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The advent of IoT as the next dominant player in cyber circles has ignited much research interest and a

closer synergy between communication and computing models. Software-defined networking (SDN)

and wireless sensor networks (WSNs) are some of the models envisaged to play a vital role in the IoT

framework. SDN is an emerging network paradigm which has disrupted the status quo in networking

and computing. This model is currently receiving much research attention and is being adopted rapidly

by industry. It introduces flexibility, innovation, simplicity, and better management to networking. On

the other hand, WSNs have always been used for monitoring physical and environmental factors such

as temperature, humidity, vibrations, motions, seismic events, etc. The introduction and development

of smart sensors have improved and advanced the WSNs. The emergence of the Internet of Things

(IoT) paradigm has extended the scope of the demand of WSNs as they are considered to be the main

building blocks of the IoT. However, WSNs continue to be plagued by challenges such as limited

energy, computational capability, data storage, and communication bandwidth. The application of



SDN to WSNs address most of the inherent WSNs challenges which have resulted in a new model

of software-defined wireless sensor networks (SDWSNs). The SDWSN model is currently receiving

much research attention as it has enormous potential for the future ICT. The SDN model advocates

the separation of control logic and forwarding from the network elements. This decoupling leaves the

element as a dump device and centralises the control logic in a controller.

The controller in SDWSN is very vital and critical as it holds the intelligence and control of the

whole network. The current major challenge is the centralisation of this controller. This makes

the network vulnerable to malicious attacks as it becomes a simple target for adversaries. Another

challenge is the fact that it stifles growth as it limits the scalability of the network and could potentially

suffer performance degradation. Therefore, the reliability, performance, and efficiency of the network

depends on the controller, despite operation. This study proposes an efficient distribution method for

the SDWSN control system using the concept of fragmentation. This entails dedicating segments

of the network to local controllers; these controllers are small and inexpensive but efficient. It also

involves a global controller which has a global view of the network. This two-level architecture will

leverage distribution, which will ensure availability and performance enabled by access. The purpose

of this research study is to investigate if distributing an SDWSN control system is ideal, as well as

to investigate the viability of the fragmentation model to achieve scalability, reliability and better

performance. The evaluation shows that distributing the control system of the SDWSN is not only

ideal but necessary. The fragmentation model also proved to bring a positive impact on the SDWSN

control.

The fragmentation model is envisaged to enhance the participation of SDWSNs in IoT. Therefore, the

model is further optimised for ease of integration and deployment efficiency. This entails controller

placement and controller re-election after controller failure mechanisms. The controller placement

ensures a procedural and structured controller placement which aims at reducing the propagation

latency between the sensor nodes and the local controllers as well as between the local controllers and

the global controller. The controller re-election ensure that distance is taken into consideration when

a controller is replaced by its peer after failure, thus ensures that the chosen replacement is closer to

the failed controller. The two mechanisms were evaluated and proven to be efficient and improved

performance.
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CHAPTER 1 INTRODUCTION

1.1 BACKGROUND

The Internet of Things (IoT) is at the centre of the future internet. IoT is an interconnection of many

devices, systems, and applications to the internet [9]. According to Cisco, an estimated 50 billion

devices will be connected to the internet by the year 2020 [10]. The IoT paradigm is envisaged

to permeate industrial manufacturing and production, leading to the Industrial Internet of Things

(IIoT) [11]. The IIoT is envisioned to inspire great economic growth and rapid production in various

industrial production systems. This digital-oriented industrialisation is termed the “the fourth industrial

revolution or 4IR”.

The 4IR is described as the fourth disruptive and major industrialisation trend; an epoch marked by

rapid growth and development emanating from automation and data technologies in various disciplines.

Some of the major technologies behind this trend include but are not limited to IoT, IIoT, Artificial

Intelligence, Virtual Realities, Cyber-Physical systems, Cloud computing, and Cognitive computing.

Most of the devices and elements which will participate in the IIoT will be equipped with sensors and

actuators; some wireless and some wired. The networking of these sensor nodes extends the scope and

purpose of wireless sensor networks (WSNs), whose involvement has always been confined mainly

to monitoring. These sensor nodes are small, inexpensive, and intelligent due to the advancement

of Micro Electrical Mechanical Systems (MEMS). The major challenges facing industrial systems

include the management of the various systems with different proprietary protocols, as well as their

sensitivity to time delay, failure, and security.

Software-defined networking (SDN) is a new emerging networking and computing paradigm earmarked

as a potential resolution for most of the above challenges. SDN advocates a common standardised
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protocol to avoid the challenge of vendor locking [12]. The SDN model separates control and data

forwarding in networking elements; and removes the control logic from the network devices and

centralises it on a controller [12–16]. The adoption of SDN has gained traction in both industry

and academia. Most of the 4IR systems are already applying SDN, including IIoT and WSN as

in [17–19].

Software-defined wireless sensor network (SDWSN) is an emerging model formed by applying the

SDN model to WSNs. The emergence of SDWSN as a pivot, in stead of WSNs, for the highly

anticipated and imminent IoT and IIoT paradigms has ignited much interest and research focus in this

area. WSNs are envisaged to play a vital role in IoT as major building blocks [20]. However, WSNs

have always been riddled with challenges emanating from their inherent susceptibility to resource

constraints which hinder their progress, efficiency, and applicability [21, 22].

The application of SDN in WSNs is also receiving much attention, especially because of its imminent

role in IoT [23]. SDWSN is regarded as a potential solution to overcome some of the challenges

besetting WSNs while meeting the demands of IoT. With SDWSN, the sensor nodes would be sheer

devices with only forwarding capabilities, whereas the control intelligence will be centralised.

1.2 PROBLEM STATEMENT

The application of the SDN model in WSN is set to cultivate the potential of WSNs in modern

communication. The SDWSN model will bring about the efficiency that the WSNs have not yet

achieved due to their inherent constraints such as limited energy, limited processing power, lack of

memory, and limited data rate capacity. The SDWSN model is also envisaged to play a major role in

the Internet of Things paradigm which is currently developing at a rapid pace.

1.2.1 Context of the problem

The controller is very central in SDWSN as it holds the intelligence of the entire network. Some of its

fundamental functionalities are flow rule generation, mapping functions, and programming interfaces.

The flexibility of the SDN model enables dynamic addition of functionalities. The centralisation of the

control logic introduces potential drawbacks, detrimental to the efficiency of the network. A central
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controller connotes a single point of failure and a potential target for adversaries. The controller could

also be overwhelmed by rule setup and other requests from the sensor nodes, resulting in an excessive

overhead. Other drawbacks of a centralised controller are issues with access; the distance between

the network devices and the controller can negatively affect the performance of the network if not

managed properly. Therefore a centralised controller would not be viable in a wireless sensor network,

more so considering the inherent challenges such as unreliable links and low bandwidth. Performance

and efficiency will also suffer as the network grows.

Most of the research work in SDWSN to date has employed a centralised controller. As the network

scales up due to demand, the SDWSN model will have to be scalable, reliable, and efficient, and for

that a distributed-control system is a necessity. However, there is work on distributed controllers, albeit

for traditional SDN particularly targeted at enterprise networks.

A distribution model based on fragmentation is proposed as a potential solution for the SDWSN control

system. This model comprises two-level control architecture consisting of local controllers and a

global controller. The challenge is to place the controllers in the network such that there is enough

controller coverage for the whole network but also not excessive for costs containment. Thus, an

efficient and latency savvy controller placement mechanism for SDWSN is required. Furthermore, as

due diligence is accorded in placing the controllers; the same has to be done for controller replacement

in an event of controller failure. Most of the current controller replacement methods do not consider

location-awareness, thus distance is not considered. In traditional networks, this is not a problem given

their abundance of resources, however, SDWSNs are resource constraint and therefore this factor is

critical.

1.2.2 Research gap

A distributed-control system for the SDWSN model could alleviate the highlighted challenges, as well

as some of the WSN’s inherent challenges. A distributed-control system will also come in handy when

dealing with the inevitable heterogeneity which models such as IoT entail. This study addresses the

deficiencies of a central controller with a distributed-control system which will enable the network

to scale, offer redundancy in the event of failure, and improve the overall performance. There are

different designs of distributed SDN controllers. However they are not applicable to SDWSN. The
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limited resources of the SDWSNs coupled with the kind of data that they carry makes it extremely

difficult to design a suitable distributed controller for them. SDWSN requires a controller that is quick,

responsive, and process efficient amongst others because it carries data that is sensitive and volatile;

lest the data loose relevancy which may lead to unintended, uninformed and catastrophic decisions in

active networks. Thus there is a need for an efficient distributed control system for SDWSN which

does not compromise any quality imperative.

This study proposes fragmentation as a method of distribution. Fragmentation requires an efficient

data consistency model which manages the convergence of data or synchronisation on the distributed

controllers. Several data consistency models were studied and eventual consistency was chosen to

be properly suitable for the concept of fragmentation. However, for eventual consistency to realise

fragmentation, two algorithms were designed and developed. These two algorithms satisfy the principle

of the eventual consistency data model through which fragmentation is possible.

1.3 RESEARCH OBJECTIVES AND QUESTIONS

The objectives of this research study are:

• To investigate the feasibility of distributed controllers for SDWSN.

• To propose fragmentation as a method of distribution to achieve efficient SDWSN control.

• To propose alternative algorithms for best-effort and anti-entropy algorithms to achieve a suitable

consistency data model for fragmentation.

• To show through evaluation that fragmentation does bring efficiency to SDWSN control.

The research questions that this study aims to answer are:

1. Is a distributed control system ideal for software-defined wireless sensor networks?

2. How can we implement an efficient distributed-control system for software-defined wireless

sensor networks without compromising network efficacy?

3. Can we use fragmentation to distribute the control logic of SDWSN?

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

4



CHAPTER 1 INTRODUCTION

1.4 HYPOTHESIS AND APPROACH

A distributed-control system in SDWSN seeks to address the challenges of a centralised controller

to achieve reliability, scalability, and efficient performance. There are different ways and forms of

distribution which are mainly determined by the nature of the network or the data concerned. This study

presents an efficient distribution technique suitable for SDWSN control systems. It takes into account

all considerations pertaining to SDWSN challenges such as the inherent ills of low bandwidth, energy,

and processing, as well as the amount of data exchange or update expected especially from the IoT

perspective. The proposed method uses the concept of fragmentation, whereby each cluster segment of

the network has its own controller which is lean and very close to the infrastructure elements. There is

also a global controller which has a view of the whole network. This two-level control architecture

allows a faster response between the sensor nodes and the controller.

Central to distributed systems are the consistency models, which determine the data convergence on

the distributed participants (nodes). There are two major consistency models in eventual consistency

and strong consistency. The former uses gossip protocols such as anti-entropy and rumour-mongering

whilst the latter uses consensus algorithms such as RAFT [24] and/or Paxos [25,26]. The choice of the

consistency model depends on the need of the application and the type of data. This study investigated

the applicability of these consistency models and their algorithms in the distributed-control systems

for software-defined wireless sensor networks (SDWSNs). An eventual consistency data model was

chosen as the most suitable for the proposed system. An eventual consistency data model prioritises

availability over convergence. This suits the SDWSN paradigm and will ensure efficient responsiveness

to deal with the envisaged rapid data.

The two hypotheses that this study seeks to prove are:

• A distributed-control system is ideal for software-defined wireless sensor networks.

• A fragmentation model brings efficiency to an SDWSN control system.

1.5 RESEARCH GOALS

The goals that this research study seeks to achieve are to:
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1. apply the software-defined networking model to improve the efficiency and applicability of

wireless sensor networks; and

2. develop a distributed controller to achieve scalability, reliability, and performance for software-

defined wireless sensor networks.

1.6 RESEARCH CONTRIBUTION

• The SDWSN model is still in its infancy but it is developing at a rapid pace; therefore, this

research undertook a comprehensive and thorough review study of the SDWSN which also

focused on the challenges and design requirements. This review study focused on a variety of

issues pertaining to SDWSN such as architectures, routing, network management, security, and

standards.

• Since the SDWSN model is new and still developing, most of the current research work occurs

on the architectural framework. However, the architectures differ mainly because they are

mostly narrow based, so that each strives for a particular purpose. Therefore, we designed a

new architecture for SDWSN which could be used as a reference for future development of

SDWSN solutions. This architecture took into consideration the existing architectures, the

current challenges facing the SDWSN model, and the fundamental design requirements which

should at least be satisfied for an efficient SDWSN. This architecture is holistic and captures the

SDWSN accordingly. It is by far the most comprehensive architecture which will not only serve

as a guide for future research in this area but will also contribute to the development of the IoT

framework.

• The study then undertook novel research to find a suitable and efficient distribution method for

the SDWSN control framework to achieve scalability, reliability, and performance. Different

methods, models, and algorithms were studied. A new model, referred to as fragmentation, was

identified, designed, and developed.

• The fragmentation model entails a two-level architecture consisting of the local controllers and

the global controller. To ensure efficiency in performance and costs, we propose and implement

a controller placement mechanism suitable for the SDWSN network.

• The fragmentation model is distributed in its form for redundancy and resilience purposes. To

ensure that this redundancy does not undermine the efforts of latency reduction through the

optimal controller placement, we propose a controller replacement mechanism which is in line
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with the fragmentation ideals. This ensures that during a controller failure, the system chooses

the next closest controller as a replacement.

1.7 RESEARCH OUTPUTS

The outputs of this research study are as follows:

1. H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “A Survey on Software-Defined Wireless

Sensor Networks: Challenges and Design Requirements,” IEEE Access, vol. 5, no. 2, pp.

1872–1899, 2017.

2. H. I. Kobo, G. P. Hancke, and A. M. Abu-Mahfouz,“Towards A Distributed Control System

For Software Defined Wireless Sensor Networks,” in Proceedings of the 43rd IEEE conference

of Industrial Electronic Society - IECON 2017, 2017, pp. 6125-6130.

3. H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “Fragmentation-based Distributed Control

System for Software Defined Wireless Sensor Networks,” IEEE Industrial Informatics, vol. In

Press, 2018.

4. H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke,“Efficient Controller Placement and

Re-election Mechanism in Distributed Control System for Software Defined Wireless Sensor

Networks” Transactions on Emerging Telecommunications Technologies, Submitted for review.

1.8 DELINEATION AND LIMITATIONS

The evaluation of this work is based on simulation experimentation, the reason being that the SDWSN

paradigm is new and there is a lesser amount of or no ready-made equipment such as SDN-enabled

sensor nodes to use for real world experimental testbeds; and there are also cost constraints in procuring

such equipment. The study assumes that SDWSN simulation in Cooja is working accordingly.

1.9 OVERVIEW OF STUDY

The rest of the thesis is organised as follows: Chapter 2 presents a comprehensive literature review of

SDWSN in general. This chapter delves into all aspects of SDWSN such as the architectural frame-
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works, challenges, design requirements etc. In Chapter 3, we highlight the different implementations

of controller designs, not only of the SDWSN, but also of the SDN. In Chapter 4, we propose the

fragmentation model as a distribution method for the SDWSN control system. This chapter describes

the design, all algorithms used and the way they ensure fragmentation. The proposed model is evaluated

in Chapter 5. The experimental methodology is described and discussed in detail while the results

are presented and discussed. In Chapter 6, we optimise the fragmentation model with a controller

placement and controller re-election criteria. Chapter 7 concludes the thesis and presents some of the

future research work for consideration.
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CHAPTER 2 LITERATURE STUDY

The Software-defined wireless sensor network framework is an emerging concept that resulted from

applying software-defined networking to wireless sensor networks. It is still in its infancy and therefore

most of the literature is in developmental stages. This chapter discusses the SDWSN literature

holistically. It discusses in detail the two models making up the SDWSN; namely the WSN and

the SDN. The purpose of this wide consideration is to unravel the current literature, the challenges

besetting the SDWSN, the design requirements and the research gaps to contribute to the research

direction. The work has been published in a journal article titled “A Survey on Software-Defined

Wireless Sensor Networks: Challenges and Design Requirements” [1] 1. This had and continues to

have a major impact on the research community. This is the first comprehensive survey paper for

SDWSN and it’s contribution is major.

The rest of the chapter is organised as follows. The chapter starts by providing an overview of the SDN

model in Section 2.1. This is followed by current challenges in WSNs in Section 2.2, and the potential

importance of SDN in addressing WSN’s inherent challenges in Section 2.3. In Section 2.4, we discuss

other related networking concepts. Section 2.5 presents a review of the five major aspects of SDWSN:

architecture, routing, network management, security and standardisation. Future research challenges

and major design requirements for SDWSN are highlighted in sections 2.6 and 2.7 respectively.

2.1 OVERVIEW OF SOFTWARE-DEFINED NETWORKS

Software-defined networking (SDN) is a new networking paradigm that aims to simplify network

management and configuration. SDN offers a complete paradigm shift from traditional networking. It

1 ©2017 IEEE. Reprinted, with permission, from Kobo H.I., Abu-Mafhouz A.M., Hancke G.P., A Survey on Software-

Defined Wireless Sensor Networks: Challenges and Design Requirements, IEEE Access, February 2017.
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seeks to improve network efficiency greatly through high-level novel abstractions. SDN decouples

the network intelligence, the control plane, from the packet-forwarding engine, the data plane. The

separation enables provision of centralized network intelligence at the controller, which has a global

view of the network [27]. SDN introduces benefits such as vendor independence, heterogeneous

network management, reliability and security not possible in traditional networks [12, 14, 16, 28].

While SDN was initially earmarked for large-scale enterprise networks, it has the potential to make an

impact on any network or computing system. The rest of this section briefly discusses some of the

major aspects of SDN, namely the architecture, protocols, standards, applications, and security.

2.1.1 Architecture

Traditional networks, which typically consist of routers and switches as network devices; become

difficult to monitor and upgrade as the network grows, thus stifling growth. Large networks also become

heterogeneous due to the use of different proprietary protocols, which fundamentally means they consist

of different network islands that only cooperate at lower levels of communication [12, 27, 29]. This

makes it difficult to implement any policy changes, upgrades and patches. Traditional networks are also

mostly hierarchical, tree based and static, which leads to what most have termed “ossification” [12].

Ossification refers to a phenomenon of conforming to the conventional way of networking where

everything is coupled on the network device.

An SDN network typically consists of a centralised control plane and highly dispersed data planes

(depending on the deployment). The control plane houses the decision-making intelligence of the

network, responsible for control and management [27]. After the process of decoupling, the routers

become more like data-forwarding switches, with routing decisions made by the controller within

the control plane. The controller enables ad hoc management, easier implementation of new policies,

seamless protocol upgrades or changes, global visualization, and avoidance of middle-boxes such

as firewalls, load balancers, and intrusion detection systems etc. Recent research shows that the

deployment of middle-boxes is growing on par with network routers [30].

The SDN architectural framework consists of three layered components, as shown in Figure 2.1. These

components are interconnected by various APIs. The first component is the application plane. The

application plane interfaces with the various network applications. The second component is the control
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plane, which houses the control software. The last component is the data plane (infrastructure plane).

This consists of the network devices. The communication between the control and the application

planes is defined by APIs, referred herein as the northbound (NB) interface, while the southbound (SB)

interface refers to the communication API between the control and the data plane.

Figure 2.1. The basic SDN framework with the three planes and a central controller [1].

2.1.2 Protocols and Standards

To achieve a high integration of heterogeneous networks, the protocols between the architectural planes

need to be standardised. Recent research has focused on the development of both the southbound and

northbound API standardisation, with more focus on the southbound API [12]. The standard develop-

ment organisations are detailed in [13]. The two most popular southbound interface specifications are

Forwarding and Control element separation (ForCes) [31,32] and OpenFlow [3,33,34]. They both con-

form to the principle of decoupling the control and the data plane but are fundamentally different [12].
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Table 2.1 below compares the two protocols. ForCes, which is developed by the Internet Engineering

Task Force (IETF) working group, consists of two components, the Forwarding Element (FE) and the

Control Element (CE). The FE handles the packets while the CE exerts control and executes signal

functions and sends instructions to the FE for handling the packet. ForCes uses the concept of a Logical

Function Block (LFB), which resides inside the FEs. The LFB has a specific function (such as routing)

to process the packets [35], and it enables the CE to control the FE [12].

Table 2.1. Common SDN protocols [1]

Protocol
Standard

Body

Communication

Protocol
Security Determinants API Interface IP

ForCes IETF SCTP TLS LFB components Southbound IPv4

OpenFlow ONF TCP IPsec Match fields/Actions
Southbound

East/Westbound
IPv4 or IPv6

OpenFlow, which has been developed by the Open Network Foundation (ONF), is by far the most

common southbound interface. Although ForCes is deemed to be more powerful and dynamic

than OpenFlow, the latter’s permeation and adoption in the industry has upstaged ForCes on many

fronts [36]. Some literature even regards OpenFlow as the principal [37] and de facto [12] protocol

for SDN networks. This research focuses more on OpenFlow due to its prevalence and influence on

SDN-based developments. Before the standardisation of ForCes, OpenFlow was the only standardised

protocol that allowed direct manipulation of the data plane by the controller [35].

The OpenFlow protocol is flow based, therefore each switch maintains a flow table (which can be

altered dynamically by the controller), which consists of flow rules (entries) that determine the handling

of packets [31, 33, 38]. Flow entries mainly consist of match fields, counters, and instructions/actions.

The match field entry is used to match the incoming packets. The match determinants are the packet

header, ingress port, and metadata [3]. Counters collect flow statistics such as the number of received

packets, number (size) of bytes and the duration of the flow. The instruction field determines the action

to be taken upon a packet match [12]. When a packet is received, the header is extracted, upon which

the relevant fields are matched against the flow table entries. If they match, appropriate actions are

applied and if more than one entry match is found, prioritisation, based on the highest degree of match,

applies [3, 12].
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If no match is found, then appropriate rules are actioned, i.e. drop the packet, pass it to the next flow

table or send it to the controller for new rules to be made [12]. Figure 2.2 depicts the basic flow of a

packet in OpenFlow highlighted by [39, 40]. OpenFlow consists of three classes of communication:

controller-to-switch, asynchronous, and symmetric [12]. Controller-to-switch is used for configuration,

programming, and information retrieval and operates from the controller to the switches. Asynchronous

communication is initiated by the switch to the controller and is about packet arrivals, changes, errors,

etc. Symmetric communication is sent without the initiation (solicitation) off either the controller or

the switch, examples of which are echo packets.

Figure 2.2. Basic packet-forwarding flow in OpenFlow [1, 3].

2.1.3 Applications

SDN has been applied in varied environments such as enterprise campus networks, data centres, and

cloud computing services. Enterprise networks are traditionally large and ever expanding rapidly.

As the networks grow, the demand for security and better performance increases. Campus networks

especially are very dynamic and frequently require a change in policies. SDN simplifies this complex

task of making changes by enabling network-wide defined policies to be mapped and programmed
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onto underlying network devices. Another advantage of SDN is the elimination of middle boxes,

which can now be implemented inside the controller [12] or on the application plane, thus cutting

costs of deployment and maintenance [41]. In data centres, many large companies have already

implemented SDN architecture to simplify their service provision. SDN has also been used to build

private wide-area networks (WAN) connecting data centres successfully, e.g. B4 by Google [42]. The

issue of virtualisation and cloud computing services has also necessitated a shift from conventional

data storage towards SDN-oriented data storage and management [37].

Other applications of SDN are found in software-defined radios, cellular networks, and wireless

networks. In SDN radios, OpenRadio [43] has been proposed, which aims to enable programmability

on the PHY and MAC layers [15]. Odin [44] tackles the issue of Authentication, Authorisation, and

Accounting in the enterprise Wireless Local Area Network (WLAN) services. SDN is also applied in

cognitive radios for dynamic spectrum access [45, 46]. In cellular networks, OpenRoads [7] presents

an approach of introducing SDN-based heterogeneity to wireless networks for operators. In wireless

networks, SDN has been proposed for use in wireless mesh networks [47, 48]. In campus networks,

SDN-oriented OpenFlow networks have been implemented [47, 49, 50]. Another area, which is at the

core of this research, is wireless sensor networks [37, 49, 51, 52].

2.1.4 Security

The SDN paradigm presents new security challenges. Centralised control introduces security concerns

[53] because networks are susceptible to bugs and other vulnerabilities. Two areas are potential

targets [28], namely the centralisation of network intelligence and the software controlling the network.

The authors in [54] further identify seven areas of potential security risks in SDNs:

1. Forged or faked traffic flows.

2. Vulnerabilities in switches.

3. Control plane communication.

4. Vulnerabilities of controller.

5. Lack of mechanisms to ensure trust between the controller and the switch.

6. Vulnerabilities of administration station.

7. Lack of trusted resources for forensics and remediation.
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Ali et al. [29] propose a multi-pronged security response in SDN networks for threat detection,

remediation, and correctness to enhance security in SDNs, and as security as a service by which

anonymity methods are implemented. Most SDN security measures consist of various verification and

validation models. Fresco [55] identifies an application layer and a security kernel on top of the network

operating system NOX [56] controller, which interfaces with the security applications and ensures that

their policies are implemented. NOX is an OpenFlow controller that allows management and network

control applications to be written as centralised programs through a high-level programmatic interface.

As multiple applications were implemented, FortNox [57] was developed to alleviate potential conflicts

posed by varying applications. It achieves this by setting priorities according to different roles of

authorisation. Human administrators are assigned the highest priority, followed by security applications,

and then followed by nonsecurity applications [57]. Accordingly, a nonsecurity application would not

be able to alter a policy or rule implemented by a human administrator. PermOF [58] is a permission

control system used to grant different permission privileges to SDN applications. Changing network

conditions affects the network verification measures. Becket et al. [59] propose an assertion language

based on the VeriFlow [60] algorithm to enable verification and debugging of the SDN applications

with dynamic verification conditions. VeriFlow debugs faulty rules inserted by SDN applications

before they harm the network. Flover [54] is another verification system that ensures that new security

policies do not violate the existing security policies within the OpenFlow network. FlowChecker [61]

is a configuration verification model which ensures that OpenFlow rules are consistent within flow

tables as well as with other flow rules residing in other switches in a federated network. The SDN

security verification solutions are explained in detail in Ali et al. [29] and Ahmad et al. [53].

2.2 WSN CHALLENGES

It is worth noting that WSNs, despite their great potential, are yet to reach their optimal efficiency.

This is largely due to the inherent challenges that they exhibit and the ever-growing scope of demand

from applications. These challenges have ignited much research interest in the past decade. Some of

the main challenges are listed below.
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2.2.1 Energy

Energy conservation is central to the development of WSNs. Since sensor nodes run on a limited

battery [21]; it is vitally important to use energy wisely and efficiently to prolong the lifespan of the

network significantly. In other instances, the energy source could be replenished through solar and

other means. However, as WSNs grow, it could become difficult to replenish the power source which

could lead to complete disposition of the sensor nodes as envisioned in [62]. This would, however,

depend on the area of deployment and this remains an open research and design consideration. The

main cause of power consumption in sensor nodes is largely attributed to sensing, communication and

data processing. There have been several attempts at dealing with the energy question in WSNs and

this section provides an overview of some of the current main research directions.

There are many types of application in WSNs and each application has its own power needs [63]. The

most common approach to reducing high sensing-energy consumption is through sporadic sensing [63].

The sensing unit is used only on demand and is put in idle mode when not in use (inactive mode).

Radio communication also consumes a huge chunk of power [64], it involves data transmission and

reception. Putting the radio communication in a sleep mode when there is no data exchange efficiently

saves a considerable amount of energy. This is called “duty-cycling” [63]. The internal computation of

data is another area where energy-saving measures have been applied. The authors in [63] propose

that communication should be offset by computation, i.e. reducing the communication overhead by

computing more. Different solutions have therefore been suggested to deal intelligently with local

data-processing to minimise energy usage. The most common solution is data aggregation [10, 21]

where data is internally compressed before it is sent out. Another approach is to disregard redundant

data from neighbouring sensor nodes [10]. Mobility-driven approaches have also been suggested,

where a specific mobile sensor node collects the data from static sensor nodes and sends it to the

controller, thereby saving energy on the static nodes. The topology of the network also plays a crucial

role in energy. Sparse placement of nodes uses large amount of energy because the communication

range between nodes becomes long [21].
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2.2.2 Communication

Communication in WSN takes place through a wireless medium guided by different IEEE specifications

operating in the unlicensed industrial, scientific, and medical (ISM) frequency bands. IEEE defines the

PHY and MAC layers for Low-Rate Wireless Personal Area Networks (LR-WPAN). IEEE 802.15.1

(Bluetooth) and 802.15.4 are the two most viable protocols for WSNs. These protocols should coexist

mutually with other wireless protocols operating in the same ISM band, such as IEEE 802.11a/b/g

(WLAN) and IEEE 802.15.3 (ultra-wideband: UWB). WLAN and UWB are not ideally suited for

resource-constrained wireless sensors. WLAN and UWB are high-bandwidth wireless communication

technologies for devices with high processing power and consistent or easily rechargeable power

sources.

Bluetooth is a short-range wireless communication technology based on the IEEE 802.15.1 specification

[65]. The earlier version of Bluetooth (Classic) had high power consumption and wasn’t entirely suited

to LR-WPAN devices. Bluetooth Low Energy (Bluetooth Smart) is an ultra-low power consumption

protocol enhancement of the Bluetooth technology, which also increases the communication range [66].

Bluetooth uses two topologies: Piconet and Scatternet. Piconet is formed by one or more Bluetooth

devices, referred to as slaves, connected to another Bluetooth device serving as a master. A Scatternet

is a cluster of several Piconets. The only drawback of Bluetooth regards its scalability.

IEEE 802.15.4 [2] was developed to address the requirements of the LR-WPAN, particularly ad

hoc wireless sensor networks. This standard was proposed specifically for networks of low power

consumption, low deployment cost, less complexity, and short-range communication, while maintaining

a simple protocol stack [21, 62]. The physical layer supports three frequencies, i.e. 2450 MHz, 915

MHz and 868 MHz [62]. The MAC layer defines two types of node that participate in WSN: reduced

functional nodes, which only act as a sensor end device, and full functional nodes, which can act as

both the network coordinator and network end device. Network coordinators provide synchronisation,

communication, and network-joining services, while end user devices are the actual sensor nodes.

Table 2.2 below lists the IEEE 802.15.1 and 802.15.4 specifications, which form the basis of many

other protocol standards.

The communication range between the WSN nodes is very short, up to 10 to 20 metres [67]. The data

rate is also very low, at around 250 kbps. The low data rate could cause congestion problems especially
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Table 2.2. IEEE 802.15.4 specification [1, 2].

IEEE 802.15.4 IEEE 802.15.1 (BLE)

Layers
Physical

MAC
Physical

Frequency
868/915 MHz

2.4 GHz
2.4 GHz

Range 10 to 20 m 10 m to 100 m

Data rate 0.25 Mbps 1 Mbps

Addressing 8 bit or 1 6bit 1 6bit

Devices 100+ 7+

in large and highly active deployments, which could affect the overall throughput and latency of the

network. Although WSNs are traditionally delay-tolerant, this is likely to change with the introduction

of IoT whose applications are sensitive to time.

The ZigBee standard is built on top of IEEE 802.15.4 and defines the communication of the higher

layer protocols: network, transport, and application. There has been a lot of work on communication

with some researchers even proposing cross-layer communication to save energy [21]. Despite all the

great efforts, most communication protocols are yet to propel WSNs to optimal efficiency levels. The

TCP/IP protocol, in particular, was considered too heavy to handle for sensor nodes [21, 68], which

resulted in addressing challenges. The lack of addressing led to an identity problem, especially in large-

scale deployment, until the introduction of the new IPv6 addressing for low-rate wireless personal

networks (6LoWPAN). Although that could potentially resolve the intra-WSNs communication,

inter-communication remains a challenge in view of the heterogeneity of the IoT framework.

WirelessHart is another WSN standard based on IEEE 802.15.4 for process automation and control

[21, 69, 70]. ISA 100.11a is also an IEEE 802.15.4-based standard designed for low data rate wireless

monitoring and process automation networks [21, 69]. 6LoWPAN standard enables the IEEE 802.15.4-

based devices to communicate using IPv6 [21, 71]. Table 2.3 highlights some of the current IEEE

802.15.4-based standards.
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Table 2.3. WSN standards based on IEEE 802.15.4 [1]

Protocol Layer Security Standard Body

ZigBee

Network

Application

Transport

Link Keys ZigBee Alliance

Wireless Hart

Network

Application

Transport

Payload

Encryption

Message

Authentication

Hart

Communication

Foundation

ISA100a

Network

Application

Transport

Payload

Encryption

Message

Authentication

ISA

6LoWPAN Network
Access Control List (ACL)

Secure mode
IETF

2.2.3 Routing

WSN topologies are unstructured and therefore many traditional routing protocols are unsuitable.

Also, the fact that they are not IP-based makes routing a very challenging yet interesting aspect. The

routing is based on the network layer as defined by IEEE 802.15.4. WSN-routing protocols should

be lightweight owing to the limited resources that these networks exhibit. WSN’s routing protocols

are classified as greedy forwarding, data-centric, energy-oriented, localised, and flood based. Greedy

forwarding forwards packets to neighbours close to the destination [21]. These kinds of protocols

are more effective in dense deployments as opposed to sporadic/intermittent deployments [21]. Data-

centric protocols are attribute based, i.e. they are based on a particular attribute such as temperature,

and they help to remove redundant data [72]. They normally use compression and aggregation to route

packets. Flooding is a common technique in wireless networks where a node reactively broadcasts

hello/control packets to its neighbours for possible route determination. It is argued that this method

suffers from “implosion”, “overlap”, and “blindness” [72]. Implosion occurs when redundant messages

are received from different nodes. Overlap occur when neighbouring sensor nodes, which observe
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the same attributes send similar information. Lastly, they are resource blind because their routing is

incognisant of the resource constraints. Energy-efficient algorithm protocols will choose neighbours

with high energy levels to route the packets [72]. Localisation-based algorithms use GPS or any other

localisation models [73] to localise neighbours in the network and base their routing on those.

The transport layer protocol handles issues such as congestion, packet loss and memory capacity. All

these factors, if uncontrolled, waste energy to the detriment of the network. The main goal of the

transport layer is therefore to minimise congestion and achieve high reliability [21].

2.2.4 Security

WSNs, like other wireless networks, are susceptible to security threats. Some of the security measures

and suitable cryptographic algorithms are discussed in Yick et al. [21]. Furthermore, the authors

in [67, 74, 75] have identified the fundamental security requirements to be met in WSNs: Data

Authentication, Data Confidentiality, Data Integrity, Availability, and Redundancy. To achieve the

above security goals, WSNs should deal with different threats to which they are susceptible [76]. WSN

attacks can be classified into three categories: goal-oriented, performer-oriented, and layer-oriented

attacks [77, 78].

Goal-oriented attacks comprise passive and active attacks. A passive attacker monitors and listens to

the communication channel and gathers sensitive information, but does not interfere in or interrupt the

network operation. An active attacker, on the other hand, monitors, listens, and modifies the data, and

thus interrupts the functioning of the network. Some of the active attacks are Denial of Service (DoS),

Blackhole/Sinkhole, Wormhole, Hello Flood, Sybil, Modification of data, Node Subversion, Node

Malfunction, Message Corruption, False Node, Node Replication, Selective Forwarding, Spoofing,

and Fabrication [75, 77–79].

Performer-oriented attacks comprise outside and inside attacks. Outside attacks occur when the

adversary exhausts the resources of the node by injecting bogus/unnecessary packets causing a DoS.

Inside attacks occur when a malicious node acts legitimately and slowly wreaks havoc in the network.

Layer-oriented attacks target the different layers of the network stack [75, 78]. Physical layer attacks

target the radio operation of the node, either through jamming or tampering. On the Data Link layer
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(MAC), the attacker deliberately violates the predefined communication protocol. Network layer

attacks target the operation of the routing protocol, i.e. attacks such as Sinkhole diverts all traffic

towards an already compromised node. On the Transport layer, the adversary floods connection

requests to a particular node to consume its resources. Attacks on the application layer include data

corruption and malicious code.

Resource constraints are a major obstacle in implementing optimal security measures in WSNs

[21, 78, 80, 81]. There has been a lot of research activity into security counter measures in recent times,

with ‘low-resource’ cryptographic measures at the forefront. Symmetric key cryptography solutions are

currently the most preferred, due to their lower implementation cost and their time efficiency. However,

there are major drawbacks in that keys are difficult to manage in large networks, with each device

requiring a key shared with every other device with which it wishes to communicate. Therefore, if a

single key is used and one node becomes compromised, the entire network would be at risk. Although

there have been several attempts at improving symmetric key cryptography for WSNs, as highlighted

in [53], all the attempts come at the cost of processing resources. Other challenges are their resistance

to scalability and the difficulty to implement them in software [75, 78].

Asymmetric cryptography addresses some of the symmetric cryptography drawbacks, e.g. key manage-

ment would be simplified. However they are considered too heavy and computationally too expensive

for the resource-constrained sensor nodes [75, 78, 81]. Recently, more research has focused on toning

down these algorithms for WSN nodes as in [78]. The symmetric methods require less computation

but they are not robust enough and, on the other hand, asymmetric methods offer potential robustness

but at the cost of computation. These are subject to active research in quest for optimal solutions and

thus remain an open challenge. With the future direction of the WSNs seemingly converging to IoT,

Alcaraz et al. [82] note that it is important to have a global perspective of security which does not only

focus on WSN but on the entire IoT framework.

2.2.5 Configuration

Manual configuration of any network device is challenging and tedious, especially when the network

is growing. WSNs need to respond swiftly to any change in the network and therefore they need

dynamic configuration management. Christin et al. [74] state that the role of sensor nodes could extend
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to offer autonomous functions such as self-healing, and self-discovery, therefore a subtler and more

energy-cognisant approach is needed.

2.3 IMPORTANCE OF SDN IN WSN

The advancement of WSNs is thwarted by the inherent challenges that they exhibit. Although much

work has been done in an attempt to minimize these problems, there is not yet a holistic solution,

as each attempt focuses on a particular problem in isolation. Hence, it is very unlikely that these

challenges could be eradicated through the same approach of algorithms and optimisations coupled with

the ever-changing specifications and demands of interest. The SDN approach to WSNs is envisaged

to potentially solve most of the inherent WSN challenges [5, 27, 68]. The most prevalent and critical

WSN problems can potentially be addressed by SDN as follows.

2.3.1 Energy

Energy constraint is a challenge in the development of WSNs and it is by far the most important factor

for consideration in this area. Almost all research work in WSNs, in one way or another, attempts

to address the issue of energy. Costanzo et al. [83] state that SDN in WSN should support common

energy-conscious measures as currently being explored in traditional WSNs, such as duty cycling,

in-network data aggregation, and cross-layer optimization. The SDN paradigm is handy because

through decoupling, the forwarding (switch) nodes are relieved from much of the energy-intensive

computational functionalities [27, 84]. An energy-efficient sleep scheduling algorithm based on SDN

is proposed in [85]. Most of these energy-consuming functions will now reside in the controller, which

has enough power resources. This saves a considerable amount of energy and could potentially prolong

the network’s life span. Heuristically, this is so but the degree of this assertion (prolonging) is yet to be

quantified and remains open for future research.

2.3.2 Network Management and Configuration

Network Management in wireless sensor networks is very complicated and tedious. The network

management challenges in WSNs are mostly inherent from traditional infrastructure networks, which

include, among other things, provisioning, configuration, and maintenance [27]. The SDN approach
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simplifies network management considerably through its simplicity and ability to evolve [27, 83]. In

WSN, the reconfiguration and maintenance of the sensor nodes tend to be a complicated and tedious

process if management is not flexible; this is also exacerbated by the environments in which WSNs

are deployed. These challenges are alleviated by removing the control logic from the sensor nodes,

leaving them as mere forwarding elements. These forwarding elements would now be controlled

and manipulated from the centralised controller, thereby enabling programmability on the physical

infrastructure nodes [27]. SDN also enables a dynamic mapping configuration between the sensor

nodes and the controllers (if more than one controller are used) as illustrated with TinySDN [86].

2.3.3 Scalability

The scalability of the WSNs is very important, especially since the advent of the IoT, where SDWSNs

are sought to play a critical role. The WSNs become cumbersome as the network grows, to the

detriment of efficiency. An abstraction-based model of SDN would aid in keeping the topological

organisation and efficacy of the network intact and thus consign the scalability oversight of the WSN to

the SDN controller. Although the SDN model traditionally relies on a central controller, many efforts

and strides have been made over the years to distribute the control plane; ONOS [87], Hyperflow [88],

Difane [89], DevoFlow [90], Kandoo [91], Disco [92], Pratyaatsha [93] and Elasticon [94] are some of

the distributed SDN controllers.

2.3.4 Routing, Mobility and Localisation

Mobility and localisation are critical for better routing in wireless sensor networks. Depending

on the nature of deployment, there could be device mobility, which the network should be able to

handle. Normally, traditional routing protocols will periodically update the routing table (proactive) or

otherwise source a route on request (reactive) in the event of change. This process is energy intensive

and is unsuitable for WSN networks. SDN simplifies this by managing the mobility from the central

controller i.e. routing decisions and policies are managed at the controller [27]. Localisation algorithms

for example [95], can also be implemented at the controller or at the application plane instead of

the resource constrained sensor nodes. This will aid with the discovery of the network topology and

consequently better decision-making [27].
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2.3.5 Interoperability

WSNs have long been said to be application specific, which leads to resource underutilisation [68].

This shortfall can be resolved by using the SDN approach. SDN alleviates the dependency on vendors

by allowing infrastructure elements to be controlled from one central point, thus running one protocol

on the elements, albeit from different manufacturers.

2.3.6 Communication

Physical communication is largely managed by the device, but aspects such as media access and

duty/sleep scheduling could still be systemwide decisions made by the controller. The duty-cycling

functionality could be managed efficiently by the controller. SDN also enhances better control of

heterogeneous network infrastructures. Thus, the communication between the SDWSN and other

networks could adequately be managed centrally.

2.3.7 Security

The WSN security solutions discussed in Section 2.2.4 above are based on the coupled architecture of

the sensor nodes. The SDN’s decoupling renders them undesirable for the same purpose. However,

these security measures could still play a vital role when they are implemented on the control or applic-

ation plane. Centralisation of security management simplifies the implementation and configuration

of security mechanisms. This global perspective also enables proactive monitoring and evaluation,

which leads to quick counter-response in the event of attack, i.e. a malicious node. The traditional

SDN security challenges and counter-measures are discussed in Section 2.1.4. These measures apply

to WSN to a certain extent because WSNs have unique traits, compared to traditional networks.

A fundamentally important feature of SDN in WSN is the fact that the sensor node becomes a

dump element which only understands controller messages or commands. This makes it difficult and

improbable to be used as conduit of malice. Another advantage is the fact that sensor nodes are the

peripheral devices in the network; unlike traditional networks where the host computers, which are

peripheral could also be security targets. The SDN model also enables flexible configuration in moving
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away from the cumbersome and error-prone manual process currently in place. As noted in [16,96,97],

configuration errors could lead to security vulnerability.

2.3.8 Summary of discussion

SDN possesses an immense potential for improving network computing, and WSNs, without exception,

also stand to benefit. This section discussed the importance of SDN in WSN with the focus on pertinent

issues, such as energy, network management, security, configuration, mobility, routing, interoperability,

and scalability. SDN therefore indeed deals with most of the inherent WSN challenges and could

bring efficiency to WSN. However, there are security issues due to the centralisation of the control

logic which could lead to a single point of failure, as well as congestion and overheads concerns,

as all decision-making is centralised. These concerns are, however, mitigated by the provision of

distributed-control platforms.

2.4 RELATED CONCEPTS

The future of Internet computing is currently a subject of many concerted research efforts in both the

academia and the industry. At the centre of this subject is the concept of cloud computing (CC), which

has been largely accepted as the next generation of computing infrastructure [98]. Cloud computing,

in a nutshell, provides data, computational, and application services to end users in the form of data

centres, infrastructure as a service (IaaS), platform as a service (PaaS), software as a service (SaaS),

and hardware as a service (HaaS).

2.4.1 The application of SDN in the related concepts

The emergence of the IoT paradigm as a vital role player in the advent of the ubiquitous connectivity of

various devices onto the cloud, and the Internet added more complexities which necessitated structural

reconsideration. A plethora of IoT devices is envisaged to dominate the Internet space in the years

to come. Therefore, the research community and the industry are vigorously leading the quest for

architectures and models which would support this IoT upsurge, and one such an enabling model is

SDN.
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There has been a plethora of studies (with industrial intervention) synergising SDN with CC and

IoT such as in [99, 100, 100] and [11, 101–103] respectively. The major characteristics of IoT are

low latency, long-lived connection, location awareness, geographical distribution, wireless access,

mobility, and heterogeneity [104]. In contrast, cloud computing services inherently have challenges

of fluctuating latency, lack of mobility and location awareness [104, 105]. This gave rise to the need

to move some of the processing closer to the devices to improve network response efficiency. Fog

Computing, conceptualised by Cisco in 2012 [10], extends the cloud computing service provisioning

to the edge of the network. It is regarded as a “highly virtualised platform that provides computation,

storage, and network services between end devices and traditional cloud servers” [104–106].

Although Fog computing refers to “edge” in its definition; it should not, as is often the case, be

confused with Edge Computing which in essence extends Fog computing further to the end devices.

Thus, it devolves some processing, analytics, and decision-making to end devices and allows them to

communicate and share information. Fog computing could also be applied in conjunction with SDN;

Truong et al. [107] applied SDN with Fog computing for a vehicular ad hoc network (VANET). Fog

computing gives rise to other similar concepts in mobile cloud computing (MCC) and mobile edge

computing (MEC). MCC “refers to an infrastructure in which both the data storage and the data

processing happen outside of the mobile devices. Mobile cloud applications move the computing power

and data storage away from the mobile phones and into the cloud” [98, 105]. Thus, MCC combines

the concept of cloud computing and SDN on mobile phones. MEC, on the other hand, refers to the

concept of bringing cloud computing capabilities to the edge of a mobile network closer to the mobile

devices for better performance [11, 108]. There are glaring similarities between fog computing and

MEC, as well as MCC and SDN. An architecture infusing SDN and MCC is discussed in [109].

MCC is also envisaged to play a key role in the next generation of mobile networks. Aissioui et

al. [58] propose an SDN controller for 5G mobile cloud management systems. The 5G next generation

mobile network is envisaged to be very dense (very close to the end devices) to meet the demand

which recently been growing exponentially. Bhushan et al. [110] discuss two methods of densification

expected to be dominant in the composition of 5G networks: densification of space and frequency.

The former refers to a process of densely deploying cells to a spatial locale, called an ultra-dense

network [111]. More ultra-dense networks are studied in [112], while Soret et al. [113] expound the

interference coordination of these networks. The latter refers to the use of large portions of the radio

spectrum. This method uses the millimetre wave frequency spectrum [114]. Ali-Ahmad et al. [115] and
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Trivisonno et al. [116] propose different SDN-based network architectures for a 5G mobile network,

while Rost et al. [117] discuss cloud technologies expected to bring flexibility to the 5G network,

including network function virtualization (NFV).

It is clear from the above evolution of wireless networks that heterogeneity will play a huge role in

the future of computing and the Internet. Also, the different concepts of computing are not mutually

exclusive. Therefore, there is a need for inclusively harmonic coordination and corporation to deal

effectively with the data from various sources. SDN and NFV have the potential to ease this integration

and thereby bring efficiency to the Internet of Everything [118].

An SDN-based vehicular ad hoc network (VANET) with fog computing is explored and implemented

in [109]. The architecture used an SDN controller, sitting above the fog, but connected to the cloud.

The fog is composed of an SDN road-site-unit controller (RSUC), SDN RSU, SDN wireless nodes

(vehicles) and a cellular base station (BS). The communication between the controller and the RSUC

and between the RSUC and RSU takes place through a broadband link. The vehicle nodes use long-

range cellular networks such as 3G, WiMAX, and 4G LTE to communicate with the BS whilst they

use a wireless connection or wave to communicate amongst themselves. Anadiotis et al. [119] define

an SDN operating system for IoT that integrates SDN-based WSN (SDN-WISE) and an SDN-based

Ethernet network using an ONOS controller. This experiment shows how heterogeneity between

different kinds of SDN network can be achieved.

The above studies demonstrate that different kinds of network and system can co-exist. Systems such

as smart grid [120], smart water system [121], smart cities [122], health care [123], Vanets [107, 124]

etc. are expected to grow explosively, with Cisco estimating a total of 50 billion devices by 2020 [10].

Most of these systems will be equipped with sensors (mostly wireless) which collects data from the

ground, as Anadiotis et al. [119] note that they are “fundamental ingredients to the IoT ecosystem”. It

is for this reason that this study focuses on the application of SDN direct from the bottom devices. This

will ensure a bottom-up approach and consistent architectural application of the SDN principles.

Figure 2.3 depicts the technologies envisaged to feature predominantly in future computing of IoT in

an inverted pyramid format. The technologies above the “Internet of Things” perimeter are considered

carriers of the IoT, whilst those below are the building blocks of the IoT network. The SDN model

should ideally be applied throughout, i.e. from the bottom devices to the top technologies. Recent
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Figure 2.3. Current and future network computing technologies with SDN [1].

studies show that the application of SDN has gained much of traction from the top pyramid technologies.

In contrast, the application of SDN on IoT devices is still lagging behind. Although progressive strides

have been made; they are still very much in a developmental stage. The survey study below provides a

state of measure of the extent of SDN applications: SDN in traditional networks [12–14, 37, 125, 126],

SDN in wireless networks [15, 125, 127], SDN in cloud computing [100, 128, 129], SDN in Fog

computing [105, 106], SDN in mobile cloud computing [98, 130], SDN in IoT [129, 131]. At this

stage, there is no survey focusing on the bottom devices such as sensors. This chapter fills this gap

by surveying recent work on the application of SDN in WSN, and the set of design requirements

which should be considered for the development of the SDWSN paradigm. Although some of the

sensors from the IoT perspective will be wired, a considerable amount of literature shows that WSNs

have an extensive role to play. Vaquero et al. [132] concur, and further identify mobile devices and

sensor/actuators as the major driving force behind the growth of IoT, with the sensing devices estimated

to surpass all. Also, WSNs exhibit a special set of challenges that warrants urgent attention.
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2.4.2 Summary of discussion

IoT is at the centre of future Internet computing as the connectivity of various distinct elements is

intensified. As WSNs are envisaged to play a pivotal role in this IoT upsurge, there are many other

related concepts which are intrinsically imperative. These concepts can be summarised categorically as

carriers of the IoT traffic: the wireless mobile networks (Wi-Fi, LTE, 5G, etc.); computing frameworks:

cloud computing, fog computing, mobile edge computing, mobile cloud computing, as well as the

building blocks: sensors and actuators. This section discussed the application of the SDN model to all

these concepts, including the IoT. The relationships amongst them were also highlighted and elucidated

through a diagram. Also highlighted is the need for a SDWSN review to provide an indication of

the state-of-the-art research in this field, which is lagging behind the other concepts. Therefore, a

bottom-up approach to the application of SDN is suggested to realise heterogeneous IoT.

2.5 SOFTWARE-DEFINED WIRELESS SENSOR NETWORKS

2.5.1 SDWSN Architectures

The SDN approach to wireless sensor networks entails abstracting different functionalities and reor-

ganising them along the three logical planes of the SDN model: application, control, and data. The

development of the SDWSN architecture is still in its infancy, but valuable inroads have been made

by the research fraternity. Although there are different implementations of the architectures, they

all conform to the fundamentals of SDN: decoupling. Figure 2.4 depicts the basic functionalities of

SDWSN as applied by various researchers.

2.5.1.1 Forwarding devices

The sensor nodes are the basis of the infrastructure layer or the data plane. The sensor nodes comprise

hardware and software components. The hardware consists of a power unit, sensing unit, and radio.

The hardware components are on the physical layer (PHY), which together with the MAC layer

performs the IEEE 802.15.4 functionalities as specified for LR-WPAN [2].
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Figure 2.4. Basic SDWSN architecture as currently applied by various studies. Different functionalities

are distributed along the three planes [1].

• MAC and PHY

The IEEE 802.15.4 functionalities are pertinent to the communication of the SDWSN wireless

networking. The architecture proposed by Costanzo et al. [83], namely SDWN, consists of

a generic node and a sink node. The generic node consists of three layers: PHY, MAC, and

Network Operating System (NOS). The sink node, on the other hand, has two parts, the

generic node and the controller, which are serially connected. Jacobsson et al. [20] propose

a reconfigurable PHY layer to enable flexible configuration and altering of parameters. The

MAC layer handles node identification, which is inherently a major challenge in WSNs. Luo et

al. [68] propose sensor OpenFlow, which aims to address the identification (addressing) problem

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

30



CHAPTER 2 LITERATURE STUDY

which emanates from the fact that WSNs are data-centric and attribute based as opposed to the

Ethernet-based networks (address-centric) [21, 68]. To alleviate the identification challenge, the

authors aim to redefine the addressing model by using a ZigBee 16-bit network address and

using concatenated value pairs, which entail using the attribute descriptions e.g. all packets with

a temperature of a certain threshold.

Another method proposed is to augment the WSN by IP addresses, which many deem to be

inviable for sensor nodes. However, several studies recently, for example Mudumbe et al. [73],

and Pediredla et al. [133], have considered the deployment of an IP-based WSN using different

technologies such as 6LoWPAN (IPv6 over low-power wireless area network) [134] protocol.

Despite IPv4 being ruled out on WSNs, IPv6-based 6LoWPAN uses compression for the much

constrained IEEE 802.15.4 devices. 6LoWPAN is earmarked as a pragmatic enabler of the

Internet of Things [71,133,135]. An IP-based WSN may be considered as an alternative solution.

Mahmud et al. propose Flow-Sensor [51] which aims to achieve reliability by separating the

propagation of the control and data packets. The control packets use OpenFlow, while the data

packets use the normal TCP/IP.

• Data-processing

The software part of the sensor node typically consists of a flow table, sensing element, in-

network processing, and an abstraction layer. The sensing module generates traffic which is

then passed to the processor. The in-network processing could either be data aggregation or

data fusion. Ideally, aggregation would be at the sensor node while fusion takes place at the

sink node. The flow tables store rules as prescribed by the controller, while the abstraction layer

provides an interface for communicating with the controller. The software component of the

sensor node plays a critical role in the processing of the sensed data and routing functionalities.

The processing of the sensed data is carried out differently by various research works. Luo et

al. [68], Constanzo et al. [83], and Gallaccio [136] recommend data aggregation for in-network

processing. In the cognitive SDWSN architecture proposed by Huang et al. [137], information

fusion is employed. They further use over-the-air-programming (OTAP) [65] to distribute routing

information.
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2.5.1.2 Controller

The controller in SDWSN plays a very critical role as it holds the intelligence of the whole network. Its

fundamental functionalities are flow rule generation, mapping functions, and programming interfaces.

The SDN model allows for more functionality to be added. There are different implementations

of the control plane: it could be centralised [56, 138–140] or distributed [87, 88, 92]. The use of

centralised controllers in addition to local controllers is considered in [89,90,141]. Additionally, elastic

solutions [58, 93, 94, 142] dynamically add or reduce controllers according to network load.

The SDWN architecture in [83] uses an embedded controller in a Linux system which is attached

to a sink node through a serial connection. The sink node communicates with other sensor nodes

on a wireless interface. The embedded system consists of an adaptation module, a virtualiser, and

a controller. The adaptation module is used for message formatting. The virtualiser ensures that all

information collected is collated to form a virtualisation of the network state to the controller [83, 143].

A major drawback of this approach is the fact that the serial communication between the sink and the

controller limits the controller and the sink to a one-on-one relationship. This also poses a problem of

scalability. Such architectures will only be viable in a small controllable network.

In other instances, the sink node also acts as a base station (BS), which also houses the controller, as

in [144] and [27]. De Gante et al. [27] propose a BS based SDWSN which consists of five layers:

physical, medium access, NOS, middleware, and application. The middleware layer consists of a

controller, mapping function, mapping information, and a flow table’s definition. The controller

controls and manages the network and keeps the state and topology of the network up to date. It uses

monitoring messages to acquire network information, such as sensor node energy levels, distance from

the BS, node’s neighbour list and link status parameters, such as link quality, response time, etc. The

mapping function processes the monitored data from the sensor nodes and creates a network map

(topology view). The information acquired is stored in the mapping information module. The purpose

of the application layer is to locate the sensed area, and therefore it consists of location and tracking

algorithms to maintain accurate information about the node’s position.

Olivier et al. [144] propose a cluster-based SDWSN architecture, which also has a base station. They

apply the SDN model in a clustered WSN for the formation of what they refer to as a software-

defined cluster sensor network (SDCSN). The sensor network is organized in clusters (SDN domains)
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comprising sensor nodes and a gateway or cluster head. The cluster head herein referred to as SDN

cluster head (SDNCH), controls and coordinates all sensor nodes in its domain. The SDNCH can

implement its own security policies and thus secure the domain against outside attacks. The SDNCH

has a partial view of the network and communicates with other SDNCHs through the gateway. It uses

WE-Bridge [145] to exchange local data with other SDNCHs.

Huang et al. [137] propose a cognitive SDWSN framework to improve energy efficiency and adapt-

ability of WSNs for environmental monitoring. The architecture employs a reinforcement learning

method to perform value redundancy filtering and load-balancing routing to realise energy efficiency

and adaptability of WSN to a changing environment [137]. In TinySDN multiple controllers are used.

The prototype consists of a sensor node and a sink node attached serially to a controller. The SDN

sensor node must first find a controller to join using a Collection Tree Protocol (CTP). The CTP

protocol is also used to send information, such as link quality to the controller. The link quality in

TinySDN uses link estimator instead of RSSI (received signal strength indicator), even though they

acknowledge that RSSI is more accurate, the link estimator is chosen as it is hardware independent.

The framework was implemented and tested by using a Cooja simulator [146].

A hybrid control model is employed in [20] where there is a main controller at the control plane and

a local controller on each sensor node. The purpose of the local controller is to setup, reconfigure,

monitor and execute instructions from the controller. The sensor nodes are equipped with virtual

machines (VM) which help in installing new protocols or code patches when needed. Changes can be

installed using native code and dynamic linking for homogenous networks and/or byte code with VMs

for heterogeneous networks.

2.5.1.3 Tools

TinySDN is proposed in [86] and implemented like SDWN [83]. TinySDN is based on TinyOS

[147, 148], a sensor-network-based OS. TinySDN aims to reduce the control traffic. The TinySDN

architecture consists of two nodes, an SDN sensor node and an SDN controller. Sensor OpenFlow is

proposed in [68], which there is a communication protocol between the control plane and the data

plane [149]. Sensor OpenFlow is based on OpenFlow [128], which until recently was earmarked for
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enterprise and carrier networks [59]. Sensor OpenFlow also aims to achieve compatibility with other

OpenFlow-based sensors.

TinySDN was evaluated using a Cooja simulator. Cooja [146] is a simulator tool used to simulate sensor

motes running Contiki OS. Mininet [150] is the most prevalent simulation tool used for SDN OpenFlow

networks. However, Estinet [151] is purported to be better than Mininet in terms of performance and

scalability though it remains proprietary [85]. Fs-SDN [49] is another SDN simulator which was

developed to facilitate SDN controller application prototyping; POX [152] controller was used in

development. Son et al. [153] developed CloudSimSDN to simulate and test SDN cloud services, since

Mininet and other simulators cannot simulate cloud-specific features. Other simulators that support

OpenFlow protocol are NS-3 [154] and Trema [155] which are implemented in C++ and C (and Ruby)

respectively [156].

2.5.1.4 Internet of Things enabling architectures

The SDWSN architecture proposed by Jacobsson et al. extends this novelty to the new Internet of

Things (IoT) paradigm in which WSNs are envisaged to play a huge role [20, 102] . There has been

more work in trying to integrate SDWSN aspects into the IoT framework. The authors in [51] also

extend their work to consider the use in IoT [157]. Perhaps a more complete IoT architecture is

given in [103], where the authors apply SDN principles in IoT heterogeneous networks. Hakiri et

al. [158] outline an IoT architecture that synergises SDN with Data Distribution Services (DDS) and

highlights some of the challenges pertaining to standardisation, mobility, network gateway access and

QoS support. Hu [11] introduces a new architectural paradigm in the Industrial Internet of Things

(IoT), which focuses on industrial production systems. It calls for a detailed feasibility study on the

synergy of SDWSN with other wireless networks in the context of IoT.

Zeng et al. [38] propose an architecture model that combines SDWSN and cloud computing. In a

cloud computing service provision, e.g. IaaS, sensing is offered as a service to different applications. A

sensing request is sent to the controller, which will subsequently send the request to a suitable WSN(s)

which offers that sensing service. Many WSNs exist in physical space and SDN is used to normalise

them into one integrated common network of SDWSN. The SDN model is used to enable flexible
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alterations to meet the dynamic sensing requests (by different applications). The sensed data can also

be combined with other cloud service data for mashup services.

Table 2.4 highlights a compact comparison of the different architectural frameworks stated above. The

implementation attribute (column) checks whether the proposed architecture has been implemented

(simulation or testbed) or not. The controller attribute checks whether the controller is distributed or

centralised. The in-network processing checks whether there is any form of processing on the nodes.

Finally, the main purpose of the architecture is listed in the focus attribute.

Table 2.4. Current SDWSN architectures [1].

Architecture Implementation Controller In-Processing Focus

Sensor-OpenFlow

[68]

Simulation

Testbed
Central X

Protocol (SB API)

Identification

SDWN [83] Proposed Central X Generic

Flow-Sensor [51] Simulation Central Reliability

SDWSN [27] Proposed Central

Management

Mobility

Localisation

TinySDN [86] Simulation Distributed Multiple controllers

SDWSN [20] Proposed Central X
Architecture/IOT

In-network processing

Cognitive

SDWSN [159]
Simulation Central X

Energy

Efficiency

Adaptability

SDCSN [144] Proposed Distributed X Controller placement

SDSN [38] Proposed Distributed Sensing as a service

SDN-WISE [136]
Testbed

Simulation
Distributed X

Reducing overheads

Finite state SDN-WISE

2.5.2 Routing

It is worth noting that in SDN’s paradigm, the routing functionalities are logically centralised at the

controller. Traditional WSN routing protocols run on the nodes and consume large amount of energy.
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Such approaches in their current state are not viable for SDWSN; however, their algorithmic concepts

could be implemented at the controller level, thus requiring a transformation from an infrastructure-

based to a software-based approach. The traditional WSN routing methods, as discussed and classified

in [5] remain to be tailored for SDWSN based on SDN guidelines. The most related current work to

date is found in the routing model architecture proposed by Shanmugapriya and Shivakumar [4]. The

authors combine context-aware and policy-based routing modules in line with the SDN principles.

Figure 2.5 depicts the proposed architecture.

Figure 2.5. The context-aware and policy based routing model [1, 4].

The model has six phases:

1. Initiation phase: Sensor nodes connect to the controller using the Sensor OpenFlow protocol.

The nodes also supply the controller with all relevant information such as node status, CPU load,

etc.
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2. Administration Phase: This phase entails the defining of rules which will ultimately be used for

routing decisions.

3. Topology discovery phase: The node supplies the controller not only with its own information

but its neighbours’ as well. The controller forms a routing map table. The table has all the

nodes and their next best hops. The route link has context information such as CPU load, service

information, and power levels of the next hop. Services are any policies defined for that route

such as security, privacy, etc. [4].

4. Decision phase: The controller uses a recursive destination based lookup algorithm to look for a

route in the mapping table.

5. Policy-based route phase: The routes are chosen by using defined policies. The algorithm lookup

will determine all available routes towards the destination and a particular route will be chosen

if it matches the policy criteria, i.e. ignore any route with a CPU usage of at least 90%. Should

all routes not match the policy, packets could be dropped.

6. Enforcement phase: The controller enforces the routing onto the switch devices.

Han et al. [5] propose a cluster-based routing protocol based on SDN. They set an OpenFlow-oriented

SDN network based on three types of nodes: master node, centre node, and a normal node where the

master node is a controller, the centre node is equivalent to a switch/sensor node (packetforwarding

device), and the normal node is only for receiving data. The SDN network uses a NOX controller.

They further highlight the use of FlowVisor [160,161] for controller scalability purposes. FlowVisor is

an SDN based-virtualisation application model which enables multiple controllers to use or manage

one switch concurrently. Each controller accesses the switch through a dedicated virtual portion called

slice. Like all the OpenFlow-based routing, the master node determines the route upon receiving

a new request. The routing or the forwarding policy is based on the QoS information. The centre

nodes maintain the flow tables. The network is arranged in clusters, with the centre nodes as cluster

heads which then communicate with the master node via a secure channel, as shown in Figure 2.6.

The location of the centre node is critical and therefore it uses a distance-aware routing algorithm

based on content addressable network (CAN). The authors highlight limited energy on the nodes as a

challenge.

Yuan et al. [6], propose a hybrid routing model which combines the ideals of an ad hoc on-demand

distance vector (AODV) [162] protocol with OpenFlow. AODV is a wireless and mobile ad hoc
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Figure 2.6. SDN cluster-based routing [1, 5].

network routing protocol. They use an AODV daemon to implement the AODV algorithm as well as

OpenvSwitch [163] as an OpenFlow agent which enables the communication between the devices and

the controller [6]. Figure 2.7 depicts the system architecture, which was implemented on a physical

device (Raspberry Pi).

Most of the current efforts lack qualitative and quantitative evidence of their efficiency in a real

network environment. Their performance should be tested against common network factors such as

latency, QoS, packet delivery, congestion etc. The current SDWSN-routing protocols are listed in

Table 2.5.
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Figure 2.7. The hybrid routing model architecture [1, 6].

Table 2.5. Current SDWSN-routing protocols [1]

Name Algorithm SDN layer Testing

Shanmugapriya et al. [4] Context aware and policy based Application proposed

Han et al. [5] Cluster based (CAN) Controller Matlab

Yuan et al. [6] Link State (AODV) Controller tshark

2.5.3 Network Management

Network management creates a platform for service management applications to run and configure

various services with ease, i.e. new policies, patches, and new code. It also defines the interface

between the controller and the applications, therefore northbound in accordance with the SDN model.

As Kreutz et al. [28] and Vaquero et al. [132] allude, there has been less focus on the NB interface,

whereas much attention has been devoted to SB interfaces. The northbound interfaces are mostly built

on top of the network SDN controllers. There are several SDN controllers which support OpenFlow
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as highlighted in Chapter 3 to follow. These controllers were built for traditional SDN networks.

Though some of these controllers have been successfully used in wireless networks, they remain to

be implemented and tested for SDWSN. While the controllers provide low-level control over the

underlying network devices, they are supported by network programming languages which translate

high level network policies into forwarding rules. Procera [164, 165] is a declarative language which

also couples as a network control framework. More SDN-based network declarative languages can be

found in [166–169].

OpenRoads [7, 50] is the most common northbound API that allows network applications to define

and implement any policy framework on the switch through the controller. OpenRoads, also called

wireless OpenFlow, is a network management interface that allows management of various wireless

networks using virtualization [7]. OpenRoads uses FlowVisor to slice the OpenFlow network and

provides a proper isolation amongst the slices, thus enabling multiple controllers as envisaged in [160].

Each controller is responsible for its slice. This also enables multiple experiments to run concurrently

on the network [7, 50]. OpenRoads uses OpenFlow to control and manipulate the OpenFlow-based

switches and uses SNMPVisor (based on SNMP protocol) to configure the devices [7]. However, the

newer releases of OpenFlow come with OF-CONFIG, which configures and manage the switches [3].

Figure 2.8 shows the architectural stack of the OpenRoads deployment.

The OpenRoads [50] platform was used in a heterogeneous wireless network consisting of Wi-Fi APs,

Wi-Max base station, and Ethernet switches; all of which run the OpenFlow protocol. The network

was used to test various mobility management applications. The OpenRoads architecture is built on

top of the NOX OpenFlow controller [7, 50] which controls the Wi-Fi APS, Wi-Max base station and

Ethernet switches, as well as the SNMP protocol, to have control over the power, frequency, data rate,

SSID, etc. of the device elements [7].

Huang et al. [137] propose an SDN-based management framework for the IoT devices. As the

6LoWPAN protocol gains momentum, particularly in view of the IoT, new network management

solutions are developed to cater for these devices. Feng et al. [170], LNMP [171] and 6LoWPAN-

SNMP [172] are Simple Network Management Protocol (SNMP)-based network management solutions

for 6LoWPANs. SNMP is a well-known and commonly used network management protocol in

enterprise networks and its ripple effect on the development of new management architectures comes

as no surprise. Although this model was used in different wireless networks, it provides the SDWSN
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Figure 2.8. The OpenRoads architecture [1, 7].

with a proper model of network management, especially considering the potential of heterogeneity

in SDWSN, and thus remains open in respect of SDWSN. The challenge for northbound interfaces

is the fact that they are not standardized and therefore a plethora of different incompatible designs is

probable [3].

2.5.4 Summary of discussion

The SDN model in WSN has been embraced with vigour and enthusiasm. This section discussed

the current state-of-the art research into SDWSN with special focus on architecture design, network

management and routing. There has been huge progress in advancing the SDWSN model, although

it is still in its infancy. The architectures studied above vary slightly in implementation, affirming

that consensus on the design has yet to be reached. On the forwarding nodes, the functions of the
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MAC and PHY layers remain in WSNs However, there are disparities in the way processing of data is

implemented across various research studies. The implementation of the control logic also varies; some

have it at the sink while others have it at a level higher. Ideally, the end-to-end network management

would include the two interfaces, southbound and northbound; but the NB appears to be lagging behind

as far as SDWSN is concerned. The OpenFlow protocol is most prevalent between the sensor nodes

and the controller. On the other hand, there is no commonality with the NB interface as different

control platforms use their own interfaces for this purpose. However, REST APIs are envisaged to play

a pivotal role, although not thoroughly tried in SDWSN.

2.6 FUTURE RESEARCH CHALLENGES

Most of the existing SDWSN architectures differ in certain respects. However, they share fundamental

commonalities of which most are influenced by the OpenFlow protocol. While there seems to be

converging consensus about the application of OpenFlow, it is yet to be adequately proven for SDWSN.

This section looks at some of the shortcomings of the reviewed SDWSN architectures, while aligning

them for future research considerations

2.6.1 WSN-inherent challenges

Most WSN-inherent challenges are also not yet adequately addressed. Although the SDN paradigm

promises a huge reduction in energy consumption by the nodes, the extent of this needs to be evaluated

and quantified. The local in-node processing and its impact need to be scrutinised in detail and . The

amount of processing needed in proportion to energy usage should be determined. Processing is very

critical in alleviating issues such as implosion, redundancy, etc. As far as processing is concerned,

when coupled with energy considerations, what amount of processing should be left on the node?

The trade-off between internal processing and controller processing needs to be evaluated to address

the issue of aggregation too. The aggregation of the sensed data is also paramount and needs closer

research attention. Another problem is processing of the different data attributes that these sensor

nodes represent. The aggregation problem in heterogeneous networks also needs to be explored to

include the model of abstraction.
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Transmission of the data is also a concern. It might not be practicable to have all sensor nodes

transmitting their raw data to the controller as that will result in excessive delay and congestion in the

network. As some of the above architectural designs have in-network processing on the sensor nodes;

this has to be tested for its efficiency. Having a local controller on the sensor node has been suggested

in [20] while others suggest having a sink node which houses the local controller.

Most of the switches used for SDN purposes use ternary content-addressable memory (TCAM).

Memory is one of the scarce resources in WSNs and it remains to be seen whether TCAM would work

or even be affordable. The memory management techniques explored in [173] could be investigated

from the SDWSN perspective. The other question that begs research attention is how the sensor nodes

dynamically join the network, and also what happens when a change is made when a particular node is

down.

2.6.2 Network operating system

There seems to be disparity about the use of the network operating system and a functional protocol.

Some implementations above seem to be more inclined to an OS which includes some basic function-

alities of a protocol and likewise the protocol-based architectures seem to include some functionalities

of an OS. This stand-off needs proper evaluation, to determine if the two should co-exist or operate

independently.

2.6.3 Practical implementation and evaluation

Although there have been research efforts that made inroads in tailoring OpenFlow for SDWSN, there

has been no practical application, because most are simulated or are just a proposed general framework.

The practicality of the SDWSN would provide a clear indication of the progress made to date. That

would also present an opportunity to evaluate common wireless network issues such as QoS, reliability,

packet loss, bandwidth, stability, efficiency, scalability, etc. Although Luo et al. [68] and De Oliveira et

al. [86] propose an architecture for the physical sensor nodes, they were only tested through simulation

and therefore there is a need for an actual prototype of the SDN-based sensor node.
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2.6.4 Inter and intraplane communication

The communication between the controller and the application layer is important for the overall

structural security of the network. Hence, any protocol considered needs to address the security

impasse adequately. The communication between the controller and the infrastructure devices, the

southbound interface, is also crucial because it is the enabler of the transition from the resourced

control plane to the less resourced data plane. This transition presents an open research problem to

be explored. The communication amongst the sensor nodes also needs to be defined properly when

TCP/IP (IPv4) is ruled out [51], therefore, the exploration of 6LoWPAN needs to be intensified.

2.6.5 Standardisation

The architectures also differ fundamentally in the allotment of different functionalities along the two

SDN control and application planes. Most of these architectures focus on one or two entities, hence

there is a need for a holistic architecture which covers all building blocks of the model. The lack

of standards in SDWSN could derail the development and further exacerbate the issue of dependant

compatibility, which the SDN model seeks to avoid.

There is an urgent need for SDWSN standardisation. The lack of it would result in different incoherent

and incompatible architectures, which goes against the SDN’s principle of heterogeneity. Whilst a

formal standard for SDWSN is yet to emerge, the standardisation of its constituents, WSN and SDN,

has been developing at a pace, IEEE 802.15.4 [67], ZigBee [2], and ONF [35], IETF [31] respectively.

It is not yet known whether conformation to these two standard groups would satisfy the requirements

of SDWSN, or perhaps a new standard would be necessary. The standardisation of the IoT framework

is also imperative and has seen standardisation of its constituent networks [174]. Hence there is a need

for a holistic standard or specification, which will guide the compliance of future networks.

2.6.6 Security

Security is a very critical architectural consideration, especially in this cyber age, where everything

is envisaged to be connected. However, security in SDWSN is still a very open area that is yet to

receive much attention. Most of the work in SDWSN is still very much on the architectural framework,
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partly due to the infancy of this field. But nonetheless, since SDWSN synergises two areas, we should

draw reference from their respective work. The security structure of the model needs to take care of

the SDWSN network itself, the controller, the sensor node device, and the communication protocols

among other things.

Most research work addresses security in traditional SDN and WSN networks. Some of these concepts

can be adapted to SDWSN, while others are very improbable. The network needs to be proactive

and alert to any potential threats. Ali et al. [29] outline different network verification solutions in the

traditional SDN networks, which deal with security configuration, threat detection, threat remediation

and network verification (refer to Section 2.1.4). The programmability of the SDN makes it vulnerable

to attacks [29], as applications can be installed quite easily.

With reference to WSN, the security solutions are mostly implemented on the sensor nodes and such

protocols tend to be energy intensive and hence not practical [29]. These protocols can be implemented

at the controller or application level. Some of these solutions are outlined in detail in [21]. The

implementation of these concepts in SDWSN remains open to the research community. Furthermore,

most security solutions can also be implemented through network function virtualization (NFV), which

virtualises network functionalities.

From an SDN perspective, the control layer is more likely to be targeted by adversaries and therefore

needs to be safeguarded [53]. The communication protocol also should be protected against any

form of interception. The OpenFlow protocol uses a secure TCP protocol on port 6633 and/or also

a secure channel based on TLS [39]. However, as Ali et al. [29] maintain, the impracticality of

running SSL/TLS protocols on small devices, and the issue of securing network communication remain

interesting research questions.

Another major challenge in traditional SDN networks is the fact that the switches are connected to the

traffic-generating hosts, which could be used as gateways for attacks. However, in contrast, sensor

nodes are at the periphery of the network, generating traffic. As a result, security threats through the

sensor nodes are regarded as of less concern, as they are just sheer devices, which only understand a

few entries in the flow table, although further study is needed to confirm this opinion. Table 2.6 maps

the WSN OSI layers along the three planes of SDN, together with the security threats associated with

those layers.
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2.6.7 Distributed-control system

To realise scalability, reliability, and performance in SDWSN, an efficient distributed-control system

is needed. Distributed control solutions have been proposed for SDN enterprise networks, but few

for SDWSN. This underlines the need to investigate a novel distributed-control system for SDWSN

without compromising any of the quality imperatives.

Table 2.6. Security threats on both WSN layers and SDN planes [1]

WSN OSI Layer SDN Plane/Layer Threat

Application Application

Poor Authentication and Control

Fraudulent flows rules insertion

Poor access control and accountability

Malicious Application

DoS

Northbound interface (API) attack

Transport

Network
Control

Threats from applications

DoS

Unauthorised access

Scalability and Unavailability

Faulty or Malicious controller

Data Link

Physical
Data

Unauthorised access

Fraudulent rules

Forged or False traffic flows

Flooding, Spoofing

Southbound Interface (API) attack

Jamming, Tampering

Sybil

Compromised or hi-jacked controller

Malicious node
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2.7 DESIGN REQUIREMENTS

To address the challenges inherent in WSN, this section highlights some of the requirements that need

to be considered in the future design of SDWSN. The requirements are depicted in Figure 2.9 which is

an extension of the architecture presented in Figure 2.4. The main difference between the two is the fact

that Figure 2.4 represents the requirements as currently applied by different studies, while Figure 2.9

enhances the requirements in accordance with the lessons learnt and future architectural considerations.

The added functions are coloured dark blue. The relationship mapping between the controller and the

sensor nodes is 1:M, however, this figure represents a distributed control environment.

Figure 2.9. SDWSN design requirements. This figure captures the requirements as currently applied

and also those that should be considered in future [1].
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2.7.1 Duty cycles

The SDWSN should support duty cycling, i.e. switching the radio communication to a sleep mode,

when not in use, Constanzo et al. [83]. That can be achieved in different ways, either reactively on

demand or periodically through diligent synchronisation [21]. Low duty cycle operations are preferred

in WSNs because high duty cycling could be more detrimental to energy efficiency. Saraswai et

al. [175] evaluate this trade-off and conclude that energy consumption decreases if the duty cycle

is less than 0.01% and 0.02% for dense and less dense networks respectively, but otherwise, duty

increases energy consumption.

2.7.2 In-network data aggregation and decision fusion

In-network processing of data must be supported to avoid sending raw data to the sink or the controller

[83]. Different data aggregation methods should be used to collate the data and transmit only the

processed information. The aggregation of data could be based on the source, destination or the

application attribute [21]. The protocol should allow a dynamic setting of these combinations through

predefined permutations. The determination of what would guide the method of choosing these factors

needs proper structural evaluation.

2.7.3 Flexible definition of rules

In line with the SDN premise of simple management, SDWSN should support flexible definition and

application of rules and policies. There should also be a mechanism to prevent any advent clashes

of rules or policies. FortNox [57] is a perfect example of such, although it is implemented for basic

SDN, the inference is relant. The rule placement problem is expounded in a comprehensive review of

different solutions in [173].

2.7.4 Node Mobility

Mobility is a very important design consideration for SDWSN, as the deployment of the sensor nodes

varies according to application: some are structural, and others are not. Therefore, nodes could move
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and change positions. The SDWSN should be able to deal with the inevitably rapid physical topology

changes.

2.7.5 Unreliability of wireless links

WSNs consist of various RF (Radio Frequency) wireless communication links [75]. The wireless links

are unstable and therefore not reliable. The instabilities are a result of common factors, such as limited

bandwidth, node failures, etc. The duty cycling also affects the availability of nodes. The design

of the SDWSN should consider the rapid topological changes caused by temporary unavailability of

nodes.

2.7.6 Self-healing ability

Node failures in WSN should be expected and therefore the SDWSN needs to be dynamic with swift

reorganisation to deal with such events. The controller is expected to be logically centralised to avoid a

scenario of a single point of failure, i.e. physically distributed but operating logically as one controller.

CPRecovery [176] is a technique used to ensure resilience in the event of controller failure. It restores

the state of the applications (components) to the backup computer. This method employs a central

controller and will therefore be subjected to scalability demands.

2.7.7 Backward and peer compatibility

The SDWSN should be compatible with existing WSNs, and SDN-based sensor nodes should be able

to interface with normal sensor nodes. There should also be peer compatibility with other networks i.e.

other OpenFlow networks. The SDWSN should also integrate well into the IoT framework and its

protocols.

2.7.8 Data-centric and address-centric (multiple identification)

WSNs have always been considered data centric [21, 68], but recent studies are leaning towards

address-centric approaches using IP addresses, particularly IPv6 (6LoWPAN) [73]. Moreover authors
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in [71, 74, 135] state that augmenting WSNs with IP is an adequate solution for integrating WSNs into

IoT. An SDWSN therefore should support both scenarios.

2.7.9 Scalability

The SDWSN framework should be scalable, and one way to realise that is to ensure that as the sensor

nodes scale up, there is equally sufficient controller service. Although studies in [94, 139] state that

one controller can handle millions of flows per second on traditional SDNs with switches, the same is

yet to be ascertained for sensor nodes. De Gante et al. [27] state that to achieve reliable and robust

scalability, the logically distributed controllers should also be physically distributed as in [88].

2.7.10 East/Westbound interface

To realise scalability, a distributed-control plane should be considered. A distributed-control plane

requires consistent and synchronised communication between the controllers. The communication

between the controllers is herein referred to as East/Westbound API [13]. As with the northbound API,

very little attention has been paid to this interface. However, work such as SDNi [145, 177], which

focuses on flow setup coordination and reachability of exchange information, is a progressive step. The

development of distributed controllers such as Onix [178], Hyperflow [88], ONOS [87], Kandoo [141],

Elasticon [94, 142], Pratyaastha [93] and Aissioui et al. [58] will necessitate the development and

standardisation of a common interface.

2.7.11 Northbound and Southbound interfaces

The northbound and southbound interfaces are very important to SDWSN for the fluidity of vertical

cross-layer communication. However, much work was done which focused on the southbound interface

and less on the northbound. As Nunes et al. [12] and Kim et al. [164] note, there is yet to be a

standardised API or an interface for northbound communication. However, the SDWSN framework

should create a platform for interoperability. The northbound interface was very important as it was

connected to most of the functionalities that were removed from the node. This interface should be

rigid with security and conflict prevention measures, [7,108]. As heterogeneity is expected to be high in

IoT, this interface could be used in conjunction with a virtualisation layer, same as OpenRoads [7] did
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with heterogeneous wireless networks. Sneps-Sneppe et al. [179] assert the need to have a metadata-

based interface for the NB API and further suggest that the NB API will be based on REST [180].

However, unlike its counterpart service-oriented architecture (SOA) [181], REST does not offer

metadata. Although SOA services such as WSDL (Web Service Definition Language), XSD (XML

Schema Definition) provide metadata, they define different interfaces for each service application.

Therefore, for the purpose of ubiquity and heterogeneity, REST would be feasible, but the metadata

remains an open challenge.

2.7.12 Security

Security is a very important consideration for SDWSN frameworks. As SDWSN is envisaged to play

a critical role in the IoT framework, it is equally imperative that security should be as stringent as

possible. Most of the architectures do not have security as a built-in feature of SDN [53]; Kreutz et

al. [13] rightfully state that security and dependability of SDN should be built in from design. Most of

the current SDN security measures are earmarked for enterprise networks, where the network devices

are switches or routers. These need to be adapted to consider wireless sensor network.

2.8 LESSONS LEARNT

This chapter reviews the current state-of-the-art application of SDN in WSNs, the SDWSN. The

SDWSN falls within the broader context of the Internet of Things and as such, some of the related

concepts have also been highlighted. This exercise has also been done to identify the purpose and role

of SDWSN within the IoT space. The IoT paradigm seeks to create a networking environment for

all devices expected to participate. Most of the devices will be equipped with sensors and actuators.

Data from these devices will be carried by various networks such as enterprise, mobile wireless and

optical networks. Various computing platforms such as cloud, fog, mobile cloud and mobile edge

computing will feature prominently for service provisions. The application of SDN to these networks

and computing platforms has been receiving significant and devoted attention from both academic and

industrial research. This chapter has highlighted the bottom-up approach to the application of SDN to

realise IoT. Sensors and actuators are located at the bottom as collectors of data, hence the evaluation

of SDWSN.
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WSNs are envisaged to be a significant building block of the IoT paradigm. However, WSNs inherently

exhibit major constraints in terms of resources such as power, processing, memory, etc. To date,

most of the attempted solutions have not been effective, which has exacerbated the challenges at cost.

SDN offers a potential solution for some of these challenges. The SDN premise of decoupling the

control logic from the forwarding engine brings a substantial respite as most of the energy-intensive

functions are relocated to the controller. The chapter also explores the importance of SDN in WSNs.

Issues such as energy, network management, configuration, scalability, routing, mobility, localisation

interoperability, communication and security are envisaged to improve. It is also noted that the

centralisation of the controller could pose a security risk, as it could be a potential target and a threat to

reliability, resulting in a single point of failure. However, various research strides are being made to

resolve this

The fusion of SDN and WSN begets SDWSN, which is a relatively research area. The chapter looks at

different components of SDWSN, such as the architecture, network management, routing, etc. Due to

the infancy of this field; most of the studies are still unravelling the architectural framework. Some

architectures, such as that of Luo et al. [68] and [83] are more inclined towards the sensor node, while

some such as those of Gante et al. [27] are inclined towards the controller. Some, such as those of

Constanzo et al. [83] and Huang et al. [159], have some processing on the node while that of Jacobsson

et al. [20] has a local controller on the node. Others, such as those of Constanzo et al. [83] and De

Oliviera et al. [86], propose the use of a serial connection between the controller and the sink, which

could stifle scalability. The lack of practicality is understandably common, with most of the work still

on simulation, except in a few cases.

The challenges besetting SDWSN were presented for future consideration. These challenges include

among others; some of the challenges inherent in WSN which are not wholly addressed by SDN, such

as processing clarity, memory, etc. Other challenges identified include standardisation and security.

Standardisation is key to the ideals of IoT heterogeneity, while security will also be central in IoT to

ensure that future networks are secure and reliable. Finally, after the evaluation of the state-of-the-art

architectures and their current challenges, design requirements were identified.
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2.9 CONCLUSION

The SDWSN model is very challenging, as it comprises two unfledged models which are still entangled

in their own complexities. The WSNs are resource constrained, which compels all research efforts to

be energy conscious. Despite many efforts, this is yet to be fully realised and therefore have yet to

reach their optimal efficiency. The introduction of SDN to WSN presents a very novel and progressive

step in leveraging the challenges of resources in WSN. However, the SDN model brings along its

own challenges, especially the trade-off between functionalities that need to be retained on the sensor

device and the impact on common network aspects such as latency, congestion, etc.

This chapter has reviewed the current work on SDWSN. Most of the architectures proposed are still

in the developmental stage. The prevalence of the Openflow protocol in SDN applications seems

to have influenced even t the SDWSN model and therefore, we expect it to play a major role in the

development of this model. Although there are still many challenges in this model, great strides have

been made to date. However, the lack of standardisation in SDWSN is still a concern and standards

should be developed to create oversight for compatibility and sustainability.

The chapter also discusses the SDWSN design requirements that need to be carefully evaluated

and considered when designing and implementing a practical SDWSN framework. These design

requirements would assist in overcoming the various challenges inherent to WSN, as well as the other

challenges associated with SDN. Finally, the chapter tries to highlight some of the open research

challenges that require more attention from the research community.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

53



CHAPTER 3 SOFTWARE-DEFINED WIRELESS

SENSOR NETWORK CONTROL

SYSTEM

The controller plays a very important role in SDWSNs. As shown in Chapter 2, a central controller is

not ideal for the efficacy of the network. However, the focus of most of the current research work is still

on the architecture and early stages of development with few prototypes. Hence, the control systems

are predominantly central. However, there has been much progress in distributed controllers for the

enterprise SDN. Although not directly applicable to SDWSN; they present a cue that can influence the

same for SDWSN. This chapter investigates and discusses the different variations of distributed SDN

controller implementations. We discuss the current variations of distributed control systems from the

traditional SDN perspective in Section 3.1 followed by current distributed controllers for the SDWSN

in Section 3.2. Section 3.3 concludes the chapter.

3.1 SDN CONTROLLER IMPLEMENTATIONS

There are different implementations of the controllers, such as centralised, distributed, logically

centralised but physically distributed and data plane extensions. This section reviews the current

control systems in SDN from the perspective of SDWSN for viability purposes.

3.1.1 A single centralised controller

A centralised controller is an epitome of the basic SDN implementation where a single central controller

controls the entire network. An example of a centralised controller is depicted in Figure 3.1. SDN
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central controllers include Floodlight [140, 182], Ryu [183], Maestro [138], NOX [56], Beacon [139].

Major concerns with a single central controller are scalability, reliability, and congestion. SDWSNs

are envisaged to grow rapidly and to operate in heterogeneous environments; a central controller will

stifle the growth and flexibility of the network. As the network scales, the distance between the sensor

nodes and the controller could result in a deterioration of performance, and service degradation. Also,

sending the data in one direction might cause excessive overheads and affect the validity of the data

carried. SDWSN carries data that changes rapidly, any delay might delegitimise the data or render it

irrelevant.

Figure 3.1. SDN central controller [1].

3.1.2 Distributed controllers

To overcome the drawbacks of the single centralised controller mentioned above, several researchers

used multiple distributed controllers. A distributed-control system is depicted in Figure 3.2. In

TinySDN [86] multiple controllers are used. The prototype consists of a sensor node and a sink node

attached serially to a controller. Olivier et al. [144] propose a cluster-based SDWSN architecture which

also has a base station. They apply the SDN model in a clustered WSN for the formation of what they

refer to as a software-defined cluster sensor network. The sensor network is organised in clusters (SDN

domains) comprising a simple node (sensor) and a gateway or cluster head. The SDN cluster head

controls and coordinates all sensor nodes in its domain.

SDNi protocol [177] is an East/Westbound interface between controllers in a distributed-control

environment referred to as controller domains. A domain is a network cluster with a controller.
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Figure 3.2. SDN distributed controllers [1].

SDNi’s main purpose is to coordinate controller behaviours and to facilitate the exchange of control

and application information across multiple domains. The protocol has three types of message:

reachability update which exchanges reachability information to facilitate inter-SDN domain routing,

flow setup/tear-down/update request which coordinates the flow setup, and capability update which

exchanges network-related capabilities such as QoS in the domain.

3.1.3 Logically centralised but physically distributed

Logically centralised but physically distributed controllers operate as a central controller though they

are physically apart, as shown in Figure 3.3. Hyperflow [88] is an event-based logically centralised but

physically distributed controller for OpenFlow. It is based on NOX [56], a network operating system

controller; built as an application. The Hyperflow application resides in each NOX controller in the

network. The application propagates network events across the controllers, thereby synchronizing their

network views. Hyperflow uses publish/subscribe messaging to facilitate the lateral controller commu-

nication. The published events are stored using WheelFS [184], a distributed-file system. Switches are

connected to a controller close to them and upon controller failure, they must be reconfigured.

ONOS [87] is a distributed-control architecture based on Floodlight [140] which aims to ensure

scalability, performance and availability. It is also installed into the physically distributed controllers

which operate as a unit. Each node has a global view of the network. The ONOS instances control

a subset of switches. The ONOS instances propagate state changes of the switches to the rest of the
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controller instances in the cluster. A switch connects to multiple ONOS instances but only one can

be the master. Upon failure, the switches elect a new master. ONOS uses a distributed data store for

the multiple clusters. OpenDaylight (ODL) [185, 186] is another distributed SDN controller based on

Beacon which like ONOS, employs a multiple cluster of controllers maintained through a distributed

data store. ODL uses model-driven software engineering (MDSE) for inter-model relationship and

model-driven network management for interprotocol configuration management such as NETCONFIG

and RESTCONFIG [186]. Both ODL and ONOS are based on the OSGI framework.

Figure 3.3. SDN logically centralised but physically distributed controllers [1].

Disco [92] is a distributed-control system for WAN and overlay networks. The authors aim to cater for

heterogeneous and constrained networks as they maintain that current solutions are not adaptable. Disco

is based on a Floodlight [140] controller, built as an application. It defines two types of communication:

interdomain and intradomain. The intradomain communication monitors network events within the

domain cluster and uses the network state to do flow prioritisation. The interdomain communication

allows SDN controllers to exchange aggregated network-wide information between each other. The

interdomain communication employs two methods; messenger, which ensures connectivity by using

the advanced message-queuing protocol (AMQP) and agents, which exchange the actual information.

The communication supports diffusion, flooding, and publish/subscribe messages.

3.1.4 A data plane extension control

Other solutions, referred to as data plane extension control systems, enhance the data plane with more

control functionality to reduce the overhead towards the controller; Figure 3.4 depicts the architecture.
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Difane [89] is a data plane extension distributed-control architecture which keeps most of the traffic on

the data plane. Difane offloads some control functionalities to the data plane switches referred to as

authority switches which have more power and processing resources. The controller generates flow

rules, and then passes them on the authority switches which then install them to the rest of the switches.

In DevoFlow [90], the authors aim to devolve the control of most flows to the switches as well. The

controller would still control a few significant flows referred to as elephant flows; these are the flows

that carry heavy traffic. Some of these switches can even make routing decisions.

Figure 3.4. SDN data plane extension controller [1].

Kandoo [91] is another data plane extension solution which employs a rather different approach or

method as compared to DevoFlow and Difane. Kandoo scales the control plane with local controllers

at the data plane, thereby creating a two-level control architecture. Local controllers execute local

applications, but have no interconnection amongst themselves and no global network view. The root

controller is logically centralised and has a global view of the entire network. It executes nonlocal

applications, i.e. applications that need global network knowledge. The root controller, in turn,

controls the local controllers. Local controllers could also be implemented at the switch. Frequent

events are processed at the data plane while rare events are controlled at the central control. The root

controller must subscribe to events from the local controller; otherwise those events would not be

propagated.
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3.1.5 Switch to controller mapping configurations

Most of the distributed solutions referred to above use static configuration to map the switches to the

controllers. Elastic solutions in contrast, offer more flexibility and dynamic assignment of switches to

controllers [58, 93, 94, 142]. Elasticon [142] is a distributed-control architecture in which switches are

dynamically shifted across the controllers to balance the load; the controller pool is also dynamically

shrunk or increased. The controllers have a synchronised coordinator providing a consistent state of

control of the network. A switch connects to many controllers but only one can be the master while

the others are slaves. The load on the network is shared. There is a threshold that is used to migrate

switches to other controllers and to reduce or increase the controller pool. It has a load adaptation

algorithm and migration protocol. The model was tested using an enhanced Mininet simulator.

Pratyaatsha [93] is also an elastic control solution which, like Elasticon, dynamically assigns SDN

switches. In addition, it also assigns SDN application partitions to the distributed controllers. It

aims to address two issues: minimising flow setup latency and minimising costs through efficient

resource allocation, which includes memory as opposed to only CPU load. Pratyaatsha uses the integer

linear programming (ILP) algorithm to assign application state partitions and switches effectively to

controllers. Aissioui et al. [58] propose another elastic solution for 5G mobile cloud management.

The authors aim to address issues of scalability and performance in the context of 5G networks.

The solution is based on mobile cloud computing, particularly the follow-me cloud (FMC) concept

which ensures that mobile users, subjected to many movement constraints and migrations, are always

connected to an optimal data centre. The proposed elastic control solution has two levels: global FMC

controller (G-FMCC) and local FMC controller (L-FMCC). The L-FMCC is deployed on demand by

using Network Function Virtualisation (NFV) depending on the network dynamics and traffic patterns.

G-FMCCs are permanent and responsible for generating, managing and installing OpenFlow rules

which ensure seamless migration of services on the cloud.

3.1.6 Summary of discussion

The different types of controller implementation are summarised in Table 3.1 below, which includes

most of the existing distributed systems in addition to a few centralised systems. The SDWSN control-

lers are mostly centralised since most of the work is still in a development stage. In contrast, distributed
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controllers are yet to be implemented in SDWSN. However, traditional SDN-distributed controllers

can be used as a reference point to develop a tailored distributed controller for SDWSN.

All controller types, apart from data plane extension, keep the control functionality at the control plane,

while the data plane extension devolves some of the control functionality to the data plane to reduce

the overhead on the centralised controller and reduce traffic in the network. In the logically centralised

but physically distributed types, an east/westbound API is used to enable interaction amongst the

controllers. However, not all distribution systems consider the use of the east/westbound API. Table

3.2 below summarises the details of the controller type implementation and further highlights the

advantages and disadvantages of each type.

Table 3.1. Distributed controllers in SDN [1].

Implementation Switch mapping

Controller Centralised Distributed
Logically

Distributed

Data Plane

Extension
Static Dynamic SDWSN SDN

TinySDN [86] X X X

SDWN [83] X X X

SDCSN [144] X X X

Cognitive

SDWSN [159]
X X X

Hyperflow [88] X X X

ONOS [87] X X X

Disco [92] X X X

Difane [89] X X X

DevoFlow [90] X X X

Kandoo [91] X X X

Elasticon [94, 142] X X X

Pratyaatsha [93] X X X

Aissioui et al. [58] X X X

3.2 SDWSN CONTROLLER

TinySDN [86] is one of the earliest distributed-control solutions for SDWSN where multiple controllers

are used with the aim of reducing control traffic. It consists of a sensor node and a sink node which

are connected to a controller on a serial port. The SDN sensor node must first find a controller to

belong to by using the collection tree protocol (CTP). This solution was tested by using two controllers.
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Table 3.2. Detailed comparison of the controllers [1]

Controller Type SDN Plane SDN API Advantage Disadvantage

Centralised Control
Northbound

Southbound

Global network view

Informed decision

Central point of failure

Congestion

Not scalable

Performance degradation

Distributed

Logically distributed
Control

Northbound

Southbound

East/westbound

Scalability

Quick response

Ad hoc control access

Improves security

High costs

Static configuration

Unbalanced load distribution

High memory cost

Synchronisation of large data

Data Plane Extension
Control

Data

Northbound

Southbound

Reduces overheard

Quick response time

Improves performance

Improves security

Increases cost

Depends on central controller

The serial communication between the sink and the controller limits the controller and the sink to a

one-on-one relationship. This poses a problem of scalability. These architectures will only be viable

in a small controllable network. The fact that sensor nodes keep track of their neighbours, together

with the flow table, might consume space, which is scarce. The nodes also have to make some routing

decisions; this task should be handled by the controller via the flow tables. The authors extended

this work in [187] where they considered the use of a spot-led architecture for the controllers. This

architecture is both distributed and hierarchical; it consists of local nodes in a distributed format, as

well as a global controller overseeing all the local controllers. The spot-led controllers were tested as

standalones.

SDN-WISE [136] is a comprehensive SDWSN framework based on state automata. The SDN-WISE

software stack gives a detailed description of the SDN sink nodes and sensor nodes. The stateful

structure includes the flow table composition in the flow of Openflow. It also details the protocol

architecture dealing with the packet handling and processing, and topology discovery techniques. The

stack is adaptable to various SDN controllers and therefore an adaptation with ONOS was implemented

by the authors and tested for interoperability with the enterprise network [188].

The combination of SDN-WISE and ONOS is progressively in the right direction towards the realisation

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

61



CHAPTER 3 SOFTWARE-DEFINED WIRELESS SENSOR NETWORK CONTROL SYSTEM

of an effective and efficient SDWSN for IoT. In [189], this solution was tested by using multiple

controllers in a distributed fashion. The authors of SDN-WISE also implemented a custom Java

controller to test this framework which used Dijkstra’s algorithm. Dijkstra’s algorithm finds the

shortest paths between nodes in a connected graph.

3.3 CONCLUSION

The SDN model centralises the control intelligence of the whole network; although this abstraction

brings many positive benefits, it also introduces several challenges. The entire network could be at

risk if the central controller becomes compromised. Failure of the controller could also negate the

availability of the network, thereby rendering it unreliable. The performance of the network will also

suffer due to the overhead. The distance between the gateway nodes and the controller would also

affect the performance. Therefore, a centralised controller would not be viable for a wireless sensor

network, especially in view of the inherent challenges such as unreliable links, low bandwidth etc.

Performance and efficiency will also suffer as the network grows.

To realise scalability, reliability, and performance in SDWSN, an efficient distributed-control system

is needed. Distributed control solutions have been proposed for SDN enterprise networks but few

for SDWSN. This encourages the need to investigate a novel distributed-control system for SDWSN

without compromising any of the quality imperatives.
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This chapter discusses the proposed system model in detail. The purpose of this research work is to

use fragmentation [8]2 as a method of distributing the SDWSN control logic with the aim of achieving

reliability, performance, and scalability. We start by providing a brief overview of distribution and

the rationale behind the proposed model in Section 4.1. This is followed by a brief background

of distributed systems and their relation to database systems in Subsection 4.1.1. The method of

fragmentation is then discussed in detail in Subsection 4.1.2. In Section 4.2, we discuss the gossip

protocols which are the main building blocks of the proposed model. These are best-effort and anti-

entropy. In Subsection 4.2.1, we discuss the way in which these two gossip protocol algorithms are

optimised to realise fragmentation. We also discuss the time complexities of these two algorithms

before and after optimisation in Subsection 4.2.2. Section 4.3 concludes the chapter.

4.1 DISTRIBUTION

Distributed-control systems have been around for some time; they only change in form, scope, and

application. Therefore the rationale behind a distributed application/computing is commonly applicable

2 ©2017 IEEE. Reprinted, with permission, from Kobo H.I., Abu-Mafhouz A.M., Hancke G.P., Fragmentation-Based

Distributed Control System for Software-Defined Wireless Sensor Networks, IEEE Transaction on Industrial Informatics,

May 2018.
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across the spectra of applications. However, there are traits that are unique and exclusive to a particular

form or application of distribution.

The SDN’s centralisation of the control logic necessitates the need for distribution. The fundamental

reasons for distributing the control logic are mainly to avert a central point of failure (addressing

reliability), congestion, delay, scalability and load balancing. Centralisation essentially means that the

whole network relies on the controller for functionality and, if compromised, the whole network will

also cease to function. Also, it becomes a potential target for malicious attacks; to the detriment of the

whole network.

The rationale behind distributed-control for SDWSN is based on these facts and furthermore, it

also addresses WSN’s unique challenges. Unlike enterprise SDN networks, SDWSN have inherent

limitations of energy, memory, data rate etc. Hence, the distribution criterion of the SDWSN should

take all these factors into consideration. Another distinctive feature of SDWSNs is the fact that they

are used to capture real-time events which change rapidly and are therefore delay sensitive. The sensed

data could be rendered redundant if it does not arrive at the controller on time. The delay could be due

to various factors such as the distance between the sensor nodes and the controller, the limited data rate

and the frequency of the data transmission. The distributed control is ideally suited for such scenarios

as it shortens the distance to the controller, shares the load and ensures faster response times.

4.1.1 Background

It is a well-known fact that distributed systems found more prevalence in database theory. E Brewer

profoundly stated at the 2000 Symposium of distributed computing that “in any highly distributed data

system there are three common desirable properties: consistency, availability and partition tolerance.

However, it is impossible for a system to provide all three properties at the same time.” [190, 191].

This became known as the CAP theorem. Coronel and Morris [191] define these three properties as

follows [8]:

• Consistency – All nodes should see the same data at the same time, which means that the

replicas should be immediately updated.

• Availability – A request is always fulfilled by the system.
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• Partition tolerance – The system continues to operate even in the event of a node failure.

In the context of this research the CAP theorem would mean:

• Consistency – all fragments (local controllers) have the same network state all the time i.e.

symmetric.

• Availability – all nodes are available.

• Partition tolerance – the network continues to function after a node failure.

Another phenomenon common in database systems is ACID (Atomicity, Consistency, Isolation,

and Durability); regarded as the four properties of a transactional database. ACID ensures that all

transactions result in a consistent database state. Coronel and Morris note that this is well suited to

centralised and small distributed database systems [191]. Otherwise, latency becomes an issue as the

system scales. They further state that it is for this reason that many systems sacrifice consistency and

isolation for availability, which leads to another phenomenon, BASE (basically available, soft state,

eventually consistent). In BASE, data exchanges are not immediate but propagate slowly until all

nodes are eventually consistent [190].

Distributed SDN control systems draw reference from the above, particularly the database systems.

However, the fundamental roles of an SDN controller and a database system are distinguishable. The

primary task of a database is to store data and enable the CRUD (create, read, update and delete)

operation. The SDN controller, on the other hand, is an engine of the network; more pointedly to

control the infrastructure devices by defining data propagation rules. Furthermore, SDWSN introduces

another dimension, different from the traditional SDN by putting the sensor nodes at the periphery

of the network. This also tilts the paradigm of the controller’s role. It is therefore against this

background that our system follows BASE as a consistency model, thereby preferring availability over

consistency.

This research work undertakes to provide an eventual consistency model and to customise it for

SDWSN control. This process takes cognisance of the perpetual SDWSN challenges such as limited

energy, bandwidth etc. This method applies concurrency and parallelism to the local controller nodes.

This effectively ensures that each local controller node independently controls its segment (cluster) of

the network and work concurrently with the other local controller nodes. These nodes would operate
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simultaneously, thus guaranteeing parallelism. This would allow a faster response between the sensor

nodes and the controller. Most of the data would be upstream and only infrequently would the controller

send control instructions to the devices.

The eventual consistency data model falls within the classification of BASE which has a weaker

consistency but high availability and performance. It is also referred to as optimistic replication

or lazy replication which, unlike pessimistic replication (symmetric), enhances concurrency and

parallelism. Concurrency enables unit processes to be executed independently while parallelism

enables simultaneous execution of processes. The eventual consistency is, however, still applied, albeit

not laterally but vertically to the global controller node. The upward propagation of the cluster states

to the global controller does not affect the operation of the network.

4.1.2 Fragmentation

The concept of fragmentation is prevalent in distributed database management solutions. There are

different ways of doing fragmentation such as through relations in relational databases or classes in

object oriented database [192]. Therefore, any attribute of a subject object can be used in fragmentation

for a particular purpose. Khan et al. [192] summarises the main reasons of database fragmentation as

follows [8]:

• Increases locality of reference of queries to the database.

• Improves reliability and availability of data,

• Improves the performance of the system.

• Balances storage capacities.

• Minimises communication costs among sites.

These reasons apply across the whole spectrum of fragmentation. Ciriani et al. [193] propose a method

of using fragmentation and encryption to protect the confidentiality of data in sensitive distributed

databases such as medical information etc.

We propose fragmentation for our distributed-control solution. Fragmentation entails dedicating part of

the control system to different segments (fragments) of the sensor network. In addition to fragmenting
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the control of the network, this could be extended to abstracting different sensor traits together

e.g. temperature nodes. Figure 4.1 depicts the distributed-control system with fragmentation. This

architecture is akin to that of Kandoo [91], which also has local controllers as well as a global controller

overseeing the whole network. However, Kandoo is an SDN controller dedicated to traditional SDN

networks and does not implement fragmentation as defined in this research work.

Figure 4.1. Distributed-control system for SDWSN with fragmentation [8].

Fragmentation takes distribution further by taking the control logic closer to the infrastructure devices.

Although the communication between the sink node and the controller is through IP protocol, the sink

nodes still possess less resources and therefore, placing the controller close to the sink node saves

a considerable amount of power. This also relieves the sink node from pressure because of its low

data rates or bandwidth. This method involves a two-level control structure where there is a global

controller overseeing the whole network and a local controller in charge of only a portion or segment

of the network. The local controllers only have knowledge of the portion of the network they are

controlling. The characteristics of each controller are as follows [8]:

1. Global controller
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• Global view/knowledge of the network.

• Load balancing.

• SDN functionalities of a controller.

• Failure mechanism.

– Failure of the global controller does not affect the operation of the network, only a

temporal disruption of display and other functions that require global knowledge.

– Replication method used to create redundancy.

2. Local Controller

• Takes charge/control of a cluster.

• Updates the global controller.

• Has local cluster knowledge.

• Lightweight for cost effectiveness.

• Failure mechanism.

– Another local controller takes over.

– Learns the cluster state from the central controller.

– Sink connects to the closest controller.

3. Sink Node

• Connects to the local controller (the closest).

• Communicates with the sensor nodes.

• Relays/conveys information to the local controller.

• Uses RF to communicate with the other sensor nodes and internet to connect to the local

controller.

• Failure mechanism.

– Sensor nodes find another sink within their reach.
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There are three fundamental things that distribution seeks to achieve: reliability, scalability, and

efficiency. However, special consideration should be accorded in SDWSN due to the inherent low

capacity of WSNs. Therefore, in addition to the generic reasons of fragmentation as stated above, the

reasons for SDWSN control fragmentation are [8]:

• Dedicates controller to a cluster.

• Avoids having global knowledge on all controllers, reduce overhead cost by updates.

• Improves responsiveness.

• Allows proper isolation of sensed data types.

• Reduces redundancy on the local nodes.

• Updates to the global controller cannot affect the operation of the network i.e. delay, congestion.

• Keeps latency low by – keeping control close to the sensor nodes.

Figure 4.2 depicts the high-level design of the research mechanism technique; each controller, herein

referred to as a fragment controlling a cluster of nodes. This diagram shows all concepts considered in

this chapter in order of application.

4.2 EPIDEMIC/GOSSIP PROTOCOLS

An epidemic is the spread of disease (infectious) to a large number of people in a population within

a short time [194, 195]; whilst Gossip is the spread of rumours in an informal way in social circles.

These two concepts, with the common denominator of “spread”, informs the basis of Gossip/Epidemic

protocols. Gossip protocols disseminate information across a distributed system by using a gossip-like

method. A participant randomly pairs with a peer and exchanges update information between them

and after a time, full consistency is reached.

Epidemic algorithms feature prominently in information dissemination solutions in large systems as

they offer much scalability, ease of use or deployment, robustness, and resilience [196]. Recently, the

adoption of these algorithms has spread beyond information dissemination to other platforms such as

failure detection, data aggregation, network management, load balancing, synchronisation, discovery

and monitoring, and database replication [197–204].
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Figure 4.2. The complete research structure [8].

Montresor [200] defines the generic characteristics of gossip protocols or factors that a gossip protocol

should at least satisfy:

• Random peer selection or guarantee of peer diversity.

• Only local information available at all nodes.

• Periodic communication.

• Limited transmission and processing capacity per round.

• All nodes use the same protocol.

At the centre of gossip algorithms is random peer selection called peer-sampling service. This service

is very important as it provides the algorithms with the participating nodes [201]. The peer-sampling
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service is simple but crucial as it makes a huge contribution to the overall performance of the algorithm.

Jelasity et al. [201] discuss different ways of implementing peer sampling.

The evolution of gossip protocols was initially introduced by Demer’s 1987 paper titled “Epidemic

algorithms for replicated database maintenance” [205]. There are different gossip protocols in Best

Effort also called direct mail, Anti-entropy and Rumour Mongering. This proposed system focuses on

Best Effort and Anti-entropy.

Best Effort ensures that every new event or update is sent immidiately to all other nodes. Anti-entropy

compares the replicas/nodes and reconciles the differences; thus updating each copy to the latest

one [206]. Rumour-mongering floods the network with updates for a time sufficient enough to have all

nodes updated. These methods suit networks with a moderate latency tolerance, however, they would

potentially lead to latency challenges under high update loads [206]. The SDWSN is envisaged to be a

high update network with little to no latency tolerance and, given the low capacity bandwidth; these

two methods could be problematic.

Best Effort or direct mail is event based. An update to other nodes is triggered by the occurrence

of an event. Upon receiving an event, the node will broadcast that event to all other nodes in the

cluster. An event could include any occurrence of an update, such as a new node, node failure etc. The

receiving nodes in the cluster evaluate the recency of the event. If recent, the matching entry will be

updated accordingly. Otherwise, the sender will have to update its state. The following tables show the

pseudocodes of the algorithms and their time efficiency. Algorithm 1 shows the constructor which

forms the base of all the algorithms discussed. Algorithm 2 shows the pseudocode of the Best Effort

algorithm. The time complexity of the algorithm is O(n)+O(1) which is O(n).

Algorithm 1 Constructor [8]

Require: Let S be a set of participants: S = {p,q,r . . . }

The state of the participant p is modelled as state: K←V.T

K is the set of Keys

V is the set of values

T is the set of Timestamps

Therefore the state s(k)← (v, t)
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Algorithm 2 Best Effort algorithm [8]

Require: Let S be a set of participants: S = {p,q,r . . . }

Upon receiving event: p.state (v, ti) O(n)

for q ∈ S do

Send state to q

end for

Upon receiving state: (v, ti) O(1)

if state.time < t then

state← (v, t)

else

(v, t)← (v, ti)

end if

Total time complexity O(n)+O(1) O(n)

The Anti-entropy algorithm is almost similar to Best Effort in content but different. Anti-entropy is

periodic, therefore the synchronisation occurs after every set period. A peer periodically chooses a

random partner from a list of peers (nodes) and starts to exchange state information. Thus, peer p

sends its state to q, and q applies it to its own state, this is called the push method. Otherwise in the

pull method, p sends its state to q which only consists of keys and timestamps, then q responds with

appropriate matching updates to p. The pull-push method is the combination of both methods, while

q sends updates to p as in the pull method, it also sends its outdated values compared to p. This is

the most used and most efficient method. By using the pull-push method, a node sends its state to

a peer node. The peer node checks the state received for recency, and if recent, it updates its state

accordingly. Otherwise it sends a message to the sender node with a set of updates. Upon receiving the

reply, the original sender (now the receiver) applies the changes, first by checking the recency, then by

updating if recent. If an entry is missing, it is requested. The pseudocode of the algorithm is described

in Algorithm 3. The total time complexity of this algorith is O(nlogn)+O(1)+O(1), which equals

O(nlogn).
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Algorithm 3 Anti-entropy algorithm [8, 205, 206]

Require: Let S be a set of participants: S = {p,q,r . . . }

for every T period do

Randomly select a peer q from set of peers S O(nlogn)

Send state: (v, ti) to q with state (v, t): Update

end for

Upon receiving p.state O(1)

if p.state.time > q.state.time i.e t then

q.state : (v, t)← p.state : (v, ti)

else if p.state.time : (v, ti) < q.state.time : (v, t) then

send a reply to p

end if

Upon receiving a reply O(1)

if p.state.time < q.state.time then

p.state : (v, ti)← q.state.time : (v, t)

end if

if p.state : (v, t) ∈ S such that (vi, t j) /∈ q then

request (vi, t j)

end if

Total time complexity O(nlogn)+O(1)+O(1) O(nlogn)

The ONOS architecture is based on the eventual consistency data model; however, applications that

require stronger data guarantees can use the strong consistency model as an alternative. The strong

consistency model is backed by the RAFT [24] algorithm. The eventual consistency uses Best Effort

to update all other peers when an event occurs and Anti-entropy to resolve the differences amongst

nodes. The proposed method uses the eventual consistency model. At this stage, the architecture

allows a two-level control structure with eventual consistency which is backed by the Best Effort and

Anti-entropy algorithms. This architecture enables the network to scale, which satisfies the scalability

objective of this research study. This mimics the Kandoo [141] architecture discussed in Chapter 3.

In addition to scalability, this architecture takes controller functionalities closer to the infrastructure

devices of the network. Like Kandoo [141], this method suits networks which are resourceful. Each

local controller node has a global view of the network as enabled by the synchronisation of the Best
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Effort and Anti-entropy algorithms. However, this structure does not suit the SDWSN, because of its

unique characteristics as outlined above. It also does not improve the efficiency and performance of

the network. Although it improves scalability, it increases the capital costs of the network because

the size of the controllers would have to be the same size and specification for optimal functionality.

Otherwise, the local controllers, if undersized, could be overwhelmed by the colossal amount of data

that it does not only carry but also process. Secondly, the local controllers process so much data which

they do not utilise. Sensory data is rapid, live, and mostly unidirectional and when the other controller

nodes reach convergence (eventual consistency updates), the data could already be irrelevant. Thus,

resources are not used efficiently. Thirdly, this has a direct impact on the performance and lastly, the

two-level structure would add an overhead which does not have a positive impact overall. Therefore,

although the structure brings about scalability, it does not achieve efficiency and improve performance

and therefore it requires optimisation.

4.2.1 Optimisation

Having achieved scalability by adding local controllers at the edge of the network, optimisation is

sought to achieve efficiency and performance. This optimisation should also reduce the capital costs as

identified above. The first intervention towards fragmentation is to change the behaviour of the gossip

algorithms. The two algorithms stated do not bring the desired outcome of fragmentation. Therefore,

the two algorithms are redesigned to ensure fragmentation. The new algorithms will be referred to as

Best Effort with fragmentation and Anti-entropy with fragmentation to retain consistency.

The Best effort algorithm is redesigned to ensure that it only sends updates to the global controller,

thus all updates triggered by events are sent to the global controller. Upon receiving an event, the node

sends it to the global controller. This step reduces the computation of the algorithm from O(n) to O(1).

The global controller then checks if the event is recent before updating its state. If the global controller

does not have that entry, it is created; however, if an entry exist in the global controller and not in the

local controller, the local controller ignores the entry. This is to ensure that each local controller has a

view and control of its cluster of the network. The Best effort algorithm is modelled as described by

the pseudocode in Algorithm 4 for the fragmentation model. The steps described in Algorithm 4 are

further depicted by the flowchart in Figure 4.3. The flowchart is generic and caters for all updates from

the global and local controllers. The peer sampling has been simplified because it is now between
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the local controllers to the global controllers in a many-to-one mapping (M:1) and from the global

controller to the local controllers in one-to-many mapping. Redundancy of the global controller occurs

through replication.

Algorithm 4 Best Effort algorithm with Fragmentation [8]

Require: Let S be a set of participants: S = {p,q,r . . . }

Upon receiving event: p.state (v, ti) O(1)

Send state to global controller gc: (v, t)

Upon receiving state: (vi, t j) O(1)

if p.state.time < gc.state.time then

p.state← gc.state : (v, t)

else

(v, ti)← gc.state : (v, t)

end if

if p.state : (v, t) ∈ S such that (vi, t j) /∈ q then

O(1)

if sender isglobal controller then

ignore

else

request (vi, t j)

end if

end if

Total time complexity O(1)+O(1)+O(1) O(1)
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Figure 4.3. The flowchart of the Best Effort algorithm with fragmentation [8].

The Anti-entropy algorithm is also redesigned from updating its peers to only updating the main global

controller. The Anti-entropy-handling method is enhanced to be able to distinctively handle updates

from either the global controller or the local controller. The local controller executes the main updates

to the global controller. If the local controller has new devices, the global controller will be updated

during the data exchange. However, the local controller cannot accept any new devices from the global

controller (might be from other clusters). The local controller is envisaged to only get updates from the

main global controller if it is coming alive due to having been down or when taking over another down

node. If a node goes down, the sink node will connect to the next available controller node. To achieve

the updated state, the new controller will execute an Anti-entropy synchronisation with the global

controller; however, this would be rare, given the nature of updates in SDWSN. The sensory data is

mostly upstream and therefore most updates will be from the local controller to the global controller.

This algorithm improves the time total time complexity from O(nlogn) to O(n). The anti-entropy
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protocol between the local controller and the global controller is depicted in Algorithm 5 and in Figure

4.4 the flow chart detailing the steps of the algorithm is shown. The flowchart reflects the steps that the

algorithm undertakes during execution.

Algorithm 5 Anti-entropy algorithm with Fragmentation [8]

Require: Let S be a set of participants: S = {p,q,r . . . }

for every T period do

Synchronise with the global controller: send state O(n)

Send state: (v, ti to q with state (v, t) Update

end for

Upon receiving p.state O(1)

if p.state.time > q.state.time i.e t then

q.state : (v, t)← p.state : (v, ti)

else if p.state.time : (v, ti) < q.state.time : (v, t) then

send a reply to p

end if

Upon receiving a reply O(1)

if p.state.time < q.state.time then

p.state : (v, ti)← q.state.time : (v, t)

end if

if p.stae : (v, t) ∈ S such that (vi, t j) /∈ q then

O(1)

if sender is global controller then

ignore

else

request (vi, t j)

end if

end if

Total time complexity O(n)+O(1)+O(1)+O(1) O(n)
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Figure 4.4. The flowchart of the Anti-entropy algorithm with fragmentation [8].

As stated above, there are similarities between these two algorithms. The main difference is in the

initiation stages, the Best Effort algorithm is triggered by an event while the Anti-entropy algorithm is

periodic. The similarities are in the information exchange between the nodes. As shown in Fig. 3 and

Fig. 4, the contents of the algorithms are similar.

4.2.2 Time complexity

Time complexity is the amount of time or steps an algorithm takes to run as a function given the

length of the input. The more complex an algorithm is, the longer it takes to run. Although many

scholars consider it insignificant or negligible because of the advanced processing capabilities of

modern systems, it is nevertheless vital to the SDWSN as it services time-sensitive applications. The
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complexities of the above are listed alongside the algorithms. The Best Effort algorithm which sends

updates to all peers upon a new event runs at O(n); after the change which sends all updates to the global

controller; the time complexity reduces to O(1). On the other hand the anti-entropy algorithm changes

from O(nlogn) to O(n). Thus, the proposed system satisfies some of the gossip algorithm/protocol

characteristics and not all as identified by Montresor and listed above. There is a major shift with the

proposed system which minimises the complexity of the peer-sampling service. The periodic pairing

of and exchange between nodes are now between the local controller and the global controller. This

reduces the complexities of the random peer selection.

4.3 CONCLUSION

The distributed-control system is very important for the efficacy of SDWSN networks. The choice of the

method of distribution, consistency data model, and algorithms depends on the type of network and data

represented. This chapter proposes a distributed-control system using fragmentation. Fragmentation

entails a two-level control structure consisting of local controllers closer to the infrastructure elements,

as well as a global controller overseeing the whole network. To realise fragmentation, the eventual

consistency model, which uses Best Effort and Anti-entropy algorithms is adopted. The two algorithms

are adapted to achieve fragmentation. Time complexity is of the original model and the fragmentation is

computed and accordingly, the fragmentation model proves efficient. Whilst time complexity provides

theoretical proof of efficiency, this still needs to be validated and qualified practically. The next chapter

deals with the implementation and evaluation details of the proposed system.
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In Chapter 4, we proposed and presented a distributed-control system for the software-defined wireless

sensor networks using fragmentation. Hypothetically, the two algorithms used in the formation of the

fragmentation model have an efficient time complexity as shown in the big O-notation. The big O

notation is a computer science model used to measure the performance or complexity of an algorithm.

This chapter evaluates the veracity of the hypotheses with practical implementation of the proposed

model to verify the viability of the fragmentation for an SDWSN control system. In this chapter, we

also present and discuss the results obtained from the evaluation. The rest of the chapter is organised

as follows: Section 5.1 highlights the methodology used to carry out the experiments; we also discuss

the tools used, the experimental setup, the evaluation methods and procedures, and the simulation

setup respectively. Section 5.2 present the results obtained from the experiments and provide a detailed

discussion of the results. The results are categorised in different metrices used in the evaluation, which

are the controller setup time, throughput of the packets, the latency through the round trip time, the

standard deviation, the packet error rate, and the time variations. We discuss the challenges encountered

during the experimental evaluations in Section 5.3.

5.1 EXPERIMENTAL EVALUATION

5.1.1 Tools

The proposed model is implemented on the control plane of the SDWSN stack. It requires an SDN-

based sensor node as well as an SDWSN controller. The SDN-WISE solution, which consists of an

ONOS controller and a Cooja simulator is used for this purpose. The ONOS framework is traditionally

an enterprise SDN solution, adapted to SDWSN by Gallucio et al. [136]. A Cooja adaptation was
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also made to ensure the simulation of the SDN-based WSN. The fragmentation model is implemented

inside the ONOS controller.

ONOS is a cluster-based distributed SDN controller, which can also operate in singular mode. The

adaptation to SDWSN was tested in this mode; the focus though was on heterogeneity between a WSN

network and an Ethernet network. Kobo et al. [189] tested this solution by using multiple controllers in

a distribution setup. SDN-WISE 1 is implemented on ONOS version 1.0.2 and therefore, our proposed

solution is also based on these versions. There is a mastership service in ONOS where the active

controller becomes a master and the other controllers in the cluster become slaves. In the event of

failure, the remaining slaves elect a master. This service is kept as is in the proposed system, thus each

local controller is the master while the others become slaves.

In ONOS, clusters are formed out of one or more ONOS instances. Each ONOS instance is a controller.

When the ONOS instance operates as a single controller; it uses the ONOS-trivial module. When

more than one instances are used in a clustered form, ONOS-core is used instead. ONOS is modular

and based on the OSGi Java framework. The ONOS subsystem is built using OSGi’s Apache Karaf

container. To create a cluster, ONOS uses two scripts in onos-form-cluster and/or uses test cells. The

onos-form-cluster script merges two or more ONOS instances into a cluster. A test cell is a controller

cluster environment for testing purposes. ONOS uses Hazelcast [207] to manage the distributed nodes

in a cluster. Hazelcast is an in-memory data grid that is used to manage distributed data stores.

5.1.2 Experimental Setup

Figure 5.1 depicts the experiments that were carried out in evaluating the viability of the fragmentation

model for SDWSN control. Three test experiments namely, experiments A, B, and C, were conducted

comparatively; a single central controller, a distributed controller, and a distributed controller with

fragmentation respectively. Figure 5.1(a) depicts a single central controller, referred herein as central.

This experiment consisted of the ONOS instance operating in single mode and is labelled experiment

A. The second experiment B, depicted in Figure 5.1(b), shows a distributed controller running ONOS

instances in a clustered format, herein referred to as original ONOS. In Figure 5.1(c), the fragmentation

model is represented in a distributed-control structure. This is the implementation of the proposed

model in ONOS. The experiments are varied for the purposes of evaluating impact and efficiency. First,
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we evaluate the impact of a distributed-control system in SDWSN by comparing experiment A and B.

Although this determination was established in [189] and [8], this seeks to extend the evaluation by

increasing the sampling time and varied experiments. Secondly, the two distributed-control systems,

B and C, seek to determine the efficiency of the fragmentation model. Therefore the comparative

experimentation seeks to answer two questions first, if a distributed control system is necessary and

secondly, if fragmentation indeed brings about the efficiency sought.

All the experiments were run in independent virtual machines (VM). The SDWSN simulations running

the Cooja SDN emulated nodes were conducted from a VM with 2GHz CPU and 2G RAM. In

experiment A, the controller was run in a VM consisting of 2GHz CPU and 2G RAM. The three VMs

used in experiment B for the controllers consisted of 2GHz CPU and 1G RAM. In experiment C, three

controllers were used in a clustered mode operating as local controllers, as well as one global controller.

The three controllers were run in different VMs, all with the specification of 2GHz CPU and 1G RAM;

the global controller VM had 2GHz CPU and 2G RAM.

5.1.3 Evaluation Methods and Procedures

The SDWSN simulation consists of emulated SDN-enabled sensor nodes and sink nodes. The sensor

nodes communicate by using the IEEE 802.15.4 [2] wireless communication specification. The

sink nodes communicate with the other sensor nodes by using the same IEEE 802.15.4 medium and

communicate with the controller(s) by using the Contiki IP stack. The sink nodes act as gateways

between the sensor nodes and the controllers. The IP stack is based on IPv6’s 6LowPAN [134]. The

controllers use IPv4 interface; there is internal IP tunnelling that enables the sink nodes to communicate

with the controllers. The sink nodes assume the IP address of the host VM.

Three sink nodes are used across all experiments. The sink-to-controller mapping is initialised at

1:1 except in the single controller experiment where it is 3:1. The configuration of the sensor nodes

varies between sample sizes of 24, 30, and 39 nodes. This is referred to as scenarios, thus scenario

24, scenario 30, and scenario 39. The composition of the scenarios consisted of the three sink nodes,

each having an equal share of the sensor nodes. Thus, in scenario 24, there were eight (8) sensor nodes

for each sink node, and scenario 30 consisted of ten (10) sensor nodes for each sink node, whilst in

scenario 39, thirteen (13) sensor nodes were connected to each sink node. These three scenarios were
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(a) Experiment A, single central controller.

(b) Experiment B, distributed controllers with ONOS

original.

(c) Experiment C, distributed controller with frag-

mentation.

Figure 5.1. The experimental design and setup.
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run for 30 minutes in each experiment. Thereafter, we ran scenario 39 again for 1 hour and 5 hours,

these are referred to as scenario 1 hour and scenario 5 hours. The experiments were conducted during

a holiday when the network traffic was at its lowest.

5.1.4 Simulation

The ONOS controller has been customised for SDWSN by Galluccio et al. [136] for the SDN-WISE

solution. Here, it is used to control the SDWSN simulation. The following figures show the ONOS

controller during the simulation tests. An illustration is made with one controller. Figure 5.2 shows the

identity of the controller with some of the connected devices, while Figure 5.3 shows the flows during

testing.

Figure 5.2. The identity of the controller with connected devices.
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Figure 5.3. The flows inside the controller during evaluation.

The SDWSN simulation uses the Cooja adaptation as in the SDN-WISE solution. The illustration is

made with one experiment which is experiment C, scenario 30; any scenario could have been used for

illustration. Figure 5.4 shows the node structure of the simulation, the green motes are the sink nodes

while the orange motes are the sensor nodes. The middle circle shows the reach of the cluster, this is to

ensure parallelism amongst the clusters.
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Figure 5.4. The node structure under test.

Figure 5.5 shows the nodes the simulation script used to time the experiment, in this case, a period of

30 minutes was used which equated to 1800000 seconds.

Figure 5.5. The simulation-timing script.

Figure 5.6(a) shows the simulation control window, which enabled us to set the speed of the simulation,

as well as to start, pause, and reload. Once started, the prompt in Figure 5.6(b) appeared which required

the IP address of the controller. This is the manual operation alluded to in the coming sections.
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(a) Simulation control window.

(b) Sink connection prompt window.

Figure 5.6. The simulation control windows.

Figure 5.7 depicts the node structure in operation, when data is being exchanged amongst the motes,

sensor and sink nodes; this depicts the IEEE 802.15.4 physical communication referred to in Chapter 2

Subsection 2.5.1.1. The sink nodes then convey the data to the controller, creating flows.

Figure 5.7. The exchange of data amongst the motes.

In Figure 5.8 and Figure 5.9, the snapshots of the radio messages and duty cycles of the motes during

testing are shown respectively. The nodes show a 100% ON with the percentages of transmit (Tx) and
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receive (Rx); the average is at the bottom. Lastly, Figure 5.10 shows the full picture of the simulation

during testing. The window at the bottom shows the timeline of the nodes.

Figure 5.8. The radio messages of the motes.

Figure 5.9. The duty cycles of the motes.
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Figure 5.10. The test simulation.

5.2 RESULTS AND DISCUSSION

This experimental evaluation considered three main metrics for this research work in Round-Trip

Time (RTT) or Round-Trip Delay, Standard Deviation and Packet Error rate. The RTT measures the

time it takes for a packet to traverse from the simulation to the controller and back. The standard

deviation measures the variation of the time (RTT) or the delay across all packets recorded over the

evaluation period. This assists in determining the relational proportion of consistency or lack of it in

the performance. The packet error rate looks at the rate of packet loss. All the results are presented

and recorded in Table 5.1 and further presented in the following sections.

5.2.1 Controller setup time

The controller setup time is measured by the time it takes for the sink node to negotiate a connection to

the controller. This is done by observing the SYNC packet, which is the first packet to be sent to the
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Table 5.1. The results of the experiments

Experiments A B C B-extended C-extended

Scenarios 24 30 39 24 30 39 24 30 39 1hour 5hour 1hour 5hour

RTT average 1043.50 990.88 960.05 673.61 530.25 551.60 629.67 525.30 538.27 553.80 468.84 492.46 495.81

RTT min 220.84 224.63 209.73 181.22 167.48 170.28 170.37 192.85 212.34 170.93 158.74 141.15 152.71

RTT max 12410.79 16256.76 15344.11 26545.49 25892.78 11816.93 5989.72 4231.52 6911.58 9920.48 8957.08 4989.73 2382.29

RTT median 695.62 608.53 572.97 500.56 410.57 451.11 528.78 467.16 456.70 433.42 427.37 441.91 452.12

RTT std dev 1089.80 1157.05 1301.06 1118.12 975.15 550.36 536.71 322.69 433.53 619.12 273.56 304.28 218.33

Packet error 7.00 18.00 13.00 11.00 20.00 17.00 5.00 6.00 12.00 18.00 23.00 14.00 7.00

PE rate(%) 0.37 0.84 0.43 0.59 0.90 0.56 0.26 0.26 0.39 0.51 0.29 0.39 0.09

SYNC1 1291.58 836.50 1091.93 469.97 522.59 365.54 572.72 514.38 232.42 475.06 323.79 484.27 583.71

SYNC2 1095.73 566.16 1310.53 448.34 489.54 495.01 398.57 531.54 402.62 491.21 530.97 661.47 391.08

SYNC3 905.70 1170.94 507.32 337.28 405.86 395.22 385.68 425.06 466.21 604.99 489.60 492.90 733.92

SYNC average 1097.67 857.87 969.93 418.53 472.66 418.59 452.32 490.33 367.08 523.75 448.12 546.21 569.57

Packets 1893.00 2135.00 2991.00 1875.00 2223.00 3025.00 1895.00 2285.00 3061.00 3547.00 7909.00 3555 7927.00

controller by the sink node. The experiments consisted of three sink nodes which all had to make a

connection to the controller, one after the other.

The first experiment exhibited high connection time in all scenarios. The average times of the three

sink nodes were 1097.67, 857.87, and 969.93 nanoseconds for scenarios 24, 30, and 39 respectively

for experiment A. In experiment B, the average synchronisation times were 418.53, 472.66, and 452.32

nanoseconds for scenarios 24, 30, and 39 respectively. Experiment C took 452.32, 490.33, and 367.08

nanoseconds average times across the respective scenarios. The distributed controller experiments

took less time to connect than the central controller experiment. Figure 5.11 depicts the graphical

representation of these results.

The controller setup time is critical as it determines the time and delay dynamics that could affect the

operation of the network. This measure also indicates the controller response time which is a very

important metric to determine the efficiency of the controller. In startup, this helps to determine the

time it would take for a network to start operating. In a case of undesired events such as controller

failure, it determines the time to make a reconnection to another controller. Other scenarios include

new nodes joining the network. As expected, the central controller took more time than the distributed

experiments to make connections. This could be worse if the number of nodes and sink nodes increased

in the network. Therefore, a central controller is not ideal. The distributed controllers improve this

time by almost 50%. This is mainly because the distributed controllers share the load. Furthermore, the

fragmentation also introduces independent processing amongst the clustered controllers. The results

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

90



CHAPTER 5 RESULTS AND DISCUSSION

Figure 5.11. Controller setup times of experiments A, B, and C.

show that the distributed experiments are on par in terms of the controller setup time. However, there

is a minor difference which cannot be qualified and can largely be attributed to normal networking

dynamics. However, the independent processing fostered by the fragmentation model will bring about

efficiency in a large network where the process is automated. Currently, the sink nodes are connected

manually to the controllers. This is a challenge that should be investigated further to ensure that the

simulation allows more nodes and connects to the controllers systematically.

5.2.2 Number of packets

The number of packets delivered between the controller(s) and the sink nodes differs for various

reasons such as the number of sensor nodes, the duration of the experiment, and lastly the architecture.

The single central controller exhibited the smallest number packets, followed by the distributed ONOS

while the fragmentation distribution was better. The number of packets recorded for experiment A are

1893, 2135, and 2991 for scenarios 24, 30, and 39 respectively. The three scenarios in experiment B

produced 1875, 2223, and 3025 respectively. Experiment C had more, 1895, 2285, and 3061 packets

across the respective scenarios. These results are summarised in Table 5.1 and depicted in Figure

5.12.
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Figure 5.12. Number of packets produced.

The different scenarios produced different numbers of packets. The number of packets is determined

by the number of nodes used in simulation, the duration of the test, and the efficiency of the controller.

The first and the second are apparent but the third requires validation. As the number of nodes and the

duration of the test increase, the number of packets increases as well. However, the controller also plays

a huge role in this determination because the time it takes to process the packet makes a difference.

Thus, an efficient controller results in efficient throughput of packets. The simulation produces packets

at a constant rate and speed but the throughput of the packets to and from the controller has a vital

impact on this rate. The central controller setting in experiment A produced the lowest number of

packets compared to the distributed experiments. This is mainly because the load is shared amongst

the clustered controllers in the distributed setting. The fragmentation model produced more packets

than the other distributed model in the experiment. This is largely attributed to the efficiency of the

algorithms as shown in Chapter 4. This validates the big O notation which showed that the algorithms

used in fragmentation have a better time complexity. This improvement is also apparent in the extended

experiments. The reduced distance between the controller and the sink node reduces the pressure from

the low data rate capacity of the sink node, thereby enabling improved throughput.
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5.2.3 Round trip time (RTT)

The RTT measures the time or delay a packet takes to make a round trip from a sink node to the

controller and back. The experiments showed a higher RTT on the central controller experiment than

on the distributed experiments. The average RTTs in experiment A for scenarios 24, 30, and 39 were

1043.50, 990.88, and 960.05 nanoseconds respectively. At the first distributed setting, experiment B, the

three scenarios, 24, 30 and 39 produced 673.61, 530.25, and 551.60 nanoseconds respectively. At the

second distributed setting, the fragmentation model, the RTTs were slightly lower with 629.67, 525.30,

and 538.27 nanoseconds for the respective scenarios. The minimum RTTs exhibited in experiment

A were 220.84, 224.63, and 209.73 nanoseconds whilst experiment B exhibited 181.22, 167.48, and

167.48 nanoseconds across scenarios 24, 30, and 39 respectively. Experiment C, on the other hand,

exhibited the lowest minimum RTTs of 170.37, 192.85, and 212.34 across the respective scenarios. The

highest maximum RTTs were experienced in experiments A and B; with A having the maximum RTTs

of 12410.79, 16256.76, and 15344.11 nanoseconds for the respective scenarios while B had 26545.49,

25892.78, and 11816.93 nanoseconds. Experiment C had the lowest maximum RTTs in 5989.72,

4231.52, and 6911.52 for scenario 24, 30, and 39 respectively. The median RTTs in experiment A were

695.62, 608.32, and 572.97 across all scenarios respectively. In experiment B, the median RTTs were

500.56, 410.57, and 451.11 nanoseconds, while experiment C’s medians were 528.78, 467.78, and

572.70 for all respective scenarios. Figures 5.13, 5.14, and 5.15 depict the graphical representation of

the RTTs for scenarios 24, 30, and 39 respectively while 5.16 shows the graph of the average RTTs

against the scenarios under testing.

The RTT is a very important measure to gauge the interaction between the SDWSN simulation and the

controller. Although some research work, such as that of Erickson [139] and Dixit et al. [94] asserts

that a controller can handle millions of packets per second, it is important to qualify this for SDWSN.

The average RTT is high on the central controller as compared to that of the distributed versions.

The central controller performs well in the initial stages and staggers as more packets come through.

This can also be observed as the number of nodes increases. The results show an improvement in the

distributed experiments. The results show an improvement by fragmentation, though the difference is

not huge. The small difference in the RTT averages is due to the fact that the fragmentation model

enabled more packets and thus the additional RTTs were added to the overall average. This is clearly

highlighted in Figures 5.13, 5.14, and 5.15 which show that the fragmentation model is consistently

below the other two models on the graphs. The other factors show this difference clearly such as
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Figure 5.13. Average RTT for 24 nodes.

Figure 5.14. Average RTT for 30 nodes.

in the extended experiments which show fragmentation slightly below the original ONOS in terms

of the average RTT. Although the overall RTT averages show a slight difference; the fragmentation

model exhibits the best consistency as highlighted by the maximum and minimum values as depicted

in Figures 5.13, 5.14, and 5.15.

The maximum RTT obtained on fragmentation is consistently relative as compared to the other experi-

ments. On the other hand, the ONOS-distributed experiment and the central-controller experiment
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Figure 5.15. Average RTT for 39 nodes.

Figure 5.16. Average RTT vs number of nodes.

exhibited the highest peaks on the graphs. The minimum RTTs are, however, consistent across all the

experiments. This is mainly because the first few packets go uninterrupted until the network gets busy.

The median RTTs highlighted the middle value in all the RTTs observed, and as shown in Table 5.1,

the distributed experiments showed a relatively consistent median lower than the central experiment.

This shows that the disparity between the higher and the lower values is very low in distributed settings.

Although limited in the scaling of the nodes, it can be concluded that scalability has a direct effect on

RTT. The variation compared to the increase in nodes was minimal in the fragmentation experiment,
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compared to the other two experiments. However, the real extent of the improvement can only be

conclusively ascertained with an extended degree of scalability which at this stage could not be reached

due to the limited capacity of the simulation tool.

5.2.4 Standard deviation

The standard deviation measures the variation of RTT over the testing period. The results obtained

showed a low standard deviation for the distributed experiments. The central controller setting exhibited

the highest standard deviation in 1089.80, 1157.05, and 1301.06 for scenarios 24, 30 and 39 respectively.

Experiment B, which is the original ONOS in a distributed setting produced 1118.12, 975.15, and

550.36 for the respective scenarios while the fragmentation-based experiment C produced 536.71,

322.69, and 433.33 for scenarios 24, 30, and 39 respectively. Figure 5.17 depicts the graphical

representation of the standard deviation.

Figure 5.17. Average Standard deviation.

The variation trajectory in all the experiments is clearly observed in the standard deviation. The

standard deviation is crucial as it highlights the degree of consistency in the performance of the

various controller settings. The central controller exhibited the worst with an average of over 1000

ns, followed by the original ONOS, while the fragmentation exhibited very little variation. Greater
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variation indicates inconsistent performance and, as shown by the results, the central controller fails in

this regard. The two distributed experiments greatly reduce this variation which validates the idealism

of a distributed-control system in the SDWSN control. The smallest variation observed was in the

fragmentation model which validated its consistency in performance. This shows amongst other things,

that the fragmentation model would be ideal for the dynamic SDWSN, as well as IoT.

The RTTs between the two distributed models do not differ much as the fragmentation model had more

packets than the other distributed experiments and that added to the overall average. The standard

deviation provides a clear indication because it calculates the variation of the RTTs and the quantity does

not affect the ultimate value. Therefore, in addition to the difference in the number of packets sampled

and averaged, the standard deviation provides a thorough account of the difference in performance. It

shows that there is indeed an improvement in the fragmentation model. Another interesting aspect

observed in the standard deviation as shown in Figure 5.17 is the fact that in experiment A, the

central controller’s standard deviation increases by the number of nodes while the ONOS-distributed

experiment decreases the standard variation with the addition of nodes. The fragmentation model

decreases the standard deviation too, but performs better in the 30-node scenario than the rest.

5.2.5 Packet error rate

The packet loss rate was minimally under 1% in all experiments and scenarios. Experiment A suffered

0.37, 0.84, and 0.43 packet loss for scenarios 24, 30, and 39 respectively. In experiment B, the losses

for the respective scenarios were 0.59, 0.90, and 0.56. Packet loss rates of 0.26, 0.26, and 0.39 for

scenarios 24, 30, and 39 were exhibited in experiment C. All these numbers are captured in Figure

5.18.

The overall packet error rate or loss was very low across all experiments and scenarios. The packet

error rate was consistently under 1%, despite the variation in times and number of nodes. This can

be attributed to the strong architectural maturity of the SDN-WISE model, as the distribution had

little impact on it. The difference in the packet loss across the experiments was very minimal. The

fragmentation model exhibited the lowest packet loss compared to the other two experiments. However,

the packet loss was only experienced on the second sink node, the first and the third sink nodes had

no loss at all. This was due to the fact that ONOS 1.0.2 is based on Hazelcast [207] to manage

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

97



CHAPTER 5 RESULTS AND DISCUSSION

Figure 5.18. The Packet Error rate.

the distributed data stores. Hazelcast does not handle the split-brain situation well. Split-brain is a

phenomenon originating from inconsistency between two or more different data sets (nodes), this

is caused by either the design of the servers or synchronisation failures. Hazelcast historically only

works well when the deployment of nodes is even, i.e. 2 or 4 nodes. The latest versions of ONOS have

migrated to the Atomix [208] framework which uses RAFT [24], a consensus algorithm to handle

split-brain situations and uses an odd number nodes, i.e. 3 or 5 nodes. Our experiments consisted of 3

nodes which was in direct contrast with the even allocation of nodes preferred by Hazelcast, hence the

loss of packets from the second node. However, this warrants further and thorough investigation to

confirm this because it also happened to the central node architecture. The single controller in ONOS

does not use distributed functionalities. The increase in the number of sensor nodes did not have any

technical impact on the packet error rate as the loss experienced is standard across all scenarios.

5.2.6 Time variations

The testing time of scenario 39 of the distributed-controller experiments, B and C, was extended

from 30 minutes to one hour and five hours respectively. These two experiments are referred to as

experiments B-extended and C-extended, as also shown in Table 5.1. These experiments only focused

on the 39-node simulation because the purpose was to extend the testing period; the scaling of nodes
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is represented by experiments A-C. The experiment was conducted to compare the two distributed

experiments in an extended period. The controller setup time, average RTT, and minimum RTT are

relative across the two experiments and the two scenarios, scenario 1 hour and scenario 5 hours. The

results that vary between the two experiments are PE rate, maximum RTT and standard deviation. The

maximum RTT for experiment B-extended showed 9920.48 and 8957.08 nanoseconds for scenarios 1

and 5 hour respectively, while experiment C-extended showed 4989.73 and 2382.29 nanoseconds for

the same scenarios respectively.

Figure 5.19. The controller setup for the extended experiments.

Figure 5.20. Average RTT for the extended experiments with 39 nodes for one hour.

The extended experiments labelled experiment B-extended for the distributed controllers using ONOS

original and C-extended for the distributed controllers using fragmentation, were only on the distribu-

tion, because the central controller had repeatedly shown that it lagged behind the distributed settings
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Figure 5.21. Average RTT for the extended experiments with 39 nodes for five hours.

Figure 5.22. The standard deviation for the extended experiments.

and had also proved not to be ideal for the future utilisation of SDWSN. This was to stretch the two

distributed experiments to show how they behave comparatively on an extended duration of the test.

The results of the extended experiments refer to Figures 5.19 to 5.23.

For the controller setup time, the results are relative between the two experiments with the fragmentation

slightly higher. The results are the same even for experiments B and C. Therefore, the ONOS-distributed

setup performs slightly better as far as the connection time is concerned. This is caused by the two-

level control structure in the fragmentation model. The fraction of the difference between the two
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Figure 5.23. The packet error rate for the extended experiments.

is, however, not substantive enough to have any negative impact, and falls relatively within the same

margins. The extended testing period cannot account for this because these are the first packets to be

sent to the controller.

The RTTs observed are depicted in Figures 5.20 and 5.21 for scenarios one hour and five hours

respectively. As in experiments B and C, the averages show the fragmentation model slightly above the

original ONOS distributed but as shown in the graphs, the fragmentation performed better in terms of

consistency for the whole testing periods. Here again, the disparity is caused by the number of packets

produced in the fragmentation model which were again more in these tests. This is also apparent in

the maximum RTTs; the fragmentation model consistently recorded the lowest. The fluctuating RTTs

recorded in the ONOS distributed experiment cannot be good for optimal efficiency of the network.

This inconsistency in the maximum RTTs is clearly shown by the standard deviation, which is high as

shown in Figure 5.22. The standard deviation is very low in the five hour scenario in both experiments,

which shows that the system normalises to consistency over time. The improvement brought by the

fragmentation model is also apparent in this case. The packet error rate for the extended experiments

was also standard and unlike in the other experiments, it was below 0.5%. The lowest rate recorded

was in the fragmentation model for the five hour scenario. However, as stated in Subsection 5.2.5

above, the loss only occurs on the second sink node.
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The results have shown that the extension of times produces approximately the same results as the

other times do. Although the improvement of the fragmentation model is glaring in the extended-time

experiments, the behaviour or the consistency is the same. However, there is a notable difference

in the performance of the fragmentation model from the 24 to 39 sensor nodes. This shows that the

model does not suffer performance deterioration under increased load or extended times. However, the

scalability assertion needs further evaluation for certainty. The scalability could not be tested beyond

this due to the limitations of the simulation tool.

5.3 CHALLENGES

Several challenges were encountered in the evaluation of the experiment. The SDWSN is a very new

platform and therefore there are fewer supporting tools which could be used to prove concepts or

build prototypes. The SDWSN consists mainly of the SDWSN network (SDN-enabled wireless sensor

network) and an SDWSN controller. Most of the SDN controllers are not customised for SDWSN

and likewise there are fewer SDN-enabled sensor nodes or simulation tools. The study is based on or

built on the SDN-WISE solution which consists of an ONOS controller customised for SDWSN and a

Cooja adaptation of SDN-enabled sensor and sink nodes. The proposed model was implemented into

ONOS. This is ONOS 1.0.2 which is older than the current stable version in 1.9.0. The current version

uses Hazelcast, which contributes to the packet loss suffered on the second controller of the cluster. In

the SDWSN simulation, there was a limit to the number of nodes to simulate. More nodes crashed the

system. This limited the extent of the scalability length this study desired to explore. Also, the address

of the controller had to be entered promptly and manually for each sink node. Although this did not

affect the material output of the experiment, an improvement would assist. The simulation could also

be enhanced to enable other metrics to be tested. These challenges did not change the experimental

outcome but could have enhanced the overall usability.
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CHAPTER 6 EFFICIENT CONTROLLER

PLACEMENT AND MASTER NODE

RE-ELECTION

The fragmentation model is earmarked to play a huge role in stimulating participation of SDWSN in

IoT. To realise this, we optimise the model for integration and operational efficiency. We consider

two aspects: controller placement and controller re-election after failure. This chapter discusses the

controller placement problem and the controller re-election for device mastership in the context of

SDWSN. The rest of the chapter is organised as follows: In Section 6.1, we discuss the controller

placement in SDWSN. This section includes a brief background, brief literature, controller placement

in SDWSN, problem statement, a proposed controller placement solution for SDWSN, experimental

evaluations, and results and discussion. This is followed by the controller re-election mechanism in a

case of controller failure in Section 6.2, which also includes different subsections, namely background,

current controller re-election methods, problem statement, proposed solution, experimental evaluation,

and results and discussion. We conclude the chapter in Section 6.3.

6.1 THE CONTROLLER PLACEMENT IN SDWSN

The fragmentation model fragments the control logic so that each fragment controls a particular

portion of the network. This, among other things, reduces the distance between the sink nodes and the

controller and thus ensures that the network latency is minimised. In a large and operational network,

the placement of these local controllers should be diligent and systematic; this is referred to as the

controller placement problem.
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6.1.1 Brief Background

The controller placement problem is a concept chiefly studied in the traditional SDN space. Its

fundamental purpose is rooted in minimising latency between the nodes (devices or switches) and

controller(s). This problem is, however, unexplored in the SDWSN paradigm. Its purpose is also

to minimise the latency between the sink nodes and the controllers to ensure optimal performance.

The overall and dominant conclusion from the existing controller placement work is that there is no

recipe [209] nor any placement rules [210] that apply to all networks, but they offer guidelines through

which optimal placement can be found. Therefore, there is no single best controller placement solution,

especially when several performance and resilient metrics are used. There is only a trade-off between

these metrics [209, 210]. Heller et al. [210] further state that the placement problem has been well

explored and no new theoretical insights are to be expected.

6.1.2 Brief Literature

This problem has been largely studied in the traditional SDN networks but not in the SDWSN. Heller

et al. [210] were the first proponents of this problem which revolved around answering the two

questions:

1. How many controllers are needed?

2. Where in the topology should they go?

These are two fundamental questions that need to be answered and they apply to SDWSN too. Heller’s

work presents comprehensive guidelines for operators to deploy multiple controllers effectively in their

SDN networks. This research work set the scene for this problem. The work was aimed at determining

the number of controllers to deploy and where in the topology they ought to be located. The authors

determined that the controller placement problem was an NP-hard problem, at least as hard as the

hardest problem. Nondeterministic Polynomial is a set of computational problems that can be verified

in a polynomial time by a deterministic Turing Machine. Heller et al. [210] optimised the controller

placement problem based on the latency metric and they developed two latency cases. The first is

referred to as average latency which, is modelled as:
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Given a network graph G(V,E), let the edge weights represent propagation latencies, d(v,s) represent

the shortest path from node v ∈V to s ∈V , n = |V | is the number of nodes, S will be the number of

controllers to choose from, S′ is the number of controllers to be placed such |S′| = K, the average

latency for a placement of controllers Lavg(S′) is modelled as:

Lavg(S′) =
1
n ∑

v∈V
min
s∈S′

d(v,s) (6.1)

Equation 6.2 represents the worst-case latency, which is modelled as:

Lwc(S′) = max
v∈V

min
s∈S′

d(v,s) (6.2)

The average latency uses a k-median [211, 212] optimisation approach. The k-median is a clustering

method which seeks to find k-cluster centres such that the sum of the distances between the centre and

all other points in the cluster are minimised. The k-median strives to minimise the 1-norm distances

between each point and its centre in the cluster. The k-median was borne as an improvement of the

much-studied k-means approach which also minimises the distance between the centre and the cluster

points. The main difference is the variables they used; according to the names, k-median uses the

median while k-means uses the mean. The reason behind the k-median is that k-mean is vulnerable

to outliers [211]. The worst-case latency metrics by Heller et al. [210] uses the k-center clustering

technique. The k-center aims to minimise the maximum distance between the centroid and the points in

the cluster [213], thus it minimises the n-norm distance. The authors further deduced that one controller

is sufficient to fulfil the existing reaction-time requirements although not fault tolerance.

Hock et al. [209] extend this work by adding resilience requirements, thereby showing that in instances

where a single controller complies with the latency condition, more controllers would be necessary for

the resilience requirement. In addition to controller failure, the authors consider intercontroller latency,

network disruption, and load balancing. Hock’s work is formally referred to as Pareto-based Optimal

Controller placement(POCO) [209, 214]. The POCO framework is available on opensource. The

POCO uses the worst-case latency from Heller et al. [210] because they argue that the average does

not consider the worst-case scenarios. They further distinguish between a failure-free scenario and a

controller failure scenario. A failure-free scenario is the optimisation where failure of the controller

nodes is less, whilst the controller failure scenario occurs when the controller failure is expected to

reach k-1, thus all fails but 1. Hock’s failure-free latency metric is modelled as in (6.2), for distinction

purposes we shall refer to it as the maximum latency for failure-free optimisation:

L f f (S′) = max
v∈V

min
s∈S′

d(v,s) (6.3)
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The controller failure optimisation, which is for the worst-case optimisation, is referred herein as

maximum latency for controller failure optimisation and modelled as:

Lc f (S′) = max
v∈V

max
s∈S′

d(v,s) (6.4)

The controller failure effectively doubles the optimisation, and thus ensures that the maximum latency

value covers all other deployed controllers k such that any k-1 controller failure is catered for. The first

case in (6.3) equally distributes the controllers across the breadth of the network, while the second

case in (6.4) moves all controllers towards the centre of the network, ensuring that in a worst-case

scenario, the latency remains within an acceptable range. The authors conclude that the first scenario

suffers from high latencies in worst-case scenarios but lower latencies in failure-free scenarios whilst

the second performs better in the worst-case scenarios and worst in failure-free scenarios. This work

also investigated the inter-controller latency and load balancing.

This work is extended in [215] by using heuristics methods to cater for large-scale and dynamic

networks. Bari et al. [216] propose a dynamic provisioning of controllers according to their activeness

in the network. Lin et al. [217] propose a controller placement algorithm that aims to determine the

number of controllers and their location on the network. They also prove that controller placement is an

NP-completeness problem. The work of other researchers such as Ishigaki et al. [218] and Muqaddas

et al. [219] focuses on reducing the inter-controller latency instead of the node/switch-to-controller

latency.

The closest to SDWSN is the work by Reze et al. [220] which deals with the efficient deployment

of multi-sink and multi-controllers in WSN for a smart factory. The authors optimise the placement

problem as integer linear programming (ILP) which ensures that every sensor node is covered by at least

one sink node and at least one controller node. The distance estimation used Dijkstra’s shortest-path

algorithm.

6.1.3 Controller placement in SDWSN

Most of the research works above are based on the traditional SDN, except [220]. However, [220]

deals with the placement of the sink nodes and the multi-controller placement, which follows the

conventional way of distribution, against which this research work argues. Overall, the controller

placement footprint is lagging behind in SDWSN. However, as stated in the previous chapters, SDN
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solutions provide insightful guidelines for developing SDWSN solutions. The only major distinction is

in the varying traits of the networks, with SDWSN typified by limited resources. Therefore, most SDN

solutions need to be customised to work in SDWSN. The controller placement problem in SDWSN is

vital for optimal performance and efficiency of the network. In traditional SDN, the problem seeks

to reduce the latency between the SDN switches and the SDN controllers. However, in SDWSN,

particularly our solution, it is between the sink nodes and the controllers. As observed in Chapter 5,

the two-level architecture adds a little latency; hence, the challenge is to ensure that this latency is kept

at a very minimum to insignificant levels.

The challenge is to ensure that the placement of both the local controllers and the global controller(s)

follows a procedure that will minimise latency and provide resilience. This would also determine

the number of local controllers for any given network. The placement of the global controller is also

especially important to minimise the latency to and from the local controllers. In most situations,

the controller placement problem entails controller failure, network disruption, load balancing, and

inter-controller latency [209]. The fragmentation model deals with most of these problems. The

inter-controller problem is out because there are no data exchanges between the local controllers,

except with the global controller, in which case, the latency does not affect the convergence of data.

Network interruptions are rife in SDWSNs but do not affect the operation of the control logic, otherwise

the latency between the sink nodes and the controller is minimised by bringing the controller service

closer.

6.1.4 Proposed controller placement

The purpose of this exercise is to optimise the fragmentation model with the aim of minimising latency

between the sink nodes and the local controllers, as well as between the local controllers and the global

controller. Unlike the solutions reviewed above, this focuses on the sink-to-controller latency. We

assume that the placement of the sensor nodes and sink nodes is in accordance with the demands of

the network or the service being provided. Therefore, the control framework needs to respond to the

needs of the network, not the other way around.

As stated in Heller et al. [210] the controller placement problem has been studied extensively and no

new theoretical framework is likely. The theoretical framework as proposed by Heller et al. [210] and
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further by Hock et al. [209] provides a fundamental baseline. We apply this in the SDWSN, particularly

for the fragmentation model. Heller et al. [210] provided two use-case scenarios, the average case

which uses k-median and the worst case which uses k-center. These optimisation techniques are

applicable to SDWSN. We adopt the average-case scenario by Heller using k-means. Although Heller

states that this formula is for k-median, it actually applies to both because it produces the mean and the

median, as well as the maximum value used in k-center; it therefore depends on the use and choice of

the criterion. We use this to optimise for latency, we deal with resilience in Section 6.2. The method

uses a k-means clustering approach which minimises the distance between the node (sink node) and the

cluster centre (controller). This will ensure that the latency between all sink nodes and the controller is

minimised. This is modelled as in (6.1); the fragmentation latency L f rag is modelled as:

L f rag(S′) = Lavg(S′) =
1
n ∑

v∈V
min
s∈S′

d(v,s) (6.5)

The k-means clustering partition data observations of any n-by-p matrix into k-clusters, it returns

an n-by-1 vector consisting of the cluster centres called centroids [221]. K-means uses different

distance metrices to compute the d(v,s) such as Euclidean (default), Cosine, Cityblock, Hamming, and

Correlation. It uses a k-mean++ algorithm for choosing the best k, which is an improvement on the

original criterion which often led to poor clustering.

The latency threshold in SDWSNs should be much lower than it can be in traditional SDN, owing to

the lower data rates of the sink nodes. This will augur well for the fragmentation model, which seeks

to bring control logic closer to the nodes. The placement of the global controller is also important, and

therefore, we use the second latency optimisation, the worst case as proposed in [209]. This entails

minimising the latency between the local controllers and the global controller(s). This effectively

doubles the optimisation and locates the global controller at the centre of the entire network. The

formula follows that in (6.4) which is modelled as latency for the global controller Lgc:

Lgc(S′) = max
v∈V

max
s∈S′

d(v,s) (6.6)

6.1.5 Experiment

We use Matlab to model the controller placement. Matlab is rich in tools used for algorithm testing

and mathematical modelling. Accordingly, there are built-in tools for clustering. The Matlab built-in

k-means uses a k-means++ algorithm. The formula used in Matlab is [221]:

[idx,C,sumd,D] = kmean(X ,K,Name,Value) (6.7)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

108



CHAPTER 6 EFFICIENT CONTROLLER PLACEMENT AND MASTER NODE RE-ELECTION

where:

• X is the matrix under observation i.e. graph G above.

• K is the specified number of clusters required.

• The name-and-value pair represents the distance metric and its name i.e. ‘Distance’, ‘cityblock’.

• idx returns a vector which contains the cluster indices of observation matrix X (graph).

• C returns the k-cluster centroid locations, these are the centres of the partitioned clusters.

• sumd is a k-by-1 vector which contains the within-cluster sums of each point to cluster distance

in the cluster.

• D returns a vector of n-by-k matrix of all distances from each point to every centroid.

Matlab simulation defines nodes with no specification of the type. The set of nodes in our experiment

represents the sink nodes amongst which we want to place the k number of controllers. We placed

fifteen (15) sink nodes at different locations to determine the locations of the three (3) local controllers

and the global controller. We used actual latitude and longitude coordinates as listed in Table 6.1 below.

Table 6.2 lists the weights of the coordinates using the Haversine distance method. The idea is also to

affirm the distances using k-means built-in distance metrices such as Euclidean and Cityblock. The

different distance calculation methods returns approximately the same results on short distances. We

first run the k-means algorithm in Matlab to determine the locations of the local controllers, then use

those locations to determine the location of the global controller.
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Table 6.1. Sink nodes with coordinates

Coordinates

Controller Latitude Longitude

1 -25.755584 28.278443

2 -25.755594 28.278934

3 -25.755668 28.278703

4 -25.756051 28.27778

5 -25.756131 28.278107

6 -25.756303 28.278242

7 -25.756447 28.279639

8 -25.756334 28.279703

9 -25.756331 28.279551

10 -25.756536 28.27827

11 -25.756528 28.278532

12 -25.756207 28.280012

13 -25.756572 28.280249

14 -25.755309 28.278177

15 -25.755426 28.278749
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Table 6.2. Coordinates and weights/distances

Edge Connection Weight(m)

(1,2) 49

(1,3) 28

(2,3) 25

(4,5) 34

(4,6) 54

(5,6) 23

(7,8) 14

(7,9) 16

(8,9) 15

(4,10) 73

(5,10) 48

(6,10) 26

(4,11) 92

(5,11) 61

(6,11) 38

(10,11) 26

(7,12) 46

(8,12) 34

(9,12) 48

(7,13) 63

(8,13) 61

(9,13) 75

(12,13) 47

(1,14) 41

(2,14) 82

(3,14) 66

(1,15) 35

(2,15) 26

(3,15) 27
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6.1.6 Results and Discussion

The purpose of this exercise was to determine the best locations to place the local controllers and the

global controller for the fragmentation model. The k-means method produces, in addition to average

latency, the maximum latency (referred to by Heller et al. [210] as worst-case latency) and the distances

of each point to the centroid. The locations of the three local controllers based on the k-means are

depicted in Figure 6.1 and listed in Table 6.3.

Figure 6.1. The locations of the local controllers by k-means algorithm.

Table 6.3. The locations of the local controllers

Coordinates

Controller Latitude Longitude

A -25.7563 28.2782

B -25.7563 28.2797

C -25.7556 28.2787
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The main antagonists of the k-means algorithm argue that the placement is vulnerable to outliers, and

as seen in Figure 6.1, the local controllers are placed closer to or on one of the sink nodes. Moreover,

it is said that this poses a challenge in a very large network where distance in between are huge. But as

in the case of the SDWSN, particularly the fragmentation model, this does not have a negative effect

because the network is already fragmented. This is the reason we chose k-means, and furthermore, in

a relatively small network such as the fragmented clusters, the different clustering techniques produce

relatively similar results. This can be observed from the average value, the median value, and the

maximum value produced.

On the placement of the global controller, we applied the k-means to the locations obtained when

placing the local controllers above. This is highlighted in Figure 6.2 below. As shown on the figure,

the global controller is placed closer to the local controller closest to the mean.

Figure 6.2. The locations of the global controllers by k-means algorithm.

Unlike the local controller placement, the global controller is expected to be at a relative distance to the

local controllers and therefore placement closer to the mean would leave other observations vulnerable
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to high latencies. Therefore, we re-optimise the local controller locations to counter the error condition.

The use of k-median is considered. However, it results in the same placement as the mean, as shown in

Figure 6.3.

Figure 6.3. The use of the median is the same as that of the mean.

Increasing the topology from three to four or five local controllers (in case the topology grows) does

not improve the positioning either. This means that the optimal placement of the global controller

cannot rely on the increase in topology (data points) as shown in Figures 6.4(a) and 6.4(b). The mean

would always be skewed and unpredictable. Besides the fact that this does not have much effect on

centralising the global controller, this would be a bad method as it is not cost effective.
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(a) The global controller placement with k = 4.

(b) The global controller placement with k = 5.

Figure 6.4. Large topology does not change the placement of the global controller when using k-means.
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Therefore, we used the concept of moving-median to re-optimise the locations of the local controllers

to determine the optimal location of the global controller. Moving-median computes a number of

different k medians over a sliding window of the size of k. It shifts the window forward and backward

over the size of k. It is mostly used to compute time series data. Table 6.4 lists the new locations

derived from the moving median. The next step is to apply k-means to this new matrix to determine

the new location of the global controller; we also find the median.

Table 6.4. The locations of the local controllers after the moving median function

Coordinates

Controller Latitude Longitude

A -25.7563 28.2790

B -25.7563 28.2787

C -25.7560 28.2792

The new matrix above mimics the worst-case scenario described by Heller while conforming to the

free fail scenario by Hock. These new locations move towards the k-center optimisation. However,

noticeably, they cannot be used for the local controller placement as they converge towards the centre

of the network. Figure 6.5 shows the locations of the local controller using the new matrix. Evidently,

this is not suitable for the local controller placements according to the fragmentation ideals for SDWSN

because as shown in Figure 6.5, they are further away from the sink nodes, which are their primary

area of interest.
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Figure 6.5. The locations of the local controller after re-optimisation.

However, as these locations converge towards the centre of the network, they improve the placement

location of the global controller. Figure 6.6 shows the location of the global controller with the mean

and the median respectively. This results from applying the mean and median to the three locations

obtained from the moving median. The placement of the global controller improved greatly. There is a

slight difference between the location of the mean and that of the median.
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(a) The mean of the moving median locations.

(b) The median of the moving median locations.

Figure 6.6. The final optimisation of the locations to determine the global controller location.
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To find a better method between the mean and the median, we looked at the distances to each point.

We took the cluster locations in Tables 6.3 and 6.4 to determine the distance between each point and

the centroid (global controller location) produced by the mean and median of the first matrix (Table

6.3) and the mean and the median of the moving median matrix (Table 6.4). We referred to the first

matrix as S and the second matrix as S′. The mean and the median of the first matrix(S) were the same.

We used the Haversine method to calculate these distances using a different platform (Java code). The

results are captured in Table 6.5.

Table 6.5. The distances between obtained locations and the centroids

Distances (m)

Location S: mean/median S′:median S′:mean

A 78 83 73

B 100 70 71

C 50 80 81

Table 6.5 shows that the mean has a better overall distance although the difference is slight. Both the

mean and the median could therefore be used to determine the final location of the global controller. We

can therefore deduct that the k-mean is suitable to place the local controller while the global controller

should be placed by further optimising the local controller locations. This eventually converges to the

k-center approach. The following Algorithm 6 summarises the steps of placing the controller.

Algorithm 6 Controller placement
These are the steps to be followed:

• Place the local controllers using k-means or m-median clustering.

• Use the locations of the local controllers to determine the location of the global controller.

• Apply a moving median to the locations of the local controllers.

• Apply k-mean or k-median to the new derived locations to find the mean or the median for

the location of the global controller.
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6.1.7 Latency

The k-mean function in Matlab returns the best distances in the clusters. The average sums of the

distances between the points in the cluster and the centroid (local controllers), measured in metres are

1.6, 1.6, and 1.8 for the three clusters respectively. The maximum distances between all the points

to the centroids are 2.6, 2.5, and 2.3 in the three clusters. The average sums represent the k-mean

value while the maximum points represent the k-center as described in Heller et al. [210] and Hock et

al. [209]. The average distance between the local controllers and the global controller is 3.27. We use

the standard distance, time, and speed equation to determine the latency in the form of time.

Distance = Speed×Time

∴ Time =
Distance

Speed

(6.8)

We use the Ethernet over copper speed of 197863.022 ms. The resultant latencies are 8.0864, 8.0864,

and 9.0972 ns respectively within the local clusters and 16.5266 ns between the local controllers and

the global controller.

6.2 CONTROLLER RE-ELECTION PROBLEM

Distributed systems use consensus algorithms to achieve state convergence. In Chapter 4, we discussed

consensus algorithms in terms of replicating the state amongst the participating controller nodes.

Another perspective of the consensus algorithms is the election of a leader in a distributed system. The

election of the leader ensures reliability in the system in the event of failure. It ensures that for any

operation, there will be service and backup for assurance. As in database systems, consensus is very

important for SDN, especially in distributed SDN controllers.

6.2.1 Background

The golden rule in distributed SDN is that a device should be connected to at least one controller but

can only be controlled by at most one controller at any time. The role of the consensus algorithm

is to maintain this and to ensure that leadership changes are consistent, procedural, and efficient.

Paxos [25, 26] and Raft [24, 222] are two of the most popular consensus algorithms used in SDN

distributed controllers.
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These algorithms are normally applied to in-memory data grid frameworks such as ZooKeeper [223],

Hazelcast [207], and Atomix [208]. Both Zookeeper and Atomix use Raft as their consensus algorithm,

while Hazelcast uses Best Effort and Anti-entropy. The ONOS framework used Hazelcast up to version

1.4, from which they started to use Atomix (because of the split-brain problem). Atomix uses a strong

consistency data model, which is not suitable for the fragmentation model as explained in Chapter 4.

The fragmentation model is based on the eventual consistency data model, thus eventual consistency

ONOS over strong consistency ONOS. The Hazelcast framework also allows a choice between strong

or eventual consistency.

6.2.2 ONOS device mastership

The mastership service in ONOS provides cluster management, synchronisation, and device mastership.

The mastership service manages the device mastership. The ONOS device mastership management

defines three roles [108, 224]:

• Master: The controller node has knowledge of the device and has full control.

• Standby: The node has knowledge of the device, and can read the state, but cannot control the

device.

• None: The device may or may not have knowledge of the device and cannot interact with it.

This is the ONOS mastership life cycle. A controller node becomes a master of a device if it discovers

the device first and can verify that the device has no master and has a control channel to the device. All

other nodes that subsequently discover the device become Standby (if they have a connection) or None.

The roles can change through administrative intervention, device disconnection, and disconnection

from the cluster (split-brain syndrome). All these will prompt a role relinquishment and node re-

election to replace the master. Re-election can be the result of master node failure, device disconnection,

and an administrator intervention. The node relinquishing the responsibilities can elect a new master.

The candidate to be the new master is selected from the standby nodes. The standby nodes are ordered

on a preference list and the next node on the list becomes the candidate, master select
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6.2.3 Proposed controller re-election

The fragmentation model distributes the controller instances across the network. In Section 6.1, we

discussed the best ways to consider when placing the local controllers. The main metric behind

the controller placement problem is latency, which is modelled through distance. Therefore, if the

initial placement takes distance into consideration, then the re-election of the master should do so too.

However, currently ONOS does not consider distance in its device master re-election. In the traditional

SDN, this might not be a concern, considering the available infrastructure resources. The SDWSN,

unfortunately, does not possess the luxury of resources to spare, hence more consideration should be

taken into account.

The current implementation contradicts the aims and ideals of the fragmentation model. This section

aims to optimise the controller master re-election method. This entails enhancing the method with a

distance consideration when a new master node is elected. Building upon the controller placement; we

implement the Haversine formula of distance. This calculates the distance based on the latitude and

longitude coordinates of the controllers. We gather the coordinates of the controller instances upon

commissioning. The pseudocode of the Haversine algorithm is given in Algorithm 7 below.

Algorithm 7 The Haversine algorithm

longitude lon1

longitude lon2

latitude lat1

latitude lat2

R← 6367000 is the radius of the earth in metres.

∆long ← lon2− lon1

∆lat ← lat2− lat1

α ← (sin(∆lat
2 ))2 + cos(lat1) × cos(lat2)× (sin(∆long

2 ))2

β ← 2 × arctan(
√

α,
√

1−α)

γ ← R × β

return γ

The local controllers should be at the centre of their clusters according to the placement criteria

discussed in the previous section. We calculate the distances between the current master controller
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(the node relinquishing the role) and the standby controllers; the closest controller node becomes the

candidate or the master select. The change of the master increases the latency, this exercise manages

that increase by preferring the closest controller.

The standard procedure for controller re-election after a controller node failure in ONOS is is described

in Algorithm 8:

Algorithm 8 Controller mastership re-election procedure in ONOS

Upon a controller node failure:

• Relinquish the mastership role.

• The candidate node from the standby list is chosen as the replacement.

The standby list is populated as follows:

• First, the first controller to discover a device becomes the master controller, the rest become

standby controllers for that device if they have a connection; they become none if they do not.

• All standby controllers are stored on a list in a first-come precedence order.

• The first controller on the list becomes the candidate.

• Upon controller failure, the candidate controller becomes the master.

The proposed controller mastership re-election after failure is described in Algorithm 9 below.
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Algorithm 9 The proposed controller mastership re-election procedure

Upon a controller node failure:

• Relinquish the mastership role.

• The candidate node from the standby list is chosen as the replacement.

The procedure for the proposed enhancement changes the standby such that:

• Uses a HashMap to store the standby controllers with their coordinates.

• Calculates the distance between the master and all the standby controllers, and store the results

in a HashMap.

– Calls the Haversine distance method.

• Selects the entry with the lowest distance as the candidate controller.

• Upon Failure, the candidate becomes the master.

Haversine distance calculation method:

• Find the latitude and longitude coordinates of both the current master controller and all the

controllers in the cluster.

• Measure the distance between the two coordinates.

• return distance

The proposed method can be proactive or reactive. The proactive mode will ensure a fast transition from

a failed controller to the replacement controller, but it will add overheads. Whereas the reactive method

will be slower to transit to the replacement controller but with no processing overheads. Although the

differences will be very minimal, the proactive method is more suitable for delay sensitive networks

such as SDWSN.

6.2.4 Experiment

The controller master re-election enhancement was implemented on the ONOS mastership service. We

set up a small experiment to test this enhancement. The experiment consisted of one global controller

and three local controllers according to the fragmentation model (see the experiment in Section 5.1).

The three local controllers consisted of 2GHz CPU and 1G RAM while the global controller consisted

of 2GHz CPU and 2G RAM. The global controller also ran the simulation tool. The simulation consists

of three sink nodes with ten sensor nodes each. All the controllers were virtual and placed in different
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geographical buildings at the Council for Scientific and Industrial Research (CSIR), Pretoria. Figure

6.7 depicts the buildings where the controllers were located.

Figure 6.7. The location of the controllers in the buildings of CSIR, image from Google Maps.

Figure 6.8. The geometric extraction of the controller locations.
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The controllers were located in different buildings; Figure 6.8 shows the latitudes and longitudes of

the controllers’ locations, as well as the distances in between. The central controller was also located,

more in the centre according to the placement model discussed in Section 6.1 above. The controllers

and their location coordinates are summed in Table 6.6 below.

Table 6.6. The local controllers and their location coordinates in latit- udes and longitudes

Coordinates

Controller Latitude Longitude

A -25.755574 28.278461

B -25.756442 28.278401

C -25.756379 28.279578

GC -25.755582 28.278486

We used a script provided by ONOS to manipulate the state of the controllers, we used "onos-service".

This script allowed us to stop, start, restart, and check the status of a controller instance, thus "onos

stop/start/restart/status". The testing procedure followed was:

1. Set up the cluster.

2. Verify that all controller instances are in ACTIVE state.

3. Run the SDWSN simulation.

4. Stop the one local controller instance in the middle of the simulation.

5. Verify if the stopped instance is indeed in INACTIVE state.

6. Confirm if the correct controller node was re-elected.

In the first experiment, we evaluated the proposed criterion by failing the local controllers one at a time.

The second experiment centred around the current re-election criterion versus the proposed criterion in

terms of latency. We measured the latency with the current criterion, then failed the controller and

did the same with the proposed criterion. Controller B was used in this case. We measured latency on

controller B, then failed it; then measured the latency with the replacement.
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6.2.5 Results and Discussion

The ONOS framework provides a command-line service which allows monitoring and manipulation.

The setup depicted in Figures 6.7 and 6.8 shows the different locations of the controllers with co-

ordinates. The figures present a clear logical preference based on the different distances between the

controllers, and thus the evaluation seeks to validate rather that test. The Haversine formula is also

clear and we validated the formula away from ONOS to get the distances and used Google maps to

verify them. The results obtained followed the logic as expected and presented in Table 6.7. Therefore

the table shows the results of the proposed re-election criteria. The proposed method chooses controller

A to replace controller B and vice versa, while choosing controller B to replace controller C.

Table 6.7. The local controllers with their replacements

Local Controller Replacement Distance (m)

A B 97

B A 97

C B 268

Figure 6.9 below shows the results of the second experiment, the latency variations before the controller

was failed and after. We performed all the failing on controller B, any controller could be used (failed)

and that would not change the outcome of the experiment. According to the results in Table 6.7, the

proposed method will always choose the closest controller. However, the current method could choose

any of the remaining two. The results in Figure 6.9 below shows the latency before controller B is

failed, then latency when the closest controller is chosen, and lastly latency when the furthest controller

is chosen. The last two results are applicable to the current method because the choosing is random. In

Figure 6.9, B refers to controller B before the failing, B->A refers to the replacement of controller B

by controller A while B->C refers to the replacement of controller B by controller C.
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Figure 6.9. The latency of the two re-election criteria, the proposed and the current.

The latency results presented show a slight addition of delay as the change of controllers takes place.

Accordingly, the results show that the added delay is more when the controller replacement does not

take distance into account. This is of significant importance in SDWSN. This difference could be

deemed insignificant in traditional SDN, but very critical in SDWSNs. Considering the distances

between the controllers, the speed in traditional networks could overwrite the latency differences, but

remains critical in SDWSNs.

As previously stated, specifically Section 5.2, the connection of the sink nodes to the controller is

manual. As a result, when the controller is stopped, the simulation stops, which contrasts the ONOS

which invokes the re-election service. Therefore, we look at the choice of ONOS in terms of which

controller it chooses as a replacement. We then connect the sink(s) to that controller, then measure the

latency again. The automatic does not change or negate the results because the primary purpose is to

evaluate the latency with the different controller locations. As emphasised previously, this connection

should be automatic so that it could correspond with the controller’s redundancy plan. In contrast, in

the traditional SDN, the controller self-discover the devices (switches).
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6.3 CONCLUSION

This chapter serves as an enhancement of the proposed fragmentation model in terms of latency and

reliability or resilience. It seeks to strengthen and optimise the fragmentation model for real-life

operation. We discussed in detail two problems, the controller placement and the controller mastership

re-election. The controller placement seeks to reduce the propagation latency between the sink nodes

and the local controllers, as well as between the local controllers and the global controller. The

experiments showed that we cannot use the same method of optimal placement for both the local

controllers and the global controller. Therefore, two models of optimal controller placement were

discussed and adopted. K-means for the local controller placement and re-optimised k-means or k-

center for the global controller placement. We also enhanced the current ONOS mastership re-election

criteria with distance consideration in line with the ideals of the fragmentation model. We adopted

the Haversine formula and implemented it in ONOS to ensure that the re-election was in line with

the fragmentation model. These two problems are intertwined and complementary. This ensures that

propagation latency is kept to a minimum and at an acceptable threshold after a controller failure. The

change of controller inevitably adds to the latency and the role of this exercise is to ensure that even

after failure, the network does not suffer abnormal latencies to the detriment of the network.
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7.1 CONCLUSION

The software-defined wireless sensor network is a new and emerging network model that seeks

to improve the efficiency of wireless sensor networks. It is formed by applying software-defined

networking to WSN with the aim of addressing the WSN’s inherent challenges which have been a

major obstacle to their efficacy and applicability. WSN has always been riddled with constraints such

as limited energy, bandwidth, memory, and processing. Over the years, several efforts at meeting

these challenges have been ineffectual. The prevalence of SDN in recent years has gained much

traction as systems seek to capitalise on the premise that it brings to computing and networking. SDN

separates the control logic from the forwarding engine on the network elements, thereby leaving them

as sheer skeletal devices that only understand the instructive language of their controller(s). The control

intelligence is centralised in a controller which controls the entire network. Application of SDN in

WSNs is similar; bringing much respite to the severely constrained sensor nodes. Hypothetically, this

implies that most of the energy-intensive functions would reside in the controller instead of the device.

This evolves to the SDWSN paradigm.

The SDWSN is envisaged to play a vital role in the Internet of Things ecosystem. The IoT is at the

centre of the new wave of development called the 4th Industrial Revolution or 4IR. This defines a

new era of digitisation where automation and data technologies are the kingpins of the new industrial

development. Some of the technologies envisaged to stimulate this trend are the Industrial Internet of

Things, artificial intelligence, virtual realities, cyber-physical systems, cloud, and cognitive computing.

The SDN model is already being applied to most of these technologies. The SDWSN is at the

base of most of these technologies and therefore very essential and central to the success of this

evolution.
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The major challenge facing the SDWSN model is found on the controller. The centralisation of the

controller entails many benefits but, worrying disadvantages too. Some of those concern the reliability

and security of the controller, given its enormous responsibilities. A central controller could be a

central point of failure and a conspicuous target for adversaries. Any failure of the controller effectively

affects the entire network as it holds the whole operational intelligence. Another challenge is the

possibility that as the network grows, performance might be impacted. Also, as the sensor nodes move

farther away from the controller, the distance can also affect the performance negatively. The distance

can also affect the responsiveness of the controller and thereby render the network inefficient because

the SDWSN carries live data which changes rapidly. In the delay-sensitive IIoT this could have dire

effects on production etc.

Nevertheless, due to the infancy of the SDWSN model, most of the current literature employs a central

controller. The challenge is therefore to distribute the control logic to offer reliability, performance,

and scalability. Furthermore, the challenge is not only to distribute the control logic but also to

find an efficient way through which this could be done without compromising any of the quality

imperatives.

This study had two major objectives: to investigate if a distributed-control system is ideal for SDWSN

and to investigate the plausibility of using fragmentation to distribute the SDWSN control logic.

Fragmentation entails distributing the control logic to different segments (fragments), each respons-

ible for a particular cluster. This method consists of small and lean local controllers closer to the

infrastructure elements. These local controllers operate independently, and only occasionally with the

global controller. The fragmentation model uses the eventual consistency data model, which consists

of Best-effort and Anti-entropy algorithms. These algorithms are restructured and reused to ensure

fragmentation.

The evaluations showed that indeed a single central controller is not ideal for the SDWSN network.

Besides the hypotheses, the performance of the distributed controllers proved superior to that of

the central controller. The results showed a huge disparity between the two architectures. The two

distributed-control architectures improve the time delay by almost 50% compared to the central

controller. This is a huge improvement that affirms the applicability of the distributed controllers. The

performance comparison between the two distributed-control architectures showed an improvement

on the part of the fragmentation model. The fragmentation model performed slightly better than the
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original version used for benchmarking. Thus, the fragmentation model proved particularly efficient

with less delay overall.

The main aim of this study was to achieve scalability, reliability, and performance. Regarding

scalability, the fragmentation model performed well consistently as the number of nodes increased.

The consistency in performance amid topology changes affirm the ability of the distributed architecture

to handle dynamic changes in the network smoothly. The distributed controllers bring more stability to

performance as the nodes share the load. In addition, the fragmentation model enables parallelism.

It also ensures that there is redundancy. The reliability was evaluated in terms of partition tolerance,

which the multiple controllers in the distributed architectures enable. Thus, the tolerance in node

failure or unavailability provides cushion and assurance to various applicable systems. Therefore,

we can conclude that the fragmentation model does improve the efficiency without compromising

the quality imperatives. The fragmentation model is also shown not to negate the efficiency of the

network.

The fragmentation model suffered an addition of a fraction of controller connection delay compared to

the original version due to the two-level control architecture. However, this delay is still within the

margins of the original version. This does not negate the performance as it only affects synchronisation

at start-up. Evidence of this is the efficient subsequent performance due to the improved time complexity

of the algorithms as the local controllers come into effect. The time complexity or the efficiency of the

algorithms improved, and this is proven theoretically by the Big O notation and practically affirmed by

the results. The efficiency in controller response time and efficient time complexity is vital as it averts

issues such as throughput, congestion, and delay.

As the fragmentation model is ideally earmarked to play a critical role in stimulating the participation

of SDWSN in the IoT ecosystem, we optimise the model for integration and operational efficiency. We

consider two aspects: the controller placement and controller re-election after failure. The controller

placement entrenches the fragmentation model as it ensures that there is optimal placement of the local

controllers on the network. The main aim is to reduce the propagation latency between the resource-

constrained sink nodes and the local controllers, as well as between the local controllers and the global

controller. Two methods of controller placement which use the k-center optimisation technique are

adopted and discussed in detail. As this strengthens the fragmentation model’s ideal of placing the

controllers closer to the infrastructure elements, the challenge arises when a controller failure occurs

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

132



CHAPTER 7 CONCLUSION

because the current implementation chooses the replacement controller in a listed chronological order.

This is an antithesis of the fragmentation model because the chosen replacement could be far from

the cluster. This could result in excessive latency. Therefore, we enhanced the controller re-election

criteria by adding a distance metric to the decision-making of the candidate replacement of a failed

controller. This ensures that the system chooses a controller close to the failed controller or the cluster

as a replacement amongst those available. This was evaluated in the ONOS system.

It can therefore be concluded that:

1. A single Central controller is not ideal for the software-defined wireless sensor networks’ control.

2. Fragmentation can be used to distribute the SDWSN control system without compromising the

quality imperatives.

3. Fragmentation can be used to distribute the SDWSN control system for optimal efficiency.

4. Fragmentation does bring reliability, scalability, and performance to the SDWSN control system.

7.1.1 SUMMARY OF CONTRIBUTIONS

The major contributions of the study can be summarised as follows:

1. A comprehensive survey of the current literature, challenges, and design requirements of the

SDWSN. This study formed part of a published survey paper in a flagship journal which has

already made and continues to make a huge impact in the research community. The essence of

this survey study was to unravel all literature available in SDWSN to compare, contrast, and

extract lessons that can be used for further research development, and to measure the current state

of SDWSN and identify the challenges currently besetting it. This was the first comprehensive

survey in this area. It delved into a variety of issues such as identifying the research gaps, issues

pertaining to standardisation, and providing appropriate recommendations. This would greatly

assist the research community. The paper also highlighted in much detail, the role of SDWSN in

IoT and the future internet. This will surely spark an interest in the research community as well

as the industry at large. The paper is already having a major impact as is evident from its read

and citation statistics.
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2. To design an architecture for SDWSN. An architecture is crucial for any developing project. It

provides a reference, a guide, and basic requirements for SDWSN. Particularly important is

the fact that it would create a commonality amongst different solutions which would ultimately

result in compatible solutions which are critical in this age and are also in line with the principles

of SDN. This architecture provides a holistic overview of SDWSN and its requirements. The

design of this architecture is based on the current development, challenges, and future design

requirements for SDWSN. This would contribute immensely to the IoT framework, in which the

SDWSN is envisaged to play a huge role.

3. To establish that the central control architecture is not ideal for the SDWSN. This formed part of

a published conference paper at a flagship conference. There are so many hypothetical works

on central versus distributed controllers. This exercise was aimed at practically proving he

hypothesis, especially from the SDWSN perspective. Although this has already been done

on the traditional SDN with various distributed controllers, this was not the case for SDWSN,

and given the unique characteristics of the SDWSN, it was imperative that this be carried out.

This determination would assist other researchers and further strengthen the development of

distributed-control solutions for SDWSN. As the SDWSN model grows and gains popularity

and its role in the IoT strengthens, a distributed control is a necessity.

4. To establish that the fragmentation model can be used to distribute the control logic of the

SDWSN. The findings of this are also contained in a journal paper published to a flagship high

impact journal. There are different ways of distribution and the data set serves as a guide in

choosing the appropriate distribution method. The scope and demand of sensory data have

grown and have also been made complex by the imminent IoT service demands. A new method

of handling this and the overall control of SDWSN is important. The determination that the

fragmentation model can be used for this purpose is novel. This would have a great impact on

how the SDWSN control systems are implemented in the future. This fragmentation takes into

account the immense importance of the role of SDWSN in IoT, and the architecture is optimised

for that role.

5. A model of distribution was designed, consisting of efficient algorithms, and it was successfully

implemented; this is the Fragmentation model. Applications in the IoT framework and the future

internet are envisioned to be mostly delay sensitive and thus require efficient services. The

algorithms used in the implementation of the fragmentation model are efficient and improve

the performance of the system. Efficient and high-performance control systems would result in

efficient networks which would have a positive impact in IoT, industrial IoT, and stimulate the
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4th industrial revolution. The fragmentation would enable the SDWSN to be scalable, efficient,

reliable, and cost effective.

6. To propose an optimal controller placement method which supports the fragmentation model.

This ensures that the local controllers are placed at the centres of their respective clusters or at

an equal distance to the sink nodes. It also ensures that the latency between the sink nodes and

the local controllers and between the local controllers and the global controller is minimised.

7. To propose a location-aware controller replacement criterion which supports the fragmentation

model. This ensures that the controller replacement after failure is in line with the initial place-

ment consideration fragmentation which places the local controller closer to the infrastructure

elements. It also ensures that the latency accrued due to controller change is within the acceptable

threshold.

7.2 FUTURE RESEARCH WORK

The SDWSN is still in developmental stages and therefore there is so much work to be done as

highlighted in Chapter 2. One of the challenges identified is practical implementation of the SDWSN

on real networks. This would allow the proposed distributed-control system to be further tested using

real network testbeds. This model needs to be further tested for scalability in a large network. The

model was implemented in ONOS 1.0.2 according to the SDN-WISE solution. This version uses

Hazelcast which has been proven not to handle the split-brain situation well. The fragmentation model

needs to be implemented in the latest versions of ONOS which now uses Atomix instead of Hazelcast.

The fragmentation model could also be implemented in another distributed controller and or tested

using other simulations available such as IT-SDN [225]. The fragmentation model should also be

extended to check the viability of fragmenting different sensory traits; this would extend the practical

evaluation highlighted above. Security is another grey area that needs urgent research consideration in

SDWSN.
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