing feature selection algorithm, various details about the feature sets

including the sensor, axis, count and overlap. It also summarises the average classification accuracy,

standard deviation, recall and precision for all models.
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4.7 CHAPTER SUMMARY

This chapter presents the results of the experiments performed, as discussed in Chapter 3. The

classification accuracy, weighted average recall, weighted average precision and standard deviations of

all classifiers using all feature selection algorithm generated datasets are presented for Models 1, 2

and 3. The best performing combination of classifier and feature selection algorithm for each model

generates a confusion matrix, to determine where misclassifications are being made. Alongside the

confusion matrix, a table containing the feature subset that yielded the best results for each model is

presented. From these tables, data pertaining to the relevant sensors and axes, as well as an overlap

between features are extracted.

Once the best performing of the first three models was determined, a final model for Model 4 was

generated. Model 4 is then subsequently examined in the same manner as Models 1, 2 and 3, in

order to generate comparable results amongst all models. A final comparison of all 4 models is made,

by considering the average performance across features, feature selection algorithms and classifiers

independently.
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CHAPTER 5 DISCUSSION

5.1 CHAPTER OVERVIEW

This chapter contains an interpretation and discussion of the significance of the results found in Chapter

4; This chapter also includes explanations of new insights into the research problem. In Section

5.2, various aspects of the feature subsets including feature axis and sensors used are discussed. A

review of the performance of the various configurations of feature selection algorithms and classifiers

are presented in Sections 5.3 and 5.4 respectively. Section 5.5 evaluates the activities based on the

results of the machine learning models. A discussion on the approach to localising devices and then

performing activity recognition in Model 4 is presented in Section 5.6. Finally, an evaluation on the

impact of localising a wearable device on the activity recognition problem is presented in Section

5.7.

5.2 FEATURES

To gain an understanding of the activity recognition problem it is also important to examine the features

that were chosen by the feature selection algorithms. To do this, reference must be made to all tables

in the Results chapter which contain the best performing feature set for each model, as well as Table

4.14.

5.2.1 Feature axis

Model 1 contains 7 features in the dataset, of which 0% were along the X axis, 57% along the Y axis

and 42.9% along the Z axis. Model 2 contains 8 features, of which the first 7 are identical to that
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CHAPTER 5 DISCUSSION

of Model 1, with the 8th feature being the on-body device location. However, Model 3 on average

contains 35.5% of its features along the X axis, 22.6% along the Y axis and 41.9% along the Z axis.

The same would obviously apply to Model 4 since it uses the same datasets as Model 3. The result from

Model 3 does however show that when considering each location individually there is a much more

even distribution amongst the feature axes when compared to Model 1. However, the Z axis showed

comparable results for both Model 3 and 1. This result indicates a strong relevance of information

along that axis. When considering these results a deduction can be made that every axis contains

relevant information for these specific activities. It is however possible, that given a different set

of activities, the strong relevance of the Z axis may fall away and another axis may become more

predominant or all the axes may become more equally relevant.

5.2.2 Feature sensor

A similar comparison to the feature axis can be made while considering the different sensors that

were sampled. Model 1’s feature subset consisted of 42.9% from the accelerometer, 28.6% from

the gyroscope and 28.6% from the magnetometer. Model 3 however contained 33.7% from the

accelerometer, 55.3% from the gyroscope and only 11.0% from the magnetometer. Once again, Model

2 and 4’s results are the same as Model 1 and 3 respectively. By comparing the results of Models 1

and 3, a significant shift in the sensor which provides the most information can be observed. Model 3

places a much higher relevance on the gyroscope, indicating that more information is gained from the

orientation of the device than its speed or direction. Model 3 also uses significantly less information

from the magnetometer. These results do seem to line-up with the activities that were recorded, as

much more focus was placed on the technique of the activities than the speed or direction in which

they were performed. This is however not the case for walking, jogging and running as the difference

between those activities are determined mostly by speed, with some changes in the mechanical aspects

of the body, for example a longer stride length [50].

5.2.3 Feature count

Another aspect to examine is the amount of features in the various feature sets. Model 1’s feature set

contained 7 features, Model 2 contained 8, Model 3’s upper arms contained 6 and 7, the wrists, 10 and

9, the thighs, 7 and 7 and finally the ankles contained 8 and 8. When considering the models training
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CHAPTER 5 DISCUSSION

datasets, Model 1 contained the least prior knowledge and had one large dataset. This means the model

needed to generalise 9 activities, with the devices placed at 8 locations, making it a complex problem

to solve. As previously stated, Model 2’s feature set contained 8 features, which included an encoded

version of the on-body device location as a feature. This made the feature space more complex by

introducing one extra dimension, however the accuracy of the model did increase in comparison to that

of Model 1. Model 3 however, better highlights the complexities of the problem as it considers each

location individually. On average the upper arms required the least features, the thighs then required

the next least, the ankles required the second most with the wrists requiring the most features. Of those

locations however, the ankles on average performed the worst, with the thighs and wrists performing

almost identically while the upper arms performed the best.

The amount of features does however appear to have some correlation with the full range of motion

of the limb to which the device is attached. The position and orientation of the wrist for example, is

affected by the elbow and shoulder, however the upper arms are only affected by the shoulder [51, 52].

The reduced amount of degrees of freedom results in a less complex model for the device location,

which would intuitively allow the limbs activities to be modelled by less features [53]. The ankles

and the wrists are both affected by a similar amount of degrees of freedom, resulting in the largest

amount of features to model them. The upper arms and thighs are also affected by a similar amount

of degrees of freedom, resulting in a lower amount of features required to model them. Model 3

has a total of 62 features, which corresponds to an average of 7.75 features per device location. In

comparison with Model 1 which uses 7 features, Model 3 better generalises the activities resulting in a

6.5% classification accuracy increase. This means that an increase in complexity of the problem, does

not guarantee a decrease in accuracy. Therefore, it can be said that Model 3, on average has higher

quality features than all other models.

5.2.4 Feature overlap

Feature overlap is something specifically affecting Model 3, as it examines each on-body device

location individually. It is expected that the left and right versions of the same limb will produce a

similar classification accuracy, because the motions when performing the activities will be somewhat

mirrored by both limbs [54]. It is therefore also expected that the feature set will also be somewhat

similar. The upper arms have a 61.5% overlap, the wrists have a 63.2% overlap, the thighs a 57.1%
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overlap and the ankles a 75% overlap. The fact that an overlap exists in the results is expected however

the amount of overlap was unknown prior to the experiments.

This overlap is thought to be able to model a neutral version of a limb, e.g. not considering a left

and right wrist, but rather just a wrist. This would reduce the amount of features in the feature set

for each location, with the ankles containing 6 features, the thighs, 4 features, the wrists, 6 features

and the upper arms, 4 features. It was expected that there would be a portion of the feature set that

does not overlap between both sides and it is thought that this uniqueness is generated by unique

movements performed by the specific side. For example, a right-handed person lifts up two bags,

one with each hand. It is thought that some micro-movements may be made by the right arm that the

person unknowingly does not do with the left arm. This difference in the movements between the left

and right arms could therefore be viewed as noise, thus generating the unique portions of the feature

sets. This noise could be contributing to overfitting of the classifiers, therefore reducing the overall

accuracy.

5.3 FEATURE SELECTION ALGORITHMS

This section examines the performance of the various feature selection algorithms. The results of each

of the feature selection algorithms are compared based on their performance as a result of the classifiers

that use the feature subsets they each generate. This discussion is based on the results presented in

Table 4.10.

The results in the table show an increase in performance for the CFS, MaxRel and mRMR-MID FSAs

from Models 1 through 3. This was however not the case for mRMR-MIQ which best performed in

Model 1. The increase in performance between the models indicates that the extra prior knowledge in

the system was able to add to the quality of the features that the FSA was able to extract. A significant

increase from MaxRel and mRMR-MID was noted from Model 1 to Model 2. This increase cannot

solely be attributed to the FSAs because the same features were used for both Model 1 and 2, with

the exception of the encoded location of the device included in Model 2’s feature set. This indicates

that although the features are almost identical, an added degree of complexity can greatly increase the

average performance of the system, allowing better discrimination of the features from one another. A

similar increase can be seen when comparing Model 2 to Model 3. This can be attributed to the FSAs
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being able to examine each location individually thus determining which features are most relevant

for each location. Similar results can be seen when comparing Model 3 to Model 4, with the primary

difference being introduced by the localisation error for each device.

These average results do agree with those shown in Table 4.14 as the best performing FSA for Model 1

was mRMR-MIQ, CFS for Model 2 and a distribution of CFS, MaxRel and mRMR-MID for Model

3. The results do appear poor in comparison to the results shown in Table 4.14 due to the fact each

FSA is being compared using the average across all classifiers. This means that the poorly performing

classifiers are greatly reducing the average performance of the FSA. This can be noted by the fairly

high standard deviations for all FSAs. A high standard deviation indicates that the FSA was able to

perform well with some classifiers and poorly with others. A low standard deviation however indicates

that the FSA performed somewhat consistently across all classifiers, which can be seen for Model

1 MaxRel and mRMR-MID, as well as, Model 2’s mRMR-MID. It is possible that by tuning the

machine learning models, there may be moderate increases in the overall performances of each of the

FSAs.

5.4 CLASSIFIERS

This section examines the performance of the classifiers using all feature selection algorithms. The

discussion is based on the results presented in Table 4.11.

Similarly to the increases seen in the feature selection algorithms for every model, a distinct increase

in average classification accuracy can be seen for all classifiers with the exception of both MLPs for

Models 1, 2 and 3. The 1-NN classifier was the overall top performing classifier across all experiments

and models. This was followed by the 3-NN and 5-NN classifiers respectively. An interesting

observation however, is the gradual decrease in the average classification accuracy as k increases. This

gradual decrease in performance for the same model is likely linked to a property of the k-NN classifier

where the boundaries become more smooth as k increase; With k = 1 the boundaries are sharp and

very distinct. It is possible that by using an even-numbered value for k the experiments may have

produced different results, by forcing the tie-breaking strategies of the classifier to be used. The 1-NN

classifier did manage to improve its performance and confidence from Models 1 through 3, which can
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be seen by its decreasing standard deviation. This indicates a strong performance from the classifier

irrespective of the dataset being used.

The overall worst performing classifiers were undoubtedly the MLPs, which managed an average

classification accuracy of only 66.4% and 67.4% each, in their best performing activity recognition

model. This is almost certainly as a result of the many parameters that must be chosen for the MLP

to function. This includes the number of hidden layers, number of neurons per layer, the learning

rate, etc. It is assumed that given a better estimation of those parameters, the MLPs would have

performed significantly better as neural networks do form part of deep learning. In contrast to the

classifiers that require significant configuration, the classifiers which require almost none, performed

admirably.

Increasing the overall performance of every classifier may be achieved using several methods. The first

being the one already raised for the MLPs where tuning may have been an issue. A second method

for improving performance may be the use of a different class of feature selection algorithm such as

Wrapper FSAs. It appears that many of the classifiers are sensitive to the features that they are provided

with, so it is possible that given a different set of features, the worst performing classifier may become

the best performing classifier.

5.5 ACTIVITY RECOGNITION

This section examines the best performance of each model, which are made up of best combinations of

feature selection algorithms and classifiers. The discussion is based on results from Table 4.14 and

Table 4.12.

With particular reference to Table 4.14, the results show marginal increases from Models 1 to 3. These

increases can be attributed to the manner in which the datasets are being treated, based on their known

location information. The table shows a 1.2% increase from Model 1 to 2 and a 5.3% increase from

Model 2 to 3. This jump in average classification accuracy can largely be attributed to the manner in

which Model 3 performs feature selection, as it is able to consider each device location individually,

allowing the system to generalise each location independently of others. Similar to previously discussed

material, the standard deviation reveals information about the consistency of the results. Model 1 had
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a standard deviation of 0.47%, Model 2 had 0.37% and Model 3 had 0.18%. This steady decrease

shows that each model becomes more robust to noise and is able to produce a consistent result across

multiple experiments. Based on these results, Model 3 has shown a very consistent performance, in

which none of the experiments dropped below 95%. When choosing the top performing classifier,

the 1-NN classifier was clearly dominant in the entire experiment. There were however times where

other classifiers came close to being the top performer, but ultimately the 1-NN classifier produced the

highest average classification accuracy.

Since Model 3 was the best performing model, reference can be made to Table 4.7 for a closer look

at the which limbs were able to produce the best results. As can be seen, the upper arms did almost

equally well achieving 98.7% and 99.1%. The wrists and thighs performed quite similarly achieving

approximately 96%. A significant drop in performance is however observed when considering the

ankles, which achieved 90.6% and 90.9%. There are several factors that may contribute to the decrease

in performance in comparison to other limbs. One possible explanation is that the activities may be

very similar from the perspective of the ankles. This would lead to the features being similar, thus not

allowing for an acceptable generalisation of the data.

On the other hand if the activities are easily distinguishable from each other from the perspective of

the ankle, then the feature selection algorithms simply did not extract high quality features. Another

explanation may be to the fault of the classifiers themselves, where it would be a case of tuning. One

other explanation may be that a completely different set of features may need to be extracted during

the pre-processing stage, thus allowing all subsequent stages to perform better. One aspect to consider

in this type of application is what is deemed to be an acceptable classification accuracy. If anything

that falls below 95% is deemed unacceptable then the ankles do require improvement. However, in

these experiments, the ankles from Model 3 do perform better than that of Model 1 and 2. This once

again reinforces the notion that the contextual information is adding value.

To determine if there are particular activities which were difficult to generalise, reference should be

made to Table 4.12. When considering Model 1, the activities that proved the most difficult to classify

were running and jogging. As discussed previously, most of the focus during data collection was

placed on the technique of the activity, rather than the speed at which it was performed. It is assumed

that the performance of these activities can be attributed to two possible scenarios, or a combination of

both. The first scenario is that the test subjects, when instructed to run and jog, performed activities
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that were in fact almost identical. This would lead to the data being very similar, making the activities

difficult to distinguish. A second scenario, assuming the test subjects performed the activities perfectly,

is that the activities are in fact very similar.

This would mean that a better set of features would be required to accurately describe the differences

between running and jogging. The best performing activities were standing and lying down. The

assumption is that those activities are the best performing because contrary to the others, they are

completely static. Standing however does not achieve almost perfect classification accuracy and the

assumption is that this is because every activity with the exception of lying down, are all performed

while standing up. When considering Model 2, the performance of the activities is very similar for all,

with the exception of a 9% improvement with hinges and slight improvements on running and jogging.

This gives some indication that more, or better features are required to accurately describe those

particular activities in general. The biggest improvement is observed in Model 3, with no activities

falling below 90% classification accuracy. Similar to previous discussions it is assumed that this is

entirely attributed to each location being considered individually, allowing for better generalisation of

each activity. There is however little to no difference for standing and lying down, as those activities

appear easily distinguishable regardless of the machine learning model.

5.6 MODEL 4

5.6.1 Localisation

The localisation of Model 4 is reminiscent of Model 1’s activity recognition, where both models use

a single dataset to classify the data. However, for activity recognition there are 9 classes but with

the localisation there are only 8 classes. Because both models use a single dataset, the localisation

classifier has to determine the location of the device regardless of the activity, inversely the activity

recognition classifier has to determine the activity, regardless of the location. From Figure 4.12, one

of the differences that can be observed between the classification accuracies of Model 1’s activity

recognition and Model 4’s localisation is the difference in classification accuracy, which were 89.0%

and 98.8% respectively. This difference can most likely be attributed to the fact that the activities

contain data from the perspective of both sides of the body, whereas the locations of the device can

be differentiated by the side of the body. So although the left and right wrist may produce directly
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opposite versions of the same movement, the activity recognition classifier has to know of both the

positive and negative versions which represent the same activity, where as the localisation only has to

know that the positive movement would represent the right wrist and the negative would represent the

left wrist in a single cycle. This would in turn make the classification task much more trivial.

By considering the features shown in Table 4.8, results comparable to those of Model 3 are observed.

Model 4 localisation used 33.3% of the total features from the accelerometer, 44.4% from the gyroscope

and 22.2% from the magnetometer, whereas Model 3 activity recognition contained 33.7% of the total

features from the accelerometer, 55.3% from the gyroscope and 11% from the magnetometer. These

similar results reinforce the idea that the gyroscope provides the most information, followed by the

accelerometer and lastly the magnetometer. The feature axes for the Model 4 localisation showed

44.4% of features along the X axis, 11.1% along the Y axis and 44.4% along the Z axis, whereas the

Model 3 activity recognition feature set contained 35.5% along the X axis, 22.6% along the Y axis

and 41.9% along the Z axis. This again reinforces the idea that the X and Z axes contain most of the

information with the Y axis containing only some information. This gives the impression that the

information gain from those sensors and directions are somewhat consistent, when using the same

dataset for multiple applications. This is not to say that these proportions are universally applicable

to all applications. When considering the feature count, Model 1’s activity recognition required 7

features with Model 4’s localisation requiring 9 features. The increase in feature count again shows

that an increase in complexity does not necessarily reduce accuracy. It does however show that the

performance of the model is very sensitive to the features in the feature subset.

With regards to the classifier performance shown in Figure 4.12, strong performance can be seen

by multiple datasets using many classifiers. This highlights the importance of the dataset in the

performance of the system in solving the problem, as the configurations of the classifiers are no

different to that of Model 1. The NB classifier however still remained the worst performer by a large

margin, in comparison to all other classifiers. The reason for this is unknown, however it is assumed

that the various activities performed included noise which the NB classifier was not able to deal

with.
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5.6.2 Activity recognition

Since the ultimate goal of Model 4 is to try replicate the result of Model 3 as closely as possible,

consider the results shown in Table 4.9, Table 4.12, Table 4.10 and Table 4.11. A brief look at Table

4.9 shows that the classification accuracies for the activities at each limb are very comparable to those

of Model 3. The right ankle however, suffered a 1.9% performance decrease and the left thigh saw a

2.0% performance decrease. It is assumed that all the decreases are caused by the error introduced

by the localisation of each of the nodes. If the node is localised incorrectly, the incorrect training

dataset would be chosen and the incorrect features would then be extracted which would likely lead to

a misclassification of the activity as well.

If considering the performance of the classifiers or feature selection algorithms as shown in Table

4.10 and Table 4.11, once again a very comparable performance is noted. As expected, Model 4 does

overall, perform slightly worse when compared to Model 3, however, there are notable improvements in

comparison to Models 1 and 2. By looking at the individual activity performance shown in Table 4.12,

once again the performance is comparable to that of Model 3, with a maximum of 1.3% performance

decrease noted for walking. Standing and lying down performed roughly the same, indicating that

even if the location of the device was classified incorrectly, the activity recognition classifier would

still accurately determine the activity being performed. Once again, it can be said that these minor dips

in performance can be attributed to the misclassification of the on-body device location, leading to the

chain of events as described above.

5.7 EFFECT OF LOCALISATION

The research investigated four methods of using the on-body device location and its impact on solving

the activity recognition problem. The first method makes no use of the location whatsoever, this was

used as a benchmark or a control for direct comparison between models. The second method made use

of the encoded location of the device and appended it as a feature into the dataset, which was shared

with the first model. The third method used the location logically, to separate the training datasets,

meaning that each location would solve the activity recognition problem individually. Finally, a model

for autonomously detecting the location of the device was proposed, which then performed activity

recognition based on the best performing of the first three models.
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With reference to Figure 4.15 and 4.16, the effects of localising the on-body device can somewhat

be seen in terms of the standard deviations of each model. In particle physics, the certainty of the

existence of the Higgs Boson particle was based on a 5 standard deviations criteria [55]. For this

research the same criteria has been applied. When considering Model 1 and Model 2 only, there is an

overlap between the model performance within 5 standard deviations. This suggests that using the

location of the device as a feature in the subset did not prove to be statistically significant. However,

considering Models 2 and 3, even across 5 standard deviations there are no overlaps observed, so it

could be argued that the improvement between those models was statistically significant. Although the

increase in average performance observed between Models 2 and 3 is significant, it is not to say that

this is entirely due to the logical use of the location.

As discussed previously, with the system considering each location individually, the machine learning

algorithms were able to better generalise the training data. So although the location did not implicitly

impact the classifiers or feature selection algorithms themselves, the effect of limiting the feature

space by means of the location are indeed observable. When considering Models 3 and 4, an overlap

in performance can be observed within 5 standard deviations, which indicates that the difference

in these models performance is not statistically significant. This means that although Model 4 is

autonomously localising the node and the activity recognition performance is negatively affected by

the error introduced by that localisation, its impact is not significant. When considering Models 2 and

4, there is no overlap across 5 standard deviations, again reinforcing the concept that the logical use of

the location does make a significant impact on the activity recognition problem, even when including

errors introduced by the nodes localisation.

5.8 CHAPTER SUMMARY

In this chapter, the results presented in Chapter 4 were discussed in terms of their effect on the activity

recognition problem. This was done by examining the various aspects affecting the performance of

the classifiers, feature selection algorithms, sensors, sensor axes, activities and ultimately the on-body

device location. The effect of using the wearable devices’ location, is evaluated based on statistically

significant results generated by each model.
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CHAPTER 6 CONCLUSION

The research aimed to determine the effect of localising a node on the performance of an activity

recognition system. Four activity recognition models were developed, each using the location of the

device in a different and unique manner. The first model contained no information of the location of

the device and kept all data in a single dataset. Using this method means that the feature selection

algorithms and classifiers had to generalise the dataset for nine different activities, irrespective of the

placement of the device. The second model inserted an encoded version of the location in the feature

space.

Similarly to the first model, the feature selection algorithms had to generalise the single dataset,

however the dataset contained some logical information of the location of the device. The third model

treated each location as an independent problem and used the location of the device to determine which

classifier and feature selection algorithm to use. This model made use of eight separate datasets, each

containing data only relevant to the specific location of the device. A final model was proposed which

autonomously localises the device and uses that on-body device location output in the same manner as

the best performing of the first three models.

Each activity recognition model was evaluated using a brute-force search where all combinations

of feature selection algorithm and classifier are evaluated. This method generated several results,

measurable in terms of average classification accuracy, weighted average recall, weighted average

precision and standard deviation. The results were evaluated in terms of feature selection algorithm,

classifier and activity recognition performance, as well as an evaluation of metrics of the feature

sets themselves including the sensor, axis, feature count and overlap of features between similar

limbs.
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CHAPTER 6 CONCLUSION

6.1 FEATURES

By considering the feature axes of the feature sets for each model, it was revealed that the X and Z

axes contained the most information. This became apparent because the performance of Model 3 was

superior to that of Model 1 or 2; Model 3 contained most of its features along the X and Z axes. This

could however change if other activities were being classified. Considering the feature sensors, it was

revealed that the accelerometer and gyroscope contained the largest amount of information. Once

again this was observed because of the performance of Model 3 and the strong representation of those

sensors in the feature sets. The feature count showed that the limbs with the most freedom to move

were the most complex to model, which was observable from the increased amount of features in the

feature set for those limbs. The feature overlap affected only Model 3 because of its evaluation of the

locations individually. The feature overlap percentage revealed that each location on the left and right

side contained information common to both, which may mean that if they were considered together,

those common features would possibly be able to model the same activities for those combined

locations.

6.2 FEATURE SELECTION ALGORITHMS

By considering the feature selection algorithms, it was clear that the CFS feature selection algorithm

was the overall best performer. The high standard deviations for each feature selection algorithm in

each model indicates that the performance of the dataset depends heavily on the classifier used, as the

difference in the performance of each classifier using the same dataset varies widely. It can therefore be

concluded that no specific feature selection algorithm is the obvious choice for use in this application,

as the performance depends on parameter tuning of the feature selection algorithm and the classifier

combination. This gives the impression that using wrapper or embedded feature selection algorithms

would increase the systems overall performance.

6.3 CLASSIFIERS

When considering the classifiers, the 1-NN classifier was the clear best performer for all models. It

appears that the rigidness of the decision boundaries of the classifier aided its performance when

compared to the other k-NN classifiers with larger k values. The worst overall performer was the
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NB classifier, with this observation stemming from its poor average performance coupled with a

consistently low standard deviation. The multilayer perceptrons also performed poorly, however this

can largely be attributed to poor choices and tuning of the parameters of the classifier, such as, learning

rate, number of neurons, number of hidden layers etc.

Certain classifiers have a high standard deviation in performance, which indicates that the classifiers

are sensitive to the quality of features being passed to it. With these and the above considerations it

can be said that there appears that no set of features which will completely accurately model a users

activity regardless of the location of the device. This conclusion can be drawn because the overlap

between the paired locations is not 100%, meaning that some features help model specific movements

for specific body parts on either side. The overall activity recognition performance can be improved

by adjusting parameters of both the feature selection algorithms and classifiers. It could be assumed

that the classifier may be able to make up for a poor set of features by being tuned properly, likewise a

classifier could improve its performance with a properly tuned feature selection algorithm.

6.4 ACTIVITIES

When considering the activities themselves, it appears that the activities which overlap in terms of the

motion required to perform them, are the ones whose average accuracy suffer the most; This can be

seen when considering squatting and hinges, which contain some motions common to both. A similar

observation can be made with jogging and running, which is largely a distinction determined by the

speed of the subject. The activities which are static and require little to no movement are the ones that

are most easily distinguishable, which was observed in the results with standing still achieving 97.8%

accuracy and lying down achieving 100%. With this information, a conclusion can be made that a

systems activity recognition performance is largely dependant on the activities chosen to be classified.

Activities which contain overlaps in their movements, may negatively affect the performance of the

system.

6.5 EFFECT OF LOCALISATION

The effect of localising a node in an activity recognition system, can be observed when considering the

performance of each model. As stated in the Discussion, the 5 standard deviation criteria was chosen
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for this research. When referencing the relevant figures it is clear that the insertion of the location as a

feature in the feature set did not prove to be statistically significant. However, by using the location to

logically separate the datasets, then determining the activity based on data from the relevant location

only, a statistically significant increase in average performance was observed. This indicates that the

location has a definitive impact on the activity recognition problem, even if not implicitly used in the

feature selection algorithms or classifiers. A conclusion can be made that considering each location

individually makes an impact on the activity recognition system’s performance, because the machine

learning models could better generalise the activity without having to consider data from other limbs.

Although only two methods of using the location were investigated, it is clear that there is a strong

relevance in giving context to the activity recognition problem in the form of device location, however

the exact amount of influence remains unknown. It can therefore be concluded that the use of the

location in another manner may also contribute to the increase in performance of the machine learning

model.

By considering the performance of Model 4, it is clear that the autonomous localisation of the device

introduces some error. The results show that there is no statistically significant decrease in activity

recognition performance between Models 3 and 4. There is however a statistically significant difference

between Model 2 and 4s activity recognition performance, which further reinforces the concept that

increasing the complexity of the system does not guarantee a decrease its performance. It can therefore

be concluded that an autonomous system is capable of achieving results close to that of a system with

pre-configured location information.

6.6 FUTURE WORK

Investigations should be made into determining the effects of other contextual information that may

be relevant to the problem. Alternatively, other approaches in the application of the on-body device

localisation or other contextual information may be investigated.
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ADDENDUM A CONFUSION MATRICES

Table A.1. Confusion matrix for the 1-NN classifier and mRMR-MIQ dataset of Model 1.

Lunge R Lunge L Squat Hinge Walk Jog Run Stand Lie

Lunge R 0.839 0.041 0.039 0.027 0.014 0.008 0.014 0.016 0.004

Lunge L 0.042 0.830 0.027 0.035 0.022 0.020 0.015 0.005 0.004

Squat 0.034 0.017 0.842 0.055 0.019 0.011 0.008 0.015 0.000

Hinge 0.055 0.026 0.061 0.804 0.015 0.007 0.007 0.024 0.000

Walk 0.012 0.008 0.001 0.005 0.918 0.028 0.022 0.006 0.000

Jog 0.015 0.007 0.006 0.015 0.077 0.794 0.085 0.000 0.000

Run 0.013 0.016 0.016 0.003 0.068 0.111 0.769 0.003 0.000

Stand 0.005 0.002 0.003 0.003 0.001 0.001 0.001 0.984 0.000

Lie 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.999

Table A.2. Confusion matrix for the 1-NN classifier and CFS dataset of Model 2.

Lunge R Lunge L Squat Hinge Walk Jog Run Stand Lie

Lunge R 0.839 0.032 0.036 0.013 0.023 0.008 0.019 0.032 0.000

Lunge L 0.045 0.834 0.023 0.014 0.020 0.020 0.016 0.029 0.000

Squat 0.024 0.009 0.842 0.059 0.009 0.018 0.009 0.029 0.000

Hinge 0.009 0.009 0.035 0.894 0.006 0.013 0.004 0.030 0.000

Walk 0.009 0.014 0.005 0.005 0.917 0.021 0.022 0.006 0.000

Jog 0.008 0.020 0.020 0.011 0.048 0.835 0.050 0.011 0.000

Run 0.005 0.020 0.011 0.012 0.063 0.086 0.801 0.003 0.000

Stand 0.003 0.003 0.006 0.004 0.000 0.007 0.003 0.975 0.000

Lie 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.999

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



ADDENDUM A CONFUSION MATRICES

Table A.3. Confusion matrix for the 1-NN classifier and CFS dataset of Model 3 located at the right

upper arm.

Lunge R Lunge L Squat Hinge Walk Jog Run Stand Lie

Lunge R 0.936 0.043 0.021 0.000 0.000 0.000 0.000 0.000 0.000

Lunge L 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Squat 0.000 0.016 0.951 0.016 0.000 0.016 0.000 0.000 0.000

Hinge 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

Walk 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

Jog 0.000 0.000 0.000 0.000 0.000 0.988 0.012 0.000 0.000

Run 0.000 0.000 0.000 0.000 0.000 0.025 0.975 0.000 0.000

Stand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000

Lie 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Table A.4. Confusion matrix for the 1-NN classifier and mRMR-MID dataset of Model 3 located at

the left upper arm.

Lunge R Lunge L Squat Hinge Walk Jog Run Stand Lie

Lunge R 0.936 0.026 0.000 0.038 0.000 0.000 0.000 0.000 0.000

Lunge L 0.014 0.971 0.000 0.014 0.000 0.000 0.000 0.000 0.000

Squat 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

Hinge 0.000 0.000 0.000 0.967 0.033 0.000 0.000 0.000 0.000

Walk 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

Jog 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

Run 0.000 0.000 0.000 0.000 0.011 0.000 0.989 0.000 0.000

Stand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000

Lie 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
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ADDENDUM A CONFUSION MATRICES

Table A.5. Confusion matrix for the 1-NN classifier and CFS dataset of Model 3 located at the right

wrist.

Lunge R Lunge L Squat Hinge Walk Jog Run Stand Lie

Lunge R 0.925 0.000 0.000 0.000 0.000 0.000 0.015 0.060 0.000

Lunge L 0.000 0.977 0.023 0.000 0.000 0.000 0.000 0.000 0.000

Squat 0.018 0.000 0.982 0.000 0.000 0.000 0.000 0.000 0.000

Hinge 0.021 0.000 0.021 0.938 0.000 0.000 0.000 0.021 0.000

Walk 0.000 0.000 0.000 0.019 0.962 0.000 0.000 0.019 0.000

Jog 0.000 0.000 0.000 0.000 0.047 0.907 0.047 0.000 0.000

Run 0.000 0.000 0.000 0.000 0.000 0.000 0.983 0.017 0.000

Stand 0.017 0.000 0.000 0.009 0.000 0.000 0.000 0.974 0.000

Lie 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Table A.6. Confusion matrix for the 1-NN classifier and CFS dataset of Model 3 located at the left

wrist.

Lunge R Lunge L Squat Hinge Walk Jog Run Stand Lie

Lunge R 0.938 0.021 0.021 0.000 0.021 0.000 0.000 0.000 0.000

Lunge L 0.000 0.925 0.025 0.000 0.000 0.000 0.050 0.000 0.000

Squat 0.000 0.021 0.872 0.000 0.043 0.043 0.000 0.021 0.000

Hinge 0.000 0.000 0.000 0.979 0.000 0.000 0.021 0.000 0.000

Walk 0.010 0.000 0.000 0.000 0.981 0.010 0.000 0.000 0.000

Jog 0.000 0.000 0.000 0.000 0.000 0.879 0.121 0.000 0.000

Run 0.000 0.000 0.000 0.000 0.000 0.026 0.974 0.000 0.000

Stand 0.000 0.000 0.018 0.000 0.000 0.000 0.018 0.965 0.000

Lie 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
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Table A.7. Confusion matrix for the 1-NN classifier and CFS dataset of Model 3 located at the right

thigh.

Lunge R Lunge L Squat Hinge Walk Jog Run Stand Lie

Lunge R 0.867 0.000 0.033 0.067 0.000 0.033 0.000 0.000 0.000

Lunge L 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Squat 0.000 0.000 0.971 0.029 0.000 0.000 0.000 0.000 0.000

Hinge 0.044 0.000 0.000 0.844 0.000 0.089 0.000 0.022 0.000

Walk 0.000 0.000 0.000 0.000 0.977 0.000 0.023 0.000 0.000

Jog 0.024 0.024 0.000 0.000 0.000 0.951 0.000 0.000 0.000

Run 0.000 0.000 0.000 0.000 0.015 0.000 0.985 0.000 0.000

Stand 0.009 0.000 0.009 0.000 0.000 0.009 0.000 0.973 0.000

Lie 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Table A.8. Confusion matrix for the 1-NN classifier and MaxRel-MID dataset of Model 3 located at

the left thigh.

Lunge R Lunge L Squat Hinge Walk Jog Run Stand Lie

Lunge R 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Lunge L 0.046 0.892 0.046 0.015 0.000 0.000 0.000 0.000 0.000

Squat 0.000 0.046 0.923 0.031 0.000 0.000 0.000 0.000 0.000

Hinge 0.000 0.026 0.102 0.872 0.000 0.000 0.000 0.000 0.000

Walk 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

Jog 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

Run 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

Stand 0.000 0.020 0.000 0.039 0.000 0.000 0.000 0.941 0.000

Lie 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

100

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



ADDENDUM A CONFUSION MATRICES

Table A.9. Confusion matrix for the 1-NN classifier and MaxRel dataset of Model 3 located at the

right ankle.

Lunge R Lunge L Squat Hinge Walk Jog Run Stand Lie

Lunge R 0.813 0.009 0.065 0.028 0.047 0.009 0.019 0.009 0.000

Lunge L 0.050 0.861 0.040 0.050 0.000 0.000 0.000 0.000 0.000

Squat 0.067 0.086 0.790 0.038 0.000 0.000 0.010 0.010 0.000

Hinge 0.000 0.022 0.144 0.833 0.000 0.000 0.000 0.000 0.000

Walk 0.055 0.000 0.000 0.000 0.898 0.015 0.033 0.000 0.000

Jog 0.028 0.023 0.014 0.005 0.014 0.904 0.009 0.005 0.000

Run 0.025 0.008 0.025 0.033 0.165 0.000 0.736 0.008 0.000

Stand 0.000 0.000 0.004 0.011 0.000 0.000 0.000 0.986 0.000

Lie 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Table A.10. Confusion Matrix for the 1-NN classifier and CFS dataset of Model 3 located at the left

ankle.

Lunge R Lunge L Squat Hinge Walk Jog Run Stand Lie

Lunge R 0.827 0.041 0.010 0.031 0.051 0.020 0.010 0.010 0.000

Lunge L 0.035 0.798 0.018 0.035 0.070 0.018 0.026 0.000 0.000

Squat 0.039 0.019 0.845 0.078 0.010 0.000 0.000 0.010 0.000

Hinge 0.009 0.018 0.044 0.904 0.000 0.009 0.009 0.009 0.000

Walk 0.008 0.020 0.004 0.000 0.932 0.012 0.012 0.012 0.000

Jog 0.006 0.024 0.018 0.000 0.018 0.807 0.127 0.000 0.000

Run 0.000 0.035 0.021 0.007 0.049 0.141 0.746 0.000 0.000

Stand 0.000 0.000 0.008 0.003 0.003 0.000 0.000 0.986 0.000

Lie 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
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ADDENDUM A CONFUSION MATRICES

Table A.11. Confusion matrix for the 1-NN classifier and mRMR-MID dataset for the localisation of

Model 4.

LUA RUA LW RW LT RT LA RA

LUA 0.996 0.004 0.000 0.000 0.000 0.000 0.000 0.000

RUA 0.007 0.990 0.001 0.000 0.000 0.000 0.000 0.001

LW 0.000 0.000 0.997 0.000 0.000 0.000 0.002 0.002

RW 0.000 0.000 0.000 0.998 0.000 0.000 0.000 0.002

LT 0.000 0.000 0.004 0.000 0.983 0.000 0.002 0.011

RT 0.000 0.000 0.002 0.000 0.005 0.979 0.000 0.014

LA 0.000 0.000 0.000 0.000 0.001 0.001 0.992 0.006

RA 0.000 0.001 0.002 0.000 0.004 0.007 0.007 0.979
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