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Abstract

Silicon and indium tin oxide (ITO) are the active components of the modern day devices.
ITO is the most used transparent conducting material (TC) in smartphones and other touch panel
devices, because the required properties of TCs such as low sheet resistance, high optical
transparency, and stability found in ITO are difficult to match by other materials. However, due to
its limited geographical availability, susceptibility to conductivity degradation, rising price and
limited flexibility, which does not favour the demand for flexible devices, there is a need for an
ideal replacement for ITO and likewise for silicon. Silicon has been the base material in
microelectronics for over 49 years. However, as a result of the rising demand for miniaturized
flexible devices further scaling of silicon for use in the active developing field of nanoelectronics

might lead to performance restriction due to overheating and current leakage through the gate.

Graphene has a stable structure, high charge carrier mobility, good thermal conductivity,
high optical transparency, and high tensile strength of 130.5 GPa. In fact, it is the strongest material
ever to be tested. Due to these fascinating properties, graphene has been proposed as a potential
replacement for silicon and ITO for use in nanoelectronic and optoelectronic devices. However,
despite these outstanding properties, it has no band-gap which makes it unsuitable for a direct
integration in nanoelectronic devices. Aside from these limitations, graphene also has high sheet
resistance and lower conductivity compared to ITO. These drawbacks likewise limit its application

asa TC.

Substitutional doping of graphene with heteroatoms has been extensively reported as a
facile approach for tailoring the properties in order to increase its applicability range to the field
of nanoelectronics and optoelectronics. Despite the gigantic stride that has been achieved through

first-principles calculations in predicting nanomaterials that satisfy the aforementioned



applications, synthesizing experimentally such heteroatom-doped graphene with the required
specifications remains a contending issue. As a result, other heteroatom-doped graphene are being

explored to determine if they would be amenable for synthesis experimentally.

In this study, for the first time, ab initio calculations within the framework of density
functional theory were performed to study the vibrational, electronic structure, structural and
optical properties of beryllium/nitrogen (Be-N) and beryllium/sulphur (Be-S) co-doped graphene.
It is observed that Be-S co-doped graphene is thermodynamically stable, has no metallic character
and the band-gap can be tuned from zero to 0.7 eV by increasing the impurity concentration. A
minimum band-gap of 0.4 eV is required for ON/OFF ratio in a transistor with graphene platform.
Thus, the calculated value of the band-gap of Be-S co-doped graphene meets this specification. In
addition, Be-N co-doped graphene was found to be also thermodynamically stable due to the
absence of negative frequencies in the phonon dispersion. Interestingly, it exhibits both metallic
and semiconducting character, and the band-gap can be tuned from zero up to 1.88 eV depending
on the impurity concentration of the system. The presence of metallic character implies that the
system is highly conductive as compared to pristine graphene. Moreover, the analysis of the optical
spectrum shows that the system is transparent within the optical frequency of 7.0-10 eV for the
parallel polarisation of the electromagnetic field irrespective of the impurity concentration. Thus,
the interesting properties of Be-N co-doped graphene make it an alternative proposition as a
replacement for ITO. However further research is needed to determine the work-function of this
material to know if the application as a transparent electrode material in a photovoltaic is imminent.
This study contributes to the on-going research of finding alternative nanomaterials to replace

silicon and ITO for use in the field of nanoelectronics and optoelectronics respectively.
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Chapter 1

Introduction
1.1 Background and motivation

The discovery of graphene and the realization of its remarkable properties have sparked intense
research interest in the field of nanoelectronics and optoelectronics as it has been lauded as a
promising replacement for both silicon (Si) and indium tin oxide (ITO) in future flexible nanoscale
devices. Graphene is a two dimensional (2D) hexagonal sheet of sp? hybridized carbon atoms. The
two carbon atoms (a and ) of the unit cell are in non-equivalent positions forming two
interpenetrating triangular sublattices as shown in Figure 1.1 The unit cell of graphene has two carbon
atoms. The two non-equivalent sites are denoted by @ and B where d and b denote the primitive unit
vectors. It is well-known to be the basic and integral part of other graphitic carbon materials such
as carbon nanotubes, fullerenes (buckyball) and graphite [1]-[4]. Graphene’s existence was
predicted theoretically by P.R. Wallace in 1947 [1]. However, it was considered to be unstable due
to the thermal fluctuations [3], [5], in what was popularly known as the Landau-Peierls arguments.
Interestingly, in 2004, Novoselov et al.[6] isolated graphene from ordered pyrolytic graphite
through micromechanical exfoliation (often referred to as the scotch-tape method). Ever since the
isolation, the material has gained widespread attention among researchers due to its exceptional
properties. That is, it is known to be stable [7], mechanically strong [8], have a high charge carrier
mobility [4], [9]-[12], excellent thermal conductivity [13], [14], together with the outstanding

electrical [1] and optical characteristics [8], [9], [15], [16].



Figure 1.1 The unit cell of graphene has two carbon atoms. The two non-equivalent sites are
denoted by a and B where @ and b denote the primitive unit vectors

Flexible and stretchable electronic components are more useful than the rigid ones and are
sought after for device applications (such as displays, solar cells, light emitters, and touch panels).
In optoelectronic devices, transparent conductors (TCs) are the active components and are
typically made from ITO simply because of its relatively low sheet resistance and optical
transparency. However, ITO is limited in supply, expensive, and suffers from poor mechanical
strength which compromises the rising demand for flexible nanoscale devices. Due to the poor
mechanical properties, when bent or stretched, the material tends to crack leading to the
degradation of the electrical properties. As a result of these drawbacks, there is a need for an
alternative to ITO and similarly Si for use in the future nanoscale devices. For Si, which is often
used in conjunction with ITO in some devices, the technology is at the critical stage and further
scaling of the component might lead to overheating and consequently performance restriction. Due
to the extraordinary properties, graphene has emerged as an ideal material to overcome the
limitations suffered by both Si and ITO. However, graphene has a relatively high sheet resistance

as compared to ITO [17], and this shortcoming limits its application as a TC material. The 2D



material also has no band-gap which makes it difficult for a direct integration in nanoelectronic

devices.

There are different approaches (superstructure fabrication, functionalization, application of
electric field, deposition of graphene on a substrate, heteroatom doping ) [18]—[20] that could be
employed to open up an electronic energy gap in graphene. Out of these approaches, doping of
graphene with heteroatoms is often the preferred technique because impurities are the major
scatterers that control the intrinsic electronic and transport properties of crystals. As such, this
method, which is also known as chemical doping, could be used to create a sizeable band-gap in
graphene (by symmetry breaking) while reducing the sheet resistance as a result of the increase in
the carrier concentration. Heteroatoms doping of graphene means an act of replacing the carbon
atoms of graphene with any elements in the periodic table, apart from the carbon, hydrogen, and
elements with filled valence shells. Although nitrogen (N) and boron (B) atom are the natural
substitutes for the carbon atoms of graphene as a result of the size of their atomic radii, which are
almost equal to that of a carbon atom, other light elements such as beryllium (Be) and sulphur (S)
are being investigated to tailor the properties of graphene. While light elements like N [21], [22],
B [21], [23], Be [23], etc. have been studied from the first-principles to tailor the properties of
graphene, this research area is far from being exhausted. Since the electronic and optical properties
of graphene could be altered by the type and amount of the heteroatoms present in the matrix, a
new study could be directed at investigating the effect of the above named heteroatoms co-doping
(i.e. using a pair of dissimilar atoms simultaneously) of graphene on the stability, electronic and
optical properties of the system. For example, the electronic and optical properties of systems like

Be-S and Be-N co-doped graphene have rarely been studied.



In this thesis, for the first time, ab initio calculations within the framework of density
functional theory (DFT), as implemented in Vienna ab initio Simulation Package (VASP) [24],
[25], were performed to study the vibrational, electronic, structural and optical properties of Be-N
and Be-S co-doped graphene for potential applications in nanoelectronic and optoelectronic
devices. Moreover, the isomerization and the impurity concentration effects on the aforementioned
properties of the systems were taken into consideration. The method that replaces the chemical
inert core of electrons with pseudopotentials was employed for the calculations. Frequently used
pseudopotentials are the ultrasoft [26], the norm-conserving [27] and the projector-augmented
wave (PAW) [28] pseudopotentials. The latter, which was introduced by Blochl and the most
popular, was used in this study. The use of DFT involves the specification of an exchange-
correlation functional in order to compute the ground state energy of the system. These functionals
could be classified as the local density approximation (LDA) [29], generalised gradient
approximation (GGA) (e.g Perdew, Burke and Ernzerhof (PBE)) [30], and range-separated hybrid
functionals (e.g. Heyd, Scuseria, and Ernzerhof (HSE) [31] to name but a few. The two exchange-
correlation functionals that were used in this study are the GGA and HSE. While the GGA usually
gives an acceptable result for the lattice constant of semiconductors, it often underestimates the
band-gaps [32]. In contrast, HSE usually gives accurate results of the band-gap of semiconductors
[32]. For the optical properties of the systems, the linear dielectric response was calculated using

first-order time-dependent perturbation theory within the dipole approximation [33].

1.2 Aims and objectives

The aim of this study is to explore the stability, electronic and optical properties of pristine

and Be-S and Be-N co-doped graphene from the first-principles within the framework of density



functional theory for prospective applications in nanoelectronic and optoelectronic devices. In

order to achieve this aim, the research will be conducted to attain the following objectives:

1. A test of convergence will be performed with respect to the kinetic energy cut-off to determine

the accurate Kohn-Sham orbitals in the plane wave basis.

2. Calculation of the right k-points for the Brillouin zone sampling of all the systems will also be

performed.

3. Structural optimisation of the systems will be performed in order to get the right equilibrium

lattice constant and bond length to be used in the rest of the calculations.

4. The defect formation energy of the doped graphene will be investigated to understand how the

impurities in the system prefer to co-exist.

5. Phonon calculation at 0 K will be performed to assess if the heteroatom-doped graphene at

different impurity concentration are dynamically stable.

6. The electronic properties, such as total densities of state and band structures of the systems will

be calculated in order to determine their electrical conductivities.

7. The dielectric response in the long wavelength limit of all the systems of study will be calculated

in order to analyze their corresponding optical properties.

8. All the results of this study, where necessary, will be compared with the data from the literature

for the purpose of validation.



1.3 Thesis outline

This thesis is sectioned into five chapters as follows:

Chapter 1 gives the motivation of the study, aims, and objectives of the thesis.

Chapter 2 presents a brief technical background on the structural, electronic and optical properties

of graphene along with the relevant past studies in the literature.

Chapter 3 provides a brief overview of the theoretical background of density functional theory

along with the implementation that is relevant to this thesis.

Chapter 4 contains the results and discussion of the study.

4.2. The tests of convergence with respect to k-point and energy cut-off were discussed.

4.3. The stability and electronic structures of beryllium and sulphur co-doped graphene

are discussed.

4.4. The dynamic stability, electronic and optical properties of beryllium and nitrogen co-

doped graphene are presented.

4.5. The lattice dynamics and optical properties of beryllium and sulphur co-doped

graphene are reported.

Chapter 5 gives general concluding remarks and future prospects that might emanate from the

study.
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Chapter 2

Literature Review

This chapter presents a brief technical background on the structural, electronic and optical

properties of graphene along with the relevant past studies in the literature.

2.1 Background of carbon material

Discovered through exploration earlier as charcoal, carbon was famously named by A.L.
Lavoisier in 1789 [1] and is commonly found in nature. It occupies the group IV of period III of
the periodic table. The atom is made up of 6 protons, 6 electrons, and “A” neutrons which can
assume any of 6, 7 and 8 value to form the isotopes '°C, °C, and '“C, respectively. While the first
two isotopes are stable, >C with a nuclear spin I=0 is the most abundant with 99% occurrence
among the carbon isotopes in nature. '*C, with a nuclear spin I=1/2, is the next with 1% of all
carbon atoms. '“C rarely occurs; nevertheless, it is vital for archaeological dating to estimate the
biological activity of organic materials. In general, carbon has many allotropes such as graphite,
diamond, fullerene, carbon nanotubes (CNTs), and graphene. Thermodynamically, all the
allotropes formed by carbon are stable and the carbon can react under a high temperature with

oxygen to form carbon dioxide [2].

In the ground state, the configuration of the 6 electrons is given as 1s?2s*2p?. The inner
shell (1s) is occupied by two electrons and does not take part in chemical reactions. The remaining
4 electrons occupy 2s and 2p orbitals. Since the energy of the 2p orbitals ( py, py, and p,) is 4 eV
higher than 2s, the 2p orbital is filled with the last two electrons after 2 s. However, it is
energetically more favourable to promote one electron from 2s to 2p,, in order to be able to form

covalent bonds with other atoms such as H, O, C and etc. The energy gained from such covalent

10



bond is higher than 4 eV that must be overcome in the electronic excitation. In the excited state,
four equivalent quantum orbitals 2s, 2p,, 2p,, and 2p, are formed. The superposition of the state

|2s) with n |2p;) states is termed sp” hybridization. Where n=1, 2 or 3 and j=x, y, or z.
2.2 Hybridization in carbon
2.2.1 Diamond—sp? hybridization

The superposition of 2s and all the three 2p orbitals form sp* hybridization. An example of
this hybridization is diamond and the carbon atoms are bonded together to form a tetrahedron (see
Figure 2.1 (a)). The crystal lattice contains two interpenetrating face-centred-cubic (fcc) lattices
with a lattice constant of 0.357 nm as shown in Figure 2.1 (b). Diamond is one of the hardest natural
materials ever observed because all the bonds are o-bonds. It is reported to have a high bulk
modulus of 443 GPa [3] and Young’s modulus of 1050 GPa [4], [5]. Due to the fact that all the
valence electrons are employed in the formation of g-bonds, diamond is an insulator with a large
band-gap of 5.47 eV [6]. As a result, the thermal conductivity is within 1000-2200 W.m K1 [7].
The applications involving the use of diamond tends to explore the hardness and the low electrical
conductivity of the material. For instance, in most industrial applications, it is used for drilling,

cutting, polishing, grinding, etc.
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0.357nm

Figure 2.1 (a) Tetrahedron sp> hybridization of carbon atoms (b) the unit cell of carbon with the
diamond structure.

2.2.2 Graphene and graphite—sp? hybridization

The superposition of the 2s and the two of 2p orbitals (|2p,) and|2p, ) states) would result
in the formation of planar sp? hybridization (Figure 2.2 (a)). While these orbitals are aligned in the
xy-plane with 120° mutual angles between them, the 2p, hybridized orbital is oriented
perpendicular to the plane. A noticeable example of this hybridization is graphene, a layer of
graphite (Figure 2.2 (b)). Multiple layers of graphene would form graphite when they are stacked
together with the ABAB... sequence (see Figure 2.2 (b)). All the layers of graphite are loosely
bounded via the weak Van der Waals force which accounts for the softness of graphite. The
delocalized electron from each of the carbon atom forms a n—electron cloud which makes graphite
an electrical conductor. The bond length between the carbon atoms is 1.42 A and the interlayer
distance is 3.34 A [8]. It is anisotropic [9] due to the in-plane metallic bonding, has good electrical
and thermal conductivity along the plane of the layers. However, it is a poor electrical and thermal

conductor along the perpendicular to the plane of the layers due to the presence of the weak Van
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der Waals forces. Unlike diamond, graphite electrical conductivity enables it to be useful as

electrochemical electrodes and electric brushes.

b .
"
Graphene <|: *
AB... stacked graphite
120°

(@)

Figure 2.2 (a) sp? hybridization of carbon atoms (b) the unit cell of graphite with ABA stacking.

23 Graphene
2.3.1 The graphene structure

As mentioned earlier, the carbon atoms in graphene formed honeycomb lattice due to sp>
hybridization. The honeycomb is not a Bravais lattice due to the non-equivalent neighboring lattice
sites. Graphene has two sublattices, a, and B. Figure 2.3 shows that any site on the A sublattice has
three nearest neighbors (nn) in the direction of the north-west, north-east, and south, while south-

east, south-west, and north are the directions of the nn of a site on the sublattice B.
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Figure 2.3 Honeycomb lattice of graphene with & and B sublattices where @, and d, are the
primitive unit vectors of the system.

However, a and B are triangular [10], [11] Bravais lattices, as such the honeycomb lattice could

be described as a triangular Bravais lattice with two atoms per unit cell. The shortest distance

between any two closest carbon atoms is 0.142 nm. The three vectors (gl, §2, and 33) connecting

any site on the sublattice a with the nn on the sublattice B are given by equation (2.1):

5—1) = %(\Eéx + éy)' 5—2> = %(_\/géx + éy)' 8—3) = —aé, 2.1

while the primitive vectors for the triangular Bravais lattice is expressed using equation (2.2)

V3a
dy = \/gaéx ; Ay = 5 (éx + \/géy) 2-2)

The average carbon-carbon distance is denoted by “a” in both equation (2.1) and (2.2) and it is

about 1.42 A. The modulus of the primitive vectors yields the lattice constant, |a;| = |a;| =

2.46 A while the area of the unit cell Ayce = %\/5 a? =0.051 nm?. The density of the carbon atoms

is, thus, n. = =39 nm. This number is equal to the m-electron density in graphene since

ucel

there is one T-electron per carbon atom in graphene.

The reciprocal lattice of graphene, which is defined in relation to the triangular Bravais lattice, is

shown in Figure 2.4. It is spanned by the vectors in equation (2.3):

14



Figure 2.4 Reciprocal lattice of graphene in two dimension where a; and a3 are the primitive
vectors. The shaded region denotes the first BZ with I" center and other unique high symmetry
points, Ks and Ms.

L., 2m [ & L, 4w,
a; = E (ex — ﬁ) and a; = Eey 2.3)
where a; and @3 are the reciprocal lattice vectors. The shaded part, indicates the first Brillouin
zone (BZ) as shown in Fig 2.4, showing a set of non-equivalent points in the reciprocal space. At
the centre of the BZ, which is designated as the I point, the long wavelength excitations are found

within the vicinity. Other points such as Ms, and Ks are other high-symmetry K-points of which

K and K are represented as:

R+,
IR =T € .
332 2.4)

2.3.2 The electronic properties of graphene

The touching of the valence and conduction bands at the Dirac points makes graphene a
zero-gap semiconductor (see Figure 2.5). The Dirac points are points on the edge of the Brillouin
zone in the momentum space. There are three pairs of Dirac points. With symmetry, the points
could be reduced to a pair of independent K and K’ point. In the low energies region, which is

essential in the electron transport, the bands have a linear dispersion relation and the band structure
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could be regarded as two cones touching at the Dirac point (see Figure 2.5). The electrons within 1
eV of the Dirac energy possess a linear dispersion relation. This linear dispersion relation is well-

expressed by the Dirac equation for massless fermions.

Figure 2.5 (a) 3D bandstructure of graphene with one of the Dirac points blown out of
proportion. Adapted with the permission from Neto [10].

This implies that the effective mass of the charge carriers in this energy region is zero. Generally,

the dispersion relation around the K points is expressed as:

Ey (k) =~ thve|k — K| (2.5)
Equation (2.5) is related to the spectrum of the Dirac Hamiltonian for low-energy Dirac particle

and it is expressed as follows:

AP ) = hvpd - k (2.6)

Hic = hop <kx tik, 0
Equation (2.6) is simply the tight binding result [12] expanded in the vicinity of K while the

corresponding equation close to point K'is given by equation (2.7).

Hyr = hvpd* - k 2.7)
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where G is the Pauli matrices in two dimensions, * represents the complex conjugate, vg =~ 10°m/s

(which is 1/300™ of the light in the vacuum) is the Fermi velocity, and K is the wavevector. In
graphene, the charge particles act like relativistic particles with the speed given by the Fermi

velocity. This unique behaviour accounts, in part, for the huge research interest in graphene.

2.3.3 The electronic density of state (DOS) of graphene

The electronic density of states (DOS) could be used to characterise the electrical
conductivity of graphene. The theoretical DOS of graphene is shown in Figure 2.6 and the features
of the graph reaffirm the semi-metallic behaviour of the system. Due to the touching of the valence
and conduction bands, the DOS of the system has a zero band-gap. This feature is in sharp contrast
to what is obtainable in diamond, another allotrope of carbon known to have a wide band-gap of

5.47 eV [6].

The theoretical DOS per unit cell (p(E)) of graphene can be derived through equation (2.8):

1dN 1dNdk

P =4 aF ~ Adk aE @8)

where A. is the area of the unit cell; N which is the number of states, for a two-dimensional
material, can be expressed by equation (2.9):

Ak?* dN Ak
- —=
21T dk T

2.9)

Thus, the DOS per unit cell (p(E)) of graphene in the vicinity of a Dirac point is given by equation

(2.10), and is obtained by combining equation (2.5), (2.8) and (2.9) together.

2 |E|
- 2.10
p(E) 2 p2 ( )
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plev™)

Bl

Figure 2.6 The density of states (DOS), p, of a monolayer graphene system at different energies,
E. Reproduced with the permission from Neto [10].

2.3.4 The vibrational properties of graphene

The vibrational properties of graphene are important in understanding the high thermal
conductivity of the system. Moreover, they are also responsible for other attributes of graphene
such as the structural stability via the absence of imaginary modes, optical properties through
phonon-phonon scattering (as in the case of Raman scattering) and the electronic properties

through electron-phonon scattering.

The vibrational properties of graphene could be understood with the aid of the phonon
dispersion relation. Some experimental methods have been employed to measure the phonon
dispersions of graphite as well as graphene, for example, electron loss spectroscopy (EELS) [13],
inelastic neutron scattering [14], high-resolution electron-energy-loss spectroscopy (HREELS)
[15], and inelastic x-ray scattering (IXS) [16], [17]. However, the measurements made with these

spectroscopies require a large amount of quality samples and are restricted to specific directions
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or phonon modes. Some of these aforementioned methods have been used to carry out phonon
studies of graphite. Recently, using IXS Mohr et al.[16] reported optical and acoustic phonon
modes measurements of graphite along I'-K-M-I" directions. The measurements were found to be
very close. The G band in the layers of graphene has been measured through Raman scattering
[18]-[21]. It was reported that as the number of layers of graphene changes, the intensity and
position of second order D and the first order G band of Raman spectra change as well [18], [19].
Theoretically, Griineis et al.[22] reported the phonon dispersions of graphite employing the fourth
nearest-neighbor force constant (4NNFC) technique. However, as a result of the Kohn anomaly at
I" and K point, it has been argued that it is not possible to get the right phonon dispersions near I
and K using the force constant method [23]. Dubay and Kresse [24] investigated phonon dispersion
calculations of graphite using density functional theory (DFT) within the framework of local
density approximation (LDA). Their results are consistent with the phonon measurements by
HREELS. Wirtz and Rubio [25] performed phonon dispersion calculations of graphite using the
generalized gradient approximation (GGA) and LDA, the results obtained are in good agreement
with the vast majority of the experimental data points plotted together. Mounet and Marzari [26],
at the level of GGA-PBE, reported a comprehensive calculation of the phonon dispersion of

graphite and graphene.

Linear-response [27] and the direct approach [28], [29] are the two implementations
widely used for the first-principles computation of lattice dynamics. With the linear-response
approach, the dynamical matrix is evaluated at a predefined coarse grid in the BZ via the density
functional perturbation theory [27], [30], [31]. To obtain the interatomic force constant on the
corresponding real space grid, the backward Fourier transform of the computed dynamical matrix

at the coarse wave- vector grid is used. However, with the direct approach, the force constants are
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first calculated through a predefined reference supercell of the unit cell. The direct approach, in
the literature, is also known as the frozen-phonon approach, the small-displacement method or the
supercell method. In order to obtain phonon frequencies of a given crystal, the ground state energy,
expressed as a function of the atom positions, could be expanded within harmonic approximation

as:

EC.7(LK) 7,k .)

=E, +% z (LU, kUL KU, k) +0(U3) (2.11)

Licl k!
where T(1, k) is the position of 1-th atom in the k-th unit cell; E, is the equilibrium energy and U is
the displacement of any of the system. The elements of the interatomic force constants @, matrix
are expressed as:

0%E
01, (L k)org (I, k") 2.12)

d)a,ﬁ (lr k; l’, k’) =

where the Cartesian indices are denoted by a and . In the finite displacement method, equation

(2.12) could be further expressed as:

Fa(U,k'; Ary(1k)) — Fp(l', k")
Aty (L k)

bap(Licl k') = 2.13)

where Fp(l,k) is the force in the direction of B on the atom (Lk), and the finite displacement is
represented as Ar,. With equation (2.13) the interatomic constants ¢, and the dynamical matrix
can be calculated. Thus, for a given wave vector q and mode i, the phonon frequency wg; can be

obtained by diagonalizing the dynamical matrix.

The phonon dispersion curves ref.[32] of a unit cell of graphene computed using the direct

approach, from first principles at the level of GGA-PBE, is shown in Figure 2.7, which is displayed
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along with a theoretical ref.[33] and experimental ref.[34] curve. The two atoms in the unit cell of
graphene correspond to six allowed modes. The ZA (acoustic) and ZO (optical) are the out-of-
plane vibrations while the in-plane vibrations correspond to transverse acoustic (TA), transverse

optical (TO), longitudinal acoustic (LA), and longitudinal optical (LO).
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Figure 2.7 The calculated phonon curve of pure graphene (solid lines) ref.[32], (theoretical)
(dashed lines) ref.[33] and (red squares) (experimental curve) ref.[34]. Reproduced with the
permission from Mann [32].

The main feature of Figure 2.7 is the existence ZA mode also known as flexural mode [35] which
is the least frequency and the easiest to excite. The mode, which is only derivable from 2D systems,
originated from the surface interactions and it is quadratic in the vicinity of I" point. This quadratic
nature of ZA mode around the I" point in Figure 2.7 is in contrast with the linear dispersion obtained
using the atomic potentials containing three parameters [36]. Interestingly, the experimental curves

(red) tend to be in agreement with the quadratic behavior at the I point.
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One of the consequences of the graphene phonon dispersion relation is the high value of the in-
plane sound velocity, cpn = 20 km/s [36] leading to high thermal conductivities. The thermal

conductivity k, from the kinetic theory of gases, is given by equation (2.14):

K ~ cppCy(T)A (2.14)
where Cy(T) denotes the specific heat per unit volume, and the phonon free mean path is
represented by A. cpn of graphene is very high, consequently, a high thermal conductivity is
expected. This is indeed the case, as obtained in experiments at almost room temperature gives
~ 3080-5150 W/mK and a phonon free mean path of A=775 nm for a given set of graphene flakes
[37], [38]. In recent experimental reports, smaller values between 600 and 3000 W/mK [39]-[41]
of free-standing graphene have been reported. However, these values are among the highest ever
measured from any material till date. Thus, the results of the thermal conductivities of graphene
indicate that the material is a potential candidate for applications in nano or even microelectronic
devices. Since a high thermal conductivity enhances the diffusion of heat away easily from the

devices.
2.3.5 The optical properties of graphene

The research on graphene has shown that the material exhibits unique optical properties
[42] which can be ascribed to the linear dispersion of the band structure, zero band-gap and the
strong interactions of the Dirac Fermions with light [43], and high speed operation [44] along with
gate variable conductivity [45]. These properties are very useful for addressing the future needs of
the electro-optic modulators. The growing interest of graphene in photonics and optoelectronics
could also be attributed to the potential application of the material in solar cells, light-emitting

devices, touch panel, photo-detectors, ultrafast lasers, etc.
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Due to the optical transparency, graphene has emerged as a potential transparent coating
material. The absorption in graphene covers a wide spectra range which is contributed by intraband
and interband transitions. From the visible to near infrared region, the absorption is modeled by
interband transitions which is frequency independent and described by the fine structure constant
[43], [46]. In the far infrared region, the optical response arises from the intraband transitions or
free carrier absorption [47]. Due to the momentum mismatch, direct optical absorption is not
possible via intraband transition. In order for momentum to be conserved, photon scattering
eventuates and accompanied by population inversion of the free carriers in the vicinity of the K-
point. For light polarization that is parallel or perpendicular to the plane of the sheet, the optical
absorption of graphene is anisotropic. In graphene, the conductivity due to free carriers’ absorption
portrays Drude like frequency dependence [48]. As compared to graphite, it has been reported
experimentally that the optical energy loss spectrum of graphene exhibit a redshift, n+c electron
plasmon and disappearance of bulk plasmon [49], [50]. This optical characteristic can be used to
differentiate graphene from graphite. For example, Eberlein et al. [51] revealed that & and n+c
surface plasmon modes in free suspended graphene occur at 4.7 and 14.6 eV respectively, whereas
in bulk graphite, the modes are found at 7 and 25 eV. The observed redshift is noted to decrease

as the number of layers of the system reduces.

The origins of the different peaks in the optical spectrum of graphene or the heteroatom
doped graphene could be explained by taking into consideration many-body effects such as
electron-electron (e—e) and electron-hole interactions. Bethe-Salpeter equations [52] coupled with
Green’s function (GW) [53] could easily be used to address these many-body effects. Taking into
account the computational cost of this method, the self-energy correction and excitonic effects

almost cancel out as demonstrated in the calculations of the absorption spectra graphene layers
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using GW-RPA and GW-BSE [54]-[56]. Likewise, GW calculations sometimes give optical
modes of two-dimensional materials that cannot be measured within the context of an experiment
[55], [57]. Hence, it is assumed that the optical properties of graphene and the modified form could
be studied within the context of the independent particles approximation of the complex dielectric

function[56].

Generally, the optical properties of a system could be calculated with the frequency dependent
complex dielectric function &(®) (see equation(2.15)); where &> denotes the imaginary component
which can be computed using first-order time-dependent perturbation theory in the framework of
simple dipole approximation. The Local Field Effects (LFE), which is the changes in the periodic

part of the potential, can be included within random phase approximation (RPA).

e(w) = g (w) +ig(w) (2.15)

In the limit of long wavelength, &> could be expressed as:

2627-[ Cla7 . »# vy\|2 C v
To O NWEH PR SE ~E ) (16)

cvk

gZ(q - 01 O)) =

where ‘c’ and ‘v’ denote the band indices which correspond to the conduction and the valence
bands; V, €, and o (in eV) are the volume of the unit cell, free space permittivity and a certain
frequency of the incident electromagnetic wave (EM) respectively; U and T represent the
polarization vector of the incident EM field and the position vector. The eigenfunctions of the
valence (v) and conduction (c) band of the systems at a k-point are represented by ), and Y,
respectively while the Eg and E} correspond to the eigenvalues. The €; (see equation (2.17)), which
is the real part of the frequency dependent dielectric function, can be calculated from €, using the

Kramers-Kronig transformation:
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Cdw'e;(w)w'

2
&1(w) =Rele(q - 0,w)] =1+ ;Pf (2.17)

where P represents the Cauchy principal value. The technique is reported in Ref.[58]. It is worth
mentioning that £; and &, could have two independent components which correspond to the two
polarizations of the electric field vectors with respect to the plane of the given systems. The two
polarizations could be termed parallel (i.e. the polarized vector is along the plane of the system)
and perpendicular (i.e., the polarized field vector is out of the plane of the system) polarization.
The Drude term is associated with the intraband transitions which are prevalent at low photon
energies. It is worth stating that equation (2.16) has no Drude component. As a result, only

interband transitions above 1.0 eV can be analyzed effectively with the expression.
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Figure 2.8 (a). Theoretical and experimental perpendicular dielectric functions (€3 ). The solid
line (Ref.[59]) is from theoretical data, while the dotted (Ref.[60]) and the dashed (Ref.[61])

lines are from experiments. (b) The theoretical and experimental parallel dielectric functions (eg

of graphite. The solid line is the theoretical eg, the dotted and the dashed lines are the
experimental values obtained from optical measurement (Ref.[62]) and the electron energy loss
spectra (Ref.[61]) respectively. Reproduced with the permission from Daniel [61]
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The anisotropic dielectric spectra of graphite are depicted in Figure 2.8 (a) and (b). The two figures
compared theoretical and experimental curves of the imaginary part of both the parallel and
perpendicular dielectric function. In Figure 2.8 (a) and (b), the experimental data were obtained
from [61]. The features of the spectra could be properly analyzed in terms of the major peaks. The
theoretical spectrum in Figure 2.8 (a) has two major peaks at ~4 , ~15 eV and a minimum in the
vicinity of ~9 eV. The positions of these peaks are in accordance with the corresponding
experimentally observed peaks in Figure 2.8 (a). The agreement between the theory and the
experiment demonstrates the reliability of the theoretical approach employed for the calculations.
As regard to Figure 2.8 (b), the calculated spectrum has two dominant peaks at ~4 eV and a larger
peak with two spikes at ~11-14 eV. It is worth pointing out there are inconsistencies between the
theory and the experiments. However, the theory agreed with the experiment within the photon
energy interval of 11-14 eV. The experimental data were obtained from the electron-energy-loss
spectra (the dashed line) and the optical measurement (the dotted line). It can be seen that the two
measurements are not consistent. The inconsistency between the two measurements could be
associated with an imperfection in the graphene samples that were used in the experiments. This
imperfection might have occurred as a result of a substrate effect. Thus, the discrepancy between
the theoretical and the experimental results could be associated with the imperfection in the

graphene sample used in the experiments.

The origin of the observed peaks of the dielectric functions of graphite could be explained
on the account of the interband transitions in monolayer graphite or graphene. This is because the
atomic layers in graphite interact weakly. As a result, explaining the optical transition in terms of
that of graphene is a good approximation. Monolayer graphene has reflection symmetry on the

plane and consequently the following restrictions apply to the matrix elements associated with the
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momentum operators: with respect to the momentum on the plane p,, T = 7" or ¢ = ¢* are the
only allowed transitions; while for p,, the allowed transitions are w = ¢* or 0 — ©*. These
conditions help to identify the different peaks of the dielectric function of graphite. Thus, in Figure
2.8 (a) the observed peak within 0-5 eV is due to m — ©”* interband transitions, while the feature
at ~14 eV can be attributed to ¢ — o~ transitions. In the case of Figure 2.8 (b), the peak around 4

eV arises from m — " whereas the m — ¢* transitions give rise to the observed feature at 14 eV.

With equations (2.16) and (2.17), other optical parameters of materials such as refractive index
ti(w), reflectivity R(w), absorptivity a(w) and electron energy loss function L(w) can be

computed:

n(w) =

1
2 2 2
<w/£1 +;2 + £1> 2.18)

1

k(w) = (V &+ - €1>2 (2.19)

2

where n(w) and k(w) are the real and imaginary part of the complex refractive index, respectively.
The indices are related as ti = n(w) + ik(w). The reflectivity R(w) spectrum of a system can be

computed using equations (2.18) and (2.19) such that,

(n—1)%+ k?
R(w) = m (2.20).

The absorptivity a(m) of the system can be calculated using equation (2.19) to give:

2kw

a(a)) = 7 (2.21).
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In equation (2.21), “c” denotes the speed of light in vacuum, while the rest of the parameters

maintain the same descriptions as stated previously.

&
Lw) =————

@ =10 2.22)
The electron energy loss function L(w) is a measure of the collective excitation of a given system

and it could be expressed using equation (2.22).

24 Band-gap modification in graphene

Graphene is a semimetal with high carrier mobility, excellent optical transparency, and
high mechanical strength. As a result of the excellent properties, graphene has been touted as a
potential material for both nanoelectronic and optoelectronic applications. However, due to the
absence of a band-gap in graphene, the material cannot be employed directly as a platform for a
device application. Interestingly, techniques such as super-structural fabrications, chemical
doping, application of the electric field and graphene deposition on epitaxial substrates have been
identified to create a sizeable band-gap in graphene. These different band-gap inductive techniques

are discussed in detail in the following paragraphs.

The superstructure fabrication such as graphene quantum-dots [63], [64], nanoribbons [65],
[66] or nanomeshes [67] induces a band-gap in the material through quantum confinement.
However, fabricating such structures dimensionwise still poses an enormous challenge. That is
designing superstructures with uniform width and edges less than 10 nm is still difficult to achieve
with a top-down method like etching and lithography [68]. Homogenous structures could be
obtained easily with a bottom-up approach [69], yet peeling off patterned ribbons remains a

contending procedure.
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Another approach that can be used to induce a band-gap in graphene is by depositing it on
epitaxial substrates such as SiC [70], Al2O3 [71], etc. Notwithstanding the contentious issue of
controlling the morphology and the surface energies of the material, the energy gap induced by
this technique is not tuneable [72]. However, to achieve a tuneable band-gap, the application of an
electric field could be a viable option. Through the breaking of the material inversion symmetry,
an applied perpendicular electric field to the plane of AB-stacked bilayer graphene can create a
band-gap tuneable up to 0.25 eV in the system. With this technique, the carrier mobility of the
system is not noticeably affected. In spite of the robustness of the technique for AB-stacked bilayer
graphene, the application of an electric field does not directly lead to a band-gap opening in
monolayer graphene [72]. This is because the application of an electric field does not affect the

inherent symmetry of graphene sublattices.

Furthermore, unlike the electric field approach which is more effective with respect to
multiple layers of graphene, heteroatoms doping is the most feasible technique of inducing
semiconducting character in monolayer graphene [73]. B and N atoms are considered as the ideal
dopants for substitutional doping in graphene due to their atomic sizes which are almost equal to
that of carbon (C). Interestingly, the doping of graphene with N atom leads to n-type
semiconductor (due to the electron rich character of the dopant compared to C) while doping with
B atoms results to a doped system with p-type character. As compared to either N-N or B-B, due
to the comparable bond length of B-N to C-C, B-N is the natural replacement for C-C of graphene.
It is worth mentioning that this method of substitution doping came into the limelight shortly after
the isolation of monolayer graphene in 2004, and thereafter the method has widely been reported

in the literature [74]-[76].
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2.5 The review of first-principles studies on graphene

Graphene has attracted a lot of attention due to its fascinating properties. Nevertheless,
some of the properties need to be tailored to meet the specifications of certain applications.
Substituting heteroatoms for some carbon atoms of graphene would cause structural and the
electronic changes leading to alteration of the thermal, charge transport, band-gap, Fermi level,
optical and magnetic properties of the system. Depending on the chemical nature of the dopants
and the configuration, a new or an improved property might arise and could be of benefit for certain
applications. A good understanding of how the properties of graphene can be tuned is important
for researchers in order to further extend the range of applications. Consequently, recently reports

aimed at tailoring the properties of these systems via doping are hereby reviewed:

Boron (B), a group III element and the nearest neighbor to carbon, is suitable for doping
of graphene. The in-plane substitution of B in graphene is the most stable with respect to the out-
of-plane conformation [73]. B substitution in graphene leads to sp? hybridization, while charge
polarization exists between neighboring C and B atoms. The structural parameters are slightly
changed since C—C (1.42 A) is less than B—C (1.50 A) bond length in graphene [73], [77], [78]. In
spite of the long bond length compared to C-C, the strong B—C bond ensures that B-doped
graphene has excellent mechanical properties [79]. Meanwhile, B-doping reduces the thermal
conductivity of graphene. In fact, 0.75% of B in graphene can lead to a 60% reduction of the
thermal conductivity [79]. B is electron-deficient compared to C, as such it induces p-type
conductivity in graphene accompanied by a downshift of the Fermi level away from the Dirac
point. Scanning tunneling microscopy (STM) and simulations have shown that B-doping leads to
density of states above the Fermi level due to the hole—doping effect [77], [80]. A band-gap of

0.14 eV can be induced in graphene by a B atom replacing a C atom of graphene with 50 atoms
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[73], [81]. The symmetry breaking in graphene is considered to be the cause of the band-gap
opening. The size of the band-gap depends on the amount of the impurity and the number of layers
of graphene [73], [82]. A theoretical study has shown that the remarkable transport properties of

graphene are retained even at a high B-doping concentration [83].

N, a group IV element, is close to C in the periodic table. As compared to C, N is electron-
rich and this makes N-doped graphene quite different from B-doped graphene. There is three main
N bonding configuration that exists, i.e., quaternary, pyrrolic and pyridinic. C-N (1.41 A) and C—
C bond (1.42 A) have almost an equal bond length, as a result, pyridinic and graphitic N exert a
negligible effect of the structural parameters of graphene. However, sp® hybridized pyrrolic N
changes the structural parameters of graphene [84][30]. Graphitic and pyridinic N bonding
conformations are the most stable with respect to Stone-Wale and vacancy defects, while pyridinic
dominate in the presence of monovacancy [85], [86]. N is more electronegative than C, as a result,
forms polarization in graphene, thus changing the electronic, magnetic and optical properties of
graphene [87]. Doping graphene with N transforms it from semimetal to semiconductor [88], [89]
depending on the doping configurations. For graphitic N, the three of the five valence electrons
form o-bonds with the adjacent carbon atoms, one is involved in a -bond formation, and the last
electron is partially involved in m*state of the conduction band. Liu et al. showed graphitic N to
be n-type with the carrier mobility of 200-450 cm? [89]. The report of Usachov et al. shows that
with 0.4 % doping of graphitic N a bandgap opening of ~0.3 eV and charge-carrier concentration
of ~8 x 10'? cm™? are induced in the system [90]. However, Sodi et al. theoretically demonstrate
that edge-functional groups exert a negligible effect on the band structure of graphene [91].
Ouerghi et al., as shown that only 0.6% graphitic N-doping results in large carrier concentrations

of 2.6 x 10'* cm™2 (4 times higher than that of pristine graphene), whereas pyridinic and pyrrolic
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N exert little effect [92]. N doping can also be used to tailor the optical properties of graphene.
Chiou et al. reported the effect of N-doping on the photoluminescence characteristic of graphene
nanoflakes [93]. When excited, the electron of N-doped graphene would transfer energy to the m*
state of the nano-cluster. Thus, a large amount of energy would be released when electrons drop

from the ™ state back to the  state, leading to high spectrum intensity.

Group VI elements are called the oxygen family, of which, oxygen is the most
electronegative. Substitutional doping of graphene with O is rare because of the large size of the
atom and its strong electronegativity. S has a similar doping configuration as O [94]. The bond
length (1.78 A) is about 25% greater than that the C—C bond length [95]. As a result, a carbon
nanostructure with a given curvature favors S substitution that flat graphene. A theoretical report
has shown that S-doping of graphene occurs mainly in two stages: the formation of defect sites
and the rupture of S=S bond. Depending on the amount of the impurity, the S-doped graphene can

form a small-band-gap semiconductor or metallic material [96].

Group VII is known as the halogens and has higher reactivity than group III-VI elements.
Halogen-doping changes the sp? hybridization of the carbon network of graphene to sp* bonding.
This leads to the distortion of the structure of graphene, and changes in the electronic structures.
One of the most reactive elements is fluorine (F). The F— C bond in graphene is strong and protrude
out of the basal plane [97]. The F atom stretches the C—C bond length to 1.57 A [98]. Ab initio
calculations suggest that due to the high affinity of F to C, a negative chemisorption energy of F
on graphene is obtained even if the whole plane is covered with F atoms to form fluorographene
[99]. Fluorographene has excellent mechanical strength, high thermodynamic stability, and
outstanding chemical inertness [96], [99]. F-doped graphene can be used as a semiconductor with

a tunable band-gap through F coverage [100]. one—sided doped graphene, 25% coverage, is
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optically transparent with a large band-gap of 2.93 eV and excessive six order of increase in the

resistance with respect to graphene [101].

Graphene hydrogenation through sp® hybridization can transform it into a wide-gap
semiconductor [102], [103]. Quite a lot of studies have been performed on the structural, electronic
and magnetic properties of fully and partially hydrogenated graphene [104]-[106]. However, the
practical application is limited due to the slight difference in the electronegativity between C and

H. The C—H bond is not non-polar, and thus non-reactive.

The doping of graphene with metallic atoms has rarely been done experimentally. This might be
because the binding energy between the metallic impurity and graphene is lower than the cohesive
energy. As such, they tend to aggregate into clusters instead of doping graphene uniformly on the
surface [107]. This could explain the rarity of experimentally synthesized Be-doped graphene.
Although, Ullah et al.[68]reported the structural and electronic properties of Be-doped graphene
via first principles, experimental reports of such system is scarce. Meanwhile, metal atoms with
large molecular radii can form a large local curvature suitable for chemisorption of small molecules
(e.g. H20, Oz, NO) from the atmosphere, thereby limiting the application of such doped graphene

[108], [109].

Doping graphene with heteroatoms modify the physical properties. These properties
depend on the impurity concentration, doping sites and the chemical nature of the foreign atoms.
Thus, substituting multiple species of foreign atoms in graphene, the technique that is termed co-
doping, provides countless possibilities of introducing different chemical species in graphene
thereby leading to emergence of new properties or formation of synergistic effects. B and N have
almost equal atomic size and cause opposite doping effects on graphene when used as co-dopants.

B-N co-doped graphene has a boron nitride domain as a result of the phase separation between C
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and BN [110]-[114]. The existence of the domain can be ascribed to the higher binding energy of
B-N and C-C than N-C and B-C bonds. The strong charge Polarization between B and N [112],
[115] leads to active surface chemistry. The thermal stability of B-N co-doped graphene is less

than N-doped graphene but greater than B-doped graphene [116].

As earlier stated, Be-doped graphene might not be stable at room temperature, while S-
doped graphene can either exist as a metal or semiconductor (with a narrow band-gap) depending
on the impurity concentration. A study designed to extend the properties of Be-doped and S-doped
graphene by co-doping is worth investigating. For example, a report on the structural, electronic

and optical properties of BeN and BeS co-doped graphene is scarce.
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Chapter 3

Theoretical background

The results in this thesis are obtained based on the first-principles calculations. This implies
there were no empirical data (but the atomic numbers and the positions) employed in the

calculation of the electronic structures of the listed systems in this study.

A brief overview of the theoretical approaches and the approximations employed in the
modelling of the geometries and the electronic structures of the systems investigated in this study
are discussed. The implementation of the theory for the case study presented in the later chapter is
also discussed and relevant references are provided for in-depth understanding. For readers who
might be interested in learning more about this chapter, the list of the textbooks used in learning

this material is hereby provided:

a) Levine, Ira N. (199). Quantum Chemistry (4 ed.). Englewood Cliffs, New Jersey: Prentice Hall.

pp. 455-544. ISBN 0-205-12770-3.

b) Cramer, Christopher J. (2002). Essentials of Computational Chemistry. Chichester: John Wiley

& Sons, Ltd. pp. 153—189. ISBN 0-471-48552-7.

¢) Szabo, A., Ostlund, N. S. (1996). Modern Quantum Chemistry. Mineola, New York: Dover

Publishing. ISBN 0-486-69186-1.

d) Patterson, J., Bailey, B. (2010). Solid-State Physics (2™ ed.). Berlin, Heidelberg: Springer

Berlin Heidelberg. ISBN 978-3-642-02588-4.
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3.1 The electronic structure calculations

The properties of a material can be described, in principle, by first constructing the
Hamiltonian of the system and then solving the Schrédinger equation. The time-independent

Schrédinger equation is given as:

HyY; = Eq; . (3.23)
where H, ; and E; are the Hamiltonian, eigenfunction and energy, respectively, of the system in
a ith state. In principle, the y; could be expressed as:

Wi = (g, . Ty, 0, oo, Oy P Ry, e, Ry 84 00, 8) - (3.24)

where T and 6 represent the spatial and spin coordinates of the electrons, respectively. R and &

are, in that order, the spatial and spin coordinates of the nuclei.

The Hamiltonian of the system with N and M number of electrons and ions, respectively, could be

expressed as:

M o2 N 2
h ) 2 % 1 e
2m zvi —h ZZM +524ne If — F|
¢i=1 =1 ! i#j otft 1)
N M
ZZ Z ZIZ]e2
41te |l‘ _Rll 2 4ﬂ€0|ﬁl—ﬁ]| .

i=11=1 %)

(3.25)

where M is the mass of the Ith nuclei, m. and e are the mass and the charge of the electron
respectively. Z; is the atomic number on the nucleus at the position ﬁl. The first and the second
term in equation (3.25) denote kinetic energy operators (Telec) and (Tion) of the electrons and the

ions respectively. The third term is the coulomb interaction between the electrons (also called the
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internal potential) (Vyjec_ele ) While the fourth term, which is the electron-ion interaction, is the

external potential (Vio;_elec). The last energy term (Vg

) is the coulomb interaction between

the ions. The equation (3.25) can be written in a simple form using atomic units (i.e. the Gaussian

units with A =e=m¢ =

follows:

1% term

2" term

3" term

4t term

5" term

With the above simplification, equation (3.25) can be written as:

elec elec =
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M
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(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

1). That is, each energy term in equation (3.25) can now be expressed as
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ﬁ = Telec + Tion + Vion—elec + Velec—elec + Vion—ion . (3.31)

It is worth mentioning that in the above problem, the electrons have been separated into the valence
and the core electrons. The core electrons are found in the occupied orbitals and are closer to the
nuclei. They can be grouped with the nuclei to form the ion core. Hence, in equation (3.25), ‘I’
and ‘J’ represent the core ions while ‘i’ and ‘j” denote the valence electrons. Since most of the
physical systems of interest are made up of a large number of atoms, solving equation (3.23) would
be difficult due to the multi-degree of freedom of the system and the presence of electron-electron
interaction. However, to solve the equation, a number of accepted approximations could be
applied to simplify the problem. One of the approximations that could be applied to simplify the

equation is known as the Born-Oppenheimer approximation.
3.1.1 Adiabatic or Born-Oppenheimer approximation [1]

This approximation decouples the nuclei motion from that of the electrons. The ions are
considerably heavier than the electrons and as a result move negligibly slower, thus, the ions could
be assumed to be stationary while the electrons move in the field. This makes the nuclei kinetic
energy term of equation (3.25) to be negligible and their potential energy a constant. However, the
ion-ion interaction term is retained because the positions of the nuclei could be varied to minimize
the energy of the system. Following this approximation, the Hamiltonian of the system reduces to:

R R R R (3.32)
I'Ielec = lelec + Vion—elec + Velec—elec .

where e is the electronic Hamiltonian of the system. Thus, for the electron wave function,

equation (3.23) becomes:
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I,:[eleclpelec(izll FZ' ) = Eeleclpelec(izl' FZ:- ) . (3.33)

It is worth noting that the yelec depends parametrically on the nuclear coordinates as a consequence
of Born-Oppenheimer approximation. Although the spin coordinates have not been indicated
explicitly, rj is assumed to account for both the position and the spin coordinates of the electrons.
The total energy Eio for fixed nuclei could be written as the summation of the electronic energy

Eciec and the nuclei Enyeii, 1.€

Etot = Eelec + Enuaii - 3.34)

If one considers the motion of the nuclei in an average field of the electrons, then E¢ of equation
(3.34) provides the potential energy for the nuclear motion. Thus, Eq constitutes a potential energy

surface, and the nuclei in the Born-Oppenheimer approximation move on this surface.

Despite the fact that the number of the degree of freedom in the electronic wave function
in equation (3.33) is lower than that of the equation (3.23), it is still difficult to solve. An
approximation that could be employed to solve equation (3.33) is the Hartree approximation.
Before discussing the Hartree approximation, it is necessary to first discuss the variation principle
which is fundamental to the Hartree approximation, and other concepts (such as the Hartree-Fock

approximation and the density functional theory) that will be discussed in this chapter.
3.1.2 The variational principle

The variational principle, also known as the Rayleigh-Ritz variational principle, expresses
how to construct energies with the values equal or greater than the ground-state energy of a many-
body system. The principle is an important tool for the derivation of both the Hartree and Hartree-
Fock equations. It can also be used with the density functional method to arrive at the Kohn-Sham

equations.
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Let H be a positive definite Hermitian operator which has a lowest eigenvalue E,. Suppose |W) is
a trial wave function (not necessarily normalized) with an adjustable parameter 1, then the basic

variational principle is given by equation (3.35) :

QW) = (wlHY)
T (plw) T 3.35)
aQ
on ° (3.36)

If the trial wave function |W) is not the exact wave function, by applying the minimization

technique (equation (3.36)), Q(¥) can get as close as possible to E,.

3.1.3 The Hartree approximation

The Hartree approximation was formulated in 1928 [2]. With this approximation, the

many-body wave function y is written as the product of one-electron wave functions:

q’(Fl’FZJ ey FN) = ll’l(i')l)lpz(Fz) l|’N(FN) (3.37)

where the wave function ;(¥;), which are uncorrelated but orthogonal, satisfies the one-electron
Schrodinger equation. The position and the spin coordinates are also considered to be part of r;.
As a result of the Hartree approximation, the Hamiltonian H of the many-body problem is given

as:

==
=

I
=
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~ 1 . . . . S . . .
where T, = —EVZ is the single-electron kinetic energy term; V;,, is the coulomb interaction

between the electron and the ion; Vy; is the Hartree potential and it is expressed as:

L dr]-’ N
Vi (1) —Z f Wn(ri)' (3.39)

i#j
The probability density of the jth particle n(F]-’ ) in equation (3.39) is defined as:
=/ _ =27 2
n(i) = [w(i)|". (3.40)

Electrons are fermions and as a result must have antisymmetric wave functions with respect to the
interchange of any two electrons [3]. However, the Hartree wave function does not take into
account that electrons are fermions. The deficiency in the Hartree wave function can be resolved
by writing a new wave function as a linear combination of the Hartree products to form a Slater
determinant (after John Slater [4]). The new wave function is the basis of the Hartree-Fock

approximation.

3.1.4 The Hartree-Fock (HF) approximation

The Hartree-Fock (HF) [5] approximation was formulated to correct the failure of the
Hartree approximation. The difference in the two approaches is in the trial wave function that is
used. With Slater determinant, Hartree-Fock wave functions could be expressed as:
¢1(F)  b2(F) . n(TD)
¢1(f2) ¢2(f2) ... Pn(F)

lIJ(Fl, Fz, Y FN) =

1
\/ﬁ . . . . (3.41)

Gi(B) day) . du(Ev)

49



The factor in front of equation (3.41) is the normalization constant, while cl)k(f"]-) = ¢y (F)oy are
one particle spin-orbitals and “F;” is a vector which defines the position of the electron, and oy, is

the spin state (down or up). For simplicity, equation (3.41) can be written as equation (3.42):

1
Yy, By, ... Ty) = WDEt[q’l(Fl)’q’z(Fz)’ . MGYIE (3.42)

where Det denotes a matrix determinant. The determinant can be shown to satisfy the Pauli
Exclusion Principle and the required antisymmetry condition. Minimizing the variation functional
with respect to the trial wave function of equation (3.42), a new equation, which is the Hartree
equation plus an additional term (known as the exchange term) is obtained. The new equation is

called the Hartree-Fock equation, and it is expressed as:

1l|11 - [ + VH + Vlon]'~|J

(3.43)

f &} () = U ()

The exchange term describes the interaction between the electrons of the same spin. It is
nonlocal, which as a result, makes Hartree-Fock equation difficult to solve. The Hartree-Fock
approximation has been found to give less satisfactory results in some cases. For instance, its
description of the properties of homogeneous gas is limited. This inaccuracy is as a result of not
taking into account the coulomb repulsion between electrons of the same spin. The HF energy is
always greater than the ground state energy. The difference between the exact and HF energy is
known as the correlation energy. To overcome this limitation, numerous methods have been

formulated. One of these methods is referred to as density functional theory [6], [7].
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3.1.5 Density functional theory

Thomas in 1927 [8] and Fermi in 1928 [9] were the first to develop a theory of the
electronic energy in terms of electron density distribution, n(r). Later, Kohn and Hohenberg in
1964 [7][6] gave a rigorous formula of density-functional theory (DFT) which was made practical
after one year by Kohn Sham [10]. The central quantity in DFT is the electron density n(#). With
the electron density formulation, the many-body problem appears simpler to solve than the wave
function approach. Because, rather than contending with the 3N spatial coordinates, as it is the
case in many-body wave function, only three spatial coordinates are specified in electron density

approach [11].
3.1.6 Hohenberg-Kohn theorem

The two Hohenberg and Kohn theorems, which formed the basis of DFT, are stated as follows:

1) The first theorem states that the density of the nondegenerate ground state of a system of
bound interacting electrons in an external potential is determined up to an arbitrary additive
constant [12].

To prove the theorem, the following assumptions will form the premise of the proof:

Suppose n(7) is the non-degenerate ground-state density of N interacting electrons in an external

potential v which corresponds to the ground state ¥ and the energy E(. Let there exist a

ext

second external potential v which differs from the v>

oxt> .+ beyond a constant, with the same

ground state density n(7) but gives rise to the ground state @ 1f H® and H® are the
Hamiltonians which correspond to YWand ¢@ | then following variational principle,

ED — (qj(l)lﬁ(l)llp(l)> < (qJ(Z)lﬁ(l)qu(Z)). (3.44)
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It is worth noting that equation (3.44) holds because a nondegenerate ground state has been
assumed.

The last term in equation (3.44) could be rewritten as:

(WO HD|Y?@) = (YO |FP|g@) 4 (W@ |FD — GO |p@)

(3.45)
= E@ + [ di{v 0@ - vE® |n@ . (3.46)
Combining equations (3.44 and 3.46), gets
E® <E® + [ di[vi® - vA®|n®. (3.47)
Similarly,
E@) — (q,(z)|ﬁ(z)|q,(2)) < (lp(1)|ﬁ(2)|q1(1)), (3.48)
Following the steps in equations (3.45 and 3.46), equation (3.48) could be written as:
E? <ED + [ di[v@® - vA®|n®. (3.49)

A contradicting result is obtained if equation (3.47) and equation (3.49) are added together, i.e.

® 2 2 ®
EVW +EY <EYW +EVY. (3.50)

The result of the equation (3.50) shows that no two external potentials differing by more than a
constant have the same non-degenerate ground state electron density. For further detail about this
proof see Ref.[13]. It is noteworthy to mention that the external potential is not determined in the
region of space where density is zero.

2) The second theorem states that a universal functional could be defined to determine the

energy that is equivalent to a particular charge density and the external potential. Moreover,
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the ground state energy of the system is the minimum of this functional, and the density
that minimises the functional is the ground state density [6].
The two theorems narrow the task of finding all the physical properties relating to the ground state
of a system to just determining the electron density that minimises the energy functional [11].
Following Hohenberg-Kohn theorem, the energy functional could be written as the summation of
the kinetic and potential energy arising from the interaction of the electrons with themselves and

the external potential, i.e:
EHK [n] = Telec [n] + Eint[n] + Eext[n] = FHK[n] + f n(F) Vextd(F) . (351)

where Fy, which is independent of a given system and known as the Hohenberg-Kohn functional

for the kinetic energy and the electron-election energy interaction, is expressed as:
FHK[n] = Telec [n] + Eint[n] . (3‘52)

Applying the minimization principle in line with the constraint search method by Levy and Lieb

[14], [15], equation (3.51) becomes:

E, < Epk[n] = Fuk[n] + [ n(®) Ve d(®) . (3.53)

FHK[n] = Iql}_i)g(lplTelec + Ve—ellp) . (354)

where E,, represents the ground-state energy of electrons in an external potential v, (7). Equation
(3.53) reveals that the electron density that minimises the Hohenberg-Kohn functional is the exact
ground state density. Equation (3.54) is a Levy-Lieb functional and shows that the prior knowledge
of v, 1s not required. It is a universal functional of the electron density which must not necessarily

be v-representable.

53



3.1.7 Kohn-Sham scheme

The Kohn-Sham scheme involves replacing the interacting many-body system with a
different auxiliary system that could be solved more easily. In the scheme, it is assumed that the
ground state density of the interacting system is equal to that of some predetermined non-

interacting system fermions.

For a system of N independent electrons with each occupying an orbital 1;, which corresponds to
eigenvalue €;, the Hamiltonian for one electron system could be written as :

1 ~ >
_EVZ + Vere[n] (F) | Wy = Priceye - (3.55)

The equation (3.55) is used to generate the electron density of the auxiliary Kohn-Sham system,

1e.:

N
n(®) = ) [ ®F. (3.56)
k=1

The Hohenberg-Kohn equation for the ground state energy functional can now be re-expressed in

terms of the Kohn-Sham scheme as:

Exs [n] = Ty[n] + Exc[n] + f 31 Voun(®) + Ey .
Q

(3.57)
where the independent particle kinetic energy T;[n] is expressed as:
N
1 2
T, = _Ez<'~|’k|v W) - (3.58)
k=1
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The kinetic energy T,[n] is further extended by Kohn and Sham through a universal functional

Fxs[n] which also includes the internal and the exchange-correlation energy, Exc[n]:

Fgs[n] = T[n] + f d’rd’r’ |(r)— STI) + Exc[n]. (3.59)

The second term in equation (3.59) is the Hartree energy term. By equating Fis[n] to Hohenberg-

Kohn universal functional Fyg[n] expressed in equation (3.52), we have

,n(@n(r")
Telec[ ] + lE‘:lnt = f d*rd’r |F _ Fll + Exc [I‘l] . (3.60)

Equation (3.60) can be rewritten in the following form:

Exc[n] = T[n] — Ts[n] + Ej¢[n f d3rd3r 'n(r)n(r’) (3.61)

—),l

Exc[n] = T[n] — Tg[n] + Ejp¢[n] — Ejartree D] - (3.62)

Equation (3.62) shows that Exc is the sum of the difference between the kinetic and the internal
energies of the fully interacting body system and that of the auxiliary independent-particle system
such that an electron-electron interaction is replaced by the Hartree energy term. If Exc is known,
then the electron density of the many-body system could be determined by solving the Kohn-Sham

equations for the independent particles of the auxiliary system.
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3.1.8 Kohn-Sham variational equations

The solution of the Kohn-Sham independent particles system for the ground state could be
seen as the minimization of equation (3.57) with respect to the electron density subject to the

orthonormalization conditions, 1.e.:

8EKS — 8Ts 81:':ext 8EHartree 8EXC 811(?) -0
SPi(r) SyYi(¥) Len(®)  &n(r¥)  8n(¥)l 8y (r) ' (3.63)

where

8T,
JHON

T ORI
2V s T W (3.64)

It is important to note that the concept of functional derivatives has been applied to equation (3.63)

and equation (3.65). Given a functional F[n], the functional derivative 6F[n] is expressed as:

8F
S8F[n] = F[n + 8n] — F[n] = ]—S(f')dF.

dn(¥) (3.65)

Subsequently, the form of equation (3.65) should be assumed wherever functional derivatives have

appeared in other expressions in this thesis.

Substituting equation (3.65) into equation (3.63), Kohn-Sham Hamiltonian Hkg is obtained:

- 1 -
HKS(r) = —EVZ + Vs(l') . (3.66)
where
_ > 8EHartree 8EXC
Vs = Ve (O + =0+ 50 (D) (3.67)
Or
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Verr = Vext(F) + VHartree T Vxc (3.68)

The equations (3.55) and equation (3.68) are known as Kohn-Sham equations with the total energy
Eks given by equation (3.57). The equations assume that the independent particle equations and
the potential must be determined self-consistently with the calculated electron density. It is worth
mentioning that the equations would lead to the exact ground state electron density and energy of
an interacting many-body system, if the exact functional Exc is known. The meaning and the
classes of the exchange-correlation energy are discussed in section 3.2. Meanwhile, the Kohn-
Sham theory contains the assumption of noninteracting v-representability which means that there
always exists a noninteracting electrons system with the same ground state density as the

interacting system of electrons. However, it has been proven that this is not always the case [16].

3.2 The exchange-correlation energy

The second term of equation (3.57) is the exchange-correlation energy and accounts for all
the remaining complex electronic contributions to the total energy. It could be expressed as the
sum of the exchange Eyx and correlation energy E: (see equation (3.69)). Electrons are

indistinguishable (fermions) and as a result, obey the Pauli Exclusion Principle.

The Pauli principle implies that no two electrons with the same spin can be found at the same point
in real space. Consequently, the average Coulomb repulsive energy acting on the electron is
reduced. The energy gain in this process is called the exchange energy. However, the additional
interaction terms between electrons of antiparallel spin are called the coulomb correlation energy.

This is not the full correlation energy. The right definition of the correlation energy is given by
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Lowdin [17] as the difference between the exact energy and the Hartree-Fock limit. Although the
accuracy of density functional theory depends on the exchange-correlation energy, unfortunately,
for practical applications, the exact form of this functional is unknown and still remains under the
expanding field of active research. There are many approximations to the exchange-correlation
functionals, namely Local Density Approximation (LDA), Generalized Gradient Approximation
(GGA), Meta-GGA and Hybrid Functional. In the following section, only LDA, GGA and Hybrid

functional are discussed.
3.2.1 Local density approximation (LDA)

The earliest and most fundamental approximation to the exchange-correlation energy
functional in DFT is LDA. With the LDA, the energy of an electronic system is formulated such
that the exchange-correlation energy per electron €y, in a specific region in the electron gas is
equal to the exchange-correlation energy per electron in a homogeneous electron gas with the same
electrons distribution. With respect to this assumption, for a spinless system, the LDA can be

expressed as equation (3.70)

EL2A[n] = [ n(®)exc(n(®)dE. (3.70)

The approximation can be extended to spin polarized system. With the incorporation of spin, the

LDA is called the Local Spin Density Approximation (LSDA), and it is written as:

ERPA [’ '] = [ n(®ex ('), 0'@) dr X

The LSDA could be described as a function of spin up and down densities, but it is often expressed

Tind
in terms of the total electrons density n = n" + n' and the spin polarization § = % . One of the

advantages of LDA (and generally LSDA) is that it is not computationally demanding. The
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approximation is fairly accurate in covalent systems and simple metals in which the electron
density varies relatively slowly. However, the functional has failed to predict accurately the
electronic properties (such as band-gap) of semiconductor materials. For such systems, LDA
underestimates their band-gaps. Other drawbacks of LDA include, but not limited to the
underestimation of the lattice parameter, overestimation of the cohesive energy and modulus of

solids.
3.2.2 The generalized gradient approximation (GGA)

Another approximation to the Kohn-Sham functional is the generalized gradient
approximation (GGA). In the formulation, GGA goes beyond LDA by comprising not only the
electron density at a particular point n(r) but also the gradient Vn(¥) in order to account for the
spatial variation in the true electron density. The physical intuition behind the GGA is that, in
reality, the electron density of a system is not uniform, as a result including information that
embraces the variation in the electron density could lead to a functional with the capacity to
describe a real material. The expression for the GGA, as an exchange-correlation functional, is

shown in equation (3.72):

EfeA[n] = [ n(®)exc(n(®), Vn(®))dr . 3.72)

The equation (3.72) is only valid for a non-spin polarized system. However, for a spin-polarized
system, the equation can be modified as equation (3.73) to include the forms of the spin densities

in the system:

Exc*[n',n'] = [ n(®exc(n",n', Vo', vn' )dr. (3.73)
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There are several known forms of GGA functionals, namely, PBE functional as proposed by
Perdew-Burke-Ernzerhof [18], Becke exchange[19], PBEsol which is an extension of PBE for
Solids [20] and Lee-Yang-Parr (LYP) correlation [19], [21], [22]. Because the GGA functional
has more physical quantities than the LDA, it is often assumed that the GGA would lead to more
accurate results than the LDA. Although this is often the case, there are known exceptions. The
GGA functionals are known to yield more accurate estimate of the total energies [23]-[27] and
atomization energies [22] of a standard set of atoms and molecules. The functionals have also been
reported to exhibit significant advantages over LDA in the prediction of the right ferromagnetism
configurations of BCC iron at the ground state [ 19]. With the LDA, the calculated lattice constants
are usually 2% lower than the corresponding experimental values, whereas the GGA improves
upon these results in most cases but often overestimate with respect to the experimental values[21],
[28]. Despite the successes that have been reported with LDA and GGA, there are some common
pitfalls associated with the use of the two set of functionals in predicting the physical properties
of materials. For example, both the LDA and GGA underestimate the band-gap of semiconductors
and insulators. In addition, they also fail to accurately describe the weak Van der Waals attraction
between layered materials or the adsorption of gases on graphene. This failure might be attributed
to the neglect of the long-range nonlocal correlations in LDA and GGA. One of the pragmatic
approaches to overcome this limitation has been given by the DFT-D2 method of Grimme [29]
which describes Van der Waals interactions through a simple pair-wise force field and it is

optimized for several DFT functionals.
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3.2.3 The hybrid functionals

It is worth mentioning that while the GGA underestimates a Kohn-Sham band-gap, Hartree-
Fock (HF) systematically overestimates it [30]. Due to the inaccuracy of GGA and LDA in
predicting the band-gap of some materials, notably the underestimation of the band-gaps of
semiconductors, hybrid functionals which describe exchange employing a blend of the exact non-
local HF exchange (EXF) (see equation (3.74) ) and a number of exchange and correlation
functionals, have been developed to overcome such limitations:

1 1
EfF = ‘Eizi F I W () b (o) r2) (3.74)

where ry; = |1y — rp|.

Although there are different types of hybrid functionals in use today, the most common ones are
B3LYP (Becke, 3 parameters, Lee-Yang-Par)[31], [32], PBEO (Perdew-Burke-Ernzerhof) [33],
[34], HSE (Heyd-Scuseria-Ernzerhof) [35] and optimally tuned range separated hybrids [36].
B3LYP is formed from the linear combination of EXF, E§GA ESGA| ELPA and ELPA which are the

exchange and the correlation functionals corresponding to GGA and LDA as expressed in equation

(3.75).

E)%SLYP — E)I(‘DA + aO(E)lgF _ E)I(.DA) + aX(E,((;GA _ E)I(‘DA) + E%DA

(3.75)
+ a(ES%A — ELPA)

where a,= 0.2, a,=0.72, and a.= 0.81.

With the PBEO functional, it combines the PBE exchange energy (EXEE) and of EXf ina 3 to 1

ratio with the complete PBE correlation energy (EEEE) as shown in equation (3.76):
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1 3
B3LYP _ _ pHF PBE PBE
EXC —_— ZEX + Z EX + EC . (3‘76)
Hybrid functionals usually give fairly accurate predictions of the band-gaps, reliable total energies
and geometries of molecules and solids. However, due to the slow decay of HF exchange, such
functionals are computationally expensive and thus could be intractable for extended systems [37].
Therefore, short-range functionals, like the screened hybrid functionals HSE03 [35] and HSE06

[38], are proven alternatives to the standard hybrid functionals. This is because the spatial decay

of HF exchange interaction is sped up in HSE03 and HSE06 by substituting the ri Coulomb
12

potential with the screened potential as shown in equation (3.77). The exchange energy term is
divided into the short range (SR) and long range (LR), and the long range component is ignored
but replaced by the PBE LR contribution. The hybrid exchange-correlation energy is thus

expressed as equation (3.78).

1 erfc(wr) N erf(wr)
r T T 3.77)

ERSE = aEl" M (w) + (1 — )Ex"™ () + Ex°"'"F(w) + EFBE 3.78)

where r = ry,; a is the mixing parameter (often considered as a = 0.25) between the short- range
HF exchange energy EQF’SR((») and PBE energy E)IZB E'SR(w); w is the adjustable screening
parameter that controls the short-range of the interaction; EESE denotes the PBE correlation energy.
Setting @ = 0.2 A! leads to the HSE03 functional, while HSE06 is formed with ®=0.3 A"!. Table
3.1 compares the experimental band-gaps of materials with the calculated values as predicted by

the LDA, GGA and HSE hybrid functionals.
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Table 3.1 The calculated and experimental band-gaps of some selected materials

Materials LDA(eV) GGA(eV) HSE(eV) EXP (eV)
Ar® 8.16 8.74 10.34 14.20
c? 4.11 4.21 5.42 5.48
Si® 0.61 0.61 1.17 1.17
Ge 0.00 0.00 0.80°¢ 0.78?
AIN° 4.17 4.18 5.81 6.19
Zn0O°¢ 0.75 0.80 2.49 3.44
MgSe® - 1.70 2.60 3.60¢
MgTe® 2.26 2.34 3.01 3.47¢
MgO°¢ 4.70 4.68 6.67 7.83

“Ref [28], PRef.[23]
°Ref.[39], 9Ref.[40], [41]

*Spin orbit interaction.

From the table, it can be observed that HSE06 functional accurately predicts the electronic band-
gaps of all group IV semiconductors. Apart from the acceptable accuracy in the prediction of the
band-gaps of semiconductors, the HSE has been used to obtain reliable results of the electronic

properties of materials (such as rare earth elements) with highly localized electrons.

33 The electron-ion interaction

In order to solve the Khon-Sham equation, two important issues have to be considered. First,
the electron-ion interaction or the external potential Vex(r) must be treated in a special way since

the full coulomb potential of such interaction decays too slowly to be efficiently represented by
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small number of Fourier components. The second issue is finding the right mathematical
expression for the single particle orbitals. To resolve the first issue, the Vex(r) could be treated
using two common approaches, i.e., either by employing the all-electron [40], [41] or
pseudopotential method. Due to the enormous benefit in terms of computational cost, in this study,
pseudopotentials approach was adopted for the treatment of the external potential. For the second

issue, it can be resolved by employing basis set to represent the single-particle orbitals.

3.3.1 Pseudopotential method

Pseudopotential approach is used to reduce the weight of complexity of the many-body
problem of a large system [42]. Conceptually, with pseudopotential, the core electrons are frozen
out since they are not involved in chemical bonding and other physical characteristics of the
materials [43]. With the core electrons frozen out, the number of the basis set required to describe
the valence-electron wave function reduces thereby saving computational cost. Generally,
pseudopotentials are formulated to generate the true potential of a nucleus outside the sphere of a
given radius (rc), whereas in the sphere, they are made to be smooth as illustrated in Figure 3.1. It
is worth stating that pseudopotentials are not unique, as a result, there is freedom to use the one

that simplifies calculations and the analysis of the calculated electronic structure of interest.
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Figure 3.1 The blue dashed lines show a schematic illustration of all-electron potential V ~ %
with the corresponding valence wave function W,,_z while the red solid lines represent the

pseudopotential Vpseyq0and the corresponding pseudo Wysendo- Reproduced with permission
from Schwerdtfeger [42].

3.3.1.1 Non-uniqueness of pseudopotentials

Starting from the single-particle Kohn-Sham equation, the concept of pseudopotential can

be developed. Kohn-Sham equation could be expressed as equation (3.79):

h¢ =ed. (3.79)

where

h = t,[p] + vks[p]

Znucl

= to[p] — + vulp] + vic[p] (3.80)

The Hamiltonian of equation (3.80) is the sum of the single particle kinetic energy t, and the
Kohn-Sham effective potential operator vig; the second term is the Coulomb potential experienced
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by the electron at “r” in relation to the nuclear site, and Z,,,¢ is the atomic number. To derive the
general expression for pseudopotentials, first, the total number of electrons (Z,,¢) could be

expressed as a sum of the number of core (Z.,.) and the valence electrons (Z), that is:

Zowa = Zeore 2. 3.81)

Next, the single-particle wave function ¢ could be expanded as:

b=u+ Z .. .

where s represents the smooth part corresponding to valence electron states, the core orbitals are
denoted by .. The coefficients of expansion a. of equation (3.82) can be determined using the

following conditions:

(llJN’c) =0 (3.83)

a. = (p[P). (3.84)

By employing equations (3.82) and (3.84), equation (3.79) can be expressed as:

B + ) (€~ EQWe(Wel) = e (3.85)

where E. is the eigenvalue of the core state. Equation (3.85) can be expressed as:

(h+ v = e (3.86)

where vg represents the repulsive potential operator. Equation (3.86) could further be expressed

as
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(to + VPP = e (3.87)

such that

vPS = Vp+ VR =V, + Z(e — EJ WX (W] (3.88)

vPS of equation (3.88) is the pseudopotential representing the balance between the attractive
potential v, and the repulsive potential vg, first cited by Phillips and Kleinman [44] and later by
Antoncik [45]. It is interesting to note that there is no restriction to defining the pseudopotential
vPS which depends on how effective the cancellation between the attractive potential of the core
and the valence states. The eigenvalues of equation (3.85) remains unchanged by adding any linear
combination of the core states to |), and the modified |) will lead to a new pseudopotential.
Thus, this explains the non-uniqueness of pseudopotentials. The above features of
pseudopotentials have been employed in the development of different types of pseudopotentials.
However, only local, nonlocal and the projector-augmented wave pseudopotential have been

discussed in this thesis.

3.3.1.2 Local and non-local pseudopotentials

The general form of the pseudopotential, expressed as the equation (3.88), is given as:

(o]
1=0 m=-1 1=0

vPS(r) = Z vll,s|lm)(lm| = z V;l,s(l‘)Pl- (3.89)

where 1 is the angular momentum associated with the pseudopotential V%)S (r), the operator P, is a

projection operator expressed as equation (3.90), and |Im) are the spherical harmonics:
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1
Py = ) [lm)(im]. (3.90)

m=-1

Equation (3.89) implies that when vF$ acts upon an electronic wave function, P, picks the 1™

angular momentum component of the wave function which is then multiplied by the local operator
V%,S. This type of a pseudopotential is called non-local because it responds differently on the
different angular component of the wave function. However, if the pseudopotential employs the
same potential in every angular momentum channels, it is termed a local pseudopotential. Local
pseudopotentials are computationally less expensive as compared to the non-local ones, however,
only very few elements can be calculated accurately employing local pseudopotentials. There are
different available periodic codes for the implementation of DFT. In the past, there were few
comparisons among the different codes. However, this has changed recently such that the results

of different periodic codes can now be assessed for comparison [46].

3.3.1.3 Projector-augmented wave (PAW) pseudopotentials approach

The specifics of a particular pseudopotential dictate a minimum energy cutoff that should
be employed in the calculations involving atoms associated with such pseudopotential.
Pseudopotentials that require high energy cutoff energies are termed hard, whereas less
computationally expensive pseudopotentials with low cutoff energy are called soft. An example
of a hard pseudopotential is norm conservative [47], while ultrasoft pseudopotentials (USPP),

developed by Vanderbilt [48], [49], and just as the name implies, are called soft pseudopotentials.

USPP is, however, not the only one in the category of plane wave based methods. The projector
augmented wave (PAW), first introduced by Blochl in 1994 [50], some year after USPP, benefits

from the underlying all electron treatment, and as a result, it is expected to be more accurate than
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USPP. Interestingly, USSP could be obtained from the PAW approach using some simplifying
assumptions, as demonstrated by Kresse and Joubert [51]. These authors also investigated an
extensive comparison of the USSP, PAW and all electrons calculations for different molecules and
extended solids [51]. Their results demonstrate that USPP and the PAW approach give essentially
similar results in many cases, and are consistent with the all-electron calculations. However, in the
case of magnetic systems, PAW is deemed to be more reliable [52]. The PAW approach is
constructed based on the transformation between the all-electron orbitals [{,) and pseudo orbitals
[, as expressed in equation (3.91):

W) = | ) + Z(lcbi) — 1) G391)

where | ;) are “true atomic states, |p;) denotes pseudo waves, and c; are the linear coefficients of

the pseudo wave function. The advantages of the PAW method are as follows:

1) There is no need to treat the core electrons. The projector functions are localised in the
augmented spheres.

i1) The pseudo wave function is smooth and has no nodes in the augmented spheres.

1) With the PAW method, the all-electron wave functions and electron density can be
assessed which could be helpful for orbital-dependent exchange-correlation

functionals.
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3.3.1.4 Basis set

In order to calculate the physical properties of crystals using Kohn-Sham equations with
pseudopotentials, it is essential to select a basis set to express the electrons wave functions.
Basically, there are three different ways to express the wave function, ¢:

1) Expressing ¢ as a linear combination of plane waves.

i) Expressing ¢ as a linear combination of atomic orbitals.

iii) Expressing ¢ as a linear combination of some 1) and ii).
As a result of the simplicity which makes no presumptions about the form of the solution, and the
lack of superposition error, the plane wave is one of the most adopted basis sets for the electronic
structure calculations. With the plane wave basis set, a single-particle wave function P (r) at a

point r in a crystal could be expressed as:

1

JN.Q

lI"] (k, r) =

Aj(k + G) ek*+O)T,
+2G: jk+G)e (3.92)

where Ny, Q, K, j, G and Aj(k + G) are the number of unit cells, the volume of the unit cell, the

electronic wave vector within the first Brillouin zone, the band index, the reciprocal lattice vector,

and the Fourier coefficients, respectively.

While in most ab initio codes electronic wave functions are represented by one of the above listed
basis sets, there are few exceptions. For example, Pseudopotential Algorithm for Real-Space
Electronic Calculations (PARSEC) solves Kohn-Sham equations using a finite element algorithm

[53].
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34 Formalism of Kohn-Sham equation in momentum space

Kohn-Sham equation, employing pseudopotential method with the plane wave basis set, can

be expressed in momentum space as equation (3.93):

Hg o (KAj(k+ G") = €(k)Aj(k+ G).
2 Meg (A (c+ 6) = G008 0+ O 393)
such that

hZ
mmﬂﬂzgaW+GF%ﬁ+Vm@+Qk+Gf (3.94)

where V)5 is the screened pseudopotential. It is pertinent to state that Vs is non-local, and the

Fourier component can be expressed as:

Vps(k + G k+ G)

- 3.95
= VI (k + G,k + G') + Ve (G — G') + V(G — G') 3.99)

= Vi (k + G,k + G') + Viereen (G — G') . (3.96)

Vf,‘s’“ is the Fourier component of the ionic pseudopotential, Vi; and V, are the Fourier components
of the Hartree and the exchange-correlation potential, respectively. Thus, to calculate the different

properties of solids, using the above equations, all these parameters need to be specified.

3.4.1 Energy cut-off

Equation (3.92) is expressed in terms of a plane wave basis set. According to the equation,

evaluating the solution required an infinite number of reciprocal lattice vectors of G. The
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evaluation of such an expression is impractical. However, the plane wave expansion could be
truncated to include only solutions with kinetic energy (E) less than some value, also known as the

energy cut-off, E., 1.€.

hZ
_ 2
E=o—lk+Gl" <Ecye. (3.97)
with
2
Ecur = 5~ Geur (3.98)

Then the infinite sum reduces to:

+) Ak G ek,

N,Q IG+HAT=G e 3.99)

ll’] (k, r) =

The truncation of the plane wave basis set at a small E.,;; might lead to an error when calculating
the total energy of a system. However, such error can be reduced by increasing the E ;. It is worth
mentioning here that, all the E; used in this thesis to evaluate the physical properties of graphene

based systems were chosen after convergence has been achieved with respect to the parameter.
3.4.2 Brillouin zone sampling

The evaluation of the physical properties of solids (such as the total energy, electron density
of states, etc.), involves the integration of periodic functions of a Bloch wave vector over a whole
Brillouin zone (BZ). There are a number of numerical techniques that have been reported for the
BZ integration scheme such as Monkhorst and Pack [54], Baldereschi [55], Cunningham [56],
Chadi and Cohen [57]. These integration schemes for generating special k-points within the

irreducible Brillouin zone IBZ give a good approximation to the zone average of a generic periodic
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function. An excellent review on the description of special k-points of the IBZ for crystals with
different symmetries for use in the calculation of electronic structure and the physical properties
of materials was reported by Evarestov and Smirnov [58]. In this thesis, all the calculations that
are presented were done using the Monkhorst and Pack scheme. With this scheme, special k-points

are presented in this form:

kp = up1by + upabs + up3bs + Ky (3.100)

where b; and Kk are the reciprocal lattice vectors and an arbitrary vector, respectively. For a cubic

system, uy; is calculated as follows:

Upi = ——r— (3.101)

where p;=1, 2, 3...1 and i=1, 2, 3. The integer | is used to evaluate the number of special points in

a given set. For a hexagonal BZ, the coefficient uy,; such that i =1, 2 are expressed as:

pi—1
Upi = 1 (3.102)

and for i=3, uy,; is given as:

Upi = ——7 (3.103)

Another important quantity that must be stated is known as the weight factor which is a factor

associated with each special k-point. This factor can be expressed as follows:

N
f= Z w;f(k;) + remainder . (3.104)
i=i

73



where f(K) is a periodic function and f is the average; w; is the weight factor such that Yw; = 1.
In equation (3.104), the sum runs over N chosen k-points, and the smaller the ‘remainder’ term,
the better the numerical integration technique. In this thesis, mxmx1 Monkhorst and Pack scheme
was used to sample the BZ of all the graphitic systems studied. The right value of ‘m’ was
determined after a test of convergence of the total energy was done with respect to the parameter,

3 b

m’.
3.4.3 Hellmann-Feynman forces

After the solutions of Kohn-Sham equations have been obtained self-consistently by the
plane wave pseudopotential method, the total energy of the material and then the Hellmann-
Feynman force on the atoms can be calculated. The total energy E;,; of a system can be expressed
as the sum of the energies due to the electronic contribution Ej. (corresponding to the Hamiltonian

H with an eigenstate |)), and the ionic contribution E;qp:

Etot = Ecle + Eion - (3.105)

The derivative of the total energy with respect to the atomic positions R; gives rise to the force

acting F; on the atoms of the system, i.e.:

— 8Etot S6H Eion

8
T TR (i T (3.106)

If the basis set has ionic coordinates, equation (3.106) would have extra terms called the Pulay
forces. However, with a non-local basis set, the Pulay forces can be removed. Geometry
optimization calculations usually depend on the accurate evaluation of sum of the ionic forces. It
is worth noting that such calculations exhibit excellent convergence when Pulay forces are

included.
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3.4.4 Self-Consistent iterative procedure

The trial plane-wave basis set defined in equation (3.99) along with the pseudopotential
method described in Error! Reference source not found. could be used to solve Kohn-Sham
equations. Although starting with a trial charge density, the solutions to the Kohn-Sham equations
provide the initial ground state charge density which might not be the true ground state charge
density of a given system. The true ground state charge density or a more reliable and stable result
can be obtained by using the charge density calculated through iterating the solution of Kohn-
Sham equations. This procedure is termed a self-consistent field (SCF) calculation, and it is

outlined in the following algorithm:
i) The trial electron density (n(7)) is defined.

i1) Kohn-Sham equations are solved with the trial electron density in step (i) to obtain a new single

particle wave functions, ¢; (7).

iii) A new electron density (ngs(#)) is calculated from the single particle wave functions ¢; (%)

obtained from step (ii).

iv) The new density (ngs(7)) is then compared with the initial electron density (n(7)) in step (i),
if the two are equal, it is the ground state electron density and can be employed to calculate the
total energy of the system. However, if the two electron densities are different, then the calculated
electron density is updated in some way. After that is done, the process starts again from step (ii).
However, this process might not lead to quick convergence. The reason being that due to the long-
range nature of the Coulomb interaction, a slight change in the electron density input could lead to
a larger change in the output electron density. Thus, a new charge density must be mixed with the

previous output densities in a predetermined manner so as to attain ground state electron density
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as quick as possible. Basically, there are two classes of electron charge densities mixing schemes,
i.e, linear and non-linear schemes. An excellent review of these schemes can be found in Ref. [59].
In our calculations, one of the most attractive non-linear mixing methods for self-consistent field
acceleration, also known as Broyden mixer, was adopted. Figure 3.2 gives the schematic flow chart

of the self-consistent field calculation.

Initial guess

p(r)

%

Calculate the effective potential

!

Solve the Kohn-Sham equations

!

Evaluate the electron density and total energy

!

Converged?

l Yes

Output the results

No

Figure 3.2 A flow chart illustrating the self-consistent field (SCF) calculation of the DFT
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3.5 Geometry optimization

Before the physical properties of a periodic system is calculated within the framework of
DFT, it is a good practice to check or ensure that the forces acting on the atoms within each unit
cell are small as possible so as to render them insignificant. The process that brings about changes
in the positions of the atoms, and in some cases the shape of the material, until the forces on the
particles are insignificant, with a configuration that induces a minimum total energy, is called
optimization. Optimization could be done by employing the total energy, Pulay forces as well as
Hellmann-Feynman forces approaches. Mainly, there are two iterative corrections that determine
the optimized geometry of any periodic system. In the first iterative correction, the Kohn-Sham
equations are solved to attain a predetermined tolerance of self-consistency via the adjustment of
the charge density. In the second iterative correction, the optimization of the geometry is done by
changing the atomic positions in response to the prevailing forces. These iterative adjustments are
done repeatedly until a fully relaxed geometry is achieved. Although there are different methods
of geometry optimization [60], [61], in our study, Bendt-Zunger’s conjugated gradient method
[62] was adopted for the optimization. The reason for choosing this scheme is because the
algorithm is robust and often works reasonably well even if the starting structural guess is quite

different from the ground state structure.

3.6 Computational code

The calculations in this thesis were performed with the Vienna Ab initio Simulation Package
(VASP) code [63], [64]. The code was developed by Jiirgen Furthmiiller and Georg Kresse in some

years back at the University of Vienna in Austria.
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VASP code has been a huge success in implementing the DFT of Kohn-Sham. It has been used to
predict the properties (such as the energies, forces, band structures, the density of states, charge
densities, etc.) of materials. It computes the properties of periodic materials by first solving the
Kohn-Sham equations self-consistently using plane-waves basis set and PAW as the
pseudopotential. It also offers the level of accuracy of the all-electron approach while still has the

advantages of a plane wave scheme.

The VASP 5.3, which was employed for this study, can be used to perform four types of
calculations: single point energy, structure optimization, quasiparticle spectra (GW) and molecular
dynamics. In this study, only the single point energy and the structural optimization have been
performed to compute the properties of the graphene-based systems. As a result, only these two

calculations types have been discussed herein.

If the flag of the single point energy is turned on, only the energy of the input structure is
calculated without relaxing the geometry of the system. However, in most cases the single point
energy calculation is done to compute the physical properties of materials after the structural
optimization of the system in question has been achieved. This is because the single point energy
converges very quickly, and usually leads to accurate ground state properties of the system if a
well optimized input structure is used. However, in the case of the geometry optimization, if the
flag is turned on, the cell parameters are relaxed with or without constraints depending on the
specifications. There are three constraints that can be considered during geometry optimization of
a system: i.e. relaxing atom positions; allowing cell volume and shape to change. If the geometry
optimization is done with respect to the relaxation of the atom positions, the atoms are allowed to
move until the Hellmann forces on them are just less than the convergence threshold. This type of

constraint is used when a surface is to be relaxed; adsorption of a gas on a surface and the relaxation
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of a structure around a defect or vacancy are to be considered. However, the cell volume option is
allowed if the optimisation is to be done to take into account only isotropic changes of the supercell
while keeping the angles and the ratios of the lattice parameters constant. This option is used when
the effect of pressure on the physical properties of the systems of interest is of utmost importance.
The last constraint, which is the cell shape option, allows the cell parameters, including the angles,
to change. The three options described above can be allowed if full optimisation of the system is

to be performed.

After geometry optimisation has been done within a prescribed convergence threshold, the
physical properties (such as the ground state energy, charge density, band structure, the density of
states, work function, optical characteristics, etc.) of the systems of interest can be computed. In
this study, the focus is on the charge density, density of states, band structures, and optical
characteristics. These properties are usually computed following two independent steps. The first
step involves relaxing the structure, then reload the relaxed geometry as the input structure.
Afterward, the desired properties of the system can be calculated using a single point energy

calculation.
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Chapter 4

4.1 Introduction

This chapter presents how the optimum values of Ecut and k-points that were used to get the results
of this study were obtained. Moreover, the structural, lattice dynamic, electronic and optical

properties of Be-S and Be-N co-doped graphene are also discussed.

In supercell calculations, some trade-offs between accuracy and computational costs are
inevitable. These trade-offs include but are not exclusive to using an optimum number of k-points
and kinetic energy cut-off (Ecut) to calculate the physical properties of materials with a decent
level of accuracy. To this end, section 4.2.1 and 4.2.2 focus on the tests of convergence performed
to get the optimum values that were required for the results of the calculations presented in the
later sections. Section 4.2.3 presents the validation of the structural properties of graphene. The
results, which are solely the author’s findings, of this study are discussed in section 4.3, 4.4 and
4.5 using PBE-GGA and HSEO6 functionals. Two of these results have already been published as
articles in refereed journals while the result presented in section 4.5 has also been submitted to a

reputable journal and currently under peer review.

In section 4.3, the results of an ab initio study of beryllium and sulphur (BeS) co-doped graphene
were presented. Section 4.4 contains the report of the lattice dynamics, electronic and optical
properties of beryllium and nitrogen (BeN) co-doped graphene. Section 4.5 addresses the optical

properties of BeS co-doped graphene.
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4.2 Test of convergence

Before employing DFT to calculate the physical properties of materials, it is important to perform
tests of convergence of the total energy, first, with respect to the kinetic energy cut-off and,
secondly, with respect to the number of k-points for the plane wave expansion of the wave
function. These tests enable a balance to be struck between the computational cost and the accuracy

of a given calculation.

4.2.1 Test of convergence with respect to cut-off energy (Ecut)

According to Bloch’s theorem, the electronic wave function of a periodic system at each k-point
can be expressed in terms of a discrete plane-wave basis set. In principle, an infinite number of
plane waves are required for the plane wave basis set to be complete. The computational
implementation of such an infinite basis set as an electronic wave function is not realistic for a
practical DFT calculation. However, the plane waves with small kinetic energies contribute more
to the total energy of the system than the plane waves with large kinetic energies. Consequently,
the plane wave basis set can be truncated to comprise only plane waves with the kinetic energies
smaller than some specific cut-off energy (Ecut). Although the truncation of the basis set at a
certain cut-off energy would lead to an error in the calculated total energy, the size of the error can
be reduced systematically by increasing the value of the Ecut until the computed total energy
converges just below the required tolerance or no longer changes appreciably. In this way,
convergence can be said to have been achieved. Figure 4.1Error! Reference source not found.
shows the calculated total energy of 4X4 supercell of graphene with respect to Ecy. It can be

observed from Figure 4.1, that the Ecut of 400 eV corresponds to the VASP total energy which is
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very close to the converged value. As a result, Ecut of 400 eV was adopted for all the graphitic

systems investigated in this study.
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Figure 4.1 The convergence of the calculated total energies of the unit cell of graphene against

the cut-off energies.
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The systems considered are pristine graphene, Be and S mono/co-doped; Be and N mono/co-doped

graphene. Given a heteroatom doped graphene, since a cutoff energy only models the most rapidly

varying core wave function of the constituent elements present in the material, the 400 eV

determined for carbon would be an appropriate cutoff energy for any other monolayer graphene

doped or co-doped with Be, S, or N. This is because carbon requires a very high energy cutoff to

attain convergence compared to any of the aforementioned impurities in it most stable phase. The

reason for such behaviour could be ascribed to the highly delocalized 2p orbital which arises as a

result of lack of p-core states in carbon. Besides finding the appropriate Ecut to use for the

calculations, a test of convergence with respect to k-points is equally important and must be

determined before any physical properties of a given system are computed.
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4.2.2 Test of convergence with respect to k-points mesh

In order to compute the desired physical properties of pristine and co-doped graphene investigated
in this study, three different supercell sizes were used i.e. 2x2, 3x3 and 4x4. It is known that for a
given crystal, the number of k-points that is required to sample the BZ reduces with the increase
in the size of the supercell. As a result of this, to determine the optimum number of k-points that
would be required to sample the BZ of all the above-mentioned supercells; a test of k-points
convergence (Figure 4.2) was done with respect to the smallest supercell (i.e. 2x2) of graphene
using the Monkhorst-Pack scheme [1]. The convergence was done with respect to the 2x2 supercell
since it is expected to have a higher density of k-points than the larger supercells (3x3 and 4x4).
Running a supercell calculation with a higher number of k-points than the optimum value does not
limit the accuracy of the result. Rather, it increases the accuracy and the cost of the computation.
This computational cost is worth incurring compared to the higher amount of time that would be
spent if we were to determine the required minimum value of k-points for each of the supercells
(2x2, 3x3 and 4x4). Figure 4.2 shows that a minimum 5x5 k-points spacing would be required to

sample the BZ of all the aforementioned supercells effectively.
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Figure 4.2 The calculated total energy of 2x2 supercell of graphene as a function of k-points.

With Ecut = 400 eV and k-point = 7x7x1, the structural parameters of pristine graphene were
calculated as follows:

4.2.3 Validation of the structural properties of graphene

The structural parameters of a unit cell of graphene were determined using the geometry
optimization technique. This was done to ensure that the right parameters were used when
calculating the physical properties of pristine and doped graphene considered in this study. To
obtain the right lattice parameter, total energy calculations were done at different values of the
lattice constant in the range of 1.86 —3.16 A, and the results are shown in Figure 4.3. In line with
the standard convention, the results were fitted to the polynomial curve to determine the
equilibrium lattice constant of graphene. The red arrow on the graph shows that 2.46 A, which
corresponds to the lowest energy value of the system, is the equilibrium lattice constant of
graphene. After obtaining the energetically favourable lattice constant, the C—C bond length of the

system was determined, and a value of 1.42 A was found. These values are consistent with the

88



existing data [2], [3] on graphene. It is worth reiterating that graphene is a 2D material, as a result,
in order to model the structure, a test of convergence with respect to interlayer spacing is required
to isolate it from the interaction (via Van der Waals force) with other adjacent periodic layers. Van
der Waals interaction is responsible for keeping the layers of graphene together. Figure 4.4
illustrates the results of the total energy calculations at different values of the interlayer spacing.
It is observed that the total energy of the system converged at a minimum value of 4.0 A. However,
this value is significantly lower than the minimum value (8-14) used in most studies. The disparity
between our result and the range of values commonly found in other reports is due to the neglect
of Van der Waals interaction in the exchange-correlation functional that was used for this study.
With respect to the literature, a minimum vacuum spacing of 8.0 A is required to isolate monolayer
graphene from the Van der Waals interaction of the adjacent periodic layers. Consequently, a
vacuum spacing of 12 A was adopted to model the pristine monolayer and the doped graphene in

this study.
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Figure 4.3 The total energy vs lattice parameter of graphene. The red filled symbols show the
numerically computed data points while the black curve shows a polynomial fit of the DFT data.
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Figure 4.4 The total energy vs interlayer spacing between two layers of graphene.

4.3 Exploring the stability and electronic structure of beryllium and sulphur co-doped
graphene: a first principles study

4.3.1 Introduction

Ever since the isolation from pyrolytic graphite by micromechanical cleavage in 2004 [4],
graphene has attracted a lot of attention due to the remarkable properties (electronic, mechanical
and thermal). Attributed to the linear dispersion relationship at the low energy region in the band
structure, these properties have portrayed graphene as a strong contender to replace silicon for use
in nanoelectronics and even in microelectronics. However, graphene has no band-gap magnitude
(as explained in section 2.3.2) which renders it unsuitable for the proposed applications. In section
2.4, the different techniques that could be employed to induce a finite band-gap in graphene were
discussed. Out of these techniques, heteroatom doping is the most effective method for creating

and tailoring the band-gap magnitude in graphene to meet a device specification. Due to the
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effectiveness of this technique, Denis et al.[5] investigated the effect of sulphur substitution on the
electronic structure of graphene. They reported that the introduction of sulphur in graphene could
change the electronic character of the system to either metallic or semiconducting depending on
the impurity concentration. For example, at 2.0% of sulphur content in graphene, a band-gap of
0.3 eV was reported to be induced in the system while at a slightly higher impurity concentration
the energy gap vanished and the material became metallic. The result of their study suggests doping
graphene with sulphur might not always lead to the desired result except if the right amount of the

impurity (which would be difficult to achieve within a normal experimental setup) is used.

In view of the challenges involved in transforming graphene to semiconductor using sulphur as
the dopant, we investigated, from the first-principles within the framework of DFT, the
isoelectronic co-doping of graphene with Be and S with a view that the heteroatom combination
could be used to effectively induce and tailor the band-gap of graphene regardless of the impurity
concentration. In the study, different doping patterns were considered to determine how the
impurities preferred to co-exist in the matrix. The different isomers used in the study are shown in
Figure 4.5. The cohesive energy and the electronic structure of each isomer were calculated to
evaluate the stability and electronic character of the co-doped system. Bader charge analysis was

performed to account for charges distribution in the system.
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Figure 4.5 The different doping configurations of Be-S co-doped mono layer graphene adopted
in the study. Sites A1, B1, C2, etc. are the same sublattices occupied by Be—atom (blue colour)
while site O is a fixed position occupied by S—atom (yellow colour). Only a pair of Be and S is
considered at a time in each run.

4.3.2 Results and discussions

The details of the computation and the analysis of the results obtained using Be and S to co-dope

graphene are presented in the published article below.
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Introduction

Graphene is actively investigated as a possible replacement for
silicon for use in micro, and even nanoelectronics. In silicon-
based electronics, useful devices are made by doping with elec-
tropositive and electronegative elements. Similarly, doping will
be needed to create useful devices in graphene-based elec-
tronics. This article uses DFT to investigate the atomic and
electronic structure of one type of doping of graphene, namely
substitution of carbon atoms by atoms of beryllium and sulphur.

Graphene is a two dimensional sp” hybridized carbon atom
material with a honey comb lattice and the unit cell has two
carbon atoms in non-equivalent positions which form two
interpenetrating triangular sublattices (see Fig. 1). It is known
to be a fundamental and integral part of other forms of
graphitic carbon such as fullerenes (bucky ball), carbon nano-
tubes and graphite.” While its existence was theoretically
predicted by P. R. Wallace many years back," it was not believed
at that time to be physically attainable as a 2D crystalline
material because it was adjudged to be thermodynamically
unstable.® In 2004 however, Novoselov et al.® experimentally
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isolated the graphene crystal through micromechanical exfoli-
ation of pyrolytic graphite. Ever since, the material has drawn
a lot of attention among researchers in the scientific commu-
nity. More importantly, graphene has been lauded as a potential
material in semiconductor nanoelectronics as a result of its
stable hybrid structure, excellent electrical and optical proper-
ties and high charge carrier mobility.>** In fact the charge
carrier mobility, which is about 10° em* v-* 57, has been re-
ported to be 2-3 times higher than that of conventional
semiconductors.®

Fig.1 Graphene has two carbon atoms in the unit cell. The two atoms
are at non-equivalent sites denoted by « and p where @ and b
symbolized the primitive unit vectors.

This journal is © The Royal Society of Chemistry 2016
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Pristine graphene however has zero band gap which makes it
extremely difficult for direct electronic device applications. For
instance in field-effect transistors {FETs) the role of a band gap
in the drain material is crucial without which it would be
difficult to switch off the device. To overcome this shortcoming,
different techniques can be used to fabricate sizable band gaps
in graphene sheets. Some of the techniques that could be
employed to open up an energy gap in graphene are: super-
structures fabrication, surface modification with atoms or polar
molecules,*** chemical doping,*** application of electric
field,*>* and deposition of graphene on epitaxial substrates.>>’

Superstructure fabrication like quantum-dot,”™> graphene
nanoribbons®* or nanomeshes® induce an energy gap in
a material through quantum confinement. However, engi-
neering of such structures dimensionalwise still poses
a serious challenge. The design of such superstructures with
uniform widths and edges below 10 nm s still quite tedious to
attain with top-down techniques such as etching and lithog-
raphy.* Although homogenous structures can be achieved
easily with bottom-up approaches,® pulling off patterned
ribbons still remains a contending procedure.

A facile approach to induce an energy gap in graphene is by
depositing it on epitaxial substrates like SiC,* Al,O3,%® etc. Apart
from the difficulties involved in controlling the morphology and
the surface energies of the material, the band gap induced by
this technique is not tuneable.*” However, for a tuneable band
gap inducing technique, application of electric field could be
a viable option.

The application of an external electric field (E) perpendicular
to the plane of AB stacked bilayer graphene can induce a band
gap tuneable up to 0.25 eV through the breaking of the material
inversion symmetry. The carrier mobility is not substantially
affected in the process. Despite the robustness of this technique
for AB stacked bilayer graphene, the electric field does not
favour a band-gap opening directly in monolayer graphene.®”
This is simply because the application of this field to monolayer
graphene does not affect the inherent symmetry of the material
sublattices.

Furthermore, unlike the electric field scheme which is
applicable exclusively to few-layer graphene, chemical doping
method via substitution of foreign atomic elements (hetero-
atoms) in place of the carbon atoms in graphene structure has
been reported to be a suitable technique for creating sizeable
and varying band gaps in monolayer graphene.®® It involves
using elements {like N and B) with comparable atomic radius
{but different number of valence electrons) as carbon to replace
the carbon atoms of graphene. The technique of substitution
came into prominence shortly after the isolation of a single
graphene layer in 2004, and ever since the method has widely
been cited in different works in literature.*®

In this study, we focused primarily on chemical doping as an
avenue of modifying the electronic structure of graphene for
band gap engineering, and the following are the highlights of
the previous studies objectified by this technique. For examples,
using ab initio calculations, Lee et al.* studied the adsorption of
beryllium (Be) on fullerenes and their potential to store
hydrogen molecules. They found that the clustering of Be on

This journal is @ The Royal Society of Chemistry 2016
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pristine fullerenes is energetically stable but causes the disso-
clation of hydrogen molecules. Ferro et al** carried out DFT
studies of the absorption, diffusion of Be in graphite and the
formation of Be,C. They reported that, in high quantity, the
absorption of Be in graphite can result into formation of Be,C.
Denis et al.** performed first principle studies of S and P-doped
graphene. They found that below 0.5% impurity concentration,
S-doped graphene has a band gap in the range of 0.1-0.2 eV
while P-doped graphene has a higher gap between 0.3 and 0.4
eV. Recently, Ullah ef al.* investigated structural and electronic
properties of Be and Be/B dual doped graphene via density
functional theory calculations, and remarked that with a rect-
angular doping configuration a maximum band gap of 1.44 ev
can be obtained for Be-doped graphene at 12.5% impurity
concentration. Moreover a maximum band gap of 0.99 eV can
be attained for Be-B co-doped graphene at the same concen-
tration. More recently, Huang et al.*® reported electronic struc-
ture with optical properties of boron-doped, sulphur-doped and
boron and sulphur dual doped graphene. They observed that
doping modified the electronic and the optical properties of the
doped graphene samples in question, and that the size of the
energy gap depends on the impurities concentration in a doped
graphene sample. Some other works relating to sulphur-doped
graphene or SWCNTs can be found in ref. 44,

It is worth noting that in spite of the numerous previous
studies, there has been none that addresses structural proper-
ties and electronic structure of Be and S co-doped graphene.
Moreover, Be-S co-doping of graphene is expected to make
a better semi-conducting material than either Be-doped or S-
doped graphene. This is because doping of graphene with
sulphur could lead to a material with metallic behaviour,*
while doping with beryllium could form a material with Fermi-
level lying within the valence band,* which to us might form
a material with lower carrier mobility than Be-S co-doped gra-
phene which has higher Fermi-level but lies within the energy-
gap. In view of this, using first principle calculations within the
frame work of density functional theory (DFT) we investigated
structural properties and electronic structures of Be-S co-doped
graphene. We have tried not only to accomplish band gap
engineering and tuning in the sheet through Be and sulphur
substitutional co-doping, but we have also explored the stability
and the dependability of the energy gap on the doping sites
across the sublattices in the graphene crystal. In addition, Bader
charge analysis**” has been adopted to account for charge
distribution in the material under study.

Methods

First-principles numerical non-spin polarised calculations were
carried out using ab initio density functional theory as imple-
mented in MedeA VASP software.®™** In the calculations, the
projected augmented wave (PAW) was used to describe the
system of electron-ion interactions, while the generalized
gradient approximation {GGA) with PBE prescription®™ was
utilized for exchange correlation. The kinetic energy cut-off for
the wave function expansion was set to 400 eV with energy
convergence criteria for all the systems considered set to 10 *

RSC Adv, 2016, 6, BB392-88402 | 88393
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eV. Graphitic systems of 32 atoms with supercell model slab of 4
x 4 were employed in all the calculations. To avoid interlayer
interaction between two successive layers of graphene in the
simulations, a vacuum spacing of 14 A was used in between the
layers with applied periodic boundary condition along the
graphitic plane. All the structures were geometrically relaxed
until the Hellmann-Feynman forces converged below 0.02 eV
A . Based on the symmetry of the graphitic systems considered
and in order to also actualise self-consistent field calculations,
a I-centred grid of 6 x 6 x 1 k mesh with Gaussian smearing
was employed to sample the Brillouin zone. Moreover, a denser
k-point grid of 17 x 17 x 1 was adopted when calculating the
density of states {DOS). Cohesive energy, Eon calculations were
performed using the following formula:

Py — B2l
N

here x represents C, Be or S; E, and E; stand for the atomic
energies and electronic ground state energy of the whole
system, respectively. The variable N stands for the total number
of atoms in the system while 7, is the number of atoms of type x.
The negative sign outside the bracket implies that all the stable
structures should have positive cohesive energies, otherwise the
system is unstable and the magnitude of the value is a measure
of the bonding strength.

To calculate the atomic energies of the atoms, we created
a10 A x 10 A x 10 A super cell and centred an atom in the
middle of the box. We set the K-integration to Gaussian and
performed a single point spin polarised calculation with I'-&-
point. In this case spin polarised calculations was performed
because carbon and sulphur atoms are both open shell systems.

Furthermore, we have calculated the difference between the
formation energy (FE) of Be-S co-doped and the sum of the
formation energies of Be-doped and s-doped graphene to check
if this study is in agreement with the recent study by Denis
et al.** who have shown that the FE of certain classes of dual
doped graphene is less than the sum of the formation energies
of the corresponding mono-doped graphene systems. To
calculate the formation energy of co-doped and mono-doped
graphene systems, we employed the following formula:

FEpesy = Epes + 2ic — Egraphene — MBe — HS
FE(gey = Ege + 2tc — Egraphene — fpe
FEs) = Es + 2pic — Egraphene — fis

here Ep.s, Epe and Eg represent the electronic ground state
energy of Be-S co-doped graphene, Be and S doped graphene
respectively. Egaphene 15 the energy of pristine graphene. For the
chemical potentials {uc, use and ug), the atomic energies of
carbon, beryllium and sulphur were used appropriately for the
calculation of the formation energy of the systems. To this end,
it is worth mentioning that the conclusion drawn from the
analysis of the formation energy of dual doped graphene is
independent of the sources of the chemical potentials used in
the calculation.®

88394 | RSC Adv., 2016, 6, 88392-83402

View Article Online

Paper

Note: having initially performed spin and non-spin polarised
calculations for the geometry optimization of one of the
configurations of Be and S co-doped graphene and realised that
the energies of the two calculations are equal, along with zero
net magnetic moment, we subsequently considered only non-
spin polarised calculations for the rest of the configurations
in order to save ample amount of time. Besides, Be and S are not
the only dopants that preserve non-magnetic nature of gra-
phene. Recently, Hussain ef al5* also reported Be and N co-
doped graphene to be non-magnetic.

Results and discussion

First, a geometry optimization was carried out on a pure gra-
phene sheet to allow all the carbon atoms to relax. After the
optimization, the lattice constant of pristine graphene was
found to be 2.46 A, while the C-C bond length measures as 1.42
A, as shown in Fig. 2a. These values are in excellent agreement
with some reported theoretical® and experimental®® results. The
calculated band structure of the optimized pristine structure of
graphene is presented in Fig. 2b which also corroborates
previous findings in relations to zero band gap and linear
dispersion crossing at the Dirac point.*®

Subsequently, a pristine graphene sheet was co-doped with
beryllium and sulphur atoms. Different configurations of the
above mentioned impurities in the graphene sheet were
considered in order to exploit the effect of doping sites on the
electronic properties and stability of the co-doped graphene
sheets.

In defining a configuration of a Be-S co-doped graphene
{(BeSG) system, we substituted two carbon atoms at equivalent
sites {Le. at O and C1) and non-equivalent sites {i.e. at O and C)
of pristine graphene for beryllium {blue) and sulphur atom
(vellow) as shown in Fig. 3. The co-doped structure with sulphur
and beryllium now occupying O and C1 positions respectively is
termed the OC1 configuration or simply the OC1 isomer while
the OC isomer symbolizes another configuration with S and Be
being substituted for two carbon atoms at the sites O and C of
the pristine graphene.

Furthermore, in a similar manner to OC and OC1, other
isomers of Be and S co-doped graphene (BeSG) system were also
generated such that the relative positions of Be and S have been
changed successively. Fig. 4 shows an overview of other
configurations considered while exploring structural and elec-
tronic properties of Be and S co-doped graphene. Configura-
tions OA1, OB1, OC1, OD1, efc. correspond to same sublattices
or equivalent sites substitution of Be and S co-doping whereas,
OA, OB, OC, or OD matches co-doping of monolayer graphene at
different sublattices {or non-equivalent sites). It is worth noting
that all the configurations were chosen with respect to the
position of S atom at the lattice point, O in the systems.

Different isomers of Be-S co-doped graphene considered in
this study yielded different electronic band structures and
density of states. In the following discussion, for the sake of
conciseness, we have considered in detail the cohesive energy
and formation energy; charge transfer; structural and electronic

This journal is © The Royal Society of Chemistry 2016
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Fig. 2 (a) The optimised geometry of a 4 x 4 supercell of pristine graphene sheet. (b) The calculated band structure of pristine graphene

properties of OD, OB1 and OB isomers of Be-S co-doped gra-
phene sheets.

OD isomer of BeSG

Two carbon atoms of graphene were replaced with Be and S-
atom as shown in Fig. 5a. This was followed by a geometry
optimisation of the system until it reaches the level of the
required accuracy. After the optimisation, it was observed that
the planar structure of the system was preserved except for the
palpable changes in the adjoining bond lengths. The adjoining
bond lengths of $-C and Be-C expand to 1.62 A and 1.55 A
respectively; this is as a result of the sizes of molecular covalent
radii of Be (0.90 A) and S (1.02 A) which are larger than the
covalent radius of the carbon atom (0.77 A). Consequently, the
C-C bond length nearest to sulphur reduces to 1.37-1.39 Awhile
that of beryllium reduces to 1.36-1.38 A (see Fig. 5a). The sizes of
the bond lengths of Be-C and C-C reported are in agreement
with previous studies.*»** Besides, the cohesive energy which
gives a measure of the respective stabilities of Be-§ co-doped
graphene systems was calculated and found to be equal to 7.32
eV per atom for this system with OD isomer. This value is less
than 9.19 eV per atom that we calculated for 4 x 4 pristine gra-
phene. Meanwhile, the cohesive energy that we obtained for
pristine graphene is in agreement with the previous reports by
Ullah et al.* (9.21 eV per atom) and Rani and Jindal™ (9.20 eV per
atom). Note we have dropped the sign of the cohesive energy
based on the model adopted as explained under Methods.

Fig. 3 (a) OC1 (which simply refers to as OC1 isomer) exemplifies
a configuration with two carbon atoms at same sublattices (ie. O and
C1) substituted for Be and S. The blue colour in the diagram stands for
Be while the yellow colour represents sulphur. (b) OC symbolises
a configuration with two carbon atoms at different sublattices (ie. O
and C) substituted for Be and S.

Bader charge analysis was invoked to calculate the charge
transfer among Be, S and Cs in the system. Due to the differing
electronegativity among these three atoms, the valence charge of
1.57¢ (Be) plus 0.26¢ (S) is transferred to the carbon atoms in the
system; the transferred charge is redistributed among the carbon
atoms with the charges on each stretching from 3.81e to 4.47e.
Moreover, as expected higher value of the charge is transferred to
the carbon atoms in the neighbourhood of the impurities.

The calculations of density of states (DOS) and partial
density of states (PDOS) were performed to study the effect of
the co-doping on the system. The results are shown in Fig. 5
which shows that p,, (i.e. 2s, 2p, and 2p, orbitals hybridization)
orbitals of sulphur and beryllium hybridized sturdily with the
Pxy of the carbon atoms of BeSG system. The stout overlapping
between p,, orbitals of carbon atoms and sulphur atom (in the
range —8.0 to —8.5 eV in the valence region) partly leads to p-o
bonds formation. Likewise, w-bond in the system could partly
be attributed to the very weak overlapping of p. orbitals of the
carbon atoms and sulphur atom in the system. As for the
beryllium atom, it contributed little to the DOS in the conduc-
tion band region. However, while the p,, orbitals of Be hybrid-
ized strongly with py, orbitals of the carbon atoms around the
Fermi level between 0 and 1.0 eV, the p, orbital overlapped
weakly with that of the carbon atoms contributing to 7-bond
formation of the system.

Fig. 4 Different isomers of Be-5S co-doped graphene sheets. The
relative position of Be has been updated through positions A, AL B, BL,
C, C1, etc. The sites Al, Bl, Cl, etc. denote Be atom position at the
same sublattices with respect to S atom while other positions of Be
atoms are non-equivalent with respect to S-atom. The blue colour
represents Be-atom whereas yellow stands for sulphur atom.
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Fig.5 (a) Optimized geometry of a Be-S co-doped graphene sheet. (b) Total DOS of BeSG with OD configuration. (¢} The band structure of the
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configuration. (f) Projected DOS of sulphur in BeSG with OD configuration.

The electronic band structure of the system was also calcu-
lated. A direct band-gap of (.58 eV is induced around the Dirac
point (see Fig. 5¢). Here the position of the Fermi-level remains
as it is in pristine graphene. This is as a result of isoelectronic
nature of BeS co-coped graphene with respect to pristine gra-
phene. That is, equal proportion of holes and electrons are
introduced into carbon network simultaneously. S is electron
rich and has two electrons more than C while Be is electrons
deficient and has two electrons less than C as such the net
change in the number of electrons in the system is zero, Our
results show that the band-gap induced by Be and S co-doped
graphene with OD configuration is greater than those re-
ported in the previous studies for single Be** or §* doping of
graphene. Interestingly, a transistor with a graphene platform
requires a minimum energy gap of 0.4 eV to operate suitably in
on or off mode.* Thus the value (0.58 eV) from our calculation
meets this specification. In addition, DFT usually underesti-
mates band gaps hence the actual value for the band gap in this
calculation might be greater than the value we reported. This
significant result spurred us to perform further calculations on
BeSG with different configurations.

88396 | RSC Adv, 2016, 6, 88302-88402

OB1 isomer of BeSG

In the following case, S and Be are substituted accordingly for
two carbons of graphene at O and B1 positions which are
equivalent sites (see Fig. 6a). After the substitution, geometry
optimisation was performed which still leads to the retention of
the planar shape of the system but there were changes in the
adjoining bond lengths of the structure. The optimised struc-
ture of the new system is presented in Fig. 6a. The bond length
of S-C increases (relatively to C-C of pristine graphene) and falls
within the range 1.54-1.62 A while that of Be-C lies within the
range 1.53-1.54 A. Due to the large sizes of the covalent atomic
radii of the aforementioned impurities relative to a carbon
atom, the C-C bonds in the neighbourhood of S reduced to
values within the range 1.36-1.40 A whereas the values within
the range of 1.36-1.38 A (Fig. 6a) was observed for the bond
lengths of C-C in the proximity of the Be impurity in the system
under study. Unlike OD isomer, there is fluctuation in the bond
lengths of 5-C and Be-C of BeSG with OB1 isomer. For this
system, the cohesive energy was calculated to be 7.35 eV per
atom which is higher than that of OD isomer.
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Fig. 6 (a) The optimised structure of OB1 isomer of Be—S doped graphene. (b) The band structure of the optimised structure with OB1
configuration. Total DOS of Be-S with OB1 configuration. (c) The band structure of the optimised structure with OB1 configuration. (d) Projected
DOS of carbon in Be-S with OB1 configuration. (e) Projected DOS of Be in Be-S with OB1 configuration. (f) Projected DOS of sulphur in Be-S

with OB1 configuration.

Bader charge analysis reveals that the valence charge of 1.57¢
(Be) along with 0.48e from § is transferred to the carbon atoms
in the system. It was noted that the size of the charge trans-
ferred from sulphur was greater than the corresponding trans-
fer in the previous system with OD isomer. After the transfer of
charges from the impurities to the system, charge reformation
on carbon atoms occurs and stretches from 3.80¢ to 4.61e. In
addition, we found as expected that more charges were trans-
ferred to the carbon atoms adjacent to the impurities in the
graphene sheet.

To study the role of dopants in this system with this afore-
mentioned configuration, the calculations of DOS and PDOS
were performed. The results are displayed in Fig. 6. It is evident
from the plots that the DOS contribution to the conduction
band originated mainly from p,, orbital of C atoms and little
contribution from S. There is also minor contribution from p, of
S to these bands. For the valence bands, besides C, the pop-
ulation of this band is from p,, orbitals of both $ and Be. p,, of C
and Be strongly overlapped and form a ¢ bond which covers an
energy range of —2.0 to 0.0 eV. This wider range of energy of
interaction between p,, of C and Be over the corresponding

overlap in OD isomer might account for the slight increase in
the cohesive energy of this system. Similarly, o bond is also
formed between p., orbitals of C and 8. In this case the inter-
action covers an energy range from —8.5 eV to —3.5 eV, although
it is more intense between —8.5 eV to 8.0 eV.

The electronic band structure calculations show a band gap
opening of 0.22 eV around the Fermi level of this system (see
Fig. 6b). The gap opening around the Fermi level reflects the
isoelectronic nature of Be-S co-doping. This value is less than
the observed band gap of the previous structure with OD
isomer. Thus the difference in the size of the band gaps can be
ascribed to the configuration of the dopants in the given
structures. This variation in the band gaps of the two isomers of
the dual doped graphene due to the relative positions of the
substituted dopants in them is consistent with the past
studies®* on B and N co-doped graphene.

OB isomer of Be-S co-doped graphene

When Be and S are substituted for two carbon atoms of gra-
phene at two non-equivalent sites (i.e. at O and B) nearest to
each other (see Fig. 7a), similar effects to the previously
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discussed isomers are observed after the optimisation of the
structure. The dopants interact with the other carbon atoms
through sp” hybridization. After optimisation of the structure,
the bond lengths of Be-S, S-C and Be-C were found to be 1.69 A
1.62 A and 1.50 A respectively. These bond lengths are greater
than the optimised C~C bond length of graphene. Consequently
the immediate C-C bond lengths adjacent to the dopants are
reduced leading to the distortion of some of the adjoining
hexagonal carbon rings of the system. Though there were
significant changes in the adjoining bond lengths of the atoms
of the structure, the planar shape of the system is preserved.
For this isomer the cohesive energy of the system is equal to
7.41 eV per atom which is the highest value among the isomers
of Be-S co-doped systems we considered, thus the most stable.
Analogously, this configuration shows conformity with the most
stable configuration of nitrogen and boron co-doped graphene
as cited by Nath et al.* The detailed explanation of this favour-
able configuration has been provided in the immediate section.
Bader charge analysis confirms that the valence charge of
1.56e from Be along with 0.20e from S is transferred to the
carbon atoms in the system. For this isomer, the size of the

View Article Online
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charge transferred from sulphur is less than the corresponding
transfer in the previous system with OB1 isomer. After the
transfer of charges from the impurities to the system, charge
redistribution on carbon atoms occurs which ranges from 3.75e
to 4.52e. Moreover just like the previous cases, we observed that
more charges were transferred to the carbon atoms adjacent to
the impurities in the graphene sheet.

The results from the DOS and PDOS are presented in Fig. 7.
The DOS contribution around the Dirac point comes mainly
from p,, of C, S and less from Be. There is also minor contri-
bution from p. orbital of S. The p, orbitals of Be does not only
strongly hybridized with p, of C atoms over the range of 2.3 to
1.0 eV but also overlapped relatively softly over an interval of —4
to —9 eV and this leads to p-o bonds near the Fermi levels.
Similarly, S and C which strappingly hybridized over a wider
energy range (—14 to —1.0 eV) also forms p-a bond. The 7 bond
between C and the dopants is very weak. This is illustrated by
the slight overlapping between p. of carbon and that of the
impurities. As it can be seen from the band structures in Fig. 7¢
a gap opening of 0.28 eV which deviates slightly away from the
Dirac point is observed. The deviation of the extremum of the
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Fig.7 (a) Optimized geometry of a Be-S co-doped graphene sheet. (b) Total DOS of BeSG with OB configuration. (c} The band structure of the
optimised structure with OB configuration. (d) Projected DOS of carbon in BeSG with OB configuration. (e) Projected DOS of Be in BeSG with OB
configuration. (f) Projected DOS of sulphur in BeSG with OB configuration.
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gap of this system away from the Dirac point might be attrib-
uted to the loss of hexagonal symmetry of some of the carbon
rings in the vicinity of the impurities in the system and as such
the linear dispersion relationship at the Dirac point is lost. The
non-uniformity in the hexagonal symmetry of the system in
question is exemplified by the relative larger bond lengths of
Be-S and $-C which have been uncovered in the preceding
paragraphs under this isomer.

Formation energies of BeS co-doped graphene

We have included this section to show that this work is in line
with the recent study by Denis ez al. > where it has been shown
that certain classes of dual doped graphene have tendency to be
more stable and easier to synthesise than their corresponding
mono-doped graphene. For example, they pointed out that Al-X
{where X = B, N, O) dual doped graphene are more stable than
Al-doped graphene, and as such they would be easier to syn-
thesise. In light of their report, we have calculated the formation
energies of Be-S co-doped graphene involving all the isomers in
this study and compared it with the formation energies of Be-
doped and S-doped graphene. The result is presented in Table
1. We would like to reiterate once more that for the caleulation
of FE, atomic energies of the atoms were considered for the
chemical potentials.

From Table 1, it can be seen that 0.61 eV which is associated
with OB isomer has the least formation energy, followed by 2.39
ev that is shared by both the OA1 and the OB1 configuration. On
the other hand, OC1 isomer has the highest FE which implies
that is the least stable among the configurations considered in
this study.

The above values show that Be and S atoms prefer to replace
C-C bond of graphene since other configurations have higher
FE. These favourable sites for Be-S co-doped graphene have also
been echoed in recent studies®* to be suitable sites for certain
classes of dual doped graphene. So far, the only exception to
this proposition is SiB along with GeB dual doped graphene. It
is interesting to point out that the FE of BeS with OB1 isomer is
lower than FE of Be or S-doped graphene. Similarly, OA, OA1,
OB1 and OC have lower FE than S-doped graphene. Meanwhile,
previous reports®+®* showed S-doped graphene has been

Table1l Differences between the formation energies (FE) of 4 x 4 BeS
co-doped graphene and the sum of FE of 4 x 4 Be and S singly doped
graphene®

> {FEmq + FEgs) —

Configuration FE(ges) (eV) FEg) (eV) 3 (FEtge) + FE(s)) (eV)
OA 2.45 519 —2.74
0Al 2.39 519 —2.80
OB ¢.61 5.19 —4.58
OB1 2.39 5.19 —2.80
OoC 2.45 5.19 —2.74
0oC1 3.80 519 -1.39
oD 3.47 519 —-1.72
0oQ 3.47 519 —-1.72

® Note: FEgg = 2.09 eV and FEg) = 3.10 €V.

This journal is @ The Royal Society of Chemistry 2016

View Article Online

RSC Advances

successfully synthesised. Therefore we could generalise that it
would be easier to synthesise Be-S co-doped graphene with
these configuration than to synthesise S-doped graphene. In
addition Table 1 reveals that the FE computed for different
isomers of Be-S co-doped graphene is less than the FE resulting
from the sum of Be and S-doped graphene. This shows that
there is synergy between Be and S which lowered the FE
significantly than the sum of FE of Be and S singly doped
graphene,

Summary

Band gap opening is important for developing electronic
devices with graphene platforms. Nevertheless, it is not enough
to create a finite band gap in graphene without a method of
tuning energy gaps to suit different applications. Chemical
doping of graphene at varying concentration via atomic
substitution has constantly been reported as a good technique
to actualise a band-gap tuning in graphene. However, doping of
graphene with atomic impurities at increasing concentration
leads to decrease in the cohesive energy of the material, and
thus reduced stability. In order to overcome this shortcoming,
the technique in this study which involves Be-S co-doping of
graphene across the sublattices, is apparently a viable option of
achieving band-gap tuning while keeping the impurities
concentration in check, and thus the stability of the system.
With this background, the plot of the variation of the cohesive
energies of Be-S co-doped graphene with the different config-
urations is shown in Fig. 8a and supported with the Table 2
which includes the summary of all the results of the
calculations.

1t is evident from the plot that the pair of dopants, Be and S,
substituted as nearest neighbour {OB isomer) in graphene is the
most stable configuration since the cohesive energy is the
highest while the formation energy the least among the
configurations considered. This specific configuration (ie.
isomer OB) yields 7.41 eV per dopant whereas other isomers
have cohesive energies that lie within 7.31-7.35 eV per dopant.

In addition, the band structures have been calculated for co-
doped graphene systems via sampling route I’ - M — K — T
— A —>L —>H—>A—L—> M- K— Hof the hexagonal
Brillouin zone. Certain patterns of variations are observed in the
electronic band structures and in the DOS of all the co-doped
systems considered. It was found that pristine graphene
exhibits a linear band at 4point of its hexagonal BZ with zero
band-gap, whereas a finite band-gap has been observed in each
of the aforementioned isomers of Be-S co-doped graphene
systemns investigated. Fig. 8b reveals the energy gaps values of all
the doped graphene systems measured from the band structure
calculations against different configurations.

It is evident from Fig. 8b that when the pair of Be and S have
been substituted for two carbon atoms at different sublattices
{(non-equivalent) sites with varying relative distances in between
the dopants, the electronic band-gaps of the resulting doped
systems have been tuned from 0.42 eV through 0.58 eV aside
from OB and OC isomer. However, an energy band-gap tuning
within an interval of 0.17-0.34 eV has been achieved when the

RSC Adv, 2016, 6, BB392-88402 | 88399
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Fig. 8 (a) The variation of the cohesive energies of Be—S co-doped graphene with the different configurations. (b) The variation of the energy

gaps of Be—S co-doped graphene with the different configurations.

Table 2 Summary of the configurations against the corresponding
cohesive energies (coh), band-gaps and difference between formation
energies (FE) of 4 x 4 BeSG and the sum of FE of 4 x 4 Be and S singly
doped graphene®

Cohesive energy ~ FEgg) — Band gap
Configuration  (eV per atom) Y (FE@me) + FEg) (eV)  (eV)

OA 7.35 —2.74 0.45
0A1 7.35 2.80 0.18
OB 7.41 4.58 0.28
OB1 7.35 —2.80 0.18
oC 7.35 —2.74 0.20
ocC1 7.31 —1.39 0.31
oD 7.32 —1.72 0.58
0Q 7.32 —-1.72 0.39

“ Note: FE@ge) = 2.09 eV and FE() = 3.10 €V, coh of pristine graphene =
9.19 eV.

pair of Be and S has been substituted for a pair carbon atoms
which are at varying distances apart but at the same sublattices
of graphene. This results show that sublattices symmetry is
subverted for co-doping at non-equivalent sites but tends to be
preserved when is done at equivalent sublattice positions.
Therefore Be-S co-doping of graphene creates a finite band-gap
in the material. Moreover, the gap can be tuned if the effect of
doping sites and dopant-dopant proximity is taken into
consideration.

Conclusions

The band-gap of graphene was tuned by co-doping it with Be
and S. The sites occupied by the pair of Be and S in graphene
were kept at varying distances from each other. The stability,
structural and electronic properties of these systems for
different lattice sites were determined. The electronic proper-
ties of graphene depend on the symmetry, and thus the sites of
the impurities play an indispensable role in the modulation of
the energy gap. The electronic character changes from semi-
metal to semiconductor upon doping and, at the same time
the flat structure of the graphene sheet was preserved. The
isomers generated by choosing different doping sites differ
notably in bond length, band gap and stability. Two set of

88400 | RSC Adv., 2016, 6, 88392-88402

configurations were considered: one involves Be-S co-doping at
equivalent positions while the other configuration deals with
substitution of the impurities at non-equivalent sites of gra-
phene sheets. Besides the OB and OC isomer, all the isomers
that lent credence to the latter configuration enhanced a band-
gap opening but are less stable than the isomers of the Be-S co-
doped graphene sheets that shared the platform of the former
configuration. As expected, the Fermi level of all the isomers of
Be-S co-doped graphene considered in this study lied right in
the middle of the band-gap. This shows that Be-S co-doped
graphene has no metallic character as the case might be in
sulphur (heavily) doped graphene. The result of cohesive and
formation energies shows that when Be and S are substituted as
nearest neighbour such a conformation gives the most stable
configuration than any other one. Due to the differing electro-
negativity between a carbon atom and the impurities, electrons
accumulation occurred on the carbon atoms closest to Be and S
in all the doped systems investigated. Our result presents an
avenue to tune the electronic band gaps of graphene from 0 eV
through 0.58 eV so that the material can be used in electronic
applications with operations within this energy range.
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4.3.3 Concluding remarks

The result of the study shows that a finite gap is induced in graphene when it is co-doped with Be
and S—atoms and the size can be tuned up to 0.5 eV depending on the doping sites. The cohesive
energy calculation of the system shows that OB1 isomer, which is the configuration designated for
Be and S atom occupying the positions of any two adjacent atoms of graphene, is the most stable.
The origin of the stability of this configuration is attributed to the formation of ionic bonding
between the impurities. This was further confirmed by Bader charge analysis which shows that
there was charge transfer from Be to S—atom. OB1 configuration was observed to induce the
minimum band-gap of 0.1 eV in graphene while a maximum band-gap of 0.58 eV was attained
when the impurities occupied the sites that are two rings apart, designated as OD isomer in Error!
Reference source not found.. The difference in the band-gap between the isomers could be

ascribed to charges redistribution in the system arising from different doping patterns.
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4.4 A systematic study of the stability, electronic and optical properties of beryllium
and nitrogen co-doped graphene

4.4.1 Introduction

Transparent conductors (TCs) are an important components in use today and are employed in a
myriad of common applications that include but not exclusive to touch screens, solar cells, liquid
crystal displays (LCDs), organic light emitting diode (OLED) [6], [7], smart phones, etc. Indium
tin oxide is the most widely used TC[8], [9] in most device applications; this is because most of
the required properties (such as high optical transparency, low sheet resistance, and stability[10])
of an ideal TC are unparalleled in the oxide. However, ITO has some limitations which suppress
its use as a TC. Some of the limitations that the material exhibits are; brittleness, which limits its
application in flexible devices; material cost, which is due to indium scarcity; and conductivity
degradation if it is bent. As a result of these shortcomings an alternative material, which comprises

all the essential qualities but also circumvents the limitations of ITO as a TC, is being sought after.

Satisfying most of the important criteria earmarked for an ideal TC, graphene has been touted as a
replacement for ITO due to its fascinating properties such as high flexibility, good transparency
with a transmittance exceeding 97%, good mechanical, chemical and thermal stability[11]-[13].
Despite being characterised by these qualities, graphene is not a perfect TC material, because it
has a higher sheet resistance and a lower electrical conductivity than ITO. The sheet resistance of
the 2D material is between 1000 to 5000 €/sq while 10 to 30€/sq [14] has been observed for ITO.
Interestingly heteroatom doping has been widely reported as a useful approach to tailor the

physical properties of graphene and could be applicable to tuning the sheet resistance.
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In view of the above, a study aimed at finding the right dopants that could lower the sheet resistance
of graphene without compromising the optical transparency is worth investigating. Recent study
by Ullah et al.[2] suggests that the conductivity of graphene could be increased and transformed
to p-type if it is doped with Be-atom. However, they did not study the lattice dynamics of Be-
doped graphene to find out if the system is dynamically stable; probably the system is not stable
and this could explain why the report on the experimental synthesis is scarce. Moreover, the optical

properties of the system were also not investigated to know if it is transparent.

Following the study of Ullah et al.[2], we investigated from first-principles, within the frame work
of DFT, the lattice dynamics, electronic and optical properties of Be-doped and, Be and N (Be-N)
co-doped graphene. The effects of the impurities concentration on the aforementioned properties
were also considered. As regards to the Be-N co-doped graphene, the system was studied along
with the Be-doped graphene should in case the latter is not stable dynamically. The presence of
the N-atom is expected to increase the stability of Be-N co-doped relative to the Be-doped
graphene due to a possible ionic bonding between Be and N if they were to be placed adjacent to

each other in a graphene matrix.

4.4.2 Results and discussions

The details of the computation and the analysis of the properties of Be and N singly doped and co-

doped graphene are presented in the published article below.
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demonstrate Be-N co-doped graphene to be a more realistic p-type semiconductor than Be-doped
graphene and the band-gap can be tailored to meet the requirements of specific applications in nano-

electronic and optoelectronic devices.
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1. Introduction

Graphene, known to have a stable structure [1], high charge
carrier mobility [2—6], high thermal conductivity [7], low Johnson
noise [8], high surface area [6], unique electronic (e.g the linear
energy dispersion at the Dirac points makes quasiparticles in the
system to behave differently from the convectional semiconductors
and metals) and optical characteristics (tuneable surface plasmons,
a behaviour that is not obtainable in metals), amongst other fasci-
nating properties has triggered rising research interests. These
properties have thus encouraged its potential applicability in
various applications such as catalysis [9], field effect emission [10],
energy storage [11,12], gas [13,14] and bio sensing [15—17]. Never-
theless, there is persistent inclination for its applicability range to
be actively extended to the developing nanoelectronics field.
However, graphene has a zero band-gap and this limits its direct
application in electronic devices. A possible route employed by
researchers to address the zero band-gap issue is by doping

* Corresponding author.
E-mail address: ncholu.manyala@up.ac.za (N. Manyala).

https://doi.org/10.1016fj.carbon.2017.12.014
0008-6223/© 2017 Elsevier Ltd. All rights reserved.

techniques. Among different techniques [18—30]| that have been
reported, substitution doping of graphene with impurities is
currently one of the preferred techniques to create a sizeable band-
gap in the material leading to a new or improved physiochemical,
optical and structural properties of the material. This is because
impurities are frequently the prevailing scatterers that control the
intrinsic electronic and transport properties of the system. In view
of the necessity to expand its applicability, this present study em-
ploys density functional theory (DFT) to systematically investigate
the electronic structure and optical properties of the substitutional
type of doping of graphene, specifically, where the carbon atoms
are replaced with beryllium and nitrogen atoms.

In an attempt to tailor the properties of graphene to meet spe-
cific applications demand, numerous theoretical and computa-
tional studies on heteroatom doped graphene have been reported,
some of which have been found to agree with experimental find-
ings. For example, Beheshti et al. [31] investigated a calcium-
decorated and boron-doped graphene for high capacity hydrogen
storage via a first-principles study, and realised that the substitu-
tional boron doping of graphene eliminates the clustering of Ca
atoms on graphene. In another study, Nath et al. [32] carried out
some computational study on the electronic and optical properties
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of N and B-doped graphene, and found that the band-gap of the
systems increases with an increase in doping concentration.
Moreover, they observed, that the static dielectric constant of the
systems, in the long wavelength limit for parallel polarization of the
electric field, is modified with respect to impurity concentration.
Rani et al. [33] also investigated the optical properties of pristine
and doped graphene using DFT, and reported that N and B atoms
can be used to tailor the optical properties of graphene in the visible
region of electromagnetic (EM) spectrum. Recently, Jiang and co-
workers [34] performed a first-principles study of nitrogen and
beren doped graphene as potential catalysts in non-aqueous Li-O;
batteries, and found that boron-doped graphene exhibits excellent
performance as a catalyst for oxygen reduction reaction and the
oxygen evolution reaction (OER) in non-aqueous Li-O; systems.

Theoretical predictions of B and N-doped graphene reported in
the literature are now being supported by experimental findings
involving the synthesis and characterization of these systems along
with other hetercatoms doped graphene. For example, B-doped
graphene with the impurity concentration of 4.3% has been suc-
cessfully grown on copper foil at 1000 °C in an Ar atmosphere,
employing polystyrene and boric acid as the sources of carbon and
boron [35]. Similarly, B-doped graphene has been realised with the
use of ethanol as the carbon source and boron powder as the B-
precursor [36]. Ajayan et al. [37] reported the experimental syn-
thesis of B and N co-doped graphene using methane {CH,4) and
ammonia borane (H3;NBH3) as the carbon sources and boron-
nitrogen sources respectively. Wang et al. [38] prepared N-doped
graphene employing nitrogen plasma treatment of the graphene
through a chemical method. Moreover, they observed that the as-
prepared N-doped graphene exhibited a high electrocatalytic ac-
tivity for the reduction of hydrogen peroxide and fast direct elec-
tron transfer kinetics for glucose oxidase. Despite the obvious
choices of nitrogen and boron, heteroatoms with larger atomic radii
have also been successfully substituted for the carbon atoms of
graphene. For instance, Si-doped graphene has been theoretically
demonstrated within the framework of DFT [21,39—41], and its
experimental synthesis has also been successfully actualized [42]
with its application as molecular sensors [40,43]. In the same
way, other atoms such as Se [44,45], Ni [46,47], Mn [47], Fe [48] and
Co [47] have all been substituted for the carbon atoms of the gra-
phene system to obtain doped graphene systems. For further work
on doped graphene and the potential applications, an interesting
review has been given by Ruitao Lv and M. Terrones [49].

Properties of graphene can further be modified if dual doping is
considered. Cruz-Silva et al. [50] revealed by first principle calcu-
lations that P-N dual doped graphene is a potential material for the
fabrication of fast response and ultra-sensitive sensors. The labo-
ratory synthesis of this nano-composite was recently demonstrated
by Zhang et al. [51] in which the material was adopted as a catalyst
for electrolytic hydrogen evolution [51] as well as an excellent
anode material for lithium ion batteries [52]. Besides P-N dual
doped graphene, the synthesis of sulphur (S) and nitrogen (N} dual
doped graphene system has also been reported [53—61]. This sys-
tem has been utilized as an electrocatalyst for oxygen reduction
reactions (ORRs} and to improve the lithium storage capacity of
sulphur-nitrogen-graphene (SNG) systems [54,55,59].

Meanwhile, using ab-initio calculations Lee et al. [62] studied
the adsorption of beryllium (Be) on fullerenes and their capacity to
store hydrogen molecules. They remarked that clustering of Be-
atems on fullerenes is energetically favourable but causes the
dissodiation of hydrogen melecules. Ferro et al. [63] performed a
DFT study on the diffusion of Be in graphite. They stated that, in
large quantities, the absorption of the Be in graphite could lead to
the formation of Be,C. Recently, Ullah et al. [64] studied structural
and electronic properties of Be and Be-B dual doped graphene

through DFT calculations and found that for an impurity concen-
tration of 12.5%, the maximum band-gaps of 1.44 and 0.99 eV can
be obtained for the Be-doped and Be-B dual doped graphene,
respectively.

Bearing in mind the promising physical and electronic proper-
ties of Be-doped graphene as predicted through computational
studies of the system, we wondered why the experimental syn-
thesis of this nanostructure is yet to be reported in the literature.
Based on this account, the present study seeks to explain why no
experimental report of this aforementioned system exists till date
by performing theoretical calculations related te the formation
energies of Be-doped, N-doped and Be-N co-doped graphene
(BexNyG) systems within the framework of DFT. The effects of
isomerization and impurities concentrations have also be taken
into consideration.

From the calculation results, it was observed that the formation
energy of Be-doped systems is very high in comparison to that of N-
doped graphene {(a system with a documented experimental syn-
thesis)} which might be why no report exist till to date on the
experimental synthesis of the Be-doped graphene. On the account
of the formation energy of the Be-doped system, it was observed
that substitutional doping of graphene with Be-atom might be
difficult to accomplish experimentally. Motivated by the necessity
to reduce the formation energy of Be-doped graphene and still have
the same p-type semiconducting material, co-doping of graphene
with Be and N-atoms was done. Interestingly, it was seen from the
results obtained that not only is there a significant reduction in the
formation energy of Be-N co-doped graphene (BeyN,G, wherex =1,
2,3 or 4 the number of Be or N-atoms in the system) as compared to
that of Be-doped graphene, but also a similar electronic character
exists between the two systems. Buoyed by this result, we subse-
quently attempted to tailor the properties of the system to meet the
requirements of the specific application in nanoelectronics and
optoelectronics by investigating the defect dependency of the
electronic and optical properties of Be-N co-doped graphene.
Lastly, the results will also be compared with that of single Be-
doped and N-doped graphene.

2. Methods

The electronic and optical properties of the above mentioned
graphitic systems have been calculated from first principles within
the framework of ab-initio density functional theory as imple-
mented in Vienna Ab-initio Simulation Package (VASP) [65]. In the
calculations, while the electron-ion interactions were described by
the Projected Augmented Wave (PAW) [66], the HSEO6 hybrid
functional with the Generalized Gradient Approximation as pro-
posed by Perdew Burke Ernzerhof (PBE) [67] was employed for the
exchange-correlation. For the expansion of Kohn-Sham orbitals in
the plane wave basis set, a kinetic energy cut-off of 400 eV with
energy convergence criteria of 10 * eV was utilized for all the cal-
culations of the systems investigated. Each of the systems consid-
ered consists of 32 atoms with a periodic model slab of 4 x 4
supercell size.

In order, to avoid interlayer interaction between two successive
layers of graphene, a test of energy convergence with respect to the
interlayer spacing was performed and an interlayer gap spacing of
14 A, found to give a converged result, has been used in between
the layers with a periodic boundary conditicn applied along the
graphitic plane. All the graphitic systems were geometrically
relaxed until the Hellmann-Feynman forces converged just below
0.002 eV A L In view of the symmetry of the graphitic systems
employed and as a way of actualising self-consistent field calcula-
tions, Monkhorst-Pack gamma centered grid of 7 x 7 x 1 k-mesh
with Gaussian smearing of 0.2 width was adopted to sample the
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Brillouin zone.

Besides, when calculating the density of states, a denser k-point
grid of 17 x 17 x 1 k'was employed for the calculations in order to
reach a satisfactory coverage of the first Brillouin zone. Due to the
breaking of graphene lattice symmetry as a result of doping of the
system with impurities of larger molecular radii than carbon atom,
the path in the reciprocal space along which the band structures are
calculated is given via sampling route of
I'->M->K->T->M—>K—>I—-M ->K —1I.

To calculate the possibility of a substitutional defect to form and
to contrast the energies of different defects in graphene, we have
defined the formation energy of a defect to form as:

Eporm = Eg — ) ity (1)
i

where E, represents the total energy per unit cell of a graphene
system with defects; ‘i’ is the summation index over all the atoms of
given types; while the number of atoms of type 7’ is given by n;, g, is
the chemical potential of an atom of type i. For the chemical po-
tential of carbon g, the energy of graphene per unit carbon atom
was employed so that zero formation energy is obtained for defect-
free graphene. To calculate the chemical potential of nitrogen uy,
we created a 16 x 17 x 18 A supercell and placed nitrogen molecule
in the middle of the box. K-integration was set to Gaussian and
single point spin polarized calculation was performed. The mini-
mum energy of a nitrogen melecule via the optimized geometry of
the system as stipulated by spin polarized calculation was found to
be the same as the result from a non-spin polarized calculation.
This shows that a nitrogen molecule is a closed shell system. As a
final step, the g, of nitrogen was obtained as half of the energy of
the molecule. Finally, Be chemical potential carbon gz, was calcu-
lated using the energy per unit atom of crystalline Be in a simple
hexagonal lattice with a space group of P63/mmc.

It should be noted that the spin and non—spin polarized calcu-
lations for the geometry optimization of a BexNxG system were
initially performed. The total energies of the two calculations were
observed to be equal, along with net zero magnetic moments. As a
result, the non-spin polarized calculation was subsequently
considered for the rest of the calculations so as to save ample
amount of time. Moreover, Be and N are not the only impurities that
preserve the non-magnetic character of graphene. Recently, Be and
S co-doped graphene have also been reported to be non-magnetic
as elucidated in detail in our earlier work [68].

The ground state energy of a given crystal expressed as a func-
tion of atom positions r (Ik) could be expanded around the equi-
librium positions using Taylor expansion:

E(AL I r{ ). =Bt o 3wl KU UL, )
Ltk

+0<UY3)H
(2)

Where k is the position of an atom-in a unit cell I-relative to
another atom at k. E, is the energy at the equilibrium while the
displacement of any atom of the system is represented as U.

To calculate the phonon frequencies, the interatomic force
CONSLants ¢ is expressed as:

9%E

sl = 55 ery ey ©

The Cartesian indices are represented as & and 8 while r is the
position vector of any atom in the system. equation (3) could

further be expressed in terms of the forces on the atoms of a given
system, i.e.

Fa(l'lke'; Aro (IK)) — Fg(l'k
ol ey =BT D) @

In the above equation, the force experienced by an atom Ik in
the direction of 8 is represented as Fp(lk) whereas the finite
displacement is denoted by Ar,. With equation (4}, the force con-
stants ¢, and the dynamical matrices can be computed [].
Thus, the phonon frequencies tg; of the system for a given wave
vector ¢ and a moede i can be obtained by diagonalizing the
dynamical matrix. All the required steps in the above equation (2}
through (4] were automated with a phenon code interfaced with
VASP Medea.

Generally, the optical properties of a system are calculated with
the aid of a frequency dependent dielectric function z(w) (see
equation (5)); where &, is the imaginary component and is calcu-
lated using first-order time-dependent perturbation theory in the
framework of simple dipole approximation.

(o) = e1(w) +lex(w) (5)

In the limit of long wavelength, £, could be expressed as:

2
g0 -2 SN PP @)
cuk

where V, g5 and w (in eV} stand for the volume of the supercell, free
space permittivity and a given radial frequency of the applied EM
wave respectively. In turn, W and T represent the polarization
vector of the incident EM field and the position vector. The eigen-
functions of the valence (v) and conduction (c) band of the systems
at k-point are in that order denoted by ¥}, and v, while the corre-
sponding eigenvalues are given by Ef and E}.

In the procedure, the calculations of the dipolar transition ma-
trix elements between occupied and unoccupied single electrons
orbitals are calculated and implemented in the VASP code within
the formalism of Kohn-Sham [69,70]. £y which is the real part of the
complex frequency dependent dielectric function is calculated from
£9 using the Kramers-Kronig transformation:

du'ex (w0’
w? —w? +iy

s1(w):Re[e(q—>03w):1+%P/ -
0

where P represents the Cauchy principal value.

The technique is well explained in Ref. [71] with both £ and &
having two independent components which are related to the two
polarizations of the electric field in relation to the given systems.
The two polarizations are termed parallel and perpendicular po-
larization in this study. Note that equation (6) does not include a
Drude component. The Drude term describes intraband transitions
which are prevalent at low energies.

VASP code uses equation (6) and (7) to compute the data of
frequency dependent components of (w). With these data sets, the
optical properties of the Be-doped graphene (Be,G}), N-doped gra-
phene (N,G) and Be-N co-doped graphene (BeyN,G) (wherex = 1,
2, 3, 4 is the number of the atomic impurities in the graphene}
systems have been calculated where x is defined as the
number of impurity atoms introduced into the graphene crystal
lattice. That is:
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FZ £ %
n(w) = (—m) (8)

ffi 5“2 — & :
K(w) - (%) (9)

where n{w) and k{w) are in that order the real and imaginary parts
of the complex refractive index #, and are related as
u = n(w) + ik(w), Through equation (8) and (9) the reflectivity R{w)
(Equation {10)) of each system has been evaluated such that the
incident polarized fields are normal to the samples.

2
n-12%+k (1= \/e(w)
R(w) = = 10
© = e (1_ ,,-(m)) (10)

The absorption coefficient a(w) of each system given by equa-
tion (11) has been derived from equation (9)

2kt esw
o(w) = ch  nch an

In equation (8), ¢ stands for the speed of light in vacuum, while
the other parameters maintain the same depictions as previously
stated.

For a given system, the electron energy loss function (EELS) L{t)
which is a measure of its collective excitation can be evaluated
using equation (12). The function 1is derived from
L{w) = Im{—1/e{q—0, w)) and the magnitude increases as & —0
and &; <1 at plasma frequency. Plasmons play a significant role in
dictating optical properties of semiconductors and metals. At
Plasma frequency, electromagnetic waves of lower frequencies are
reflected by a material because of the screening effect of the elec-
trons in the material. However, light of higher frequencies above
the plasma frequency are transmitted by the material as a result of
the slower response of the electrons in the material in screening the
field.

L(w) = (12)

£2
e'% + é‘%

To calculate the optical properties of NxG, BexG, BexyNxG and
pristine graphene systems, quite a number of unoccupied bands
have been taken into consideration in these present calculations.
For DFT calculations, reasonable results are often obtained for the

E (eV)

dielectric properties of a system if the number of empty bands
added above the Fermi-level is twice or three times the default
value provided with respect to VASP. It is important to note that an
appreciable number of empty bands are needed in DFT calculations
to get fairly accurate results for the calculations of the density of
states (DOS) and frequency dependent dielectric matrix. This is
because in an iterative matrix-diagonalization scheme in VASP,
eigenvectors near to the top of the computed number of vectors
converge much slower than the lowest eigenvectors. This could
result in substantial performance loss if enough empty bands are
not utilized in the calculations. Also, a large number of empty bands
are required to account for the high frequency electronic transition
in the system. As a result of this, for the calculation of DOS or
bandstructure, it is recommended to set the number of bands to be
(the number of valence electrons)/2+ (the number of atoms)/2.
Whereas, for the calculation of the optical properties, three folds of
the default number of bands needed for the calculation of DOS is
required. In this calculation, approximately 160 empty bands have
been added to the default value in order to account for likely high-
frequency interband transitions of the given systems.

3. Results and discussion
3.1. Electronic properties

This section focuses on the electronic properties of the Be-
doped, N-doped, and Be-N co-doped graphene systems, and the
effect of the impurities (Be and N co-dopants) concentration on the
band-gap of the system. In addition, in order to validate our results
with previous reports from similar studies, and to draw a com-
parison between Be,G, NyG and BeyN,G systems at different im-
purities concentrations, a systematic study of the electronic
structures of these aforementioned systems and that of the pristine
graphene was performed. Fig. 1 shows the optimized structure,
electronic band structure and density of states (DOS) of pristine
graphene, As indicated in Fig. 1 (left image), the lattice constant of
the system after optimization was found to be 2.46 A while the C—C
bond length is equal to 1.42 A. These values are in excellent
agreement with previous studies |64,68|. The band structure along
with the DOS of pristine graphene as illustrated in the right panel of
Fig. 1 (right image), also agrees with the literature |32| with respect
to the zero energy band-gap and linear dispersion crossing at Dirac
point. Thus, these findings indicate the reliability of our computa-
tional methods.

Substitutional doping of pristine graphene with foreign atomic
elements modifies the electronic properties of the material
depending on the nature of the dopants, substitutional sites and the

5 10 15 20 25 30
DOS (eV")

Fig. 1. The optimized structure and the calculated band structure with DOS of a 4 » 4 supercell of a pristine graphene sheet.
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concentration of the impurity [68]. With these in mind, in this work
graphene was first doped singly with a set of N atoms, and then
with Be atoms. Employing varieties of isomers at each impurity
concentration, we varied independently the concentration of the
two set of impurities in graphene from 3.13% through 12.50%.
Although, a number of isomers at different impurity concentrations
have been studied, for the sake of conciseness, we have presented
here only the systems with stable configurations which also epit-
omise maximum electronic band-gap opening in the graphitic
systems investigated are presented for conciseness.

Figs. 2 and 3 depict the optimized geometries and electronic
structures of N-doped and Be-doped graphene at different impurity
concentrations. From the results, it was found that at any impurity
concentration, a maximum band-gap is induced in N-doped and
Be-doped graphene if the dopants are substituted for the carbon
atoms occupying the same sublattice sites of graphene (see
Fig. 2(b)—(d) and Fig. 3(b)—(d)). This doping pattern which en-
hances maximum band-gap opening has been observed experi-
mentally with a scanning tunneling microscopy (STM) by Ruitao Lv
et al. [72] to be the preferred configuration for N-doped graphene
while theoretical study by P. Rani and V.K. Jindal [73] equally
confirms it to hold for boron doped graphene as well. Due to the
size of the molecular radius of N, we also observed that the N atoms
{red atoms in Fig. 2 could replace quite a number of carbon atoms
in any hexagonal ring of graphene without deforming the ring.
However, for an in-plane substitution of any two carbon atoms
{especially the C—C) for a pair of Be atoms (blue atoms in Fig. 3) led
to a significant distortion of the hexagonal ring of graphene and this
is due to the longer molecular covalent radius of Be compared to
carbon. A similar observation has also been reported by P. Rani et al.
73] for boron doped graphene. For this reason, we ensured that no
two Be atoms were substituted for carbon atoms in the same
hexagonal ring for all the doped graphene sheets considered so as
not to alter severely the structural property of the system relative to
pristine graphene.

The analysis of the electronic properties shows that the energy
gap of the systems increases with increase in impurities concen-
trations. N-doped graphene was found to have a minimum band-
gap of 0.21 eV at 3.13% and a maximum band-gap of 0.60 eV at
12.50% impurity concentration. Moreover, for this system due to the
electron-rich trait of an N atom compared to the resident carbon
atom, the Fermi level of the band structures moves noticeably
above the Dirac point revealing the n-type semiconducting mate-
rials. However, for the Be-doped graphene, a minimum energy
band-gap of 0.44 eV (0.54 eV at the level of HSEO6) at 3.13% and a
maximum band-gap of 141 eV (1.64 eV with HSEQG) at 12.50%
impurity concentration were observed. As a result of the electron
deficiency in the Be in relation to carbon, the Fermi level of the
system moves below the Dirac point showing that Be-doped gra-
phene is a p-type semiconductor. For more detail about the trend of
the results, the summary of the results is shown in Table 1. The
result is consistent with previous similar studies as indicated in
Table 1. However, we observed that Y. Fujimoto et al. [74] realised a
significant lower Egorr, for N-doped graphene at an impurity con-
centration of 3.13%. The discrepancy between their result and ours’
might be attributed to Local Density Approximation (LDA} that was
employed in their calculation. LDA is known to over bind. The result
of the formation energy (Efrm,) of a doped system can be used to
analyse the stability and viability for synthesis. We found that Egrm
of the doped graphene systems under investigation increases with
increase in the impurity concentration of the systems. For example,
N-doped graphene was found to have a minimum Egrm, 0f 0.86 eV at
3.13% and 4.39 eV as maximum Egprm at 12.50%, while Be-doped
graphene has minimum Egrm of 579 eV at 3.13% and maximum
Eform 0f 25.56 eV at 12.50% impurity concentration. A high value of

Efrm shows that the corresponding system is less favourable to be
synthesised. Consequently, the high Egm, of Be-doped graphene
could be the reason why Be-doped graphene is yet to be syn-
thesised. Whereas for N-doped graphene with a relatively low Eggrp,
the synthesis has already been reported in the literature [75,76].

3.2. Beryilium and nitrogen co-doped graphene

Furthermore, the effect of Be-N co-doping on the electronic
properties of graphene was studied. An increasing amount of equal
proportion of Be and N impurities was substituted for the carbon
atoms at different atomic sites within the graphene host system. As
such, the following impurities concentrations of Be and N pairs in
graphene were considered; i.e. 6.25% (a pair of Be-N), 12.5% (two
pairs of Be-N), 18.75% (three pairs of Be-N} and 25% (four pairs of
Be-N) in a 4 x 4 pristine graphene supercell. At each impurity
concentration, different configurations of the dopants in graphene
were explored in order to obtain the energetically favourable sys-
tem which shares closest lattice structure as pristine graphene. For
the sake of brevity, only stable systems with impurities concen-
tration dependent band-gap have been reported as illustrated in
Fig. 4. Other configurations explored and their corresponding for-
mation energy can be found in the supplementary information.

It was observed that for the Be-N co-doped graphene, N (red}
and Be (blue) coexisting as the nearest neighbours (shown in Fig. 4},
is energetically the most favourable configuration among other
configurations considered in this study. The physical origin of the
preferred configuration might be attributed to the formation of an
ionic bonding between the co-dopants when they are placed
adjacent to each other. This perhaps is responsible for the increase
in the stability of the co-doped system.

The C—C preference as suitable sites for N and Be substitution in
graphene has also been reported in recent studies [68,77] to be an
ideal choice for certain classes of dual doped graphene. Thus far, the
only concession to the proposed scheme is Si-B and Ge-B dual
doped graphene. It is interesting to note that this pattern of co-
doping of graphene with Be-N along with the optimized stability
such that the band-gap of the system varies with the impurity
concentration was not reported in previous studies done by Hus-
sain et al. [78] in which they stated that increasing the Be-N con-
centration in graphene resulted in a decrease in the band-gap of the
system. However, it has been successfully demonstrated in the
present study that based on the proposed nearest-neighbours
configuration adopted, the band-gap of Be-N co-doped graphene
increases with increase in impurities concentration. The as-
obtained results provide an avenue to tailor the band-gap of the
resulting nanostructure for a specific application. From the band
structure as well as DOS calculations (also displayed in Fig. 4}, a
minimum energy gap of 0.54 eV (HSE) at 6.25% impurity concen-
tration was realised while a maximum gap of 1.88 eV (HSE)at 25.0%
impurity concentration was attained. Table 2 gives the summary of
the result. Another significant observation is that, due to the
electron-deficient trait of the Be-N pairs in graphene, the Fermi
level of the resulting system crosses the valence bands. Inferably,
this implies that the electronic character of Be-N co-doped gra-
phene is p-type as against the semi-metallic trait exhibited by
pristine graphene.

The analysis of the Epny of this system as seeing from Table 2
shows that it increases with the pairs of Be and N impurities con-
centration. For instance, the system has a minimum Egym of
3.05 eV at 6.25% concentration while 13.54 eV was the maximum
Epsrm at 25.0%. The increasing value of the Egpy of Be-N co-doped
graphene with the impurities concentration shows the decreasing
stability and tendency of synthesizing this system at a high con-
centration. Interestingly, we found that the Egrm of BexNxG at a
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Fig. 2. The optimized geometry of N-doped graphene and the calculated band structure and DOS of N-doped graphene at different impurity concentrations: (a) 3.13% impurity
concentration, (b) 6.25% impurity concentration, (c) 9.38% impurity concentration, and (d} 12.50% impurity concentration. The red spheres indicate N-atoms while the black spheres
represent the C-atoms. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

113



0. Olaniyan et al. / Carbon 129 (2018) 207-227 213

20 30 40
DOS (eV")

10 20 30 40
DOS (eV”)

FrMKr MK rm'g'r 10 20 30 ;w 50
DOS (eV")
Fig. 3. The optimized geometry of Be-doped graphene isomers and the calculated band structure and DOS of Be-doped graphene at different impurities concentration: (a) 3.13%

impurity concentration, (b} 6.25% impurity concentration, {c) 9.38% impurity concentration, and (d) 12.50% impurity concentration. The blue spheres indicate Be-atoms while the
black spheres represent C-atoms. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Table 1
Formation energies and band-gaps of Be-doped and N-doped graphene with variable impurity concentration.
System Impurity concentration (%) Band-gap (eV) (GGA) Reference Eporm (V)
N-doped Graphene 3.13 021 Present work 0.86
= [74] 032
021 132] -
6.25 036 Present work 194
037 132] -
9.34 050 Present work 3.18
049 132] -
1250 0.60 Present work 439
061 132] -
Be-doped Graphene 3.13 044 Present work 579
046 [64] =
6.25 063 Present work 11.63
060 [64] -
934 085 Present work 18.10
087 [64] -
1250 141 Present work 2556
144 [64] -

given impurity concentration is lower than that of BexG at the same
concentration. For example, the BexG system has Eform of 11.63 eV
and 25.56 eV at 6.25% and 12.50% impurity concentration respec-
tively, whereas formation energies of 3.05 eV and 6.25 eV were
recorded at same concentrations for the Be;N,G system. Thus, these
results of the Epp, suggest that it is more viable to synthesise
BeyN,G than to synthesise Be,G. In other words, the results of this
study suggest that it could be realistically easy to synthesise a p-
type graphene semiconductor through Be-N co-doping than just
Be-doping of the system.

Meanwhile, we would like to point out that all the doped sys-
tems investigated in this study are heavily doped. As a result, the
Fermi level crosses the valence band for the cases of BeyNxG and
BeyG system, and conduction band in the case of NxG. The position
of the Fermi level shows that these systems also exhibit metallicity
besides the semiconducting character. Thus, this class of materials
is called the degenerate semiconductors. Indium tin oxide (ITO} and
copper chalcogenides, known to be n-type and p-type respectively,
are other examples of degenerate semiconductors.

Furthermore, the lower Eg.;, of BeyNyG as compared to Be,G ata
given impurity concentration spurred us to investigate the lattice
vibrational modes of the two systems to ascertain which one is
stable under normal conditions. In this study, harmonic
approximation-where all the oscillators in a given system vibrate
with fixed frequencies-was considered. Before calculating the
phonon dispersion curves of Be,NyG and Be,G system, we first
validated our computational method by trying to reproduce the
phonon dispersion curve of graphene which has previously been
reported through experimental [79] and computational study [80].
To calculate the phonon dispersion curve of graphene, a 1 x 1
supercell with two carbon atoms which correspond to six phonon
modes (ie. three acoustic and three optical branches) was
considered. The result of our calculation for a monolayer graphene
is shown in Fig. 5

LO, TO and ZO at the upper part of Fig. 5 are called the longi-
tudinal, transverse and optical branch while LA, TA and ZA are the
corresponding acoustic branches. The phonon spectrum described
above is in excellent agreement with the experimental study by
Yanagisawa et al. [79] and the theoretical report by Mounet and
Marzari [80] as demonstrated in Table 3. Thus, the agreement be-
tween the result of this study and the existing experiment data
validates our computational method. Consequently, the method
was extended to compute the phonon dispersion curves of Be,N,G
and Be,G. To investigate the stability of the two systems, two 2 x 2
supercells of graphene which corresponds to 8 atoms per unit cell

were considered. In the first supercell, two carbon atoms of gra-
phene with C— C conformation were simultaneously substituted
for Be and N-atom such that the resulting nanostructure forms Be-
N co-doped graphene with 25% impurity concentration. However,
in the second supercell, a carbon atom was replaced for a Be-atom
to form a system with 12.5% impurity concentration. The two doped
systems were geometrically relaxed until the Hellmann-Feynman
forces on the atoms converged just below 0.002 eV A'LFig. 6 (a)
and (b} show the corresponding dispersion curves of the two
systems.

Fig. 6(a) is the phonon dispersion curves of BeyNyG with 25%
impurity concentration. All the frequencies are positive; as a result,
BexNyxG with 25% impurity concentration is stable. However, the
dispersion curve of Be,G with 12.5% impurity concentration has
imaginary frequencies of (see Fig. 6(b}). This shows that the system
is not stable at this concentration. The result confirms the reason
why the system is yet to be synthesised at that concentration of
impurity under normal conditions. It is quite necessary to point out
that the results of the phonon spectral of the two systems are in
agreement with their corresponding energy of formation. That is,
the Efopy of BexNxG with 25% impurity concentration is significantly
lower than that of Be,G with 12.5% impurity concentration (see
Table 2).

Interestingly, following the work of Zhou et al. [81] the stability
of Be-doped graphene could also be established such that all the
phonon frequencies of the system would be positive. Zhou and co-
workers demonstrated that by applying appropriate tensile strain
along with carriers doping, a doped graphene which eoriginal was
unstable could be stabilized. Thus, in the next section it is assumed
that BexG have been stabilized with an application of tensile strain
and charges in accordance to Zhou et al. [81] As a result optical
properties of BexG-up to 12.5% impurity concentration-can be
discussed.

3.3. Optical properties

It has been exemplified from the electronic structure calcula-
tions that doping of graphene with Be, N or Be-N atomic pairs
modifies the electronic properties. Consequently, the changes in
the electronic properties of the resulting systems as a result of
doping are expected to lead to the alteration of the optical prop-
erties of graphene. Fig. 7(a) illustrates the real (¢;) and the imagi-
nary part (=) of the dielectric function of pristine graphene
systems respectively, expressed in the long wavelength limit as a
function of frequency under parallel (£} and perpendicular {£,)
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Fig. 4. The optimized geometry of Be-N (blue and red spheres) co-doped graphene and the calculated band structure and DOS of Be-N co-doped graphene at different impurities
concentrations: {a) 6.25% impurity concentration, {b) 12.50% impurity concentration, (¢} 18.75% impurity concentration, and (d) 25.0% impurity concentration. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Table 2
Formation energies and band-gaps of Be-doped and BeN-doped graphene with variable impurity concentration. The band-gaps were estimated at the levels of GGA and HSE06.
System Impurity conc.(%) Band-gap (eV) Eporm (V) System Impurity conc(%) Band-gap (eV) Eform (€V)
GGA HSE06 GGA HSE06
Be,G 3.13 044 0.54 5.79 Be,N,G 6.25 043 054 3.05
6.25 0.63 0.78 11.63 12.50 057 0.71 6.25
9.34 6.25 1.00 18.10 18.75 092 1.19 9.71
1250 141 1.64 2556 25.00 154 1.88 13.54

Frequency (THz)

r M K r

Fig. 5. Phonon dispersion curve of pristine graphene. ZA (ZO), TA (TO) and LA (LO) are
in that order the out-of-plane acoustical, transversal and longitudinal (optical)
branches.

Table 3
Computed phonon frequencies at high symmetry points in the Brillouin zone
High symmetry point This study Computational experimental
GGA-PBE(THz)  Ref. 80 (THz) Ref. 79 (THz)
I'z0 26.14 2641 26.02
T 4657 4658 47.36
I'rg 46.57 46.58 47.36
Mza 13.78 14.12 13.52
Mra 18.63 18.76
Mia 39.70 39.81 39.81
Mz 19.02 19.03 19.03
Mo 40.80 40.17 39.66
Mro 41.69 4167 41.67
Kz 16.01 16.03 15.49
Kz 17.30 16.03 17.62
Kpa 2977 29.88
Kia 36.32 36.36 36.36
Kip 37.07 36.36 38.61
Kpo 4132 3861 38.61

polarization of electromagnetic waves. Moreover, the imaginary
part of the dielectric function is related to the absorption spectrum
of graphene (see equation (11)). It is worth reiterating that these
theoretical curves do not incorporate the Drude term in the
formulation. The Drude term is a phenomenological avenue to
express intraband transition which is prevalent at low energies.
Due to the lack of the Drude term in our theory, only the spectra
peaks of Fig. 7(a) that correspond to a frequency energy of above
1.0 eV have been discussed. This is because, below this stated en-
ergy value, the Drude term applicability becomes relevant whereas
above this value the intraband contribution is less significant. In
view of the above approximation, the imaginary part ¢ in Fig. 7(a)
has two prominent peaks at 4.0 eV and 13.8 eV for E|| polarization.

These two peaks’ positions, which are in good agreement with the
results of Sedelnikova et al. [82| and M. Houmad et al. [41], are
highlighted as X and Y. The origin of the peak X could be ascribed to
m—m" transitions along the M—K direction in the neighbourhood of
M in the I'-M direction (see Fig. 1). The intense resonance at Y
could be attributed to ¢—¢” transitions around the M point in the
direction of both '-M and M—K of the Brillouin zone. However, for
the E, polarization, the selection rules only sanction 7—¢* and
o— " transitions in graphene, Consequently, the observed peaks at
11.1 eV and 14.5 eV are due to 7 —¢" and ¢ — 7" interband transition
under E; polarization.

Following the analysis of the optical property of pristine gra-
phene, the change in the intensity and position of the imaginary
part of the dielectric function, &, of the doped systems around a
particular energy frequency as a result of substitutional doping of
graphene with impurities (Be, N and Be-N) have been investigated.
The imaginary part of the dielectric function of BeyG, NxG and
BexNyG with respect to pristine graphene is plotted in Fig. 7(b)—(d).
From the graphs, it is observed that the intensity of ¢, of graphene
responds to doping concentration differently across the EM spec-
trum with respect to the anisotropic signature of the system.

Under parallel polarization, for instance, it is found that the
intensity of &5 of NxG, BexG, and BexNxG systems around 4.0 eV and
14.5 eV is lower than that of pristine graphene regardless of the
impurities concentration of the doped systems (see Fig. 7(b)—(d));
it is independent of the impurities modulation within the interval
of 6.0 eV—9.0 eV and approaches zero in that region of the EM
spectrum. However, around 4.0 eV, it is well resolved with respect
to the impurities concentration. That is, the intensity of e, of the
doped systems is observed to decrease with an increase in their
corresponding impurity concentration in the neighbourhood of
4.0 eV whereas around 14.0 eV, it gets broadened as a function of
the amount of the dopants in the graphene (see the red arrows in
Fig. 7(b)~(d)).

Around 14.0 eV, at a high impurity concentration, the maximum
peak of &, is observed to be red-shifted relative to that of pristine
graphene whereas around 4.0 eV it is blue-shifted. However, under
E, polarization, it is observed that doping does not have a signifi-
cant effect on e of graphene (results not shown here). This is
because, as rightly pointed by Marinopoulos et al. [83], under this
polarization, the absorption spectrum of the system is not exclu-
sively determined by the band structure but by the local field ef-
fects which are not taken into consideration in this calculation.
With the understanding that other optical quantities like refractive
index, reflectivity, absorption, and loss function of a system can be
derived from the dielectric function, subsequent discussion is done
to elucidate the effects of Be and N on the optical properties of
graphene.

3.3.1. Refractive index n{w) and reflectivity R(w)

For all the systems investigated in this study, the real n(w) and
the imaginary k(w) part of the refractive index were calculated at
normal incidence through equation (8) and (9). Fig. 8(a) illustrates
typical n{w) spectra of the pristine graphene for parallel (E) and
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Fig. 6. Illustrates phonen dispersion of graphene doped with (a) Be and N at 25% impurity concentration and (b) Be at 12.5% impurity concentration respectively.
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Fig. 7. (a) The real (¢; ) and the imaginary part (e;) of the dielectric function of pristine graphene for both E| (black line) and £, (red line} polarized field vector. The variation of &; of
(b)NLG, (€} BexG, and (d) BexN,G with impurity concentration for parallel polarization. In (b} and (c) the black, red, green, blue and cyan curves correspond to & spectra of pristine
graphene, N-doped and Be-doped graphene at 3.13%, 6.25%, 9.38% and 12.5% impurity concentrations respectively. Whereas in (d) the black, red, green, blue and cyan curve

correspond to ey spectra of pristine graphene and Be-N co-doped graphene at 6.25%, 12.5%,

18.75% and 25.0% impurity concentrations respectively. For the arrows, the black and red

colours indicate in turn the peak positions at 4.0 and 14.0 eV. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this

article.)

perpendicular polarization (E, ) of electromagnetic waves. With E,
n{w) spectra has two major peaks at 4.0 and 11.4 eV which corre-
spond to the peak intensities of 1.7 and 1.6 respectively. However,
for E, polarization a value of 1.97 at a frequency of 10.89 eV was
observed. The occurrence of peaks in the spectra is a strong indi-
cation of the maximum value of the refractive index at that optical
frequency. The profile of these spectra with respect to the two
polarizations agrees with the earlier report by P. Rani et al. [33]
As the impurities of the doped system increase, however, both
the height of the peaks and their position changed slightly. The
refractive index of each of the doped systems drops below 1.97
(associated with pristine graphene) for E; polarization and their
corresponding frequency falls within 10.59-11.40 eV spectrum
region of EM (see Fig. 8(b)—(d)). Under E; polarization, for the NG

and BexNyxG doped systems, a clear trend of the effect of the im-
purities concentration on n(tw) was noticeable. That is, the magni-
tude of the maximum value of the refractive index (nmax(w)) of the
NxG and BexNxG systems decreases with increase in the impurities
concentration, as shown in Fig. 8(e). Specifically, the nmax(w) of the
NG system was recorded as 1.76 at 3.13% while at 12.5% impurity
concentration a value of 1.61 was obtained. Similarly, at 6.25%, the
Nmax(t) of BexNgG system has a value of 1.83 whereas at 25% im-
purity concentration a decreased value of 1.68 was realised (see
Fig. 8(e)). For BexG system, however, the response of the nmax (@) to
modulation in impurity concentration does follow decreasing-
rising order. It decreased with an increased impurity concentra-
tion from 3.13% to 9.38% and then further increased at 12.5%.
(Fig. 8(e)).
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With regards to the E) polarization, n{w) spectra of the doped
systems have two major peaks. As the impurity concentration in-
creases, first set of peaks are redshifted relative to 4.0 eV while the
second group of peaks are blueshifted with respect to (w.r.t) 11.4 eV
(see Fig. 8 (b)—(d)). Within the starting frequencies window of
4.0 eV it can be seen from Fig. 8(f) that the npa.(w) of the NyG in-
creases almost linearly with an increase in impurity concentration
whereas the Be,G and BeyN,G— apart from showing fluctuating
trend with impurity concentration— the systems have a unique
maximum at 6.25% and 18.75% impurity concentration respectively.
However, at a higher frequency of around 11.4 eV, nyax(w) of the
doped systems decrease with an increase in their corresponding
impurity concentration, and show increasing tendency at a very
high impurity concentration {see the second panel of Fig. 8(f}).

The reflectivity R(w) of all the systems investigated in this study
were also calculated at normal incidence, in the long wavelength
limit, using equation ( 10) with the values of the refractive indices of
the systems within the frequency range of ~0—45 eV for both
parallel and perpendicular polarization of the vector field. Fig. 9(a)
graphically illustrates the reflection spectrum of pristine graphene.
From the spectrum, with E;, polarization {red spectra), the pristine
graphene is seen to have a maximum reflectivity intensity, Rmax{w}
of 0.28 around a frequency of 4.3 eV which is located in the UV
regime. The peak position due to this polarization is in agreement
with the result of M. Houmad et al. [41]. Having weaker intensity
than the peak at 4.3 eV, there is also a weak intensity peak of the
systemat 14.0 eV due to the same polarization (Fig. 9(a}). Moreover,
the coefficient values of 0.1 in the visible region of the EM spectrum
and a nearly zero value in the interval of 7.5-10.0 eV have been
observed in the reflectivity spectrum of the system with respect to
the E} polarization. This observation is consistent with the report of
P. Rani et al. [33]. However, with E, polarization, Ryax{w) of the
system is observed at 14.9 eV with an intensity value of 0.26. It is
worth stating that similar vanishing reflectivity spectra within the
window of 7.5—10.0 eV found in graphene has also been observed
for the NxG, BexG and BeyNxG systems (see Fig. 9(b)}—(d}).

As a result of the doping of graphene with impurities, specif-
ically, N-atoms, the intensities and the positions of the reflectivity
spectra peaks of graphene are noticeably modified with respect to
the original peaks frequency energies at 4.3 eV and 14.0 eV. Fig. 9(b}
depicts the reflectivity spectra of NxG systems at different nitrogen
atems concentrations. From the figure, for £ polarization, it is
observed that the reflectivity peaks of the systems near the fre-
quency values of 43 eV and 14.0 eV (the positions of the most
prominent peaks of graphene) decrease with an increase in the
number of N atoms of NG systems (see Fig. 9(e)). However, at 12.5%
N concentration, the peak of the system at some point close to
14.0 eV frequency shows an increasing tendency (Fig. 9(e)). It is
fascinating to note that for most of NxG systems investigated, the
typical reflectivity peak observed near 4.3 eV is often blue-shifted
relative to the typical position in the pristine graphene for the
same polarization of the vector field. The only deviation from this
above trend occurred when the proportion of N to C in graphene is
2:32.In that case, the reflectivity peak of the system near 4.3 eV is
red-shifted with respect to that of pristine (Fig. 9(b)).

Fig. 9(c) illustrates the reflectivity spectra of Be,G systems with
different Be concentrations of 3.13, 6.25, 9.38, and 12.5% for parallel
polarization of the vector field. The following description elucidates
the effects of Be-doping around 4.3 eV and 14.0 eV, the reflectivity
peak positions of graphene under E; polarization. Within the fre-
quency interval of 7.5-10.0 eV, regardless of Be concentration in
Be,G, it is observed that the intensity of the reflectivity spectra of
Be,G systems approaches zero, and shows decreasing trend with
the increase in the Be concentration at 4.3 eV except at 9.38% where

it exhibits a slightly increasing propensity. Moreover, at approxi-
mately 14.0 eV there is no significant change in the intensity of the
peaks of the system due to the increase in Be concentration {see
Fig. 9(c}). In general, the intensity of the reflectivity peak of Be,G in
the neighbourhood of 14.0 eV, regardless of the Be concentration, is
less than that of pristine graphene for EH polarization.

For Be,NyG systems with E| polarization, while there are no
substantial changes in the intensity of the reflectivity peaks near
14.0 eV (see the black arrow in Fig. 9(d}), it is found to diminish
around 4.3 eV (see the red arrow in Fig. 9(d)), and slightly blue-
shifted relative to the corresponding position in pristine graphene
as the impurity concentration in the system increases.

Furthermore, with E, polarization, the intensity of Rmax of NxG
in the neighbourhood of 11.0 eV remains almost unchanged with
respect to that of pristine graphene, whereas at around 14.9 eV, itis
observed to drop almost linearly with the increase in nitrogen
concentration. (see Fig. 10{a} and (b}}. As for the Be,G systems, close
to 12.4 eV, the intensity of the reflectivity peak spectra increases
with increase in Be concentration whereas at 16.0 eV it decreases
with the increase of the impurity concentrations (Fig. 10(c})}. In
addition, we found that the position of the Be,G reflectivity peak at
16.0 eV is blue-shifted in relation to the corresponding position in
pristine graphene for E, polarization. For BeyNyG systems
(Fig. 10(d)), it is observed that the reflectivity peaks at 11.1 eV and
16.3 eV decreases with increase in Be-N atomic concentration,
while at 12.8 eV it increases with the impurities concentration. It is
worth noting that a unique maximum of reflectivity coefficient is
induced in the system at 11.1 eV when the pairs of Be and N con-
centration in the system is approximately 6.25%.

3.3.2. Electron Energy Loss Spectra (EELS) of the systems

To investigate the effect of impurities concentrations on plas-
mons oscillation in graphene, we have worked out the EELS of NG,
BexG and BexNxG systems using equation (12} for both £} and E.
polarization. Fig. 11(a) shows EELS profile of pristine graphene.
From the figure, two noticeable EELS peaks have been cbserved,
one at 5.5 eV with the peak height of 1.40, the other one with a
broader peak (though not smooth) lies within 15.7-17 eV and
corresponds to a peak height of 1.3 for the E, polarization. However,
for the E,| polarization, two dominant but very close peaks have
been observed at 15.1 eV and 16.6 eV which in turn correspond to
peak heights of 2.33 and 1.84 respectively. The occurrence of these
peaks could be attributed to the m and (r+¢} plasmons for £ po-
larization, while out of plane plasmons peaks could be attributed to
the transition between occupied 7 and unoccupied 7" bands. In
general, the overall profile of this spectrum, i.e. the peak positions,
the intensity as well as the line shape agree with the available
experimental results [84,85] and previous all-electron calculations
|83] where local-field-effect (LFE) was not taken into consideration.
For monolayer graphene, the experimental peaks as cbserved by
Eberlein et al. [84] were located at 4.7 eV and 14.6 eV. The incon-
sistency between the present simulation results and those from
experiments is in the exact positions of the peaks for E|| polariza-
tion. This discrepancy might be as a result of the neglect of the
excitonic effect in our calculations.

Following the analysis of pristine graphene, the EELS of the
doped graphene systems was investigated. With respect to all the
singly doped and co-doped systems considered, it was found that
the intensity of the EELS peaks of these systems at 16.6 eV de-
creases with the increase in the corresponding impurities con-
centration for the E, polarization (see Fig. 11(b)). This cbservation is
consistent with earlier reports by C. Huang et al. [86] and P. Nath
etal [32]. Fig. 11(b) illustrates the variation of the intensity of L(w}
of the NxG, BexG and BegyNyG systems with the corresponding
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impurities concentrations. Interestingly, it was observed that the
EELS profile of both BeyN,G and Be,G systems are similar (see
Fig. 11(c) and (d)). At a relatively low impurity concentration of
6.25%, the two systems have two prominent peaks at 15.1 and
16.6 eV which are similar to graphene peaks under E, polarization.
However, the peak of the systems at 16,6 eV has a higher intensity
than the other at 15.1 eV. This is a case reversal of what is observed
in pristine graphene under E; polarization (Fig. 11(a)}).

As the percentage of the impurity in BexG and BexNxG system
increases to 12% and 25% respectively, a new EELS peak at <14 eV is
formed while the two other previously discussed peaks, which
correspond to EELS peaks of graphene at 151 eV and 16.6 eV,
approach the same intensity (Fig. 11{c) and (d)). Besides, the plasma
frequencies of these p-type systems {BeyG and BeyNG) are red-
shifted relative to the 16.6 eV peak observed for pristine gra-
phene, regardless of their impurity concentrations. In the case of
NxG system (Fig. 11(e)), regardless of the nitrogen concentration,
the EELS spectra is similar to that of pristine graphene and the
plasma frequency is blue-shifted in relation to the graphene peak at
16.6 eV for E, polarization (Fig. 11(a)). For conciseness only NxG at

12.5% N concentration has been shown in Fig. 11(f)). Thus, the as-
explained results suggest that one could characterize a doped
graphene system as either a p-type or n-type semiconductor if the
peak of the EELS profile is red-shifted or blue-shifted relative to the
EELS peak of pristine graphene at 16.6 eV under the influence of £
polarization.

With E|| polarization, it has been observed that a new EELS peak
emerges around 1.56—2.36 eV when pristine graphene is doped
with nitrogen and the intensity of the peak tends to increase with
an increase in the impurity concentration (Fig. 12(a)). In Fig. 12(a),
the newly formed peak is indicated with a red arrow. The emer-
gence of the new peak is due to an in-plane low energy
(1.56—2.36 eV) plasmon excitation which could be ascribed to the
presence of extra 7 electron of nitrogen atoms within the system.
The occurrence of an in-plane low energy plasmon excitation due
to nitrogen atoms substitution in graphene has also been reported
carlier by researchers in Ref. [32]. In the case of the BexG systems
(Fig. 12(b)), the in-plane loss function could be analysed with
respect to the two regions of the spectrum. The first region, which
includes low-frequency region, starts from 0 eV and ends at 10 eV,
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while the second region extends beyond 10 eV and has a broader
frequency than the first region. A very intense and sharp peak is
formed at 5.62 eV, within the first region of the spectrum, when
graphene is singly doped with beryllium. As Be concentration in-
creases in the system, the number of distinct EELS peaks, within the
first region of the spectrum, also increases (Fig. 12(b)).

It was interesting to observe that the number of the distinct
peaks that is formed within the first interval of the spectrum
commensurate with the number of Be atoms in BexG system
(Fig. 12(b)). However, in the second region of the spectrum, only a
single prominent peak is formed regardless of Be concentration in
the doped system. The position of the EELS peak in the second
region lies within 16.0—17.9 eV for all the BexG systems considered
(Fig. 12(b)). Similarly, for BexNyG systems, the in-plane loss function
spectral is subjugated by two regions. The frequency range of each
of the region corresponds to that of BexG systems. As the Be-N
atomic pairs concentration in graphene increases, the EELS peak
intensity in the first region of the spectrum decreases, while the
corresponding frequency of the peak is blue-shifted relative to EELS
peak of graphene at 55 eV for E polarization (see Fig. 12(c)).
Moreover, the peak of the system in the second region of the
spectrum is not affected by the impurities concentration. Never-
theless, the intensity of the peak fluctuates within 1.12—1.36 as the
amount of the pairs of Be-N atomic pairs increases in the system
through substitution.

3.3.3. Absorption spectra of the systems

In Fig. 13(a), the absorption spectrum of pristine graphene has
been illustrated, and restricted to the ultra-violet region. The op-
tical absorption spectrum is related to the imaginary part of the
dielectric function through equation (11). From the spectrum, it can
be seen that pristine graphene has two distinct major peaks at the
optical frequencies of4.14 eV and 14.0 eV under || polarization. The
first peak at 414 eV has a higher intensity than the second peak.

Likewise, with E; polarization, the system is characterized by two
absorption peaks; having a wider range of frequency, one of the
peaks has multiple spikes of which the dominant one occurs at
14.6 eV, while the second peak with weaker intensity is found at
20.6 eV. These two peaks' positions are in good agreement with the
results of [33,86—88].

The change in the position and intensity of the most prominent
peaks of graphene as a result of doping could be used to investigate
the effect of impurity concentration on the absorption coefficient of
the system with respect to E| and E, polarizations. For example,
from the NxG spectra in Fig. 13(b), it is observed that the maximum
value of the absorption peak amax(t) decreases and blue-shifted
(relative to the position of the most intense absorption peak of
graphene, as shown in Fig. 13(b)) as the N-atom concentration in-
creases with respect to the £, polarization. Fig. 13(c) shows the
variation of amax{w) of NxG with N-atoms concentration. Similarly,
for the E| polarization, the intensity of the peak of the system also
decreases with the increase in nitrogen concentration; however, it
shows increasing tendency at a high impurity concentration
(Fig. 13(b)). This result is in agreement with [87].

Regarding BeyG system (where x = 1, 2, 3, 4) there are two major
absorption peaks which are similar to that of pristine graphene
under E; polarization. Having multiple spikes and a broader fre-
quency (11.0-15.0 V), the first peak has a higher intensity than the
second peak which occurs at 20.5 eV. Following the analysis of the
absorption peaks of the system, the effect of the Be concentrations
on the prominent spikes of the BexG systems was investigated. At
low Be concentration, the third spike emerges as the most promi-
nent absorption peak followed by the first spike which occurs at a
lower frequency. As the impurity concentration of the system in-
creases the intensity of the third spike decreases, while that of the
second spike intensifies. Fig. 14(a) illustrates changes in the in-
tensities of the spikes of the absorption peaks of the systems with
impurity concentration for E; polarization. From the figure, the red
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and the black arrows comparatively highlight the intensities of the
two spikes of the spectrum at different impurity concentrations.
More importantly, it is worth mentioning that, at a relatively high
Be concentration, the maximum value of the absorption peak of the
BexG system is red-shifted with respect to the position of the peak
at a low impurity concentration for the E, polarization. However,
with the E; polarization, amax{w) of the BxG system varies with the
impurity concentration in the same manner as does NyG system
with N-atom concentrations. That is, it decreases with increase in
Be concentration although it shows increasing tendency when the
impurity concentration is 9.38% (Fig. 14(a)).

For BexNxG system, as the Be-N concentration increases, the
amax(w) decreases with respect to E|, whereas for E; polarization it
increases (see Fig. 14(b)). In spite of this immediate trend, a
maximum unique value of @max(w) of the system is attained at
6.25% impurities concentration.

It is worth noting that all the doped systems considered in this
study, irrespective of the impurity concentrations, have a low value
of a(w) in the frequency range of 7.0-10.0 eV. Hence, the NxG, BexG
and BegyNyG systems as well as the pristine graphene are

transparent in that frequency window. This is simply because the
systems have low reflectivity and absorption coefficient in the
frequency interval of 7.0-10.0 eV which falls within ultraviolet
region (i.e. 150—175 nm).

4. Proposed applications

Gadgets like smart phones, laptops, flat screen televisions and
other household appliances are embedded with touch screens. Due
to materials scarcity, raising costs, and together with market de-
mand in the direction of flexible devices, the technological
advancement of such devices looks bleak. Traditionally, indium tin
oxide {ITO) is the most used transparent conducting materials
(TCs). However due to its limited geographical availability (about
160 ppb), susceptibility to conductivity degradation, rising price-
indium metal has attained a premium of $900 per kilogram-there
is a need for an ideal replacement for ITO. Despite such limita-
tions, the required properties of TCs-such as low sheet resistance,
high optical transparency, conductivity, and stability-found in ITO
are difficult to match. Interestingly, graphene is seen as an ideal
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replacement for ITO because it shares many of the required prop-
erties of TCs such as high optical transparency, high tensile stress
and flexibility. However, graphene has higher sheet resistance and
lower conductivity compared to ITO, Usually, the sheet resistance in
graphene is between 1000 and 5000€Q/sq which is too high to be
used as a TC. High sheet resistance leads to large dissipation of
energy in the material, and thus reduced device performance. To
make graphene useful as a TC it must be doped with an impurity to
reduce the sheet resistance while increasing the conductivity and
maintaining the high optical transparency. From this study, Be/BeN
has been shown as a perfect impurity that could increase the
conductivity of graphene while retaining the optical transparency
of the material. For instance, the electronic structures of BeyNxG
and of BeG show that they both exhibit metallic and semi-
conducting character. The Fermi level in the bandstructures of the
two materials crosses the valence bands, a feature that makes the
materials metallic implying a higher conductivity, while the exis-
tence of a region of no electronic states indicates that the systems
display semiconducting character. Moreover, the study of the op-
tical properties of the two materials revealed that they are both
transparent irrespective of the impurity concentration. Thus,
BexNxG and BexG could serve as ideal replacements for ITO.

Nevertheless, further research is needed to determine the work
function of these materials to know if their application as TCs is
imminent.

Another promising application of graphene is as a graphene
based transistor. The excellent mobility of the material might not be
the most fascinating feature in terms of a device application. Rather,
it may be the tendency of making a miniaturised graphene field
effect transistor without a performance restriction that is the most
compelling feature of graphene over the existing devices. However,
the major drawback in graphene based transistor is lack of a band-
gap. A minimum energy gap of 0.4 eV is required for on/off ratioin a
transistor with graphene platform [89]. Thus the value of the band-
gaps we calculated for both BexG and BexNyG with 3.13 and 6.25%
impurity concentration respectively meets this specification.

5. Conclusions

First principles DFT techniques have been employed to sys-
tematically study the stability, electronic and optical properties of
Be-N co-doped graphene in relation to pristine graphene. The
analysis of the electronic structures of the systems reveal that both
Be-doped and Be-N co-doped graphene share similar electronic
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character i.e. p-type semiconductors while N-doped graphene has
been verified to be n-type material. The effects of the isomerization
and impurity concentration on the stability and energy gap of the
systems show that Be- and N-atoms preferred to co-exist as the
nearest neighbours to form an energetically stable Be-N co-doped
graphene system (BexNxG). For the Be-doped graphene (BexG) or N-
doped graphene (NxG) systems, the impurity preferred to occupy
the same sublattices within the host system; with this order of
doping, it was observed that the band-gap of the doped systems
increases with increase in impurity concentration. At an impurity
concentration of 3.13%, a minimum band-gap of 0.44 eV and 0.21eV
was realised for the Be-doped and N-doped graphene respectively
while at 12.5% impurity concentration, a corresponding maximum
gap of 1.41 eV and 0.6 eV were observed. Besides, the Be-N co-
doped graphene was found to have a minimum band-gap of
043 eV at 6.25% and a maximum gap of 1.54 eV at 25.0% impurities
concentration.

Interestingly, it was observed that the Be-N co-doped graphene
is much more stable than the Be-doped graphene due to its lower
formation energy and thermodynamic stability. As such it is more
appealing for synthesis experimentally than Be-doped graphene.
Inferably, our study demonstrates the relative difficulties involved

in attempting to synthesis Be-doped over Be-N co-doped graphene
and, perhaps this could be the reason why the material is yet to be
synthesised experimentally. In view of this, Be-N co-doped gra-
phene would be an alternative proposition for synthesis as a p-type
semiconducting material rather than Be-doped graphene which
might not be attainable experimentally.

The dielectric matrices of the doped systems were calculated
with the help of first order time-dependent perturbation theory in
the simple dipole approximation. It was found that all the systems
investigated, irrespective of the impurity concentration, were
transparent within the frequency interval of 7.0—10eV for parallel
EM polarization. This is simply because BexG, BexNxG, NxG systems
as well as pristine graphene have low reflectivity and absorption
coefficient in the energy range of 7.0—10.0 eV which falls within the
ultraviolet spectrum (i.e. 150—175 nm).

The result of EELS analysis suggests that one could characterize a
doped graphene system as either a p-type or n-type semiconductor
if the peak of the EELS profile is red-shifted or blue-shifted relative
to the EELS peak of pristine graphene at 16 eV under the influence
of E, polarization. In general, we observed that the optical prop-
erties of the doped systems investigated respond to doping con-
centration differently across the EM spectrum with respect to the
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anisotropic signature of the host system.

The results of our study demonstrate that the band gap of gra-
phene can be tailored to meet the requirements of specific appli-
cations in nanoelectronic and optoelectronic devices,
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Supplementary Information

A systematic study of the stability, electronic and optical properties of beryllium and

nitrogen co-doped graphene
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Table S1: Doping configurations of Be and BeN co-doped graphene with the corresponding formation

energy (Efai'nt)

System Doping configuration System description Ejgorm (eV)
2Be % Different sublattices 11.96
2Be % Different sublattices 11.91
2Be % Same sublattices 11.63
JBe %\ Same sublattices 11.84

2Be2N % Same sublattices 6.27

* Corresponding author. E-mail: ncholu.manyala@up.ac.za (Ncholu Manyala). Tel: +(27)12 420 3549. Fax: +(27)12

420 2516
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2Be2N Different sublattices 6.29
2Be2N Different sublattices 6.28
2Be2N Same sublattices 6.25
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4.4.3 Concluding remarks

The results of the lattice dynamics of the systems show that Be-N co-doped graphene is
dynamically more stable than Be-doped graphene. The superior stability of Be-N co-doped to Be-
doped graphene could be attributed to the formation of the ionic bonds between Be and N-atoms
in the graphene matrix. The analysis of the electronic structures of the systems shows that both
Be-doped and Be-N co-doped graphene have been transformed to p-type semiconductors with a
metallic character. The presence of a metallic character in the Be-doped and Be-N co-doped
graphene suggests that the systems have a higher conductivity than graphene. Optical properties
of the systems reveal that the doped systems are transparent within the frequency interval of 7.0-
10.0 eV for parallel electromagnetic polarization. Thus, the result of this study suggests that BeN-

co-doped graphene is a viable candidate to replace ITO in optoelectronic devices.

Author contributions

O. Olaniyan conceived the study, designed the model and the computational framework. He also

analyzed the data.

131



References

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

H. J. Monkhorst and J. D. Pack, “Special points for Brillonin-zone integrations*,” vol. 13,
no. 12, 1976.

S. Ullah et al., “Band-gap tuning of graphene by Be doping and Be, B co-doping: a DFT
study,” RSC Adv., vol. 5, no. 69, pp. 55762-55773, 2015.

D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, “Properties
of graphene: A theoretical perspective,” Adv. Phys., vol. 59, no. 4, pp. 261-482, Jul. 2010.

K. S. Novoselov ef al., “Electric field effect in atomically thin carbon films.,” Science,
vol. 306, no. 5696, pp. 666-9, Oct. 2004.

P. A. Denis, R. Faccio, and A. W. Mombru, “Is it possible to dope single-walled carbon
nanotubes and graphene with sulfur?,” ChemPhysChem, vol. 10, no. 4, pp. 715-722, Mar.
20009.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett.,
vol. 51, no. 12, pp. 913-915, Sep. 1987.

M. A. Baldo et al., “Highly efficient phosphorescent emission from organic
electroluminescent devices,” Nature, vol. 395, no. 6698, pp. 151-154, Sep. 1998.

B. H. Lee, I. G. Kim, S. W. Cho, and S. H. Lee, “Effect of process parameters on the
characteristics of indium tin oxide thin film for flat panel display application,” Thin Solid
Films, vol. 302, no. 1-2, pp. 25-30, Jun. 1997.

U. Betz, M. Kharrazi Olsson, J. Marthy, M. F. Escol4, and F. Atamny, “Thin films
engineering of indium tin oxide: Large area flat panel displays application,” Surf.
Coatings Technol., vol. 200, no. 20-21, pp. 5751-5759, May 2006.

K. Rana, J. Singh, and J. H. Ahn, “A graphene-based transparent electrode for use in
flexible optoelectronic devices,” J. Mater. Chem. C, vol. 2, no. 15, pp. 26462656, 2014.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and
optoelectronics,” Nat. Photonics, vol. 4, no. 9, pp. 611-622, 2010.

S. Bae et al., “Roll-to-roll production of 30-inch graphene films for transparent
electrodes,” Nat. Nanotechnol., vol. 5, no. 8, pp. 574-578, 2010.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, no. 3, pp.
183-191, Mar. 2007.

S. Pang, Y. Hernandez, X. Feng, and K. Miillen, “Graphene as transparent electrode
material for organic electronics,” Adv. Mater., vol. 23, no. 25, pp. 2779-2795, 2011.

132



4.5 Ab-initio study of the optical properties of beryllium-sulphur co-doped graphene

4.5.1 Introduction

In Error! Reference source not found.the structural and the electronic properties of the in-plane
Be and S co-doped graphene was discussed. The results of the calculations show that Be-S co-
doped graphene has a finite direct band-gap, which depends on the configuration of the sites
occupied by the impurities. It was further observed that the energetically favorable configuration,
in which Be and S replaced the C—C adjacent atoms of graphene, was found to have the least band-
gap while the maximum band-gap was induced by the least stable configuration among the set of
isomers considered. However, in the study, the effect of the impurities concentration on the
electronic and the optical properties of the graphene were not studied. While only in-plane
substitution of Be and S in graphene was done, a conformation considering out-of-plane

substitution of the impurities in graphene is worth investigating.

Herein, we investigated the effect of Be and S on the lattice dynamics and optical properties of
graphene. In studying the aforementioned properties, the energy of formation of the in-plane and
out-of-plane substitution of the defects in graphene were considered to determine the energetically
favourable conformation. With the result of the formation energies, the energetically favourable
configuration was subsequently employed to calculate the electronic and optical properties of the

Be and S co-doped graphene systems.

4.5.2 Results and discussions
The details of the computation and the analysis of the optical properties of Be and S co-doped

graphene are presented in the following manuscript which is under review.
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Graphene 1s a carbon material with excellent properties, which makes it applicable in a myriad of
applications. However, the range of the applications of graphene can be extended to the developing
field of nanoelectronics and optoelectronics by doping it with heteroatoms. In this study, Be and S
atoms were used to co-dope graphene. The impurity concentration was varied by increasing the size
of the supercell from 2x2 through 4x4. First-principles calculations were performed to determine the
dynamic stability, band structure, and optical characteristics of the system. The results of the phonon
dispersion of beryllium and sulphur co-doped graphene (Be-S) show the absence of imaginary modes,
suggesting that Be-S is dynamically stable. The analysis of the band structure indicates that it has a
tunable indirect band-gap which increases with the impurity concentration. Graphene has no bang-
gap. A band-gap magnitude i1s required in a graphene-based transistor. Thus, Be-S could be
considered as a transistor material. As regards with the optical properties. it is observed that the
optical transparency of the graphene in the ultraviolet region changes with the impurity concentration.
The result shows that Be-S can be used to manipulate light waves for a device application.

I. Introduction

Graphene is a single layer of sp’ hybridized carbon atoms packed in a honeycomb lattice. The
outstanding properties (such as high carrier mobility,[1]-[4] exhibitions of ballistic transport,[5] high
tensile strength,[6] high flexibility, high thermal conductivity.[7] and ambipolar field effect[8]) make
it a promising material for use in nanoelectronic and optoelectronic devices. However, graphene has a
zero band-gap.[8]-[10] high sheet resistance.[l11]-[13] and these make it difficult for direct
integration into nano-devices. The substitutional doping of graphene with heteroatoms has extensively
been studied as an effective technique for creating a sizeable band-gap or tailoring the sheet
resistance[ 14] of the material. In general, different heteroatom-doped graphene have been investigated
either experimentally or theoretically. In the present study, we explored the potential application of
graphene-based material in nano-devices by co-doping.

There are several reports on heteroatom-doped graphene and could be considered as the basis for the
present study. Heteroatom-doping of graphene via substitution means an act of replacing a number of
carbon atoms of graphene with the elements (other than carbon and hydrogen atom) in the periodic
table. Nath et al.[15] performed a first-principles study to determine the electronic structures of boron
(B), nitrogen (N), B and N co-doped graphene (B-N). They remarked that the induced direct band-
gaps in the doped systems varied with the impurity concentration. Moreover, in the long wavelength
limit, the optical parameters of the doped systems (with respect to the parallel polarisation of the field
vector) were modified with the impurity concentration. However, they did not calculate the phonon
dispersion of the systems to determine if the systems are dynamically stable. Similarly, but in a
separate study, Rani et al.[16] employed density functional theory (DFT) investigated the frequency
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dependent optical characteristics of B, N doped graphene and B-N. They arrived at the same
conclusion as Nath et al.[15]. In addition, they indicated that the absorption peaks of the B-N were
red-shifted towards the visible regime as the impurity concentration increases. However, regardless of
the impurities percentage in graphene, their results suggest that the B-N remain transparent in the UV
region. In another study[17] pertaining to the electronic structure of the B-N, the size of the direct
band-gap was observed to depend on the choice of the sublattice points that the co-dopants occupied
in graphene. However, the report did not consider the effect of the sublattices occupied by the
mmpurities on the optical properties of graphene. Recently, DFT was employed to study the effects of
B, N concentration and the doping sites on the band-gap of graphene. [18] The results show that the
energy gap of the doped system depends on the defects concentration and the doping pattern.
However, the lattice dynamics study of the systems not was done to ascertain which pattern of doping
1s dynamically stable. More recently, Mann et al.[19] studied the thermodynamic properties of
graphene doped separately with B and N. They remarked that the dynamic stability and the specific
heat capacity of the system decreased with the impurity concentration.

Although N and B atoms are the ideal substitutes for carbon atoms of graphene. due to the size of
their atomic radii which are almost the same as that of the carbon atom, other light elements like
beryllium and sulphur have also been investigated. Beryllium’s electronic configuration is 1s* 2s”,
which in the current form, appears not to favour the formation of covalent bonds with the carbon
atoms of graphene. However, the electron in 2s could be partly promoted to 2p orbitals (since the
energy interval between the two orbitals is small) leading to a substantial orbital mixing or
hybridisation, and as a result seems to favour the formation of covalent bonding. Consequently, Ferro
et al.[20] investigated the adsorption of Be atoms on monolayer and bilayer graphene, and realised
that the dopants were more weakly bonded to a monolayer compared to the bilayer graphene. It was
stated that Be, could form magnetic or non-magnetic structures on graphene depending on the
conformation of the adsorbates. However, the optical characteristics of the systems were not studied.
Ullah et al.[21] reported on the geometric structure and the electronic characters of Be doped
graphene, Be and B dual doped graphene (Be-B). They argued that, with a rectangular doping, a
12.5% impurity concentration would induce maxima band-gaps of 0.99 and 1.44 eV in Be-B and Be
doped graphene. respectively. However, they did not report the effect of the impurities on the optical
properties of the systems. Hussain et al.[22] studied the geometric structure and the electronic
properties of Be and N co-doped. and Be-O molecule-doped graphene. They revealed that the
increase in the impurity percentage in graphene does not always lead to a band-gap enhancement.
However, they, likewise, did not report the optical properties of the systems or the dynamic stability
to show that the systems investigated have no imaginary modes. In another study, Denis et al.[23]
investigated the effects of sulphur substitution on single-walled carbon nanotubes and graphene from
first principles. They remarked that, in the case of doped graphene, the defects could either induce a
semiconducting or metallic character in graphene depending on the sulphur content. However, they
did not investigate the effect of heteroatoms co-doping as an avenue to eliminate the metallic
character of the system. Recently, we studied the geometric structure and electronic properties of the
in-plane beryllium and sulphur co-doped graphene (Be-S) at a fixed impurity concentration. We
observed that the band-gap of the Be-S depends on the relative positions between the impurities in the
system.[24] However, in the study, the out-of-plane conformation of the defects in graphene was not
taken into consideration to determine if it is more stable than the in-plane configuration. Moreover.
the impurity concentration effect on the lattice dynamics, electronic and optical characteristics of the
system were not studied as well.



Despite the numerous studies that have been done with ab-initio studies predicting the properties of
heteroatom-doped graphene, synthesising such heavily doped (i.e. with the impurity concentration
above 5%) nanostructures experimentally remain a contending issue. As a result, other heteroatoms
doped graphene are being explored to determine if they would be amenable for synthesis
experimentally at a higher impurity concentration. In view of the above, we report for the first time
the effects of the atomic pairs of Be and S on the dynamic stability, electronic and optical properties
of graphene. Moreover, in the study, the in-plane and out-plane substitution of the Be and S atoms in
graphene were evaluated to determine how the impurities prefer to co-exist in graphene. It 1s expected
that the result of this study would provide an insight into the realisation of graphene-based nano-
devices.

II. Methods

The electronic structures and optical characteristics of calculations Be-S were performed from first-
principles within the scoped of DFT as implemented in the Vienna Ab-initio Simulation Package
(VASP).[25]-{28] In the simulations, the Projected Augmented Wave (PAW) was employed to model
the system of the ion-electron interactions, while the Perdew Burke Ernzerhof (PBE) generalised
gradient approximation (GGA)[29] was used as the exchange-correlation functional. To improve on
the usual underestimation of energy band-gap by semi local functionals, we used HSE06.[30] The
lattice symmetry of graphene can be broken if it is co-doped with dopants with larger molecular radii
than carbon atom. Consequently, more high symmetry K-points in the Brillouin zone (BZ) (as shown
in Fig. 1) must be sampled in order to obtain an accurate plot of the band structure of the co-doped
system. Based on this, the path in the BZ via which the band structures of Be-S was calculated is
given through I-M-K-T-M-K-T-M"-K"-T sampling route. Kohn-Sham orbital expansions with the
plane-wave basis set were done with the kinetic energy cutoft (Ecut) of 400 eV, and the convergence
criterion of 10° eV was used for the computations of all the systems that were studied. The systems
that were studied consist of 8, 18 and 32 atoms corresponding to periodic slabs of 2x2. 3x3 and 4x4
supercell of graphene co-doped with an atomic pair of beryllium (Be) and sulphur (S). To avoid the
interlayer interaction between a layer of graphene and the periodic image, a test of convergence with

respect to vacuum spacing was done.

=

s
FIG. 1 The path between the high symmetry points in the BZ for the calculation of the band structure
of Be-S.
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A vacuum size of 14 A along with the periodic boundary conditions was observed to give a
converged result when applied between any two adjacent layers of graphene. Geometrical relaxation
of all the systems was done such that the Hellmann-Feynman forces is less than a predetermined
threshold value of 0.002 eV A™. For Brillouin zone (BZ) sampling, a I'—centred grid of 13 & x13 k

x1k-mesh was used. For the integration scheme, Gaussian smearing with 0.2 eV width was used for

the self-consistent field calculation (scf). The formation energy E , requires for a defect to form in

graphene was calculated as follows:

E,=E,— ) nu, (1)
t

where E; denotes the energy per unit cell of graphene with impurities; the subscript ‘t” denotes the

index of summation of the set of atoms of a particular type: whereas the number of a set of atoms of

type ‘t’ is represented as 7, . the chemical potential associated with atoms of type “t" is represented as

4, . Carbon chemical potential ., was calculated as the total energy of graphene divided by the
number of the carbon atom in the unit cell. So that the formation energy of defect-free graphene is
equal to zero. To compute the sulphur (S) chemical potential x. the energy per unit atom obtained
trom the crystalline S with a face-centred orthorhombic lattice (space group of Fddd) was used. For

Be, the hexagonal crystalline lattice was employed to compute the chemical potential s, .

It 1s worth mentioning that during the geometry optimization of Be-S, spin and unspin polarized
calculations were performed. The results of the two computations have the same energy, with the
resultant zero magnetic moments. Consequently, the unspin polarized calculations were applied to the

remaining systems to save computational cost.

The optical characteristics of Be-S were calculated with the dielectric function &(w) (equation 2):
where the imaginary part &, was computed employing first-order time-dependent perturbation theory

in the basis of simple dipole approximation. The changes in the periodic part of the potential, known
as the local field effects, have been included within random phase approximation (RPA).

e(o) = g(0) +ig, (o) (2)

In the long wavelength limit, the imaginary part of the complex dielectric function could be expressed

as:

.
Qe

&(q—>0,0)= Z[(t//; \ii -7 |yy)|* S(Ef —E; — ) . (3)
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where ‘c”and ‘v’ are the band indices corresponding to the conduction and valence bands: 7 and &,

represent the unit cell volume and the free space permittivity, respectively. @ (expressed in eV) is a
particular frequency of the incident electromagnetic (EM) wave. In this order, # and 7 denote the
incident EM wave polarization vector and the position vector. At a k-point, the eigenfunctions

corresponding to the valence and conduction bands of the given systems are represented by v} and

, respectively. The Ef and £} correspond to the eigenvalues.
The real component of the &(w), & 1is calculated from &, employing the Kramers-Kronig
transformation:

2 _r=do'e,(0)o'

&(w)=Re[e(g > 0)]=1+=P 4
r

e P
O -0 +in

where P stands for the Cauchy principal value. The technique has been reported in Ref[31]. It is
worth noting that & and &, have two independent parts which are the two polarizations of the EM field
with respect to the plane of the materials. These two polarizations are called the parallel (the polarised
vector 1s along the plane of the system) and the perpendicular (the polarised vector is out of the plane
of the system) polarization in this study. It is worth mentioning that equation (3) has no Drude
component. Drude term accounts for the intraband transition which is dominant at the low energy.

Given the data sets of &(®). the optical characteristics of the graphene and Be-S were calculated

using equation (5) through (9):

2 2 %
\'814-82 +&; (S)

2

n(w)=

1
Jel+el—g |
o)=|*+—2 1 7' L. (©)

where n(w) 1s the real and k(@) 1s the imaginary part of the complex refractive index # with the
relation, # = n(®) +ik(®) . The equations (5) and (6) were used to calculate the reflectivity R of the

systems of study provided the incident polarized EM is perpendicular to the plane of the samples.

R(w) = w (7
(n+1)" +k-
The absorption coefficient a(w) of the systems was computed with the equation (6) above
2k
a(w) = Lo . (8)
ch

where the “c” of equation. (8) represents the velocity of EM field in the vacuum. The remaining

variables retain the same descriptions as earlier declared.



o) =—2— . (9)
& +&

The measure of the collective excitation of a given system 1s expressed by the electron energy loss
function L(m) and could be calculated by applying equation (9). The quantity can be derived from

Im(—1/&(q — 0,®))and the magnitude of the value increases as & —0ande, <1 at the plasma

frequency. To evaluate the optical constants of the Be-S and the graphene. a considerable number of
empty bands were applied in the calculations. Additional empty bands were included in our optical

calculations to account for high-frequency interband transitions.

For the study of the lattice dynamics of the systems, the direct method[32] was used within the limit

of the harmonic approximation.

II1. Results and Discussion
A. Formation energy

The formation energy per unit cell Ef of a solid could be employed to access the stability and the
relative tendency of such system to be synthesized in the laboratory. As a result, in this study, E¢ of
pristine and Be-S was calculated with the equation (1). To calculate the E of pristine graphene, the
system was first geometrically optimised. After the relaxation, 2.46, 1.42 A (see Fig. 2a) and 0 eV
were realised as the lattice constant, C-C bond length and Er of the system respectively. The
calculated values of the lattice parameters are in close agreement with the existing theoretical[21] and
experimental[9], [33] reports. Therefore, the agreement between these results and the literatures
validates the computational method adopted in this study. Meanwhile, as earlier stated, the E¢ of the
defect-free graphene is zero because the chemical potential of the carbon atom was calculated using
pristine graphene (not graphite) as the reference. The advantage of zeroing the Er of graphene is that
the relative stability of a doped graphene system could easily be compared. This suggests that a doped
graphene system with Er > 0 has lower stability than pristine graphene. Moreover, the converse of this
statement also holds for E¢<0.

Next, the Er of Be-S was evaluated to determine how the defects prefer to co-exist in graphene. In our
earlier report[24], it was demonstrated that Be and S atoms prefer to replace in-plane C-C of
graphene. In the study, it is argued that the favourable predisposition of Be to S bonding in graphene
1s as a result of the formation of the ionic bonding between the defects. However, in the report, the
out-of-plane substitution of the impurities was not taken into account in order to determine if it is
energetically more favourable than the in-plane substitution. In the present study, the two
conformations were accessed to determine which one is more favourable to be experimentally
synthesised. The two conformations are shown in Fig. 2 [(b) and (c)] and they correspond to the in-
plane and the out-of-plane substitution of Be and S for the carbon atoms in a 2x2 supercell of
graphene, respectively. From the results of the formation energies, it is found that the out-of-plane
substitution of Be and S atomic pair in graphene is energetically more favourable than the in-plane
substitution of the defects. The lower value of the Er of the Be-S co-doped graphene might be
attributed to the fact that the atoms of the system have a tendency to be densely more packed in the
out-of-plane than the in-plane arrangement thereby reducing the amount of stress experiences by the
system. Consequently, in the rest of this study, the out-of-plane conformation was employed
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whenever the atomic duo of Be and S were substituted for the carbon atoms of graphene. Fig. 2 [(d)
and (e)] show a 3x3 and a 4x4 Be-S systems which correspond to 11.0 and 6.3% impurity
concentrations respectively. The supercells of the systems were varied purposely to induce the

(a) (b) (c)
*— v -9 om—o

T

CI )

FIG. 2 The optimised geometry of Be-S with (a) 0% (b) 25% (in-plane) (c) 25% (out-of-plane) (d)
11% (e) 6.3% (out-of-plane).

different amount of the defects in graphene. Table I gives the summary of the different amount of the
defects created in graphene and the corresponding E.

Table 1 The relationship between the impurity concentration of Be-S and the Ex.

Impurity concentration (%) | Systems+Supercells E: (eV)
0 Pristine graphene 2x2 0
6.3 Be-S 4x4 4.14
11.0 Be-S 3x3 4.22
25.0 Be-S 2x2 4.85

B. Dynamic stability of Be-S

In order to establish the dynamical stability (lattice dynamics) of Be-S. due to the expensive nature of
phonon calculations, only the lattice vibrational modes of the least stable Be-S (with 25 % impurity)
were investigated using the harmonic approximation. If the least stable Be-S has no imaginary modes,
thus the result should also be true for the other more stable structures. Table 1 shows that the Er of the
Be-S increases with the defects concentration. For instance. the pristine graphene is the most stable
with 0 eV as the Er while 4.85 eV is for Be-S with the 25% impurity concentration. Due to the
expensive nature of phonon calculations, in the present study, only the vibrational modes of the least
stable structure of Be-S co-doped system along with that of pristine graphene were investigated.

The calculation of the phonon curve of pristine graphene was done with a Ix1 supercell which
contained two carbon atoms. The result of the calculation is displayed in Fig. 3(a). Six phonon modes
can be seen and they correspond to the three optical (LO, TO, ZO) and acoustic (LA, TA. ZA)
branches. The LO, TO and ZO tags on the curve represent the longitudinal, transverse and optical

10



branches, respectively. The corresponding acoustic components are labelled as LA, TA, and ZA.
Some of the key values of the curve at high symmetry points are tabulated in Table 2. According to
Table 2. it 1s interesting to observe that the values are quite in agreement with the existing
theoretical[34] and experimental[35] reports on the phonon dispersion curve of the pristine graphene.
The close agreement between this result and the existing literature attests to the reliability of the
computational method employed in this work.

Following the validation of the computation method, the technique was subsequently applied to
calculate the phonon spectrum curve of Be-S with a 25% impurity concentration. The system was
optimized until the forces on all the atoms were less than 0.002 /A. Fig. 3(b) shows the phonon
spectrum of Be-S with a 25% impurity concentration. It is worthwhile to note that the absence of
imaginary modes on the curve is an indication that the system i1s dynamically stable, and as a result, it
1s amenable for synthesis in the laboratory if the necessary precursors are used.

50

40 4

r

Frequency (THz)

Frequency (THz)

FIG. 3 Phonon dispersion curve of a (a) 1x1 supercell of pristine graphene (b) 2x2 supercell of Be-S

with a 25% defect concentration. LO (LA). TO (TA). ZO (ZA) are the longitudinal, and transversal
(optical) branches.
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Table 2 Computed phonon frequencies at I', M, K, I point in the BZ of graphene.

high- present study theoretical experimental
symmetry
points GGA (PBE) (in THz) | ref.[34] (in THz) ref.[35](in THz)
| W 26.14 26.41 26.02
T 47.23 46.58 47.36
Lo
I, 47.23 46.58 47.36
“MZA 13.78 14.12 13.52
‘MLA 39.70 39.81 39.81
M,, 19.02 19.03 19.03
My, 41.69 41.67 41.67
KZA 15.68 16.03 15.49
K. 17.30 16.03 17.62
KLA 36.32 36.36 36.36
K, 38.26 38.61 38.61

C. Band-gap tuning of graphene

The electronic band-gap of Be-S with different impurity concentration was studied and compared with
that of the pristine graphene. It is shown in Fig 4 (a) that the pristine graphene is a gapless
nanomaterial as a result of the touching of the minimum conduction and the maximum valence band
at the K-point of the BZ. The 7 and 7 states form the valence and the conduction bands respectively.
At the low energy region, the band has a linear relation and the band structure could be seen as two
cones meeting at the Dirac point. The touching of the bands at the neutrality point indicates that
graphene has no band-gap. The zero band-gap in graphene is as a result of the similar background of
the two carbon atoms in the 1x1 unit cell of graphene. These basic features of the band structure of
pristine graphene are in agreement with the earlier studies.[9], [10]. [36]

However, a band-gap can be induced in graphene if the two atoms in the unit cell could be made to
co-exist at a different potential. Doping of graphene with an impurity induces energy gap in the
system. Moreover, with a certain doping pattern, the size of the gap often depends on the amount of
the impurity concentration incorporated into graphene.[18] For example, the effect of the beryllium or
sulphur concentration on the electronic structure of graphene has been done in separate studies.[21].
[23] In the case of Be-doped graphene, it is stated that the band-gap could be tuned as a function of
the impurity concentration. In our recent study.[36] we have undeniably confirmed this to be true.



However, at a high Be concentration, besides the material being dynamically unstable, we also found
that the nanostructure formed a degenerate semiconductor. A degenerate semiconductor 1s a material
with both metallic and semiconducting character. In another study, P.A. Denis er al[23] have
demonstrated that heavily S doped graphene exhibits a metallic character. Against this backdrop, in
the present study. it 1s shown in Fig. 4 ((b)-(d)) that an atomic pair of Be and S could induce a tunable
indirect gap of 0.72 eV (0.37 eV with GGA) in graphene. The system has a minimum indirect bang-
gap of 0.20 eV at 6.3 % while 0.72 eV 1s observed at 25 % impurity concentration. Table 3 shows the
summary of the result. Moreover, Be-S could be touted as a nanostructure with no metallic character
since the Fermi level is right within the band-gap irrespective of the impurity concentration. The key
factor that keeps the Fermi level within the energy gap of the system could be attributed to the
1soelectronic nature of Be and S with regard to the pristine graphene. It is worth mentioning that in
microelectronics, the smallest band-gap of 0.4 eV is required for a transistor to work in ON/OFF
mode. Thus, the calculated magnitude of the band-gap of Be-S satisfies this requirement.

(a) Pristine2x2

E(eV)
E(oVv)

S ——e
- :-
Y ’ ] i ™ M-

E(eV)
E(eV)

FIG. 4 Band structure of Be-S with a (a) 0 % (b) 6.3% (c) 11% and (d) 25 % impurity concentration.

143



Table 3 The magnitude of the bandgap induced in graphene versus the impurity percentage.

System defect conc.(%) Band-gap (in eV)
GGA (PBE) HSEO06
Pristine graphene 0 0 0
Be-S co-doped 6.3 0.08 0.2
graphene 11.0 0.28 0.63
25.0 0.37 0.72

In the previous section, it was simply demonstrated that if graphene is co-doped with the atomic pair
of Be and S atoms, the electronic band structure would be induced with the impurities dependent
band-gap. Consequently. changes in the electronic structure of graphene are expected to result in the
modification of the optical characteristics of the system. In this section, the effect of the impurity
concentration of Be and S on the optical properties of pristine graphene has been studied. The
discussion of the optical properties of the systems of interest is centred on the optical parameters like
the dielectric function, refractive indices, reflectivity, absorptivity, and electron energy loss function
(eels). Fig. 5 (a) and (b) show imaginary dielectric spectra of pristine (magenta colour), and co-doped
graphene at different impurity concentrations (red. green and blue colour) with respect to the light
polarisation vectors. The red spectrum 1s associated with a 2x2 supercell of graphene doped, via

D. Dielectric function

substitution, with a pair of Be and S to forms a 25% impurity concentration.
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FIG. 5 The anisotropic imaginary dielectric spectra of graphene (magenta) and Be-S (blue, green, and
red colour correspond to a 6.3, 11.0 and 25 % impurity concentration) for (a) parallel polarisation (b)

perpendicular polarisation of the electric field vector.
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FIG. 6 The anisotropic real part of the dielectric spectra of graphene (magenta) and Be-S (blue, green,
and red colour correspond to a 6.3, 11.0 and 25 % impurity concentration) for (c) parallel polarisation
(d) perpendicular polarisation of the electric field vector.

The green spectrum is associated with a 3x3 supercell of graphene doped with a pair of Be-S and
corresponds to a 11.0% impurity concentration. The blue colour corresponds to 4x4 supercell of
graphene with a 6.3% impurity concentration. The dielectric function has two different components

denoted as &) and &; which correspond to the polarisation of EM field vectors relative to the plane

of graphene and would be described as parallel and perpendicular polarisation. These notations have
also been extended to other optical parameters in this study.

With respect to the parallel polarisation of the electric field vector (E;). Fig.5 (a), the imaginary
dielectric curve of graphene is characterised with two prominent peaks. The first one (A) covers low-
frequency regime up to 5.0 eV arising from intraband and interband transition with an intense peak at
4.0 eV whereas the second peak (B) with a wider frequency range. as a result of mainly interband
transition, has a pronounced peak at 14.0 eV. Sandwiched between the two peaks of the spectrum is a
featureless region stretching between 7.5-10.6 eV and has nearly zero intensity. The corresponding
frequency of the two peaks is in excellent agreement with previous studies[36]-[38]. Recent
spectroscopic ellipsometry study of graphene grown on amorphous quartz shows a distinct absorbance
peak at 4.6 eV.[39] The higher value obtained from the experiment as compared to the first
peak of our study could be ascribed to the neglect of the interaction between the substrate and the
graphene sheet in our calculation. The basis of the peak A is attributed to the 1 — 7 transition on the
line between M and K of the BZ (see Fig. 4 (a)) while the peak at B could be ascribed to c—c*
transition on the symmetry line between I and M (see Fig. 4 (a)) and this arises mainly from
interband transition. Next, the effect of the atomic pair of Be and S atoms on the optical spectrum of
graphene was observed with respect to the same electric field polarisations. As the percentage of the
impurities increases, the height of peak B was noticeably reduced, whereas the peaks at A are red-
shifted towards lower energy photon (see Fig. 5 (a)).

For perpendicular polarisation of the electric field (E+ ), as shown in Fig. 5 (b), the £, spectrum of

graphene has two contrasting peaks at 11.2 and 17.4 eV which are indicated as X and Y, respectively.
With respect to Ex. the dipole selection rule for the polarisation only allows the 1 — ¢ and the ¢ —
transitions. Thus, the basis of the peaks at X and Y in Fig. 5 (b) could be attributed to the 7 — o and
the 6 — = interband transitions. Between 0 and 10 eV. we observed that the spectrum has zero
intensity. This is because T— transition with low energy resonance is forbidden as prescribed by the
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selection rule. Next, the effect of the impurity concentration on the graphene spectrum was
considered. As the impurity concentration increases, it can be seen that the range of the energy
frequency of the transition due to the peak X also increases while the intensity of the peak at Y

decreases accordingly (see Fig. 5(b)). It is important to remark that while the &5 spectrum of
graphene has nearly zero intensity between 0 and 10 eV, that of the Be-S increases with the amount of
the impurities within the given frequency interval. The change in the amplitude of gj spectra of Be-S,

within 0-10.0 eV. as a result of the defect concentration is indicated with the black arrow and
designated as W in Fig.. 5 (b).

The &, of pristine and Be-S co-doped graphene was computed using Kramers-Kronig transformation

(see Eq.4) for both E; and Ex. Fig 6 (a) and (b) depict the gIH and SIL spectra respectively of the

pristine along with Be-S co-doped graphene at different impurity concentration. With regard to 51‘

(Fig. 6 (a)). pristine graphene has a prominent peak in the region of 0-4 eV, a minimum near 5 eV and
a broader peak with maximum intensity at 11.3 eV. The features of this spectrum and the exact
position of the peaks are in good agreement with the existing theoretical and experimental reports.
[15]. [40] For Be-S. it is remarkable to note that the intensity of the spectrum of the system, within the
region 1.0-15.0 eV, approaches that of pristine graphene as the percentage of the impurity decreases.
For instance, in Fig. 6 (a) around M and N point, it can be observed that the intensity of the features
of Be-S co-doped graphene tends to that of pristine as the impurity concentration decreases.

In the following discussion. the &;" spectrum of pristine graphene is compared with that of Be-S at
different impurity concentrations. (Fig. 6 (b)) shows the spectrum of graphene with a pronounced
peak at 11.0 eV, a minimum at 15.0 eV and the features are highlighted as R and S. Next, the effect of
the atomic pair of Be-S on the optical spectrum of graphene was studied. Between 0-11 eV it is

observed that &, curve of Be-S approaches that of pristine graphene as the impurity percentage

reduces from 25 % to 6.3%. A similar behaviour of the spectrum of Be-S in relation to graphene is
noticeable at 15.0 eV.

E. Absorptivity

Graphene 1s an outstanding system with excellent optical properties arising from its unique electronic
structures. It can absorb light from the visible to infrared region of the electromagnetic spectrum. The
absorption spectrum of the system arises from an intraband transition (at a low energy frequency
within the far-infrared region) and an interband transition (at a higher energy frequency in the mid-
infrared to the ultraviolet range).
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FIG. 7 The anisotropic absorption spectra of graphene (magenta) and Be-S (blue, green, and red
colour correspond to a 6.3, 11.0 and 25 % impurity concentration) for (a) parallel polarisation and (b)
perpendicular polarisation of the electric field vector.

Fig. 7 shows the absorption spectra of graphene and Be-S with the different impurity concentration in
relation to Ej and Ev . As regards to E; spectrum, pristine graphene has two pronounced peaks (see
Fig. 7 (a)). The first peak 1s located at 4.2 eV and is due to the T—T transition through M-K route in
the Brillouin zone (see Fig. 4(a)). The transitions leading to the peaks are composed of the first
valence band under the Fermi level to the first conduction band at the top of the Fermi level
However. the second peak occurs at 14.0 eV as a result of the 6—c transition which is dominated by
the second valence state under the Fermi level to the second conduction state at the top of the Fermi
level. In addition to this, the system has a featureless region (between A and B point) which exists
within the interval of 7.0-10 eV where the absorption coefficient of pristine is almost equal to zero. It
worth pointing out that the features of this spectrum are consistent with the existing reports [16]. [36].
[41] on the absorption of graphene. Next, the influence of the impurity concentration on the
absorption spectrum of graphene was considered. As the mmpurity concentration increases, 1t 1s
observed that the absorption coefficient of Be-S within 7.0-10.0 eV (see red arrow in Fig. 7 (a)) also
increases while the intensity of A and B peaks not only decreases but slightly redshifted.

For Ex as shown in Fig. 7 (b), the graphene spectrum is characterised with one major peak at 14.6 eV,
which is due to the c—n interband transition and a featureless region within the interval of 0-10.0
eV. The featureless region is designated with a black arrow, Fig. 7(b). This result with respect to E+ is
In agreement recent reports on the absorption spectrum of pristine graphene.[16]. [36]. [39]. [42]. [43]
Next, the effect of Be-S atomic pair on the absorption spectrum of graphene was investigated with
respect to Ev It 1s found that by increasing the impurity concentration of the Be-S, the absorption
coefficient of the system within the interval of 7.0-10 eV (indicated with a black arrow in Fig. 7 (b))
also increases while the intensity of the peak at C decreases depending on the amount of the impurity.
In summary, it is interesting to mention that under the two different polarisations of the electric field.
the absorption coefficient of Be-S in the interval of 7.0-10 eV increases with the impurity
concentration. However, the intensity of all the major peaks of the Be-S systems reduces with the
increase of the impurity percentage, irrespective of the polarisation field vectors.
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F. Electron energy loss spectra (eels)

The eels of graphene and Be-S with different impurity percentage for the E; and E1 are shown in Fig.
8. The eels could be defined as the collective excitations of the electrons of a material and computed
as the inverse of the dielectric tensors of the systems. In the case of pristine graphene, it has two
prominent peaks with respect to E, as shown in Fig. 8 (a). The two peak positions (highlighted as A
and B) which are located at 5.7 and 15-17.0 eV are as a result of the m and the (7+c) plasmons,
respectively. For monolayer graphene, Eberlein ef a/.[44] reported experimental plasmon peaks due to
7 and (m+o) as 4.7 and 14.6 eV, respectively. The slight difference between these values and our
results might be attributed to the presence of the excitonic effects which 1s not considered in our
computational method. Another interesting feature of the spectrum could be seen as the dip around the
10 eV where the intensity of the system 1s almost equal to zero (the black arrow in Fig. 8 (a)). As the
impurity concentration increases, it could be seen that the intensity of the spectrum in the interval of
7.0-10 eV (indicated with a black arrow in Fig. 8 (a)) also increases. However, the graphene peak at A
responds differently to the impurity variation. That is, it decreases with the increase in the impurity
percentage. For the peak at B, it 1s important to add that there is no significant change that is observed
as a result of the change in the impurity concentration.
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FIG. 8 The anisotropic electron energy loss spectra of graphene (magenta) and Be-S (blue, green, and
red colour correspond to a 6.3, 11.0 and 25 % impurity concentration) for (a) parallel polarisation and
(b) perpendicular polarisation of the electric field vector.

In the case of E+ (Fig. 8 (b)), a prominent resonance peak of graphene is observed at 15.4 eV and the
occurrence is because of the transition between filled 7 and empty 7 bands. It could be seen that the
spectrum also has a featureless region with almost zero amplitude within the window of 0-10 eV. It 1s
important to point out that the position of the peak is in accordance with the previous experimental
study by T. Eberlein ef al.[44]. Following the analysed eels of graphene, the effect of Be and S atomic
pair on the spectrum was investigated. It can be observed that all the amplitude of the peaks of Be-S at
approximately 15.4 eV, irrespective of the impurity percentage, is smaller than that of the graphene
(Fig. 8 (b)). It 1s worth mentioning that, as the impurity percentage increases, the behaviour of the
spectra of Be-S with respect to E+,within 5-10.0 eV, is similar to the ensued response of the material
in relation to E;. That is, the intensity of Be-S spectra within the region of 5-10.0 eV decreases with
the defect concentration.
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G. Refractive index (r.i)

Fig. 9 depicts the refractive index spectra of graphene and Be-S with different impurity concentrations
with respect to the parallel and the perpendicular polarisation of the EM field. In this discussion, only
part of the spectra slightly away from the low energy photons has been discussed. Because that
region, which is also known as the Drude region, 1s dominated by the intraband transitions. It is worth
reiterating that because of the lack of Drude component in the formulation of the refractive indices,
there are inaccuracies in the features of the optical spectra in the low energy region. Based on this
account, in relation to E;, in Fig. 9 (a), only the dip (black arrow direction) and peak (red arrow
direction) of the spectra around 5.0 and 10.0 eV, respectively, have been compared in relation to that
of the pristine graphene. As a result, it can be seen that as the impurity concentration increases, both
the dip around 5 eV and the peaks at about 10.0 eV of the spectra decreases. However, for Ev (see
Fig. 9 (b)) 1t 1s found that the pristine graphene has a maximum peak at 10.0 eV and a dip at 15 eV.
As the impurity concentration increases, both peaks and the dips of the spectra of the doped systems
reduce in comparison to that of the pristine graphene.
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FIG. 9 The anisotropic refractive index spectra of graphene (magenta) and Be-S (blue, green. and red
colour correspond to a 6.3, 11.0 and 25 % impurity concentration) for (a) parallel polarisation (b)
perpendicular polarisation of the electric field vector.

H. Reflectivity

Fig. 10 illustrates the reflectivity spectra of graphene and Be-S at different impurity concentrations
with respect to (a) the parallel and (b) the perpendicular polarisation of the field vector. For E. as
shown in Fig. 10 (a), the pristine graphene 1s characterised with two major peaks. The maximum peak
(indicated as A) occurs at 4.3 eV whereas the next peak highlighted as B 1s observed at 14.2 eV.
Moreover, the spectrum of the system also has a featureless region of 7.0-10.0 eV which is marked
with the arrow in Fig. 10 (a). The peak positions of this spectrum are in agreement with the recent
theoretical studies[15]. [36] on graphene. For Be-S, as the impurity percentage increases, it can be
observed that the amplitude of the optical peak at A reduces as well: whereas for the peak at B. there
1s no substantial change in the amplitude. In the interval of 7.0-10 eV, Be-S also has a low value of
reflectivity at a relatively small impurity concentration. However, the reflectivity of the system
becomes significant as the impurity concentration increases.
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FIG. 10 shows anisotropic refractivity spectra of graphene (magenta) and Be-S (blue, green, and red
colour correspond to a 6.3, 11.0 and 25 % impurity concentration) for (a) parallel polarisation (b)
perpendicular polarisation of the electric field vector.

In the case of Ex (as shown in Fig. 10 (b)), a prominent graphene peak is observed at 15.0 eV while
almost zero reflectivity coefficients (indicated with a black arrow) of the spectrum can be noticed
within the interval of 0-10 eV. This finding agrees with earlier reports[15], [36] on the ab-mitio
investigation of the optical characteristics of graphene. Next, the effect of Be and S atomic pairs on
the reflectivity spectrum of graphene was investigated. Within the interval of 0-10 eV (indicated with
a black arrow in Fig. 10 (b)), it is noticeable that the amplitude of the Be-S spectra increases with the
impurity concentration. However, for the peak around 15.0 eV, the amplitude decreases with the
impurity percentage.

It 1s worth mentioning that for both E; and E+, the pristine graphene has low values of reflectivity and
absorption coefficients within the window of 7.0-10 eV. This implies that the system is transparent in
that frequency interval which corresponds to the ultraviolet (UV) region of the electromagnetic
spectrum. However, for the Be-S the two optical parameter values increase as the impurity percentage
increases in the aforementioned photon energy interval. This response of the optical spectrum of
graphene to Be and S co-doping shows that the optical properties of the system can be modulated with
the impurity concentration.

IV. CONCLUSIONS

Ab-initio calculations, within the DFT, were employed to investigate the dynamic stability, band
structure and optical characteristics of Be-S. The phonon spectrum of the system, due to the absence
of imaginary mode, reveals that Be-S (with the impurity concentration of 25%) is dynamically stable.
While Be and S preferred to co-exist in an out-of-plane conformation in graphene, the defect
formation energy of the system demonstrates that the stability of the system decreases with the
impurity concentration. The influence of the impurity concentration on the electronic structure of
graphene reveals that it could open up a tunable indirect band-gap in the range of 0-0.72 eV as
obtained from our hybrid calculations.

The optical parameters such as dielectric function; refractive index, eels. absorption, and reflectivity
of the Be-S were also investigated and compared with that of graphene with respect to the two mutual
light polarisation directions. For the pristine graphene, the calculated optical parameters were found to
agree with the existing data from other reports. In the case of Be-S, the position of the spectra peaks
mimic that of the pristine graphene especially at a small impurity percentage within the photon energy
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window of 2.0-40.0 eV for both polarisation directions of the field vector. However, there are
remarkable deviations at a relatively high impurity percentage. That 1s, the peaks of Be-S co-doped
appeared to be redshifted relative to the corresponding peaks of the pristine graphene. Moreover, it is
remarkable to notice that the amplitude of the dominant optical peaks of graphene decreases with the
amount of the impurity present in the Be-S.

Graphene has vanishing absorption and reflectivity spectra within the interval of 7.0-10.0 eV, and this
makes it a transparent material under ultraviolet radiation, irrespective of the orientation of the
polarisation vector field to the sample. However, unlike in the case of the pristine graphene, within
7.0-10.0 €V, the coefficients of the two aforementioned optical parameters for Be-S have substantial
values which tend to increase with the defect concentration. This reveals that the optical transparency
of graphene can be tuned with the atomic pair of Be and S concentration. With the on-going trend of
tailoring the optical characteristics of graphene with heteroatoms to satisfy certain applications in
nanodevices, the result of this study provides an insight on the expected changes in the electronic and
optical properties of graphene if it 1s co-doped with the atomic pair of the Be and S atom for use in
nanoelectronic and optoelectronic devices.
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4.5.3 Concluding remarks

DFT was used to study the dynamic stability, band structure and optical properties of Be-S co-
doped graphene. The result of the phonon curves of the system shows that Be-S co-doped graphene
with impurity concentration as high as 25% is dynamically stable, and the heteroatoms preferred
to co-exist in an out-of plane conformation. The electronic and optical properties of the system
also revealed interesting results. It is found that an indirect band-gap tuneable up to 0.72 eV (at
level of HSE) is attained if graphene is co-doped with Be and S-atom at different concentration.
The result of the optical properties reveal that the transparency of graphene could be tuned with
Be and S-atom concentration. Specifically, the optical transparency of graphene was observed to
decreases with the impurity concentration. The changes in the optical transparency of graphene
demonstrate that Be-S co-doping could be used as an avenue for light manipulation in a device

application.
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Chapter 5

Concluding Remarks and Recommendations

Graphene is a semimetal with a higher sheet resistance than ITO. Heteroatom-doping is a
facial approach for creating a sizeable band-gap in graphene and also for increasing the carrier
concentration to lower the sheet resistance. However, not all heteroatom-doped graphene is
dynamically stable or have a band-gap. For example, Be-doped graphene has been demonstrated
to be dynamically unstable at 0 K while S-doped graphene could be a metal or semiconductor
depending on the impurity concentration. Heteroatoms co-doping is an effective technique for
addressing these challenges. This technique was used in this thesis to address the dynamic
instability of Be-doped graphene, and the lack of a band-gap in S-doped graphene through Be-S
co-doped and Be-N co-doped graphene. Furthermore, the optical properties of Be-S co-doped and
Be-N co-doped graphene were investigated for a potential application in optoelectronics using the

plane wave pseudopotential method, within the framework of density functional theory.
5.1 Conclusions
5.1.1 Dynamic stability of Be, N, and S doped graphene

The lattice dynamics of the Be-doped, Be-N co-doped and Be-S co-doped graphene at 0 K
was investigated using a finite displacement method within the harmonic approximation scheme.
The results indicate that Be-N and Be-S (both with the impurity concentration tuned up to 25%)
co-doped graphene are dynamically stable due to the absence of the imaginary modes in the
calculated phonon dispersion curves of the systems. However, in the case of Be-doped graphene,
with a relatively lower impurity concentration of 12.5%, the phonon curves of the system have

imaginary modes. As a result, Be-doped graphene at 12.5% impurity concentration is not stable.
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This result could explain the rarity of the experimentally synthesized Be-doped graphene in the

literature.

The formation energy calculations for defects to form were performed for all the aforementioned
systems. The results of the formation energies are in agreement with the result of the lattice
dynamics of the systems. Be-N and Be-S co-doped graphene, in the energetically preferred
configuration, were observed to have lower formation energies than Be-doped graphene. As a
result, the two co-doped systems are more stable than Be-doped graphene. The existence of the
ionic bonds between the co-dopants of the Be-N and Be-S co-doped graphene could be the reason
why the co-doped systems are more stable than Be-doped graphene. An ionic bond involves the
transfer of electrons from a metal to a non-metal, and usually stronger than the covalent bond. Be
is a metal while N and S are non-metal. Consequently, an ionic bond is likely to form between Be
and N or S if the pair of the impurities is used to replace any two adjacent atoms of graphene.
However, in the case of the Be doped graphene, Be and C have a close electronegativity value, as
such, prefer the formation of a covalent bond. The above reason was confirmed when Bader
analysis was employed to analyze the charge distribution in Be-S co-doped graphene. The result
revealed that charges are transferred from Be-atom to S-atom when the impurities were placed as
adjacent atoms in the graphene matrix. The results in this section demonstrate that Be-N and Be-
S co-doped graphene could be more realistic systems to synthesize experimentally than Be-doped

graphene.

5.1.2 Electronic structure of Be, N, and S doped graphene

The band structures and DOS calculations of the systems were carried out using GGA-PBE
and HSE06 exchange-correlation functionals. All the doped systems exhibit semiconducting

character. Be-S co-doped graphene has a direct band-gap (which changes with doping pattern) for
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in-plane substitution of the defects. However, an indirect band-gap (which could be tailored with
the impurity concentrations) magnitude was observed in the system when the substitution was
done in out-of-plane conformation. In the case of Be-doped and Be-N co-doped graphene, while
they both share p-type conductivity, the systems have a direct band-gap which increases with the
impurity concentrations. Moreover, at a relatively high impurity concentration, the systems
become degenerate semiconductors, exhibiting both metallic and semiconducting characters. The
electronic structure of Be-N is similar to Be-doped graphene and could be considered as an

alternative realistic p-type semiconductor to the latter since the former is more stable.

5.1.3 Optical properties of Be, N, and S doped graphene

The optical properties of the Be-N and Be-S co-doped graphene were calculated using the
first-order time-dependent perturbation theory. Regardless of the impurity concentration, due to
the low value of the reflectivity and the absorption coefficient, it is found that BeN-co-doped and
Be-doped graphene are transparent within the frequency window of 7.0-10 eV (UV region) for the
parallel polarization field vector. However, for the Be-S co-doped graphene, the optical
transparency of the system reduces with the increase in the impurity concentration. The out-of-
plane substitution of Be and S in graphene disrupts the planar topology of the system (due to the
molecular size of the impurities) and consequently the electronic property, which transforms from
semi-metallic to semiconducting with an indirect band-gap. This is perhaps the reason why the Be-

S co-doped is not transparent as compared to the pristine graphene.
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5.1.4 Applications

The results of the electronic and optical properties of Be-S and Be-N co-doped graphene
suggest that the systems could be used in device applications. For instance, Be-S co-doped has a
band-gap tuneable up to 0.72 eV; consequently, the system could be used as a graphene-based
transistor in microelectronics and nanoelectronics. A minimum band-gap of 0.4 eV is required for
a graphene-based transistor to function in ON/OFF mode. Thus the band-gap of Be-S co-doped
graphene could be tuned to such a specification. In the case of Be-N co-doped graphene, it is a
degenerate semiconductor and could be used as an ITO in optoelectronics. This is because the
material is transparent with both tuneable band-gap and metallic character. The system has a p-

type conductivity which can be varied by changing the amount of the impurity in the system.

5.2 Recommendations

5.2.1 Methodology

To calculate the optical properties of a material, an appropriate description of the many-
body effects such as the electron-electron (e-e) correlation and the excitonic effect (e-h) are
required. The independent particle approximation used in this thesis to study the optical properties
of graphene is appropriate due to the fact that, in graphene, the self-energy correction and e-h
correlation almost fortuitously cancel out [1]-[3]. However, since the self-energy correction and
e-h correlation do not completely cancel out, a future study on doped graphene systems should be
done using a higher level of theory such as Green function (GW) plus Bethe-Salpeter equation

(BSE) which incorporates e-e and e-h effects.
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5.2.2 Functionalization of graphene

There are a number of methods for tailoring the band-gap of graphene. Deposition of
graphene on suitable substrates is one of the methods of opening a band-gap in the two-
dimensional material. However, the band-gap induced by substrates in an experimental setup is
still being contested[4]. Another method is by fabricating a finite size nanoribbon from graphene
to create a band-gap in the system. But such a method is difficult to implement experimentally due
to the difficulty involved in tuning to the size of the nanoribbons[5]. Because of these challenges,
addition of molecules (such as H», NH, CsHs, NH, NCe¢Hs, NCsH4CH3, NC>2H4OH, etc.) on
graphene (known as functionalization) is another option of tailoring the properties of the graphitic
material. Experimental investigations have revealed that the free standing[6] and supported|7]
graphene functionalized with hydrogen have a band-gap. Thus, it would be interesting to
investigate the electronic and optical properties of functionalized graphene using many-body

perturbation theory.

5.2.3 Effect of Van der Waals on doped monolayer graphene

In this thesis, only the electronic and the optical properties of the heteroatoms doped
monolayer graphene were studied. Given a multi-layered graphene in which one of the layers is
doped with heteroatoms, a study of the layer-dependent electronic and the optical properties of the
system would be worth investigating. It is important to note that to describe a layered system, such
as graphite, both the local atom bonds and the weak Van der Waals forces must be considered.
However, the exchange-correlation functionals employed in this thesis to describe the ground state

properties of graphene are not suitable for the description of a multi-layered graphene due to the
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absence of dispersion relation in the description. To overcome this shortcoming for a layered

system, applying a fully nonlocal functional [8] is one way to proceed.
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