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Abstract

We introduce new tiered bank network structures, allowing for many different bank sizes,
and compare risk propagation in these structures with the well-known Erdős-Rényi, as-
sortative and disassortative structures. The simulations indicate that in the presence of
market sentiment and liquidity effects, the details of the structures in combination with
the distribution of assets, the system’s interconnectedness and its size are crucially impor-
tant in determining the risk of major capital loss in the network. In fact, even networks
with similar levels of tiering can behave markedly different depending on these factors. In
the absence of market sentiment and liquidity effects, the differences between the network
structures is smaller. This highlights the importance of considering the network structure
in conjunction with network characteristics, market sentiment and liquidity effects. This
implies that policy actions aimed at influencing a network’s characteristics must consider
all aspects unique to that particular system and cannot follow a ‘one-size-fits-all’ approach.
The framework is illustrated with an application using South African bank balance sheet
data. Spikes in simulated assessments of systemic risk agree closely with spikes in doc-
umented subjective assessments of this risk. This indicates that network models can be
useful for monitoring systemic risk levels.

In a large network setting, the study then considers the fraction of nodes that default
in stochastic, inhomogeneous financial networks following an initial shock to the system.
Results for deterministic sequences of networks are generalized to stochastic networks to
account for interbank lending relationships that change frequently. A general class of in-
homogeneous stochastic networks is proposed for use in systemic risk research, and we
illustrate how results that hold for Erdős-Rényi networks can be generalized to the pro-
posed network class. The network structure of a system is determined by interbank lend-
ing behaviour which may vary according to the relative sizes of the banks. We then use
the results to illustrate how network structure influences the systemic risk inherent in large
banking systems.
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Chapter 1

Introduction

The purpose of this research is to investigate how network structures can influence the
way that shocks propagate through financial networks and how this may affect policy de-
cisions. For smaller networks, we investigate how the interaction between network struc-
tures, liquidity risk and market sentiment can influence the results obtained. By focussing
on banking systems, we propose innovative structures to use for simulating the spread of
contagion between banks. This is used to show that different structures behave differently
under changes to network characteristics and therefore may react differently to changes in
legislation.

The first part of this research is focussed on smaller networks. A new simulation model
is developed and used to show how the risk of systemic collapse is affected by differences
in the network structure and other characteristics. While the proposed model is highly
simplified, it does incorporate certain real-world mechanics, namely heterogeneity between
bank asset sizes, market liquidity losses, investor sentiment, asset maturities, differences
in asset compositions and to some extent real-world lending behaviour. It can thus be
considered as more comprehensive and realistic than previously proposed systems. By
applying this framework to South African bank balance sheet data, it is shown that the
model is capable of detecting increases in systemic risk over time.

The second part of this research is focused on larger networks and therefore makes use
of asymptotic results. Known asymptotic results are shown to be applicable to a newly de-
fined, versatile class of stochastic networks. This is then used to make a similar comparison
between network structures as was made for smaller interbank systems.

The rest of this chapter is organised as follows: Section 1.1 discusses the background
to the research. Section 1.2 gives a short overview of literature that is relevant in order to
motivate the research questions. This includes a brief overview of the necessary network
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theory background in section 1.2.1. Section 1.3 then elaborates on the purpose and signif-
icance of the study, while section 1.4 is used to set out the structure for the remainder of
this thesis.

1.1 Background

Systemic risk and the spread of financial contagion are important considerations for regu-
lators tasked with overseeing stability of banking systems. Banking systems are at the core
of a well-functioning financial system. A breakdown of the system would hinder economic
growth, which in turn may cause permanent damage to the economy [34]. Therefore, it is
important for regulators to prevent such a breakdown from being triggered. Regulatory
intervention at a late stage could prove to be costlier than intervention at an earlier stage.
The burden of costly bailouts by the regulator are ultimately borne by the taxpayers, which
negatively affects the economy. On the other hand, if banks are allowed to fail without any
intervention, the economy can be strained by losses on investors’ deposits, rising interest
rates, possible bank runs etc. Monitoring the level of systemic risk in a financial system is
therefore crucial for ensuring long-term stability and growth of an economy.

Liquidity and market sentiment are two key requirements for a working banking system
that are also closely related. During times of economic distress, a lack of trust translates
into a reluctance of non-bank financial institutions to renew funding to banks. They then
impose more stringent lending requirements, which leads to increased risk premia on loans
and debentures thereby increasing banks’ wholesale funding costs. The higher interest
rates charged on servicing new debt means that additional assets may need to be liquidated
to service the debt or a reduction in asset origination, reducing (shrinking) the balance sheet
sizes of the affected banks. This puts a strain on those banks’ liquidity positions as the ma-
turity mismatch between short-term liabilities and assets increases. Ultimately, when the
funding costs become unsustainably high the bank may be forced to call in loans or liqui-
date assets prematurely. This, together with the increased funding costs can substantially
reduce the bank’s profitability and hence its retained earnings. This in turn reduces its Tier
I capital, which may lead to solvency problems [49]. This creates a spiral of distrust.

The complex nature of banking systems remains difficult to replicate and model pre-
cisely. Bottom-up approaches using integrated modelling frameworks are very useful, yet
they are difficult to calibrate, expensive and not readily available. This is because in prac-
tice, such an approach would involve the regulator providing a specified scenario to all
banks, after which the banks quantify their own risk position so that the regulator can then
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aggregate the risk positions [24]. It is therefore of interest to find simplified models that
consider the entire system from the start and that can detect changes in systemic risk. We
contribute to this by showing that network models of systemic risk can satisfy this require-
ment to a large extent. We illustrate how such a top-down model can be used by first
applying it to a hypothetical banking system. It is then applied to real-world balance sheet
data, and it is shown that changes in risk can be detected under times of market stress for
various network structures.

The chain of events that we aim to model is as follows: One bank in the system experi-
ences solvency problems, which may arise because of a significant increase in impairments
from non-performing loans. This could be because of a number of events such as unsus-
tainable lending practices or a disruption in its target market (such as the mine closures
experienced in South Africa). It is important to note that the applied model does not re-
quire us to specify the event that leads to the initial bank’s default, nor do we attempt to
model it. The equity of the aforementioned bank then declines, and shareholders need
to absorb the losses (followed by other subordinated creditors). Now there are three key
potential effects on the banking system. Firstly, the bank may start to default on its inter-
bank credit obligations. Secondly, other banks’ balance sheets may be affected through a
revaluation of assets and impairment provisions and they may need to raise additional im-
pairment provisions (e.g. if the initial bank’s troubles were due to increased impairments
on a specific type of loan book, other banks may need to raise their impairment provisions
for similar books to account for an anticipated rise in impairments). Another possibility
is that the bank may ultimately need to resort to forced sales to generate liquidity. The
increased supply of those assets in the market may depress their market value, leading to
mark-to-market losses for other banks holding similar assets. For this study, the distinction
between these possibilities (and hence the effect of the initial default on the banking or
trading books of other banks) is not explicitly made. Here, we assume a net reduction in
the balance sheets of other banks takes place which could be due to mark-to-market losses,
an increase in required reserves, or to a combination of both. This approach is adopted to
keep the model simple and consistent with existing models in the literature (see for exam-
ple [78, 52, 75, 13]). From here on, whenever the approach adopted for this study makes
reference to market liquidity risk, it is done with the understanding that losses due to raised
provisions is also considered. The second effect of the initially troubled bank affects the li-
ability side of other banks’ balance sheets and is more likely to lead to contagion. Funders’
trust in the ability of banks to service their debt may decline as they become incapable
of distinguishing between financially sound and troubled banks. This leads to liquidity
issues, as the cost of rolling forward short-term debt increases for the affected banks as
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Table 1.1: Illustration of a simplified bank balance sheet.

Assets Equity & Liabilities

Central bank deposits Total Loss Absorbing Capacity (TLAC)
Interbank assets Unsecured creditors
Retail loans Interbank liabilities
Corporate Investment Banking (CIB) loans Guaranteed depositors
Other assets Secured creditors

non-bank financial institutions are reluctant to renew their loans. Banks need to roll for-
ward their short-term debt as they usually invest in long-term assets and take short-term
deposits from funders. This gives them the needed liquidity at a low funding cost under
normal circumstances. Banks may then be forced to sell assets below their market value to
generate liquid funds and avoid maturity mismatches on their balance sheets.

A bank’s balance sheet can be illustrated by table 1.1, where the order of the liabilities
roughly reflects seniority levels. In the event of a shock on the non-interbank assets of a
bank, the TLAC portion of the liabilities will be affected first, followed by the unsecured
creditors. If problems in the system spread even further, banks could (depending on the
jurisdiction) choose to default on depositors before defaulting on interbank payments to
try and salvage confidence in the system. Interbank creditors that must bear the losses of a
shocked bank will then become shareholders of that bank.

While no bank has failed before due to interbank exposures, this may be because gov-
ernment intervention has prevented such failures [93, 66]. The fear of direct contagion
may cause losses through other channels of contagion and it is therefore important to un-
derstand the direct mechanism for losses between banks before exploring indirect losses
[66]. We address this in section 2.3 by investigating systemic risk with and without the in-
clusion of indirect mechanisms for contagion. An analysis of interbank contagion should
not focus solely on interbank losses [93]. Contagion within the system would necessarily
be underestimated without including all channels of contagion [38], and may lead to low
probabilities of default within the system [57]. This is addressed by incorporating market
liquidity and market sentiment effects in the model discussed in chapter 2.

When a bank experiences solvency or liquidity problems, it may be forced to sell assets
in order to generate liquid funds. This is an important contagion channel to include, as
market liquidity risk can have a significant effect on systemic risk in a network setting
[35]. Section 2.3 further shows that indirect channels of contagion can have a significant
effect on the systemic risk inherent in different network structures, and hence is a key
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aspect to consider.
Regulatory requirements such as Basel III aim to influence the system to make it more

robust. Considering this, it is important for regulators to be aware of the properties of the
system that make it prone to contagion. These properties need to be monitored and con-
trolled by regulators to protect the whole system. For example, regulators might encourage
the system to form connections in such a way as to promote a certain overall structure.
However, other characteristics of the system may influence which type of structure will be
the safest. For example, differences in the size distribution of banks could lead to different
structures being considered safe. The extent to which the system is affected by liquidity
risks could also affect the relative stability of different structures.

Not all interbank systems are alike in terms of the characteristics of the market players
within the system. Banks in different systems will have different distributions of assets,
balance sheet compositions, overall levels of interconnectedness, susceptibility to liquidity
risk etc. Strengths and available opportunities will differ between banks in a system and
between banks of different systems. This will in turn affect the business models adapted
by banks, thereby affecting their balance sheet compositions, funding structures and risk
appetites [82, 7]. If these differences in interbank networks result in different optimal
network structures, then the structure of banking systems need to be studied before investi-
gating what actions regulators might take to improve a system’s stability. For example, the
large Euro interbank market will likely behave differently than the South African banking
system where the number of banks participating in overnight interbank lending activities
is generally fewer than 20 [26].

Therefore, it is vital for regulators to understand the influence of interbank structure and
characteristics on the stability of the system. Admittedly the structure of banking systems
and its role in contagion is but one of many aspects that regulators need to consider [33].
It is nevertheless an important consideration that this research is devoted to.

The complexity of financial systems results makes it difficult to precisely model how
idiosyncratic shocks can lead to system-wide problems. For this reason we consider sim-
plified banking systems, which is discussed further in section 2.1. Network models of
systemic risk are by nature based on assumed parameters since the data for calibrating the
parameters do not necessarily exist (e.g. data for calibrating parameters linked to liquidity
risk is scarce at best). Therefore, we aim to gauge the relative effect of network charac-
teristics on system stability instead of attempting to determine the precise probability or
severity of systemic crises.
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1.2 Literature

1.2.1 Background to network models

A network is a system of N interacting agents (called nodes or vertices), where the interac-
tions between them form links between the nodes (called edges) [31]. It can be represented
as graph, which is a pair G = (V, E), where V = 1, 2, . . . ,N denotes the collection of nodes
and E = {{i, j}} is the collection of edges. An edge is represented by a set {i, j} of two
nodes i, j ∈ V that are connected via a link in the network. For directed graphs, the set {i, j}
is ordered and each edge starts at the first node i and ends at the second node j.

The banking system is represented as a network where the banks form the vertices.
These are the entities being connected to one another. The lending activities between them
form the connecting links (edges). Figure 1.1a provides an example of an unweighted,
undirected network where the edges all carry equal weight and do not contain any direc-
tional information. This is not representative of lending activities, as the directions of
lending and the loan amounts are important. For this reason, banking systems are repre-
sented as weighted, directed graphs. Figure 1.1b provides a graphical representation of
such a system where the arrows indicate the direction of lending. The thickness of the
arrows illustrates the varying weights of the exposures between banks.

   

   

   

   

   

(a) Unweighted, undirected graph

   

   

   

   

   

(b) Weighted, directed graph

Figure 1.1: Graphical representation of an unweighted, undirected network and a weighted,
directed network.

A commonly used method of modelling the edges between nodes is based on one of the
earliest probability models of a graph, studied in [44]. Here, each edge in the network is
present with a fixed probability p, referred to as the Erdős-Rényi probability. The resulting
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graph is called an Erdős-Rényi network. It can be used for both directed and undirected
graphs. We compare this model with extensions of it where the probability that a directed
edge exists from node i to j, p (i, j), is dependent on the nodes i and j. Note that for this
application, p (i, i) = 0 for all i ∈ V , and it is said that the graph does not contain any loops
(i.e. an edge cannot start and end at the same node).

The banks are represented by nodes and the mechanism through which a financial loss
of one bank spills over to others is represented by the edges. The edges need to be di-
rected to take account of the direction in which the losses propagate through the system.
The interpretation of the edges as mechanisms through which uncertainty is channelled is
discussed further in section 2.1.

The average probability that any node i is connected to another node j , i is given by
p̄ = 1

n(n−1)

∑
i, j p (i, j). It can be used as a measure of the interconnectedness of a network.

This is because higher/lower values of p̄ will lead to more/less edges in the network on
average, which in turn will make the nodes in the network more/less closely connected
to one another on average. It is therefore a simple way in which to assess how closely
interconnected the nodes are on average. We also use it to standardise different extensions
of the Erdős-Rényi network as described in section 2.2.1. The transmission of losses in the
network as described in section 2.1 makes use of nodes’ shortest paths. The shortest path
from a node i to another node j, say di j, is the least number of edges that can be used to
travel from node i to node j. It is used as a measure of distance between two nodes in a
network and takes account of the edge directions.

The way that banks are connected to one another via edges in a network is referred to
as the structure of the network. Real-world systems are often more complex than networks
where edges are distributed uniformly between nodes such as the standard Erdős-Rényi
network [69]. They often exhibit characteristics such as low average shortest paths and
nodes that are clustered together (called the small-world property). The Watts-Strogatz
model [96] can be used to generate such a network. Other commonly used network models
include those where nodes have a power law distribution of the number of edges connected
to them (referred to as a power law degree distribution). The Barabási-Albert model [4]
can be used to generate networks with this property.

1.2.2 Relevant literature and motivation for the study

With the growing complexity present in financial systems, the task of safeguarding banking
systems against collapse has itself become increasingly intricate. Against the backdrop of
the 2008 financial crises, a significant increase in systemic risk research has emerged in
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the hopes of understanding and protecting against it1. It is the goal of this research to
contribute to the growing body of literature by expanding on existing simulation models
and theoretical results. This is done by introducing a refined simulation model of interbank
lending, formally defining a class of networks that can be of great value to systemic risk
research, extending existing theoretical results for large networks and investigating the
effect of banks’ lending behaviour on systemic risk in both a small and a large network
setting.

A wide range of methods have been proposed to measure systemic risk and many of
these can be categorised according to whether they are based on market information (e.g.
[63, 62]) or balance sheet information (e.g. [8, 75]). Studies based on balance sheet data
have the advantage that the required data is publicly available, and hence it is not neces-
sary for researchers to gain access to sensitive information to apply their models. Care
must be taken in interpreting results obtained based on market information as these rely on
certain efficiency assumptions of the market [22, 5]. For example, the use of market infor-
mation may indirectly assume that market participants act rationally, that no information
asymmetries exist, or that all participants have the same risk vs. return preferences.

Many studies that make use of balance sheet data are network driven. Each bank in the
network has a simplified balance sheet structure, which may be assumed to change over
time (see e.g. [19]) and which determines the bank’s initial financial position before any
defaults have occurred. An illustration of the balance sheet structure used by the majority
of these studies is given in table 1.2.

Table 1.2: Illustration of a simplified bank balance sheet.

Assets Equity & Liabilities

Interbank assets Capital/Net worth
Other assets Interbank liabilities

Other liabilities

Network theory has been applied in a wide variety of disciplines including sociology,
computer science, epidemiology, biology, economics and finance [86, 15, 80, 3, 87, 68].
Network models of systemic risk typically represent the banking system as a network of
interconnected agents, where interactions between banks are modelled explicitly. An ad-
vantage of the network approach is that it emphasizes the relationships between the banks
and provides a clear distinction between individual entities and the financial network that

1See [85] for a discussion around topics covered by existing systemic risk research, and how the literature
has expanded over the last decade. Other notable surveys include [42, 89, 66, 36, 58].
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they form [23]. It provides a natural means to model the contractual relationships between
financial entities [6, 76].

Network models are flexible and can be adapted to incorporate different aspects of mar-
ket behaviour e.g. liquidity risk, liquidity hoarding and asset correlation (see e.g. [64, 52,
70, 51]). For example, the network of exposures generated by credit default swaps of the
United States of America is investigated in [73], the loans generated by the US Federal Re-
serve Bank emergency loans program is studied in [20], and in [53] international banking
exposures are considered. Network models can be embedded in equilibrium models that
take a game-theoretic approach to banks’ behaviour (see e.g. [1, 12]). Network models can
in general be embedded into larger macroeconomic models such that the effect of impor-
tant financial variables are taken into account when determining the level of systemic risk.
This has been done in [56] and [2] for example, where the former also includes central
bank activity as part of the model.

The models proposed here specifically exclude central bank activity for three main rea-
sons. Firstly, the main purpose of the study is to compare risk levels across different net-
works from a regulator’s point of view. In this case it makes sense to compare the network
structures independent from central bank attempts to stabilise the system. By excluding it,
it is possible to look at the levels of risk that the central bank must manage. Furthermore
from a practical perspective, regulators assessing policy responses to banking crises should
compare the cost of intervention to the cost of not intervening, since both options can be
costly [49]. A useful area of future research would be to consider a set of policy responses
and investigate how the network structure affects the risks borne by various stakeholders
such as depositors, taxpayers and other banks. One can then consider the risk borne by
each stakeholder when the risk is ignored and when the regulator intervenes.

Secondly, it would be an arbitrary and futile exercise to include a central bank’s re-
sponse, since crisis decisions by a central bank are usually made on a case-by-case basis
[5]. It would make sense to include a central bank where the purpose is to investigate the
effect of possible policy decisions by the central bank [56, 40]. For our purposes however,
it is important to separate the pure network effects from the consequences of unpredictable
regulatory decisions.

Finally, it is not the aim of this study to produce an accurate estimate of the level of
risk present in a financial system. The focus is rather on comparing different network
structures and characteristics in order to investigate relative levels of risk. The inclusion of
a central bank would make the results difficult to interpret since different conclusions may
be reached depending on how the central bank is chosen to interact with the system.

It is for a similar reason that the macroeconomic environment is left out at this point.
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For our purpose, we would not mix the effects of modelling the macroeconomic environ-
ment with the effects of varying network characteristics as this may influence the con-
clusions unduly. We do however acknowledge that embedding our network model into a
model of the macroeconomic environment and including a central bank remains an impor-
tant next step for future research.

It is to be expected that different network structures (not only different levels of in-
terconnectedness, but different types of structure) should have different effects on systemic
risk. This is because of the fact that interconnections between banks serve both as channels
of contagion and mechanisms for spreading losses more evenly over a number of counter-
parties. Heterogeneity between banks’ individual degree distributions should therefore
affect how contagion is amplified or resisted by the network. Network studies that in-
vestigate different types of structure (e.g. [51, 54, 83]) typically investigate systems with
homogeneous banks, or systems where the asset sizes are determined uniformly via simu-
lation. We argue that it is important to investigate different types of structure together with
a heterogeneous banking system since the size of a failing bank can significantly influence
the spread of contagion [70, 29].

Previous studies on network topology [70, 71, 83] have focused on comparisons be-
tween scale-free networks (which have power law distributions of degrees) and random
networks, as the former type has been found to be representative of real-life systems
[25, 84, 50, 39]). However, not all networks follow a power law distribution of degree
[32] and for smaller networks such as the South African system, a power law distribution
is theoretically unsuitable and difficult to test for. This is because a random variable X is
said to follow a power law distribution if it satisfies P (X > x) ≈ cx−α as x → ∞ (here,
0 < c < /in f ty is a constant and α > 0 is known as the tail index) [72]. With too few data
points it is not appropriate to test for the asymptotic behaviour of P (X > x).

This thesis addresses this shortcoming by investigating network structures that are ap-
plicable to smaller networks. We restrict ourselves to models where the probabilities p (i, j)
are functions of properties of the nodes i and j. This is done firstly to enable us to test a
wide variety of structures that are comparable to one another, since they are simulated in a
similar way. Secondly, since the p (i, j) probabilities are dependent on the nodes i and j, it
enables us to explicitly take account of differences between banks.

Even large systems may more closely represent a tiered network as opposed to a scale-
free network. For example, from [41] it seen that the German interbank system represents
fits tiered network model better compared to a scale-free network. Other empirical studies
such as [67, 48] have also found evidence of core-peripheral structures in interbank net-
works (see [66, 58]). Core-peripheral structures have a small number of tightly connected
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nodes which form the core, with a large number of sparsely connected nodes which form
the periphery. Structures representing tiered or core-periphery systems have been used in
the past [78, 10, 13, 92, 59]. However, these are constructed using different approaches
and are not formally tested for whether or not they can be regarded as tiered.

While previous studies on network topology have focussed on comparing one type of
realistic structure with a random network, we address the need for investigating a range of
structures (including more than one type of tiered network). We investigate structures that
can be easily applied to smaller networks (i.e. networks that are tiered, but not necessarily
scale-free), together with liquidity risk and market sentiment.

For the purpose of this study the ‘structure’ of the network not only refers to the de-
gree distribution of nodes, but the way in which the degree distribution is influenced by
the relative asset values of banks. Previous studies considering the structural effect of net-
works on systemic risk interpret the structure/topology as the level of interconnectedness
in the system, or the degree distribution as seen independently of the relative asset values
between individual banks (see for example [51, 54, 83]). While the way in which finan-
cial institutions are connected to one another plays an important role in the propagation
of shocks [89], we argue that it must not be investigated in isolation, but in conjunction
with lending preferences2 and other network characteristics such as capital levels, average
interconnectedness etc. In this work, the different structures explicitly take account of the
relative asset sizes of banks when determining banks’ lending behaviour.

Empirical evidence of the role of lending preferences in network structure differ. For
example, [74] find that asset size is not always clearly associated with lending preferences.
On the other hand, [41] find that the German core-peripheral network’s highly connected
core consists of money centre banks which act as intermediaries between other banks and
are identified by their size, specialization and balance sheet ratios. Similarly, [30] find
evidence that factors such as bank size, sector and type are indicative of a bank’s in- and
out-degrees.

It should be noted that many of the references contained in this thesis are based on
working papers, which is necessitated by the chosen research problem. The working papers
used for this thesis are published by reliable sources such as the BIS or reserve banks such
as the Bank of England.

2The work in [71] takes account of lending preferences between banks, but does this in a dynamic setting
where lending preferences change according to expected profitability.
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1.3 Purpose and significance of the research

This study makes the distinction between small and large networks for the following rea-
sons:

• Network simulation models of systemic risk offer much flexibility, allowing one to
easily include concepts such as liquidity risk and market sentiment. It is not practical
to use simulation models for large networks because of the computational demands.
By considering a smaller network, it is possible to incorporate a higher level of real-
ism into a model.

• It is noted that not all financial networks are sufficiently small to allow for simulation
modelling techniques. Some systems contain thousands of participants [94], which
may make a simulation approach too resource intensive. In such cases numerical
methods would be preferred. For example, simulation methods may be unfeasi-
ble for modelling international systems. Therefore it remains important to consider
asymptotic results, even if theoretical complexities limit the flexibility of such mod-
els.

The purpose of this research is five-fold. Firstly, we aim to investigate how different
network structures can influence the relative systemic risk. This is done by considering
both a simulation and an analytical model of systemic risk which account for differences in
bank asset sizes. The simulation model introduced here accounts for differences in the ma-
turity of assets and business models of banks, liquidity risk and investor sentiment. While
liquidity risk and investor sentiment are difficult mechanisms to incorporate in a realistic
manner, we argue that they are too important to ignore. Their importance is illustrated in
section 2.3, where it is shown that the effect of network structure is highly dependent on
the inclusion of these factors and the parameter values associated with them.

As mentioned in section 1.1, certain banking systems exhibit power law degree distri-
butions. However, not all networks follow a power law distribution [32] and for smaller
networks (e.g. the South African, Mexican or Belgian banking systems) this is difficult to
test for. We therefore aim to include a broader range of possible network structures when
analysing network sensitivities. This analysis is used to answer the questions below, which
are discussed further in section 4.1.1.

1. How does the structure of an interbank network influence the risk inherent in a sys-
tem?

2. Are some structures inherently less risky than others?
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3. How do network characteristics (i.e. interconnectedness, asset distribution and size
of the system) influence the answer to question 1?

4. How do indirect contagion mechanisms influence the answers to the above ques-
tions?

5. Can network properties (e.g. shortest path, clustering, level of tiering) assist in ex-
plaining some of the variation in risk levels observed from different structures?

6. What policy suggestions can be made regarding network characteristics?

The second purpose of the research is to assess the usefulness of network models of
systemic risk. Despite the growth in empirical analyses of banking networks3, there is a
gap in the literature regarding assessments of whether such models can capture increases
in systemic risk during stressed market conditions. To the best of the author’s knowledge,
this has not been investigated before in a South African context. This research addresses
this need by considering systemic risk at different points in time, during which incidents
of market stress were experienced.

The third purpose of this work is to contribute to the literature on analytical methods of
modelling systemic risk. This is done by building upon the theoretical results from [8] to
show that it can be applicable to sequences of networks with random degree distributions
and not only to deterministic degree distributions. This is of practical interest as the in-
terbank connections between banks change continuously over time. It bears similarities to
[9], who consider similar results for groups of graphs. That study also extends the results
from [8] to a more general setting. However, the randomness of that model originates from
the probability of a contagious link existing between any two nodes, whereas the random-
ness considered in this study originates from the probability of one bank lending to another
which leads to random degree sequences. This is motivated by empirical evidence from
[46] who show that interbank relationships are formed randomly on a daily basis, based on
the true underlying structure [91].

Finally, this study formalises the definition of a class of networks that can be used
to analyse a wide range of different network structures. The class of stochastic networks
defined in this study is based on the concept of multiple interacting networks [28]. The dif-
ference between this study and other studies that make use of such networks (for example
[17]) is that we do not consider different types of network connections (such as different

3For example [55] investigated the network properties of the South African interbank system, [65] focused
on Asian and Pacific banks, [95] on listed European banks, [94] on the German interbank market, [74] on the
Mexican system and [25] on the Austrian interbank market to name but a few.
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types of loan), but rather consider banks being grouped together according to some crite-
ria, such as their asset size. We therefore assume the existence of multiple groups of banks
(that can each be seen as a network on its own) that interact with one another via interbank
links. Banks within any one group are assumed to be similar in size and exhibit similar
lending behaviour towards one another and towards banks belonging to other groups.

This study provides two methodologies for addressing the problem of determining how
the structure of a network affects relative systemic risk levels. The methods presented and
developed here can be useful to regulators and for future research for the following reasons:

• We test a range of probability models to simulate agreements between banks, none
of which are overly complex. We show that three of the resulting network structures
can be seen as tiered structures when they are sparse, making them appropriate for
simulation studies of systemic risk.

• Sensitivity tests show that network structure plays an important role in determining
the level of systemic risk.

• Simulation results show that a combination of different network characteristics in-
fluence which structures a regulator could encourage to reduce risk.

• The proposed model can be embedded in a dynamic model of systemic risk with a
macro-economic environment for future research.

• We show that the network structure should influence the focus of regulation as it can
assist in informing which network characteristics influence systemic risk the most.

• The framework presented here can be useful to answer ‘what-if’ questions that arise
in practice and to give insight into what might happen to the system given an ap-
propriate network. The framework in itself can be used to generate a wide range of
output, for example one can investigate a range of different risk measures (average
capital lost, average proportion of asset value lost by the system etc.), and consider
correlations between this and the size of the initially defaulted bank.

• A useful class of networks are formally defined and we illustrate how this can be
used to generalize results for Erdős-Rényi (i.e. homogeneous) networks to inhomo-
geneous networks. This creates the opportunity for existing research on Erdős-Rényi
graphs to be applied to a much richer collection of networks.
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• We illustrate how this class of networks can be used to model and compare different
types of core-peripheral financial networks. These networks can explicitly take ac-
count of the lending preferences of banks based on asset sizes or any other network
characteristic.

1.4 Structure of the thesis

The study considers small and large systems separately from one another, since different
modelling techniques are appropriate depending on the size of the system. The focus of
chapter 2 is on a simulation methodology that is appropriate for smaller systems. Section
2.1 explains and motivates the modelling procedure. Section 2.2 presents and discusses
a range of structures that are investigated as part of the study. The results of the tests
performed on this model are presented in section 2.3. The simulation model is applied to
the South African banking system in section 2.4. The work presented in sections 2.1 to 2.3
has been submitted for publication in a shortened form. The work presented in section 2.4
has been accepted for publication in a shortened, alternative form.

Chapter 3 contains the asymptotic results for large networks. Section 3.1 presents the
relevant background and notation for this chapter. Section 3.2 discusses the existing results
for deterministic networks in depth. These results are generalised in section 3.3 to random
networks. Illustrations of the generalised results are included in section 3.4. The work
presented in chapter 3 has been submitted for publication in a shortened form, after which
feedback was received with the opportunity to resubmit. It has been resubmitted with the
revisions incorporated into this thesis.

Chapter 4 serves to conclude the thesis. The implications of the results from chapters
2 and 3 are summarised in section 4.1. The final conclusions of the research are discussed
in section 4.2. The shortcomings of the research and avenues for future work are also
included in section 4.2.

18



Chapter 2

Numerical model

This chapter is devoted to modelling systemic risk via a simulation approach, which is
appropriate for small networks. The simulation model presented in this chapter is based
on the work of [60] and [78]. It includes a novel contagion mechanism that represents the
spread of contagion due to a meltdown of trust in the system.

The chapter begins with section 2.1 which describes the mechanics of the simulation
model. This includes a description of how banks interact with one another and describes
the different contagion mechanisms that spread losses throughout the system. Six different
structures are investigated in this chapter. These are defined in section 2.2, where the
characteristics (average shortest path, clustering, and level of tiering) of each structure are
investigated. Section 2.3 investigates the sensitivities of the simulation model output to
changes in parameter values and compares the different structures in terms of this. Section
2.4 presents a practical application of the simulation model which illustrates the use of the
general methodology in practice. Here, the modelling procedure is adapted to reflect the
fact that losses due to direct counterparty exposures is inappropriate in a South African
context.

2.1 Simulation method

The description of the simulation method is broadly divided into two parts. The first is
section 2.1.1 which gives a description of the banks’ balance sheets and the relevant nota-
tion used for the remainder of this chapter. The second part (section 2.1.2) describes how
losses propagate through the system upon the default of an initial bank. It describes the
three mechanisms used to spread and amplify losses in the system. Finally, the section
defines and motivates the systemic risk measure used for this chapter.
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2.1.1 Network description

The basics of the model used for investigating the propagation of shocks are similar to those
from [60] and [78]. However, the model proposed here can be regarded as a refinement as
it incorporates liquidity effects (comparable to [75], but with slightly different dynamics)
as well as a proxy for investor/depositor psychology.

Problems can spread very quickly throughout the system [52]. Therefore a bank’s
failure is assumed to be dependent on its level of Common Equity Tier 1 (CET1) capital
(this is similar to the approach from [97], [77] and [39]) since CET1 capital can quickly
be converted into cash. Additional Tier 1 capital is excluded since these must first be
converted to cash in the event of a crises.

Even though not all countries will have the exact same requirements, it is not uncom-
mon for regulators to step in before insolvency or liquidation occurs. For example, the U.S.
Federal Deposit Insurance Corporation (FDIC) has thresholds specified in terms of CET1
capital that triggers corrective action against banks [45]. Regulators will likely also have
more than one criteria for corrective action. As these criteria are jurisdiction specific and
may be subjective, it is not possible to adopt a methodology that will reflect the conditions
for corrective action of all banking systems. That is why we align our methodology to the
rules published by the Basel Committee [18]. The BIS requires a minimum of 4.5% CET1
capital to risk-weighted assets, and the FDIC regards a bank as significantly undercapi-
talised if the ratio is less than 3%. For simplicity, we will assume that a bank is removed
from the network when its ratio of CET1 capital to total assets falls below 3% (the model
can easily be adapted to reflect different default definitions). This is because corrective
action will likely be taken against a bank well before all of its CET1 capital is depleted.
As this assumed 3% is 33% lower than the prescribed minimum of 4.5% required by the
BIS, it is reasonable to assume that such levels of capital will trigger corrective action to be
taken against a bank. For ease of reference we refer to such a bank as being insolvent, even
though we acknowledge that in practice there are specific rules for determining whether a
bank should be declared insolvent or be placed under liquidation.

The simplified assumption is made that a bank’s providers of capital are shareholders,
banks, other institutional investors and depositors (in increasing order of seniority). In
practice, the seniority hierarchy would likely differ and be more refined. For example
certain depositors could lose out before a bank starts to default on its interbank payments
as mentioned in section 1.1. However, for the general purpose of this model, this hierarchy
will suffice. If the model is to be applied to a specific country, it can easily be adjusted to
reflect that country’s regulation.
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Table 2.1: Illustration of a simplified balance sheet for a bank i.

Assets Equity & Liabilities∑
j li, j Interbank assets aiγi CET1 Capital

a(s)
i Short-term assets

∑
j l j,i Interbank liabilities

a(m)
i Medium-term assets N/A Other liabilities

a(l)
i Long-term assets

Therefore, bank counterparties start losing out on their capital after the shareholders’
capital (which very roughly makes up the CET1 capital in addition to disclosed reserves)
is depleted. This is the basic mechanism with which losses spread through the system —
any loss amount that could not be absorbed by a bank’s CET1 capital will lead to losses
for that bank’s lenders. These lenders will then also experience losses in accordance with
the amount of their loans that could not be repaid. Apart from this, there are two additional
mechanisms by which failures lead to further losses in the system. The different ways in
which losses spread through the system are described in detail in section 2.1.2 below.

For each bank a simplified balance sheet is constructed that can be seen as a refine-
ment of the structure illustrated in table 1.2. Here the non-interbank assets are subdivided
according to their term. Three categories are chosen for the term namely short, medium
and long. Short-term assets are defined as those with a maturity less than one month. The
medium-term assets are those with a maturity of less than one year (but more than one
month), and the long-term assets include those with maturities longer than one year.

The short-, medium- and long-term assets of a bank i are denoted by a(s)
i , a(m)

i and
a(l)

i respectively and the total assets of i is ai. The value of the interbank assets held by
institution i as a result of loans granted to j is denoted by li, j. In other words, this can be
regarded as i’s exposure to j. In a network representation of the system where the banks
represent the vertices, the connections formed through interbank lending and borrowing
form the edges. If li, j > 0 then it is said that there exists a directed edge with weight li, j

from i to j. The ratio of CET1 capital to total assets held by institution i is denoted by γi and
will be referred to as a bank’s capital ratio for our purposes. The liability and equity side
of the balance sheet will consist of CET1 capital, interbank liabilities and other liabilities.
The simplified balance sheet structure and the relevant notational conventions adopted by
this study is illustrated by table 2.1.

Let N denote the total number of banks in the network. For reasons mentioned in sec-
tion 1.2, the model considers systemic risk from the perspective of a lender of last resort
and hence assumes the absence of bailouts. Even though banks have counterparty expo-
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sures outside of the banking system, we consider a closed system as we are interested in
the risk arising from interactions between the banks only. In other words, we are interested
in the endogenous risk due to a combination of network structure, network characteristics,
liquidity risk and investor sentiment. The size of each vertex is determined by its total
asset value — banks with higher asset values will represent bigger vertices. The network
is therefore represented by a weighted directed graph with N vertices of differing sizes.

2.1.2 Simulation of shock propagation

Initial shock and direct losses

Once the edges connecting the banks are determined (section 2.2 discusses different ways
for determining this), each edge can be assigned a corresponding exposure, li, j. This is the
amount that bank i has lent to bank j. It is assumed that li, j = 0 whenever there is no edge
from i to j. The values of these exposures can be determined via simulation, or they can be
based on actual balance sheet data. Section 2.3 explains how the exposures are determined
for the purpose of our simulations.

Unless specified otherwise, assume for the remainder of this chapter that for all i, γi =

γ > 0.03 to ensure that all banks start off solvent and well capitalised. The system is
shocked by reducing the capital of a single bank n, presumably because of suffering a loss
on its non-interbank assets. For the purpose of this study, such an event is called an ‘initial
shock’ since we assume that it was a significant and unexpected event. This implies that
bank n needs to use its CET1 capital, anγn, to try and absorb the loss caused by the shock.
To standardise the initial shock across banks of different size, it is specified as a fraction,
say s of its total assets. The resulting loss amount is subtracted from the capital held by the
bank. If the capital of n falls below 3% of its total assets, the bank is deemed significantly
undercapitalised and is removed from the network (for ease of reference, we refer to the
bank as having failed). If the loss is greater than the capital, the shortfall must be absorbed
by the funds held for the interbank liabilities. If this is not enough, the rest of the loss is
absorbed by the funds held for the other liabilities. It is assumed that losses absorbed by
the non-interbank liabilities do not propagate through the system.

In other words, when bank n is shocked its external assets are reduced by an amount
of S n = s ·

(
a(s)

n + a(m)
n + a(l)

n

)
. There are three possibilities regarding the spread of this loss

through the system. If S n < anγn−0.03an, the loss is absorbed by the capital and no further
losses occur. Secondly if anγn − 0.03an < S n < anγn, then n is deemed undercapitalised,
but there are no direct counterparty losses since the loss is less than n’s capital. There will
only be liquidity and proximity shocks to the system, which are explained below in this
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section.
Finally, if S n > anγn then n fails and its interbank counterparties suffer a total credit loss

of min
{
S n − anγn,

∑
k ln, j

}
(liquidity and proximity shocks apply as well, and are explained

below). In this case if S n − anγn <
∑

k ln, j, then the amount of the loss above the capital is
less than the total interbank loans made by bank n. This shortfall then needs to be divided
between the counterparties. It is done proportionately according to the amount owed to
each counterparty. For example, the amount lost by each counterparty i is equal to

L(1)
i,n = (S n − anγn)

ln,i∑
k ln,k

. (2.1)

Hence, direct losses suffered by a counterparty cannot exceed the amount of the original
loan. Of course if S n − anγn ≥

∑
k ln,k, then each counterparty loses the full amount of their

loan.
This concludes the direct spread of interbank losses. In practice, losses caused due to

indirect contagion effects are highly relevant and should be included in such an interbank
model. The spread of these indirect losses through the system is discussed next.

Liquidity effects on the system

Further losses spread through the system in the form of liquidity shocks, which are com-
parable to the liquidity shocks introduced in [75]. Every time a bank defaults, the non-
interbank assets of all other banks receive a shock that reduces the value of their holding in
those assets by a specified factor. This is a simplified way of accounting for raised provi-
sions and market liquidity risk. The non-interbank assets are categorised broadly according
to term. This is based on the presumption that assets of differing maturity will be affected
differently by problems in the system. An important aspect for future work would be a
refinement of this classification and to model the reaction of the markets in these assets
more thoroughly. Let g(s), g(m) and g(l) be parameters associated with the reduction of value
for the short-, medium- and long-term assets respectively. The short-term non-interbank
assets of each bank i is reduced from a(s)

i to a(s)
i · exp

(
−g(s)

)
, where the reduced values for

the medium- and long-term non-interbank assets are calculated similarly. The loss to each
bank i is therefore equal to

L(2)
i =

∑
η∈{s,m,l}

a(η)
i

[
1 − exp

(
−g(η)

)]
, (2.2)
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This is a commonly used method in the systemic risk literature for modelling changes in
asset prices due to changes in supply and demand [37, 75, 52, 78]. It makes sense in
this setting because the factor exp

(
−g(s)

)
will always be in the range (0, 1), but will never

be equal to 0 or 1 (i.e. there will always be some loss, but not all of the assets will be
lost). This implicitly assumes that all banks in the system hold similar classes of assets,
which is generally not the case. Therefore the less stringent assumption is made that banks
following the same business model hold similar classes of assets. This is appropriate since
the business model of a bank is driven by its business objectives, which in turn affects its
funding, asset mix and impairment provisions.

For the purpose of this study, we use the three bank business models empirically iden-
tified in [82]. Banks are deemed either retail-funded, wholesale-funded or capital markets-
oriented based on balance sheet ratios identified by the authors. The asset mix held by
retail and wholesale-funded banks were found to be noticeably similar. Therefore suppose
first that the defaulted bank n and another bank i are either both retail-funded or wholesale-
funded, or that one bank is retail-funded and the other wholesale-funded. In this case the
expression in (2.2) for the reduction in the value of i’s non-interbank assets remains the
same.

On the other hand, suppose that the defaulted bank n is capital markets-oriented and
another bank i is retail-funded or wholesale-funded (or vice versa). Then bank i’s short-
term non-interbank assets are reduced from a(s)

i to a(s)
i · exp

(
−

g(s)

ν

)
, where ν ∈ (1,∞) and

with g(s) replaced by g(m) and g(l) for the medium- and long-term assets respectively. In this
case, bank i suffers a loss of

L(2)
i =

∑
η∈{s,m,l}

a(η)
i

[
1 − exp

(
−

g(η)

ν

)]
. (2.3)

The factor ν in equation (2.3) is used to ensure that banks with asset compositions different
to the failing bank receive smaller liquidity shocks than implied by equation (2.2). By
adjusting the expression in (2.2) in this way, we achieve two important goals. Firstly,
the model is based on less restrictive assumptions as we no longer assume that all banks
hold similar classes of assets. Secondly, this is achieved without introducing many new
parameters or overcomplicating the model unnecessarily. The parameter ν serves as a
measure of the difference between the asset composition of two banks. For the purposes of
our illustrations we assume that ν = 2. The implication of this choice for ν depends on the
chosen parameter values of g(η), η = {s,m, l}— The greater the values of g(η), the greater
the difference will be between exp

(
−g(s)

)
and exp

(
−

g(η)

ν

)
.”
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This type of loss captures reductions in the market values of assets resulting from the
fire-sales or inopportune sales of bank n’s assets. It is referred to as liquidity losses or
liquidity shocks for the remainder of this thesis. The associated parameters are referred
to as liquidity reduction parameters. Higher values of these parameters would result in
greater reductions in the value of external assets. Each of these parameters represents the
expected effect that the insolvency of a bank would have on the non-interbank assets in the
system.

A bank should normally have more short-term assets that are available for sale com-
pared to medium- and long-term assets. This should increase the value chosen for g(s)

compared to g(m) and g(l). Next, as long-dated assets are inherently less liquid than shorter
dated assets, the probability of those assets being affected should be higher than for shorter
dated assets. Finally, since longer dated assets have higher discounted mean terms, their
anticipated devaluation should be higher than for shorter dated assets.

Each of the parameters g(s), g(m) and g(l) should incorporate a combination of these
three factors. Since it is not possible to determine their net effect without conducting an
in-depth analysis of the system in question, it is necessary to make a simplified assumption.
One of the three effects push up the parameter associated with short-dated assets, and the
remaining two increase the parameter associated with long-dated assets. Therefore we
assume that the liquidity risk parameters are increasing with term, i.e. g(s) < g(m) < g(l).
This is reflected in the benchmark system discussed in section 2.3. While the objective of
this study is not to model the values for the reduction parameters, it remains an important
consideration for future work.

Loss of confidence through proximity shocks

A third type of shock is aimed at including factors associated with investor confidence.
Any bank that is viewed as being ‘in close proximity’ to the failing bank is penalised as
the market might start to doubt its financial soundness. The reaction of the market will
typically depend on the circumstances surrounding the default and therefore it is preferred
to take a generalised modelling approach to capture the effects of market sentiment. To
put this into context, consider the following chain of events: An initial bank fails due to
an event that adversely affects its assets. We do not specify what type of event this is —
it could be due to unsustainable lending practices, large proportions of its customer base
suffering from financial strain or any other event that causes impairments to increase sig-
nificantly and unexpectedly. For example, following the curatorship of African Bank, some
of the larger banks received credit downgrades from Moody’s which increased their cost of
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borrowing. The reason given for the downgrade was that while the Reserve Bank did mit-
igate contagion risk by issuing a bailout, some creditors were allowed to suffer losses and
hence Moody’s was of the view that there is a “lower likelihood of systemic support from
South African authorities to fully protect creditors in the event of need”1. Other examples
include the banking crisis in Greece which saw a run on the banks that negatively affected
banks’ liquidity positions, and the European sovereign debt crisis which resulted in credit
downgrades and increased costs of borrowing. Instead of restricting ourselves to particular
scenarios, we consider a wide range of possibilities regarding the spread of distrust in the
system. This is done by simulating network paths according to the structures presented
in section 2.2, which avoids the need to consider the circumstances surrounding the initial
default.

The model proposed by this thesis investigates what could happen if such an event
(shock) causes this bank to become insolvent or severely undercapitalised. This could re-
sult in fire-sales when the shocked bank has to forcibly sell assets, depressing the value of
similar assets held by other banks (this is captured by the liquidity parameters in section
2.1.2 above). Furthermore, the market will react to the news of the initial shock event even
if the root cause of the shock is not immediately clear. In fact, it may take several months
for audit investigations to be completed before the details of the failure are known to the
public. During this time, the market might be uncertain as to whether the initial shock
event is self-contained, or whether it affects other banks as well. Depending on the circum-
stances, the market may suspect other banks of suffering from similar shortcomings as the
first bank (perhaps due to similar business models or target markets). This may cause a loss
of confidence in those banks. This in turn could lead to problems for those banks in rolling
forward their short-term liabilities, causing further losses due to maturity mismatches. In
this context, losses due to such a lack of confidence will be called a proximity shock. This
avoids confusion with losses due to the fire sales of a defaulted bank.

The factors that determine how close one bank is to another are debatable. In practice it
would be related to the initial shock event, the modelling of which is not the purpose of this
thesis. The measure of closeness adopted should depend on information that is available
to investors, since proximity shocks are based upon the market’s view of the remaining
banks.

Suppose di,n > 0 denotes the distance from any bank i to a failing bank n, which
can be measured in any way that makes sense for the situation to which the model is
applied. In order to reflect the shrinkage of a bank i’s balance sheet due to increased

1https://www.moodys.com/research/Moodys-downgrades-four-South-African-

banks-on-review-for-further--PR_306571, accessed 2018/09/28
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funding costs and any resulting forced sales, the short-term non-interbank assets of bank
i become a(s)

i · exp
(
− δ

di,n

)
where the formulae for the medium- and long-term assets are

constructed in the same way. The loss suffered by bank i is given by

L(3)
i,n =

∑
η∈{s,m,l}

a(η)
i

[
1 − exp

(
−
δ

di,n

)]
.

The parameter δ is a reduction factor associated with proximity shocks. It represents the
degree to which banks may suffer losses due to the difficulty of raising funding. Similar
to the liquidity reduction parameters, different proximity factors should be assigned to
different types of assets when applying this model. However, we avoid introducing too
many parameters for the purpose of illustration by using the same parameter for all non-
interbank assets.

This approach implicitly assumes that distrust in the system is only initiated after a
default, and that banks of equal distance to the defaulting bank will experience losses of a
similar degree. The appropriateness of the first assumption depends on the circumstances
surrounding the default, and whether the market was aware of any friction within the sys-
tem beforehand. The second assumption is unlikely to hold in practice but is required to
keep the model simple and tractable. Finally, the model makes the underlying assump-
tion that the loss of market sentiment due to a bank’s failure is independent of the failed
bank’s size. In practice, it is expected that the failure of bigger banks will affect market
sentiment more adversely than that of smaller banks. However, it is not straightforward
to determine the magnitude of such differences, and the resulting effects may obscure the
network implications that we aim to investigate in this thesis.

The ‘closeness’ between banks can be measured in a variety of different ways. The
below examples serve to demonstrate this.

Example 1: Shortest path Distance from a solvent bank i to a failing bank n can be
measured by means of the shortest path from i to n. Note that direction plays an important
role here, as such paths should follow the direction of the connecting edges for this to
make sense. This is based on the presumption that the market is concerned about the
interbank counterparty losses that i experienced. In this case, we have that di,n ∈ N, with
di,n = 1 if i has an outgoing edge directly connected to n. In this case i suffers a loss of
ai

(
1 − exp (−δ)

)
, which is the largest proximity loss that it can experience. However, this

is not a realistic option, since in practice the market will not have knowledge of banks’
bilateral agreements. It is therefore important to look at other measures of closeness as
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well.

Example 2: Asset size Relative asset size can be used as a measure of closeness if
the market believes that banks of similar size to a failing bank may suffer from similar
difficulties. If we let di,n =

max{ai,an}

min{ai,an}
, then di,n ∈ [1,∞). A bank i is closest to the failing

bank n if ai = an, in which case i will suffer a loss of ai
(
1 − exp (−δ)

)
. The greater the

difference between ai and an, the smaller the loss ai

(
1 − exp

(
− δ

di,n

))
becomes.

Example 3: Business model Another possibility is to link the distance between banks to
differences in the business models that they adopt. Banks that make use of similar business
models can be regarded as close, while banks with different business models are regarded
as further away from one another. The intuition behind this approach is the notion that
banks with similar business models invest in similar asset classes or industries. If one
bank fails as a result of a reduction in the value of its external assets, the market may be
sceptical about the financial state of other banks that hold similar external assets. Suppose
banks are categorised according to the same business models as for the liquidity shocks,
namely retail-funded, wholesale-funded or capital markets-oriented. Here, one possibility
for di,n is as follows:

di,n =



1 if i and n employ the same business model

2 if i is retail-funded and n wholesale-funded, or vice versa

3 if either i or n is capital markets-oriented and the other is

retail-funded or wholesale-funded.

(2.4)

For the sample of banks from [82], all three business models differ significantly from one
another with respect to their funding profiles. On the other hand, the retail-funded and
wholesale-funded business models’ asset compositions were noticeably similar. This is
why the retail-funded and wholesale-funded categories are considered closer to one another
than the capital markets-oriented and retail-funded (or alternatively, the capital markets-
oriented and wholesale-funded) categories. This partly informed the choices for the above
parameters: If banks i and n employ the same business model, the resulting proximity
shock is the greatest. If i is retail-funded and n wholesale-funded (or vice versa), then the
resulting proximity shock is reduced slightly. If either i or n is capital markets-oriented
and the other is retail-funded or wholesale-funded, then the resulting proximity shock is
reduced further. Other than to capture this hierarchy, the choices for the above parameters
are arbitrary and intended for illustration purposes, since no empirical evidence is available
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with which to make more informed choices.

Example 4: Network approach The final example of how proximity shocks can be
incorporated makes use of a networks-on-networks approach. In addition to the network
of interbank exposures, we construct a second network where the connections between
banks have a different meaning. Here, the market considers two banks as close if they
have similar characteristics such as a target industry. For example, a directed edge from
i to n could exist if i invests in an industry that is similar to what n invests in. A shortest
path approach to bank n can be used here. This will be similar to example 1, except that
the edges we consider are based on a second network. An advantage of this approach
over example 1 is that it avoids the assumption that the market is aware of banks’ interbank
counterparties. However, it is difficult to decide on how to construct an appropriate network
structure to use. This approach is adopted in section 2.4, where this simulation framework
is applied to the South African banking system.

After the default of the initial bank n, the total loss to each remaining bank i is given by
Li,n = L(1)

i,n + L(2)
i + L(3)

i,n . This concludes the description of the three ways in which losses
spread through the system, i.e. through direct credit losses, liquidity effects and proximity
shocks. The section below provides a description of how these losses are combined to
produce a default cascade.

Default cascades

Suppose that the initial bank n is shocked and that it fails because of this shock. If the
initial loss exceeds the capital held by n, its counterparty creditors will suffer direct losses
because of this. Since n failed, there will be a liquidity shock to all banks regardless of
whether they were a counterparty to n or not. The extent of this shock will depend on the
different business models of the banks, to account for the fact that not all of them hold the
same assets. There will also be proximity shocks to the other banks based on how close
they are to n.

For each remaining bank, the potential losses due to all three channels of contagion
are added together. The total loss for each bank is then subtracted from their respective
reserves. Those banks that received losses of more than 3% of their assets fail as a result.
This concludes the first round of default. Note that all remaining banks in the system
(excluding those that have already defaulted as part of the first round of default) will have
their assets adjusted at this point. For example, suppose that a bank k did not default, but
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that its assets were reduced as a result of the failure of n. Then its assets are recalculated
accordingly, such that its interbank and non-interbank assets all reflect the losses that had
to be absorbed. This will affect any future calculations of its threshold 0.03ak used to
determine whether it is undercapitalised.

Now there may be more than one bank that had defaulted. The direct counterparty
losses resulting from all the defaulted banks are determined. For every bank that had
failed, liquidity and proximity losses are assigned to all remaining banks based on the
procedures detailed above. Note that banks defaulting at the same time do not affect each
others’ losses. For example, suppose that banks i and j both default as a result of bank
n’s failure. Let S n,i be the total loss to i as a result of the failure of n. Then the fact that
j has also defaulted because of the failure of bank n will not increase S n,i any further.
Similarly, the default of i will not affect S n, j, the loss suffered by j. This means that any
direct counterparty losses, liquidity shocks and proximity shocks of i and j will not affect
each other.

For each remaining bank in the system, the losses experienced by it are added together
to determine the next round of default. The above procedure is then repeated for all re-
maining banks, and the default cascade stops whenever no more banks are failing. The
cascade can therefore either stop when all losses in the network have been absorbed, or
when no more banks are left in the system. Over all banks in the system, the total loss
in capital over all nodes in the system is calculated as a proportion of the system’s total
capital. In other words if ci is the capital of bank i before the start of the cascade, and c′i(n)
is i’s capital at the end of the cascade which was initiated by the default of bank n, then we
calculate the proportion

θn =

∑N
i=1

(
ci − c′i(n)

)
∑N

i=1 ci
. (2.5)

Suppose there is a total of N banks in the system. A simplified measure of systemic risk
is calculated as follows: The above procedure is repeated N times, and for each repetition a
different bank is chosen as the initially defaulted bank. After each repetition of the cascade,
the proportion given by equation (2.5) is calculated. Thereafter, the balance sheets are reset
to their original states. The average of this ratio over the N repetitions of the cascade is
then calculated, i.e. we calculate

θ̄ =
1
N

N∑
n=1

θn. (2.6)

This whole procedure is repeated m times, where the links between the banks are re-
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simulated for each repetition. Due to the various sources of randomness, it is not possible
to theoretically determine a suitable value for m. Therefore, the value of m was chosen
to be 10 000, which yielded stable results without unduly increasing the processing time
required for the simulations. The average of θ̄ over all the simulations2 is then used as
a straightforward measure of systemic risk. This measure reminds of the methodology
used to construct the Contagion Index [39] and is called the average capital reduction
ratio (CRR) for our purpose. The model can easily incorporate more refined measures
of systemic risk, which is left for future research. However, this measure is sufficiently
intuitive for our purposes since it satisfies the following:

1. It takes account of the extent of losses, i.e. the larger the losses that are suffered by
banks, the higher the level of risk that will be measured.

2. The default of a big bank will increase the risk measure by more than the default of
a small bank if both banks lose the same percentage of their assets. For example,
suppose that both banks initially had a CET1 capital ratio of 5% and that at the
end of the cascade both had defaulted by having their CET1 capital ratio reduced to
2%. Since the bigger bank would have had a bigger monetary loss, it would have
contributed more to the numerator in equation (2.5) than the smaller bank.

3. It is standardised over systems with different total asset values and equal capital
ratios if the fraction of capital left over at the end of the cascade remains the same.
This is because equation (2.5) is expressed as a percentage of total capital.

4. Increasing/decreasing the number of banks N in the system will not skew the results
unduly, since the denominator in equation (2.5) will increase/decrease along with a
potential increase/decrease in the numerator.

2.2 Different network structures

Six network structures were investigated for the purpose of this chapter. The definitions
of the structures are presented in section 2.2.1 below, where a standardisation procedure
is presented to ensure that the structures are comparable to one another. Three global
network measures are used in section 2.2.2 to compare the structures to one another and to
gain insight into how relevant the structures are for modelling systemic risk.

2It makes sense to consider the average over a number of simulations for the links, since in practice the
short-term interbank lending relationships change daily. This means that the network links are continuously
changing and therefore by taking the average over a number of simulations, it is possible to get an indication
of the systemic risk on a ‘typical’ day.
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2.2.1 Definition and standardisation of structures

Each structure is defined according to the probability that there exists a connecting edge
between any two banks. This is motivated by empirical evidence from [46] who show that
interbank relationships are formed randomly on a daily basis, based on the true underlying
structure [91]. Our probability model approach is therefore appropriate, as we are consid-
ering static model as opposed to a dynamic approach where the underlying structure might
change over time.

Three of the structures are included in the interest of investigating a wider range of
structures, including ones that are widely known in network theory. These are the Erdős-
Rényi, assortative and disassortative structures. The remaining three structures improve
on others commonly found in the banking network literature by capturing real-world be-
haviour, namely the presence of tiering in banking networks. Banks included in the upper
tier are more connected to the remainder of the network, while the lower tiered banks are
less connected amongst themselves than to the upper tiered banks. Such tiered structures
have been found to be more representative of actual banking networks than scale-free struc-
tures, and have a much clearer economic meaning [41]. When only two tiers are consid-
ered, a tiered structure is similar to a core-peripheral structure (where the system consists
of a few, highly connected core banks and a larger number of small, less interconnected
banks that form the periphery).

For all structures apart from the Erdős-Rényi case, the connection probabilities are
based on the total asset values of banks. It is natural to assume that the number of debtors
and creditors for small banks will differ from that of large banks, and that the probability
of a bank extending (receiving) credit to (from) another bank will differ between banks of
differing sizes. Indeed, empirical evidence has shown that banks in the upper tier tend to be
large [41]. This behaviour is captured in our three more realistic structures. The formulae
for determining the connection probabilities for all structures are now presented.

Let p(i, j) be the probability that bank i has an outgoing edge to bank j. As banks
cannot lend to themselves, p(i, j) = 0 whenever i = j. For the rest of this section, assume
that i, j ∈ {1, 2, . . . ,N}, with i , j. The proposed formulae for p(i, j) for structures 2 to
6 are motivated by the fact that they are simple and easy to calculate, while managing
to capture the intended lending behaviour as a function of banks’ asset values. In order
to enable comparisons of the different structures, the p(i, j) probabilities are normalised
before applying them. The different network structures are specified below. After this, we
discuss the procedure for normalising the the p(i, j) probabilities to enable comparisons
between them.
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1. Erdős-Rényi, where each edge from i to j exists with a fixed probability p(i, j) = p
for all banks i and j where i , j. This is used as benchmark network structure as
well-known early network models of banking systems (e.g. [78, 52, 75]) are based
on it due to its simplicity. However, it is not very realistic as banking networks have
been found to exhibit different types of structures. The Erdős-Rényi structure is in-
vestigated by this study for comparison purposes, even though it does not necessarily
have much practical value if the structure of a system plays an important role.

2. Disassortativeness, where banks of similar size are generally unwilling to do business
with one another. The opposite holds for banks that differ greatly in size. This
structure is investigated for the sake of theoretical interest since this is a well-known
structure type in network theory. For this structure, the connection probabilities are
given by

p(i, j) =
max

{
ai
a j
,

a j

ai

}
max

k,m∈{1,...,N}
k,m

{
ak
am
, am

ak

} . (2.7)

3. Assortativeness, where banks of similar size are keener to do business with one an-
other than banks that differ in size. As for the disassortative case, this structure is
unlikely to be found in actual banking networks. It is included here for theoretical
purposes since it is a well-known structure from network theory and the modelling
concept is based on ideas from network theory. The connection probabilities before
normalisation are given by

p(i, j) =
min

{
ai, a j

}
max

{
ai, a j

} . (2.8)

4. “Attraction to size”, where any bank is generally more willing to lend to a bigger
bank. In other words, banks with higher asset values are viewed as more creditworthy
by lender banks. This type of structure might be more representative of periods of
financial distress, as lenders may perceive bigger banks to be better able to absorb
financial losses. This can also be viewed as a situation where the bigger banks are
regarded as too-big-to-fail, reflecting a general belief that a lender of last resort will
step in if such banks run into trouble (even though this is not the case with the chosen
model methodology). As the bigger banks are highly interconnected with the rest of
the system, this structure may lead to the bigger banks also being too-interconnected-
to-fail. A detailed analysis of the consequences of bailouts for such banks is left for
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future research as the focus here is on the propagation of risk, and not assessing the
cost of bailouts or regulation. For this structure, the formula for the probability of a
bank i lending to another bank j is given by

p(i, j) =
a j

max
k∈{1,...,N}

{ak}
. (2.9)

5. Tiered type I, where large banks tend to lend to each other frequently and small banks
are reluctant to lend to one another. The probability of smaller and larger banks doing
business with one another is in between these two extremes. This structure attempts
to provide a more realistic view of potential banking structures. In this case

p(i, j) =
ai + a j

max
k,m∈{1,...,N}

k,m

{ak + am}
. (2.10)

The denominator is a constant used to ensure that p(i, j) ≤ 1. The numerator ai + a j

then ensures that p(i, j) is at its lowest when ai and a j are the two lowest asset values,
and that p(i, j) is one when ai and a j are the two highest asset values in the system.
In general, p(i, j) will be low when both ai and a j are low, and it will be higher when
both ai and a j are high.

6. Tiered type II. This structure attempts to create a hierarchical banking network which
can also be considered as more realistic. The probability of

• a small bank lending to another small bank is low,

• a small bank lending to a large bank is also relatively low

• a large bank lending to a small bank is high,

• a large bank lending to another large bank is also high.

To achieve this structure, the following formula is used:

p(i, j) =
ai + a j + max

{
ai − a j, 0

}
3 · max

k∈{1,...,N}
{ak}

. (2.11)

Similar to the tiered type I structure, the denominator is a constant that ensures
p(i, j) ≤ 1 and the behaviour of the structure is captured by the numerator. Part
of the numerator is the same as that of the tiered type I structure, namely the quantity
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ai+a j. The term max
{
ai − a j, 0

}
is used to refine this structure further — if the lender

bank i is larger than the borrower bank j, then the probability p(i, j) is increased.

Figure 2.1 illustrates the behaviour of each structure. The size of a node is indicative
of the bank’s total asset value and the transparency of a line suggests the probability of
a directed edge existing. For example, a solid line from a larger node to a smaller node
indicates that the probability of a directed edge existing from a large bank to a small bank
is high. A dashed, transparent line indicates a lower probability of an edge existing.

This concludes the description of the standard connection probabilities between nodes
in the system. Note that for a given set of asset values, the average number of edges
will differ between the different structures. For comparative purposes, it is important to
work with similar levels of connectedness between the different structures. Otherwise
differences in systemic risk levels between structures may largely be driven by differences
in connectivity as opposed to differences in the network structure alone. In addition to
this, it is important to have a systematic way of varying the level of connectedness in the
network to investigate its effect on systemic risk.

For these reasons, a method for scaling the probabilities is required. Such a method will
need to provide scaled probabilities that remain in the range [0, 1]. It must further allow one
to standardise the different structures to represent the same level of connectivity between
them. We will measure the level of connectivity by means of the average probability of an
edge existing in the system (i.e. the average probability of one bank lending to another).

Let p̄0 be the average probability of an edge existing in the system based on any one of
the above six structures. Then

p̄0 =

∑N
i=1

∑N
j=1
j,i

p(i, j)

N (N − 1)
. (2.12)

Note that p(i, j) = 0 whenever i = j. These entries are not included in the calculation of
the above average and they are to remain zero after scaling. The aim is now to find a way
of scaling the p(i, j) probabilities in such a way that a new average, say p̄, is obtained.
The new average p̄ is specified beforehand and the p(i, j) probabilities need to be scaled
accordingly. Here, the probabilities p(i, j) should be adjusted in a consistent way such that
the new probabilities remain in the range [0, 1] and that the ranking of the probabilities
remain the same. In other words, if two probabilities p(k, l) and p(m, n) satisfy p(k, l) <
p(m, n) before scaling, then the same inequality must hold after the probabilities have been
scaled.

Scaling all the p(i, j) probabilities by the same factor will not suffice. If this were
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(a) Erdős-Rényi

 

(b) Assortativeness

 

(c) Disassortativeness

 

(d) Attraction to size

 

(e) Tiered type I

 

(f) Tiered type II

Figure 2.1: Illustration of the different network structures considered for application of this
simulation model.

to be done, it would not be guaranteed that the probabilities will remain smaller than 1.
Therefore one needs to consider the distances of p̄0 and p̄ to 1 and to 0. Suppose p̄0 > p̄.
Then the p(i, j) probabilities need to be scaled downward. Let the new probabilities be
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given by

p̃(i, j) = p(i, j)
p̄
p̄0
. (2.13)

The new probabilities (where i , j) will now have the required average:∑N
i=1

∑N
j=1
j,i

p̃(i, j)

N (N − 1)
=

∑N
i=1

∑N
j=1
j,i

p(i, j) p̄

N (N − 1) p̄0
= p̄. (2.14)

Suppose now that p̄0 < p̄. The probabilities need to be scaled upward closer toward
one. The new probabilities are then given by

p̃(i, j) = 1 − (1 − p(i, j))
1 − p̄
1 − p̄0

, (2.15)

and they have the required average since∑N
i=1

∑N
j=1
j,i

p̃(i, j)

N (N − 1)
=

1
N (N − 1)

N∑
i=1

N∑
j=1
j,i

(
1 − (1 − p(i, j))

1 − p̄
1 − p̄0

)

= 1 −
(

1 − p̄
1 − p̄0

) 1 −
∑N

i=1
∑N

j=1
j,i

p(i, j)

N (N − 1)


= 1 −

(
1 − p̄
1 − p̄0

)
(1 − p̄0)

= p̄. (2.16)

2.2.2 Characteristics of the proposed structures

The purpose of this section is to investigate meaningful network characteristics of the struc-
tures above. This is done firstly to facilitate interpretation of the results in section 2.3 and
to determine whether such characteristics can be used to explain differences in systemic
risk. Secondly, the results are used to determine whether the attraction to size and tiered
type I and II structures are more appropriate for systemic risk modelling compared to the
other structures defined in section 2.2.1. Finally, we use the results presented here to infer
an appropriate choice of p̄ to use as a base parameter for the analyses in section 2.3.

The following global network characteristics are considered in this section:

1. Average shortest path: The Floyd-Warshall algorithm [47] is used to calculate the
shortest paths for all nodes. Note that this average does not need to be calculated

37



separately for the out-degrees and the in-degrees, since one node’s in-coming links
are others’ out-going links.

2. Weighted clustering coefficient: This takes account of both the direction and the
weight of the edges. The measure and its explanation below is based on [79].

3. Tiering error: This is based on a method of measuring how far a given network is
from a perfectly tiered network [41]. The adopted definition of a tiered network is
specifically chosen to make sense in a banking context.

We restrict our attention to the above measures, as other measures of network charac-
teristics do not provide additional meaningful information in our context. For example, the
level of tiering provides similar, but more meaningful, information compared to centrality
measures since it specifically requires larger nodes to be more central to the network. Other
measures such as the diameter of the network do not provide any additional information
over the chosen measures and cannot be used to test for important characteristics such as
the small-world property.

The simulations done for the purpose of this section are based on an example network
of N = 35 banks, where the total assets are evenly distributed over a bounded Pareto
distribution3 with parameters α = 0.001, xmin = 1 000 and xmax = 140 000 000. The Pareto
distribution is appropriate as it has been used in the past to model the distribution of wealth
[81] and empirical evidence has found that assets follow a heavy tailed distribution. Note
however that if the unbounded Pareto distribution is chosen, it typically results in only
a single large bank that overshadows the rest due to the sub-exponential property, while
it is of interest here to have more than one large bank. The bounded Pareto distribution
results in a few large banks and various smaller banks, which is more representative of
actual banking systems than a system containing a single large bank. The minimum and
maximum values chosen are roughly within the range of asset values observed in the South
African banking system (if the asset values are given in R’0 000s), which is of similar size
as our benchmark system. A graphical representation of this system for the tiered type
II structure with p̄ = 0.1 is given in figure 2.2 for illustration purposes. Here the nodes
will, on average, have 3.4 outgoing edges and 3.4 incoming edges. It can be seen that the
smallest nodes on the perimeter of the network generally have two to four edges in total
connected to them. That is, the outgoing and incoming edges together add up to between
two and four edges as opposed to the average total of 6.8. This means that the largest

3The version of the bounded Pareto that we consider has probability density function f (x) =
α xαmin x−α−1

1−
( xmin

xmax

)α ,
where xmin ≤ x ≤ xmax.
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nodes have many more edges connected to them to compensate for the numerous small
nodes with few edges.

Figure 2.2: Graphical representation of a hypothetical tiered type II banking network with
average connection probability p̄ = 0.1.

Average shortest path

The average shortest path from one node to another in the network provides information on
how close banks are to one another in terms of their direct credit exposures. This is closely
related to the average level of interconnectedness of the network.

A low average shortest path may mean that contagion in the network reaches the re-
maining banks in the system more quickly. In network theory, low average path lengths can
be an indication of efficiency, since information is passed on easily between nodes. Since
we consider the spread of losses, it is ideal in our setting to prevent the spread of ‘infor-
mation’ between nodes. When more than one bank fails, the other banks are more likely
to receive direct counterparty losses. This is because they are more likely to be directly
connected to the failing banks.

On the other hand, the typical shortest path is an average taken over all nodes. Therefore
a low shortest path could mean that there are many disconnected banks in the system, with
some nodes having lots of edges connected to them. If this were the case, then some banks
won’t suffer any direct counterparty losses and others are on average likely to distribute its
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interbank assets across many banks, meaning that losses are spread more thinly between
counterparties than otherwise. This may prevent the remaining banks from experiencing
large losses, thereby preventing the spread of contagion.

Figure 2.3 shows a comparison of the average shortest paths obtained from each net-
work structure for varying levels of interconnectedness, p̄. As expected, figure 2.3 shows a
general decline in average shortest paths as p̄ increases. For the attraction to size structure,
there is a sudden increase in the average shortest path at approximately p̄ = 0.1. This is
due to the fact that the original average level of interconnectedness, p̄0, for the attraction
to size structure as given by equation (2.9) is equal to 0.0991 for our choice of base pa-
rameters. Suppose bank k is the largest bank. Then before any scaling of the probabilities
p (i, j) (i.e. before applying equation (2.13) or (2.14)), we have that p (i, k) = 1 for all i , k.
Therefore if the required average level of connectedness satisfies p̄ < p̄0, then there will be
a non-zero probability of having at least one bank with no in-degrees or out-degrees. But
if p̄ ≥ p̄0, then all banks i , k in the system will always be connected to k. This is what
gives rise to the jump in shortest path at approximately p̄ = 0.1.
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Figure 2.3: The average shortest path in the system for each structure as a function of p̄,
the level of interconnectedness in the system.

In addition to the attraction to size structure, the assortative, tiered type I and tiered type
II structures also have kinks in their respective lines in figure 2.3. This is due to the way
that the scaling is done in equations (2.13) and (2.14). Since the formula used for scaling
changes when p̄ is increased beyond p̄0, the resulting rate of increase for each individual
p (i, j) changes as well. The point at which this happens differs between structures, since
the value of p̄0 differs between them. The disassortative structure however, does not visibly
display the same behaviour at the relatively small original average of p̄0 = 0.02.
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Global clustering coefficient

In social networks, clustering can be used to describe the likelihood that two acquaintances
of a person are also acquainted. In other words, suppose a node i is connected to two other
nodes j and k. Then the global clustering coefficient provides information on the likelihood
that j is also connected to k [79].

Three nodes i, j and k form a triplet whenever they are connected by two edges such
that there is a one-directional flow from the first node to the last. For example a triple
centred on node i will satisfy either l( j, i) > 0 and l(i, k) > 0 or l(k, i) > 0 and l(i, j) > 0.
A triplet is transitive or closed whenever there is a directed edge from the first node in the
triplet chain to the last. Otherwise it is called intransitive. This is illustrated in figure 2.4.
In this setting the weights of the edges are given by the exposure amounts l(α, β). This is
used to determine the weight assigned to a triplet, which is given by (l( j, i) + l(i, k)) /2 in
figure 2.4.

(a) Illustration of an intransitive triplet (b) Illustration of a transitive triplet

Figure 2.4: An illustration of an intransitive and transitive triplet centred on node i. The
exposures between the banks are the weights of the edges and both triplets’ weights are
equal to l( j,i)+l(i,k)

2 .

The global weighted, directed clustering coefficient of a graph G is then given by

C (G) =
Total weight of transitive triplets

Total weight of all triplets
. (2.17)

A high clustering coefficient indicates that a large number of triplets in the system are
transitive. To investigate what this implies for a banking system, consider what happens to
each triplet in figure 2.4 in the event that bank k fails. Let lm denote the interbank assets
of any bank m and assume for simplicity that the triplet is disjoint from the rest of the
system. This amount needs to be divided amongst m’s counterparties. Therefore the more
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Table 2.2: Comparison of the potential direct counterparty losses for an intransitive and
transitive triplet, given the failure of k or/and i.

Direct counterparty losses
Intransitive triplet Transitive triplet

If only k fails: li li +
l j

2

If only i fails: l j
l j

2

If k and i fails: li + l j li + l j

counterparties that m has, the smaller the loan amount allocated to each counterparty. For
the purpose of this illustration, we assume without loss of generality that interbank assets
are divided equally amongst counterparties, failing banks default on the full amount of
their interbank loans and that the effect of liquidity and proximity risk parameters can be
ignored.

Assume first that the triplet centred on bank i is intransitive, so that it is represented by
figure 2.4a. If k fails, then i loses li due to direct counterparty losses. If i also fails, then
j loses l j in direct counterparty losses. Note that we do not consider the potential failure
of j, because a triplet does not require any directed edges from i or k to j. Suppose on the
other hand that the triplet centred on i is transitive (figure 2.4b). Then if k fails, i loses an
amount of li and j loses an amount of l j

2 . If i fails, then j loses a further l j

2 .
These possibilities are summarised in table 2.2, from which it can be seen that neither

column always contains losses less than or equal to the other column. If only bank k fails,
then the total capital lost is greater for a transitive triplet. The opposite holds true if it were i
that defaulted. Consider now the event that k defaulted first and that this caused i to default
as well. Then the total loss would be equal, but the loss to node j would occur earlier in
the default cascade for a transitive triplet. This is because j would lose an amount of l j

2

during the first round of default already, which is not the case for the intransitive triplet.
Therefore, even if i did not default in the case of a transitive triplet, j would still suffer a
loss which may consequently lead to its failure. This suggests that the effect of clustering
on the risk in the system is not straightforward, but it may be possible that a large number
of transitive triplets can lead to more defaults if bank j as illustrated in figure 2.4 does
not hold enough capital to withstand the event that bank k fails. This discussed further in
section 2.3.

Figure 2.5 contains the average clustering coefficient for the different structures for
a range of interconnection levels. As expected, the clustering in the system generally
increases for increasing levels of interconnectedness. Similar to figure 2.3, there is a sudden
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change in the slope of each structure’s line where p̄ = p̄0 in figure 2.4. This is again due to
the difference in the scaling formulae used, depending on whether p̄ < p̄0 or p̄ > p̄0 (see
equations (2.13) and (2.14)).
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Figure 2.5: The average weighted, directed clustering coefficient for each network structure
as a function of p̄, the level of interconnectedness in the system.

The attraction to size structure exhibits a significantly higher level of clustering com-
pared to the rest of the structures, while the two tiered structures also exhibit higher clus-
tering levels compared to the the Erdős-Rényi network. This is suitable, since empirical
evidence has found that real banking systems tend to exhibit high clustering [66]. Even
though some empirical studies find that disassortative structures are representative of real-
world banking systems [66], we argue that a tiered approach is more appropriate since it is
more refined and carries more economic meaning [41]. This is supported by the fact that
the disassortative structure shows clustering levels that are too close to a purely random
network (i.e. to the Erdős-Rényi network) in figure 2.5.

Tiering error

In a perfectly tiered network, the following requirements are satisfied:

(a) Top-tier banks always lend to one another;

(b) lower-tier banks never lend to one another;

(c) each top-tier bank must lend to at least one lower-tier bank; and

(d) each top-tier bank must borrow from at least one lower-tier bank.
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The tiering error measures how far a given network is from a perfectly tiered network. The
definition of a perfectly tiered network bears similarities to our proposed structures 4 to 6.
One would therefore expect these to have a lower tiering error than the other structures.

Suppose there are n banks in the system, c of which are top-tier banks. For all i, j ∈
{1, 2, . . . , n}, let Li, j = 1 if li, j > 0 and Li, j = 0 otherwise. Then the tiering error of a graph
G is given by

E (G) =
ECC + EPP + ECP + EPC∑n

i=1
∑n

j=1 Li, j
, (2.18)

where ECC, EPP, ECP and EPC respectively denote the components of the error measure
that are associated with each of the tiering requirements (a) through (d). Note that in order
to calculate this measure, each node in the network G must be categorised as either top-
tier or lower-tier. The combination of top-tier and lower-tier banks must be chosen such
that the tiering error is minimised. Simulated annealing can be used to find the optimal
combination of top-tier and lower-tier nodes that minimises the tiering error. Simulated
annealing is an optimisation technique that can be used to find global maxima or minima
of a given function. The terminology used to explain simulated annealing come from
thermodynamics, where the process of slowly lowering a substance’s temperature is called
annealing [27]. The process of performing simulated annealing is described by [27] as
follows:

1. Choose a starting temperature T = T0 and a decreasing function that is used to
decrease the temperature at each iteration of the procedure. The values that are
assigned to the temperature T at the various iterations of the procedure is called the
annealing schedule. There are no concrete rules for determining T0 and the annealing
schedule. For this application it was found that T0 = 1 and a temperature function
f (k) = 1 − k

100 , k ∈ {0, 1, . . . , 99} could be used to find the optimal core.

2. Choose a starting set of initial estimates. This choice was inferred by the discussion
in [41], where it is indicated that a bank is part of the initial periphery if it either has
no borrowers or no lenders. Otherwise it forms part of the initial core. Our initial
estimate is therefore the set initial core banks.

3. Randomly select a ‘neighbour’ of the initial estimate. Following [41], a neighbour
is found by randomly picking any node from either the core or the periphery and
moving it to another category. In other words, if the chosen node was part of the
core, it is moved to the periphery and vice versa. The new resulting set of core banks
is then the neighbour.
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This step is subject to the constraint that a node in the core must borrow from, or
lend to at least one node in the periphery. Hence, nodes that cannot be moved to the
core cannot be selected to determine the neighbour estimate.

4. Compare the function values based on the initial estimate and its randomly chosen
neighbour. The function is this application is the tiering error given by equation
(2.18). Let θold and θneighbour be the tiering errors based on the initial estimate and the
neighbour respectively. Then if θneigbour < θold, the neighbour estimate is chosen as
the new estimate for the core. Otherwise, select the neighbour estimate with proba-
bility exp

{
θneigbour−θold

T

}
and keep the old estimate with probability 1 − exp

{
θneigbour−θold

T

}
.

5. Repeat steps 3 and 4 until an equilibrium is reached. Following [41], equilibrium
is achieved when the error score cannot be reduced any longer. The equilibrium is
taken as the set of core banks that produced the least tiering error after repeating
steps 3 and 4 100 times.

6. Lower the temperature according to the annealing schedule and repeat steps 2–5,
using the equilibrium from the previous step as the new initial estimate. After the
temperature has reached 0, the algorithm is stopped and the final equilibrium is the
approximation for the global minimum.

Given the refined definition of the tiering error, its consequences for systemic risk is
not straightforward. This is discussed further in section 2.3 below. As illustrated by figure
2.6, the level of tiering and the number of banks belonging to each tier will vary with
the interconnectedness of a network. This is because a network with no interconnections
should be perfectly tiered with all nodes belonging to the lower tier. Similarly, a fully
connected system will be perfectly tiered with all banks belonging to the top tier. This
is illustrated by figure 2.6a where the average number of top-tier banks is an increasing
function of p̄, starting close to zero and increasing to 35 (i.e. the total number of banks
in the system). Between these two extremes it is expected that networks will rarely be
perfectly tiered. This is supported by figure 2.6b, which shows that the error is relatively
small for sparse networks, but never very close to zero. As p̄ increases, the tiering error
increases and then shows a decreasing trend as the network becomes more interconnected.

The three network structures that we consider to be the most realistic exhibit the lowest
average tiering error for most values of p̄. This is to be expected given the similarities
between the adopted definition of a perfectly tiered system and the formulae used to deter-
mine the probabilities p (i, j). It is interesting to see that the tiered types I and II structures
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(a) Average number of banks in the top tier as a
function of p̄

0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

3

4

5

6
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Figure 2.6: Comparison of the tiering error and the average number of banks in the top
tier between all structures. These are expressed as functions of the average connection
probability p̄.

exhibit the same average tiering error throughout, even though they are not identical. Fur-
thermore, the less sophisticated attraction to size structure matches a tiered structure more
closely than tiered types I and II. If E (G) ≥ 1, then it is not worth fitting a tiering model at
all [41]. This shows that the choice of p̄ is an important factor to consider when deciding
whether a structure can be regarded as tiered or not. Although figure 2.6b suggests that
the attraction to size and tiered type I and II structures are significantly more tiered than a
random network, we test this formally in appendix A.1.

Implications of network characteristics

The results from this section alone are not enough to fully explain differences in risk levels
for the network structures. This is because a single number used to characterise a whole
system does not contain enough information to make any inferences. The average shortest
path and the clustering coefficient may be useful in explaining some of the results from
section 2.3 below, but the tiering error is more useful for assessing the appropriateness of
different structures.

Figures 2.3, 2.5 and 2.6 can, however, be useful in assessing whether the proposed
network structures satisfy empirically observed characteristics. As real-world banking
systems tend to satisfy the small-world property, it is preferable for structures to have
smaller average shortest paths and higher clustering coefficients compared to an Erdős-
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Rényi network. Furthermore, such structures need to be tiered and sparse. Sparseness can
be achieved for any structure by choosing a low enough value for p̄. This needs to be
balanced against the fact that p̄ influences the average shortest path, clustering and level of
tiering of a network. Figures 2.3, 2.5 and 2.6 show that the attraction to size, tiered type I
and tiered type II structures are good candidates for appropriate network structures. They
generally exhibit low average shortest paths (except for the attraction to size structure when
p̄ > 0.11), high clustering coefficients and low tiering errors compared to an Erdős-Rényi
network.

The attraction to size and tiered type I and II structures can therefore be used to infer a
default value for p̄ for use in section 2.3, as these most closely resemble real-world systems.
The largest banks should ideally form the top tier of the network. From figure 2.2 it can
be seen that between four and seven banks in the network are significantly larger than the
others. The formulae for the connection probabilities p (i, j) for the three realistic structures
generally lead to higher levels of interconnectedness for the largest banks. Therefore the
largest banks will generally be part of the top tier. Based on these observations, figure 2.6a
implies that p̄ = 0.1 is a sensible choice, since the core consists of approximately five to 6.5
banks on average. This is supported by figure 2.6b, which shows that the average tiering
errors are relatively low (and less than one) for the realistic structures when p̄ = 0.1.
Finally, since this choice of p̄ will result in sparse networks, we conclude that it is an
appropriate choice for illustration purposes.

This concludes the discussion regarding the network properties of the different struc-
tures. In section 2.3 below, the simulation model described in section 2.1 is applied to these
structures to investigate their effect on systemic risk.

2.3 Sensitivities and the effect of different network char-
acteristics

This section presents the sensitivity tests performed on the simulation model investigated
in this chapter. The benchmark system used for the sensitivity tests are described in section
2.3.1. Thereafter, section 2.3.2 presents the effects on systemic risk levels when the model
parameters are varied.
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2.3.1 Constructing the benchmark system

For a single run of the model, the links are simulated once and the system is shocked N
times. For each time i that the system is initially shocked, bank i’s total assets are reduced
by s = 0.2 of their original value4. The average proportion of capital lost by all banks
over the N cascades is then calculated (see equations (2.5) and (2.6) on page 30 for the
definition of the CRR, the capital reduction ratio). For each time n that the system is
shocked, the balance sheet entries of the banks are reset to their original positions, and the
default cascade starts with bank n receiving the initial loss. For each network structure, the
model is then run 10 000 times to obtain an average CRR over a number of simulations.

To ensure comparability with the results of section 2.2.2, the illustrations in this section
are based on a system of N = 35 banks with total assets evenly distributed over a bounded
Pareto distribution with the same parameters as before (α = 0.001, xmin = 1 000 and
xmax = 140 000 000). The average probability of an edge existing between any two nodes
i and j (i , j) is given by p̄ = 0.1. This is in line with our results from section 2.2.2 and
ensures that we obtain sparse networks that exhibit empirically observed characteristics for
our three most realistic structures.

The CET1 ratio for all banks is γ = 0.05, which is higher than the Basel III risk
weighted minimum of 4.5% (note that the minimum CET1 ratio is lower than the mini-
mum Tier I capital ratio of 8%). The difference between our CET1 ratio and the Basel
minimum CET1 ratio is sensible since regulators generally set their own minimum capital
requirements which are often higher than the Basel minimum requirements. Furthermore,
the ratio used as a benchmark here is not directly comparable to that of Basel III since the
former ratio is unweighted.

The benchmark system based on the above parameters is investigated with and with-
out liquidity and proximity effects. When liquidity and proximity reduction factors are
included, the base values are given by g(s) = 0.05, g(m) = 0.06, g(l) = 0.07 and δ = 0.06
respectively. All of the above base parameters are summarised in table 2.3.

In order to apply the method outlined in section 2.1.2 for determining the liquidity
shocks, it is necessary to assign a business model to each bank. The assignment of banks to
retail-funded, wholesale-funded or capital markets-oriented business models is done in line
with the empirical findings of [82]. Therefore we assume 25 retail-funded, 6 wholesale-
funded and 4 capital markets-oriented banks which is, on average, in line with their latest

4It is noted that in practice not all external assets lose their value in the same way, for example banks
may hold mostly covered bonds or mostly sovereign bonds. However, for the purpose of this illustration the
mechanism that leads to the loss is not specified to avoid over-complicating the model and distracting from
the research objectives.
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Table 2.3: Parameter values for the base model.

Parameter Value

N Number of banks 35
α Bounded Pareto shape parameter 0.001
xmin Bounded Pareto scale parameter 1 000
xmax Bounded Pareto scale parameter 140 000 000
γ Capital ratio 0.05
g(s) Short-term liquidity reduction factor 0.05
g(m) Medium-term liquidity reduction factor 0.06
g(l) Long-term liquidity reduction factor 0.07
δ Proximity reduction factor 0.06
p̄ Average probability of an edge existing

between nodes i , j 0.1

(2013) sample of banks. For each simulation of the links, the banks will be randomly
assigned a business model according to these proportions. It is important to note that the
typical proportions of a banking system that belong to each business model category is not
the same for different countries. This observation is supported by the empirical findings
of [14]. Therefore it will be necessary to adjust these proportions if this model is to be
applied to a specific banking system.

It now remains to describe how the asset side of the balance sheet is constructed for our
illustrative banking system. The proportions of interbank assets to total assets are chosen
to be consistent with the business models assigned to the banks. Based on [82], retail-
funded banks are assigned a ratio of 9% interbank assets to total assets. Wholesale-funded
banks and capital markets-oriented banks are assigned ratios of 8% and 22% respectively.
Note that if a bank does not have any outgoing edges emanating from it, the ratio is auto-
matically set equal to 0% since it should then have no interbank assets. The ratios for the
interbank assets of retail-funded and wholesale-funded banks are relatively low compared
to the capital markets-oriented banks. This is reasonable since deposits and wholesale debt
make up more than 70% of retail-funded and wholesale-funded banks’ liabilities [82] com-
pared to 50% for capital markets-oriented banks. Hence, it is expected that retail-funded
and wholesale-funded banks will hold a large proportion of assets in the form of loans to
retail and wholesale customers (as opposed to other banks), with capital markets-oriented
banks holding a slightly lower proportion.”

Now each bank’s interbank assets are divided proportionally amongst its counterparties
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according to their relative asset sizes, i.e. we have that

li, j =
a j∑

{k : li,k,0} ak
. (2.19)

Even though this is still a simplification, it is more realistic and practical than dividing the
interbank assets equally amongst counterparties.

Note that the division of non-interbank assets according to term will be system-specific.
For simplicity, our base model will be roughly based on the South-African system, since
it is approximately the same size as our benchmark system. The short-, medium- and
long-term assets will therefore comprise 20%, 35% and 45% of the non-interbank assets.

This system described above is taken as a benchmark for the different sensitivity tests
conducted in the remainder of this section. Unless specified otherwise, the parameters
therefore remain the same throughout. For ease of reference, the effect of liquidity losses
and market sentiment on the spread of systemic risk will be referred to as indirect risk for
the remainder of the thesis.

2.3.2 The effect of varying model parameters

Consider first the sensitivity of the average CRR to the capital ratio that is chosen. The
capital ratio is varied from 0.032 to 0.09 and the resulting average CRR is calculated over
all simulations. The results for all network structures considered in section 2.2 are illus-
trated in figure 2.7a (without indirect risk) and figure 2.7b (including indirect risk). As
expected, the average CRR always decreases for increasing capital ratios. This shows that
the proposed model of financial contagion behaves as expected.

For our choice of base parameters, the disassortative structure exhibits the lowest risk,
except for very low capital ratios in figure 2.7b. Apart from the fact that figure 2.7a exhibits
lower CRR averages (which is to be expected), there are three noteworthy observations to
be made from figure 2.7 alone. Firstly, the ranking of the structures in terms of systemic
risk changes when indirect risk parameters are included. While the attraction to size, tiered
type I and tiered type II structures exhibit the most risk in figure 2.7a, this is not necessarily
the case in figure 2.7b. Secondly, the lower CRR averages for the Erdős-Rényi structure
compared to the attraction to size and tiered type I and II structures show that simulation
studies that assume an Erdős-Rényi structure for simplicity may underestimate the level
systemic risk. Finally, the CRR averages in figure 2.7b decline more quickly with increas-
ing capital levels than in figure 2.7a. This is likely because for every default in the system,
the indirect risk parameters increase the amount of capital lost over and above any losses
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Figure 2.7: Sensitivity of the average capital reduction ratio (CRR) to the capital ratio, with
and without the inclusion of indirect risk.

due to direct exposures. Therefore for every default prevented by holding higher capital,
the reduction in losses is greater when indirect risk parameters are included.

Since the ranking of the structures changes depending on the capital ratio and the inclu-
sion of indirect risk parameters, the network properties discussed in section 2.2.2 will not
be able to predict the relative riskiness of the structures under all circumstances. It remains
interesting to see whether the characteristics can be used to explain some of the differences
observed between the structures.

The ranking of the average shortest paths and clustering coefficients do not correspond
to the CRR averages for any level of capital, with or without indirect risk parameters.
A general observation that can be made is that the structures with low average shortest
paths and high clustering coefficients tend to exhibit higher risk, with the exception of
the assortative structure. First consider the effect of the average shortest path. Since the
average number of disconnected banks for these structures is less than 1 at p̄ = 0.1, this is
not the reason for the low average shortest path lengths. The traditional interpretation of the
average shortest path should then imply that the spread of contagion is generally facilitated
by the short path lengths. It is important to note that shorter average path lengths do not
always lead to higher risk. The disassortative and Erdős-Rényi structures exhibit a very
similar average shortest path at p̄ = 0.1 in figure 2.3, but do not exhibit the same level
of risk in figure 2.7. Furthermore, the assortative structure exhibits the highest average
path length, but does not exhibit the lowest level of risk. This may be because banks are
in general better able to absorb losses from other banks that are significantly smaller than
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themselves (depending on the number of counterparties their assets are spread amongst).
Since only similar-sized banks tend to lend to one another, this may deter the contagion
cascade from stopping when it reaches small banks.

The assortative, attraction to size and tiered types I and II structures all show higher
average CRR levels in figure 2.7a and clustering coefficients in figure 2.5 at p̄ = 0.1 com-
pared to the Erdős-Rényi and disassortative structures. This does not mean that structures
with higher clustering levels always result in more risk compared to those with lower lev-
els. Even though the attraction to size structure exhibits the highest average clustering
coefficient, it does not have the highest level of risk. This shows that on a system level,
the average shortest path and clustering coefficient may be useful in explaining some of
the behaviour of different structures when indirect risk parameters are excluded. They do
not contain enough information to determine the relative riskiness of different structures.
When indirect risk parameters are included, their interpretation becomes less straightfor-
ward, even though different structures still exhibit differences in risk trends.

Consider now the behaviour of the average CRR as the connectedness of the system
is varied. We use the average probability p̄ of any two nodes i , j being connected
to represent the connectedness of the system. The parameter p̄ is varied from 0.01 to
0.9, and the results are shown in figures 2.8a and 2.8b (with and without indirect effects
respectively).
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Figure 2.8: Sensitivity of the average CRR to the average connection probability.

Figure 2.8a shows that the trends resulting from varying interconnectedness levels dif-
fer both between different structures and between the two different graphs. Whether the
system benefits from an increase in p̄ or not therefore depends on the network structure,
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indirect risk parameters and the current value of p̄. Some banking networks may benefit
from an increase in connectedness while other networks do not, even if they have sim-
ilar levels of interconnectedness to begin with. Differences between all structures apart
from the Erdős-Rényi and disassortative structures are exasperated when indirect risk is
included, further motivating why such factors are important to consider when comparing
risk levels under different structures.

The CRR averages for all structures but the Erdős-Rényi and disassortative structures
exhibit a notable change in slope around p̄ = 0.1. Recall from section 2.2.2 that the
average shortest paths and the clustering coefficient also had notable differences in slope
around p̄ = 0.1. This change is again related to the change in the scaling formula given
by equations (2.13) and (2.14). As the average connection probability approaches 1, the
average CRR for the structures converge. This is to be expected since each structure starts
to represent a fully connected system.

The risk in the system generally increases in figure 2.8a as the shortest paths decrease.
For very small values of p̄, the shortest paths increase while the risk in the system also
increases sharply at the same time. This may be because the number of disconnected
banks decrease sharply at this point, opening up new channels of contagion in the system.
However, it is more likely due to the scaling of the p(i, j) probabilities, since the sudden
changes in slope correspond to the points at which p̄ = p̄0 and the disassortative structure
(for which p̄0 is too small to feature on the graph) and the Erdős-Rényi structure (for
which p̄ is irrelevant) do not display sudden changes in slope. It is interesting to note that
for p̄ > 0.3, the shortest paths of the structures are almost identical, but the levels of risk
in figure 2.8a clearly differ between the structures. (Note that this observation will likely
change when considering different base parameter choices.) Differences in risk levels are
even more prominent in figure 2.8b, where indirect risk is included. This again shows that
on a system-wide level, differences in the risk levels of network structures are too intricate
to be captured with simple network characteristics.

Where the assortativeness, attraction to size and tiered type I and II structures have
a steep increase in clustering coefficient (see figure 2.5), the average risk levels in figure
2.8a also show significant increases. However, it is again likely to be due to changes in
the scaling formula of the p(i, j)’s rather than changes in the clustering coefficient. This is
motivated by the fact that the assortative structure’s clustering coefficient decreases sharply
after approximately p̄ = 0.12, whereas its average CRR does not.

It is interesting to note that the tiered type I and II structures exhibit almost identical
tiering errors in figure 2.6b, but do not exhibit the same level of risk in figure 2.8. This
shows that while two structures may exhibit identical characteristics in some ways, they
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may still exhibit differences in risk levels. They may also respond differently to changes in
certain network parameters as shown in figure 2.8b.

Varying the shape parameter of the Pareto distribution shows how the risk levels re-
spond to changes in how heavy tailed the distribution of assets is. This incorporates two
components, namely differences in balance sheet sizes and differences in the connection
probabilities p(i, j) which are functions of the asset sizes (except for the Erdős-Rényi struc-
ture). The lower the scale parameter, the greater the differences between the larger and
smaller banks’ asset sizes and connection probabilities. The effect of varying the scale
parameter α on the risk levels is shown in figure 2.9 with and without indirect risk.
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Figure 2.9: Sensitivity of the average CRR to the distribution of assets as measured by the
shape parameter of the bounded Pareto distribution.

Figure 2.9 shows that the relationship between the Pareto shape parameter and the
average CRR is not linear. The average default fractions first reduce as the distribution
becomes more light tailed, and then starts to increase. Both figures show that the average
CRR is at its highest for very heavy tailed distributions of assets. As α approaches 1,
the risk starts to increase again. This shows that while a very heavy tailed distribution of
assets leads to high risk levels, a light tailed distribution of assets is also not ideal. If the
asset values follow a Pareto distribution, large differences between the largest and smallest
banks’ assets can be beneficial to the system, provided that the differences are not too
large. Figure 2.9b shows once again that the inclusion of indirect risk parameters can have
a significant effect on the relative risk levels between the structures. Due to this, network
characteristics that do not take such factors into account cannot be used to compare the risk
posed by different network structures.

54



The final model parameter that is considered is N, the number of banks in the network
(figure 2.10). The average connection probability remains fixed as the size is increased
from 20 banks to 200. To ensure consistency with the base network where N = 35, the
proportions of retail-funded, wholesale-funded and capital market-oriented banks in the
system are kept fixed.

Figures 2.10a (without indirect risk) and 2.10b (with indirect risk) contain the corre-
sponding average default fractions. It can be seen that the distinction between different
network structures becomes greater when liquidity losses and market sentiment are taken
into account. As before, the inclusion of indirect risk parameters result in changes to the
slopes and the ranking of the structures in terms of risk. The average CRR generally de-
creases as the size of the network increases. This does not mean that larger networks are
always safer than smaller ones. For example, if the effects of liquidity losses and loss of
market sentiment (as measured by the indirect risk parameters) are high in a very intercon-
nected system, it is possible that larger networks are more prone to collapse than smaller
networks.
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Figure 2.10: Sensitivity of the average CRR to the size of the system.

This is illustrated in figure 2.11, where the following adjusted parameters were used:
p̄ = 0.02 and g(s) = g(m) = g(l) = δ = 0.175. Here it can be seen that the average CRR
does not necessarily decrease for larger network sizes. This highlights the importance of
looking at all the network characteristics together instead of in isolation. It also shows that
a change in network characteristics that may make one financial system safer might not
necessarily be good for another system.

From figure 2.10 alone it appears that larger banking networks are safer compared
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Figure 2.11: Sensitivity of the average CRR to the size of the system for a more intercon-
nected system with a higher level of indirect risk in the system.

to smaller ones. However, when adjusting the network parameters to represent a more
interconnected system with higher indirect risk parameters, this is no longer the case. In
this case, increasing the network size leads to a larger number of links to be added to the
system. This shows why increasing stability in banking networks cannot follow a ‘one
size fits all’ approach, and that network characteristics should be considered as a package
instead of in isolation. Therefore it is very important for regulators to take account of the
network structure together with liquidity losses, market sentiment and all other network
characteristics when making decisions.

Now that the model has been considered on a theoretical level, it is of interest to apply
it to real-world data. This will firstly show how it can be used by regulators and help
determine it usefulness in real world applications. This is done in section 2.4 below.

2.4 Application to the South African system

This section applies the methodology presented in section 2.1 to the South African banking
system using standardised bank balance sheet data. The methodology presented in section
2.1 is adapted for the South African banking environment. The relevant justifications and
details for this are presented in section 2.4.1 below. The data used for the application is
described in section 2.4.2, where the construction of the simplified bank balance sheets is
described as well. The adjusted modelling procedure is described in more detail in section
2.4.3, and the results are presented in section 2.4.4. Additional analyses are presented in
section 2.4.5. The work presented in this section has been accepted for publication in the
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South African Actuarial Journal. The pre-print can be viewed on arXiv.org5.

2.4.1 Overview and adjustments to model

Systemic risk and the spread of financial contagion are important considerations for regu-
lators tasked with overseeing stability of banking systems. While the literature on systemic
risk has become vast over the past decade, the complex nature of banking systems remains
difficult to replicate and model precisely. It is therefore of interest to find simplified mod-
els capable of detecting changes in systemic risk. We contribute to this by showing that
network models of systemic risk can satisfy this requirement to a large extent. We illus-
trate how such a model can be used, by applying it to real-world balance sheet data and
showing that changes in risk are detected under times of market stress for various network
structures.

It is common for network models of systemic risk to have the edges between the nodes
represent interbank assets and liabilities. Such models assume that whenever a bank in
the system defaults, it cannot honour its commitments to its creditors, and hence defaults
on its interbank commitments. We note that in the South African banking environment,
the hierarchy of interbank loans compared to other unsecured debt is not well-defined.
Therefore, in the event of a bank’s default, other unsecured liabilities may be subjected
to bail-in before interbank liabilities. That is why we take a different approach in this
study, and do not model the interbank lending relationships. Instead, we consider contagion
mechanisms applicable to any jurisdiction, namely how a loss of trust in the market may
spill over to other banks, creating uncertainty and a difficulty to roll forward short-term
debt.

When one or more banks experience solvency or liquidity problems, other banks may
be reluctant to provide liquid funding to one another (similar to the approach taken in
section 2.1). This hoarding of liquid instruments in the market, coupled with any shift
in the yield curve as a result of distress selling shrink the balance sheets of banks in the
system. This is still explicitly accounted for in this application by again including the
factors representing market liquidity risk for short-, medium- and long-term assets. As
before, short-term assets are defined to have a maturity of less than a month, and medium-
term assets a maturity of more than a month and less than a year. Assets with a maturity
of more than a year are deemed long-term. The simplified balance sheet used for this
application is illustrated in table 2.4.

The way that banks are connected to one another via links (edges) in the network is

5http://arxiv.org/abs/1811.04223
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Table 2.4: Illustration of a simplified balance sheet used for applying the simulation model
of section 2.1 to the South African banking system.

Assets Equity & Liabilities

Short-term assets CET1 Capital
Medium-term assets Other equity & liabilities
Long-term assets

still referred to as the structure of the network. One difficulty arising from the way that this
application is approached is the specification of the links between banks, since it is not pos-
sible to determine the paths through which losses will spread. Empirical network studies
that focus on interbank lending as the direct contagion channel can use maximum entropy
estimation techniques to estimate connections between banks [94]. However, this estima-
tion method can lead to inaccuracies when assessing systemic risk [77, 11] and makes use
of each bank’s total interbank assets and loans. It is therefore not appropriate to use this
here.

The process of deciding which banks to connect to one another should be dependent
consider the definition of the edges in the network. For this to make sense, the formation
of edges should ideally be consistent with the event that initiated the contagion in the first
place. For example, banks that are heavily exposed to the mining sector may experience a
loss of investor sentiment following the default of a bank with mine workers as its target
market if the default is a result of sudden mine closures. From a modelling perspective,
it is impractical to try to account for all possible contagion events, seeing that this would
need to cover a wide range of risks such as market and operational risks. For this reason,
we consider the same range network structures as in section 2.3. The details of the adjusted
modelling procedure is discussed in section 2.4.3.

From previous research [51, 54, 70, 83] and the results of section 2.3, we note that
different network structures may exhibit different levels of risk and the effect of changes to
network characteristics is dependent on the chosen structure. As the true network structure
is unknown, it is important to investigate how changes in the structure can affect the results
of a real-world application such as this.

The results of this section are used to assess whether the model can be used to monitor
systemic risk levels by capturing increases in systemic risk during stressed market condi-
tions. This is done by considering systemic risk at different points in time during which
incidents occurred that adversely affected the local economy. To summarise, this section
aims to make the following contributions:
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1. A top-down network approach is used to model systemic risk over time in the South
African banking system. We investigate whether this model is capable of monitoring
systemic risk by detecting instances of market turmoil.

2. A novel contagion mechanism is introduced that focuses on market sentiment.

3. The effect of the network structure on the results is investigated. Since the actual
network structure is unknown, it is important to obtain insight into how sensitive the
results are to the choice of network structure.

The remainder of section 2.4 is structured as follows: Section 2.4.2 describes the data
and explains how the data is used to construct the balance sheets. Section 2.4.3 discusses
the adjusted modelling procedure, and section 2.4.4 presents the results obtained by apply-
ing the model to the South African system. Finally, section considers additional analyses
that can be performed by means of the modelling framework presented here.

2.4.2 Data and balance sheet construction

In this section, we describe the data and the construction of the balance sheets used for
the application. Standardised monthly bank balance sheet data6 of South African banks
are used from April 2015 to March 2017. The BA900 returns are not granular enough
to allow the extraction of CET1 capital data, which was instead obtained from banks’
annual statements, Pillar III capital disclosures and the Orbis Bank Focus database7. It is
not sensible to use a period dating back further since the capital data becomes too scarce.
Capital data before 2015 is difficult to obtain for all banks since numerous small banks
either did not exist, or their capital data for earlier periods is simply not available in the
public domain.

As at March 2017 there were ten locally controlled banks, three mutual banks, six
foreign controlled banks and fifteen branches of foreign banks, making up a total of 34
registered banks. For the purpose of this investigation, we do not consider the parent
companies of the foreign branches. Firstly, subsidiaries may not be supported by the parent
company. Secondly, while the assumption may under- or overestimate systemic risk in
the local banking sector if subsidiaries were supported by the parent (depending on the
solvency position of the parent company), it is necessary in order to keep the system closed.

6https://www.resbank.co.za/RegulationAndSupervision/BankSupervision/Banking%

20sector%20ata/Pages/Banks-BA900-Returns.aspx., accessed 2017/07/31
7https://orbisbanks.bvdinfo.com/version-2017713/home.serv?product=OrbisBanks,

accessed2017/07/31
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In other words, to ensure that risk levels within the system are not influenced by external
market players, any actions that they may take or any regulations that may apply to them.

This banking system can be considered as a typical candidate for a core-peripheral
structure, as it consists of five large, ‘core’ banks and 29 smaller banks. To illustrate
this, the total asset values of the banks are shown graphically in appendix B.1, figure B.1.
For this study, eight banks are excluded because of a lack of capital data (see section
2.4.2 below for more detail), leaving 26 that are included in the analysis. The process for
composing the simplified balance sheets as illustrated in table 2.4 is explained below.

On the asset side, items are categorised according to whether they have a short, medium
or long time to maturity at inception of the asset. Recall that short-term assets have a
maturity of less than a month, medium-term assets have a maturity of more than a month
and less than a year, and long-term assets have a maturity of more than a year. Assets that
do not have a contractual maturity date are categorised according to their expected holding
period, for example remittances in transit which are categorised as medium-term. Not all
balance sheet items fall distinctly into only one category. Most of these items are placed
into the category in which most individual assets are expected to fall. For example, the local
Treasury Bills can have maturities ranging from one day to twelve months, but normally
have an unexpired maturity of 91 days or 182 days. Therefore, these are categorised as
medium-term assets for our purpose. There are two exceptions to this rule:

1. Marketable government stock on the BA900 forms (line item 198) is only given
with a maturity of up to three years, and a maturity of over three years. Marketable
government stock with a maturity of over three years are included in the long-term
asset category. Marketable government bonds with a maturity of up to three years
are assumed to be evenly distributed across short-, medium- and long-term assets as
all three of these maturity categories are included in this line item.

2. Derivatives with non-banking counterparties are divided according to term on the
liability side of the BA900 forms, but not on the asset side. The assumption is
therefore made that on the asset side of each bank, the proportion of short-term
non-bank derivatives to total non-bank derivatives is the same as on the liability side.
The same assumption holds for the medium- and long-term derivative instruments
with non-banking counterparties. If there are no derivatives on the liability side,
the derivatives on the asset side are divided equally among the short-, medium- and
long-term assets.

Derivative exposures constitute an important source of systemic risk because increased
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margining requirements during stress scenarios can place excessive strain on banks’ liq-
uidity positions. While this can be modelled using a network approach (see e.g. [73]), we
do not explicitly model these exposures, but include such effects indirectly via the trust
mechanism. This is because counterparty relationships are not publicly available, and it
avoids complicating a model that is meant to remain simple.

Credit impairments with respect to loans and advances are deducted from the medium-
term assets. This is because private sector loans and advances (that are categorised as
medium-term assets) generally make up a large portion of total loans and advances and
should also contain the majority of impaired accounts. Any impairments in respect of in-
vestments are deducted from the long-term assets, since investments are generally regarded
as long-term assets. The categorisation of assets is illustrated in appendix B.2, table B.1.

Note that with more granular data the categorisation of assets according to maturity can
be done more precisely. In this case it is necessary to aggregate the balance sheet items
at this level since the available detail does not allow for a finer categorisation according to
term. Regulators with more detailed information could use a larger number of categories
so that assets can be grouped according to more time horizons and other characteristics as
well.

Banks’ CET1 capital represents the capital part of the balance sheet, similar to the
approach used in section 2.1. The equity side of the BA900 balance sheets is not sufficiently
granular to allow for calculation of the banks’ CET1 capital. For this reason, data from
financial statements, published Pillar III capital disclosures and Orbis Bank Focus is used
to supplement the primary balance sheet information. However, the data obtained via these
sources are quarterly at best (in some cases only annually) and not all banks publish these
on the same dates. Furthermore, some banks publish only risk weighted CET1 ratios and
do not necessarily include a monetary amount for this type of capital. The available data
for this part of the balance sheet must therefore be used to estimate the missing data points
where possible.

To estimate a bank’s monthly CET1 capital, the available CET1 amounts are divided by
the corresponding total asset values of the respective bank at the available points in time.
This gives an unweighted ratio of CET1 to total assets at selected points in time. There
are two main reasons for using this ratio. It firstly strips out any inflationary effects over
time and secondly removes the effect of significant increases or decreases in banks’ growth
rates. Where available, the unweighted ratio of CET1 to total assets are very stable for all
banks over the period considered (the maximum variance for this ratio for over all banks is
0.00344). Therefore, for most banks the missing unweighted CET1 ratios could easily be
estimated.
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Table B.2 in appendix B.2 shows all the unweighted CET1 ratios for registered local
banks that could be obtained from the available data. For each bank that has at least three
CET1 data points available between May 2017 and February 2015, the remaining ratios are
estimated for the outstanding months. Banks that have less than three CET1 data points are
excluded from the analysis, reducing the total number of banks from 34 to 26. The total
assets of all excluded banks make up less than 3% of all banks’ assets as at May 2017.

For the remaining banks, the available unweighted CET1 capital ratios are used to
estimate the unknown CET1 ratios as follows:

• Where missing data points fall in-between two known data points, linear interpola-
tion between the two known data points is used to estimate the missing values. For
example, if the ratios Cτ and Cτ+3 are available for months τ and τ + 3, but ratios for
months τ+1 and τ+2 are not, we use the estimates Ĉτ+k = Cτ+

k(Cτ+3−Cτ)
3 for k = 1, 2.

• Where a missing data point does not lie between two known data points, the average
unweighted CET1 ratio for the associated bank is taken. For example, if no CET1
data is available for month t = 1, then Ĉ1 = 1

m

∑
τ Cτ, where m is the number of

months τ for which Cτ is available and the sum is taken over all available ratios Cτ.

This simple method of choosing the estimates is chosen for two reasons. Firstly, the
CET1 ratios were very stable as has been noted above. Therefore, there is no need for more
sophisticated techniques or for using more data points in calculating an estimate. Secondly,
slight trends in the data are accounted for by using linear interpolation as described in
the first point above. Once the estimates Ĉτ for the CET1 capital are determined, all the
required balance sheet entries are known. The next step is then to specify the interactions
between the banks that are represented by the edges, where different assumptions regarding
these interactions lead to different network structures.

2.4.3 Adjusted modelling procedure

Suppose the system consists of N banks, where each bank i’s total assets is denoted by ai.
The short-, medium- and long-term assets of a bank i are again denoted by a(s)

i , a(m)
i and a(l)

i

respectively. The only difference between these and the asset variables specified in section
2.1.2 is that we now include direct interbank exposures in the asset categories. Bank i’s
CET1 capital is again denoted by ci. For ease of reference, the terms CET1 capital and
capital will once again be used interchangeably.

As before, we choose an initial bank n and suppose that it suffers an initial loss. In this
event bank n loses a fraction, say s, of its assets. In section 2.1, a bank is deemed undercapi-
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talised if the loss is greater than 3% of the bank’s assets, i.e. if s·
(
a(s)

n + a(m)
n + a(l)

n

)
> 0.03an.

This threshold of 3% is based on regulations by the FDIC. It is not necessarily appropriate
for the South African environment, as it is aimed at U.S. institutions. Furthermore, the
CET1 ratios differ greatly between South African banks (see table B.2 in appendix B.1)
and it is therefore difficult to assign a sensible threshold for our purposes. South Africa
does not have such a published threshold because the South African banking regulations
follow the Basel requirements closely, and the BIS has not published such ratios. In South
Africa, it is determined on a case-by-case basis whether corrective action should be taken
against a bank. Therefore for our purposes it is more appropriate to use a threshold that
is expressed in terms of the total amount of capital that is lost. For the purpose of this
illustration, we assume that a bank is deemed undercapitalised whenever it loses 80% or
more of its CET1 capital. If s ·

(
a(s)

n + a(m)
n + a(l)

n

)
> 0.8cn, then it is assumed to have failed

as in section 2.1.2.
As mentioned in section 2.4.1, the hierarchy of interbank loans compared to other un-

secured debt is not well-defined in the South African banking environment.In some situ-
ations the regulator may require other banks to assist with capitalisation in order to limit
the spread of losses to other parts of the economy by making whole the retail and insti-
tutional creditors’ unsecured loans. We assume that a proportion, say u, of this shortfall
must be covered by the remaining banks. The remaining proportion 1 − u is absorbed by
the Total Loss Absorbing Capacity (TLAC) part of the troubled bank’s balance sheet, af-
ter which unsecured creditors bear the loss. The resulting funding requirement is spread
over all banks in the system in proportion to their assets sizes. In other words, if bank n
experiences an initial loss event, its capital is reduced by S n = s · an. If S n > 0.8cn, then n
defaults and each bank i suffers a loss of

L(1)
i,n = u (S n − cn)

ai∑n
k=1 ak

.

As before, we include losses due to raised provisions and mark-to-market effects. Each
remaining bank i in the system suffers a loss of

L(2)
i =

∑
η∈{s,m,l}

a(η)
i

[
1 − exp

(
−g(η)

)]
.

Finally, we include losses due to a deterioration in market sentiment. The perceived
exposure of other banks to the problems faced by bank n determines the edges in the
network. An edge starting at a bank i and pointing towards bank n means that the market
believes i may be exposed to similar difficulties as n, or may be adversely affected by the
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default of n. Recall that the shortest distance between two nodes is the smallest number of
edges that can be used to travel from the one to the other. The shortest distance di,n in the
network from any bank i to the failing bank n determines the degree to which i is affected
by a loss of trust. Small values of di,n indicate ‘closeness’ in the network, which represents
a perceived tendency for a bank i to experience similar problems as n.

In order to reflect the shrinkage of each bank i’s balance sheet, each asset class of i is
reduced by a factor exp

(
− δ

di,n

)
. Therefore, each remaining bank i in the system experiences

a further loss of

L(3)
i,n =

∑
η∈{s,m,l}

a(η)
i

[
1 − exp

(
−
δ

di,n

)]
, (2.20)

where δ is the associated reduction factor. This means that the network structure is not used
to determine direct losses any more. Instead, the network structure is only used to model
the spread of indirect losses due to a lack of market trust similar to example 4, page 29.
Note that different proximity factors should be assigned to different types of assets when
applying this model in practice. However, we avoid introducing too many parameters for
the purpose of illustration by using the same parameter for all asset classes.

As before, this type of loss is called a proximity shock. The way that proximity shocks
are modelled in the network accounts for the fact that some banks will experience a worse
loss of confidence than others. From equation (2.20) it is seen that banks with smaller
shortest distances to the failing bank will experience worse losses than those with greater
shortest distances. This is illustrated in figure 2.12, where the failing bank is indicated
by the cross. The darker nodes experience greater losses than the lighter node, since they
have a smaller shortest distance to the failing bank. The edges in the network is directed to
take account of a wide range of possibilities without overcomplicating the model. In some
circumstances the default of one bank may lead to distrust in another bank, but not the
other way around. For example, the default of a large, systemically important bank may
affect small banks, but the default of a small bank may not necessarily affect the financial
positions of much larger banks. Note that the direction of the edges does not represent the
direction in which the losses spread but rather represents the similarity between banks. For
example, if a directed edge exists from bank i to bank j, the interpretation is that bank i is
similar to bank j in the sense that the market perceives i to be exposed to similar difficulties
as bank j in the event of bank j’s default.

For simplicity we ignore the effect of different business models on the liquidity shocks
in the system. In other words, we do not adjust any of the formulae for L(2)

i or L(3)
i,n to account

for differences in business models as has been done in 2.1.2. Therefore the total loss to each
remaining bank i following the default of bank n is given by Li,n = L(1)

i,n + L(2)
i + L(3)

i,n .
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Figure 2.12: Illustration of a proximity shock following the default of a bank. The bank
marked with a cross represents the failing bank. The black nodes represent the banks
closest to it, and these will receive the largest proximity shock.

2.4.4 Results for the South African system

Recall that the network structure is determined by the way that banks are connected to one
another in the network. We construct a network of trust deterioration, where the edges
represent paths through which market trust is lost in the system. As it is not possible to
know beforehand which banks will be perceived as being affected by another bank’s failure,
the edges in the network are again assumed to be random and the same range of network
structures are considered as before. Even though some structures may be unrealistic, it
is of interest to include them to consider a wider range of outcomes. This allows for a
better understanding of the relevance of network structure in a network model based on
trust deterioration.

The different network structures discussed in section 2.2.1 are compared to one an-
other. Here, the structures have different interpretations as before. One would expect the
default of large banks to have a more significant effect on the confidence in the banking
system compared to smaller banks. Therefore the attraction to size is likely to be more
realistic in this application compared to most of the other structures (figure 2.1 on page
36 contains illustrations of the structures). This is because the large banks have higher
probabilities of having incoming edges connected to them compared to small banks. This
can be interpreted as follows: whenever a small bank fails, the probability that it will affect
the perceived financial strength of other banks. On the other hand, the failure of a large
bank will lead to a loss of market trust for any other bank with a higher probability. Here,
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the market assumed before the shock event that the bigger banks were the most financially
sound. The failure of a big bank therefore causes widespread panic, affecting most other
banks in the system.

For consistency with the previous sections, we include graphs for the average shortest
path, global clustering coefficient and the tiering error in appendix B.3. The weights for the
global clustering coefficient have to be adjusted to account for the fact that we no longer
use interbank exposures. Instead, the weight of an edge from i to j is taken as the asset
value of bank i, since i’s loss in the event of j’s default is proportional to the asset value
of i. From this, it can be seen that if p̄ is 0.15, then the attraction to size, tiered type If
and tiered type II structures theoretically result in tiered networks. It is noted that since
the meaning of the network differs from before, it is not necessarily required that these
networks be tiered. However, for consistency we adopt the parameter p̄ = 0.15 in our low
interconnectedness scenarios below.

The combined effect of network structure, the system’s interconnectedness and the con-
sequences of liquidity shortages and a deterioration of market sentiment on systemic risk
is investigated. For each case considered, an initial shock of 40% is applied to the system.
In other words, the bank that suffers the initial loss experiences a loss equal to 40% of its
total asset value. Whenever a loss causes a bank’s capital to be depleted, it is assumed that
a proportion u = 0.3 of the capital shortfall must be absorbed by the banking system.

We illustrate how the systemic risk changes over time by calculating a point in time
measure at each month during the investigation period. At each time interval, four scenar-
ios are considered regarding the interconnectedness and the effect of indirect risk factors
on systemic risk:

• Low indirect risk parameters (g(s) = 0.005, g(m) = 0.0075, g(l) = 0.01 and δ = 0.0075)
and a low level of interconnectedness (p̄ = 0.15).

• Low indirect risk parameters (g(s) = 0.005, g(m) = 0.0075, g(l) = 0.01 and δ = 0.0075)
with a moderate level of interconnectedness8 (p̄ = 0.5).

• High indirect loss parameters (g(s) = 0.015, g(m) = 0.0225, g(l) = 0.03 and δ =

0.0225) with a low level of interconnectedness (p̄ = 0.15).

• High indirect risk parameters (g(s) = 0.015, g(m) = 0.0225, g(l) = 0.03 and δ =

0.0225) and a moderate level of interconnectedness ( p̄ = 0.5).
8Higher levels of interconnectedness are not considered for this study, as each network structure’s unique

characteristics become lost when the system is too interconnected.
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The values for g(s), g(m), g(l) and δ for the high indirect risk scenarios are scaled versions
of the corresponding low indirect risk parameters. It is important to note that one may
obtain different results with different combinations of these parameters. However, it is
impractical to consider an arbitrary number of combinations without more information
regarding realistic values. Therefore only a few combinations are considered in this study.
It is noted that this way of modelling the risk over time assumes that all parameters remain
constant over time. While this is not necessarily the case in practice, it is a reasonable
assumption to make in the absence of additional information.

For the low risk scenario, the chosen parameter values imply that after each default,
the short-term assets of banks are decreased by 1− exp{−0.005} = 0.5%, the medium-term
assets by 0.75% and the long-term assets by 1%. The proximity shock parameter reduces
all asset values of banks with a shortest distance of one to the failing bank by 0.75%. Banks
with a shortest distance of two to the failing bank have their assets reduced by 0.37%. For
the high risk scenarios, the short-term assets are reduced by 1.49%, the medium-term assets
by 2.22% and the long-term assets by 2.96%. The proximity shocks decrease all assets of
banks directly connected to the failing bank by 2.22%.

Figure 2.13 shows the relative levels of systemic risk over time for all network struc-
tures considered in section 2.2. It is noted that the CRR averages shown by the graphs are
based on hypothetical values of the parameters associated with indirect risks, and are not
necessarily accurate. This is because the focus of this study is on the relative risk levels as-
sociated with different network structures, and not to calculate actual proportions for these
events.

As expected, higher levels of interconnectedness result in lower levels of discrimina-
tion between the different structures. This is because the higher value of p̄ pushes the
probabilities p (i, j) towards one for all structures start and hence they become more repre-
sentative of fully connected systems. The levels of risk over time generally show a slight
increase in risk when the interconnectedness is increased for low indirect risk parameters
(see figures 2.13a and 2.13b). In that case, the additional connections serve as additional
channels of contagion and increase the risk. The spikes and dips seen in figure 2.13a are
accentuated when interconnectedness is increased, although the overall shapes of the graph
are preserved.

When indirect risk is high (see figures 2.13c and 2.13d), increased interconnectedness
increases systemic risk for some structures and decreases it for others. Once again, increas-
ing the interconnectedness results in accentuating the dips in systemic risk levels. Here,
the additional connections serve to stabilise the system, leading to greater reductions in
systemic risk. The spikes in systemic risk are not accentuated as much, which is likely due
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Figure 2.13: Comparing the CRR resulting from different network structures over time,
under the assumption of no regulatory intervention.

to the fact that the risk levels are already close to their upper bound of one. This shows
that the structure of the network and the level of indirect risk influences which events lead
to an increase in systemic risk.

From all four scenarios, it is seen that there is a spike in systemic risk around December
2015. This corresponds to the month during which former South African finance Minister
Nhlanhla Nene was replaced, which was an unexpected and controversial political event
in South Africa. The local financial market reacted negatively, and the local currency
depreciated significantly during that period. Only the tiered type I and II structures do not
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exhibit this behaviour in figures 2.13c and 2.13d where the indirect risk parameters are
high.

A second spike in systemic risk is observed around June 2016 for figures 2.13a and
2.13b (where lower risk parameters are used). This was also a time during which the
Rand depreciated steeply against the US Dollar. This was due a combination of factors,
namely a weak economic growth outlook, rumours that the former finance Minister was to
be arrested and an approaching credit review by Standard and Poor to decide whether they
will downgrade South Africa’s sovereign rating to junk status.

During March 2017, former finance Minister Pravin Gordhan was also replaced dur-
ing another controversial political event. However, this time there were numerous media
reports beforehand suggesting that it was likely to happen, and therefore the markets ex-
pected it. Since there are no prominent spikes in systemic risk during that time, it shows
that either the banks made sufficient use of publicly available information to protect them-
selves, or that the model is not able to detect the increase in systemic risk.

The prominence of the December 2015 spike may be explained by looking at the aver-
age balance sheet items over time (see figure B.2 in appendix B.1). At December 2015, the
relative increase in the average for the short-term and long-term assets are much greater
compared to the CET1 capital. This could, on average, lead to relatively larger losses for
the initially shocked bank (because this is defined as a proportion of assets) that need to be
absorbed by the capital. However, the average asset values at June 2016 and March 2017
do not show the same extreme behaviour. This could explain why the June 2016 spike is
slightly less prominent in figure 2.13a and absent in figures 2.13c and 2.13d. This may also
explain why we do not see a significant spike at March 2017 for any of the figures.

In general, it appears that the importance of the network structure is to a large extent
influenced by the interconnectedness of the system and the values chosen for the risk pa-
rameters. For example, for moderate interconnectedness and high indirect risk parameters
(figure 2.13d) at months when systemic risk levels are high, the network structures ex-
hibit small differences. On the other hand, for low interconnectedness and high indirect
risk parameters, there are significant differences between the risk exhibited by some of the
structures. For low interconnectedness (figures 2.13a and 2.13c), the network structure
generally plays the greatest role in the level of systemic risk. An exception to this is figure
2.13d, where large differences can be observed at October 2016 and December 2016.

In most cases the attraction to size structure exhibits the least risk, and the tiered type II
structure the most risk. However, this is not always the case, since the assortative structure
exhibits the least risk in figure 2.13b and the most risk during June 2015 to December 2015
in figure 2.13d. The differences between the risk levels for structures that are tiered when
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p̄ = 0.15 (i.e. attraction to size, tiered type I and tiered type II) are noteworthy. While the
attraction to size structure exhibits significantly less risk compared to a completely random
(Erdős-Rényi) network, the opposite is true for the tiered type I and II networks. This
shows that even for fixed levels of connectivity and indirect risk, different definitions of
tiered structures can lead to different conclusions.

From all four scenarios it is seen that the structures are mostly consistent regarding
directional changes, i.e. the structures’ risk levels move in the same direction at each time
step, albeit at different rates. Furthermore, for a given set of parameters the ranking of
the structures in terms of risk remain relatively consistent over time (with the exception of
June 2015 to December 2015 in figure 2.13d).

The above results show that the indirect risk parameters have a significant effect on
the behaviour of network structure. To further illustrate this point, we consider the effect
of changing the relative values of the indirect risk parameters. A base parameter value of
0.0075 is used for all indirect risk parameters. These parameter values will be referred to
as the base parameters for the remainder of the section. The resultant graph of systemic
risk over time is shown in figure 2.14.

Jun-15 Dec-15 Jun-16 Dec-16
0.16

0.18

0.2

0.22

0.24

0.26

0.28

Figure 2.14: Systemic risk over time for base parameter values of g(s) = g(m) = g(l) = δ =

0.0075.

The effect of increasing any one risk parameter to 0.0075 · 3 = 0.0225 is considered.
The level of interconnectedness is kept at 0.15, since it was seen from figure 2.13 that
differences between the structures are accentuated when connectivity is low. Figure 2.15a
shows what happens if only the parameter associated with the short-term liquidity losses
is increased from 0.0075 to 0.0225. Figures 2.15b to 2.15d show the same results for the
medium-term, long-term and proximity shock parameters, respectively.
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Figure 2.15: Comparing different network structures over time and increasing each indirect
risk parameter in turn.

From figure 2.15 it is seen that the parameters don’t have the same effect on systemic
risk. By increasing only the short-term liquidity parameter in figure 2.15a, the peaks in
systemic risk are more pronounced than in figure 2.14 for the base parameters. Differences
between the network structures remain more or less the same. Compared to figures 2.15b
to 2.15d, the general level of risk is lower when only the short-term liquidity parameter is
increased.

Increasing only the medium-term liquidity parameter (figure 2.15b) flattens out the
graph to such an extent that the December 2015 and June 2016 spikes are no longer promi-
nently visible. Only the December 2016 decrease in risk is preserved and accentuated.

71



Once again, the differences between the network structures remain more or less the same
when compared to figure 2.14.

When only the long-term liquidity risk parameter is increased in figure 2.15c, the gen-
eral shape of graph remains largely unaltered. Exceptions to this is that for figure 2.15c, the
attraction to size structure has much more pronounced peaks at December 2015 and June
2016, and the peaks at December 2015 are slightly more pronounced for the remaining
structures.

By increasing only the parameter associated with market sentiment, the differences
between the risk levels become large compared to figures 2.15a to 2.15c. This may be
because this parameter is directly related to the network structure, and increasing it accen-
tuates differences between the structures. At the same time, increasing the parameter does
not influence the ranking of the structures in terms of risk. The lines on the graph become
significantly flatter compared to figure 2.14 for the base parameters. The December 2015
and June 2015 peaks are only easily identifiable for the Erdős-Rényi and disassortative
structures.

The differences between figures 2.15a to 2.15c are likely because of differences in asset
values for different maturities between banks and within each bank. This is because the
three liquidity parameters enter the model in the same way via reductions in the associated
asset values. Therefore, networks derived from different countries’ banking systems will
likely differ in the way that they react to changes in network structure and liquidity risk
parameters. For regulators, it is important to note that conclusions reached for one banking
system will not necessarily hold for another.

The results show that both network structure and indirect risk are important in deter-
mining the level of risk present in the system. Network structure can significantly affect
the level of systemic risk. Determining parameters associated with interconnectedness, liq-
uidity risk for different asset types and market sentiment is important for network models
of systemic risk, since these can influence the degree to which market disturbances fuel
systemic risk. It is important to stress that different observations may be made depending
on the network model is applied. For example, figures B.6 to B.8 in appendix B.4 show
how the figures of this section would look if the average fraction of defaulted banks were
used as a risk measure. This measure is calculated as follows: Let αn be the proportion of
banks (including bank n) that have defaulted after bank n has received the initial shock. The
average of these proportions over m simulations is denoted by ᾱn. The average defaulted
fraction is then defined by ᾱ B 1

N

∑N
i=1 ᾱn.

The implications of the results from this section are discussed further in chapter 4,
where all the results from this thesis are discussed together.
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2.4.5 Additional analyses

To understand how the network structure affects how the different banks in the system
contribute to systemic risk, it is useful to consider how different risk measures vary with
the asset value of the initially shocked bank n. It is reasonable to expect the default of
larger banks to have a greater knock-on effect on the system compared to smaller banks
and hence measures of risk are expected to be higher for larger banks. This is confirmed
by the results of this section.

The objective here is to illustrate different ways in which this modelling framework can
be used to analyse the spread of contagion in the network. This is done by analysing the
following quantities:

• The CRR (Capital Reduction Ratio);

• The fraction of defaulted banks (ᾱn as defined above); and

• the number of contagion rounds that the network experiences following a shock be-
fore no more defaults occur (either because all banks have failed or because the re-
maining banks have successfully absorbed all losses). For a description of contagion
rounds, see the discussion of default cascades starting on page 29.

The following analyses were performed, the results of which are contained in the subsec-
tions below:

1. The banks were divided into four groups according to size, and within each group
the average of each quantity mentioned above was calculated from April 2015 to
March 2017. Figure B.1 in appendix B.1 was used to determine the groups. The four
largest banks in the system are included in the ‘large’ group, the fifth largest bank in
the ‘medium’ group, the sixth to thirteenth largest banks (Capitec Bank to African
Bank) in the ‘small’ group, and the remainder in the ‘very small’ group.

2. For each initially shocked bank, the resulting quantity was compared against the asset
value of that bank. This was done for December 2015 (where systemic risk levels
are generally high), January 2017 (where systemic risk levels are generally low) and
March 2017 (where systemic risk levels are generally at intermediate levels).

3. For December 2015, January 2017 and March 2017, the empirical distribution was
determined for the average of each quantity, where the average is taken over all
initially shocked banks. For example, if θn denotes the CRR after initially shocking
bank n (see equation (2.5)), then we consider the distribution of θ̄ = 1

N

∑N
n=1 θn (see

equation (2.6)).
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1. Risk quantities over time by size category

Figure 2.16 below considers the Erdős-Rényi structure and how banks of different sizes
affect each of the three risk quantities listed above. The figures for the remaining structures
display the same patterns, and hence those are included in appendix B.5.1. Figures B.9,
B.10 and B.11 contain all structures’ figures for the CRR, the average defaulted fraction
and the number of default rounds respectively.
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Figure 2.16: Plotting three different risk quantities for the Erdős-Rényi structure over time
for very small, small, medium and large banks.

Interestingly, all three structures exhibit increases and decreases in risk at the same
points in time. This suggests that the modelling framework is relatively insensitive to
changes in the risk measure as far as general trends over time are concerned. As expected,
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the average of any risk quantity is highest when the initially shocked bank is large. From
the three graphs it can be seen that the average of any risk quantity over time is more
variable for large banks. This shows that the variation of risk observed over time can be
attributed to the large banks for this choice of parameters. For higher values of the indirect
risk parameters, it is possible that the smaller banks may also exhibit variation over time.

During times of relatively high systemic risk, the difference between the large banks
and the rest of the banks are much more pronounced for the average fraction of defaulted
banks (figure 2.16b) and the number of contagion rounds (figure 2.16c) than for the CRR
(2.16a). At the same time, the differences between the medium, small and very small
groups are less pronounced for the average fraction of defaulted banks and the number of
contagion rounds than for the CRR. The CRR is the only one of the risk measures where
the medium and small banks can be distinguished from one another on the graph. This is
due to the fact that the CRR takes into account the amounts of the losses suffered in the
system, and not just just the number of losses.

2. Risk quantities vs. asset values

Here, the three different risk quantities are compared to the logarithm of the initially
shocked bank’s asset value by means of scatter plots. Hence, the x axis in the figures
represents the logarithm of the intially failed bank’s asset value, ordered from smallest to
largest. This is done for three different scenarios. The first scenario is one where systemic
risk levels were high (December 2015). The second scenario considers a month when sys-
temic risk levels were relatively low (January 2017). The third scenario is an intermediate
one, which considers a month which had intermediate levels of systemic risk (March 2017).
Only the figures for the Erdős-Rényi structure are included here, since the figures for the
remaining structures follow similar trends. The figures for all structures are included in
appendix B.5.2. Figure B.12 to B.14 contain all the graphs for the CRR measure, figures
B.15 to B.17 contain the graphs for the fraction of defaults and figures B.18 to B.20 contain
the graphs for the number of contagion rounds.

Figure 2.17 shows the Erdős-Rényi structure scatter plots for the CRR for the three
scenarios under consideration. For all scenarios, the CRR increases along with the asset
value of the intially shocked bank. For very small asset values, there is a sudden jump
in the CRR after a certain point, after which the graphs show an exponentially increasing
trend of the CRR with the logarithm of the initially shocked bank’s asset value. The rate of
increase observed in the graphs is higher in figure 2.17a (high risk scenario) than in figures
2.17b and 2.17c. This is consistent with 2.16, which showed varying levels of risk over
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time for the large banks, but not for the other banks.
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Figure 2.17: Comparing the CRR for each bank to its asset value for three different risk
scenarios based on the Erdős-Rényi structure.

Figure 2.18 contains the scatter plots for the fraction of defaults for the Erdős-Rényi
structure. Here, the graphs show a non-decreasing trend as opposed to a strictly increasing
trend. The fraction of defaults is zero for the two smallest banks, and the default fraction is
the same for the remaining small and medium banks. This is consistent with figure 2.16b,
where the lines for the small and medium banks are indistinguishable from one another
and the line representing the very small banks is just below. The default of the largest
bank leads to a significant jump in the fraction of defaults in figure 2.18a for high levels
of systemic risk. In figure 2.18c for moderate systemic risk levels, the jump in the fraction
of defaults in less pronounced. For low systemic risk levels, there is no visible jump in
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systemic risk. This is consistent with figure 2.16b, where the lines associated with the
large, medium and small banks are indistinguishable at January 2017.
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Figure 2.18: Comparing the average fraction of defaulted banks for each bank to its asset
value for three different risk scenarios based on the Erdős-Rényi structure.

Since the defaulted fraction is zero for the two smallest banks, it means that the initial
shock was not enough to make them default in the first place. The majority of banks
have a defaulted fraction of 0.4 in figure 2.18. As there are 26 banks in the system, it
means that contagion does not spread further in the majority of cases, since the system
only experiences one default (the initially shocked bank). Only the largest of banks can
result in more defaults when general systemic risk levels are higher and figure 2.18a shows
that the largest bank can make more than 80% of the system fail on average when systemic
risk levels are at their highest.
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A comparison of figures 2.17a and 2.18a show that when analysing systemic risk, it
is important to consider both the number of defaults and the severity of losses in the sys-
tem. For example, consider the second largest bank in the system. The average defaulted
fraction as a result of shocking this bank is smaller than 10%, where the average fraction
of capital lost in the system is above 60%. This is largely due the capital lost by the bank
itself, but shows that measures of systemic risk need to consider the severity of losses.

The scatter plots of the number of contagion rounds against the logarithm of the asset
values for the Erdős-Rényi structure is contained in figure 2.19. As for the fraction of
defaults, a non-increasing trend is seen in the graphs. This again illustrates that the CRR
is better able to capture differences due to bank size than the defaulted fraction and the
number of contagion rounds, since it accounts for the amount of losses and not just the
number of losses.

It shows that for the smallest two banks, the average number of contagion rounds is zero
regardless of the overall level of systemic risk in the system. As noted above, the initial
shock does not result in the default of these two banks. For the majority of the banks,
only one round of contagion takes place. This is also consistent with the above observation
that only the initially shocked bank defaults in those cases, after which contagion does not
spread further.

For larger banks, contagion does spread further for some simulations and therefore the
average number of contagion rounds is higher than one in figures 2.19a and 2.19c. It is
interesting to see that the average number of contagion rounds resulting from applying
the initial shock to the largest bank is slightly lower for high systemic risk levels than
for moderate levels. However, this observation does not necessarily hold for all network
structures (see appendix B.5.2, figures B.18 and B.20). This means that in some months
and for some network structures, the default of large banks may lead to additional defaults
less frequently than for other months, but when they do lead to additional defaults, the
damage to the system is worse.

A comparison of figures 2.17a, 2.18a and 2.19a shows a typical illustration of the
‘robust-yet-fragile’ property of financial networks [52]: For most initially shocked banks,
contagion does not spread further even during times of high systemic risk. Therefore, the
probability of contagion is low. However, by considering the largest bank it can be shown
that contagion can be devastating to the system if it manages to spread. The average num-
ber of contagion rounds is less than 1.5 when shocking the largest bank, but the average
ratio of capital lost in the system is close to 1 and the average fraction of defaults is over
80%. This shows that in the unlikely event that contagion spreads just beyond the initial
bank, the damage to the system can be severe.
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Figure 2.19: Comparing the average number of default rounds for each bank to its asset
value for three different risk scenarios based on the Erdős-Rényi structure.

3. Risk quantity distributions

Finally, we consider the empirical distributions of the three different risk quantities con-
tained in figure 2.20. That is, we consider the empirical distributions of the CRR, the
fraction of defaulted banks ᾱn and the number of contagion rounds that the network expe-
riences following a shock before no more defaults occur. Figure 2.20a contains the empiri-
cal distribution of the average CRR for all network structures when systemic risk levels are
high. Appendix B.5.3, figure B.21 contains the empirical distributions for the CRR for low
and moderate risk levels. The general shapes of the CRR empirical distributions are the
same for all three scenarios, which is why only one scenario’s graph is displayed here. The
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only difference is that the domain of the distributions shift to the left (as expected) when
the risk levels are increased.
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Figure 2.20: The empirical distribution of three risk quantities for a scenario where sys-
temic risk levels are high (December 2015).

Figures 2.20b and 2.20c contain the empirical distributions for the average fraction of
defaults and the average number of contagion rounds for all structures for high systemic
risk levels. For the defaulted fraction, the graphs for low and moderate systemic risk levels
are included in appendix B.5.3 as all structures’ lines are indistinguishable from one an-
other and both graphs lie over the same domain (see figure B.22b and B.22c). For the num-
ber of default rounds, the graph for low systemic risk levels is included in the appendix,
since the distributions for all graphs are indistinguishable from one another and lie on a
very small range (see B.23b). The graph for moderate systemic risk levels is included in
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the appendix (figure B.23c) since the distributions for the structures follow similar shapes
as for the high systemic risk levels (figure 2.20c), but with the former graph having the
distributions over a much narrower range. Figure 2.20c containing the scenario with high
systemic risk levels distinguish better between the different structures than those figures
containing the other scenarios. Furthermore, the domain for the distributions are wider for
high systemic risk levels compared to low or medium levels. This is likely due to the few
larger banks, which were the only banks that were able to cause a spread of contagion upon
default during months with high or moderate risk systemic risk levels.

It is interesting to see that for high systemic risk levels, the distribution of the average
CRR tends to be symmetrical, with only one peak. However, the distributions of the aver-
age fraction of defaults and the average number of contagion rounds have more than one
peak, and the distributions for the different structures have different shapes.
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Chapter 3

Asymptotic results

This chapter is devoted to a network model of systemic risk for large networks. Here,
we generalise results from [8], formally define a class of random networks, and show that
the generalised results hold for this class. The chapter begins with section 3.1 presenting
and discussing the background to the analytical network model that forms the basis of
our results. The construction of the banking network, relevant notation and important
definitions are presented there. The section ends by describing how the default cascades
are modelled.

Section 3.2 is devoted to understanding and presenting existing results. It provides
in-depth discussions of relevant functions before presenting the main results from [8]. Pre-
liminary results for standard Erdős-Rényi networks are presented in section 3.3. Thereafter
a general class of random networks are defined and we show that results similar to theorem
3.2.3 hold for this class of random networks. Section 3.4 illustrates the main theorem of
this thesis and uses it to compare the systemic risk inherent in different network structures.

3.1 Background and notation

As mentioned above, this chapter is devoted to understanding and generalising the con-
cepts and results from [8]. As a result, the notation and definitions used here correspond
to those used by that article. The purpose of the research presented in [8] is to examine
the systemic risk and stability inherent in large financial networks. The main result quan-
tifies the asymptotic fraction of defaults expected in a network of financial entities as the
network size grows large. For ease of reference, it is assumed that the network consists of
banks, although the results could be used for networks of other entities as well. There is
a set of initially defaulted nodes which spread losses to their credit counterparties. These
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Table 3.1: Illustration of a simplified bank balance sheet.

Assets Equity and liabilities∑n
j=1 e(i, j) Interbank Assets γ(i)

∑n
j=1 e(i, j) Capital/Net worth

N/A Other assets
∑n

j=1 e( j, i) Interbank liabilities
N/A Other liabilities

counterparties may then also default as a result, thereby spreading losses throughout the
system.

3.1.1 Network description

Similar to chapter 2, each bank in the network has a simplified balance sheet structure
which determines the bank’s initial financial position (i.e. before any defaults have oc-
curred). Due to the complexity of asymptotic network results, the balance sheets are less
refined compared to chapter 2, and liquidity effects are not considered here. An illustration
of the assumed balance sheet structure, together with the notation discussed below is given
in table 3.1.

For the results of this chapter, only the capital and the interbank assets are of interest. It
is assumed that a bank’s capital is used to absorb losses and that a bank defaults whenever
its capital is depleted. The interbank assets are subdivided between a bank’s counterparties.
It therefore represents the exposure to other banks in the system and determines a bank’s
incoming and outgoing edges.

Suppose there are n banks in the system. For now, n is kept fixed and therefore the
notation introduced below does not contain any reference to n1. Let γ(i) be bank i’s ratio of
capital to interbank assets. Note that this is defined differently here compared to chapter 2,
since the capital ratio is no longer specified as a percentage of total assets. This avoids the
need to specify the total assets of each bank, leading to a more parsimonious and flexible
model. Now let e(i, j) be the amount that bank i has lent to bank j in a network of size n
(i.e. bank i’s exposure to j). Bank i’s total interbank assets is therefore given by

∑n
j=1 e(i, j),

where e(i, k) = 0 for those banks k to which i has no exposure to. Bank i’s total capital is
then given by γ(i)

∑n
j=1 e(i, j).

All n banks’ exposures can be represented by a matrix e where the (i, j)th entry is the
exposure of i to j. From this matrix, the links between the banks can be determined, as

1From section 3.2 onwards, the notation makes reference to n since networks of different sizes are con-
sidered there.
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well as the weight of those links. This is because the non-zero entries in e indicate the
exposures between banks in the system, whereas the zero entries in the matrix indicate
which banks are not exposed each other. The system can therefore be represented by a
weighted directed graph with n vertices, whose edges can be derived from e. This matrix
indicates the presence, direction and weight of all edges in the network. Note that for any
exposure matrix, the diagonal entries e(i, i) must be zero, whereas the rest of the entries
must be non-negative.

Let ~γ be the vector containing the capital ratios of all n banks. A network of banks is
then characterised by its exposure matrix e and its vector of capital ratios ~γ. In other words,
two networks are considered to be identical if and only if they have the same exposure
matrix and capital ratio vector. This leads to the following definition [8, Definition 2.1]:

Definition 3.1.1 (Financial network). Let e be an exposure matrix for a network consisting
of n banks, and let ~γ be the associated vector of capital ratios. The pair

(
e, ~γ

)
is then called

a financial network.

A node’s out-degree is the number of outgoing edges connected to it (in other words
the number of banks that it has lent money to). The out-degree of a node i is defined by
d+(i) = # { j ∈ {1, . . . , n} | e(i, j) > 0}. Similarly, the in-degree of a node i is the number of
incoming edges connected to it and represents the number of banks that it has borrowed
money from. It is defined by d−(i) = # { j ∈ {1, . . . , n} | e( j, i) > 0}. For a network of size
n, ~d+ = (d+(1) , . . . , d+(n)) and ~d− = (d−(1) , . . . , d−(n)) are the vectors containing the out-
degrees and in-degrees of the nodes in the system respectively.

3.1.2 Random financial networks

In practice a bank’s counterparties change on a daily basis. Therefore it would be preferable
to choose the counterparties of a bank i uniformly over a range of possibilities. Consider
the case where the number of counterparties to each bank is known, but the identities of
those counterparties are unknown. The counterparties of bank i are then chosen uniformly
over all possibilities where the total number of its counterparties remains the same.

As for the exposure sizes, it is assumed that there is a set of d+(i) exposure amounts,
randomly assigned to each of i’s chosen counterparties. This concept is formalised as
follows (see [8, Definition 2.4]):

Definition 3.1.2 (Random financial network). Suppose
(
e, ~γ

)
is a financial network of size

n with fixed degree vectors ~d+ and ~d− as determined by e. The set of exposures for a fixed
bank i in this financial network is given by {e(i, j) | e(i, j) > 0, j ∈ {1, . . . , n}}.
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Let G(e) be the set of all possible exposure matrices of size n that

1. imply the same degree vectors ~d+ and ~d− as e and

2. for each node i, have the same set of exposure sizes as e (each of which need not be
assigned to the same counterparty as in the original financial network, as long as the
node i which lent the money remains the same as in the original financial network).

Note that G(e) is not empty, since the original exposure matrix e is an element of G(e).
Define Ω

(
e, ~γ

)
to be the set of all possible financial networks with degree vectors ~d+ and

~d−, where the set of exposures for a bank i is the same as for e, i.e. it is {e(i, j) | e(i, j) > 0, j ∈ {1, . . . , n}}.
Let S be the field consisting of all subsets of Ω

(
e, ~γ

)
. Note that the sets G(e) and Ω

(
e, ~γ

)
are

quite similar, the difference being that the elements of G(e) are exposure matrices, whereas
the elements of Ω

(
e, ~γ

)
are financial networks (exposure matrices with capital ratios).

For each financial network
(
e, ~γ

)
, let

(
Ω
(
e, ~γ

)
,S,P

)
be the probability space where P is

the counting measure on Ω
(
e, ~γ

)
. For this probability space, define E : Ω

(
e, ~γ

)
→ G(e) as a

random exposure matrix, uniformly distributed on G(e). The nodes of E are endowed with
the capital ratios ~γ, and the resulting financial network

(
E, ~γ

)
is called a random financial

network.

Example illustrating how G(e) is determined Suppose we have the following exposure
matrix for a network consisting of n = 4 nodes:

e =


0 1 2 0
3 0 0 4
5 0 0 6
0 7 0 0

 (3.1)

Here the degree vectors are given by ~d+ = (2, 2, 2, 1) and ~d− = (2, 2, 1, 2). The set G(e)
contains (for example) the following matrices as elements:

0 1 2 0
3 0 0 4
5 0 0 6
0 7 0 0

 ,

0 2 1 0
4 0 0 3
6 0 0 5
0 7 0 0

 and


0 1 0 2
4 0 3 0
0 5 0 6
7 0 0 0

 (3.2)

The set G(e) does not, for example, contain the matrices
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1 0 2 0
3 0 0 4
5 0 0 6
0 7 0 0

 or


0 7 2 0
3 0 0 4
5 0 0 6
0 1 0 0

 . (3.3)

The first matrix is not in G(e) since it does not have only zeros along the diagonal and
therefore is not a valid exposure matrix. The second matrix is not contained in G(e) since
only the rows of the original matrix may be shuffled, and not the columns. In other words,
G(e) contains all matrices where the entries in each row of the original matrix e are shuffled
around, subject to the requirements that the in-degree vector must remain the same and that
the diagonal entries must remain zero (so that the matrix remains a valid exposure matrix,
since banks cannot lend to themselves).

3.1.3 Default and contagion mechanics

The set D0
(
e, ~γ

)
is defined to be the set of initial defaults in the financial system

(
e, ~γ

)
. As

mentioned in section 3.1.1, an institution defaults whenever its capital is depleted. In order
to assess the effect of a shock to the financial system, there needs to be one or more initial
defaults. Banks whose capital ratios are zero therefore form the set of initial defaults so
that

D0
(
e, ~γ

)
=

{
i ∈ {1, . . . , n} | ~γ(i) = 0

}
. (3.4)

These are then the institutions that may cause a default cascade in the system. Once
the initial defaults have occurred, losses are spread through the defaulted nodes’ incoming
edges. This is because the direction of edges imply the direction of lending in the system.
A bank i ∈ D0

(
e, ~γ

)
will cause a loss of (1 − R(i)) e( j, i) to each of lenders j, where R(i) is

the recovery rate associated with the defaulted node i.
The losses caused by the nodes in D0

(
e, ~γ

)
might lead to additional defaults in the

system. The set of nodes that have defaulted up to this point is given by

D1
(
e, ~γ

)
=

i ∈ {1, . . . , n} | γ(i)
n∑

j=1

e(i, j) ≤
∑

j∈D0(e,~γ)
(1 − R( j)) e(i, j)

 . (3.5)

These losses form the first ‘round’ of default, as these are the first nodes to have defaulted
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as a result of the initial set of defaults. For subsequent rounds of default we have that

Dk
(
e, ~γ

)
=

i ∈ {1, . . . , n} | γ(i)
n∑

j=1

e(i, j) ≤
∑

j∈Dk−1(e,~γ)
(1 − R( j)) e(i, j)

 , (3.6)

for k ≥ 1.
Note that D0

(
e, ~γ

)
⊆ D1

(
e, ~γ

)
, since the latter set also includes the initial defaults.

This is because ~γ(i)
∑n

j=1 e(i, j) = 0 for all initially defaulted nodes, so that they satisfy
γ(i)

∑n
j=1 e(i, j) ≤

∑
j∈D0(e,γ) (1 − R( j)) e(i, j) regardless of whether they are connected to

one another or not.
Similarly, D1

(
e, ~γ

)
⊆ D2

(
e, ~γ

)
because D2

(
e, ~γ

)
is determined by D1

(
e, ~γ

)
, and the latter

set contains the initial defaults. Any defaults caused directly by the initially defaulted
nodes will therefore also be included in D2

(
e, ~γ

)
.

By following this argument for all k ≥ 1, it is seen that the sequence D0
(
e, ~γ

)
⊆

D1
(
e, ~γ

)
⊆ · · · ⊆ Dn−1

(
e, ~γ

)
is nested. Here Dn−1

(
e, ~γ

)
⊆ {1, . . . , n} because there can be

at most n defaults and there can be at most n − 1 rounds of default. There cannot be more
than n − 1 rounds because there must be at least one node in the set D0

(
e, ~γ

)
for there to be

any subsequent rounds of default. If the default cascade stops when there have only been
k0 < n − 1 rounds of default, then Dk

(
e, ~γ

)
= Dk+1

(
e, ~γ

)
for all k = k0, . . . , n − 2.

From the defaults Dn−1
(
e, ~γ

)
caused by nodes in the set D0

(
e, ~γ

)
, we can find the final/-

total fraction αn
(
e, ~γ

)
of defaults in a financial network

(
e, ~γ

)
given by

αn
(
e, ~γ

)
B
Dn−1

(
e, ~γ

)
n

. (3.7)

For some of the subsequent results it is necessary to keep track of the order in which a node
i’s counterparties default. For this purpose, let Σ(i) be the set of all combinations of orders
in which i’s counterparties can default. In other words for a node i with d+(i) outgoing
edges, Σ(i) will be the set of all permutations of the numbers 1, . . . , d+(i), so that it will be
a set of d+(i)! vectors, each of size d+(i).

Once an order of default is chosen for a node’s outgoing edges, the minimum number
of counterparty defaults that can cause it to become insolvent can be determined. This
is called a node’s default threshold, and is dependent on the order of default chosen. Let
τ ∈ Σ(i) for a fixed node i. Then i’s default threshold Θ(i, τ) as determined by τ is given by

Θ(i, τ) = min

k ≥ 0 | γ(i)
n∑

j=1

e(i, j) ≤
k∑

j=1

(1 − R(τ( j))) e(i, τ( j))

. (3.8)
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Suppose that the orders of default for all nodes have been determined. Then for notational
convenience, it is said that a node is of type ( j, k, θ) if it has j out-degrees, k in-degrees and
a default threshold of θ. Similarly, if a node has j out-degrees and k in-degrees, it is said to
be of degree ( j, k).

3.2 Existing results for deterministic networks

3.2.1 Discussion of relevant functions

The purpose of this section is to discuss functions that are required in order to present
and discuss the results of this chapter. Each function is formally defined and the intuitive
meaning behind it is discussed. From this point onwards, the notation is adapted to indicate
whenever a variable is dependent on n, the number of nodes in the network.

Proportion of nodes with degree ( j, k)

The exposure matrix en of a financial network of size n determines the degrees of all the
nodes. The resulting distribution of degrees µn is given by

µn( j, k) =
1
n

#
{
i ∈ {1, . . . , n} | d+

n (i) = j, d−n (i) = k
}
. (3.9)

In other words this is the proportion of nodes with degree ( j, k), where there are n nodes in
total.

Now let
(
en, ~γn

)
n≥1 be a sequence of financial networks. For each n = 1, 2, . . . the

exposure matrix en determines degree vectors ~d+
n and ~d−n and degree distribution µn( j, k).

The degree vectors and degree distributions obtained from the sequence
(
en, ~γn

)
n≥1 must

satisfy the following assumptions [8, Assumption 3.1]:

Assumption 3.1. There exists a probability distribution µ on N2 which is independent of
n, has finite mean λ =

∑
j,k jµ( j, k) =

∑
j,k kµ( j, k) and satisfies the following:

1. µn( j, k)→ µ( j, k) as n→ ∞ for all j, k ≥ 0 and

2.
∑n

i=1

[(
d+

n (i)
)2

+
(
d−n (i)

)2
]

= O(n) .a

As µ( j, k) has mean λ, this means that as n → ∞, nodes will, on average, have λ
in-degrees. This is the same as saying that nodes will have λ out-degrees on average.

aLet xn and yn be non-negative sequences. Then xn = O(yn) if there exists a non-negative integer N and a
C > 0 such that xn ≤ Cyn for all n ≥ N.
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Since µn is determined by en, it is of interest to investigate the different types of expo-
sure matrices that would result in realised degree distributions satisfying assumption 3.1.
This is done in section 3.3, where a range of possibilities are discussed.

Proportion of nodes with degree ( j, k), insolvent after θ counterparty defaults

For each n, pn( j, k, θ) represents the fraction of nodes with degree ( j, k) that become in-
solvent after θ of their counterparties default in the random network En. It is defined as
follows:

pn( j, k, θ) =
#
{
(i, τn) | d+

n (i) = j, d−n (i) = k, τn ∈ Σn(i) ,Θn(i, τn) = θ
}

nµn( j, k) j!
. (3.10)

The numerator represents the number of pairs (i, τn) where the node i has degree ( j, k) and
the permutation τn leads to i having default threshold θ. In the denominator, nµn( j, k) rep-
resents the total number of nodes with degree ( j, k). The j! term represents the number of
ways in which the j counterparties of a node with degree ( j, k) can default. The denomi-
nator therefore represents the total number of pairs (i, τn) where the node has degree ( j, k).
This definition of pn can therefore be replaced by

pn( j, k, θ) =
#
{
(i, τn) | d+

n (i) = j, d−n (i) = k, τn ∈ Σn(i) ,Θn(i, τn) = θ
}

#
{
(i, τn) | d+

n (i) = j, d−n (i) = k, τn ∈ Σn(i)
} . (3.11)

If the permutations are chosen uniformly, then this represents the expected fraction of
( j, k)-nodes that will default after θ of their counterparties default.

The function p : N3 → [0, 1] must satisfy the following [8, Assumption 3.4]:

pn( j, k, θ)→ p( j, k, θ) as n→ ∞ (3.12)

for all ( j, k, θ) ∈ N3 where θ ≤ j. As the network size becomes large, p( j, k, θ) represents
the expected fraction of ( j, k)-nodes to default after θ counterparty defaults. Therefore
p( j, k, 0) is the asymptotic fraction of all nodes with degree ( j, k) that form part of the set
of initially defaulted nodes, as these will have defaulted after zero counterparty defaults.

For notational convenience, the survival function of a binomial random variable X ∼
Bin( j, π) is defined as follows:

B̄( j, π, θ) = P(X ≥ θ) =

j∑
l≥θ

(
j
l

)
πl (1 − π) j−l . (3.13)
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Suppose that for any node, its counterparties each default with probability π. The above
expression is equivalent to the probability that a node with j outgoing links experiences θ
or more counterparty defaults. Therefore for a node i with j counterparties and a default
threshold of θ, B̄( j, π, θ) represents the probability that the node’s default threshold will be
reached, hence leading to the default of i.

The function I : [0, 1]→ [0, 1] is defined by

I(π) =
∑

j,k

µ( j, k) k
λ

j∑
θ=0

p( j, k, θ) B̄( j, π, θ) . (3.14)

The terms making up I(π) can be interpreted as follows:

• p( j, k, θ) B̄( j, π, θ) is the expected proportion of nodes with degree ( j, k) and default
threshold θ, who will default after one round if any one of their counterparties had
defaulted with probability π. This is because p( j, k, θ) can be approximated by

# nodes of type ( j, k, θ)
# nodes in the system

, (3.15)

where the size of the network is large. Similarly if π represents the probability that a
counterparty of a node defaults, then B̄( j, π, θ) can be approximated by

# defaulting nodes with j counterparties and default threshold θ
# nodes with j counterparties and default threshold θ

. (3.16)

Since B̄ is independent of the number of incoming links to a node, it can also be
approximated by

# defaulting nodes of type ( j, k, θ)
# nodes of type ( j, k, θ)

. (3.17)

Therefore p( j, k, θ) B̄( j, π, θ) can be approximated by

# defaulting nodes of type ( j, k, θ)
# nodes in the system

, (3.18)

which can be interpreted as the fraction of all nodes that have defaulted and are of
type ( j, k, θ).

•
∑ j
θ=0 p( j, k, θ) B̄( j, π, θ) is the expected fraction of all nodes that have degree ( j, k)

and will default after one round if any one of their counterparties had defaulted with
probability π.
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• For large n, µn( j, k) k
λ

can be used to approximate µ( j, k) k
λ

. The former can be rewritten as
follows:

µn( j, k) k
λ

=

(
#
{
i | d+

n (i) = j, d−n (i) = k
})

k
nλ

. (3.19)

The numerator represents the number of in-degrees used by nodes of degree ( j, k).
Regarding the denominator, λ represents the average number of in-degrees2 for a
node when the network size tends to infinity. Therefore for large n, nλ represents
the total expected number of in-degrees in the system. The term then represents the
fraction of all in-degrees in the system used by nodes of degree ( j, k).

To illustrate this, consider the simple network shown in figure 3.1. The degrees of
the nodes are shown as labels on the graph and the network has a total of nine edges.

Figure 3.1: A simple network example to illustrate the meaning of µn( j,k)k
λ

. The labels inside
the nodes represent their respective degrees.

For this example, we have that λ is given by

λ = 3µn(3, 2) + 2µn(2, 2) + 2µn(2, 1) + µn(1, 2) + µn(1, 2)

= 3 (0.2) + 2 (0.2) + 2 (0.2) + (0.4) + (0.4)

=
9
5
. (3.20)

Note that here, λ was calculated as the average in-degree of nodes in the system. The
same answer would be obtained by calculating the average out-degree of nodes in
the system.

Consider nodes of degree (1, 2). In this case the fraction of incoming edges used by
nodes of this type is 4

9 , as there are four incoming edges used by these nodes and the

2This is also the average number of out-degrees.
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system has nine edges in total. Now since µn(1, 2) = 0.4 and λ = 9
5 , then

µn(1, 2) · 2
λ

=
4
5
·

5
9

=
4
9
, (3.21)

which is the same as the proportion calculated above.

• Based on equation (3.19), the function I can be rewritten as follows:

I(π) =
∑

j,k

(
#
{
i | d+

n (i) = j, d−n (i) = k
})

k
nλ

j∑
θ=0

p( j, k, θ) B̄( j, π, θ) . (3.22)

The term
(
#
{
i | d+

n (i) = j, d−n (i) = k
})

k
∑ j
θ=0 p( j, k, θ) B̄( j, π, θ) represents the number

of in-degrees used by ( j, k) nodes multiplied by the proportion of those nodes that
will default as determined by π. Therefore the term represents the number of in-
degrees from the ( j, k) nodes that will spread losses during the next round of defaults.

• The sum
∑

j,k
(
#
{
i | d+

n (i) = j, d−n (i) = k
})

k
∑ j
θ=0 p( j, k, θ) B̄( j, π, θ) is then the number

of in-degrees from all nodes that will spread losses during the next round of defaults.

Therefore I(π) is the proportion of all in-degrees that will spread losses during the next
round of default, if each counterparty of a node defaults with probability π. In other words
at the end of a default round, this is the typical fraction of counterparty defaults that a node
can expect, given that at the start of that round, a node would have expected a fraction of
π counterparty defaults. Therefore if a node had j counterparties at the start of the round,
then at the end of the round it would be expected to have j (1 − π) counterparties left, of
which j (1 − p) I(π) would have defaulted.

Using this interpretation, the term I(0) represents the fraction of counterparty defaults
that a node can expect after one round of default, given that at the start of that round, a node
would have had no counterparty defaults. The interpretation makes sense if one considers
I(0) to be the fraction of initially defaulting nodes, since those nodes wouldn’t have had
counterparty defaults themselves.

Next, define π∗ to be the smallest fixed point3 of I:

π∗ = inf{π ∈ [0, 1] | I(π) = π} . (3.23)

A fixed point π0 of I (provided it exists) has the following intuitive explanation: If
nodes experienced a proportion π0 of their counterparties defaulting at the start of a round,

3Proposition 3.2.2 below establishes the existence of π∗.
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then at the end of that round a randomly chosen node will have the same proportion of its
remaining counterparties defaulting.

Let Ik(π) denote the kth composition of I with itself. Note that the fraction of initially
insolvent counterparties to a node is given by I(0). Therefore Ik(0) is the fraction of coun-
terparty defaults that a node can expect at the end of the kth round. For large enough k, Ik(0)
is the fraction of counterparty defaults that a node can expect at the end of the contagion
process.

To relate this to the definition of π∗, Kleene’s fixed point theorem is used. The statement
of the theorem and the definitions used in relation to it are based on [16, 88].

Let (P,≤) be a partially ordered set. Then (P,≤) is said to be ω-complete if every
increasing sequence of elements in P have a supremum in P. The function f : P → P
is said to be ω-continuous if, for every increasing sequence (xn)n∈N of elements in P, the
following hold:

1. If sup{xn} exists in P, then sup{ f (xn)} exists in P as well, and

2.
f
(
sup{xn}

)
= sup{ f (xn)} . (3.24)

Kleene’s fixed point theorem is given as follows:

Theorem 3.2.1. Let (P,≤) be an ω-complete partially ordered set with a least element x0

and let f : P → P be ω-continuous. If x ∈ P satisfies x ≤ f (x), then x∗ = sup{ f n(x0)} is a
fixed point of f . In particular, it is the least fixed point of f in P.

If Kleene’s fixed point theorem can be applied with x = 0, then it will show that the
least fixed point of I represents the probability that a randomly chosen edge ends at a
defaulted node at the end of the contagion process.

Proposition 3.2.2. Kleene’s fixed point theorem can be applied to P = [0, 1], f = I and
x = 0.

Proof. The set P = [0, 1] together with the usual meaning of ≤ defines a partial ordering.
It is ω-complete because [0, 1] is closed. Now it is proved that I is ω-continuous.

Let (πn)n∈N be any increasing sequence in [0, 1], so that sup{πn} exists because ([0, 1] ,≤)
is ω-complete. Then sup{I(πn)} is contained in the range [0, 1] since it is closed. Now let
a = sup{πn}. Since {πn} is an increasing sequence, then limn→∞ πn = a. It needs to be
shown that sup{I(πn)} = I(a). To do this, it is first shown that limn→∞ I(πn) = I(a) and then
that I is a non-decreasing function.
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For any n ∈ N,

|I(πn) − I(a)|

=

∣∣∣∣∣∣∣∑j,k

µ( j, k) k
λ

j∑
θ=0

p( j, k, θ) B̄( j, πn, θ) −
∑

j,k

µ( j, k) k
λ

j∑
θ=0

p( j, k, θ) B̄( j, a, θ)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∑j,k

µ( j, k) k
λ

j∑
θ=0

p( j, k, θ)
(
B̄( j, πn, θ) − B̄( j, a, θ)

)∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∑j,k

µ( j, k) k
λ

j∑
θ=0

p( j, k, θ)
j∑

l≥θ

(
j
l

) (
πl

n (1 − πn) j−l
− al (1 − a) j−l

)∣∣∣∣∣∣∣ . (3.25)

Therefore if n → ∞, then πn → a and hence |I(πn) − I(a)| → 0. This shows that
limn→∞ I(πn) = I(a).

Furthermore, I is a non-decreasing function of π because all the terms of which I consist
are non-negative and B̄( j, π, θ) is a non-decreasing function of π for all j and all θ. This
means that {I(xn)} is a non-decreasing sequence because {xn} is an increasing sequence.
Therefore limn→∞ I(xn) = sup{I(xn)}. Since limn→∞ I(πn) = I(a), the function I on [0, 1] is
ω-complete.

Since I is non-decreasing, 0 ≤ I(0), so that the assumptions underlying Kleene’s fixed
point theorem are satisfied. �

To conclude, proposition 3.2.2 therefore shows that π∗ = limk→∞ Ik(0), where I(0) is
the fraction of initially defaulted nodes.

3.2.2 Asymptotic fraction of total defaults

The theorem below is a restatement of theorem 3.8 in [8].

Theorem 3.2.3. Suppose the sequence
(
en, ~γn

)
of networks satisfies assumptions 3.1 and

3.4 as in [8] and that (En)n≥1 is the corresponding sequence of random matrices on (Ω,A,P).

1. If π∗ = 1, i.e. if I(π) > π for all π ∈ [0, 1), then

αn
(
En, ~γn

)
→ 1 (3.26)

weakly as n→ ∞. In other words, almost all nodes default as the network size goes
to infinity.
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2. If π∗ < 1, and π∗ is a stable fixed point of I (i.e. I′(π∗) < 1), then

αn
(
En, ~γn

)
→

∑
j,k

µ( j, k)
j∑

θ=0

p( j, k, θ) B̄( j, π∗, θ) (3.27)

weakly as n→ ∞. This is then the asymptotic fraction of defaults as the network size
goes to infinity.

Remark 3.1. Theorem 3.2.3 part 1 shows that if the proportion of in-degrees spreading
losses during each consecutive round increases as the cascade continues, then eventually
all nodes will default. Part 2 gives an expression for the asymptotic fraction of defaults
for the case where the proportion of in-degrees spreading losses during each consecutive
round stabilises.

Theorem 3.2.3 and the assumptions underlying it are essentially the focus of the re-
mainder of this chapter. Note that generalising the remaining results from [8] are beyond
the scope of this study. Appendix C.1 contains an overview of those results. Theorem
3.2.3 is based on a sequence of networks with deterministic degree sequences. Every node
in a random financial network retains its original number of debtors and creditors, as well
as the monetary amounts of the interbank loans that it granted. The element of random-
ness in a network should reflect the daily change in interbank relationship because of the
high frequency of this change. The definition of a random financial network (see definition
3.1.2, page 84) does not completely capture this daily change in interbank relationships
since degree vectors and the exposure amounts are assumed to remain the same.

It is for this reason that section 3.3 below generalises theorem 3.2.3 to apply to stochas-
tic exposure matrices instead. Hence we let en be determined via a random graph. A second
reason for using a random graph is that the results for the default Erdős-Rényi case can be
extended to the case where there are multiple Erdős-Rényi networks that interact with one
another. This allows us to apply the results to a very flexible network and thus examine a
range of different network structures in section 3.4 based on bank lending behaviour.

3.3 Results for stochastic networks

In this section, we consider different sequences of networks with a view to applying the
results of theorem 3.2.3 to them. The assumptions underlying this theorem in its original
form apply to sequences of networks with deterministic numbers of degrees. The goal
of this section is to show that assumptions similar to assumption 3.1 (see page 88) hold
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for certain sequences of networks with random numbers of degrees. The focus will be
on randomising the links between the banks, since assumption 3.1 deals with the degree
distributions of the networks implied by the sequence

(
en, ~γn

)
.

Section 3.3.1 contains results for the Erdős-Rényi case that are used as a building block
for further work. Thereafter, section 3.3.2 uses the results of section 3.3.1 to prove a version
of theorem 3.2.3 that applies to a stochastic, inhomogeneous class of networks.

3.3.1 Results for Erdős-Rényi networks

Preliminary definitions and explanations

For this section we will consider an Erdős-Rényi graph of size n, where the probability that
a directed edge exists between two nodes is denoted by q. The initial results of the section
are applicable to standard Erdős-Rényi graphs. These are then extended to an arbitrary
number of connected groups of Erdős-Rényi networks in section 3.3.2.

A randomly chosen node will, on average, have (n − 1)q incoming edges. This is the
same as the average number of outgoing edges. Therefore if q is kept fixed when letting
n → ∞, then µn cannot converge to a probability mass function with finite mean. For this
reason the value of q must depend on n. If we specify beforehand that we want the average
number of incoming edges to converge to a finite amount λ < ∞, then for a given n it must
hold that qn = q = λ

n−1 .
Such an Erdős-Rényi graph of size n with connection probability qn = λ

n−1 will be
denoted by Kλ,n. Accordingly we let κλ,n denote a realization of the random network Kλ,n,
chosen uniformly over all the possible networks that Kλ,n can result in.

We let h+
n and h−n be the probability mass functions of D+

n (i) and D−n (i) respectively.
Note that D+

n and D−n are independent of i, but may depend on n. This is because the edges
of nodes in an Erdős-Rényi graph all have the same probability of being present, and this
probability is a function of n. Now if hn is the two-dimensional probability mass function
whose marginals are h+

n and h−n , then hn( j, k) is the probability that a node i has degree ( j, k)
(i.e. that D+

n (i) = j and D−n (i) = k.). For the random network Kλ,n we will have that

hn( j, k) =

(
n − 1

j

)
q j

n (1 − qn)n−1− j
(
n − 1

k

)
qk

n (1 − qn)n−1−k , (3.28)

since each node has n − 1 other nodes to which it can be connected via incoming and/or
outgoing edges.

The function hn converges to a probability mass function h with finite mean λ. It is
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known from the Poisson limit theorem that if n→ ∞ and qn → 0 such that nqn → λ, then(
n
j

)
q j

n (1 − qn)n− j
→ e−λ

λ j

j!
(3.29)

for j > 0. If j = 0, then
(

n
j

)
q j

n (1 − qn)n− j = (1 − qn)n. Since nqn → λ, then (1 − qn)n
→(

1 − λ
n

)n
. Using the fact that

(
1 + x

n

)n
→ ex, we know that

(
1 − λ

n

)n
→ e−λ. Therefore if

j = 0, then
(

n
j

)
q j

n (1 − qn)n− j
→ e−λ as n→ ∞.

Now if λ < ∞ is chosen beforehand, then qn = λ
n−1 is chosen as the Erdős-Rényi

probability. Now qn → 0 as n → ∞ and (n − 1)qn = λ remains constant. Therefore when
letting n→ ∞ in equation (3.28), it is seen that

hn( j, k)→ e−λ
λ j

j!
e−λ

λk

k!
= e−2λλ

j+k

j!k!
= h( j, k) , (3.30)

with the appropriate adjustments if j = 0 and/or k = 0.

Asymptotic results for Erdős-Rényi networks

Suppose λ ∈ (0,∞) is fixed and consider the Erdős-Rényi graph Kλ,n. Proposition 3.3.1
below serves as a preliminary result. Theorem 3.3.2 uses a procedure similar to the proof
of the law of large numbers to prove a result similar to the first part of assumption 3.1.

Proposition 3.3.1. Let λ ∈ (0,∞) be the expected number of incoming (or outgoing) edges
in an Erdős-Rényi network, where n is the number of nodes in the network (λ being inde-
pendent of n). For fixed j, k, n ∈ N, define the random variables X(n, j,k)

i , i = 1, 2, . . . , n to
indicate whether a node i is of type ( j, k) or not. Then cov

(
X(n, j,k)

i , X(n, j,k)
l

)
→ 0 when n→ ∞

for i , l.

Proof. Fix any given j, k ∈ N. Note that X(n, j,k)
i ∼ Ber(hn( j, k)) for each n ∈ N and each

i ∈ {1, 2, . . . , n}, where

hn( j, k) =

(
n − 1

j

)
q j

n (1 − qn)n−1− j
(
n − 1

k

)
qk

n (1 − qn)n−1−k (3.31)

and qn = λ/n−1. Let b(n, qn, j) =
(

n
j

)
q j

n (1 − qn)n− j denote the binomial probability mass
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function. Then we have that

E
[
X(n, j,k)

i X(n, j,k)
l

]
=P

(
X(n, j,k)

i = 1, X(n, j,k)
l = 1

)
(3.32)

=q2
n
[
b(n − 2, qn, j − 1) b(n − 2, qn, k − 1)

]2 (3.33)

+2qn (1 − qn) b(n − 2, qn, j − 1) b(n − 2, qn, k) b(n − 2, qn, j) b(n − 2, qn, k − 1) (3.34)

+ (1 − qn)2 [
b(n − 2, qn, j) b(n − 2, qn, k)

]2 . (3.35)

The first step (3.32) follows from the fact that X(n, j,k)
i X(n, j,k)

l can only be non-zero if both
random variables are equal to one. Therefore both nodes i and l must be of type ( j, k).
The final step above captures the relationship between the degrees of the two nodes. The
following possible cases must be considered here:

1. Both directed edges from i to l and from l to i exist. This happens with probability
q2

n. For nodes i and l to be of degree ( j, k), they must both have an additional j − 1
and k − 1 outgoing and incoming edges respectively which are connected to any of
the remaining n− 2 nodes in the network. The probability of this happening is given
by (3.33).

2. Either one of the directed edges from i to l or from l to i exists, while the other
one does not. This happens with probability 2qn (qn − 1). The node whose outgoing
edge to the other node exists, must have j − 1 more outgoing edges connected to the
remaining n − 2 nodes, and k incoming edges connected to them. The other node
must have j outgoing edges and k − 1 incoming edges connected to the remaining
n − 2 nodes in the system. This is given by (3.34).

3. Neither of the two possible directed edges between nodes i and l exist. This happens
with probability (qn − 1)2. Here both nodes must have j outgoing and k incoming
edges connected to the remaining n−2 nodes in the system. This probability is given
by (3.35).

Since qn = λ
n−1 → 0 and (n − 2) qn =

(n−2)λ
n−1 → λ as n → ∞, all of the b(n − 2, qn, ·)

terms in (3.33) – (3.35) approach a Poisson probability mass function as n→ ∞. Therefore
q2

n and qn (1 − qn) factors from (3.33) and (3.34) respectively, make the two terms approach
zero. The (1 − qn)2 factor from (3.35) approaches 1, and therefore the whole of (3.35)

98



approaches the product of Poisson probability mass functions, namely(
e−λ

λ j

j!
e−λ

λk

k!

)2

=
[
h( j, k)

]2 , (3.36)

where h( j, k) is defined as in equation (3.30). Therefore we have that

E
[
X(n, j,k)

i X(n, j,k)
l

]
→

[
h( j, k)

]2 as n→ ∞. (3.37)

From this, it follows that

cov
(
X(n, j,k)

i , X(n, j,k)
l

)
=E

[
X(n, j,k)

i X(n, j,k)
l

]
− E

[
X(n, j,k)

i

]
E

[
X(n, j,k)

l

]
=E

[
X(n, j,k)

i X(n, j,k)
l

]
−

[
hn( j, k)

]2

n
→
∞

[
h( j, k)

]2
−

[
h( j, k)

]2
= 0, (3.38)

which proves the proposition. �

Theorem 3.3.2. Let Kλ,n be an Erdős-Rényi network with n nodes, each with average
degree λ ∈ (0,∞), and fix the integers j, k ∈ N0. If µ̃n( j, k) is the sample proportion of
nodes with degree ( j, k) of the network Kλ,n and h( j, k) = e−2λ λ j+k

j!k! , then for any ε > 0

P (|µ̃n( j, k) − h( j, k)| > ε)
n
→
∞

0. (3.39)

Proof. Let ε > 0 be given and fix the integers j, k ∈ N0. Further let hn( j, k) be defined as in
equation (3.28). By the triangle inequality

|µ̃n( j, k) − h( j, k)|

≤ |µ̃n( j, k) − hn( j, k)| + |hn( j, k) − h( j, k)| . (3.40)

From (3.30) we know that |hn( j, k) − h( j, k)|
n
→
∞

0. Hence we can choose N ∈ N large
enough so that |hn( j, k) − h( j, k)| < ε

2 for all n ≥ N. Therefore for all n ≥ N we have that

|µ̃n( j, k) − h( j, k)|

≤ |µ̃n( j, k) − hn( j, k)| +
ε

2
. (3.41)

Using this inequality, it is seen that

P(|µ̃n( j, k) − h( j, k)| > ε)
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≤ P
(
|µ̃n( j, k) − hn( j, k)| +

ε

2
> ε

)
= P

(
|µ̃n( j, k) − hn( j, k)| >

ε

2

)
. (3.42)

The next step is to show that P
(
|µ̃n( j, k) − hn( j, k)| > ε

2

)
→ 0 when n → ∞. The proof

of this is similar to the proof of the weak law of large numbers, with a slight modification
to deal with the fact that hn( j, k) depends on n.

We know that µ̃n( j, k) is the proportion of nodes with degree ( j, k), where there are n
nodes in total. Therefore it can be seen as the average of n Bernoulli trial outcomes, where
the probability of success is hn( j, k). The probability of success is equal to hn( j, k) since
this is the probability that a node will be of degree ( j, k) when there are n nodes in the
system. It then also follows that E

[
µ̃n( j, k)

]
= hn( j, k).

Let X(n, j,k)
1 , X(n, j,k)

2 , . . . , X(n, j,k)
n be n Ber(hn( j, k)) random variables (note that the distri-

bution of the random variables depends on n). The X(n, j,k)
i ’s are not independent of each

other, since the degrees of one node affect the degrees of the nodes connected to it. They
are, however, asymptotically mutually uncorrelated from proposition 3.3.1. Therefore
cov

(
X(n, j,k)

i , X(n, j,k)
l

)
→ 0 for all i , l when n→ ∞. and hence

var
[
µ̃n( j, k)

]
=var

1
n

n∑
i=1

X(n, j,k)
i


=

1
n2

(
n var

[
X(n, j,k)

i

]
+

(
n2 − n

)
cov

(
X(n, j,k)

i , X(n, j,k)
l

))
, i , l since Xi’s are identically distributed

=
1
n

(
var[Xi] + (n − 1) cov

(
X(n, j,k)

i , X(n, j,k)
l

))
=

1
n

(
hn( j, k) − (hn( j, k))2 + (n − 1) cov

(
X(n, j,k)

i , X(n, j,k)
l

))
. (3.43)

From Chebyshev’s inequality, we have that

P
(
|µ̃n( j, k) − hn( j, k)| >

ε

2

)
≤

4
ε2 var

[
µn( j, k)

]
=

4
ε2n

(
hn( j, k) − (hn( j, k))2 + (n − 1) cov

(
X(n, j,k)

i , X(n, j,k)
l

))
=

4
ε2n

(
hn( j, k) − (hn( j, k))2

)
+

(n − 1)
n

4 cov
(
X(n, j,k)

i , X(n, j,k)
l

)
ε2 . (3.44)

100



If n → ∞, then hn( j, k) → h( j, k) = e−2λ λ j+k

j!k! < ∞. Then since 4
ε2n → 0 when n → ∞,

the first term above tends to 0. For the second term, (n−1)
n → 1 and

4 cov
(
X(n, j,k)

i , X(n, j,k)
l

)
ε2 → 0.

Therefore
P
(
|µ̃n( j, k) − hn( j, k)| >

ε

2

)
n
→
∞

0. (3.45)

Since ε > 0 was arbitrary, this shows that µ̃n( j, k)
n
→
∞

h( j, k) in probability. �

Theorem 3.3.2 serves as a building block for similar results for a variant of the Erdős-
Rényi graph where there are groups of connected Erdős-Rényi graphs. This will allow us
to apply the results considered in this chapter to a very versatile type of network. This
can be used to compare the risk implied by different types of network structure. Section
3.3.2 below defines the type of network that this study is focused on, and presents a result
analogous to theorem 3.3.2.

3.3.2 Semi-heterogeneous Erdős-Rényi graphs

Suppose now that there are d groups of Erdős-Rényi networks that all interact with one
another to form a new network of size n. Each group α comprises nα nodes, so that∑d
α=1 nα = n. The probabilities of edges existing between any two nodes are predeter-

mined based on the groups to which the nodes belong. Suppose a node i is in group α and
a node j is in group β. The probability that the edge from i to j exists is denoted by q(n)

αβ .
The n in the superscript is included to indicate that the value of this probability will be de-
pendent on the size of the network. It is shown below that this structure satisfies equation
(3.39).

For each group α, let wα = nα
n and assume that these remain constant when n → ∞.

Let λαβ be the expected number of edges from any node in group α to nodes in group β.
If α = β then a node in group α can connect to nα − 1 other nodes in the same group, this
means that q(n)

αα = λαα
nα−1 . If α , β then a node in group α can connect to nβ nodes in group β

and therefore q(n)
αβ =

λαβ
nβ

.
For the purpose of this research we will call this a semi-heterogeneous Erdős-Rényi

graph. To formalize this, we have the following definitions:

Definition 3.3.1 (Average connection matrix). For a group of d ≥ 1 Erdős-Rényi graphs
Kλ1,n1 ,Kλ2,n2 , . . . ,Kλd ,nd where there exists edges linking nodes between different graphs,
the average connection matrix λ is defined to be the d × d matrix whose elements λαβ,
α, β = 1, 2, . . . , d represent the expected number of edges from any node in graph α to
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nodes in graph β. The diagonal entries are given by λαα = λα, α = 1, 2, . . . , d. An average
connection matrix is said to be positive if λαβ > 0 for all α, β.

Definition 3.3.2 (Semi-heterogeneous Erdős-Rényi graph). Let d ∈ N and consider the set{
Kλ11,n1 , . . . ,Kλdd ,nd

}
of d Erdős-Rényi graphs with positive average connection matrix λ. If

~n = (n1, . . . , nd) and the nodes from these graphs may be connected to one another such
that λαβ is the expected number of edges from any node in group α to nodes in group β,
then we call the resulting graph a semi-heterogeneous Erdős-Rényi graph. This graph will
be denoted by Kd

λ,~n.

Recall that D+
n (i) and D−n (i) are the random variables representing the number of out-

and in-degrees of a randomly chosen node i in the network. Now let D+,α
n (i) and D−,αn (i) be

the random variables representing the number of out- and in-degrees of any node i in group
α. Similar to h+

n and h−n which denote the respective probability mass functions of D+
n (i)

and D−n (i), we let h+,α
n and h−,αn denote the probability mass functions of D+,α

n (i) and D−,αn (i)
respectively.

Now let hαn be the joint probability mass function of h+,α
n and h−,αn . Then hαn ( j, k) is the

probability that a randomly chosen node in group α (where the total network size is n)
has j and k outgoing and incoming edges connected to it respectively. Then hn( j, k), the
probability that any node i has degree ( j, k), is given by

hn( j, k) =

d∑
α=1

nα
n

hαn ( j, k)

=

d∑
α=1

nα
n

h+,α
n ( j) h−,αn (k) . (3.46)

Preliminary discussions

For d = 2 Erdős-Rényi networks First consider a semi-heterogeneous Erdős-Rényi
graph Kd

λ,~n where d = 2. For a preliminary discussion we will consider the expressions for
hn( j, k) and its limit. When d = 2 we have four connection probabilities, namely q(n)

11 , q(n)
12 ,

q(n)
21 and q(n)

22 .
For d = 2 groups, equation (3.46) can be written as follows:

hn( j, k) =
n1

n
h1

n( j, k) +
n2

n
h2

n( j, k)

=
n1

n
h+,1

n ( j) h−,1n (k) +
n2

n
h+,2

n ( j) h−,2n (k) . (3.47)
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To find an expression for h+,1
n ( j), note that there are n1 − 1 other nodes in group 1 to which

a node in group 1 can connect. However there are n2 nodes in group 2 to which a node in
group 1 can connect. There can either be 0 of the j edges connected to group 1 nodes and
j to group 2 nodes, or 1 edge connected to group 1 nodes and j − 1 to group 2 nodes, etc.
Therefore

h+,1
n ( j) =

(
n1 − 1

0

) (
q(n)

11

)0 (
1 − q(n)

11

)n1−1
(
n2

j

) (
q(n)

12

) j (
1 − q(n)

12

)n2− j

+

(
n1 − 1

1

) (
q(n)

11

)1 (
1 − q(n)

11

)n1−1−1
(

n2

j − 1

) (
q(n)

12

) j−1 (
1 − q(n)

12

)n2−( j−1)

+ · · ·

+

(
n1 − 1

j

) (
q(n)

11

) j (
1 − q(n)

11

)n1−1− j
(
n2

0

) (
q(n)

12

)0 (
1 − q(n)

12

)n2

=

j∑
l=0

(
n1 − 1

l

) (
q(n)

11

)l (
1 − q(n)

11

)n1−1−l
(

n2

j − l

) (
q(n)

12

) j−l (
1 − q(n)

12

)n2−( j−l)
. (3.48)

For notational convenience, let the binomial probability mass function be denoted by

b(n, q, l) =

(
n
l

)
ql (1 − q)n−l . (3.49)

Then

h+,1
n ( j) =

j∑
l=0

b
(
n1 − 1, q(n)

11 , l
)

b
(
n2, q

(n)
12 , j − 1

)
(3.50)

and similarly,

h−,1n (k) =

k∑
l=0

(
n1 − 1

l

) (
q(n)

11

)l (
1 − q(n)

11

)n1−1−l
(

n2

k − l

) (
q(n)

21

)k−l (
1 − q(n)

21

)n2−(k−l)

=

k∑
l=0

b
(
n1 − 1, q(n)

11 , l
)

b
(
n2, q

(n)
21 , k − l

)
, (3.51)

h+,2
n ( j) =

j∑
l=0

(
n2 − 1

l

) (
q(n)

22

)l (
1 − q(n)

22

)n2−1−l
(

n1

j − l

) (
q(n)

21

) j−l (
1 − q(n)

21

)n1−( j−l)

=

j∑
l=0

b
(
n2 − 1, q(n)

22 , l
)

b
(
n1, q

(n)
21 , j − l

)
(3.52)

and
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h−,2n (k) =

k∑
l=0

(
n2 − 1

l

) (
q(n)

22

)l (
1 − q(n)

22

)n2−1−l
(

n1

k − l

) (
q(n)

12

)k−l (
1 − q(n)

12

)n1−(k−l)

=

k∑
l=0

b
(
n2 − 1, q(n)

22 , l
)

b
(
n1, q

(n)
12 , k − l

)
. (3.53)

These expressions can then be substituted into the expression for hn( j, k) given by equation
(3.47). For the expressions to make sense it is assumed, without loss of generality, that
j, k < n1 and j, k < n2.

Note that since w1 and w2 remain constant as n → ∞, then n1 and n2 tend to infinity at
the same rate as n. This means that all of the q(n)

αβ probabilities converge to 0 as n → ∞.
Next it is shown that all of the factors making up equation (3.47) converge.

Consider first the expression for h+,1
n ( j) given by (3.50). Since (n1 − 1)q(n)

11 = λ11 stays
constant when n increases,(

n1 − 1
l

) (
q(n)

11

)l (
1 − q(n)

11

)n1−1−l n
→
∞

e−λ11
λl

11

l!
(3.54)

for l = 1, 2, . . . , j and (
n1 − 1

l

) (
q(n)

11

)l (
1 − q(n)

11

)n1−1−l n
→
∞

e−λ11 (3.55)

if l = 0. The second factor in the summation for h+,1
n ( j) converges to a similar expression

since n2q(n)
12 = λ12 is constant. In this case

(
n2

j − l

) (
q(n)

12

) j−l (
1 − q(n)

12

)n2−( j−l) n
→
∞

e−λ12
λ

j−l
12

( j − l)!
(3.56)

for l = 0, 1, . . . , j − 1. If l = j, then(
n2

j − l

) (
q(n)

12

) j−l (
1 − q(n)

12

)n2−( j−l) n
→
∞

e−λ12 . (3.57)

Since all of the above limits are finite, and the sum from equation (3.50) consists of a finite
number of terms,

h+,1
n ( j)

n
→
∞

j∑
l=0

e−λ11
λl

11

l!
e−λ12

λ
j−l
12

( j − l)!
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= e−λ11−λ12

j∑
l=0

λl
11λ

j−l
12

l! ( j − l)!
(3.58)

with the understanding that λl
11
l! is replaced by 1 when l = 0 and λ

j−l
12

( j−l)! is replaced by 1 when
l = j.

Now consider equation (3.51) for h−,1n (k). The convergence of the first factor in the
summation has already been established. For the second factor, note that n2q(n)

21 = n2
λ21
n1

=
w2
w1
λ21 is constant. Therefore

(
n2

k − l

) (
q(n)

21

)k−l (
1 − q(n)

21

)n2−(k−l) n
→
∞

e−
w2
w1
λ21

(
w2
w1
λ21

)k−l

(k − l)!
(3.59)

for l = 0, 1, . . . , k − 1, with

(
w2
w1
λ21

)k−l

(k−l)! replaced by 1 if l = k. Therefore

h−,1n (k)
n
→
∞

k∑
l=0

e−λ11
λl

11

l!
e−

w2
w1
λ21

(
w2
w1
λ21

)k−l

(k − l)!

= e−λ11−
w2
w1
λ21

k∑
l=0

λl
11

(
w2
w1
λ21

)k−l

l! (k − l)!
(3.60)

with the understanding that λl
11
l! is replaced by 1 when l = 0 and

(
w2
w1
λ21

)k−l

(k−l)! is replaced by 1
when l = k.

For h+,2
n (k) given by equation (3.52), we have the following:(

n2 − 1
l

) (
q(n)

22

)l (
1 − q(n)

22

)n2−1−l n
→
∞

e−λ22
λl

22

l!
(3.61)

and (
n1

j − l

) (
q(n)

21

) j−l (
1 − q(n)

21

)n1−( j−l) n
→
∞

e−λ21
λ

j−l
21

( j − l)!
. (3.62)

Therefore

h+,2
n (k)

n
→
∞

j∑
l=0

e−λ22
λl

22

l!
e−λ21

λ
j−l
21

( j − l)!

= e−λ22−λ21

j∑
l=0

λl
22λ

j−l
21

l! ( j − l)!
, (3.63)
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with the appropriate adjustments in the summation when l = 0 and l = j. Finally, for
equation (3.53) we have that

(
n1

k − l

) (
q(n)

12

)k−l (
1 − q(n)

12

)n1−(k−l) n
→
∞

e−
w1
w2
λ12

(
w1
w2
λ12

)k−l

(k − l)!
, (3.64)

and hence

h−,2n (k)
n
→
∞

k∑
l=0

e−λ22
λl

22

l!
e−

w1
w2
λ12

(
w1
w2
λ12

)k−l

(k − l)!

= e−λ22−
w1
w2
λ12

k∑
l=0

λl
22

(
w1
w2
λ12

)k−l

l! (k − l)!
. (3.65)

Equations (3.58), (3.60), (3.63) and (3.65) can now be used to find limn→∞ hn( j, k) based
on equation (3.47). In addition to this, n1

n and n1
n is replaced with w1 and w2 respectively, so

that

lim
n→∞

hn( j, k) =h( j, k)

=w1

e−λ11−λ12

j∑
l1=0

λl1
11λ

j−l1
12

l1! ( j − l1)!


e−λ11−

w2
w1
λ21

k∑
l2=0

λl2
11

(
w2
w1
λ21

)k−l2

l2! (k − l2)!


+w2

e−λ22−λ21

j∑
l3=0

λl3
22λ

j−l3
21

l3! ( j − l3)!


e−λ22−

w1
w2
λ12

k∑
l4=0

λl4
22

(
w1
w2
λ12

)k−l4

l4! (k − l4)!


=w1e−2λ11−λ12−

w2
w1
λ21

 j∑
l1=0

λl1
11λ

j−l1
12

l1! ( j − l1)!


 k∑

l2=0

λl2
11

(
w2
w1
λ21

)k−l2

l2! (k − l2)!


+w2e−2λ22−λ21−

w1
w2
λ12

 j∑
l3=0

λl3
22λ

j−l3
21

l3! ( j − l3)!


 k∑

l4=0

λl4
22

(
w1
w2
λ12

)k−l4

l4! (k − l4)!

 . (3.66)

This probability mass function has a finite mean, since the average number of outgoing
edges connected to a randomly chosen node in the system is given by

n1

n

[
(n1 − 1) q(n)

11 + n2q(n)
12

]
+

n2

n

[
n1q(n)

21 + (n2 − 1) q(n)
22

]
=w1 (λ11 + λ12) + w2 (λ21 + λ22) . (3.67)
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For d Erdős-Rényi networks in general In this case we have d2 connection probabilities
q(n)
αβ , where α, β = 1, 2, . . . , d. Recall that for d groups, hn( j, k) can be expressed as follows:

hn( j, k) =

d∑
α=1

wαh+,α
n ( j) h−,αn (k) . (3.68)

In order to find general expressions for h+,α
n ( j) and h−,αn (k), we look at the different

ways in which a node in group α can have j out-degrees and k in-degrees. Without loss of
generality we assume that nβ > j, k for β = 1, 2, . . . , d. This is a reasonable assumption,
since for β = 1, 2, . . . , d we have that nβ → ∞ as n→ ∞. Then we have that for d > 2 and
α < d

h+,α
n ( j) =

j∑
m1=0

j−m1∑
m2=0

· · ·

j−m1−···−mα−1∑
mα=0

· · ·

j−m1−···−md−1∑
md−1=0

b
(
n1, q

(n)
α1 ,m1

)
b
(
n2, q

(n)
α2 ,m2

)
· · · b

(
nα−1, q

(n)
α,α−1,mα−1

)
b
(
nα − 1, q(n)

αα,mα

)
b
(
nα+1, q

(n)
α,α+1,mα+1

)
· · · b

(
nd−1, q

(n)
α,d−1,md−1

)
b
(
nd, q

(n)
αd , j − m1 − · · · − md−1

)
, (3.69)

with a similar expression for h−,αn (k) and for the case α = d.
Each of the terms above is a binomial probability mass function and will converge to a

Poisson probability mass function as n → ∞. Therefore h+,α
n ( j) and h−,αn (k) will converge

for all groups α. Hence there exists an h such that hn( j, k)
n
→
∞

h( j, k) for all j, k ∈ N.

Preliminary results

We can now show that equation (3.39) is satisfied when we have any finite number of
Erdős-Rényi graphs that interact with one another. Similar to proposition 3.3.1 we have
the following result:

Proposition 3.3.3. Suppose there are d ≥ 1 groups of random Erdős-Rényi graphs, and
let q(n)

αβ , wα, hαn , hα and h be defined as before. For any given j, k, n ∈ N, let X(n, j,k)
i , i =

1, 2, . . . , n be the indicator random variable which is equal to 1 when node i is of type
( j, k). Then cov

(
X(n, j,k)

i , X(n, j,k)
l

)
→ 0 when n→ ∞ for all nodes i , l.

Proof. Let j, k and d be given. Recall that hαn ( j, k) is the probability that a node in group
α is of type ( j, k), where the system is of size n. Analogous to this we let hαn ( j, k, β) be the
probability that a node in group α is of type ( j, k), where one node in group β is disregarded,
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and the system is treated as if it has n− 1 nodes. Then for any two nodes i , l we have that

E
[
X(n, j,k)

i X(n, j,k)
l

]
=

d∑
α=1

d∑
β=1

wαwβP
(
X(n, j,k)

i = 1, X(n, j,k)
l = 1 |

{
node i is in group α

}
∩

{
node l is in group β

})
=

d∑
α=1

d∑
β=1

wαwβ

[
q(n)
αβq(n)

βαhαn ( j − 1, k − 1, β) hβn( j − 1, k − 1, α)

+q(n)
αβ

(
1 − q(n)

βα

)
hαn ( j − 1, k, β) hβn( j, k − 1, α) +

(
1 − q(n)

αβ

)
q(n)
βαhαn ( j, k − 1, β) hβn( j − 1, k, α)

+
(
1 − q(n)

αβ

) (
1 − q(n)

βα

)
hαn ( j, k, β) hβn( j, k, α)

]
. (3.70)

If n→ ∞ then for all α, β = 1, 2, . . . , d we have that q(n)
αβ → 0 and that wα remains constant.

Therefore

E
[
X(n, j,k)

i X(n, j,k)
l

]
→

d∑
α=1

d∑
β=1

wαwβhα( j, k) hβ( j, k)

=
[
h( j, k)

]2

= E
[
X(n, j,k)

i

]
E

[
X(n, j,k)

l

]
, (3.71)

which proves the theorem. �

The following theorem can be deduced based on proposition 3.3.3:

Theorem 3.3.4. Let Kd
λ,~n be a semi-heterogeneous Erdős-Rényi graph. Let n =

∑d
i=1 ni

and for α, β = 1, 2, . . . , d, let q(n)
αβ , wα, hαn , hα and h be defined as before. If µ̃( j, k) is the

proportion of nodes with degree ( j, k), then for every j, k ∈ N0 and any ε > 0

P (|µ̃n( j, k) − h( j, k)| < ε)
n
→
∞

0 . (3.72)

In order to show that µ̃n( j, k)
n
→
∞

h( j, k) for all j, k ∈ N, the same steps as for theorem
3.3.2 can be used in conjunction with proposition 3.3.3. In order to avoid repetitiveness,
the proof is not written out again.

Assume now that after the links for any graph κd
λ,~ni

have been determined, the exposure
amounts of any node in group α are identically distributed random variables with distri-
bution function Fα. It is further assumed that the non-zero exposure amounts of any two
nodes are independent. Suppose that the fraction of initial defaults is π0 (chosen uniformly
over all the nodes), that these nodes have capital ratios equal to zero and that all other nodes
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have capital ratios equal to c > 0. Then for all nodes i

γ(i) =

c with probability 1 − π0

0 with probability π0.

Recall that the function pn( j, k, θ) represents the expected fraction of nodes with degree
( j, k) that has a default threshold of θ. Therefore pn( j, k, 0) = π0. Similarly for α =

1, 2, . . . , d, let pαn ( j, k, θ) denote the expected fraction of nodes in group α with degree ( j, k)
that default after θ counterparties have defaulted. Note that pn( j, k, 0) = pαn ( j, k, 0) = π0.

Suppose therefore that θ > 0. The fact that the order of default has not yet been de-
termined can be ignored, as the exposures of nodes are i.i.d. within each group. Therefore
pαn ( j, k, θ) is simply the probability that a node in group α with degree ( j, k) will have total
capital that is more than the total loss suffered on θ − 1 of its exposures, but less than the
loss suffered on θ exposures.

For a fixed j ∈ N, let Xα
1 , X

α
2 , . . . , X

α
j , α = 1, 2, . . . , d be d sequences of i.i.d. random

variables, where Fα is the distribution function of the αth sequence’s random variables. Let
LGD = 1−R denote the loss given default for any counterparty. Note that a node i can only
have a default threshold greater than zero if γ(i) = c < LGD. Therefore since the capital
ratios are independent of the exposures,

pαn ( j, k, θ) = (1 − π0) P

LGD Xα
θ > c

j∑
l=1

Xα
l − LGD

θ−1∑
m=1

Xα
m > 0

 , (3.73)

with the appropriate adjustments whenever θ = 1 and/or j = 1. By using Bayes’ theorem
we then have that

pn( j, k, θ) =

d∑
α=1

pαn ( j, k, θ)
hα( j, k) wα

h( j, k)
, (3.74)

where hα( j, k) and h( j, k) are defined as before.
The term c

∑ j
l=1 Xα

l in (3.73) is the total capital held by a node in group α with degree
( j, k), as c represents the ratio of capital to total interbank assets (which is i.i.d. within each
group for a fixed j). The total loss suffered by the default of θ − 1 counterparties is given
by LGD

∑θ−1
m=1 Xα

m. The event that a node in group α of degree ( j, k) has not defaulted after
θ− 1 counterparty defaults is given by

{
c
∑ j

l=1 Xα
l − LGD

∑θ−1
m=1 Xα

m > 0
}
. For such a node to

have default threshold θ, it must default after the next counterparty default. Therefore the
remaining capital after θ − 1 counterparty defaults must be less than the loss suffered on
the θth default. This is the event

{
LGD Xα

θ > c
∑ j

l=1 Xα
l − LGD

∑θ−1
m=1 Xα

m

}
. Equation (3.73)
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depends on j and through the joint distribution of Xα
1 , X

α
2 , . . . , X

α
j , but does not depend on

n and therefore p( j, k, θ) = pn( j, k, θ).

Asymptotic results for semi-heterogeneous Erdős-Rényi networks

For a network of size n and fixed j, k, let the random variable µ̃n( j, k) be defined on the
probability space (Ωn,Fn,Pn) and assume that the capital ratios ~γn are given for each n.
Define the mappingHn : Ωn → Mn, where Mn is the set of all exposure matrices of size n
andHn(ωn) = en.

As in section 3.2, we let π∗ be the smallest fixed point of the function I : [0, 1]→ [0, 1],
where

I(π) =
∑

j,k

h( j, k) k
λ̄

j∑
θ=0

p( j, k, θ) B̄( j, π, θ) , (3.75)

and where B̄( j, π, θ) = P(X ≥ θ) =
∑ j

l≥θ

(
j
l

)
πl (1 − π) j−l denotes the survival function of a

binomial random variable. It was shown in section 3.2 that since I is non-decreasing, then
π∗ = limk→∞ Ik(0) where I(0) is the fraction of initially defaulted nodes.

Theorem 3.3.5 below, which constructs a measure on the product space and is a special
case of a theorem in [90], is used together with theorem 3.8 in [8] in order to prove theorem
3.3.6. Theorem 3.3.6 makes the results in [8] (which are based on deterministic in- and
out-degree sequences) applicable to semi-heterogeneous Erdős-Rényi graphs where the in-
and out-degree sequences are random. It shows that it is possible to find a subsequence of
semi-heterogeneous Erdős-Rényi graphs for which the results in [8] hold almost surely.

Theorem 3.3.5 (Special case of theorem 2.4.4 in [90]). For each n ∈ N, let (Xn,An, Pn)
be a probability space where Xn is a locally compact, σ-compact metric space with Borel
σ-algebra An. Then there exists a unique probability measure P =

∏∞
i=1 Pn on (X,A) B(∏∞

n=1 Xn,
∏∞

n=1An
)

with the property that

P

 ∞∏
n=1

Un

 =

∞∏
n=1

Pn(Un) (3.76)

whenever Un ∈ An for each n ∈ N and one has Un = Xn for all but finitely many of the n.

Theorem 3.3.6. For each n ∈ N and j, k ∈ N0, let µ̃n( j, k) denote the fraction of nodes
with degree ( j, k) in the semi-heterogeneous Erdős-Rényi graph Kd

λ,~n, where λ = (λil), λ̄ =∑
i,l wiλil and n =

∑d
i=1 ni. Then there exists a sequence (nm)m≥1 in N such that for any

ω =
(
ωnm

)
m≥1 in the product space

∏∞
m=1 Ωnm , the corresponding sequence of exposure

matrices
(
Hnm

(
ωnm

))
m≥1 =

(
enm

)
m≥1 will satisfy the following with probability one:
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1. If π∗ = 1, i.e. if I(π) > π for all π ∈ [0, 1), then

αnm

(
Enm , ~γnm

)
→ 1 (3.77)

weakly as m→ ∞. In other words, almost all nodes default as the network size goes
to infinity.

2. If π∗ < 1, and π∗ is a stable fixed point of I (i.e. I′(π∗) < 1), then

αnm

(
Enm , ~γnm

)
→

∑
j,k

h( j, k)
j∑

θ=0

p( j, k, θ) B̄( j, π∗, θ) (3.78)

weakly as m → ∞. This is then the asymptotic fraction of defaults as the network
size tends to infinity.

Proof. Fix j, k ∈ N and let (Ω,F ) =
(∏∞

i=1 Ωi,
∏∞

i=1Ai
)
. Then for each i ∈ N, define the

projection Πi : Ω → Ωi by (x1, x2, . . . ) 7→ xi. From theorem 3.3.5, there exists a unique
probability measure P on Ω such that if µ̃( j, k) = (µ̃1( j, k) , µ̃2( j, k) , . . . ) is a random variable
on (Ω,F ), then for all ε > 0

P(|Πnµ̃( j, k) − h( j, k)| > ε) = Pn(|µ̃n( j, k) − h( j, k)| > ε)→ 0. (3.79)

The left-hand side of equation (3.79) follows from theorem 3.3.5, and the convergence
from Proposition 3.3.3. This shows that Πnµ̃( j, k)→ h( j, k) in probability. Therefore there
exists a subsequence n1, n2, . . . such that Πnk µ̃( j, k)→ h( j, k) almost surely.

Now let χC denote the indicator function of the set C. In a system of size n, the number
of nodes with degree ( j, k) can be expressed as∑n

i=1

[(
D+

n (i)
)2

+
(
D−n (i)

)2
]
χ{D+

n (i)= j}χ{D−n(i)=k}

j2 + k2 , (3.80)

where D+
n and D−n are defined as before. Hence

µ̃n( j, k) =
1
n

∑n
i=1

[(
D+

n (i)
)2

+
(
D−n (i)

)2
]
χ{D+

n(i)= j}χ{D−n(i)=k}

j2 + k2 . (3.81)

Therefore

1
nm

nm∑
i=1

[(
D+

nm
(i)

)2
+

(
D−nm

(i)
)2
]

=
∑

j,k

µ̃nm( j, k)
(

j2 + k2
)
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→
∑

j,k

h( j, k)
(

j2 + k2
)
< ∞ (3.82)

almost surely, since h is the joint probability mass function of two random variables with
finite second moments. Now we have that

nm∑
i=1

[(
D+

nm
(i)

)2
+

(
D−nm

(i)
)2
]

= O(nm) (3.83)

almost surely. By theorem 3.8 in [8] we now have that for any
(
ωn1 , ωn2 , . . .

)
∈

∏∞
m=1 Ωnm

the corresponding sequence of exposure matrices
(
Hnm

(
ωnm

))
m≥1 =

(
enm

)
m≥1 satisfies equa-

tion (3.77) and (3.78).
�

Section 3.4 now deals with illustrating theorem 3.3.6 and shows how semi-heterogeneous
Erdős-Rényi graphs can be used to compare different types of network structures.

3.4 Application to stochastic, heterogeneous financial net-
works

3.4.1 Illustration of theoretical results

A simple Erdős-Rényi structure is used for this section as the computational inefficien-
cies of evaluating large networks are exasperated when dealing with multiple Erdős-Rényi
networks that interact with one another. Two cases are considered regarding the non-zero
exposures of each bank. The first case is where all exposures are assumed to be equal, and
the second is where the positive exposures are assumed to be exponentially distributed with
parameter η. This keeps the function p( j, k, θ) mathematically tractable while ensuring that
counterparty exposures remain positive.

Calculating the analytical weak limits

Recall that theorem 3.3.6 provides weak limits for α
(
En, ~γn

)
, the final fraction of defaults

under different circumstances. The first step in determining the weak limit is to find the
value of π∗, so that the appropriate case can be chosen above. Recall that π∗ is defined by
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π∗ = inf{π ∈ [0, 1] | I(π) = π}, where I(π) is given by equation (3.14) as

I(π) =
∑

j,k

µ( j, k) k
λ

j∑
θ=0

p( j, k, θ) B̄( j, π, θ) . (3.84)

It was shown through proposition 3.2.2 that in fact π∗ = limk→∞ Ik(0), where I(0) = π0

represents the fraction of initially defaulted nodes.
The calculation of I(π) and the limit for the second case of theorem 3.3.6 requires

computation of the functions B̄( j, π, θ), µ( j, k) and p( j, k, θ). Recall that the B̄ function is
merely the binomial distribution survival function (see equation (3.13)), and hence is easily
calculated. Consider now the functional form of µ( j, k).

The average in- and out-degrees are kept fixed at λ < ∞ for different network sizes.
Now let j and k be fixed. From theorem 3.3.2 we know that the proportion of nodes that
have degree ( j, k) satisfies P (|µ̃n( j, k) − h( j, k)| > ε)

n
→
∞

0, where h( j, k) = e−2λ λ j+k

j!k! .
Finally, consider the functional form of p( j, k, θ). Assume that the exposure sizes of

all nodes (irrespective of their in- and out-degrees) follow an exponential distribution with
parameter η. Further assume that any node i is included in the set of initially defaulted
nodes with probability π0. Initially defaulted nodes will have capital ratios of γ(i) = 0 and
the rest will have capital ratios of, say, c where c > 0. Therefore p( j, k, 0) = π0 and for
θ > 0, equation (3.73) shows that

p( j, k, θ) = (1 − π0)P

LGD Xθ > c
j∑

l=1

Xl − LGD
θ−1∑
m=1

Xm > 0

 , (3.85)

where X1, X2, . . . , X j are i.i.d. exp(η) random variables and LGD is the loss given default
ratio for all counterparties. The term LGD

∑θ−1
m=1 Xm is omitted whenever θ = 1. Note that

we must have LGD > c, since otherwise no node will ever default apart from the set of
initially defaulted nodes.

Note that the right-hand factor in equation (3.85) is difficult to calculate directly since
the summations are not independent. In order to address this, we need to consider different
values that j and θ can take. The different cases considered below are j > θ > 1; j > 1 and
θ = 1; and j = 1 with θ = 0 or θ = 1.

Assume that j > θ > 1:
The probability on the right hand side of equation (3.85) can then be rewritten as fol-
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lows:

P

LGD Xθ > c
j∑

l=1

Xl − LGD
θ−1∑
m=1

Xm > 0

 (3.86)

=P

c j∑
l=1

Xl − LGD
θ−1∑
m=1

Xm < LGD Xθ

 − P
c j∑

l=1

Xl − LGD
θ−1∑
m=1

Xm ≤ 0


=P

c j∑
l=1

Xl − LGD
θ∑

m=1

Xm < 0

 − P
c j∑

l=1

Xl − LGD
θ−1∑
m=1

Xm ≤ 0


=P

c j∑
l=θ+1

Xl − (LGD − c)
θ∑

m=1

Xm < 0

 (3.87)

− P

c j∑
l=θ

Xl − (LGD − c)
θ−1∑
m=1

Xm ≤ 0

 . (3.88)

For each of the above probabilities (3.87) and (3.88), the two summations are now
independent of one another. Furthermore since the Xi’s are independent exp(η) distributed
random variables, the summations above will have gamma distributions.

First we consider (3.87) above and determine the distribution of each of the two summa-
tions. The random variable cXl has an exp

(
η

c

)
distribution. Therefore

∑ j
l=θ+1 cXl will have

a gamma
(

j − θ, c
η

)
distribution. Similarly (LGD − c)

∑θ
m=1 Xm will have a gamma

(
θ, LGD−c

η

)
distribution. Regarding the summations in (3.88), we have that c

∑ j
l=θ Xl has a gamma

(
j − θ + 1, c

η

)
distribution and (LGD − c)

∑θ−1
m=1 Xm has a gamma

(
θ − 1, LGD−c

η

)
distribution. Note that

LGD − c > 0 and therefore the parameters for the gamma distributions will not become
negative.

Since the summation within each of the probabilities (3.87) and (3.88) independent,
they can be calculated by means of integration. To illustrate this procedure, suppose that Y
and Z are independent random variables with probability mass functions fY and fZ respec-
tively. Then

P(Z − Y ≤ 0) =

∫ ∞

−∞

∫ y

−∞

fZ(z) fY(y) dz dy. (3.89)

To calculate (3.87), we let Z and Y have gamma
(

j − θ, c
η

)
and gamma

(
θ, LGD−c

η

)
distribu-

tions respectively. For (3.88), Z and Y will have gamma
(

j − θ + 1, c
η

)
and gamma

(
θ − 1, LGD−c

η

)
distributions respectively, which then allows one to calculate p( j, k, θ) for j > θ > 1.

Assume that θ = 1 and j > 1:
For a node to have a default threshold of one, it must default when its very first coun-
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terparty defaults. Therefore (3.86) will become

P

LGD X1 − c
j∑

l=1

Xl > 0

 = P

(LGD − c) X1 − c
j∑

l=2

Xl > 0


= P

c j∑
l=2

Xl − (LGD − c) X1 < 0

 , (3.90)

where c
∑ j

l=2 Xl ∼ gamma
(

j − 1, c
η

)
and (LGD − c) X1 ∼ exp

(
η

LGD−c

)
. The probability can

then be calculated using (3.89).

Assume that j = 1:
If j = 1, then either θ = 0 or θ = 1. The case θ = 0 has already been discussed (recall

that p( j, k, 0) = π0) and therefore p (1, k, 1) = 1 − π0.
Suppose now that j = θ > 1. Equation (3.86) then becomes

P

LGD X j > c
j∑

l=1

Xl − LGD
j−1∑

m=1

Xm > 0


=P

c j∑
l=1

Xl − LGD
j−1∑

m=1

Xm < LGD X j

 − P
c j∑

l=1

Xl − LGD
j−1∑

m=1

Xm ≤ 0


=P

(c − LGD)
j∑

l=1

Xl < 0

 − P
cX j − (LGD − c)

j−1∑
l=1

Xl ≤ 0


=1 − P

cX j − (LGD − c)
j−1∑
l=1

Xl ≤ 0

 , (3.91)

where cX j ∼ exp
(
η

c

)
and (LGD − c)

∑ j−1
l=1 Xl ∼ gamma

(
j − 1, LGD−c

η

)
.

Now that it is possible to calculate µ( j, k) and p( j, k, θ), it is possible to calculate the
weak limit of α

(
En, ~γn

)
as given by theorem 3.3.6. This allows us to compute the analytical

part of the computations. What is left is to describe the steps taken to produce the simulated
results, including the chosen parameter values.

Description of the simulation method

This section broadly describes the coding algorithm used to obtain the simulated results.
For a given system, let N denote the size of the system, i.e. the number of nodes in the
system. Since the results relate to the weak convergence of random variables as N → ∞,
the simulations need to be performed for increasing values of N. For each value of N, the
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following steps are performed:

1. The N×N matrix containing the probabilities of any node being connected to another
is determined4. The entry (i, j) corresponds to the probability that a directed edge
exists from node i to node j. In this case, all the non-diagonal entries are equal to
λ

N−1 , and all the diagonal entries are zero.

2. Now the edges of the network are determined randomly based on the probabilities
determined in the previous step. The existence or otherwise of the possible edges in
the system are determined independently from one another. This gives the adjacency
matrix consisting of ones and zeros, where the entry (i, j) is equal to one if there is a
directed edge from i to j and zero otherwise.

The rest of the steps below are now repeated for each new simulation of the adjacency
matrix.

3. Now that the connections between the banks have been determined, the amounts
of all the interbank loans (i.e. the weights of the edges) can be determined. The
amount of each interbank loan is independently drawn from the exponential distri-
bution (note that all parameter values, including the exponential distribution’s pa-
rameter, are given further along in this section.

4. Recall from section 3.3.2 that we assumed that any node i is included in the set of
initially defaulted nodes with probability π0. In this step the set of initially insolvent
nodes is determined by randomly selecting a set of N · π∗ nodes, rounded to the
nearest integer.

5. The capital of all nodes can now be determined. The set of initially insolvent nodes
start off with capital values of zero. The remaining nodes will have capital values
determined by the total monetary amount of interbank loans that they have issued.
This is a direct consequence of the fact that capital ratios are kept constant, and that
the capital value is determined by multiplying the total interbank assets by the capital
ratio. When applying this model, the capital levels should be determined in a more
realistic way. However for the purpose of this section, this capital ratio assumption
will suffice.

4For the Erdős-Rényi case it is not necessary to use a matrix, as the connection probabilities between two
nodes i , j are equal. A matrix is used here to make the rest of the code easily adaptable for cases where the
probabilities may differ.
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At this stage it is important to note that not all banks will necessarily always have
interbank exposures. These banks have to be given artificial capital values, since oth-
erwise their capital will be wrongly set to zero without them having defaulted. The
code assigns the average capital value between the non-defaulted banks with posi-
tive interbank exposures to them. Note that the assumption regarding these banks’
capital values will not influence the results.

6. The counterparty losses resulting from the initially insolvent nodes can be deter-
mined now. For each loan issued to an insolvent node, the issuer loses the amount of
the loan multiplied by the assumed LGD level. Any negative capital values are set
equal to zero. Now the program finds all nodes with depleted capital, but which has
not defaulted before. In other words, it finds all the newly defaulted nodes.

7. While the set of newly defaulted nodes is not empty, the same procedure as in step 6
is repeated for all the newly defaulted nodes.

When there are no more newly defaulted nodes, calculate the average number of
defaulted nodes which includes the set of initially insolvent nodes.

8. Based on the initial exposure matrix, a new random exposure matrix needs to be
obtained in line with definition 3.1.2. The new exposure matrix must yield the same
in- and out-degrees for all the nodes, but each node’s existing exposures must be
shuffled. In order words, each row of the exposure matrix must be shuffled randomly
in such a way that the diagonals remain zero and the number of non-zero entries in
each column remain the same as before5.

For large systems, it is not computationally feasible to obtain an enumeration of all
possible exposure matrices that satisfy the above requirement. The number of pos-
sible combinations of rows simply becomes too large. For this reason the following
procedure was followed:

(a) Remove the diagonals from the current exposure matrix so that all entries in
each row can be shuffled.

(b) Within each row, shuffle the entries randomly and afterwards include the diag-
onal entries again.

5The number of non-zero entries in each row will clearly remain the same, since they are just a re-shuffling
of each original row.
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(c) Calculate the resulting in-degrees of the nodes and compare them with the in-
degrees of the original exposure matrix. If the in-degrees don’t match, do the
following:

i. Find the columns of the new exposure matrix that correspond to in-degrees
that are greater than those required by the original exposure matrix. Sim-
ilarly, find the columns of thee new exposure matrix that correspond to
in-degrees that are less than those based on the original exposure matrix.

ii. Now do the following for each column j whose resulting in-degrees are
too many:

A. Find all the non-zero entries of column j. Some of these will need to
be moved to other columns (within the same row) in order to reduce
the in-degrees of bank j. First determine the number of entries that
need to be moved so that bank j will have the correct in-degree, and
then randomly choose the non-zero entries in column j that will be
moved.
For each of the entries that were chosen to be moved, do the following:

B. Determine the set of possible places to which the entry may be moved.
It must be moved to a column that has an in-degree that is too low,
must remain in the same row, may not be moved to a diagonal position
and cannot move to a position where there is already a non-zero entry.
If there are no possible places to which an entry may be moved, do
nothing for now. Otherwise choose a random position out of the eli-
gible positions to move the entry to, and update the random exposure
matrix accordingly. Now calculate the in-degrees of the updated ma-
trix and redetermine which columns have in-degrees that are too few.
This is to ensure that a column which initially had too few non-zero
entries do not receive too many non-zero entries later on.

iii. Once steps (i) and (ii) have been performed for all columns with too many
non-zero entries, test whether the in-degrees of the resulting random expo-
sure matrix are correct, and break the loop if it is. Otherwise repeat steps
(d) and (e) until the in-degrees are correct.

(d) If these steps cannot produce the correct in-degrees, begin from step (a) again.

Repeat this until a suitable exposure matrix is found.

9. Use the new random exposure matrix and repeat the wholes process from step 5
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again. Note that the original set of initially insolvent nodes is retained.

10. Up to now the steps have all been based on one sample of an Erdős-Rényi graph. In
order to determine whether the results hold in probability for a random Erdős-Rényi
graph, the whole procedure from step 2 needs to be repeated for different samples of
the random graph.

Once the above procedure has been determined for increasing values of N, we can
calculate the following probability empirically:

P
(∣∣∣αn

(
En, ~γn

)
− α0

∣∣∣ < ε) (3.92)

where ε > 0 and α0 =
∑

j,k h( j, k)
∑ j
θ=0 p( j, k, θ) B̄( j, π∗, θ). The value of αn

(
En, ~γn

)
is

determined via simulation for increasing values of n, and α0 is determined analytically.

Comparison of the analytical and simulation results

Table 3.2 contains the parameters used for the purpose of this illustration.

Table 3.2: The parameter values used for illustrating the convergence given by theorem
3.3.6.

Parameter Description Parameter value

γ Ratio of interbank assets to capital 0.4
π0 Initial fraction of defaults 0.05
λ̄ Average out-degree/in-degree of the system 4
η Mean exposure amount 1
ε Error term used for evaluating equation (3.92) 0.025

Figure 3.2 shows how equation (3.92) moves closer to one for increasing values of N,
which supports the conclusion of theorem 3.3.6. For equal exposures (figure 3.2a), con-
vergence is achieved much faster than for random exposure amounts (figure 3.2b). This is
expected, since there is less variation between nodes in the network. Similarly, convergence
is expected to be slower when groups of interacting Erdős-Rényi graphs are considered.

Note that the fraction of defaults based on simulation results only start to converge to
the theoretical quantity α0 for very large values of n, which may not be attained in a prac-
tical setting. For example, the German banking system had approximately 1,800 banks as
at 2014 [21]. In this case figure 3.2 implies that the theoretical results would be close to
the observed fraction of defaults approximately 80% of the time for equal exposures, and
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Figure 3.2: Illustrating the convergence as given by theorem 3.3.6.

approximately 40% of the time for exponential i.i.d. exposures. However, computation-
ally it is still much more efficient than simulation methods to assess sensitivities resulting
from changes to combinations of network and bank characteristics. Furthermore, analyt-
ical results are often useful tools for understanding complex systems as these can assist
in understanding the underlying components before carrying out simulations. Results for
large financial networks are also of interest in cases where multiple countries and/or multi-
ple types of financial institutions are considered. In these cases the number of nodes in the
network can increase significantly, making an asymptotic approach appropriate.

3.4.2 Applying the results to different network structures

For this section we consider a semi-heterogeneous Erdős-Rényi graph Kd
λ,~n with d = 2

groups of connected Erdős-Rényi graphs, even though the theory presented in this section
can deal with any finite number of interacting graphs. This will be used to compare differ-
ent network structures based on the matrix λ. In the setting discussed in section 3.3.2, the
groups can be determined in any way as long as the exposure amounts satisfy requirements
lined out in [8]. In our case we assume that banks are grouped according to size in order
to relate this section to banking systems commonly found in practice. Hence we let group
one consist of a small fraction w1 of large banks and group two of a larger fraction w2 of
small banks.

We will assume that the non-zero exposure amounts follow an exponential distribution
with means η1 and η2 for groups one and two respectively. The exponential distribution
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is used because of its analytical tractability which facilitates the calculation of p ( j, k, θ).
However, in practice it would make sense to use a truncated distribution for the exposures
since a bounded support is more realistic for balance sheet figures.

Recall now that the total asset value of each bank does not feature in any of the results
that this study considers. Therefore in this stylized setting we will assume that banks that
generally have large counterparty exposures have high asset values and vice versa for banks
with lower exposure amounts. This is equivalent to assuming that loans granted by large
banks are generally larger than any loans granted by small banks, which is a reasonable
assumption to make. Therefore we must have that η1 > η2 and these parameters will be
used to differentiate between banks of different size.

The matrix λ will in turn be used to differentiate between different network structures
by varying the level of interconnectedness between the different groups and within each
group. In order to make the structures comparable it is assumed that the average out-
degree (or equivalently the in-degree) of a randomly chosen node in each type of network
is a fixed quantity λ̄. Three network structures will be compared to one another based on
the structures introduced in section 2.2.1. These structures together with their connection
probabilities in the case of a finite network of size n are as follows:

(i) Standard Erdős-Rényi graph, with q(n)
11 = q(n)

12 = q(n)
21 = q(n)

22 = λ̄
n−1 .

(ii) Tiered type I - Large banks are the most likely to be exposed to one another and small
banks less likely to be exposed to one another. The probability that small banks and
large banks are exposed to one another is in between the former two probabilities.
The probabilities are given by q(n)

i j =
ηi+η j

2η1
L(n)

2 .

(iii) Tiered type II - Large banks have a relatively high probability of lending to any
other bank, small banks have a smaller probability of lending to large banks and
the probability of small banks lending to one another is the least. Here we have that
q(n)

i j =
ηi+η j+max{ηi−η j,0}

3η1
L(n)

3 .

The L(n)
m quantities in the formulae above are adjustment factors that ensure that the

structures exhibit the required average out-degree λ̄ and that the connection probabilities
are functions of n that tend to zero as n → ∞. It is noted that the structures and formulae
chosen are used for illustrative purposes and for investigating how network structure may
affect systemic risk. Hence they are not necessarily the most realistic structures for banking
systems. However, the second and third structures are representative of core-peripheral
networks which explicitly place larger banks in the tightly connected core, and therefore
contain elements of structures found in practice.
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It now remains to determine the matrix λ =
(
λi j

)
for each network structure based on

the above probabilities so that theorem 3.3.6 can be applied. Note that in the case of a finite
network of size n, the average out-degree (or in-degree) of a node in the network would be
given by

λ̄ = w1 (n1 − 1) q(n)
11 + w1w2nq(n)

12 + w1w2nq(n)
21 + w2 (n2 − 1) q(n)

22 . (3.93)

This equation will be used to determine the functional form of L(n)
m , m = 1, 2, 3, so that we

can find λii = limn→∞ (ni − 1) q(n)
ii , i = 1, 2 and λi j = limn→∞ w jnq(n)

i j , i , j.

1. Erdős-Rényi This structure is straightforward, since λi j = λ̄w j for i, j = 1, 2.

2. Tiered type I For this structure we have that q(n)
11 = L(n)

2 , q(n)
12 = q(n)

21 =
η1+η2

2η1
L(n)

2 and
q(n)

22 =
η2
η1

L(n)
2 . Using equation (3.93) it can be seen that

λ̄ = w1 (n1 − 1) q(n)
11 + 2w1w2nq(n)

12 + w2 (n2 − 1) q(n)
22

= L(n)
2

[
w1 (n1 − 1) + w1w2n

η1 + η2

η1
+ w2 (n2 − 1)

η2

η1

]
(3.94)

so that
L(n)

2 = λ̄
η1

η1w1 (w1n − 1) + w1w2n (η1 + η2) + w2η2 (w2n − 1)
. (3.95)

Hence

λ11 = lim
n→∞

(n1 − 1) L(n)
2

= lim
n→∞

λ̄
η1 (n1 − 1)

η1w1 (w1n − 1) + w1w2n (η1 + η2) + 2w2η2 (w2n − 1)

= λ̄
η1w1

η1w2
1 + w1w2 (η1 + η2) + η2w2

2

, (3.96)

and in general λi j = λ̄
(ηi+η j)w j

2η1w2
1+2w1w2(η1+η2)+2η2w2

2
.

3. Tiered type II In this case q(n)
11 = q(n)

12 = 2
3 L(n)

3 , q(n)
21 =

η1+η2
3η1

L(n)
3 and q(n)

22 =
2η2
3η1

L(n)
3 . Based

on equation (3.93) we now have

λ̄ = w1 (n − 1) q(n)
11 + w1w2nq(n)

21 + w2 (n2 − 1) q(n)
22

=
L(n)

3

3

(
2w1 (n − 1) + w1w2n

η1 + η2

η1
+ w2 (n2 − 1)

2η2

η1

)
, (3.97)
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Table 3.3: The default parameter values and their respective ranges used for comparing
network structures.

Parameter Description Default value Range

γ Ratio of interbank assets to capital 0.4 [0.4, 0.6]
π0 Initial fraction of defaults 0.05
λ̄ Average out-degree as given by 4 [1, 7]

equation (3.93)
η1, η2 Mean exposure amounts for groups 4, 1 [1, 11]

one and two
w1 Weight for group one 0.15

L(n)
3 = λ̄

3η1

2η1w1 (n − 1) + w1w2n (η1 + η2) + 2η2w2 (w2n − 1)
(3.98)

and

λ11 = lim
n→∞

λ̄
2η1w1 (w1n − 1)

2η1w1 (n − 1) + w1w2n (η1 + η2) + 2η2w2 (w2n − 1)

= λ̄
2η1w1

2η1w1 + w1w2 (η1 + η2) + 2η2w2
2

. (3.99)

Furthermore λi j =
(ηk+ηi)w j

2η1w1+w1w2(η1+η2)+2η2w2
2
, where k = min {i, j}.

For all of the structures above, the expressions for λi j then satisfies the identity λ̄ =

w1 (λ11 + λ12) + w2 (λ21 + λ22). Table 3.3 now shows the parameter values that were chosen
for this analysis. Parameters either have the default value as indicated by the table or are
varied within the range given in the final column.

Consider first the variation in the final fraction of defaults as the relative sizes of the
two groups are changed. The mean exposure amount of group one is varied from one to
11, whereas the mean exposure amount of group two is kept fixed at one. Therefore when
η1 = 1, we have a completely homogeneous network where all banks are of the same size.
The three structures should therefore yield precisely the same fraction of final defaults in
this case, since the discriminatory factor is eliminated when η1 = η2. This is illustrated
in figure 3.3a, where the graph starts out with all three lines indistinguishable from one
another. As the heterogeneity between the banks is increased along with η1, the structures
begin to discriminate between banks of different size.

It is interesting to see that both Tiered structures immediately start to deviate from the
standard Erdős-Rényi case. These two structures exhibit decreasing risk for increasing
heterogeneity between the groups of banks. This suggests that systems may benefit from
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having a core-peripheral structure, with lending preferences that depend thereon.
Consider now the effect of varying the capital ratio from 0.4 to 0.6. Since this is a

ratio of capital to interbank assets, then if interbank exposures consist of roughly 20% [8]
of total capital, it corresponds to a range of 0.08 to 0.12 of capital to total assets. The
results are given by figure 3.3b. As expected, the final fraction of defaults declines for all
structures, though the final fraction of default declines more steeply for the Erdős-Rényi
structure compared to the tiered type I and tiered type II structures in figure 3.3b.

The average degree of the system is considered in figure 3.3c. This parameter is varied
from one (an extremely sparse network) to seven. It can be seen that for a very sparse
network, the different structures do not result in significantly different levels of default
fractions. When the average out-degree is increased, the additional links in the system
facilitate the spread of contagion for all structures. When the average out-degrees is just
over 2.5, the default fractions start do decline when the additional links in the system serve
as a safety mechanism. The peak at λ̄ ≈ 2.5 and subsequent decline is more pronounced
for the Erdős-Rényi case than for the other structures. This indicates a higher sensitivity
to the level of interconnectedness in the system for our base parameters. It shows that
conclusions regarding the optimal network structure can be highly dependent on network
characteristics.
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Figure 3.3: Illustrating parameter sensitivities of different semi-heterogeneous Erdős-
Rényi graphs, where α0 =

∑
j,k h( j, k)

∑ j
θ=0 p( j, k, θ) B̄( j, π∗, θ).
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Chapter 4

Conclusion

This chapter serves to conclude the study by considering the results obtained from all parts
of the study. First, the implications of the results are discussed in section 4.1. This is split
into three parts as follows: Section 4.1.1 discusses the implications of the sensitivity tests
performed on the numerical model of chapter 2. Section 4.1.2 deals with the application
of this model to the South African system. Section 4.1.3 discusses the implications of the
asymptotic results of chapter 3. Finally, section 4.2 serves to present the final conclusions
of all results, in addition to shortcomings and avenues for future work.

4.1 Policy and theoretical implications of results

4.1.1 Network structure sensitivities

This section summarises the implications of the sensitivity tests from section 2.3 by dis-
cussing how these results answer the questions set out in section 1.3. Each question is
discussed in turn below, where the findings are compared to those from exiting literature.

1. How does the structure of an interbank network influence the risk inherent in a
system? This is illustrated by figures 2.7 through 2.10 where the risk in the system gen-
erally differs between different structures. In some cases, the risk between some structures
are relatively close to one another (e.g. figure 2.10a), but this is not always the case (e.g.
figure 2.9a). This shows that determining the correct structure of a network is important
when modelling systemic risk. Methods that attempt to derive the most likely network
structure in the absence of knowledge about the true structure need to bear this in mind.
For example, maximum entropy techniques can underestimate [11] or overestimate [77]
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systemic risk. Therefore it may not be appropriate since the resulting network structure
will likely be incorrect, thereby leading to incorrect conclusions.

2. Are some structures inherently less risky than others? In contrast to previous work
[54], we find that one type of structure is not necessarily more stable than another. From
figure 2.7a alone it seems as if the disassortative and Erdős-Rényi structures are signifi-
cantly less conductive of contagion compared to the other structures. This is supported by
previous work [71], who find that random networks can be more resilient than scale-free
networks. However, from our other figures (e.g. figure 2.8b) it can be seen that this is not
necessarily the case under all circumstances. This is supported by the results in [83], where
it is found that there is no single structure that performs the best under all circumstances.

3. How do network characteristics (i.e. interconnectedness, asset distribution and size
of the system) influence the answer to question 1? In some situations the network char-
acteristics influence the extent that the network structures differ from one another in terms
of risk levels. Figures 2.8a, 2.9a and 2.10a show that for some structures, there are only
small differences in the relative risk levels when the network characteristics are changed.
This is the case when the assortative, attraction to size and tiered type I and II structures
or the disassortative and Erdős-Rényi structures are compared to one another without in-
direct risk. Therefore in these cases the distinction between the different structures is not
very important. This is, however, not always the case. When, for example, the disassorta-
tive structure is compared to the attraction to size structure, the relative risk levels change
significantly for different combinations of network characteristics regardless of whether
indirect risk is included or not. This is one aspect in which our results differ from [83],
who find that network topology only matters when illiquidity is taken into account. While
the differences between our network structures are much more pronounced when indirect
risk is accounted for (see figures 2.8b, 2.9b, and 2.10b), network characteristics can still
influence relative risk levels without indirect risk.

4. How do indirect contagion mechanisms influence the answers to the above ques-
tions? Indirect mechanisms have a significant influence over the extent to which network
structure influences the risk in the system (question 1). This can be seen from figures 2.8
through 2.10, where the differences between the structures are generally much more pro-
nounced when indirect risk is included. It also influences the answer to question 2, since
the disassortative structure is the most resilient in almost all cases when indirect risk is
excluded, but this is no longer the case when it is included. Finally, it influences the extent
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to which network characteristics in turn influence the relative risk levels (question 3). For
example, figure 2.10a shows almost identical risk levels for the structures as N approaches
200, which is not the case in figure 2.10b.

5. Can network properties assist in explaining some of the variation in risk levels ob-
served from different structures? Not necessarily. In some instances when indirect risk
is excluded, there are similarities between the average shortest paths, the clustering coeffi-
cient and the risk levels of the different structures. However these similarities are not seen
under all circumstances, especially if indirect risk is included. Previous research has found
that tiered banking systems are more resilient than otherwise [70]. While our definition of
a tiered system is not exactly the same, our results show that this is not always the case.
Indirect risk and other network characteristics such as the interconnectedness in the system
has a significant influence on whether this holds true or not. While network properties
may be useful at individual banks level, we conclude that such network properties do not
contain sufficient information on a system-wide level to explain differences in risk levels
under all circumstances.

6. What policy suggestions can be made regarding network characteristics? From
figures 2.8 to 2.10 it is clear that systems with different network structures and different
levels of indirect risk respond differently to changes in network characteristics. For exam-
ple, while the risk in the system increases in most cases when the interconnectedness of the
system is increased (as found in [83] for example), this is not necessarily the case under
all circumstances. When indirect risk is included, the risk in the system eventually starts
to decrease for increasing levels of interconnectedness. Depending on the initial level of
interconnectedness, it may therefore be beneficial in some cases to increase interconnect-
edness rather than to decrease it. It is clear from this research that the combination of all
aspects of a banking system is too complex to suggest any ‘one size fits all’ approach. This
complexity may be a reason why different authors arrive at different conclusions regarding
systemic risk modelling techniques and policy implications. For example while one study
finds that maximum entropy techniques underestimate systemic risk [11], another finds that
it overestimates it [77]. While in [19] it is found that intermediate levels of connectivity are
safer, the opposite is found in [52], and in [83] it is found that lower levels of connectivity
are advisable.
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4.1.2 Real-world application

Recall from section 1.3 that the purpose of the real-world application is to assess the useful-
ness of network models of systemic risk in a South African context. The network structures
behaved similarly over time for most of the cases considered here. The levels of risk were
generally similar for higher levels of connectivity. The differences in risk levels between
the structures were generally consistent over time, with the exception of one scenario.
Indirect risk served to increase differences in risk levels for low interconnectedness. In
contrast to this, an increase in indirect risk reduced the differences in risk levels for higher
levels of interconnectedness with the exception of the period starting at October 2016. The
structures mostly followed similar trends over time. This suggests that the changes in sys-
temic risk detected by the model is not highly dependent on the network structure. This
observations have the following implications:

1. The materiality of network structure is firstly influenced by the objective of the net-
work model. If the objective is to accurately determine the level of risk in the system,
then the network structure may not make a significant difference for highly intercon-
nected systems. For lower levels of interconnectedness, differences between the risk
levels are more prominent in general. This observation is, however, dependent on
the indirect risk parameters and the dates under consideration.

2. If the objective is to detect changes in point-in-time measures of systemic risk, the
materiality of network structure decreases. This means that the uncertainty around
the initial shock to the system (and hence the resulting path through which losses
spread) is less problematic.

The results show that the risk parameters significantly influence how the risk levels
in the system change over time. The liquidity risk mechanism employed by the model is
directly dependent on the asset values of all banks. Small changes in the liquidity risk
parameters have a non-trivial influence on the risk levels over time, which cannot trivially
be explained by changes in asset values.

Furthermore, each risk parameter influences the results in its own way. For example, in-
creasing the short-term liquidity parameter emphasised the December 2015 and June 2016
increases in risk, whereas the medium-term liquidity parameters reduced the significance
of these spikes. This either means that the model is not able to detect increases in risk
for certain parameter values, or that the system does not experience a significant increase
in systemic risk during times of market turmoil for some liquidity scenarios. For exam-
ple, the high liquidity risk scenarios (see figures 2.13c and 2.13d) might increase the risk

129



levels during all months to such an extent that the effect of weak economic conditions are
diminished.

The above observations have the following implications for the modelling of systemic
risk using a network approach:

1. Empirical studies that aim to determine the level of systemic risk should take care
to calibrate the liquidity risk parameters to levels appropriate for the system being
considered. To do this, bank balance sheet data will be required for past events where
banks have failed. By analysing changes in asset values for the remaining banks in
the system, it may be possible to determine appropriate ranges or distributions for
these parameters.

2. A finer division of assets is recommended. The fact that the liquidity risk parameters
each had a different effect on the model output suggests that the classification of
assets can be a material aspect of such a study.

3. Since the model showed increases in systemic risk during times of market turmoil,
it shows that network models of systemic risk may be valuable modelling tools. A
great advantage of this is that publicly available balance sheet information can be
used to model systemic risk, thereby avoiding the need to obtain confidential trading
information. It may be by chance that the model detected increases in systemic risk
due to balance sheet fluctuations. This warrants further investigation to determine
with greater certainty whether the model can accurately identify potential crises.

Additional analysis shows that the framework presented in chapter 2 can be useful
tools for understanding how systemic risk can spread through a banking system. It can be
used to understand how and when an initial shock leads to contagion within a network.
For example, for the cases considered here, contagion is only spread by the default of
the largest banks during times of market turmoil. The analyses further showed that the
effect of an initial shock to a system is best quantified by measures that take account of
the severity of losses, and not just the number of defaults. Finally, the analyses illustrated
that if an initial shock leads to additional defaults, the consequences to the system can be
severe. This is important for regulators since it shows that even if an initially shocked bank
is allowed to default, it is important to prevent further banks from defaulting as this can
quickly cause the whole (or at least most of the) system to collapse.
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4.1.3 Theory and structures for large networks

This part of the study was largely theoretical. Therefore, these implications are focused on
the effect that the theory has on systemic risk research, as opposed to sections 4.1.1 and
4.1.2 that were more focussed on practical implications. The purpose of this part of the
study is to contribute to the literature on large banking networks and to formally define a
versatile class of networks that can be useful for theoretical studies on banking networks.
The theoretical results from this chapter firstly shows how the fraction of defaults in a
financial system can be approximated for large, random networks. A sequence of random
financial networks of increasing size that satisfies certain limiting conditions is considered.
It is shown that there will be a subsequence for which the fraction of defaults following an
initial shock can be determined.

A class of inhomogeneous graphs is defined and it is illustrated how results that apply
to Erdős-Rényi networks may be generalized to apply to this class. This is done by consid-
ering the theoretical results developed in this chapter, which can be applied to Erdős-Rényi
networks. It follows naturally that the results can be applied to the proposed class of in-
homogeneous networks. Potential uses of such a class of networks include modelling the
interaction between different types of financial entities (e.g. between banks, investment
companies and insurance companies) or between the financial systems of different coun-
tries.

As a simple illustration of the versatility of the proposed class of networks, three dif-
ferent structures that comply with the definition are compared to one another. The first is
the standard Erdős-Rényi graph, where lending behavior is independent of relative asset
sizes. The remaining structures assume different kinds of lending behavior for banks based
on their relative asset sizes. In other words, banks’ preferred creditors and debtors are
determined by their asset sizes, although the framework allows for other characteristics to
infer such preferences instead. While the illustration may not be based on entirely realistic
structures, the second and third structures do account for a hierarchical formation of edges
based on bank size.

The illustration considered here suggests that for large systems, the sensitivity of sys-
temic risk to network characteristics is dependent on the network structure. For example,
where one structure may show a significant change in systemic risk when the intercon-
nectedness is varied, another structure may only show a modest change. It is noted that
the realism of these observations are influenced by the shocks being transmitted via direct
exposures, and that indirect mechanisms such as liquidity risk may well serve to increase
the importance of network structure even further [57].
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4.2 Final conclusions

On the simulation side, we propose a new network model of systemic risk, accounting for
liquidity risk, investor confidence, heterogeneity of banks, division of assets according to
term and differences in network structure. The liquidity and proximity shock parameters
capture the extent that liquidity shortfalls and loss of market trust respectively impact the
stability of the system.

For smaller networks, six different network structures are defined and compared to one
another in terms of risk under different circumstances. Three of these structures are novel
contribution to systemic risk simulation research, as they can satisfy empirically observed
network characteristics, namely tiering and the small world property (i.e. a small average
shortest path and high clustering). For larger networks, we define a general, versatile
class of stochastic networks and show how structures similar to our tiered structures can
be modelled. Many theoretical results are based on Erdős-Rényi networks because of its
mathematical tractability. We illustrate how results that hold for Erdős-Rényi networks can
be generalised to semi-heterogeneous Erdős-Rényi networks. This may be useful for future
research on theoretical models of systemic risk, as assumptions that hold for Erdős-Rényi
networks may also hold for semi-heterogeneous Erdős-Rényi networks. This is useful as
the latter class of network is able to account for differences in lending behaviour based on
assets size.

Our results suggest that the resilience of network structures is dependent on network
characteristics such as interconnectivity, distribution of assets and the level of capital. Fur-
thermore, the effect that the capital, level of interconnectedness, the asset distribution and
the size of the system can have on the risk posed by different structures depends on the
presence of liquidity risk and loss of market trust. This shows that the interaction between
these network characteristics and the inclusion of indirect losses in banking network mod-
els greatly influences the comparison between different network structures. In line with
the results of [57], it further shows the importance of including liquidity losses and market
sentiment when investigating network structure in systemic risk models.

The presence of tiers in the banking system which dictate lending behaviour can have
a significant effect on the risk in the system. While systemic risk can be lower for tiered
structures compared to non-tiered structures (this is supported by e.g. [92]), network char-
acteristics such as heterogeneity between banks, capital ratios and interconnectedness in-
fluence whether this is indeed the case. Therefore, whether or not the level of tiering in a
network serves to strengthen or weaken the system potentially depends on a combination
of network characteristics. It further shows that the precise definition of a tiered struc-
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ture is important, as structures with similar levels of tiering may exhibit different levels of
risk. Therefore, lending preferences (i.e. banks’ preferred creditors and/or debtors based on
characteristics such as bank size, sector, type etc.) which may differ between jurisdictions
may influence the optimal course of action to reduce the risk of default contagion.

The results of this study are further relevant to regulators, since they could be inter-
ested in optimising the network structure and characteristics to result in safer banking sys-
tems. This could be achieved by providing incentives for banks to encourage or discourage
certain types of lending behaviour. For example, if a regulator wanted to encourage or
discourage an attraction to size structure, it could create incentives to influence the ratio
of the number of ‘small’ vs. ‘large’ banks that other banks lend to. Similarly, incentives
or restrictions could be imposed to encourage the system to become either more or less
interconnected if this would result in a safer system. Regulators that want to optimise the
characteristics and the structure of a system must keep in mind the current characteristics
and the effect of liquidity risk and the risk of market trust losses.

Despite the problems associated with determining the correct network structure and
liquidity risk parameters, such network models of systemic risk can be useful. These mod-
els are simple, easy to understand and makes use of publicly available balance sheet data.
During the time frame considered for the South African application, the network model
detected increases in systemic risk at times when the economy experienced unexpected
market disturbances. An important avenue for future research is to determine whether this
is by chance, or whether the model accurately determines the probability that a crisis can
occur. Furthermore, it is important to note that the model does not forecast times of dis-
tress, but instead provides a proxy for the level of risk at a point in time. In other words,
the true proportion of capital lost following a shock to the system is not determined, but
rather a value that increases or decreases along with it.

The methodologies for small and large networks introduced by this study may enable a
regulator to test the effect of a range of different interventions for given structures. We show
that network sensitivities can behave differently under different network structures. This
shows that the network structure can help inform the regulator which reporting information
to focus on, since it is possible to determine the most important drivers of systemic risk. It
is important to note that these drivers will likely differ between different banking networks.

Our results emphasize the importance of network characteristics and indirect losses
such as losses due to liquidity problems and a deterioration of market sentiment when
considering network structures from a regulator’s point of view. There are various other
factors to consider that is beyond the scope of this study, for example the cost of any pro-
posed regulatory action, specific incentives that can be introduced to influence the network
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structure, measuring the systemic importance of individual banks and the cost to the econ-
omy of failing banks. For a regulator to implement the proposed model, refinements to the
model are required. The model should be embedded in a macroeconomic model with a
lender of last resort. This can be used to investigate the effects of policy decisions based
on the network structure and characteristics. This includes an investigation of the costs vs.
benefits of policy decisions. It is important to note that such refinements are much more
difficult to include in a large network setting compared to a small network setting where
simulation is appropriate.

Network models can be refined to consider different types of interbank lending, e.g.
considering different maturities for interbank loans [12]. A more granular division of ex-
ternal assets will become important when incorporating the macro-economic environment.
Our results for the South African application suggest that this is an important avenue for
future research. This goes hand in hand with the need to determine appropriate liquidity
reduction parameters associated with each asset class.

Common shocks as opposed to idiosyncratic shocks should be considered, as this can
have a significant effect on the spread of contagion [43]. For example, comparing the loss
resulting from the failure of one big bank vs. the failure of smaller banks with the same
combined asset value as the bigger bank. Furthermore, by changing the way that systemic
risk is measured, it possible that different conclusions may be reached. It is therefore an
important consideration for future research to look at different ways of measuring systemic
risk when investigating implications of policy changes.

For further future work, it is also important to acknowledge that a country’s banking
system generally forms part of a larger international network of networks. The study from
[53] on the international banking network and studies on asymptotic network results (e.g.
[8]) could provide excellent groundwork for this.
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Appendix A

Numerical model

A.1 Formal tiering test results

To test whether these structures can be considered as tiered, we employ a similar procedure
as in [41]. For each value of p̄, 1000 simulations are done for each structure. The lower 1%
tiering error value of the Erdős-Rényi network, say e0.01, is used to test whether the other
networks are significantly more tiered than a random network. For each of the simulations
done for the non-random networks, it is determined whether the error is smaller than e0.01.
The proportion of simulations which result in a tiered structure is shown in figure A.1.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

Figure A.1: The average fraction of simulations for each structure that can be regarded as
a tiered network.

The attraction to size structure yields tiered networks at least 96% of the time when
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p̄ ∈ [0.05, 0.14]. The tiered type I and II structures formally result in tiered networks for
at least 98% of the simulations when p̄ ∈ (0.03, 0.07). For p̄ = 0.1 the tiered type I and
II structures result in tiered networks for 89% and 87% of the simulations respectively,
which is significantly more than the other structures. The disassortative structure only
manages to yield tiered networks for a large number of simulations when p̄ ∈ [0.02, 0.03],
and the assortative structure does not result in tiered networks for most of the simulations.
This shows that the attraction to size and tiered type I and II structures can result in tiered
networks sufficiently often, provided that p̄ is in the correct range.
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Appendix B

Additional information for South
African application
B.1 Additional figures for South African banks’ assets
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Figure B.1: The distribution of assets in the South African banking sector as at 31 March
2017.
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Figure B.2: Relative increases of the average balance sheet items in the system.
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B.2 Balance sheet information

Table B.1: Division of the non-interbank assets according to term.

Short Term Assets

– Central bank money and gold.
– Deposits with, and loans and advances to banks.
– Loans granted to the SARB and other non-banking institutions under resale agreements.
– Foreign currency deposits, loans and advances.
– One third of marketable government stock that have an unexpired maturity of less than 3
years.
– Derivative instruments assigned to the short-term assets according to the rules in section 2.4.2.
Medium Term Assets

– Instalment sales.
– Credit-card debtors.
– Overdrafts, loans and advances to the private sector.
– Bankers’ acceptances (Treasury bills, SARB bills, promissory notes, commercial paper and
Land Bank bills).
– Clients’ liabilities per contra.
– Remittances in transit.
– Current income tax receivables and deferred income tax assets.
– One third of marketable government stock that have an unexpired maturity of less than 3
years.
– Derivative instruments assigned to the medium-term assets according to rules in section 2.4.2.
Long Term Assets

– Redeemable preference shares.
– Leasing transactions.
– Mortgage advances.
– Overdrafts, loans and advances to the public sector.
– Non-marketable government stock.
– All marketable government stock excluding two thirds of those stock that have an unexpired
maturity of less than 3 years.
– Debentures and other interest-bearing security investments of private sector.
– All equity investments.
– Derivative instruments assigned to the long-term assets according to rules in section 2.4.2.
– Other investments.
– Non-financial assets.
– Retirement benefit assets.
– Assets acquired or bought to protect an advance or investment.
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B.3 Network properties of the South African system
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Figure B.3: The average shortest path in the system for each structure as a function of p̄,
the level of interconnectedness in the system.
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Figure B.4: The average weighted, directed clustering coefficient for each network struc-
ture as a function of p̄, the level of interconnectedness in the system.
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(a) Average number of banks in the top tier as a
function of p̄
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(b) Average tiering error as a function of p̄

Figure B.5: Comparison of the tiering error and the average number of banks in the top tier
between all structures, expressed as functions of the average connection probability p̄.
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B.4 Changing the risk measure
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Figure B.6: Comparing the average fraction of defaulted banks resulting from different
network structures over time.
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Figure B.7: Systemic risk over time for base parameter values of g(s) = g(m) = g(l) = δ =

0.0075.
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(a) Systemic risk over time for base parameters,
but with g(s) = 0.0225
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(b) Systemic risk over time for base parameters,
but with g(m) = 0.0225
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(c) Systemic risk over time for base parameters,
but with g(l) = 0.0225
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(d) Systemic risk over time for base parameters,
but with δ = 0.0225

Figure B.8: Comparing the average defaulted fraction of different network structures over
time and increasing each indirect risk parameter in turn.
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B.5 Additional analyses figures

B.5.1 Risk quantities over time by size category
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Figure B.9: Plotting the average CRR over time for very small, small, medium and large
banks.
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Average fraction of defaulted banks
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(e) Tiered Type I
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Figure B.10: Plotting the average defaulted fraction of banks over time for very small,
small, medium and large banks.
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Default rounds
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Figure B.11: Plotting the average number of default rounds over time for very small, small,
medium and large banks.
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B.5.2 Risk quantities vs. asset values
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Figure B.12: Comparing the CRR for each bank to its asset value for a high-risk scenario
(December 2015).
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Figure B.13: Comparing the CRR for each bank to its asset value for a low-risk scenario
(January 2017).
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Figure B.14: Comparing the CRR for each bank to its asset value for a moderate-risk
scenario (March 2017).
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Average fraction of defaulted banks
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Figure B.15: Comparing the fraction of defaulted banks for each bank to its asset value for
a high-risk scenario (December 2015).
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Figure B.16: Comparing the fraction of defaults for each bank to its asset value for a low-
risk scenario (January 2017).
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— 0

0.2

0.4

0.6

0.8

1

(b) Disassortative

— 0

0.2

0.4

0.6

0.8

1

(c) Assortative
— 0

0.2

0.4

0.6

0.8

1

(d) Attraction to size

— 0

0.2

0.4

0.6

0.8

1

(e) Tiered Type I
— 0

0.2

0.4

0.6

0.8

1

(f) Tiered Type II

Figure B.17: Comparing the fraction of defaults for each bank to its asset value for a
moderate-risk scenario (March 2017).
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Figure B.18: Comparing the average number of default rounds for each bank to its asset
value for a high-risk scenario (December 2015).
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Figure B.19: Comparing the average number of default rounds for each bank to its asset
value for a low-risk scenario (January 2017).
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Figure B.20: Comparing the average number of default rounds for each bank to its asset
value for a moderate-risk scenario (March 2017).
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B.5.3 Risk quantity distributions
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Figure B.21: The empirical distribution of the CRR for a high-risk scenario (December
2015), low-risk scenario (January 2017) and moderate-risk scenario (March 2017).
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Figure B.22: The empirical distribution of the average defaulted fraction for a high-risk
scenario (December 2015), low-risk scenario (January 2017) and moderate-risk scenario
(March 2017).
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(a) High-risk scenario
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Figure B.23: The empirical distribution of the number of default rounds for a high-risk
scenario (December 2015), low-risk scenario (January 2017) and moderate-risk scenario
(March 2017).
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Appendix C

Asymptotic results

C.1 Network resilience and susceptibility

Another property of the network to be investigated is its ability to absorb and withstand
small shocks. This ability is assessed by means of the network resilience measure [8,
Definition 3.9], defined as follows:

Definition C.1 (Network resilience measure). Suppose that
(
en, ~γn

)
n≥1 is a sequence of

financial networks satisfying assumptions 3.1 and 3.4 in [8]. Then the network resilience
measure is defined as

1 −
∑

j,k

jk
λ
µ( j, k) p( j, k, 1) ∈ (−∞, 1] . (C.1)

For a random network, the variable p( j, k, 1) represents the expected fraction of ( j, k)
nodes that default after one counterparty default. Therefore jp( j, k, 1) represents the ex-
pected number of links that will cause contagion to spread after one round of default.

Each of these nodes will cause a shock (not necessarily leading to default) through
k other links. This is because those ( j, k) nodes that have defaulted after one round will
each spread losses to k other nodes, where the latter nodes are not necessarily unique (in
other words, two nodes might spread losses to the same creditor). Therefore k jp( j, k, 1)
represents the expected number of shocks to the system due to ( j, k) nodes after one round
of default.

By multiplying with µ( j, k) and summing over all j and k, the expression∑
j,k jk µ( j, k) p( j, k, 1) gives the total expected number of shocks to the system after one

round of default.
Note that the expected number of shocks to the system is not necessarily bounded

above by λ, which is the total number of links in the system. This is because for a node of
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type p( j, k, 1), it is possible that more than one outgoing link can lead to its default (even
though only one counterparty default is required to make the node itself default as well).
This results in ‘double-counting’ the node’s incoming links when looking at the number of
shocks the system receives.

However, this is not a drawback of the network resilience measure. It is necessary to
keep this information because of the fact that the order in which a node’s counterparties
default is random. A node with more than one counterparty that could cause it to default
should be deemed more risky than another node with only a single counterparty that could
cause it to default.

Finally, by dividing the expected number of shocked links in the system by the total
number of links in the system, it is possible to account for the relative size of the system.
For example, if a system with 10 links expected 5 shocks after one round, it would be less
resilient than a system with 20 links expecting the same number of shocks.

The term
∑

j,k
jk
λ
µ( j, k) p( j, k, 1) is a measure of the susceptibility of the network rather

than its resilience, because the term increases for networks that are deemed more suscepti-
ble to contagion.

In order to measure resilience, the term−
∑

j,k
jk
λ
µ( j, k) p( j, k, 1) should to be considered

instead. It is added to one in the definition of the network resilience measure, though this
is just a matter of shifting the range of the resilience measure to the right.

A possible reason for incorporating this shift could be that if the expected number of
shocked links is more than the total links, then we would have that

∑
j,k

jk
λ
µ( j, k) p( j, k, 1) >

1 and the system could be seen as being ‘unsafe’. Alternatively if the expected number of
shocked links is less than the total links in the system, then

∑
j,k

jk
λ
µ( j, k) p( j, k, 1) < 1

and the system could be deemed as being relatively ‘safe’. This explanation is supported
further by theorems C.1 and C.2 below [8, Theorems 3.10 and 3.11].

Theorem C.1. Let
(
en, ~γn

)
n≥1 be a sequence of financial networks. Then if

1 −
∑

j,k

jk
λ
µ( j, k) p( j, k, 1) > 0, (C.2)

the final fraction of defaults becomes negligible with high probability if the initial fraction
of defaults tends to zero.

This shows that if the contagion does not spread too widely after the first round of
default, then the system will be able to withstand the shock.
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Theorem C.2. Let
(
en, ~γn

)
n≥1 be a sequence of financial networks. If

1 −
∑

j,k

jk
λ
µ( j, k) p( j, k, 1) < 0, (C.3)

then with high probability there exists a (non-empty) set of nodes such that any node be-
longing to this set can trigger the default of all nodes in the set. Furthermore there is a
directed path of contagious links1 from any node in this set to another node in the set.

Note that this set of nodes will not necessarily trigger the default of all the nodes in the
entire system. Only nodes belonging to the set will default as a result of a single defaulting
node in the set. In contrast to the hypothesis of theorem C.1, the final defaulting fraction of
nodes will not be negligible, given that one of the nodes in the aforementioned set defaults.

Branching process motivation

The results given by theorems C.1 and C.2 can be motivated by considering the connected
clusters in the network and approximating them by a branching process.

Definition C.2 (Connected cluster). The connected cluster of a node ν is the set of all
nodes for which there exists a path of edges to ν. For our purposes, only incoming edges
are considered when determining connected clusters. In other words, any node in this set
can be reached from a path of incoming edges, starting at ν’s incoming edges.

For illustration purposes, fix an arbitrary n and suppose that G is a sample of the ran-
dom network

(
En, ~γn

)
, where all nodes are still in their non-defaulted state. Each connected

cluster in G can be found by means of a branching process approximation. The branch-
ing process is not constructed directly, but a random walk which is representative of a
branching process is constructed.

For example, suppose we want to find the connected cluster of the node ν. The root of
the branching process is the node ν, and the children in the nth generation are all the nodes
that can be reached via n incoming links2 starting at ν.

As mentioned above, a random walk representation of a branching process is con-
structed. For this stochastic process, we consider each node as being either active, inactive,

1A link is said to be contagious if it represents an exposure larger than the capital of the associated creditor
node.

2Note that if a node η can be reached via either τ1 or τ2 incoming edges, then η will be in generation
min {τ1, τ2} only, and in no other generation. This will become clear from the construction of the branching
process.
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or neutral, and we are interested in the number of active nodes at each time step. A node
is said to be active if it has been added to the branching process, but the nodes connected
to its incoming links still need to be added to the process. A node is said to be inactive if it
has already been added to the branching process, and the nodes connected to its incoming
links have also been added. Neutral nodes have not been added to the branching process
yet.

Let S t denote the number of active nodes at time t. Then the process is constructed as
follows:

1. The node, say ν, whose connected cluster we want to determine represents the root
of the branching process. At time 0, ν is the only active node in the system, while all
the other nodes are neutral. Therefore S 0 = 1.

2. Suppose now that ν has k0 incoming edges. At time 1 these k0 nodes become active,
and ν becomes inactive. Therefore

S 1 = k0 = S 0 + k0 − 1. (C.4)

3. Now randomly choose any one of the currently active nodes. Suppose that this node
has k1 incoming edges. The chosen node now becomes inactive, while the k1 nodes
connected to its incoming edges become active. Now

S 2 = S 1 + k1 − 1, (C.5)

and for the nth randomly chosen active node we have that

S n = S n−1 + kn−1 − 1. (C.6)

The random walk constructed above becomes zero when all the nodes belonging to the
connected cluster of ν have become inactive.

The set of inactive nodes at any time t represents the part of the connected cluster that
has been determined up until time t. As only one node can be added to the connected
cluster at each time step, then at time t there will be t nodes in the connected cluster of ν
(including ν itself).

If S t becomes zero at some point, then the population of active nodes dies out, and the
connected cluster of ν is a strict subset of the whole system. As the size of the system
grows to infinity, the fraction that the connected cluster represents becomes negligible.
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This corresponds to the case dealt with by theorem C.1, as losses cannot spread outside of
the connected cluster.

On the other hand, if S t does not become zero, the population of active nodes does
not die out. In branching processes, populations usually either die out, or become very
big. Therefore if the population does not die out with probability one, then the connected
cluster has the potential of becoming very large, so that losses could potentially spread
through the whole system. This corresponds to the case dealt with by theorem C.2.

However, theorems C.1 and C.2 consider nodes with default threshold one. Therefore
the definition of a connected cluster needs to be modified slightly. Here, we need the
connected cluster of a node ν to be the set of all nodes with default threshold one, for
which there exists a path of incoming edges starting at ν.

In order to evaluate the extinction probability of a branching process, we need to eval-
uate the probability generating function of the offspring distribution (the distribution of the
number of offspring produced by each member of the active population). In the context of
this setting, a node’s offspring is the nodes connected to it via its incoming edges. There-
fore the in-degree distribution of a randomly chosen member of the active population is
required.

The node ν has k0 incoming edges with probability
∑

j µ( j, k). However, the degree
distribution of the rest of the nodes are determined differently. Each subsequent addition
to the active node population is randomly chosen from the incoming edges of the current
active population. The chosen incoming edge will be an outgoing edge for the next node
to be added to the active population.

Therefore we need the probability that a randomly chosen outgoing edge will belong to
a node of degree ( j, k). Recall from the explanation below equation (3.19) that µ( j, k)k

λ
rep-

resents the fraction of incoming edges belonging to nodes of degree ( j, k). Using a similar
argument, it can be deduced that µ( j, k) j

λ
represents the fraction of outgoing edges belonging

to nodes of degree ( j, k). In other words if one randomly chooses an outgoing edge, then
the node whose outgoing edge was chosen will have degree ( j, k) with probability µ( j, k) j

λ
.

As only nodes with a default threshold of one are included in the connected cluster, this
needs to be allowed for as well. The probability that a randomly chosen outgoing edge will
belong to a node with degree ( j, k) and default threshold one is given by µ( j, k) j

λ
p( j, k, 1).

The corresponding probability that a randomly chosen outgoing edge will belong to a node
with k in-coming links and a default threshold of one is

∑
j
µ( j, k) j
λ

p( j, k, 1). This gives the
required offspring distribution, as it gives the distribution of the number of new nodes
added to the active population at each time step.

Now that the in-degree distribution of the active population is determined, the extinc-
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tion probability can be determined. From [61, chapter 1, theorem 6.1], it is known that the
extinction probability q of the branching process is given by the smallest non-negative root
of the equation

q =
∑

k

pk qk. (C.7)

Note that q = 1 will always be a solution to this equation, and therefore the smallest non-
negative solution will always be contained in the interval [0, 1]. For the purpose of this
example, the above equation can be rewritten as follows:

q =
∑

j,k

µ( j, k) j
λ

p( j, k, 1) qk. (C.8)

If the average number of offspring (or in-degrees in the cluster) is less than one, i.e.∑
j,k

µ( j, k) jk
λ

p( j, k, 1) < 1, (C.9)

then the smallest non-negative solution is q = 1. In this case the population dies out with
probability one.

In this context, it means that the connected cluster of a node ν consisting of nodes with
default threshold one constitutes a negligible fraction of the system. As the above inequal-
ity is independent of ν, it means that all the connected clusters consisting of nodes with
default threshold one will each constitute a negligible fraction of the system. Therefore if
the initial fraction of defaults is small, then the spread of contagion should be limited to
a small number of these clusters. As the nodes connected to the defaulting clusters have
higher default thresholds, they should become less likely to default as the initial fraction
of defaults decrease. This is therefore a heuristic argument to support the statement of
theorem C.1.

If the average number of in-degrees in a cluster is greater than one, i.e.∑
j,k

µ( j, k) jk
λ

p( j, k, 1) > 1, (C.10)

then the smallest non-negative solution to (C.8) is q < 1. The population does not neces-
sarily die out here, so that there is a positive probability that a cluster can keep growing
indefinitely. Such a cluster should in general constitute a positive fraction of the system.

Each node in the system can, with probability q, be the root of a cluster which con-
stitutes a positive fraction of the system. As the number of nodes tends to infinity, the
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probability of there being such a cluster tends to one. As the default of one node in the set
will trigger the default of all the nodes after it in the branching process, this is serves as
support for the statement of theorem C.2.

Approximating the final fraction of defaults by a function of susceptibility and con-
nectedness of the initial defaulting nodes. The purpose of this part is to identify factors
that determine how a small initial shock to the system will affect the final fraction of de-
faults. To do this, an approximation is found for the final fraction of defaults based on the
fraction of initially defaulting nodes, p( j, k, 0) = ε. Let π∗ε be the least fixed point of I based
on ε.

Assume that the condition

1 −
∑

j,k

jk
λ
µ( j, k) p( j, k, 1) > 0, (C.11)

from theorem C.1 is satisfied. Then since the final fraction of defaults becomes negligible
for small enough ε, and the possibilities for π∗ε covered by theorem C.1 are exhaustive, it
implies that π∗ε < 1 and that

αn
(
En, ~γn

)
→

∑
j,k

µ( j, k)
j∑

θ=0

p( j, k, θ) B̄
(
j, π∗ε , θ

)
(C.12)

weakly as n → ∞. The expression on the right can be regarded as a function of π∗ε , say
f
(
π∗ε

)
. If we let f

(
π∗ε

)
=

∑
j,k µ( j, k)

∑ j
θ=0 p( j, k, θ) B̄

(
j, π∗ε , θ

)
, then f

(
π∗ε

)
can be approxi-

mated by
f
(
π∗ε

)
≈ f (0) + h′(0) π∗ε + o

(
π∗ε

)
, (C.13)

where

f (0) =
∑

j,k

µ( j, k)
j∑

θ=0

p( j, k, θ) B̄( j, 0, θ)

=
∑

j,k

µ( j, k)
j∑

θ=0

p( j, k, θ)P(X ≥ θ) , where X ∼ Bin ( j, 0)

=
∑

j,k

µ( j, k) p( j, k, 0)

= ε
∑

j,k

µ( j, k) = ε. (C.14)
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For h′(0), note that

h′
(
π∗ε

)
=

d
dπ∗ε

∑
j,k

µ( j, k)
j∑

θ=0

p( j, k, θ) B̄
(
j, π∗ε , θ

)
=

∑
j,k

µ( j, k)
j∑

θ=0

p( j, k, θ)
d

dπ∗ε
B̄
(
j, π∗ε , θ

)
=

∑
j,k

µ( j, k)
j∑

θ=0

p( j, k, θ)
d

dπ∗ε

 j∑
l≥θ

(
j
l

) (
π∗ε

)l (1 − π∗ε) j−l


=

∑
j,k

µ( j, k)
j∑

θ=0

p( j, k, θ) . . .

j∑
l≥θ

(
j
l

) [
l
(
π∗ε

)l−1 (
1 − π∗ε

) j−l
− ( j − l)

(
π∗ε

)l (1 − π∗ε) j−l−1
]
. (C.15)

If π∗ε = 0, then the terms inside the third summation above is only non-zero for l = 0 and
l = 1, which in turn can only occur when θ = 0 or θ = 1. Therefore

h′(0) =
∑

j,k

µ( j, k)
1∑
θ=0

p( j, k, θ)
1∑

l=θ

(
j
l

) [
l
(
π∗ε

)l−1 (
1 − π∗ε

) j−l
− ( j − l)

(
π∗ε

)l (1 − π∗ε) j−l−1
]
π∗ε=0

=
∑

j,k

µ( j, k)
[
p( j, k, 0)

[
− j + j

]
+ p( j, k, 1) j

]
=

∑
j,k

j µ( j, k) p( j, k, 1) . (C.16)

Substituting the relevant expressions into (C.13), we find that

∑
j,k

µ( j, k)
j∑

θ=0

p( j, k, θ) B̄
(
j, π∗ε , θ

)
= ε + π∗ε

∑
j,k

j µ( j, k) p( j, k, 1) + o
(
π∗ε

)
. (C.17)

To expand this further, one can find an approximation for π∗ε by finding a similar first-
order approximation for I

(
π∗ε

)
:

I
(
π∗ε

)
= I(0) + π∗ε I

′(0) + o
(
π∗ε

)
. (C.18)
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Here,

I(0) =
∑

j,k

µ( j, k) k
λ

j∑
θ=0

p( j, k, θ) B̄( j, 0, θ)

=
∑

j,k

µ( j, k) k
λ

p( j, k, 0)

= ε
1
λ

∑
j,k

µ( j, k) k = ε (C.19)

and by using a similar procedure as for h′
(
π∗ε

)
,

I′
(
π∗ε

)
=

d
dπ∗ε

∑
j,k

µ( j, k) k
λ

j∑
θ=0

p( j, k, θ) B̄
(
j, π∗ε , θ

)
=

∑
j,k

µ( j, k) k
λ

j∑
θ=0

p( j, k, θ) . . .

j∑
l≥θ

(
j
l

) [
l
(
π∗ε

)l−1 (
1 − π∗ε

) j−l
− ( j − l)

(
π∗ε

)l (1 − π∗ε) j−l−1
]
. (C.20)

Therefore by the same reasoning as above,

I′(0) =
∑

j,k

µ( j, k) k
λ

j∑
θ=0

p( j, k, θ)
j∑

l≥θ

(
j
l

) [
l
(
π∗ε

)l−1 (
1 − π∗ε

) j−l
− ( j − l)

(
π∗ε

)l (1 − π∗ε) j−l−1
]
π=0

=
∑

j,k

µ( j, k) k
λ

[
p( j, k, 0)

[
− j + j

]
+ p( j, k, 1) j

]
=

∑
j,k

µ( j, k) jk
λ

p( j, k, 1) . (C.21)

Substituting the expressions for I(0) and I′(0) into equation (C.18),

I
(
π∗ε

)
= ε + π∗ε

∑
j,k

µ( j, k) jk
λ

p( j, k, 1) + o
(
π∗ε

)
. (C.22)

However as π∗ε is a fixed point of I, then I
(
π∗ε

)
= π∗ε . By substituting this into the above

approximation and solving for π∗ε , we obtain the following:

π∗ε =
ε

1 −
∑

j,k
µ( j,k) jk

λ
p( j, k, 1)

+
o
(
π∗ε

)
1 −

∑
j,k

µ( j,k) jk
λ

p( j, k, 1)
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=
ε

1 −
∑

j,k
µ( j,k) jk

λ
p( j, k, 1)

+ o
(
π∗ε

)
. (C.23)

This can now in turn be substituted into equation (C.17) to obtain

∑
j,k

µ( j, k)
j∑

θ=0

p( j, k, θ) B̄
(
j, π∗ε , θ

)
=ε + π∗ε

∑
j,k

j µ( j, k) p( j, k, 1) + o
(
π∗ε

)
=ε +

 ε

1 −
∑

j,k
µ( j,k) jk

λ
p( j, k, 1)

+ o
(
π∗ε

)∑
j,k

j µ( j, k) p( j, k, 1) + o
(
π∗ε

)
=ε

1 +

∑
j,k j µ( j, k) p( j, k, 1)

1 −
∑

j,k
µ( j,k) jk

λ
p( j, k, 1)

 . (C.24)

Therefore from theorem 3.2.3

αn
(
En, ~γn

)
→ ε

1 +

∑
j,k j µ( j, k) p( j, k, 1)

1 −
∑

j,k
µ( j,k) jk

λ
p( j, k, 1)

 (C.25)

weakly as n→ ∞ and π∗ε → 0.
Now consider the case where the initially insolvent nodes are only of degree (d+, d−),

so that p(d+, d−, 0) = ε and p( j, k, 0) = 0 for all j , d+ and k , d−.
The expression for f (0) from equation (C.13) now becomes

f (0) =
∑

j,k

µ( j, k)
j∑

θ=0

p( j, k, θ) B̄( j, 0, θ)

=
∑

j,k

µ( j, k) p( j, k, 0)

= µ
(
d+, d−

)
ε (C.26)

whereas h′(0) remains the same. Therefore equation (C.17) becomes

∑
j,k

µ( j, k)
j∑

θ=0

p( j, k, θ) B̄
(
j, π∗ε , θ

)
=ε µ

(
d+, d−

)
+ π∗ε

∑
j,k

j µ( j, k) p( j, k, 1) + o
(
π∗ε

)
. (C.27)
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The expression for I(0) from equation (C.18) changes to

I(0) =
∑

j,k

µ( j, k) k
λ

p( j, k, 0)

=
µ(d+, d−) d−

λ
ε (C.28)

and I′(0) remains the same. Therefore equation (C.18) is now

I
(
π∗ε

)
= ε

µ(d+, d−) d−

λ
+ π∗ε

∑
j,k

µ( j, k) jk
λ

p( j, k, 1) + o
(
π∗ε

)
. (C.29)

As before, the identity I
(
π∗ε

)
= π∗ε is used to solve for π∗ε in the above equation:

π∗ε =

(
ε
µ(d+, d−) d−

λ
+ o

(
π∗ε

)) 1

1 −
∑

j,k
µ( j,k) jk

λ
p( j, k, 1)

=
d−

λ

ε µ(d+, d−)

1 −
∑

j,k
µ( j,k) jk

λ
p( j, k, 1)

+ o
(
π∗ε

)
. (C.30)

Substituting this into equation (C.27) results in

∑
j,k

µ( j, k)
j∑

θ=0

p( j, k, θ) B̄
(
j, π∗ε , θ

)
=ε µ

(
d+, d−

)
+

d−

λ

ε µ(d+, d−)

1 −
∑

j,k
µ( j,k) jk

λ
p( j, k, 1)

+ o
(
π∗ε

)∑
j,k

j µ( j, k) p( j, k, 1) + o
(
π∗ε

)
=ε µ

(
d+, d−

) 1 +
d−

λ

∑
j,k j µ( j, k) p( j, k, 1)

1 −
∑

j,k
µ( j,k) jk

λ
p( j, k, 1)

 , (C.31)

so that

αn
(
En, ~γn

)
→ ε µ

(
d+, d−

) 1 +
d−

λ

∑
j,k j µ( j, k) p( j, k, 1)

1 −
∑

j,k
µ( j,k) jk

λ
p( j, k, 1)

 (C.32)

weakly as n→ ∞ and π∗ε → 0.
The right hand side of the above expression is increasing in d− and the network’s sus-

ceptibility as measured by
∑

j,k
µ( j,k) jk

λ
p( j, k, 1) (all else being held fixed). This shows that

the final fraction of defaults is increased by the interconnectedness of the initial default
and the network susceptibility. Since small values of ε are considered, it shows that these
factors result increased damage to the system due to small initial shocks.
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