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Abstract 
 

The purpose of this study was to identify genomic regions associated with carcass traits using 

real-time ultrasound measurements in South African Nguni cattle. The dataset contained 

measurements from 200 Nguni steers finished in a growth trial. The following carcass traits were 

measured: ultrasound measurements of eye muscle area (EMA), rump fat thickness (RF) and 

backfat thickness (BF), slaughter weight (SW), dressing percentage (DP). The ultrasound 

measurements were measured at two separate dates during the growth trial. The 150k GGP HD 

SNP array (Geneseek) was used for genotyping 141 of the 200 cattle from the trial. The technical 

quality of the genomic data was investigated using SNP and individual call rates of 90%. Thereafter 

a genome-wide association study (GWAS) was performed on the data without genotypic data quality 

control and after genotypic quality control with MAF = 0.02 and HWE = 0.0001. After technical (SNP 

and individual call rate) and genetic (MAF and HWE) quality control, 137 789 SNPs and 124 178 

SNPs remained in each dataset, respectively, with 139 animals remaining in both datasets. PLINK 

as well as EMMAX software was used to perform the GWAS and a 5% confidence interval was 

applied. SNPs at a threshold of p<10-5 were identified for BF (BTA1, BTA16, BTA25); EMA (BTA2, 

BTA7, BTA8, BTA9, BTA13, BTA20, BTA25) and RF (BTA5, BTA9, BTA16) at 72 days on trial. 

Similar chromosomes were detected with putative SNPs for BF, EMA and RF at 91 days on trial. 

Additional SNPs were observed for BF on BTA2, BTA3, BTA5, BTA28 and X-chromosome and EMA 

on BTA12, BTA23, BTA29. Furthermore, SNPs with a threshold of p<10-5 were identified for SW 

(BTA4, BTA9, BTA19) and DP (BTA16, X-chromosome). Of the 14 genes associated with the traits, 

NIPA1, SYNE1, NT5C3B, SMYD3 were the most applicable to the traits studied and involved in 

binding function. This study is the first GWAS in SA Sanga cattle on carcass traits and provides 

insight on the genes involved in carcass traits. Novel SNPs were observed with associations for BF 

on BTA3, BTA5, BTA25, BTA28 and X-chromosome; SW on BTA9; EMA on BTA25; RF on BTA1, 

BTA16 and for DP on the X-chromosome. Further studies on larger datasets will be required for 

confirmation.  
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Chapter 1 Introduction and Literature review 
 

 1.1 Introduction 
 

The South African (SA) human population has been growing at an average rate of 1.5 % per 

year over the past ten years and has a current population size of approximately 56.5 million 

(Department of Agriculture, Forestry and Fisheries, 2017). The expected population by 2040 is 64.4 

million (StatsSA, 2018). The demand for sufficient animal protein especially beef, is increasing and 

it has been reported that global livestock production will have to double by 2050 in order to satisfy 

the demands for animal products (Ilea, 2009; Garnett et al. 2013; Webb & Erasmus, 2013; Dawkins, 

2017).  Livestock production is a major contributor to food security in South Africa (Meissner et al., 

2013) and contributed R127 288 million to the Gross Domestic Product in SA during 2016 – 2017 

(van Marle-Kӧster & Visser, 2018). Developing countries such as SA are envisaged to contribute 

significantly to the increase in animal production in Africa (Webb & Erasmus, 2013).  

There are 13.0 million head of cattle in SA with beef cattle encompassing 80% of the population 

(ARC Annual report, 2016; DAFF, 2017). It is estimated that 3 678 000 cattle are slaughtered per 

year in SA with a per capita beef consumption of 19.2 kg/year (ARC Annual report, 2016; DAFF, 

2017).  Livestock and game utilize 70% of agricultural land in SA and intensification of agricultural 

production systems will be necessary to supply in the growing demand for animal protein (Meissner 

et al, 2013). Beef cattle are mostly raised on natural pastures (extensive production systems), 

thereafter 70% of weaner calves are finished in feedlots (Scholtz et al., 2008; Webb & Erasmus, 

2013).  Weaners are fattened in the feedlots before slaughtering at target weights of between 400 to 

450kg. There are several benefits for finishing weaner calves in the feedlot such as decreased 

stocking rates on natural grazing and the cattle obtain the desired carcass weight when finished at 

the feedlot (Webb & Erasmus, 2013).  

In South Africa there are approximately 30 registered cattle breeds that include Bos indicus 

(Zebu), Sanga and Bos taurus (European) types. Historically Nguni cattle were used as a multi-

purpose breed with the production of meat, milk, skin and the hide (Musemwa et al., 2008). The 

occurrence of Nguni cattle in South Africa for farming purposes dates back 2000 years (Schoeman, 

1989). The Nguni breed is classified as Sanga cattle, which originated from the Bos indicus (Zebu) 

and taurine Longhorn cattle (Bos taurus cattle) (Rege, 1999; Scholtz et al., 2011). Nguni cattle are 

well adapted to the sub-tropical environment in SA and farmed in both the commercial and 

developing sector (small holder) in SA (van Marle-Kӧster & Visser, 2018). Bos indicus cattle tend to 

have lower beef tenderness, higher age at slaughter and lower fat in the carcass (de Oliveira Silva 

et al., 2017). In contrast the Sanga cattle have good meat quality which is comparable to Bos taurus 

cattle breeds (Frylinck et al.,2009). However, in comparison with Bos taurus cattle the Sanga types 
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have less desirable growth, performance and carcass characteristics due to a small frame size 

(Wheeler et al., 2001; Frylinck et al., 2009). 

In the South African feedlots 67% of cattle are British, European or crossbred types (Soji et 

al., 2015). More than 14 cattle breeds are found in the South African feedlot with Bonsmara (16%) 

and Hereford (12%) cattle having a higher prevalence compared to Sanga breeds such as Nguni 

and non-descript cattle. The Nguni and non-descript cattle only comprise 5% of feedlot cattle. This 

is due to the Nguni cattle having lower feed efficiency compared to exotic breeds as well as low 

weaning weight and slow post-weaning growth (Strydom, 2008).  

Beef is classified as a red meat, which is required as part of a balanced diet. Health problems 

such as obesity has been associated with a high intake of saturated fats from animal products (Hall 

et al., 2015; Mann, 2018). Healthy, good quality meat is required by consumers, especially as people 

are more conscious about the effect of diet on health (Vermeulen et al., 2015; Soji et al., 2015). The 

amount of fat in meat is decreasing with more fat trimming at abattoirs or leaner carcasses at 

slaughter (Hall et al., 2015). The cut of meat together with the meat quality is an important price 

determinant. Different cuts of meat in the same carcass differs more in the fat content compared with 

fat content in beef carcasses of different ages and fatness level (Schӧnfeldt & Gibson, 2008). Fats 

are often perceived as unhealthy causing consumers to prefer leaner meat (Wood et al., 2008; Soji 

et al., 2015). 

There are intrinsic and extrinsic factors that influence carcass quality such as tenderness, 

nutrition, age of the animal, sex, breed of animal, fat content: intramuscular fat (IMF), sub-cutaneous 

fat (SCF), firmness and colour of the meat as well as nutritional content of the meat (Schӧnfeldt & 

Strydom, 2011; Bureš & Bartoň, 2012; Caetano et al., 2013). Older animals typically have a higher 

fat content, which means there is a lower proportion of meat that is of a high quality to be marketed 

at a high price.  Fat measurements can also indicate the tenderness, juiciness and flavour of the 

meat (Bureš & Bartoň, 2012; Ribeiro & Tedeschi, 2012; Caetano et al., 2013). The tenderness of a 

cut of meat can be measured by tasting panels or the Warner-Bratzler shearforce. It is important to 

measure the trait as it influences the eating quality of the meat, which in turn influences the price 

that the consumer is willing to pay for the meat. This influences the economic returns that can be 

achieved by the farmer (Kause et al., 2015).  

Carcass classification systems are used throughout the world as a tool to classify the quality 

of the meat based on different factors (Soji et al., 2015; Strydom, 2016). The SA carcass grading 

has been developed in 1932 (Strydom, 2016), based on seven classes of fatness, measured in 

millimetres and four age classes based on the number of incisors present. Detail of the grading 

system has been attached as Addendum A. Age and fatness are the primary criteria used in the 

system (Agricultural Products Standard Act, 1990; SAMIC, 2006; Strydom, 2011; Soji et al., 2015; 

Strydom, 2016).  
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The evaluation of the live animal during the feedlot phase is necessary in determining the 

carcass quality of the animal at slaughter.  Real-time ultrasound scans are a non-invasive method 

of evaluating the body composition of beef cattle, in particular the fat and lean yields, as well as fat 

to lean ratio can be visualised (Polák et al., et al. 2007; Gupta et al., 2013).  These RTU 

measurements are relatively easy to incorporate in the feedlot practices and is a useful tool to 

evaluate and predict the carcass quality of the animal (Crews & Carstens, 2012; Kause et al., 2015). 

In SA there has been limited use of RTU measurements for prediction of carcass traits and has not 

been studied on a genomic level in Sanga breeds.  

Genomics provided the opportunity for investigating traits of economic importance on a 

genomic level. The first quantitative trait loci (QTL) studies in beef cattle was limited to microsatellite 

markers (Pollak, 2005). An example of QTL discovered with the use of a microsatellite panel of 213 

markers is the myostatin gene. Muscle hypertrophy (myostatin) was identified as locus mh on 

chromosome two (Charlier et al., 1995).  

The bovine genome was completed in 2009 with a size of 2.9 Gb (Fan et al., 2010), which 

provided the opportunity for SNP discovery (Matukumalli et al., 2009). Development of high-density 

SNP arrays enabled genome wide scans. Genome wide association studies (GWAS) have been 

shown to be useful for identification of chromosomal fragments which are linked to the traits of 

economic importance (Matukumalli et al., 2009). GWAS utilizing SNP markers enable higher 

precision in detecting QTL and identification of chromosomal regions associated with a trait of 

interest (Meuwissen & Goddard, 2000, Hill, 2014). Breeding programs for polygenic traits can 

incorporate whole genome marker data, as the dense SNP arrays are becoming more affordable 

and available (Meuwissen et al., 2011). This holds the potential for increased genetic progress in 

carcass traits in beef cattle (Schaeffer et al., 2006; van Eenenaam, 2006; van Eenenaam & Drake, 

2012; Hill, 2014). The genetic progress in successive generations of animals would increase causing 

the breeder goals to be reached quicker. GWAS can be applied for the identification of QTL and 

genes responsible for traits.  

 

Aim of the study 

This project was funded by Technology Innovations Agency (TIA) through the bovine genomics 

programme (BGP). The aim of this study was to perform a genome-wide association study for 

carcass traits in South African indigenous Nguni cattle based on real time ultrasound data. A growth 

trial with 200 Nguni bulls were conducted at a private commercial feedlot and RTU measurements 

were recorded. Available funding made provision for genotyping of 141 cattle using a 150 K SNP 

array 

  

The objectives to reach the aim for this study were as follows:   
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1. Estimate descriptive genomic statistics for the animals with available genotypes 

2. To perform a GWAS to determine genetic variants significantly associated with RTU traits 

and growth traits.  

3. Gene annotation for the biological processes and molecular functions of genes 

 

 1.2 Literature review 
 

 1.2.1 Introduction 
 

The genetic improvement of carcass traits poses certain challenges to the beef farmer, as 

these traits are difficult and costly to measure (Hocquette et al., 2007). Carcass traits such as fat 

distribution, tenderness and yield are however important in determining the price and eating quality 

of meat (Bureš & Bartoň, 2012). RTU scans are a non-invasive method available for measuring the 

traits in live animals (Gupta et al., 2013; Ribeiro et al., 2014). This is a relatively affordable 

measurement which can be implemented by stud breeders or in the feedlot (MacNeil & Northcutt, 

2008; Seroba et al., 2011) and can be used for prediction of beef carcass traits. 

Genomic technology holds potential to study carcass traitson a genome level. GWAS studies 

provide the opportunity to identify genomic regions involved with traits of economic importance and 

diseases (Matukumalli et al., 2009).  The aim of this section was to review relevant literature 

regarding genetic improvement of carcass traits in beef cattle and the use of genomic tools for 

genetic improvement with special reference to genome wide association studies (GWAS).    

 

 1.2.2 Selection for growth and carcass traits 
 

Growth traits are relatively easy to measure, making it easy to select for improved growth in 

the animal. Growth traits such as birth weight, weaning weight, shoulder height, mature weight and 

carcass weight (Arnold et al., 1991; Seabury et al., 2017) all have a moderate to high heritability, 

and selection for these traits should result in genetic progress. The heritability values of the growth 

traits were summarised in Table 1.1.  
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Table 1.1 Summary of heritability estimates for growth traits in beef cattle from literature 

 

The ages at which cattle mature vary within breeds and this rate of maturity within an animal 

is determined by the pattern of organ development and order of maturation of the organs. The muscle 

and bone development in the body will increase to adult age and then reach a plateau, followed by 

an increased rate of gain of fat (Berg & Butterfield, 1968).  Muscle and bone formation are the first 

phases of growth and at birth the bone will be at a higher proportion compared to later stages of 

growth (Thonney, 2014).  Thereafter muscle has a higher growth rate than bone and during the 

fattening phase the proportion of muscle decreases and fat is deposited at a higher growth impetus 

than muscle (Guenther et al., 1965; Owens et al., 1995). The degree of maturity is closely linked to 

the ratios of muscle, bone and fat and this is important for the value of the carcass. Larger type of 

cattle will also mature at a later stage (Thonney, 2014). 

Angus and Hereford cattle are British breeds typically characterised as late maturing animals. 

These animals have a good growth potential and desirable carcass traits (Frylinck et al., 2009). In 

comparison with the British breeds, the Sanga cattle are early maturing and have a medium frame 

size. Indigenous breeds such as the Sanga breeds have lower feed requirements, are adapted to 

the harsh South African climate and have good meat quality characteristics (Bonsma, 1980; Scholtz, 

1988; Strydom, 2008). Bonsmara cattle are a composite breed consisting of 5/8 Afrikaner and 3/8 

Trait Heritability Reference 

Birth weight  

0.35 

0.42 

 

0.53 

0.27 

 

Koots et al. (1994) 

Saatchi et al., (2011); Weng et al. 

(2016) 

Lopes et al. (2016) 

de Oliveira et al. (2018) 

Weaning weight  

0.27 

0.10 

 

Koots et al. (1994) 

van Marle-Kӧster et al. (2000) 

Mature weight  

0.5 

0.55 

 

Koots et al. (1994) 

Saatchi et al., (2011) 

Slaughter weight  

0.45 

0.24 

0.4 

0.38 to 0.51 

 

Koots et al. (1994) 

Arnold et al. (1991) 

Saatchi et al., (2011) 

Kause et al. (2015) 



6 
 

Hereford / Shorthorn breeds developed in South Africa (Bonsma, 1980; Makina et al., 2016). 

Bonsmara cattle is a breed that is used commonly in feedlots as this breed is late maturing with a 

large frame size. This breed has good growth and is profitable in the feedlot (Esterhuizen et al., 

2008). The medium sized Drakensberger cattle are typically characterized with good performance 

and adaptation for many different grazing conditions (Bisschoff & Lotriet, 2013). These cattle are 

early maturing and there will be more fat deposition at an earlier stage during the feedlot period 

compared to Bonsmara cattle. The Tuli cattle are early maturing type cattle with similar body 

composition and performance as Drakensberger cattle.  

Nguni cattle typically reach puberty at a significantly earlier age as well as lower weight 

compared to Bonsmara and Drakenberger cattle (Schoeman, 1989). The growth rate of the Nguni is 

slower in comparison to the Bonsmara and Drakensberger cattle, as breeds with larger frame size 

typically have a higher growth rate. Table 1.2 summarises characteristics of beef cattle breeds found 

in SA. 

 

Table 1.2 A summary of early and late maturing beef cattle breeds in South Africa (SA Studbook 

annual report, 2016) 

Breed Maturity Frame size Shoulder height (mm) Final weight (kg) 

Nguni Early Medium 1124 268.4 

Tuli Early Medium 1164 342.6 

Afrikaner Late  Large 1188 -1213 328 -346.9 

Drakensberger Early Medium 1161 -1176 307.9 -329.8 

Bonsmara Late Large 1172 410 -418.4 

Hereford Late Medium 1218 401.3 

Beefmaster Late Large 1192 -1202 438.7 -456.5 

Angus Early Medium 1222 -1236 413 -442.9 

Boran Early Medium 1099 -1167 307 -322.7 

 

A larger frame size in cattle is linked to a leaner carcass due to a longer growth period for bone 

and muscle growth (Owens et al., 1995). After growth, fat is deposited at a much later stage in large 

framed cattle when compared to smaller framed cattle (Berg & Butterfield, 1968; Owens et al., 1995). 

Early maturing cattle have a higher maintenance requirement while consuming the same amount of 

feed compared to late maturing cattle (Thonney, 2014).  
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Later maturing animals tend to have a lower feed intake together with improved carcass 

conformation and a higher growth rate (Batt, 1980; Hosner, 2005; Moloney & McGee, 2017).  

Evidence has shown that through selection for increased cow size there can be changes in the 

carcass conformation, rate of growth and efficiency of feed intake between the different breeds 

(Thonney, 2014). Maturity types influence the distribution of the body fat between the animals.  

Therefore, the slaughter end points differ between maturity types.  Moloney & McGee (2017) 

compared slaughter weight and body composition of different maturity types when slaughtered at 

the same chronological age, as well as slaughtered at the same fat level.  Late maturing animals 

were leaner when the animals were slaughtered at the same age, in contrast to being heavier when 

slaughtered at the same fat level.  This is due to the later maturing animals having fewer fat deposits 

when slaughtered at the same age (Batt, 1980; Hosner, 2005).   

The need for non-invasive methods to study body composition dates back to as early as 1936 

and 1938 with the development of X-radiography by Kronacher & Hogreve (Scholz et al., 2015).  It 

was tested for the use in determination of the pelvis shape and adipose tissue deposition in pigs.  

This was followed by the testing of a specific velocity of ultrasound in different body tissues in 1956 

(Temple et al., 1956), followed by the development of X-ray based computer tomography (CT) in 

1981 and nuclear magnetic resonance imaging (MRI) in 1983.  Finally, dual energy X-ray 

absorptiometry studies (DXA) in 1996 for evaluation of body composition was developed.  After these 

advances, there have been constant progress in this technology for the determination of body 

composition. 

Realtime ultrasound scans are a non-invasive method of evaluating the body composition of 

beef cattle (Lazzaroni, 2007; Polák et al., 2007; Drennan et al., 2009; Gupta et al., 2013).  It 

measures the fat ratio, lean ratio and the ratio between fat and lean tissue in cattle.  There are 

several ultrasound recording devices available, but special transducers are mostly used (Lazzaroni, 

2007; Polák et al., 2007; Gupta et al., 2013).  Size of the animal such as a larger sized animal (cattle) 

compared to a smaller sized animal (sheep) is not a problem when using RTU for measurements. 

One advantage of the use of RTU scans is there is no size limit for the equipment as with other 

methods. Transducers are portable devices and this method causes no radiation making it safer.  

Measurements are in real time and this method is less expensive than other methods (Lazzaroni, 

2007; Polák et al., 2007; Crews & Carstens, 2012; Gupta et al., 2013).  

There are only a few disadvantages of using this method such as the images not being able 

to display the whole-body conformation of the animal.  Image analysis of this kind will not easily be 

automated, and the anatomical resolution may be less accurate when compared to CT/MIRS 

(Kallweit, 1992). Table 1.3 summarises the points of measurement when using ultrasound scans for 

the prediction of fat depth in cattle.  
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Table 1.3 Description of RTU measurements on different areas of the body 

 

Backfat thickness is an important measurement when used with other live measurements in 

predicting the carcass finish and the trims obtained from the carcass (Reverter et al., 2000; Realini 

et al., 2001). Rump fat measurements have a higher repeatability, accuracy and can be used to 

improve the accuracy of the total external fat cover. The eye muscle area is a valuable measurement 

in prediction of meat yield and amount of external fat. 

Points of measurement are shown in Figure 1.1, where 1 is the percentage intramuscular fat 

(marbling), 2 is the eye muscle area (EMA) and backfat thickness (BF) and 3 is the rump fat thickness 

(Hicks, 2011). The eye muscle are is an indication of the amount of fat in the animal. Backfat 

thickness and rump fat thickness are subcutaneous fat, which is found as the layer between the 

muscle and skin. Intramuscular fat is the fat between muscle cells and is the last fat depot in animals 

(Batt, 1980; Hosner, 2005; Moloney & McGee, 2017). 

  

RTU 

measurement 
Description 

Reference 

Backfat thickness 

(BF) 

Measured as the subcutaneous fat layer over the 

longissimus dorsi muscle between the 12th and 13th rib.  

 

Greiner et al. (2003); 

Caetano et al. (2013); 

Gupta et al. (2013) 

Rump fat 

thickness (RF) 

Measured at the junction of the biceps femoris and gluteus 

medium between the hook and pin bones. This is more 

commonly known as subcutaneous fat depth at the P8 

site.   

Caetano et al. (2013) 

Gupta et al. (2013) 

Eye muscle area 

(EMA) 

Measured, at the longissimus thoracicus et lumborum 

area. Lean to fat ratio is predicted by the eye muscle area. 

 

Reverter et al. (2003) 

Caetano et al. (2013) 

Gupta et al. (2013) 

Marbling 

The percentage intra-muscular fat which is a contributor to 

the meat quality especially tenderness, palatability and 

juiciness. 

Lazzaroni (2007)  

Gupta et al. (2013) 
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Figure 1.1 Graphic presentation of where the RTU scans are taken for the different measurements 

(Hicks, 2011). 

 
Video image analysis is a recent technology assessing the body composition of the animal 

post mortem.  It is used in the grading and classification of animals with the EUROP system.  It uses 

a video camera to take images of a carcass, which is then converted into an electrical map (Beriain 

et al., 2007; Menesatti et al., 2007; Gupta et al., 2013).  The principle of differences in colours, 

volume, curvature and angles are used to distinguish between fat and lean tissue.  This is an 

adequate method that is accurate and can be used rapidly by graders, but is a more expensive 

method (Lazzaroni, 2007; Beriain et al., 2007; Menesatti et al., 2007; Gupta et al., 2013).  Figure 1.2 

shows an image generated with RTU scanning on the rump fat area to measure rump fat thickness. 

 

 

 

 

 

 

 

 

 

Figure 1.2 Ultrasound image of the rump fat thickness (Realini et al., 2001) 
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The heritability of ultrasound scans as a measurement of the fat has a low to moderate 

heritability. This indicates selection for these traits will show some genetic progress and there is 

potential in selecting for these traits.  

 
Table 1.4 Heritability estimates for carcass traits in beef cattle from literature 

Trait Heritability Reference 

Backfat  
0.49 
0.39 
0.31 
0.07 
0.29 

 
Arnold et al. (1991) 
Weng et al. (2016) 
Miar et al. (2014); Bolormaa et al. (2014) 
Lopes et al. (2017) 
Su et al. (2017); de Oliveira et al. (2018) 

Eye muscle area  
0.46 
0.17 
0.39 
0.37 
0.31 
0.3 

 
Arnold et al. (1991) 
Miar et al. (2014) 
Weng et al. (2016) 
Lopes et al. (2017) 
Su et al. (2017) 
de Oliveira et al. (2018) 

Marbling  
0.35 
0.37 
0.23 
0.4 
0.45 

 
Arnold et al. (1991) 
Miar et al. (2014) 
Weng et al. (2016) 
Bolormaa et al. (2014) 
Su et al. (2017) 

 

The benefits of the use of RTU are plentiful and support the argument for using this as an 

indicator of the carcass quality and indirectly of the growth of the animal. These measurements are 

rapid with accurate and objective results (Polák et al., 2007; Crews & Carstens, 2012; Gupta et al., 

2013).  There is no need for the expenses and time required to evaluate the carcass after slaughter, 

making it more cost effective. Genetic (rg) and phenotypic (rp) correlations between slaughter weight 

and EMA are moderate (0.3 and 0.45) as reported by Miar et al. (2014); Su et al. (2017). Slaughter 

weight and back fat have a moderate rg (0.36 and 0.19) as reported by Arnold et al. (1991) and Su 

et al. (2017). EMA and back fat have low rg (0.09 to 0.2) as reported in Devitt & Wilton (2001); 

Robinson & Oddy (2004); Seroba et al. (2011); Ceacero et al. (2016); Su et al. (2017).  Correlations 

(rg) for EMA and rump fat are low (0.11 to 0.18) (Robinson & Oddy, 2004; Ceacero et al., 2016), 

while rump fat and back fat are highly correlated (rg) (0.63 to 0.99) (Reverter et al. 2000; Robinson 

& Oddy 2004; Seroba et al., 2011; Ceacero et al., 2016). Back fat has a moderate correlation (rg)with 

slaughter weight (0.36) and weight traits are moderately correlated (rg) (0.25) to EMA and back fat 

(Arnold et al.,1991). This indicates the usefulness of ultrasound scans as an indicator or predictor of 

weight traits and the slaughter weight.  

There are more opportunities for RTU measurements for animals at central testing stations in 

comparison with on farm testing (SA Studbook annual report, 2016). Similarly, there is more 
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measurements in Hereford, Drakensberger and Boran cattle breeds. There are no records of  RTU 

measurements for Nguni cattle at central testing stations or on farm (SA Studbook annual report, 

2016). In SA RTU is not a routine measurement for most of the cattle breeds on farm or in the 

feedlots (van Marle-Kӧster & Visser, 2018). There is a need for the recording of this phenotype for 

the use in selection indices or genomic selection. RTU measurements in SA Sanga cattle are even 

less compared to composite breeds (Bonsmara) or British breeds (Herefords), despite these breeds 

comprising a large part of the SA beef cattle population (Nguni: 11.3%, Boran:10.9%, 

Drakensberger: 3.9%, Tuli: 2.9%) (van Marle-Kӧster & Visser, 2018). These cattle are adapted to 

the tropical environment is SA and recordings of these breeds are important. 

 

1.2.3 Tools for genetic improvement 
 

A brief history on development of markers and molecular genetics 

 

Historically, selection was based on the phenotype of the animal which was mostly qualitative 

traits due to no recordings done (Dekkers & Hospital, 2002; van Marle-Kӧster et al., 2013). The 

development of quantitative theory provided the concept of heritability in 1937 by J. Lush, 

correlations in 1943 by L.N. Hazel and later (1947) selection indices (Hill, 2014), which enabled 

genetic improvement in these traits (Walsh, 2000). However, most traits of economic importance are 

influenced by many genes with small effects (additive traits) and is influenced by the environment 

resulting in the complex nature of the traits (Dekkers & Hospital, 2002). Quantitative genetics has 

certain limitations such as in cases of sex-limited traits and traits that are expressed later in life. 

Quantitative genetics has limitations in resolving negative correlations between genes due to linkage 

or epistasis. Furthermore, not all traits have a high heritability, especially traits of economic 

importance which usually has a low to moderate heritability (Dekkers & Hospital, 2002).  

Developments in molecular genetic technology resulted in studies focussed on the genomes 

of various species.  In 1983 the polymerase chain reaction (PCR) was developed which allowed 

reliable and accurate amplification of small segments of DNA and most importantly specific regions 

on the genome of livestock species (Mullis et al., 1986; Fore et al., 2006). In 1989 Hypervariable 

regions in the human DNA was discovered which led to further discovery of markers such as Variable 

Number Tandem Repeats (VNTRs), Randomly Amplified Polymorphic DNA (RAPD), Amplified 

Fragment Length Polymorphisms (AFLPs) and Restricted Fragment Length Polymorphisms (RFLPs) 

(Tautz, 1989; Beuzen et al., 2000) 

Of the first DNA markers, microsatellites are short tandem nucleotide sequences (1-6bp), 

usually di, tri or tetra nucleotide repeats on the DNA sequence which can occur up to 60 times in a 

genome (McClure et al., 2013). Genetic variance was originally detected using the markers for 

identification of causal mutations. It also contributed to understanding the genetics of the traits under 
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investigation using the process of linkage analysis and contributed to the development of linkage 

maps (van Arendonk et al., 1999; van Marle-Kӧster et al., 2013; Berry et al., 2017). Microsatellite 

markers were widely applied in the identification of genetic defects (bovine leukocyte adhesion 

deficiency (BLAD), major genes (CAST and CAPN1 genes for meat tenderness) and parentage 

verification (Williams et al., 1997; Cavanagh et al., 2007; van Marle-Kӧster et al., 2013). 

Microsatellites occur at a low frequency which limits the potential of the marker in detecting all 

possible variants influencing a trait of interest.  

Early mapping (1990’s) of quantitative trait loci (QTL) were based on linkage mapping of 

microsatellite markers (Lipkin et al., 1988; Picard et al., 2015). Two methods for the identification of 

QTL was used namely the genotyping of a large number of markers spread out across the whole 

genome together with the phenotype of the animal. The genetic and phenotypic information were 

then combined using statistical methods to predict the regions on chromosomes which were most 

likely involved with the trait. The second method for determining the QTL was the candidate gene 

approach based on either association or resequencing approaches (Hirschhorn & Daly, 2005). After 

identification of QTL further fine mapping is done with the main aim in finding genes influencing the 

trait (Dekkers & Hospital, 2002).  

Potential QTLs have been identified in a number of studies for various traits. QTLs for 

birthweight have been reported on BTA1 (Stone et al., 1999; Casas et al., 2003), BTA2 (Casas et 

al., 2003), BTA3 (Casas et al., 2003), BTA5 (Casas et al., 2003); BTA20 (Casas et al., 2004; Kim et 

al., 2003) and BTA21 (Casas et al., 2004).  Identification of potential QTL for EMA has been reported 

by Stone et al. (1999) (BTA14) and Casas et al. (2004) (BTA5 and BTA6).  Fat distribution have QTL 

identified on BTA2, BTA3, BTA7 and BTA14 (Casas et al., 2003) and BTA1 and BTA17 have 

suggestive QTL reported by Casas et al. (2004). An important factor to consider when using a single 

QTL, is that it often explains only a small portion of variation for a trait, limiting the potential impact 

on the genetic improvement for the trait (Meuwissen et al., 2016). The difficulty in identifying QTL for 

lowly heritable, complex traits is another disadvantage of QTL (Pausch et al., 2012).  Further 

limitations for QTL mapping using microsatellite markers is the family-based nature of the markers, 

as well as QTLs identified due to haplotype effects. The haplotype effects are due to several linked 

polymorphisms and higher LD within families (Andersson, 2013).  

The human genome was the first genome mapping project which started in 1989 and was 

completed in 2003 (www.ornl.gov.hgmis). This was constructed using whole genome shotgun and 

BAC-to-BAC sequencing (Adams, 2008; Andersson, 2009). Mapping of the human genome was 

important to enable the mapping of genomes of other species (Eggen, 2012; van Marle-Kӧster et al., 

2013). A partially inbred Hereford cow was used in the construction of the bovine genome map that 

was completed in 2009 (The Bovine Genome Sequencing and Analysis Consortium, 2009; Fan et 

al. 2010).  
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 After completion of the bovine genome sequence, more than 2.3 million putative SNPs were 

identified (Williams et al., 2009). Single nucleotide polymorphisms (SNP) are defined as a difference 

at the same position on a genome between individuals or between individual chromosome pairs 

(Hayes & Goddard, 2010). SNP markers are typically bi-allelic and easy to interpret (Fan et al., 

2010).  The SNP markers are spread out widely across the genome of animals and this is 

advantageous in identifying traits which may be influenced by many genes (Fan et al., 2010). 

Validation of the identified SNPs were necessary especially for the development of a high-density 

SNP array, which could be used for genome wide association studies in cattle. Matukumalli et al. 

(2009) reported on the SNPs selected for the development of the 54 000 SNP array. The SNP 

haplotype alleles are determined by examining segregation patterns and establishing the locus 

position on the bovine linkage map. Thereafter the positions of loci are compared to the position in 

human ortholog sequences (Grosse et al.,1999). Selection of the SNPs for an assay requires the 

allele frequency of the SNPs, as well as a large number of evenly spaced validated SNPs 

(Matukumalli et al., 2009).  

Table 1.5 shows the development of SNP array in different species and includes the density 

of the SNPs spread throughout the genome. From Table 1.5 it can be seen the chicken genome was 

the first livestock genome to be developed in 2004 followed by the bovine genome in 2009. The 

bovine genome was identified to contain 2.2 million SNPs and the genome has a size of 2.91 GB. 

 

Table 1.5 Summary of SNPs identified in different animal species (Fan et al., 2010) 

Species 
Year 

assembled 

Number of SNPs 

identified 
Frequency of SNPs Genome size 

Dog 2003 2.5 million 
1 SNP/0.9kb (between breeds) 

1 SNP/1.5kb (within breeds) 
2.3 – 2.4GB 

Chicken 2004 2.8 million 5 SNPs/kb 1.05GB 

Bovine 2009 2.2 million 1 SNP/kb 2.91GB 

Equine 2009 1.1 million 1 SNP/2kb 2.47GB 

 

The development of SNP panels in cattle and other livestock species was an important 

milestone and low-cost panels are now readily available for the genotyping of livestock species using 

these DNA markers (Hayes & Goddard, 2010).  These SNPs are used as markers in the animal’s 

genome as a method of investigation of the animal’s genetic make-up.  SNP genotyping has been 

influenced by the emergence of the SNP panels and this has enabled theoretical and applied studies 

of quantitative genetics, population genetics and molecular evolution (Fan et al., 2010). Table 1.6 

summarizes the diversity of bovine SNP chips commercially available.  

 

 



14 
 

Table 1.6 Some of the commercial bovine SNP chips available 

(http://www.affymetrix.com/products_services/arrays/specific/axiom_gwas_bovine.affx;  

https://genomics.neogen.com/en/ggp-beef; https://www.illumina.com/products/all-products.html) 

 

The majority of traits of economic importance are complex traits and the benefits of identifying 

most of the genes influencing the expression of the traits are multiple.  Selection is improved when 

incorporating SNP marker technology and a much higher accuracy as well as faster genetic progress 

will be observed. Genomic selection (GS) is a method in which the entire genome of the animal is 

investigated and genomic regions that appear to be associated with a desirable trait are selected 

(Meuwissen et al., 2001). A larger improvement of the trait under selection will be observed as most 

of the genomic regions associated with the trait are identified and included for selection. Figure 1.3 

illustrates the discovery of DNA markers for potential use in genome wide-association studies.    

 

 

Platform SNP chips Size (SNPs) 

Affymetrix® Axiom® Genome wide BOS1 648 875 

Geneseek® 
GGP Bovine LD v4  

 
30 125 

 GGP HD 76 879 

 GGP150K 139 480 

 70k Indicus chip 74 000 

Ilumina® Bovine LD 7931 

 Bovine SNP 50 53 714  

 Bovine HD 777 962 
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Figure 1.3 Timeline illustrating DNA marker discovery for potential application in GWAS 
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1.2.4 Genome-wide association studies 
 

A genome-wide association study (GWAS) can be defined as a genotypic study that aims to 

distinguish common genetic variants which are associated with variation in a certain trait. This is 

achieved by genotyping the genetic variant in a population where the phenotypic information is 

available (Ali et al., 2015). A correlation between the genotype and phenotype is then identified; this 

indicates an association between the variant and the trait (Hirschhorn & Daly, 2005; Bush & Moore, 

2012).  The main goal of GWAS is to gain insight into the relationship between a genotype with 

polymorphic sites that cause variation in complex traits.  It can contribute to useful information in the 

selection potential for the traits in a population (Barendse, 2009; Bolormaa et al., 2014; Santiago et 

al. 2017; Xia et al., 2017).    

GWAS was first used in human genetics followed by the mouse, model organisms such as the 

Arabidopsis and finally in cattle (Korte & Farlow, 2013). This is enabled by the use of high-density 

chip-based micro-array technology for assaying more than one million SNPs in a genome (Bush & 

Moore, 2012; Gurgul et al., 2014; Berry et al., 2017).  A major benefit of GWAS is the understanding 

on the underlying genetics of the trait and when used in conjunction with QTL mapping it holds 

potential for improved interpretation (Korte & Farlow, 2013). One of the advantages of a GWAS is 

that it considers a large number of genes that influences a single trait, potentially explaining a large 

proportion of the variation in the expression of the trait (Plastow, 2016). This is in contrast to the use 

of marker assisted selection (MAS), which only considers the effect of one or a few genes influencing 

a complex trait (Hayes & Goddard, 2010).     

A number of statistical methods are available to exploit the associations between markers and 

causative mutations. The simplest form of a GWAS is a marker-by marker approach where a single 

marker regression is used (Hayes et al. 2013). A linear model (which is often additive) is used, with 

the marker having a fixed effect. In the case of two alleles identified, the second allele will have 

double the effect compared to only one copy and no copies have zero effect (Hayes et al. 2013). 

The regression coefficient is a statistical parameter predicting the amount of linkage disequilibrium 

(LD) between markers (Hill & Robertson, 1968). GWAS is based on the assumption that causative 

mutations for a trait and SNPs are in LD causing significant associations to emerge (Hayes & 

Goddard, 2010).  Certain factors should be accounted for such as the choice of significance level, 

confidence intervals and population parameters. A 5% significance level and 95% confidence interval 

are generally used with corrections made when designing the study. Population structure needs to 

be accounted for to avoid inflated associations or false positives.  

Another method is a GWAS using haplotypes rather than individual SNP markers. This method 

tests the association of haplotype windows across a genome with the phenotype. In GWAS, fitting 

all markers can be investigated simultaneously, similar to the model suggested for genomic 

prediction (Meuwissen et al., 2001) and in this model the SNPs are fit as random effects (Hayes et 



17 
 

al. 2013). Table 1.7 summarises the primary methods of GWAS analysis and some software that 

can be used to perform the GWAS.  

 

Table 1.7 Summary of the primary methods for GWAS (Hayes, 2013) 

Method Software/ 
Approach 

Description Advantages Disadvantages 

Single locus 
analysis/ SNP 
by SNP 
basis:  
(Allelic and 
genotypic 
association 
test) 

PLINK 
Linear model 
ASReml 
Single SNP 
Regression using 
WOMBAT 
EMMAX 
EMMA 
R packages 
(GenABLE 
and qq-man) 
GCTA. 
 

Association 
between one allele 
of a SNP and the 
phenotype is 
investigated. 
OR 
The association 
between the 
genotypes and 
phenotype is 
investigated. 

Straightforward and 
easy to conduct the 
analysis. 
Works for small 
datasets. 

Statistical 
approaches differ 
between quantitative 
and case / control 
traits. 

Multi locus 
analysis 

Bayesian approach 
(BayesA) 
WOMBAT 
GCTA 
2-Step Bayesian 
approach 
(BayesB+BayesC) 
Bayesian mixture 
model (BayesR) 
GCTA. 

All SNPs are fit 
simultaneously. 

No need for 
multiple testing. 
Potential to improve 
the mapping 
precision.  
Performs unbiased 
analysis for 
interactions within a 
selected set of 
SNPs. 
Investigate the 
interactions among 
the genetic variants 
throughout the 
genome. 

There are 
computational, 
statistical and 
logistical challenges 
involved with this 
method.  
Need for large 
amount of memory 
for calculations and 
the computational 
time is very long. 

 

The number of SNPs detected through a GWAS is dependent on the sample size, as well as 

the density of the SNP array. A larger sample size and higher density SNP array would increase the 

amount of SNPs identified by a GWAS (Visscher et al., 2012; Hill, 2014). SNPs identified through a 

GWAS usually accounts for only a small percentage of the variance in a trait that limits the wider 

application (Yang et al., 2011; Hill, 2014). Rare alleles are difficult to identify by a GWAS and this 

causes utilization of the mutations to be quite ineffective (Hill, 2014). A GWAS does not typically 

account for epistatic variance which is a possible explanation of why the GWAS does not identify a 

portion of the genetic variance for a trait (Zuk et al., 2012). 

The results from a GWAS are often plotted on a Manhattan plot, therewith it can be analysed 

and visualised. Significance level for associations are shown on the Manhattan plot as a Bonferroni 

corrected significance levels, in the case of levels >0.05 trait is significantly associated SNPs. Figure 

1.4 depicts an example of a Manhattan plot for the eye muscle area.  From the plot it can clearly be 

seen that there is significant association on chromosome 10 (Santiago et al., 2017).   
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Figure 1.4 A Manhattan plot for EMA from a study by Santiago et al. (2017) 

   

Application of GWAS in beef cattle 
 

Application of GWAS in beef cattle has been extensive for growth, carcass and meat quality 

traits (Hayes & Goddard, 2010; Berry et al., 2017).  Table 1.8 summarises the number of SNPs 

identified for traits of economic importance using a GWAS to identify significant associations. A large 

number of SNPs have been identified on different chromosomes for growth and carcass traits in beef 

cattle. There has however been limited research in GWAS applied to RTU scans in beef cattle. De 

Oliveira-Silva observed SNPs associated with RTU measurements in Nellore cattle using a GWAS. 

There is much potential in using GWAS for the identification of carcass traits and RTU 

measurements as can be seen from Table 1.8. 
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Table 1.8 Summary of traits of economic importance reported in literature on the chromosomes 

identified by GWAS 

Trait Chromosome (BTA) Reference 

Calving Ease 14, 21 Pausch et al. (2012) 

Birth weight 14 Sharma et al. (2015) 

ADG (ADG) 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 

15,16, 17, 18, 19, 20, 27, 28 

Nkrumah et al. (2007); Seabury et al. 

(2017) 

Dry matter intake (DMI) 1, 2, 3, 6, 7, 8, 10, 11, 14, 15, 17, 

18, 19, 20, 21, 26 

Nkrumah et al. (2007); Seabury et al. 

(2017) 

Residual feed intake (RFI) 1, 2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 

15, 16, 17, 19, 22, 26, 29 

Nkrumah et al. (2007); Seabury et al. 

(2017) 

Slaughter weight (SW) 1, 2, 4, 5, 6, 8, 14, 18, 23 Bolormaa et al. (2013); Lee et al. (2013); 

Li et al. (2017); Sorbolini et al. (2017); 

Bhuiyan et al. (2018) 

Back fat thickness (BF) 1, 2, 6, 7, 9, 10, 11, 13, 14, 16, 

17, 21, 22, 29 

Kim et al. (2011); de Oliveira Silva et al. 

(2017); Hay & Roberts (2018) 

Eye muscle area (EMA) 1, 4, 6, 7, 8, 12, 13, 14, 15, 16, 

17, 18, 20, 21, 24, 28 

Casas et al. (2005); Xia et al. (2016); 

Santiago et al. (2017); de Oliveira Silva 

et al. (2017); Bhuiyan et al. (2018); Hay 

& Roberts (2018) 

Rump fat thickness (RF) 2, 5, 6, 8, 9, 13, 14, 15, 19, 20 Bolormaa et al. (2011); de Oliveira Silva 

et al. (2017) 

Marbling 6, 17, 22, 29 Park et al. (2012) 

Dressing percentage (DP) 2, 9 Sorbolini et al. (2017) 

 

The carcass traits: SW, BF and EMA have been investigated in more studies compared to the 

rump fat thickness and dressing percentage.  The study performed by de Oliveira Silva et al. (2017) 

measured the sub-cutaneous fat deposition with ultrasound measurements. Chromosome 14 has 

been identified in a number of studies as being associated with the SW of cattle. SW and EMA have 

been identified as being associated to the same chromosome regions (Bhuiyan et al., 2018). SW 

and EMA are associated (0.45) as an increase in the slaughter weight caused by increased muscle 

yield will be observed by increase in the EMA (Miar et al., 2014). The EMA can be used as an 

indicator of the carcass yield and carcass weight (de Oliveira Silva eta al., 2017).  
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Genes identified for carcass traits 

 

Once the QTL has been identified with GWAS it is useful to identify the gene encoded within 

that region of the QTL. Gene ontology explains the molecular and biological functions of the genes, 

which assists with understanding the physiological mechanisms involved with a trait. There are 

several databases available for identification of genes and gene ontology which is briefly 

summarised in Table 1.9. 

Table 1.9 Databases for QTL comparison and gene ontology 

Database Uses Access Reference 

NCBI Different species 

genome maps 

Gene description and 

functions of genes 

Protein functions 

 

http://www.ncbi.nlm.nih.gov/home/literature.shtml 

http://www.ncbi.nlm.nih.gov/home/genes.shtml 

http://www.ncbi.nlm.nih.gov/home/proteins.shtml 

 

NCBI Research 

Co-ordinators 

(2018) 

PANTHER 

(Protein 

Analysis 

Through 

Evolutionary 

Relationships)  

Analyse gene lists 

Information about the 

evolution and 

function of protein 

coding genes 

Gene ontology and 

biological pathways 

 

http://pantherdb.org Mi et al. (2017) 

CattleQTLdb Database of all QTL 

identified from 

studies for different 

traits 

 

https://www.animalgenome.org/cgi-

bin/QTLdb/BT/index 

 

 

Gene Ontology 

Annotation 

(GOA) 

database 

Gene Ontology 

annotations to 

proteins in the 

UniProt 

Knowledgebas 

(UniProtKB) 

 

http://www.ebi.ac.uk/GOA Huntley et al. 

(2014) 

Ensembl 

release 94 

Genome browser for 

vertebrate genomes. 

Gene annotations, 

functions, computes 

multiple alignments, 

predicts regulatory 

functions and collects 

disease data  

https://www.ensembl.org/index.html Aken et al. 

(2016) 

  

Several major genes associated with carcass traits include Myostatin, Leptin, Calpain, 

Calpastatin and Thyroglobulin. The MSTN gene is found on BTA2 and is partially recessive 

(Mateescu, 2014). Seven mutations in this gene have been identified. This gene is responsible for 

http://www.ncbi.nlm.nih.gov/home/genes.shtml
http://www.ncbi.nlm.nih.gov/home/proteins.shtml
https://www.animalgenome.org/cgi-bin/QTLdb/BT/index
https://www.animalgenome.org/cgi-bin/QTLdb/BT/index
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an increase in size of skeletal muscles which is caused by growth in size of component cells. 

Hyperplasia rather than hypertrophy of the muscle cells occur (Aiello et al., 2018; Baile et al., 2018). 

Some of these mutations are beneficial as there is an increase in the lean yield, higher muscle mass 

with less fat, tenderness and the longissimus muscle area (Mateescu, 2014). The disadvantage of 

some of the mutations are the occurrence of dystocia due to calves expressing this gene having a 

higher birthweight (Casas et al., 2000).  

The CAPN (Calpain genes) are responsible for the tenderness of the meat which in turn 

influences the eating quality of the meat. This gene is responsible for the degradation of muscle 

fibers (Leal-Gutiérrez et al., 2018). Genetic markers identified CAPN on BTA10 and BTA29 

(Mateescu, 2014). Smith et al. (2000) reported the CAPN1 candidate gene in the region of BTA29 

which is associated with the meat tenderness (Casas et al., 2003). Tenderness is influenced by the 

CAST gene which is responsible for the expression of Calpastatin. This gene works similarly to the 

Calpain system in the degradation of muscle fibers. The CAST T1 gene is identified on chromosome 

7 (Mateescu, 2014). Thyroglobulin (TG) is a precursor for the thyroid hormones and plays a role in 

the fat metabolism as it influences the adipocyte development. The QTL region on BTA14 associated 

with this gene has been identified for back fat thickness and marbling score (Mateescu, 2014). Casas 

et al. (2003) reported 2 candidate genes associated with the intra muscular fat deposition: DGAT1 

and TG genes. 

Leptin has been identified as being associated with carcass composition and fat thickness. 

Markers for leptin have been identified on BTA4. Associations between the growth hormone and fat 

distribution have been identified (Mateescu, 2014). The gene for expression of the growth hormone 

have been identified with BTA19. This gene has been associated with the rump fat and eye muscle 

area and this influences the body composition of cattle.  The fatty acid composition is also influenced 

by the growth hormone. Genes affecting the fat composition and metabolism are: FABP4, SCD, 

FASN and SREBP1. FABP4 (adipose fatty acid binding protein) is located on BTA14 and the QTL 

within this region is associated with fat thickness, yield grade, marbling and slaughter weight 

(Mateescu, 2014). SCD (stearoyl-coAdesaturase) is responsible for the fatty acid composition and 

the marbling. FASN (fatty acid synthase) is located on BTA19 and synthesizes long chain fatty acids. 

This region on BTA19 is associated with fatty acid composition in adipose tissue in beef cattle and 

the milk fat composition in dairy cattle. SREBP1 (sterol regulatory element-binding protein1) is 

related to the slaughter weight of beef cattle in addition to the fatty acid composition and fat quality 

(Mateescu, 2014).  

The abovementioned genes are major genes that have been identified for the carcass 

composition and meat quality of beef cattle. There are many genes with small effects that have been 

identified as being associated to carcass quality. Genes with smaller effects on the carcass 

composition and meat quality are shown in Table 1.10. 
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Table 1.10 Summary of genes identified for carcass traits (Xia et al., 2015; Sasago et al., 2017; Bhuiyan 

et al.,2018) 

Genes Trait Function 

SLIT2, FAM13A, MED28, PLAG1, 
TOX, SDCBP, DCAF16, 
NCPAGCHCD7, FAM110B, CYP7A1 

Slaughter 
weight 

Cellular function and maintenance, Skeletal 
and muscle development and function, 
Skeletal muscle mass 

COL1A2 SW 
Osteogenesis imperfecta and collagen 
formation 

KNCIP Yearling weight Calcium ion binding 
DCAF 

EMA 
Regulatory genes involved in lipid and 
glucose metabolism PPARGC1A, CRH 

TPM1 
Muscle and fat 
tissue 

Actin-binding protein in contractile system of 
striated and smooth muscle, and in 
cytoskelton of non-muscle cells 

FASW FA composition - 

SCD C14:1 
Stearoyl Acetyl CoA desaturase gene which 
encodes enzyme synthesizing oleic acid 

CNNM2 
C18:0 and Mg 
reabsorption in 
the kidney 

Gene encodes protein responsible for Mg 
homeostasis 

EDG1 
Marbling, EMA, 
RF, BF 

Encodes protein involved in differentiation of 
endothelial cells 

GH1 Growth, SW 
Gene is part of Somatotropin family which is 
responsible for growth control 

 

These genes all contribute to important biological and functional processes of growth and 

development.  

 

 1.2.6 Conclusion 
 

Real-time ultrasound scans are useful to determine the body composition and fat distribution 

in the live animal. Using RTU scans as a prediction of the carcass quality will increase rate of genetic 

gain following selection. This method is not as expensive or time consuming in comparison to other 

post slaughter methods. The literature that has been reviewed supports the statement that there is 

an opportunity for implementing RTU measurements as a test for beef cattle in feedlots. RTU 

measurements is not common-practice in South Africa and there is much potential in including it as 

regular feedlot practice.  

Nguni cattle is a type of Sanga breed and there is limited research in the genetic architecture 

of these type of cattle. SNP markers are useful tool for identification of variation within the genome 

of individual animals. Literature has shown GWAS as a useful method for investigating the underlying 

genetic mechanisms for traits of interest. GWAS has the potential for a better understanding of the 

genetic architecture of variants within the genome associated with specific traits.  
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Chapter 2 Materials and Methods 
 

2.1 Introduction 
 

For this study an external data set was used, which was generated from a growth trial funded 

by the Nguni Breeders Society. This growth trial was performed at a private commercial feedlot and 

included a total of 200 diverse weaner calves from 23 Nguni breeders. The external data set 

consisted of various carcass trait measurements (weight of cattle at different growth stages, 

ultrasound measurements of fat distribution in carcass, slaughter weight, dressing percentage and 

rumen damage). Ethical approval was obtained from University of Pretoria Ethics Committee 

(EC170627-135) to use this data set. From the 200 weaner calves a total of 146 animals were 

selected for SNP genotyping with the 150k SNP chip to perform a genome-wide association study 

for the different carcass traits. Additional funding for genotyping was provided by the Beef Genomic 

Program (BGP) funded by TIA (Technology Innovation Agency) for genotyping. 

 

2.2 Materials 
 

2.2.1 Growth trial 

 
Upon arrival at the feedlot, with an average age of 278 days of age, the animals were identified 

with an eartag, received growth hormone implant and vaccinated. After 30 days of backgrounding 

on veld during which the animals received ad lib Eragrostis grass as well as the starter ration, the 

feedlot trail commenced (Venter, 2017).  

The animals were randomly divided into four groups of 50 animals each, where each group 

was fed a different ration containing different levels of roughage (low, medium, high roughage & 

commercial diet). Standard feedlot practices were followed for the feeding and treatment of the 

animals.  Weight measurements were recorded for the 200 bull calves upon arrival at the feedlot, 

before backgrounding, at the start of the feedlot phase, at 42 days on trial and before slaughter 

(Venter, 2017). Figure 2.1 shows the distribution of the 200 bull calves received for the trail from 

different breeders and provinces. 
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Figure 2.1 A map of South Africa indicating the distribution of the animals used in this study 

 

Real time ultrasound (RTU) measurements were taken during the feedlot phase at 72 days on 

test for eye muscle area, rump fat, back fat thickness as well as at two weeks before slaughter (91 

days on test) the measurements were recorded. The RTU scans were carried out at the feedlot’s 

medical facility which allowed the mature cattle to move through the crush and neck clamp. A real-

time ultrasound scanner (MyLab™OneVET) was used for the measurements and this was achieved 

through manual recording. The process of scanning was as follows: cattle entered the crush, the 

area of measurement is oiled (using corn oil) to improve the acoustic contact of the device. The 

scanning of the area of interest can then commence. It was not required that animals were fasted 

before the RTU measurements were taken during this trial.  

The following RTU measurements were recorded: eye muscle area (EMA), back fat thickness 

(BF) and rump fat thickness. The cattle were slaughtered after visual judging according to body 

weight and body condition for the determination of when a carcass grading of A2 (1–3 mm) was 

achieved. Calves were slaughtered in three groups at 105, 120 and 135 days after entering the 

feedlot. The times of measurement for the different weight traits, RTU measurements and carcass 

traits during the growth trial are shown in Table 2.1.  
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Table 2.1 A summary of measurements recorded during the growth trial 

Days on test Measurements 

-32 Weigh animals: Arrival weight 

0 Weigh animals: Start weight 

9 Weigh animals 

44 
Weigh animals 

RTU measurements: Rump fat, Rib fat 

72 
Weigh animals 

RTU measurements: EMA, Rump fat, Rib fat 

91 RTU measurements: EMA, Rump fat, Rib fat,  

99 Weigh animals 

105 
Slaughtered at A2 (1–3 mm) carcass grade.  

Slaughter weights 

120 Slaughtered at A2 (1–3 mm) carcass grade.  

  Slaughter weights 

135 Slaughtered at A2 (1–3 mm) carcass grade.  

  Slaughter weights 

 

Different post-mortem slaughter measurements were also recorded such as the slaughter 

weight, dressing percentage and other traits of economic importance as indicated in Table 2.2.  
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Table 2.2 Measurements recorded during growth on the live animal and post slaughter 

Measurements Description 

(Measurements on the live animal) 

Eye muscle area (EMA) scanned Measured at the cross-sectional area of the 

longissimus dorsi muscle and should be taken 

between the ribs not over the ribs. 

 

Rump fat scanned Measured between the hook and pin bones of the 

animal or measured at the apex of the biceps 

femoris muscle 

 

Back fat scanned Measurements of the longisimus dorsi muscle 

between the 12th and 13th rib. 

Marbling scanned The percentage intra-muscular fat.  Longitudinal 

image in the region of the 11th, 12th, and 13th rib, 

approximately 2/3rd of the distance from the 

medial to the dorsal end of the longissimus dorsi 

muscle. 

 

Weight of the cattle during trial Weights of the animals were measured at arrival, 

start of trial, 9 days, 44 days, 72 days, 91 days, 

99 days, 105 days, 120 days and 135 days 

(Post Slaughter measurements) 

Slaughter weights Measured in kg after slaughter 

 

Warm carcass weight Measured in kg as the hot weight of the carcass 

with head, hide and intestinal tract and internal 

organs removed 

 

Cold carcass weight Calculated as 2% less than the warm carcass 

weight 

 

Dressing percentage (%) Calculated from the live weight and slaughter 

weight 
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2.2.2 Animal selection and genotyping 

 
From the 200 animals that were included in the growth trial, a subset of 139 representative 

animals were selected for genotyping. Animals with missing animal IDs or that were not slaughtered 

at an A2 (0 teeth, 1-3mm) carcass grade were excluded from selection. These animals were selected 

to achieve a normal distribution of all traits measured. Hair samples of 141 animals were submitted 

to the Agricultural Research Centre Biotechnology (ARC BTP) platform for genotyping using the 

Geneseek GGP-HD Bovine 150 K SNP array.  The distribution of animals per breeder and per 

province is displayed in Table 2.3 

 

Table 2.3 Summary of number of animals for the different variables 

Variable Number of animals Number of breeders 

Ration Commercial 24 23 

 High roughage 38 24 

 Medium roughage 39 24 

 Low roughage 43 23 

Province Eastern Cape 72 14 

 Free State 24 5 

 Northern Cape 24 3 

 North West 14 1 

 Western Cape 10 1 

 

2.3 Methods 

 
Phenotypic data from the growth data was received in Excell and the structure of the data was 

edited for statistical analysis.  This data was statistically analysed using SAS enterprise guide, 

version 9.4 (2013).  Data was firstly edited to remove missing animal identification numbers and 

animals with an A1 (<1mm) or A3 (>3 and <5 mm) carcass grading. Summary statistics of this data 

was calculated using the MEANS procedure of SAS enterprise guide 9.4 (2013). Effect of diet and 

province on the traits were calculated using the ANOVA procedure (Theron, 2018).  

Raw data was received from Genome Studio® 1.9.0 software and converted from Illumina® 

final report format to PLINK input file (MAP and PED files) format using SNP convert (Nicolazzi et 

al., 2015).  PLINK (v1.9) (Purcell et al., 2007) was used to perform technical (sample based, and 

marker based) quality control (QC) to filter out uninformative individuals and SNPs from the dataset. 
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Individual and SNP call rates of 90% was implemented. This resulted in the removal of two animals 

as well as 3198 SNPs.   

The genotypic data was analysed firstly by applying no further genetic quality control (minor 

allele frequency and Hardy- Weinberg equilibrium) to assess whether any SNPs that will eventually 

be filtered were indeed associated with the traits of interest. Genetic quality control may introduce 

bias to the data, as certain SNPs that may show association, as well as individuals are removed 

from the data set (Uiterlinden, 2016). Secondly, the dataset was further analysed after genetic QC 

parameters were applied. The QC thresholds that was applied to the dataset was as follows: SNPs 

were removed based on a minor allele frequency of 0.02 (12 232SNPs removed) and a Hardy 

Weinberg Equilibrium (HWE) threshold of less than 0.0001 (1 SNP removed).  The total number of 

SNPs and animals that were in the two datasets (one with technical QC applied and the second with 

genetic QC filtering), are summarised in Table 2.4.   

 

Table 2.4 Summary of data set with technical QC filters and with additional genetic QC filters  

 Technical QC 

(SNP and individual call rates = 0.1) 

Genetic QC 

(MAF = 0.02, HWE = 0.0001) 

SNPs        137 798     124 178 

Animals           139      139 

 

2.3.1 Principal component analysis (PCA) 

 
To account and avoid false positives the SNP-based genetic relatedness between individual 

cattle were evaluated using GCTA (v 1.24) (Genome-wide Complex Trait Analysis; Yang et al., 2011) 

A genetic relationship matrix was firstly calculated, thereafter eigenvalues and eigenvectors were 

generated for the first three principal components. Microsoft Excel (2013) was used to plot the 

eigenvector values for the principal components. A PCA was constructed for the relatedness 

between the animals as well as for four different rations that were used, and for the different 

provinces which animals originated from. This was done to identify a possible effect of ration or 

province on the results. The steps followed for GWAS is illustrated in Figure 2.2. 
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Figure 2.2 Flow diagram illustrating the approach followed for conducting the GWAS studies 

 

2.3.2 Genome-wide association studies 

 
A genome-wide association study (GWAS) was performed on both datasets (dataset 1: 

technical QC applied, dataset 2: genetic QC filters applied).  PLINK software (v1.9) was initially used 

to perform a genetic association of nine carcass traits (quantitative traits) (Rentería et al., 2013). The 

following commands were used in PLINK (Purcel et al., 2007) for the GWAS: 

The --pheno command in PLINK was used to replace the missing phenotypes in the original 

PED/FAM files.  This command detects whether the phenotypes are quantitative or case/control.  A 

Received raw data from 

GenomeStudio 
SNP convert: Convert raw 

data to MAP and PED 

Update Sex of animals 

 Merged data sets 

PCA plots created using 

GCTA 

Technical QC: 

SNP and Individual call rates 

Genetic QC:  

MAF and HWE 

GWAS using PLINK and 

EMMAX 
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confidence interval of 95% was included for the beta coefficient, this also generates standard error 

values for each estimate. The following command was used in PLINK to perform a GWAS for each 

individual trait and for the combination of traits: plink --noweb --cow --bfile[filename] --allow-no-sex -

-pheno [file.txt] --assoc --adjust --ci 0.95 --out [filename].  PLINK generates a *.qassoc and 

*.qassoc.adjusted files.  *.qassoc.adjusted output is useful as it contains adjusted p-values and the 

most significant tested SNPs are listed at the top of the file. PLINK software detects quantitative 

compared to case/control data sets (Rentería et al., 2013).    

Additional software, efficient mixed model association eXpedited (EMMAX) was used for 

GWAS (Kang et al., 2010).  Files generated in PLINK were then used to create an identity by state 

(IBS) kinship matrix and creating a transposed Ped and Fam file. Output files from the kinship matrix 

are *.mibs and the transposed files are in the *.tfam and *.tped fromat.  These files together with a 

phenotype file containing the family ID, individual ID and respective phenotypes for the different 

traits.  To perform the GWAS using EMMAX the following command is used: emmax -v -d 10 -t [tped 

filename] -p [phenotype file.txt] -k [kinship file] -o [output file name]. 

 
R Studio 

 
Results from the association analysis was visualised by creating a Manhattan plot in R-studio 

(v1.1.456) (2015).  The following packages were downloaded and installed in R suited for GWAS 

analysis and plotting of the data: readr, plotly and manhattanly.  Output files for each trait generated 

in PLINK are imported into R studio and results are displayed in R-studio. The results obtained were 

then used to identify most significant (p<10-7) and suggestive (p<10-5) SNPs, from which putative 

genes can be identified.   

 

2.3.3 Putative gene identification 
 

A gene search was performed on the chromosomal regions that were defined by the positions 

of suggestive and significant SNPs using the Bos Taurus: UMD_3.1.1 (GCF_000003055.6) 

reference genome assembly on NCBI (https://www.ncbi.nlm.nih.gov/genome/gdv/?org=bos-taurus).  

Gene names and symbols were identified within a window of 5000 bp upstream and downstream 

from the SNP position.  Identified genes were listed and uploaded to Panther (Mi et al., 2017), for 

metabolic function and biological processes of the genes.  The QTL database 

(https://www.animalgenome.org/cgi-bin/QTLdb/BT/index) was used to identify previously discovered 

QTL within a window of 5000bp upstream and downstream of the identified SNPs. 

 

 

 

https://www.animalgenome.org/cgi-bin/QTLdb/BT/index
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 Chapter 3 Results 
 

3.1 Descriptive statistics of growth trial 
 

There were 200 animals in the feedlot trial with only 141 genotyped. The averages and 

standard deviations for all traits for animals phenotyped and genotyped are shown in Table 3.1 and 

Table 3.2. In Table 3.1 the averages for the growth traits measured throughout the trial is shown. 

Post-slaughter measurements and the average time spent on test is included in this table. The 

average age of the cattle at the start of the trial was 309.5  45 days of age with an average starting 

weight of 188.7kg  34.2 kg. The average time of the animals in the feedlot till slaughter was 120  

12 days on test. The average slaughter weight for the animals in this trial was 346.4 ± 33.2kg. The 

animals selected for genotyping had an average starting weight of 189.0±367 kg and slaughter 

weight of 343.9±36.2.  
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Table 3.1 Average for the growth traits and post slaughter measurements for the cattle on test   

 
Total number of 

animals (200) 
Number of animals genotyped (141) 

Variable Mean ± SD Mean ± SD Minimum Maximum 

Arrival weight (kg) 164.0 ±29.9 
 
165.0 ±31.2 
 

94.0 242.0 

Start weight 

(kg) 
 

188.7 ±34.2 
 
189.0 ±36.7 
 

106.0 288.0 

Weight at 9 days 

(kg) 
 

203.9 ±36.2 
 
204.3 ±39 
 

114.0 308.0 

Weight at 44 days 

(kg) 
 

253.6 ±40.3 
 
254.7 ±44.3 
 

154.0 372.0 

Weight at 72 days 

(kg) 
299.5 ±41.7 

 
299.8 ±46 
 

196.0 416.0 

Weight at 99 days 

(kg) 
 

375.4 ±27.6 
 
378.6 ±28.9 
 

316.0 440.0 

Slaughter weight 

(kg) 
346.4 ±33.2 343.9 ±36.2 244.0 444.0 

Warm carcass 

weight (kg) 
198.2 ±20.9 197.4 ±23.3 132.6 258.8 

CM2% 194.3 ±20.5 193.4 ±22.8 129.9 253.6 

Dressing 

percentage (%) 
56.1 ±1.7 56.2 ±1.7 50.9 62.6 

Slaughter date 

(days) 
120.9 ±12.1 120 ±12.4 105.0 135.0 

 

Table 3.1 shows the variation of animals that were used in this trial, as well as the animals 

selected for genotyping, especially when considering the minimum and maximum values for the 

weight measurements. In Table 3.2 the ultrasound measurements for the cattle on the growth trial is 

shown. The means for the different traits under investigation was fairly similar between the 

population of animals included in the trial and the animals selected for genotyping.  
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Table 3.2 The average of the ultrasound measurements at 72, 91 and 120 days on test 

 
Total number of 

animals (200) 
Number of animals genotyped (141) 

Variable Mean ± SD Mean ± SD Minimum Maximum 

RF72 

(mm) 
5.1 ±1.7 5.2 ±1.8 

 
2.5 21.0 

RF 91 

(mm) 
5.4 ±1.3 

5.5 ±1.4 
 

2.8 9.9 

RF120 

(mm) 
6.0 ±1.4 

5.9 ±1.4 
 

3.2 9.9 

BF 44 

(mm) 
2.4 ±0.5 

2.5 ±0.6 
 

1.3 3.8 

BF 72 

(mm) 
3.1 ±0.8 

3.2 ±0.8 
 

1.8 5.5 

BF 91 

(mm) 
3.5 ±0.9 

3.5 ±0.9 
 

1.8 6.6 

BF 120 

(mm) 
3.8 ±0.7 

3.8 ±0.8 
 

2.1 5.8 

EMA 72  

(cm2) 
49.1 ±6.2 

49.1 ±6.6 
 

31.0 66.0 

EMA 91 

(cm2) 
52.3 ±5.6 52.0 ±6.0 40.0 69.0 

RF: Rump fat thickness, BF: Backfat thickness, EMA: Eye muscle area 

  

Relatively large differences were observed in the group for rump fat, back fat thickness and 

eye muscle area at 72 and 91 days on test, as well as for rump fat and backfat thickness at 120 

days. 

 

3.2 Principal component analysis (PCA) 

 
 The principal component analysis (PCA) results are based on 141 genotypes that passed 

technical QC and 141 716 SNPs. The relatedness between animals are shown in figure 3.1, which 

shows three outliers in the upper and lower left quadrants.  
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Figure 3.1 Genetic relationships among the 139 cattle for the first and third principal components 

(PC1 and PC3) 

In Figure 3.1 a and b the results are displayed and analysed for diet and province respectively.  

a.                     b. 

 

Figure 3.2 Genetic relationships among the 139 cattle for the first and second principal components 

(PC1 and PC2).  a: Animals grouped according to different diets.  b: Animals grouped according to 

different provinces before entering the feedlot.  

 

Figure 3.2a illustrates that the majority of individuals clustered tightly together irrespective of 

diet. A number of outliers were observed that included animals on commercial, low and medium 

roughage diet. Outliers are defined as animals in the upper and lower right quadrant of the PCA plot. 

The outliers that were observed can mainly be assigned to the animals that were fed either a 

commercial diet, medium or a low roughage ration. In Figure 3.2b represented all different provinces 

except for a few outliers that originated mostly from the Eastern Cape and the Western Cape 

provinces. The effects of the diet and province on the carcass traits was tested and reported by 

Theron et al. (2017). Province had a non-significant (p< 0.05) effect on the dressing percentage 
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(DP), slaughter weight and the end weight. However, there was a significant difference (p<0.05) in 

the start weight of the calves and the different provinces. There was a significant difference in the 

slaughter weight of the calves fed the commercial diet compared to the high, medium and low 

roughage diets. The North West and Eastern Cape provinces had a significant effect (p<0.05) on the 

ultrasound measurement for the eye muscle area. Diet had no significant effect on the EMA and 

back fat measurements, however it did have a significant effect (p<0.05) on the rump fat thickness.  

 

3.3 Genome-wide association studies (GWAS) 
 

A total of 38 SNPs was found to be associated with all traits (Slaughter weight, Dressing 

percentage, EMA72, EMA91, BF72, BF91, RF72, RF91). In the first analyses the data with only 

technical QC was used for the eight traits. The results for the GWAS using RTU traits (EMA (a), RF 

(b) and BF (c)) measured at 72 days are shown in Figure 3.3. In Figure 3.3 (a) five suggestive SNPs 

(p<10-5) were identified for the ultrasound measurement of EMA at 72 days on test. One suggestive 

SNP is identified on BTA2 and four suggestive SNPs on BTA 25. GWAS. The GWAS for RF72 

(Figure 3.3 b) shows three suggestive (p<10-5) SNPs are identified, with one suggestive SNP each 

on BTA 5, BTA 9 and BTA 16 respectively.  Figure 3.3 (c) displays the GWAS for back fat thickness 

measured at 72 days on test, which identified no SNPs.  
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a.  

 

 

 

 

 

 

b.    

 

 

 

 

 

 

c.  

 

 

 

 

 

 

Figure 3.3 Manhattan plot displaying the results (-log 10 of p-values) for SNPs detected for a: 

EMA72, b: Rump fat72, c: Back fat72 

The results of the GWAS for RTU measured at 91 days on test were displayed in Figure 3.4. 

For EMA five SNPs (p<10-5) were identified (Figure 3.4 a) on BTA2 (1SNP), BTA12 (1SNP), BTA25 

(1SNP) and BTA28 (1SNP), while only two suggestive SNPs (p<10-5) were identified for rump fat on 

BTA1 (1SNP) and BTA 16 (1SNP). In Figure 3.4 c six suggestive (p<10-5) SNPs were identified using 

GWAS for backfat on BTA2, BTA3, BTA 5, BTA 25, BTA28 and the X-chromosome. 
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b.  

 

 

 

 

 

 

c.  

 

 

 

 

 

 

 

Figure 3.4 Manhattan plot displaying the results (-log 10 of p-values) for the SNPs detected for a: 

EMA91, b: Rump fat91, c: Back fat91 

Figure 3.5 displays the GWAS for the slaughter weight of the animals in this trial with six SNP 

identified (p<10-5) on BTA4 (1SNP), BTA 9 (2 SNPs) and BTA 19 (3 SNPs).  
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Figure 3.5 Manhattan plot displaying the results for SNPs detected for the slaughter weight (-log 10 

of p-values) 

Results for the GWAS performed for the dressing percentage are displayed in figure 3.6. On 

the X chromosome there are three suggestive SNPs identified for this trait.  

 

 

 

 

 

 

 

 

Figure 3.6 Manhattan plot displaying the results for SNPs detected for dressing percentage (-log 10 

of p-values)  

The GWAS was repeated for all the genotypic data after genotypic QC (MAF and HWE) was 

applied. Manhattan plots from the results of the GWAS are shown in addendum C. The SNPs 

identified through this association was identical to the results found for the data set with only technical 

QC. This was found for all traits except for the dressing percentage, where no SNPs were identified 

to be associated. 
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The results from EMMAX software for the dataset with technical QC (SNP and individual call 

rates) as well as dataset with additional genetic QC (MAF and HWE) are shown in Addendum C. 

Results using EMMAX gave similar results for some SNPs such as: BTA4 for SW, X-chromosome 

for DP, BTA2 for BF72, BTA25 for BF91 and BTA28 for BF91. Additional SNPs were identified for 

EMA72 on BTA7, BTA8, BTA9. BTA13, BTA20 and for EMA91 on BTA23. Results of GWAS for BF 

at 72 days identified an additional SNP on BTA3 and two SNPs for BF at 91 days on BTA23 and 

BTA25. 

Table 3.3 compares the SNPs identified for ultrasound measurements of the eye muscle area 

using PLINK and EMMAX software for the GWAS. For this trait EMMAX identified additional SNPs 

associated with the EMA measured at 72 days on test. The SNPs were identified on BTA7, BTA8, 

BTA9, BTA13 and BTA20. On chromosome 2 there is a SNP identified by both software and EMMAX 

identified BTA 23 in addition to the SNPs identified by PLINK.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 
 

Table 3.3 Chromosomes and SNPs identified for ultrasound measurements of eye muscle area 

(EMA) using different software and data quality control measures 

Trait Chromosome and SNP 

 PLINK EMMAX 

 Technical QC Genetic QC Technical QC Genetic QC 

EMA72 
BTA2 
BovineHD0200001009 

BTA2 
BovineHD0200001009 

None None 

 

None None 

BTA7 
ARS-BFGL-NGS-
102773, 
BovineHD0700004386,  
ARS-BFGL-NGS-95757 

BTA7  
ARS-BFGL-NGS-
102773, 
BovineHD0700004386,  
ARS-BFGL-NGS-95757 

 
None None 

BTA8 
BovineHD0800007273 

BTA8 
BovineHD0800007273 

 
None None 

BTA9 
BovineHD0900026853 

BTA9 
BovineHD0900026853 

 
None None 

BTA13  
BTB-01124378 

BTA13  
BTB-01124378 

 
None None 

BTA20 
BovineHD2000004268 

BTA20 
BovineHD2000004268 

 

BTA25 
BovineHD2500000886
, 
BovineHD2500000904
, 
BovineHD2500000912
,  
ARS-BFGL-NGS-
62236  

BTA25 
BovineHD2500000886, 
BovineHD2500000904, 
BovineHD2500000912,  
ARS-BFGL-NGS-62236 None None 

EMA91 
BTA2 
BovineHD0200001009 

BTA2 
BovineHD0200001009 

None None 

 

BTA12 
BovineHD1200026405 

BTA12 
BovineHD1200026405 

None None 

 

BTA16 
BovineHD1600009129 

BTA16 
BovineHD1600009129 

None None 

 
None None 

BTA23 
BovineHD2300003974 

BTA23 
BovineHD2300003974 

 

BTA25 
BovineHD2500000979 

BTA25 
BovineHD2500000979 

None None 

 

BTA29  
ARS-BFGL-NGS-
16031 

BTA29 ARS-BFGL-
NGS-16031 

None None 

SW: Slaughter weight, DP: Dressing percentage 

The SNPs identified for the ultrasound measurement of rump fat thickness using PLINK and 

EMMAX for the GWAS is shown in Table 3.4. EMMAX did not identify any SNPs to be associated 

with this trait. 
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Table 3.4 Chromosomes and SNPs identified for ultrasound measurements rump fat thickness 

(RF) using different software and data quality control measures 

Trait Chromosome and SNP 

 PLINK EMMAX 

 Technical QC Genetic QC 
Technical 
QC 

Genetic 
QC 

RF72 
BTA5 
BovineHD0500015865 

BTA5 
BovineHD0500015865 

None None 

 

BTA9  
BTB-00393138 

BTA9  
BTB-00393138 

None None 

 

BTA16 
BovineHD1600009129 
  

BTA16 
BovineHD1600009129  None None 

RF91 
BTA1 
BovineHD0100002202 

BTA1 
BovineHD0100002202 

None None 

  
BTA16 
BovineHD1600009129 

BTA16 
BovineHD1600009129 

None None 

SW: Slaughter weight, DP: Dressing percentage 

 

Table 3.5 shows the different SNPs identified for the ultrasound back fat thickness using the 

different software. The same SNPs are identified for BF72 on chromosome one and for BF91 on 

chromosome three and chromosome 25. 
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Table 3.5 Chromosomes and SNPs identified for ultrasound measurements of back fat thickness 

from different software and data quality control measures 

Trait Chromosome and SNP 

 PLINK EMMAX 

 Technical QC Genetic QC Technical QC Genetic QC 

BF72 None None 
BTA1 
BovineHD0100026449 
BovineHD0100026452  

BTA1 
BovineHD0100026449 
BovineHD0100026452 
  

BF91 

BTA2 
BovineHD0200000238 

BTA2 
BovineHD0200000238 

None None 

BTA3 
BovineHD0300002167 

BTA3 
BovineHD0300002167 

BTA3 
BovineHD0300002167 

BTA3 
BovineHD0300002167 

BTA5  
BTA-73733-no-rs 

BTA5  
BTA-73733-no-rs None 

None 

BTA25  
ARS-BFGL-NGS-1148 

BTA25  
ARS-BFGL-NGS-1148 

BTA25  
ARS-BFGL-NGS-1148 

BTA25  
ARS-BFGL-NGS-1148 

BTA28 Hapmap40383-
BTA-100914 

BTA28 Hapmap40383-
BTA-100914 

None None 

X 
BovineHD3000002170 

X 
BovineHD3000002170 

None None 

SW: Slaughter weight, DP: Dressing percentage 

 

Table 3.6 shows the SNPs identified with slaughter weight and dressing percentage as 

identified with the different software. This indicates the SNPs on chromosome 4 is associated when 

using both software. For dressing percentage, the same chromosome is identified using both 

software for the same data set. 
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Table 3.6 Chromosomes and SNPs identified for slaughter weight and dressing percentage from 

different software and data quality control  

Trait 
Chromosome and SNP  

  PLINK  EMMAX  
  Technical QC Genetic QC Technical QC Genetic QC 

SW BTA4 
BovineHD0400007766 

BTA4 
BovineHD0400007766 

BTA4 
BovineHD0400007766 

None 

  BTA9 
BovineHD0900017304,  
ARS-BFGL-NGS-83811 

BTA9 
BovineHD0900017304 
ARS-BFGL-NGS-83811 

 None None 

  BTA19  
Hapmap54526-
ss46526755,  
ARS-BFGL-NGS-82930, 
BovineHD1900012186 

BTA19  
Hapmap54526-
ss46526755,  
ARS-BFGL-NGS-82930, 
BovineHD1900012186  

 None None 

DP BTA30 
BovineHD3000037488 
BovineHD3000037479 
BovineHD3000037443 

 None BTA30 
BovineHD3000037488  

None 

 
SW: Slaughter weight, DP: Dressing percentage 

 

Table 3.7 shows the minor allele frequency (MAF) and the frequency of the favourable allele 

for the SNPs identified for the different traits. From the 36 SNPs identified from the GWAS for carcass 

traits, the major allele occurs at a frequency of 90% and higher in 16 of these SNPs. The major allele 

frequency is very high (>60%) in most of the SNPs identified. A high MAF (>40%) is seen in three 

SNPs namely: BovineHD1300009087, BovineHD2300003974 and BovineHD0100026449. These 

two SNPs are associated with the EMA91, BF72, RF72 and RF91. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 
 

Table 3.7 Minor allele frequencies (MAF) of the alleles for the SNPs identified 

Trait CHR SNP A1 A2 MAF Frequency of 
the favourable 
allele 

BF72 1 BovineHD0100026449 B A 0.12 0.88 
1 BovineHD0100026449 A B 0.94 0.06 

BF91 
 

2 BovineHD0200000238 B A 0.35 0.65 

3 BovineHD0300002167 A B 0.16 0.84 

5 BTA-73733-no-rs B A 0.04 0.96 
28 Hapmap40383-BTA-100914 B A 0.18 0.82 
30 BovineHD3000002170 B A 0.19 0.81 

RF72, 
RF91, 
SW 

16 BovineHD1600009129 A B 0.32 

0.68 

EMA72  7  ARS-BFGL-NGS-95757 A B 0.03 0.97 

ARS-BFGL-NGS-102773 A B 0.03 0.98 
BovineHD0700004386 A B 0.03 0.98 

8 BovineHD0800007273 B A 0.03 0.97 
9 BovineHD0900026853 B A 0.03 0.97 
13 BTB-01124378 A B 0.08 0.92 
20 BovineHD2000004268 A B 0.02 0.98 
25 BovineHD2500000886 B A 0.37 0.63 
25 BovineHD2500000904 B A 0.3 0.70 
25 BovineHD2500000912 B A 0.29 0.71 
25 ARS-BFGL-NGS-62236 B A 0.31 0.69 

EMA72, 
EMA91 

2 BovineHD0200001009 A B 0.05 
0.95 

EMA91  12 BovineHD1200026405 A B 0.21 0.79 

23 BovineHD2300003974 A B 0.43 0.57 

25 BovineHD2500000979 A B 0.13 0.87 

29 ARS-BFGL-NGS-16031 A B 0.09 0.91 

RF72 5 BovineHD0500015865 A B 0.36 0.64 

9 BTB-00393138 B A 0.02 0.97 

RF91 1 BovineHD0100002202 A B 0.09 0.91 

SW  4 BovineHD0400007766 A B 0.01 0.99 

9  BovineHD0900017304 B A 0.30 0.7 

ARS-BFGL-NGS-83811 A B 0.26 0.74 

19 ARS-BFGL-NGS-82930 A B 0.27 0.73 

Hapmap54526-ss46526755 A B 0.23 0.77 
BovineHD1900012186 A B 0.26 0.74 

DP 
 

30 BovineHD3000037443 B A 0.01 0.99 

BovineHD3000037479 A B 0.01 0.99 

BovineHD3000037488 B A 0.01 0.99 
*CHR: Chromosome 

 

The genotypic frequencies based on the identified SNPs are useful for showing the number of 

homozygotes and heterozygotes in a population. The SNPs identified for carcass traits in the Nguni 

population showed 17 SNPs where the homozygous (BB) genotype occurred the most. Eight SNPs 

showed more homozygous (AA) animals in the population compared with heterozygotes (AB) and 

homozygous (BB) animals. Heterozygote genotypes occurred in most of the animals for the following 

five SNPs:  BovineHD0200000238, BovineHD0500015865, BovineHD2300003974 and 
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BovineHD2500000886. These SNPs are associated with BF91, RF72, EMA72. Table 3.8 shows the 

genotypic frequency for each SNP identified in this study for carcass traits. 

 

Table 3.8 Genotypic frequencies of the identified SNPs for the population 

Trait CHR SNP AA AB BB 

EMA72  7 ARS-BFGL-NGS-95757 0 0,05 0,95 

7 ARS-BFGL-NGS-102773 0 0,04 0,96 

7 BovineHD0700004386 0 0,04 0,96 

8 BovineHD0800007273 0,94 0,06 0 

9 BovineHD0900026853 0,93 0,04 0,01 

13 BTB-01124378 0,01 0,14 0,86 

20 BovineHD2000004268 0 0,04 0,96 

25 BovineHD2500000886 0,37 0,51 0,11 

25 BovineHD2500000904 0,52 0,37 0,12 

25 BovineHD2500000912 0,5 0,38 0,09 

25 ARS-BFGL-NGS-62236 0,52 0,34 0,14 

EMA72, 
EMA91 

2 
BovineHD0200001009 0 0,11 0,89 

EMA91 12 BovineHD1200026405 0,04 0,32 0,63 

23 BovineHD2300003974 0,17 0,52 0,3 

25 BovineHD2500000979 0,01 0,23 0,76 

29 ARS-BFGL-NGS-16031 0,01 0,17 0,81 

RF72 5 BovineHD0500015865 0,12 0,47 0,4 

9 BTB-00393138 0,94 0,06 0 

RF91 1 BovineHD0100002202 0 0,19 0,81 

RF72, 
RF91, 
SW 

16 

BovineHD1600009129 0,09 0,45 0,45 

BF72 1 BovineHD0100026452 0 0,19 0,81 

 1 BovineHD0100026449 0.80 0.16 0.03 

BF91 2 BovineHD0200000238 0,4 0,51 0,09 

3 BovineHD0300002167 0,06 0,2 0,74 

5 BTA-73733-no-rs 0,94 0,04 0,01 

28 Hapmap40383-BTA-100914 0,65 0,32 0,02 

SW 4 BovineHD0400007766 0 0,03 0,97 

9 BovineHD0900017304 0,46 0,46 0,07 

9 ARS-BFGL-NGS-83811 0,06 0,38 0,53 

19 ARS-BFGL-NGS-82930 0,09 0,36 0,55 

19 Hapmap54526-ss46526755 0,08 0,29 0,56 

19 BovineHD1900012186 0,09 0,35 0,56 

*CHR: Chromosome 

 

The genotypic frequencies for the population is further illustrated in Figure 3.7. Each 

genotype is displayed for each of the SNPs identified in this study. It is seen from this graph the 
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homozygous genotypes occur more frequently for the respective SNPs. In some of the SNPs the 

distribution of the genotypes is equal for the two homozygous genotypes.  

 

 

Figure 3.7 Graph depicting the genotypic frequencies for the SNPs identified for the population 

 

 3.4 Gene Ontology 
 

Identification of suggestive and significant SNPs enabled identification of the gene associated 

with these SNPs.  Table 3.9 summarises the SNPs for the respective carcass traits and the 

accompanying genes. For all SNPs identified as being associated with the slaughter weight, genes 

were detected within the chromosomal regions. In a total of 25 chromosomal regions identified as 

associated, no genes were detected. One gene (SMYD3) was associated with the BF72, EMA91, 

RF72 and RF91. LOC107131809 gene is associated with the EMA for both measurements (72 and 

91 days on test).   

0

0,2

0,4

0,6

0,8

1

1,2

A
R

S-
B

FG
L-

N
G

S-
95

75
7

A
R

S-
B

FG
L-

N
G

S-
10

27
73

B
o

vi
ne

H
D

07
00

00
43

86

B
o

vi
ne

H
D

08
00

00
72

73

B
o

vi
ne

H
D

09
00

02
68

53

B
TB

-0
11

24
37

8

B
o

vi
ne

H
D

20
00

00
42

68

B
o

vi
ne

H
D

25
00

00
08

86

B
o

vi
ne

H
D

25
00

00
09

04

B
o

vi
ne

H
D

25
00

00
09

12

A
R

S-
B

FG
L-

N
G

S-
62

23
6

B
o

vi
ne

H
D

02
00

00
10

09

B
o

vi
ne

H
D

12
00

02
64

05

B
o

vi
ne

H
D

23
00

00
39

74

B
o

vi
ne

H
D

25
00

00
09

79

A
R

S-
B

FG
L-

N
G

S-
16

03
1

B
o

vi
ne

H
D

05
00

01
58

65

B
TB

-0
03

93
13

8

B
o

vi
ne

H
D

01
00

00
22

02

B
o

vi
ne

H
D

16
00

00
91

29

B
o

vi
ne

H
D

01
00

02
64

52

B
o

vi
ne

H
D

01
00

02
64

49

B
o

vi
ne

H
D

02
00

00
02

38

B
o

vi
ne

H
D

03
00

00
21

67

B
TA

-7
37

33
-n

o
-r

s

H
ap

m
ap

4
03

83
-B

TA
-1

00
91

4

B
o

vi
ne

H
D

04
00

00
77

66

B
o

vi
ne

H
D

09
00

01
73

04

A
R

S-
B

FG
L-

N
G

S-
83

81
1

A
R

S-
B

FG
L-

N
G

S-
82

93
0

H
ap

m
ap

5
45

26
-s

s4
65

26
75

5

B
o

vi
ne

H
D

19
00

01
21

86

G
en

o
ty

p
ic

 fr
eq

u
en

cy

SNPs

AA AB BB



47 

 

Table 3.9 Summary of genes identified for carcass traits in this study 

Trait Gene Chromosome 
SNP location 
(bp) 

BF91 

NIPA1 2 934 912 

DDR2 3 6 833 523 

CFAP54 5 61 183 506 

BF72 NRXN3 1 91 769 482 

EMA91, 
 
RF72, RF91 
 

SMYD3 16 32 161 861 

EMA72 

DCAF15 
7 
 

12 833 745 

P2RY11 15 895 135 

EMA72 

LOC107131809 25 

4 354 023 

EMA91 4 370 698 

SW 

HDAC9 4 26 839 566 

SYNE1 9 62 996 226 

TTC25 

19 
 

42 749 182 

NT5C3B 42 660 383 

FKBP10 42636853 

DP 

PPEF1 

X 

131 925 131 

132 021 752 

RS1 132 049 552 

SW: Slaughter weight, BF: Backfat thickness, EMA: Eye muscle area, RF: Rump fat thickness 

 

Five genes were identified for slaughter weight and two genes for the dressing 

percentage. The gene PPEF1 is found within the chromosomal region of two of the SNPs 

associated with the dressing percentage. There was no identification of the TTCD gene 

associated with slaughter weight when investigated using the Panther database. The different 

molecular functions and biological processes of the genes associated with slaughter weight 

and dressing percentage is shown in Table 3.10.  
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Table 3.10 Summary of relevant function of genes identified for slaughter weight and dressing 

percentage (Panther, 2018)  

Gene Molecular function Biological process 

HDAC9 • Protein kinase C 
binding; 

• NAD-dependent histone 
deacetylase activity 
(H3-K14 specific); 

• Histone deacetylase 
binding; 

• Metal ion binding; 

• Repressing transcription 
factor binding 
 

• Negative regulation of transcription by RNA 
polymerase II; 

• Cellular response to insulin stimulus; 

• Peptidyl-lysine deacetylation; 

• Histone H3 deacetylation; 

• Histone H4 deacetylation; 

• Positive regulation of cell migration involved in 
sprouting angiogenesis 

SYNE1 • Lamin binding; 

• Enzyme binding; 

• Actin filament binding 

• Golgi organization; 

• Muscle cell differentiation; 

• Cytoskeletal anchoring at nuclear membrane; 

• Nuclear matrix anchoring at nuclear membrane 
 

NT5C3B • Nucleotide binding; 

• Magnesium ion binding 
 

• Nucleotide metabolic process; 

• Dephosphorylation 

FKBP10 • Peptidyl-prolyl cis-trans 
isomerase activity; 

• Calcium ion binding; 

• Fk506 binding 
 

• Protein peptidyl-prolyl isomerization 

PPEF1 • Phosphoprotein 
phosphatase activity; 

• Iron ion binding; 

• Calcium ion binding; 

• Manganese ion binding 
 

• Protein dephosphorylation; 

• Detection of stimulus involved in sensory 
perception 

RS1 • Phosphatidylserine 
binding; 

• Phosphatidylinositol-4 
 

• 5-bisphosphate binding; 

• Phosphatidylinositol-3 

 

Figure 3.8 shows the frequencies of the biological processes and molecular functions 

for the genes associated with the slaughter weight and dressing percentage. The molecular 

functions for these genes are only catalytic (100%) and the cellular process (28.6%) occurs in 

most of the genes as a biological process. The other biological processes occur equally as 

processes for the different genes (14.3%).  
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a.  

 

 

 

 

 

 

 

 

 b.  

 

 

 

 

 

 

 

 

 

Figure 3.8 Distribution of the (a) metabolic function and (b) biological processes for slaughter 

weight and dressing percentage 

 

Although seven genes have been identified for possible association with ultrasound 

measurements, for only five genes molecular/ biological processes were available on the 

Panther database. CFAP54 gene molecular functions and biological processes was not 

available on the database for this gene. The LOC107131809 gene is an uncharacterized 

protein and the pathway was not available. Table 3.11 shows the molecular functions and 

biological processes for each gene identified for the ultrasound measurements. 
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Table 3.11 Summary of relevant function of genes identified for ultrasound measurements 

(Panther, 2018) 

Gene Molecular function Biological process 

NIPA1 Magnesium ion 
transmembrane transporter 
activity 

 

Magnesium ion transmembrane transport 

DDR2 

ATP Binding 

• Endochondral bone growth, positive regulation 
of fibroblast migration;  

• Peptidyl-tyrosine phosphorylation; 

• Collagen fibril organization;  

• Regulation of bone mineralization;  

• Biomineral tissue development;  

• Chondrocyte proliferatio;  

• Collagen-activated tyrosine kinase receptor 
signaling pathway; 

• Positive regulation of osteoblast differentiation; 

• Positive regulation of protein kinase activity; 

• Protein autophosphorylation;  

• Positive regulation of fibroblast proliferation; 

• Positive regulation of DNA-binding 
transcription factor activity; 

• Positive regulation of extracellular matrix 
disassembly 
 

SMYD3 • RNA polymerase II 
proximal promoter 
sequence-specific DNA 
binding; 

• RNA polymerase II 
complex binding; 

• RNA polymerase II 
intronic transcription 
regulatory region 
sequence-specific DNA 
binding; 

• Histone-lysine N-
methyltransferase 
activity 
 

• Nucleosome assembly; 

• Negative regulation of protein kinase activity; 

• Myotube cell development; 

• Positive regulation of peptidyl-serine 
phosphorylation; 

• Histone lysine methylation; 

• Establishment of protein localization; 

• Positive regulation of transcription by RNA 
polymerase II; 

• Cellular response to dexamethasone stimulus 

DCAF15 - • Protein ubiquitination 

P2RY11 

G protein-coupled 
purinergic nucleotide 
receptor activity 

• Adenosine receptor signaling pathway; 

• Calcium-mediated signaling; 

• G protein-coupled purinergic nucleotide 
receptor signaling pathway; 

• Cellular response to ATP 

 

The binding function is seen as a molecular function in most of the genes (50%). 

Receptor activity and signal transducer activity occurs equally (25%) as molecular function in 

the genes. There are many biological processes identified for the genes associated with 

ultrasound measurements. The biological process that occurs for most of the genes is a 
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metabolic process (25%). These remaining biological processes occur at the same frequency 

(12.5%) as a function for all genes. Figure 3.9 shows the frequency at which the molecular 

functions and biological processes occur for genes.  

a.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Distribution of the (a) metabolic function and (b) biological processes for ultrasound 

measurements 
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Chapter 4 Discussion 
 

The overall aim of this study was to perform a genome wide association study (GWAS) 

on carcass traits in SA Nguni cattle. Carcass traits are important to beef cattle breeders, as 

these traits ultimately determine the yield and the quality of the end product. RTU 

measurements have been shown to be a non-invasive and effective selection tool (Polák et 

al., 2007; Drennan et al., 2009; Gupta et al., 2013). In SA beef cattle, RTU scans are not a 

routine tool used for prediction of carcass traits. A limited number of large stud herds perform 

RTU scans during intensive growth tests or on farm (SA Studbook annual report, 2016). SA 

Nguni cattle are not a preferred breed for feedlot finishing due to its smaller frame size and 

slower growth compared to breeds such as SA Bonsmara (composite) or British developed 

breeds and Angus cattle. Sanga types are however widely used in the developing farming 

sector and these farmers have interest in the potential of the breed under feedlot conditions 

as well as the carcass potential.  

Nguni cattle in this study reached an average slaughter weight (SW) of 346.4  33.2 kg 

at 428 days of age, which is comparable to similar studies where Nguni cattle was finished 

under feedlot conditions, with weights of 349.4 kg (Strydom et al., 2001) and 320 kg (Mapiye 

et al., 2007) respectively. The average dressing percentage (DP) for the Nguni cattle on this 

trial was 56.1 1.7% which is slightly higher than 54.8 to 55.6 % reported for Nguni cattle, but 

comparable to SA studies in Bonsmara cattle (57.1 to 57.8 %) (Strydom et al., 2008).  

The eye muscle area (EMA) in this study (49.1 to 52.3 cm2) was, however, lower 

compared to SA studies on Nguni cattle (68.1 to 70.2 cm2) and Bonsmara cattle (75.9cm2 to 

84.8 cm2) respectively (Strydom et al., 2001; Strydom, 2008). The rump fat (RF) 

measurements recorded in this study (5.1 to 5.4 mm) was similar to Bonsmara cattle under 

feedlot conditions (5.6 mm) (Strydom et al., 2008).   

In this study lower SW were observed for the Nguni cattle, as expected for small framed 

breeds. However, despite the slower growth rate and smaller carcasses of the Nguni, the RTU 

results indicated that the desired carcass traits can be obtained. Research from Strydom et 

al. (2001) and Strydom et al. (2008) indicated that late maturing breeds, such as the 

Bonsmara, had higher growth rates and higher slaughter weights. 

Genomic technology provides opportunity for studying genetic mechanisms for different 

traits and was applied in this study to provide insight on carcass traits based on RTU 

measurements in SA Nguni cattle. In order to study the carcass traits on a genome level a 

genome wide association study was performed based on genotypes generated with a 

Geneseek 150K GGP HD SNP chip. The first step to determine the relatedness of the animals 

in the population was to investigate the population stratification using principal component 

analysis (PCA). The tight clustering seen in the PCA plots indicated the relatedness between 
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the animals and the few outliers were from different herds. From this PCA it was concluded 

that there was no population sub-structure causing population stratification within the sample 

of animals.  

The genetic clustering was further divided to determine whether diet and province of 

origin had a significant effect on the performance of these animals. The tight clustering seen 

on both PCA plots to investigate the effect of diet and province firstly indicated an effect for 

the Eastern Cape (most animals originated from) and Western Cape provinces. The effects of 

different diet levels and effect of province of origin was reported by Theron et al. (2017) based 

on phenotypic data. Province had a significant (p < 0.05) effect on the arrival weight of the 

calves due to the different environmental conditions between the provinces. There are different 

temperatures, rainfall conditions and feeding conditions between the different herds in 

different provinces. The Eastern Cape and Western Cape are very different climatic regions 

in comparison to the Free State, North West and Northern Cape. This explains the differences 

in arrival weight of the calves. No significant effect (p < 0.05) of the province on end weight, 

slaughter weight or the dressing percentage were observed.  

The commercial diet was the only diet to have a significant effect (p < 0.05) on the growth 

of the animals and on the rump fat thickness. The different diets had no significant effect (p < 

0.05) on the EMA and backfat thickness measured in the animals (Theron et al., 2017). The 

backfat thickness and EMA are the fat measurements that have been investigated more 

frequently in literature (Drennan, et al., 2009). 

This indicates that there is a small possibility of bias and the results from the GWAS will 

have no / low number of false positives. However, Dekkers & Hospital (2002) concluded a 

high number of false positives are more desirable than a high number of false negatives. For 

this study no QC was therefore applied including results from potential false positives. These 

may have a larger effect on traits selected for, in comparison to selection with a high number 

of false negatives and possible genes or chromosomal regions not included in selection.  

In this study the quality control was done on an individual and marker-based level 

(technical and genetic QC) and two animals were removed with poor quality (<90%). Results 

for GWAS based only on technical QC observed suggestive SNPs for DP not observed with 

genetic QC. All other GWAS results based on technical and genetic QC were similar.  

Li et al. (2017); Sasago et al. (2017) and Bhuiyan et al. (2018) reported associations 

with chromosomes 2, 4, 6,18 and 19 for the slaughter weight. The results from this study also 

found SNPs on BTA4 and BTA19, similar to the abovementioned studies. Additional SNPs 

were identified on chromosome nine which has not been identified in the literature for 

association with slaughter weight. A possible reason for this would be that the results found in 

previous studies are for slaughter weight applied to taurine breeds. There is also a possibility 

of ascertainment bias for the SNP chip used, as this was developed for Taurine breeds. The 
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additional SNP associations on the specific chromosomes observed in this study could be 

unique to the Sanga breed.  

A number of QTL have been identified on chromosome 2 for EMA (CattleQTLdb, 2011).  

The following QTL was identified for EMA on chromosome 2 within the 5000bp window of SNP 

observed in this study: QTL18423, QTL11643, QTL11687, QTL11688, QTL11882, QTL2753. 

Four SNPs were associated with SNPs on chromosome 25 for EMA72 in this study, while no 

QTL has been previously reported within the same regions as the observed SNPs on 

chromosome 25.  Further studies should be conducted to investigate the association of this 

chromosome with the EMA.  QTL 10935 has been associated with EMA on chromosome nine, 

where a SNP was observed in this study (CattleQTLdb, 2011).  No QTL within the regions on 

chromosomes 12 and 25 has been reported previously for association with EMA as observed 

for EMA91 in this study. Additional SNPs was observed with EMMAX software for the EMA 

on BTA7, BTA8, BTA9, BTA13, BTA20, BTA23. de Oliveira Silva et al. (2017) reported an 

association of EMA with chromosome 2 and chromosome 29, which support the chromosomes 

identified for the EMA91 in this study.  Nellore cattle was used in the study and there is a 

possibility of the genetic architecture of these animals being more similar to Nguni cattle. 

Previous studies identified the following chromosomes associated with the EMA namely: 

BTA7, BTA8, BTA9, BTA10, BTA12, BTA13, BTA20, BTA23 inTaurine breeds and BTA15 for 

an  Indicus breed (Saatchi et al., 2014; Xia et al., 2016; de Oliveira Silva et al., 2017; Li et al., 

2017; Bhuiyan et al., 2018; Hay & Roberts, 2018). Most of the SNPs observed in this study 

was identified in the above-mentioned chromosomes.  

In this study significant associations (p<10-5) were observed for rump fat measured at 

72 days (three SNPs) and 91 days (two SNPs).  QTL for fatty acids were previously identified 

within the regions observed in this study (CattleQTLdb, 2011).  A study by de Oliveira Silva et 

al. (2017) reported associations with rump fat on BTA2, BTA5, BTA6, BTA9, BTA13, BTA14, 

BTA15, BTA19 and BTA20.  Association of BTA5 and BTA9 with rump fat thickness supports 

the association identified in this study. PLINK software identified SNPs associated with the 

trait, whereas no SNP associations with rump fat was seen using EMMAX software. This 

difference between the two software programmes may be due to the differences in the 

methodology of each software.  

Back fat thickness had more SNPs associated when the trait was measured at 91 days 

on test, with three SNPs for 72day measurement and six SNPs identified for 91 day 

measurement. QTL for backfat thickness measured at 91 days was seen on QTL10751 within 

the region identified by the SNP identified on BTA5 (CattleQTLdb, 2011). BTA1, BTA2, BTA7, 

BTA9, BTA10, BTA11, BTA14, BTA16, BTA21, BTA29 were reported as having associations 

with backfat thickness by Hay & Roberts (2018) and de Oliveira Silva et al. (2017).  The 

associations on BTA1, BTA2 and BTA16 with backfat thickness supports the association found 
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in this study.  In contrast, Bhuiyan et al. (2018) reported no identification of SNPs associated 

to the backfat thickness.   

Allele frequencies that were calculated for the SNPs associated with the carcass traits 

are useful for the selection of the traits. The high frequencies of the favourable alleles as well 

as the high number of homozygotes indicate there has been selection for all traits. It has 

possibly been indirect selection that have caused fixation of the alleles for carcass traits within 

this population. There are fewer heterozygotes (AB) compared with the homozygotes (BB) 

and homozygotes (AA). Traits with high homozygosity for the AA alleles were BF91, EMA72 

and rump fat 72. Nguni cattle have good meat quality (Frylinck et al., 2009), and this is 

explained by the fixation of the favourable alleles for the carcass traits.  

In this study several SNPs were identified where no genes to date have been reported 

in the data bank (NCBI). Several genes could be associated with the carcass traits and a brief 

discussion on the most applicable genes were included. All genes associated with SW and 

DP has a catalytic activity (100%) as the molecular function. Biological processes for the 

slaughter weight occur equally as cellular processes (25%), metabolic processes (25%), 

biological regulation (25%) and cellular component organization or biogenesis (25%).   

Four genes were identified for BF. Binding function (50%) especially protein binding 

occurs mostly as a molecular function in all the genes involved in back fat. Molecular functions 

of the genes identified for EMA is binding which would explain the binding of muscle for an 

increase in the EMA. Metabolic processes furthermore occur mostly as the biological process 

for the genes identified for EMA. Only SMYD3 gene on BTA16 was identified for the rump fat 

thickness measured at 72 and 91 days on test, as well as for EMA91 and BF72. Binding 

function occurs in this gene identified for RF.  

Receptor activity and signal transducer activity occurs in only one of the fourteen genes 

as a molecular function. The binding function occurs the most frequently as a function of the 

genes associated with carcass traits. The biological process which is a function of many genes 

are cellular processes (20%), metabolic processes (20%) and this is followed by the 

developmental processes (13.3%) and biological regulation for all genes identified. The 

characterisation of the genes in terms of molecular function and biological processes supports 

the genes associated with carcass traits. The binding function could possibly indicate the 

binding of muscle and adipose cells relating to the slaughter weight and fat measurements (Mi 

et al., 2017).   

Many of the genes are responsible for various protein functions, mineral binding, as well 

as ATP binding and function. NIPA1, P2RY11, HDAC9, NT5C3B and FKBP10 genes are 

responsible for mineral binding such as calcium binding, manganese ion binding, iron ion 

binding and magnesium ion activity. Calcium is an important mineral for many cellular 

processes, one such a process is muscle functioning. Muscle excitation and contraction by 
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calcium has been well established, however this mineral has a role in muscle formation, 

growth and regeneration. These functions are still under investigation (Tu et al., 2016). This 

could possibly relate to carcass traits and the minerals involved in muscle formation, muscle 

health and contraction which influences the tenderness and meat quality.  

The gene HDAC9 is part of the histone deacetylase family. Within this family of genes 

there are two classes, of which this gene is part of class II. This gene is involved in the negative 

feedback cascade in the myogenic process (https://www.ncbi.nlm.nih.gov/gene/). Myogenesis 

is the muscle development during the embryonic phase where muscle regulating factors 

regulate the growth (Bentzinger et al., 2012). Transcription factors MEF2 plays a role in early 

skeletal muscle development, as well as the expression of the HDAC9 gene (Haberland et al., 

2007). The MEF2 transcription factors are responsible for muscle formation and the HDAC9 

controls the amount of muscle differentiation that takes place. Calcium has a role in this 

mechanism which influences the amount of muscle formation (Tu et al., 2016). HDAC3 which 

is a part of the same gene family as HDAC9 is responsible for lipid browning (Cao et al., 2017). 

Slaughter weight is associated with the HDAC9 gene and the function of this gene is 

associated with muscle formation which would increase the slaughter weight  

SMYD3 has been found to be involved as a signal transducer and Spurlock et al. (2014) 

has identified this gene as a candidate gene for feed efficiency traits in dairy cattle. In the 

mouse ortholog this gene is responsible to modulate myostatin and c-Met transcription of 

primary skeletal muscle cells (Proserpio et al., 2013).  C-Met is involved in the migration of the 

muscle satellite cells and muscle atrophy (Zou et al.,2009). This is important in regulating the 

size of the myotube and the skeletal muscle cells. The myostatin causes down-regulation of 

differentiation related genes such as MyoD which prevents the myogenesis process (Huang 

et al., 2007). This gene regulates the maintenance of skeletal muscle mass and is an effector 

of skeletal muscle atrophy. In this study the gene is associated with the BF72, EMA91, RF72 

and RF91 which can be related to the function of this gene, as muscle cell formation is finished 

when fat deposition starts taking place during the feedlot phase.  

NIPA1 gene is responsible for magnesium transportation and magnesium is an 

important mineral found in muscle tissue. This mineral improves the muscle strength and 

performance (van Dronkelaar et al., 2017). In the human ortholog this gene is responsible for 

muscle spastic paraplegia (Arkadir et al., 2014), and recently it has been identified in a patient 

with epilepsy and muscle neurone disease (Tanti et al., 2017). In this study the gene is 

associated with the BF91, which is not directly related to muscle diseases or the functioning 

of muscles. 

SYNE1 gene is Nesprin 1 gene which is responsible for muscular dystrophy, specifically 

Emery-Dreifuss muscular dystrophy (EDMD) in human orthologs. This gene has a binding 

function and specifically binds emerin and lamins (inner nuclear membranes). The binding 
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enables the muscle to link the nucleo-skeleton to the inner muscle membranes (Zhang et al., 

2007). The SYNE1 gene was associated with the EMA91 in this study, which could possibly 

relate to the functions as reported in PANTHER and Zhang et al., (2007). EMA is the area 

measured at the longissimus thoracicus et lumborum and functions relating to the muscle 

formation and the binding of muscle and fat would explain the association between this gene 

and the EMA.  

RS1 gene is involved in the function of the retina and a mutation would lead to defects 

in the retina. In knockout rodents it was shown there is a difference in the function of this gene 

in the retina and in the pineal gland (Takada et al., 2006). A different function in the pineal 

gland could influence the circadian rhythms in animals and indirectly influence puberty and 

growth. As this gene was associated with the dressing percentage in this study a growth 

function could be a possible explanation.  

 The function of the DDR2 gene has been reported in knockout mice where the pituitary 

gland was significantly smaller in the mutants and this gene was found in the pituitary gland 

of the wild type. The knockout mice had an increased lean mass as well as a decreased body 

mass in comparison with the wild type (Kano et al., 2008). This gene influences growth which 

explains the association of this gene with BF91 in this study. Further investigation into the 

applicability of the abovementioned genes identified in this study, to the specific traits are 

required.  

From this study it can be concluded that there is potential for RTU measurements in 

feedlots to predict the carcass quality. The GWAS provided information regarding the genetics 

underlying carcass characteristics in Nguni cattle. Further investigation into the gene ontology 

for the observed SNPs associated with each trait was useful to understand the biological and 

metabolic processes involved with each trait. 
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Chapter 5 General conclusion and recommendations 
 

5.1 Conclusion 
 

The aim of this study was to perform a genome-wide association study for carcass traits 

in South African indigenous Nguni cattle based on real time ultrasound data. Real time 

ultrasound (RTU) measurements are an important measure to determine the carcass quality 

on the live animal. The use of RTU measurements are limited in all breeds in SA, especially 

for the Nguni cattle. These measurements should be applied in Nguni cattle, to further improve 

the carcass quality of this breed. 

To conduct the genome-wide association study, 141 animals were genotyped with the 

Geneseek 150K GGP HD SNP chip. The genotyping of the animals in this study formed a part 

of the Bovine Genomics Project. Two data sets, with technical QC and genetic QC, were used 

to perform a GWAS using PLINK and EMMAX software. Results from the software identified 

43 SNPs in total, from which PLINK identified 28 SNPs and EMMAX identified 15 SNPs. Seven 

SNPs were identified in both software programmes, which could possibly validate the SNPs 

associated with the traits. The data set with only technical QC identified four additional SNPs 

for the dressing percentage. This confirms the theory that the application of MAF and HWE 

could possibly exclude valuable SNPs on rare alleles with a low MAF. These SNPs could 

provide valuable information concerning the traits under investigation and it is concluded that 

only technical QC should be applied to a dataset.  

The frequency of the favourable allele as well as genotypic frequencies for suggestive 

SNPs observed were calculated. From the results it was clear most of the frequencies of the 

major allele is high which indicates the possibility of indirect selection for carcass traits in the 

Nguni breed. Another explanation of this occurrence is all animals used in this study was 

slaughtered at an A2 slaughter weight. The high frequencies of the favourable alleles are 

beneficial as selection will be possible and genetic progress will be possible. The genotypic 

frequencies further supported these conclusions, as homozygous genotypes were identified 

for most of the SNPs. Three SNPs were identified for more than one trait under investigation 

which indicates the polygenic nature of these traits. 

Gene ontology of the identified chromosomal regions identified 15 genes. The biological 

process of these genes were mostly metabolic and cellular processes which can be related to 

carcass traits. Genes identified had a binding function and this is responsible for meat 

production.  

In conclusion farmers and cattle breeders should use RTU scans as a measurement of 

the carcass yield and quality in the feedlot. A GWAS is useful for the detection of associations 

between carcass traits and SNPs. The results presented here improves understanding of the 
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genetic mechanisms regulating the muscle tissue deposition and subcutaneous fat cover 

deposition of an indigenous Sanga cattle breed such as the Nguni. Novel associations with 

chromosomes and genes identified are possibly unique to Sanga breeds in SA and require 

further investigation. There are many chromosomal regions responsible for carcass traits and 

selection implementing this information will possible show genetic progress in Nguni cattle for 

carcass traits.  

 

5.2 Recommendations 
   

It is recommended that estimated breeding values (EBV) of the carcass traits should 

be included in further studies using GWAS. Further studies to validate the genes and QTL 

identified in this study for Nguni cattle would be recommended.  It would be useful to replicate 

this study with a few Sanga breeds indigenous to South Africa.  This would enable the 

validation of SNPs observed in this study for Sanga breeds as well as, identify additional genes 

and chromosomal regions unique to Sanga cattle in SA would also be possible.  

The study should investigate growth and efficiency traits such as the average daily 

gain (ADG). This would possibly assist in understanding the genetic mechanisms of growth in 

Nguni cattle and the reason these cattle have slower growth. Comparison of the gene 

expression in indigenous Sanga type cattle and Taurine cattle would be recommended to 

understand why the Taurine breeds have better growth in the feedlot. The sample size used 

in the growth trial as well as the number of animals genotyped should be increased for 

improvement of the power and accuracy of this study.  

It is further recommended that the chromosomal regions identified by the SNPs in this 

study should be used for selection of carcass traits in Nguni and possibly Sanga breeds. In 

particular SNPs identified by both software programmes should be used for selection. In future 

if a SNP array is developed specifically for Sanga cattle these SNPs should be included.  
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Addenda 
 

Addendum A: Carcass classification 

Table A1 Description of the classification of the carcass 

Measurement Classification 

Age 0 teeth: A 

1–2 teeth: AB 

3–6 teeth: B 

more than 6 teeth: C 

Fat thickness 0: no fat (0mm) 

1: very lean (<1mm) 

2: lean (1-3mm) 

3: medium (>3 and ≤5mm) 

4: fat (>5 and ≤7mm) 

5: slightly overfat (>7 and ≤ 10mm) 

6: extremely overfat (>10mm) 

Conformation / Roundness 1: very flat 

2: flat 

3: medium 

4: round 

5: very round 

Sex Male, Female, Castrated 

Bruising 1: slight 

2: moderate 

3: severe 
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Addendum B: Genome-wide association studies (GWAS) using PLINK software 

for data with genetic quality control 

a.  
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Figure B1 Manhattan plot displaying the results (-log 10 of p-values) for SNPs detected for a: 

EMA72, b: Rump fat72, c: Back fat72 
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a.  
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Figure B2 Manhattan plot displaying the results (-log 10 of p-values) for SNPs detected for a: 

EMA91, b: Rump fat91, c: Back fat91 
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Figure B3 Manhattan plot displaying the results (-log 10 of p-values) for SNPs detected for 

slaughter weight 

 

 

 

 

 

 

 

 

 

Figure B4 Manhattan plot displaying the results (-log 10 of p-values) for SNPs detected for 

dressing percentage 
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Addendum C: Genome-wide association studies (GWAS) using EMMAX 

software for data with technical and quality control 

 

a.  
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e.  

 

 

 

 

 

Figure C1 Manhattan plot displaying the results (-log 10 of p-values) for SNPs                  

detected for a: EMA72, b: Rump fat72, c: Back fat72 (Data with only technical QC) 
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Figure C2 Manhattan plot displaying the results (-log 10 of p-values) for SNPs                 

detected for a: EMA91, b: Rump fat91, c: Back fat91 (Data with only technical QC) 
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Figure C3 Manhattan plot displaying the results (-log 10 of p-values) for SNPs                  

detected for slaughter weight (Data set with technical QC) 

 

 

 

 

 

 

 

 

 

 

Figure C4 Manhattan plot displaying the results (-log 10 of p-values) for SNPs                 

detected for dressing percentage (Data set with technical QC) 
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Figure C5 Manhattan plot displaying the results (-log 10 of p-values) for SNPs                  

detected for a: EMA72, b: Rump fat72, c: Back fat72 (Data set with technical and genetic QC) 
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Figure C6 Manhattan plot displaying the results (-log 10 of p-values) for SNPs                 

detected for a: EMA91, b: Rump fat91, c: Back fat91 (Data set with technical and genetic QC) 
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Figure C7 Manhattan plot displaying the results (-log 10 of p-values) for SNPs                 

detected for slaughter weight (Data set with technical and genetic QC) 

 

 

 

 

 

 

 

 

 

 

Figure C8 Manhattan plot displaying the results (-log 10 of p-values) for SNPs                 

detected for dressing percentage (Data set with technical and genetic QC) 

 

 

 

 


