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Abstract

The study of higher spin gravity theories has gathered much interest in recent years. In
three dimensions, these theories are particularly tractable due to the fact that they can be
defined in terms of a Chern-Simons theory. A higher spin black hole then corresponds to a
flat connection with appropriate holonomy conditions in this framework. Building on this, we
study what constitutes extremality of higher spin black holes. It has previously been proposed
that extremal black holes can be defined in terms of the Jordan class of the holonomy around
a non-contractable cycle. Extending the above studies, we then classify solutions of sl(4|3) ⊕
sl(4|3) Chern-Simons theory in terms of extremality and supersymmetry, and find non-extremal
supersymmetric black hole solutions. One of the results, in this higher-spin context, indicates
that supersymmetry and extremality do not imply each other. Finally, a review is made of hs[λ]
theory, which is constructed using Vasiliev theory. This is another useful tool in describing
higher spin theories, with the aim of extending hs[λ] to shs[λ], the supersymmetric analogue of
which might have its own extremal conditions.
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Chapter 1

Introduction

Black holes have long been an interesting field of study. In particular theories of gravity which
are coupled to massless higher spin fields are very popular presently due to their appearance in
the so-called AdS/CFT correspondence (more on that in the later chapters). One might wonder
why higher spin theories are used, but this is simply because these theories provide a useful
framework in which to test non-linear as well as non-local features that appear in quantum
gravity. The construction of these theories, from the birth of general relativity to solutions to
the appropriate equations which describe black hole mechanics, is rather involved and requires
a certain level of prior knowledge, however to be concise we will cover the essentials of these
topics in as much detail as is possible (within certain constraints).

1.1 General Relativity and Black Holes

1.1.1 Special Relativity and Flat Spacetime

Before starting to look at the construction and mechanics of black holes, it is necessary to
review General Relativity. A fantastic review of relativity is given by [1]. Starting off with
Special Relativity, which operates in a 4-dimensional space time called Minkowski space, one
can define ”distance”, or rather spacetime intervals, on this manifold by defining the metric,
which is a 4× 4 matrix with two lowered indices:

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (1.1)

however it is important to note that the metric can have an opposite sign, but is chosen as
above in our case. Using this, one can then define the group of matrices that are invariant under
rotations and boosts, also known as the Lorentz group. Adding the condition for translations
creates the Poincaré group.

Let us also define a tensor as follows: Much the same as a dual vector is a linear map from
vectors to R, a tensor T of type/rank (k, l) is a multilinear map from a collection of dual vectors
and vectors to R,

T : T ∗p × ...× T ∗p × Tp × ...× Tp → R (1.2)

where T ∗p is multiplied k times and Tp is multiplied l times (with multiplied, we mean the
Cartesian product).
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A special kind of tensor is the Kronecker delta, δµν , which is a (1,1) tensor. It can be used
to relate the inverse metric, such that

ηµνηνρ = ηρνη
νµ = δρµ. (1.3)

We can also use the metric to raise or lower indices on a tensor, and by doing such transform
vectors into dual vectors and the reverse, for example

Vµ = ηµνV
ν (1.4)

ωµ = ηµνων . (1.5)

It is also useful to consider the symmetries of a tensor. A tensor is symmetric in any of
its indices if it is unchanged under any exchange of these indices. By the same logic, a tensor
is anti-symmetric in its indices if it changes sign with any exchange of indices. If all of the
indices are symmetric or anti-symmetric, then the tensor is known as ”completely” symmetric
or anti-symmetric.

We now move on to differential forms, which are a special class of tensor. A differential
p-form is a (0, p) tensor which is completely anti-symmetric. They are useful since they can be
differentiated and integrated without the use of additional geometrical structures. We must also
define the wedge-product, since it is extensively used in the actions. Given a p-form A and a q-
form B, one can form a (p+q)-from using the wedge product A∧B, using the anti-symmetrized
tensor product:

(A ∧B)µ1...µp+q =
(p+ q)!

p! q!
A[µ1...µpBµp+1...µp+q ]. (1.6)

Something that arises later concerning the form of the Chern-Simons action is the so-called
exterior derivative. This operation ”d” is used to differentiate p-from fields into (p + 1)-form
fields, and is also known as a normalized antisymmetric partial derivative:

(dA)µ1...µp+1 = (p+ 1)∂[µ1Aµ2...µp+1]. (1.7)

We must also define what the weights of the tensor densities are. We begin by defining the
flat-space Levi-Civita symbol,

ε̃µ1µ2...µn =


+1 if µ1µ2...µn is an even permutation of 0 1...(n− 1),

−1 if µ1µ2...µn is an odd permutation of 0 1...(n− 1),

0 otherwise.

(1.8)

The following holds according to linear algebra, that for a determinant,

ε̃µ′1µ′2...µ′n =

∣∣∣∣∂xµ′∂xµ

∣∣∣∣ ε̃µ1µ2...µn

∂xµ1

∂xµ
′
1

∂xµ2

∂xµ
′
2
...
∂xµn

∂xµ′n
(1.9)

which is quite similar to the tensor transformation law. These objects are called tensor densities.
They tend to have a certain weight associated to them. These are simply the power to which a
Jacobian of the tensor is raised to. In general, one does not want to work with tensor densities,
but tensors themselves. There is a simple method to achieve this, by simply multiplying with
|g|w/2, with w the weight of the density.
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1.1.2 Manifolds

It is now important to note that the preceding work is all concerned with what we call ”flat-
space”, i.e. that there is no curvature. Curvature of space is what Einstein came up with to
generalize his theory for General Relativity, however before we can move on to that, we are
required to define what a manifold is. The basic idea is that for any curved space that could
also have a complicated topology, in local regions the space acts and looks like Rn. With
that we mean that the notions of open sets, functions and coordinates are the same in the
analytical sense. We can then construct the entire manifold by smoothly sewing these local
regions together. We will now take a quick but in-depth look into these manifolds, and that
requires a few definitions.

We start with a map between two sets. For two sets M and N , a map φ : M → N is a
relationship that assigns, to each element of M , one element of N (a map can be seen as a
generalization of a function). If there are two maps, φ : A → B and ϕ : B → C, then their
composition ϕ ◦ φ : A→ C can be given by the operation (ϕ ◦ φ)(a) = ϕ(φ(a)). A map is then
called one-to-one, or injective, if each element of N has at most one element of M mapped into
it, and onto, or subjective, has at least one element of M mapped into it. We can refer to a
map φ : Rm → Rn as Cp if the function is continuous and p-times differentiable. We can then
see that a map C∞ can be called smooth, and if there exists a map φ : M → N that is C∞

with a C∞ inverse φ−1 : N → M , then the two sets are called diffeomorphic and the map φ is
called a diffeomorphism. From analysis, we know that an open set in Rn is a set made from
an arbitrary union of open balls, where the open ball is the set of all points in Rn such that
|x− y|< r for some fixed y ∈ Rn, r ∈ R, with |x − y|= [

∑
i(x

i − yi)2]
1
2 . Put simply, an open

set is the interior of some (n − 1)-dimensional closed surface. A chart consists of a subset U
of set M , along with a one-to-one map φ : U → Rn, such that the image φ(U) is open in R.
Finally, a C∞ atlas is an indexed collection of charts {(Uα, φα)} which satisfies the following:

1. The union of the Uα is equal to M , such that the Uα covers M .

2. The charts are smoothly sewn together.

Using all the information above, we can finally define a manifold as the following: a C∞

n-dimensional manifold is a set M along with a ”maximal atlas”, which is one that contains
every possible compatible chart. It was necessary to be so precise with charts and overlaps,
since most manifolds cannot be covered with a single chart.

Back to the metric, we must note that the naming of the metric as ηµν is reserved specifically
for the Minkowski metric. Instead, we construct a metric tensor which is non-degenerate and
continuous. This tensor is named gµν , and we can write it in its canonical form

gµν = diag(−1,−1, ...,−1,+1,+1, ...,+1), (1.10)

with diag being the diagonal elements of the matrix. If s is the number of +1’s and t is the
number of −1’s, then the signature of the metric is s − t, and the rank is s + t. If t = 0,
then the metric is Euclidean or Riemannian, and if t = 1, then it is called Lorentzian or
pseudo-Riemannian.

1.1.3 Curvature

We’ve seen so far that as soon as we define a manifold, we can set up tensors, derivatives
of functions, etc. Once we introduce the metric it is possible to start defining more difficult
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concepts, like volume or path-length. To define curvature, we also use the metric, however
we require some more geometric tools. Specifically, we require the connection. The need for
this appears when we address the problem that the partial derivative is not an effective tensor
operator. We then define the covariant derivative ∇. It does the same thing as the partial
derivative, but in a way that is coordinate independent. It operates as such:

∇µV
ν = ∂µV

ν + ΓνµλV
λ (1.11)

where the Γ matrices are the connection coefficients. Using this connection on the metric one
can actually find what the connection coefficients are in terms of the metric, and doing so we
find that

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν). (1.12)

This specific connection is known as the Christoffel connection, and will be used later. The
connection vanishes in flat space (in Cartesian-type coordinate systems), which is why it is
useful to describe the curvature using this connection. How we know the space is curved is
due to parallel-transport, which relies on the connection. Parallel transport is the concept of
moving a vector along a path while keeping this vector constant along this path, and in curved
space, the result of parallel transport will depend on the path taken by the vector between
points.

Using some of the knowledge known about parallel-transport, and defining what is known
as the Riemann tensor Rρ

σµν , which is also known as the curvature tensor, we can define a
formula for the curvature tensor in terms of the connection coefficients. The final result ends
up looking like

Rρ
σµν = ∂µΓρνσ − ∂νΓρµν + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ. (1.13)

Hence from this we can see that General Relativity relies heavily on the Christoffel connec-
tion.

Using the Riemann tensor and contracting it, we can form the Ricci tensor, without even
using the metric:

Rµν = Rλ
µλν . (1.14)

If we then use the metric, and contract it further, we end up with the Ricci scalar:

R = Rµ
µ = gµνRµν . (1.15)

We can then define the Einstein tensor as

Gµν = Rµν −
1

2
Rgµν , (1.16)

which will prove very useful in the future.
We would like to cover one more bit of formalism before describing gravitation, and that is

the construction of a basis vector set within the tangent space which is not derived from any
coordinate system. To this end we consider for each point in the manifold a set of basis vectors
ê(a), which we choose to be orthonormal. If we take the canonical form of the metric to be ηab,
and choose basis vectors that are orthonormal appropriate to the signature of the manifold,
then the inner product of the basis vectors are

g(ê(a), ê(b)) = ηab (1.17)
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where g( , ) is the usual metric tensor1. The set of vectors that form an orthonormal basis
is called a vielbein, which is German for ”many legs”. Using a linear combination of these
basis vectors, we can express any vector. For example, our old basis vectors ê(µ) = ∂µ can be
expressed as

ê(µ) = eaµê(a). (1.18)

We will refer to these eaµ as the vielbeins. We can use the inverse of the vielbeins to also describe
the metric as

gµν = eaµe
b
νηab (1.19)

which leads to vielbeins sometimes being called the ”square root” of the metric. We can
also redefine the covariant derivative for a tensor in such a way that incorporates these non-
coordinate basis. We shall replace the connection coefficients Γλµν with the spin connection,
ω a
µ b. This spin connection, in terms of the vielbeins and connection coefficient can be written

as
ω a
µ b = eaνe

λ
bΓ

ν
µλ − eλb∂µeaλ (1.20)

and will be used to redefine the covariant derivative as

∇µX
a
b = ∂µX

a
b + ω a

µ cX
c
b − ω c

µ bX
a
c. (1.21)

1.1.4 Gravitation

With the advent of special relativity, it became clear that mass was simply a manifestation
of energy and momentum, and as such the concept of the Weak Equivalence Principle, con-
structed around the time of Newton and Galileo to describe the laws of free-falling particles in
a gravitational field and a uniformly accelerating frame, needed to be reworked. As such, the
Einstein Equivalence Principle was created, which states that in small regions of spacetime, the
laws of physics reduce to the laws of special relativity, and as such it is impossible to detect the
existence of a gravitational field. This principle is what suggests that the action of gravity is
attributed to the curvature of spacetime. Adding to this the idea that we can construct locally
inertial frames in these regions, we can then construct Riemann normal coordinates anywhere
on the manifold. These coordinates correspond to the metric taking on its canonical form and
the vanishing of the Christoffel symbols. One can consider the appearance of gravitational
redshift to reinforce the validity of the EEP. One can find many detailed explanations on this
redshift, but the basics are thus: Consider two objects moving with constant acceleration and
being a fixed distance apart, when one object emits a photon that will reach the other object
after some time. While the photon is travelling, the objects will have picked up more velocity
corresponding to the increase in acceleration, and hence the photon will have been redshifted
much the same as the conventional Doppler effect. Accordingly, the EEP predicts the same
effect to happen in the presence of a uniform gravitation field.

Following the work of Einstein, we can find the Einstein’s field equations, either by following
the methodology he himself used to describe how the metric responds to energy and momentum,
or by starting with an appropriate action (Hilbert action), and then deriving the corresponding
equations of motion. Regardless of method, the equations are given as follows:

Rµν −
1

2
Rgµν = 8πGTµν (1.22)

= −Λgµν . (1.23)

1There could be some confusion as to the definition of this tensor with respect to 1.10. The vielbein applies
to metrics of any signature. In 1.10, we simply refer to the canonical form of the metric, while here we refer to
the metric tensor itself
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These equations can be thought of as second-order differential equations for the metric tensor
field, and are extremely difficult to solve, even with the addition of certain simplifying assump-
tions. If one considers the right hand side as a kind of energy-momentum tensor, Tµν = −Λgµν ,
then Λ can be interpreted as the ”energy density of the vacuum”. This corresponds to certain
aspects of quantum field theory. An interesting point in gravitation is the existence of singu-
larities, which are points which are not in the manifold, but can be reached by travelling along
a geodesic for a finite distance. These points occur when the curvature becomes infinite at a
point, and is then no longer considered to be part of the spacetime. These points are interesting
due to their association with black holes.

1.1.5 The Schwarzschild Solution

The Schwarzschild Solutions are solutions to Einstein’s equations which describe spherically
symmetric solutions. What we mean by spherically symmetric is that the solutions have the
same symmetries as that of a S2 sphere. The metric on a differentiable manifold is what is
important to us, and as such we look for metrics with spherical symmetries. The characteri-
zation of symmetries of the metric is described by Killing vectors, and for S2 there are three
of these. Hence a spherically symmetric manifold has three Killing vector fields which act like
those on S2. By this we mean that the commutations of these vectors is the same in either case.
For example, if we choose our Killing vectors to be V (1), V (2) and V (3), then the commutations
between them are

[V (1), V (2)] = V (3) (1.24)

[V (2), V (3)] = V (1) (1.25)

[V (3), V (1)] = V (2). (1.26)

These are the same as the commutation relations for SO(3), the group of rotations in three
dimensions. The simplest case of spherical symmetry is simply R3, and spheres on R3. However
we can also have spherical symmetry without an ”origin”, such as a so-called ”wormhole”. They
have topology R×S2, and if we suppress a dimension and draw the two-spheres as circles, best
shown visually by Fig. (1.1).

We now follow a rigorous calculation for the Schwarzschild metric. Our submanifolds are
two-spheres, with coordinates (θ, φ) with a metric of the form

dΩ2 = dθ2 + sin2 θdφ2. (1.27)

However, we are working in four dimensional spacetime, and as such we require two more
coordinates. The following theorem will prove to be useful: If the submanifolds of a manifold
are maximally symmetric spaces, then it is always possible to choose u-coordinates such that
the metric on the entire manifold is of the form

ds2 = gµνdx
µdxν = gIJ(v)dvIdvJ + f(v)γij(u)duiduj (1.28)

where γij(u) is the metric on the submanifold. The proof of this theorem may be found in
Chapter 13 of [3]. We can use this theorem to describe the metric on a spherically symmetric
spacetime as

ds2 = gaa(a, b)da
2 + gab(dadb+ dbda) + gbb(a, b)db

2 + r2(a, b)dΩ2

= gaa(a, r)da
2 + gar(dadr + drda) + grr(a, r)dr

2 + r2dΩ2. (1.29)
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Figure 1.1: A Wormhole (also known as an Einstein-Rosen Bridge). This particular example [2]
is one solution of the Schwarzschild metric, and is hence known as a Schwarschild wormhole.

We went from (a, b) to (a, r) by simply inverting r(a, b). We now find a function t(a, r) that in
the (t, r) coordinate system has no dtdr + drdt cross terms, and by the chain rule

dt2 = (
∂t

∂a
)2da2 + (

∂t

∂a
)(
∂t

∂r
)(dadr + drda) + (

∂t

∂r
)2dr2. (1.30)

If we set the requirements that m( ∂t
∂a

)2 = gaa, n + m(∂t
∂t

)2 = grr and m( ∂t
∂a

)( ∂t
∂r

) = gar then we
can rewrite the metric as

ds2 = m(t, r)dt2 + n(t, r)dr2 + r2dΩ2. (1.31)

Given some initial conditions for t, we can thus find solutions exactly. It is also rather similar
to the metric for flat Minkowski space. However, we are looking for Lorentzian solutions, hence
one of the components must be negative. We shall choose m, and replacing them with new
functions α and β, we then have

ds2 = −e2α(t,r)dt2 + e2β(t,r)dr2 + r2dΩ2. (1.32)

From this metric, one can work out the Christoffel symbols, followed by the Riemann tensor,
and contracting to find the Ricci tensor. After this is done (the precise steps can be found
within [1]), we find that β = β(r) and α = f(r) + g(t), and choosing t in such a way that
g(t) = 0, we can then have a spherically symmetric vacuum metric with a time-like Killing
vector

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2. (1.33)

Using the Ricci tensors R00 and R11 and using the proper coordinate scaling, it is implied that
α = −β, and R22 = 0 indicates that e2α = 1 + µ

r
for some constant µ. These allow us to write

our metric as
ds2 = −(1 +

µ

r
)dt2 + (1 +

µ

r
)−1dr2 + r2dΩ2. (1.34)

It is possible to solve µ in the weak field limit of Einstein’s field equations, as r → ∞. A
very brief description of this field limit entails that the nonlinear contributions of the spacetime
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metric are ignored. The metric tensor is treated as the sum of of an exact solution of the Einstein
equations, often Minkoswki space, and a perturbation g = η + h, with η the nondynamical
background metric being perturbed, and h the deviation from the true metric g from flat
spacetime. Solutions are then found using perturbation theory. Now the above metric states
that

g00(r →∞) = −(1 +
µ

r
) (1.35)

grr(r →∞) = (1− µ

r
), (1.36)

however the weak field limit states that

g00 = −(1 + 2Φ) (1.37)

grr = (1− 2Φ) (1.38)

with Φ being the potential Φ = −GM/r. Hence if we set µ = −2GM , we can finally obtain
the Schwarzschild metric

ds2 = −(1− 2GM

r
)dt2 + (1− 2GM

r
)−1dr2 + r2dΩ2. (1.39)

This metric holds true for any spherically symmetric vacuum solution to Einstein’s equa-
tions. A few notes on this form. Note that M here denotes Newtonian mass, and that for
M → 0 we recover Minkowski space, as well as for r → ∞. Analysis of the singularities is
also greatly of interest. We see the metric becomes infinite when r = 0 and r = 2GM . Now,
r = 0 is an honest singularity. It represents a point where the curvature becomes infinite, and
it is not a point that is infinitely far away; it can be reached by travelling a finite distance
along a curve. The point r = 2GM is interesting however, since its curvature invariants remain
normal, in that it doesn’t blow up. It then leads us to believe that we have simply chosen a bad
coordinate system, and can simply transform to a coordinate system that is more appropriate.
The surface r = 2GM is locally perfectly regular, however globally it acts as a point of no
return, hence why it is known as the event horizon. Once a particle goes past this horizon,
it can not come back. One can also interpret it as no event at r ≤ 2GM can influence any
other event at r > 2GM . This is also where the name black hole arises, since it is technically
impossible to see inside.

In the more astronomical sense of the word, black holes are formed from massive stars.
A star is in constant turmoil from its own gravity as well as the outward push of pressure.
Nuclear fusion occurs from the core, and the heat produced from this reaction causes the
pressure. As the fuel is consumed, the temperature drops and the gravity of the star starts to
take over. This process of shrinking is slowed and eventually stopped by the Pauli exclusion
principle, which states that no two fermions can be in the same state. Hence the electrons
resist the compression and the shrinking stops. These objects are then known as white dwarfs.
If there is sufficient mass however, the electrons are not able to stop the gravitational pull,
and the electrons merge with the protons, which then results in a neutron star. These stars
are not terribly well understood, especially the cores, however it is reasonable to believe that
given a sufficiently high mass, the neutron stars themselves won’t be able to withstand the
gravitational pull and continue to collapse. A fluid of neutrons is believed to be the densest
material conceivable, and the collapse should result in a black hole.

One can also have charged black holes, where we start with our spherically symmetric
solution, but since we are no longer in a vacuum, we must look at solutions with a non-zero
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electromagnetic field. The energy-momentum tensor for electromagnetism is given as

Tµν =
1

4π
(FµρF

ρ
ν −

1

4
gµνFρσF

ρσ), (1.40)

which has field equations that are both Einstein’s equations as well as Maxwell’s equations.
Using a similar approach as to that in the vacuum case, one can find the metric for a charged
black hole, and it is known as the Reissner-Nordström metric

ds2 = −∆dt2 + ∆−1dr2 + r2dΩ2 (1.41)

with

∆ = 1− 2GM

r
+
G(p2 + q2)

r2
. (1.42)

Here, q is the total electric charge, p is the total magnetic charge and M is the mass of the
hole. For these black holes, there exist extremal cases, where the mass is equal to the charge,
however these are not the same type of extremal black holes that we will consider later. For
those interested however, [4] takes the units c = G = h̄ = 1 in the Reissner-Nordström metric,
which leads the charge being expressible in terms of the mass, and in the extremal case, |q|= M .

A quick note now on black hole evaporation. Black holes do not evaporate in the traditional
sense, however they do radiate energy as if they were a blackbody. The effect of this evaporation
is called Hawking radiation, and it is loosely defined as such [5]: In quantum field theory
there exists vacuum fluctuations, where particle and antiparticle pairs are spontaneously being
created and annihilated in empty space. These are typically impossible to detect, since they
average zero total energy, however if this event happens near to an event horizon, it may
happen that as one of these pairs are created, one member might fall into the black hole, and
the partner, unable to recombine and annihilate, escapes to infinity. This particle will have
positive energy, however if the total energy needs to be conserved, then the black hole must lose
some mass. These particles are then Hawking radiation. However this process also implies that
information is lost which violates both quantum field theory as well as general relativity [6], [7].
A possible solution lies within string theory, but is outside the scope of this dissertation.

This rather rushed description of the foundation of general relativity and its consequences
cannot be hoped to be encapsulated in such a short summary, and as such the reader is encour-
aged to refer to the source material for a more in-depth investigation. The material cited so
far is mostly used only where applicable, and used as our own foundation for what is to come,
where we start defining the specific space we are using as well as the framework where we will
be describing our black holes.

1.2 AdS/CFT and Higher Spin Fields

We will now briefly review the basics of anti de Sitter space, and how it links to Conformal Field
Theory. AdS/CFT, or Anti- de Sitter/ Conformal Field Theory, is a very useful field of study,
with many relatively recent discoveries being made concerning it. One of these is the notion of
a certain duality between theories of gravity in five dimensions and quantum field theories in
four dimensions. This duality is incredivly useful, in that if the one theory is difficult to solve,
for example the gravitational theory, then the QFT will be simple to solve, and the opposite
is true as well. If we can consider general relativity to be eequivalent to QFT, then neither
side is ”deeper” than the other. We can then see why this is such an important conjecture,
since if we have an AdS space which is then multiplied by a sphere, then these spaces arise as
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the near horizon geometry of extreme black holes and extreme p-branes, which is important in
the understanding of M-theory [8]. This, however, is outside of our scope. What was noted is
that on the AdS geometry, the near horizon region is related to the low energy CFT, which is
described by the underlying branes. This appearance is the cause of Maldacena’s AdS/CFT
correspondence, which we will now very briefly review. Let us consider the Einstein-Hilbert
action with a cosmological term

S = −s 1

16πGD

∫
dDx

√
|g|(R + Λ) (1.43)

where s indicates the choice of metric, with s = −1 being the Minkowski metric and s = +1
being the Euclidean signature. AdS as well as dS space are solutions of the empty space Einstein
equation:

Rµν −
1

2
gµνR =

1

2
Λgµν ⇒ (1.44)

R =
D

2−D
Λ⇒ (1.45)

Rµν =
Λ

2−D
gµν . (1.46)

These spaces have the property that the Ricci tensor is proportional to the metric tensor, which
makes them Einstein spaces. We need a specific space that has maximal symmetry, hence we
impose:

Rµνρσ =
R

D(D − 1)
(gνσgµρ − gνρgµσ) (1.47)

and examples of such spaces, for R 6= 0, are spheres (SD), de Sitter spaces (dSD) and anti de
Sitter spaces (AdSD). The difference between dS and AdS spaces is the sign of the cosmological
constant, where AdS has negative Λ. This is of course mostly due to convention, however the
literature concerning string theory tends to consider it to be negative.

We consider an (n+1)-dimensional AdSn+1 as a submanifold of a pseudo-Euclidean (n+2)-
dimensional embedding space. It preserves the ”Lorentz-like” group SO(2, n). We then define
AdSn+1 as the locus of y2 = b2 =const. where (ya) = (y0, y1, ..., yn, yn+1) are the coordinates
and the transformations of the group is ya → y

′a = Λa
by

b. It can be shown then that quantum
theories on AdSn+1 should have an SO(2, n) invariance [9]. On the boundary of SO(2, n), the
group acts as the conformal group acting on Minkowski space2.

If one considers an n-dimensional Euclidean space En, then its conformal group is SO(1, n+
1). One can check this by counting the number of generators between this group and the
Poincaré group in n dimensions, and adding an extra conformal transformations for dilations
and the special conformal transformation. One then requires that the action of SO(1, n + 1)
on the boundary gives conformal transformations. We then have that the conformal algebra
represents translations, Lorentz rotations, Dilations and Special Conformal Transformations.
Knowing what we do now about AdS and the conformal group, Maldacena’s conjecture then
relates string theory in asymptotically AdS space to a conformal field theory on the boundary
at spatial infinity. Also, concerning the AdS3/CFT2 correspondence, it is essentially stated
that the partition functions on both sides are equal, and in the high energy regime the AdS
side is dominated by an asymptotically AdS3 black hole, hence the importance of the BTZ
black hole.

2Proof of this can be found in [9]
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On the CFT side, we must quickly cover the Virasoro algebra. Firstly, what the Virasoro
algebra is and then secondly why it is important. The Virasoro algebra is a complex Lie algebra,
which is spanned by generators LN for the central charge c. They satisfy the commutation
relations [c, Ln] = 0 and

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0. (1.48)

If one is so inclined, one can find many sources pertaining to the derivation of the Virasoro
algebra as that of the unique central extension of the Witt algebra, however it will not be
covered in this dissertation.

It was found by [10] that the generators to the diffeomorphism transformations which pre-
serve the asymptotic AdS form of the metric also form the Virasoro algebra, which will be
viewed as the algebra that describes conformal symmetries in the CFT dual3. For the case
of sl(2, R) pure gravity, one obtains the generalization of the Virasoro algebra asymptotically,
while sl(N,R) generates the WN algebra asymptotically [11]. On a side note, much like hs[λ]
theory, which we will discuss much later, the asymptotic symmetry is a particular W -algebra,
named W∞[λ].

The local Virasoro symmetry used to describe the CFT side of the theory is not available,
however there exists the large N limit, which can be used as a mean field-like description. What
we mean by the large N limit is that we use a technique to obtain solutions similar to that of
the central limit theorem of the theory of probabilities. In a very vague sense, if a field has N
components, then in the large N limit the scalar composite fields are made up of many terms
and these terms may have some fluctuations if they are not explicitly correlated. As such, if
we construct a field theory for these scalars, and integrate out the degrees of freedom, we are
able to solve the theory in the large N limit as well as in a 1/N expansion [12]. This large
N description of CFT includes gravity in an asymptotically AdS spacetime. This is linked to
the existence of D-branes and string theory, which will not be covered in detail. Since we are
working with an Einstein gravity dual, we move into a strong coupling. Quantizing strings in
AdS spacetime complicates this regime.

Looking at the higher spin theories in AdS, the theories include an infinite number of
massless interacting fields with spin s ≥ 2, and these theories are possibly a description of the
weak coupling limit of large N gauge theories, or at least a sector of it. Related to the large N
limit, we define a ’t Hooft limit

N, k →∞; 0 ≤ λ ≡ N

k +N
≤ 1 fixed. (1.49)

These theories act as vector models, and the central charge cN(λ) scales as N [13]. There is a
discrete set of CFT which coalesce into a line which is described by the ’t Hooft coupling λ.
A free theory of N complex fermions can be described with λ = 0, while λ = 1 best describes
a type ’strong’ coupling region. The coupling always remains of order one, which indicates an
absence of a dual Einstein gravity regime. The existence of the continuous parameter λ also
links the model to higher dimensional supersymmetric gauge theories.

The CFT’s we look at now are the so-called WN minimal models. These are described by
the coset [14]

gk ⊕ g1

gk+1

(1.50)

3When we discuss the Chern-Simons formulation, these Virasoro generators manifest in terms of the Hamil-
tonian reduction of the gauge connection
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where g = su(N) for WN . After a bit of work, the central charge can be described by

cN(p) = (N − 1)[1− N(N + 1)

p(p+ 1)
] ≤ (N − 1) (1.51)

where we have introduced p = k + N ≥ (N + 1). Some interesting choices to look at are for
N = 2 we have the unitary series of Virasoro minimal models for g = su(2), for k = 1 we have

c = 2(N−1)
N+2

which can be realized by a theory of ZN parafermions [15]. Also for p → ∞ where
c = (N − 1) and the symmetry corresponds to the Casimir algebra of the su(N) affine algebra.

We must now quickly touch on higher spin theories. In three dimensions, the massless higher
spin fields do not contain propagating degrees of freedom. One can also truncate classically to
a finite amount of them. Also there exists a Chern-Simons formulation4 of the classical action
to these theories. For spin N , the CS gauge group is SL(N,R) × SL(N,R) in the Lorentzian
signature and SL(N,C) in the Euclidean signature.

The massless spin s fields in three dimensions are completely symmetric tensors ϕµ1µ2...µs

which are subject to a double trace constraint

ϕ αλ
µ5...µsαλ

= 0. (1.52)

This is of course only possible for s > 4. There is also a gauge invariance which leads to field
configurations identification

ϕµ1µ2...µs ∼ ϕµ1µ2...µs +∇(µ1ξµ2...µs). (1.53)

That gauge parameter is traceless and a symmetric tensor of rank (s−1), which is only traceless
for s ≥ 3. What makes AdS3 special (and it was and shall again be discussed) is that for every
N ≥ 2, we have truncations to theories which have a spectrum of single massless fields for every
spin s = 2, ..., N . This description of these fields was given by Fronsdal [16], but as we will see
we will not require it as (in 3d) we re-gauge them to Chern-Simons gauge fields.

The higher spin gauge fields can be expressed using a generalized vielbein and spin connec-
tion

ea1...as−1
µ ωa1...as−1

µ (1.54)

with s the spin of the gauge field. Under a maximal spin N , the variables can be compacted
into a single multiplet under the higher spin symmetry. The Chern-Simons action and level
will be covered in higher detail in the next chapter, however relating to the WN , it was argued
in [17] that using the Chern-Simons formulation, a maximal N theory has an asymptotic WN

symmetry algebra. On the classical level the central charge is

c =
3l

2GN

(1.55)

with l being the radius of curvature, and the result happens to be the same as the Brown-
Henneaux result for Einstein gravity on AdS3 [10].

The Fronsdal fields about an AdS background are related to the vielbeins as

ϕµ1µ2...µs =
1

s
ēa1

(µ1
...ēas−1

µs−1
eµs)a1...as−1 . (1.56)

The ēaµ is the vielbein for the AdS3 background metric. Generally, we describe the Chern-Simons
combinations

ja1...as−1
µ = (ω +

e

l
)a1...as−1
µ , j̃a1...as−1

µ = (ω − e

l
)a1...as−1
µ , (1.57)

4We will be discussing this in more detail in the following chapter.
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and the gauge potentials

A = (jaµTa + ...+ ja1...aN−1
µ Ta1...aN−1

)dxµ (1.58)

Ã = (j̃aµTa + ...+ j̃a1...aN−1
µ Ta1...aN−1

)dxµ. (1.59)

Also, the Ta are SL(2, R) generators with

Ta1...as−1 ∼ T(a1 ...Tas−1). (1.60)

From these equations, we can view A, Ã as SL(N,R) gauge fields. It was noticed in [18] that
for N = 3, the Fronsdal fields are expressed in terms of the SL(3, R) Casimir generators.
This should generalize to any N , which fits with the thought that the vacuum sector of CFT
describes the pure higher spin field excitations, since it contains the SU(N) Casimir algebra.

Back to the higher spin fields, in three dimensions, we have distinct matter multiplets which
contains only scalar and/or fermion fields (in higher dimensions these matter fields lie in the
same multiplet as the higher spin fields). The mass of these fields is related to a deformation
parameter of the higher spin algebra

M2 = ∆(∆− 2). (1.61)

This matter multiplet contains four scalars, the above two as well as two M2 = ∆(∆ + 2),
which transform under a global symmetry group. This multiplet is typically truncated to just
the first two scalars. For a generic ∆, one cannot truncate the massless fields to a maximal
spin, hence a N →∞ limit is used when these fields are added.

We aim to describe the bulk gravity in a Chern-Simons formulation, and by doing this it
is necessary to specify the boundary conditions. All the dynamics will be resultant from these
conditions. For N = 2 AdS3 gravity, we have the metric

ds2 = l2(1 +
r2

l2
)dt2 − (1 +

r2

l2
)−1dr2 − r2dφ2. (1.62)

The boundary in this case is a cylinder with a parametrization in t. We must add a boundary
term or specify boundary conditions for the gauge field for the variational principle for the
Chern-Simons action, so we add the boundary conditions of the cylinder (specifically on its
boundary)

Aw̄ = 0, Ãw = 0. (1.63)

This can be seen as the gauge fields A, Ã having only left- and right-moving components on the
boundary, respectively. Also, this indicates that the gauge fields are SU(N) on the boundary.
A note now, is that the boundary conditions are incomplete, since they do not yet guarantee an
asymptotically AdS3 geometry. For pure gravity, only the lowest-spin components in the algebra
decomposition of the principal sl(2, R) embedding is left after some additional conditions. As
such, the Wess-Zumino-Witten (WZW) model [19] is gauged, and the resultant theory is a
classical Drinfeld-Sokolov reduction [20]. Hence the affine Kac-Moody algebra is reduced to a
WN -algebra, which establishes the symmetry generators [21].

On this note, it might seem prudent to investigate exactly what symmetry (and supersym-
metry) entails, for the reader who has not had much experience in the field. This comes at the
cost that it is an extremely large field and is actively being researched, and as such we will only
be covering a very small portion of it. For completeness the topic of supersymmetry is covered
once again in our very specific context much later, as to see how the addition of supersymmetry
to our black hole solutions affect the type of solutions we obtain.
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1.3 Supersymmetry

Symmetry and supersymmetry is fundamental to modern physics, and as such requires some
time to review. We begin by defining simple symmetry, and though we talk of symmetries prior
to this section, it will still be prudent to have a section dedicated to the study.

We begin by defining invariance, which is a property objects attain if they do not change
under certain transformations. We also define conserved charges, by first referring to Noether’s
theorem. It states that for every continuous symmetry of an action, there is a corresponding
conserved current. A conserved current satisfies the continuity equation

∂µj
µ(x) = 0, (1.64)

with jµ(x) built up from fields in the lagrangian. There are also internal, as well as external
symmetries, where external symmetries are tied to the invariance under the Poincaré group.
Internal symmetries arise when the lagrangian has several fields, which appear in a symmetric
way. More explicitly, external symmetries are related to spacetime transformations, which has
continuous types, such as the Poincaré group; and discrete ones, such as parity, charge conjuga-
tion and time reversal. Internal symmetries appear when several particles of the same type are
combined. Globally, they can appear as isospin and its generalization to flavour symmetry, or
local (gauged), such as the U(1) of electromagnetism, the SU(2) of weak interactions or SU(3)
of the strong interaction.

Internal symmetries commute with the Poincaré group, and as such for some given internal
symmetry generators Ra,

[Ra, Rb] = 2ifabcRc (1.65)

these commute with the Casimirs of the Poincaré group

[Ra, P 2] = 0, [Ra,W 2] = 0. (1.66)

This indicates that particles that are related by internal symmetries have the same mass as
well as spin.

One cannot mix internal and external symmetries in some non-trivial way due to the
Coleman-Mandula theorem [22]. It assumed that all symmetries were Lie algebraic in na-
ture, which appears to be a reasonable assumption since all the known continuous symmetries
were of this type. We can then consider spinorial symmetries, which have half-integer spin
generators, which are fermionic. This is due to the spin-statistic theorem, and due to it being
fermionic, or anticommuting, it does not form a lie algebra. It was shown in [23] that the
possibilities are only spin-1

2
, and [24], [25] showed concrete realizations of this symmetry. This

fermionic symmetry is the foundation of what is known as supersymmetry.
As such, supersymmetry is defined as the symmetry obtained by extending the Poincaré

group with the addition of anticommuting spin-1
2

operators. Since the generators fall into spin-1
2

representations of the Lorentz group, they can be taken to be Weyl spinors Qα.In 4 dimensions,
they fill out a 4-component Dirac spinor

QD =

(
Qα

Q̄α̇

)
(1.67)

which we will call supercharges. We can have more than one such generator, hence QA
D, which

brings us to extended supersymmetry.
Within these extended supersymmetric theories, one has what is called Bogomol’nyi-Prasad-

Sommerfield (BPS) states, which are states that only preserve supersymmetry partially. These
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BPS states admit Killing spinors which satisfy the Killing spinor equations, and these are
much simpler differential equations to solve than the equations of motion, this being due to
the fact that they are first order equations. These are much simpler to solve than higher order
equations. One can then look at specific sectors of the supersymmetric theory, for instance
only looking at the bosonic sector’s BPS states equates to states with minimized energy. One
can actually impose fake supersymmetry on certain systems, which then obtain BPS states for
non-supersymmetric (bosonic) models, and thus satisfies the lower order equations of motion
[26], [27], [28].

Recall that generators of supersymmetry are fermionic, and as such each bosonic state
requires a fermionic state due to this supersymmetry. As such, we must redefine a particle to
include fermionic as well as bosonic components. These are then called superparticles and the
individual components belong to the same supermultiplet.

We would like to know how supersymmetry acts on fields, since we have been considering
supersymmetry only on states so far. The model we can consider as to how these act is the
Wess-Zumino Lagrangian model [25], [24], which consists of a complex scalar (A), a Weyl
fermion (ψα) and a complex auxiliary field (F ) [23]. The full Lagrangian for the free theory is
the sum of three terms,

LWZ = Lkin + Lmass + Lint (1.68)

with kinetic term
Lkin = ∂µA

∗∂µA+ i∂µψ
ασµαα̇ψ̄

α̇ + F ∗F, (1.69)

mass term

Lmass = −mAF +
1

2
mψ2 −mA∗F ∗ +

1

2
mψ̄2 (1.70)

and interaction terms

Lint = −gAAF + gAψαψα − gA∗A∗F ∗ + gA∗ψ̄α̇ψ̄
α̇. (1.71)

These terms also have the supersymmetry transformations

δξA =
√

2ξαψα, (1.72)

δξψα =
√

2ξαF + i
√

2σµαα̇ξ̄
α̇∂µA, (1.73)

δξF = −
√

2i∂µψ
ασµαα̇ξ̄

α̇. (1.74)

Note that the WZ model we are currently investigating is in 4d, and while the example we
will be considering later on will be in 3d (i.e. the Chern-Simons model), the overall idea on
supersymmetry is the same, with some details being different due to the change in dimension. It
is also of interest to note that the supersymmetry parameter (ξ) is fermionic, or more specifically
the parameter’s conjugate is related to the variation of the fermion.

Now it is claimed that each term of the Lagrangian is invariant under a specific set of
supersymmetry transformations. It is of course true, and hence the model is found to be
supersymmetric.

Supersymmetry in the context of our extremal black holes will be reviewed much later when
looking at our sl(3|2) solutions, as well as the higher dimensional case. With symmetry and
supersymmetry handled (at least for what we require of it), we can begin in earnest in describing
Chern-Simons Theory.
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Chapter 2

Chern-Simons Theory and Higher Spin
Black Holes

The reason as to why we would like to investigate higher spin black holes is because of the
appearance of gravity theories coupled to massless higher spin fields within the AdS/CFT cor-
respondence. Even though they are more intricate than the usual supergravity approximation
in AdS/CFT , they are more tractable than the full string theory in AdS, where an infinite
tower of massive string excitations are used. We will now look at the three-dimensional higher
spin theory.

The three dimensional case is considerably easier to work with than the higher dimensional
cases, for the following reasons. Firstly, it proves to be consistent to truncate the tower of
higher spin fields onto a finite set, specifically where the only spins that are included would be
those where s ≤ N . The second reason is that the action can be expressed as a Chern-Simons
Theory. In the following example we will look at a simple case of a metric coupled to a spin-3
field and the associated equivalent of the BTZ black hole, which carries non-zero Virasoro zero-
mode charges, which correspond to mass and angular momentum. We will discuss the precise
definition of the BTZ black hole later on. Looking at the thermodynamics of the BTZ black
hole, it can be seen as contributing a finite temperature partition function, and since the BTZ
entropy takes the form of Cardy’s formula, then the entropy can be matched to the asymptotic
number of states of a dual boundary CFT [29]. Similarly, the spin-3 black hole we consider
contributes to a partition function that includes the chemical potentials for the spin-3 charge.

2.1 Chern-Simons Action and the sl(3, R) black hole

Witten discovered that gravity with a negative cosmological constant in 2+1 dimensions can be
reformulated as a SL(2, R)×SL(2, R) Chern-Simons theory [30]. We will briefly review it here.
The Einstein-Hilbert action for gravity coupled to matter in 2 + 1 dimensions is represented as

I =
1

16πG

∫
M

d3x
√
−g(R− 2Λ) + Imatter. (2.1)

The equations of motion for this action are

Rµν + Λgµν −
1

2
gµνR = −8πGTµν , (2.2)

and these are diffeomorphism covariant. Now, the Riemann tensor and the Ricci tensor have
an interesting property in this dimension in that they can both be expressed in terms of the
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other. This can be used to define the following:

Rµνρσ = gµρRνσ + gνσRµρ − gµσRνρ − gνρRµσ −
1

2
(gµρgνσ − gµσgνρ)R. (2.3)

This equation is traceless, which is to say that the Weyl curvature tensor is zero. This also
implies that for a vacuum, the solutions to the Einstein equation are flat for Λ = 0, and have
constant curvature for Λ 6= 0. For Λ = 0, we can show that the Chern-Simons action is
equivalent to this form by setting a few conditions. The connection to the Einstein equations
is made by defining the 1-Forms of the spin connection and the vielbeins as

Aa = ωa +
i

l
ea, Āa = ωa − i

l
ea. (2.4)

The curvature tensor is defined as

R a
ij b = ∂iω

a
j b − ∂jωai b + [ωi, ωj]

a
b , (2.5)

or equivalently R = dω + ω ∧ ω. Also, this will cause the Einstein-Hilbert action to be

I =
1

2

∫
M

εijklεabcd(e
a
i e
b
jR

cd
kl ), (2.6)

where one can find by varying the connection in terms of ω, then it is seen that ω is torsion
free, and if it is varied in terms of the vielbein e then we find that

eka = R a
ik b = 0, (2.7)

which corresponds to the vanishing of the Ricci tensor, similar to the Einstein equations in a
vacuum.

Relatively recently, it was found that an SL(N,R)×SL(N,R) Chern-Simons theory corre-
sponds to Einstein gravity coupled to N−2 symmetric tensor fields with spin s = 3, 4, ...N [31].

We consider the case of N = 3, such that we have an SL(3, R) × SL(3, R) Chern-Simons
Theory. This corresponded to spin-3 gravity in three dimensions with a negative cosmological
constant. The following is based on [32] and will follow it closely.

The Chern-Simons action is of the following form:

S = SCS[A]− SCS[A] (2.8)

with

SCS[A] =
k

4π

∫
Tr(A ∧ dA+

2

3
A ∧ A ∧ A), (2.9)

and similarly for A. These 1-forms A and A take values in the Lie algebra SL(3, R). The
Chern-Simons level k is linked to the Newton constant G and the AdS3 radius l as

k =
l

4G
, (2.10)

where we set l = 1.
The equations of motion for the action corresponds to the vanishing of the field strengths,

i.e.
F = dA+ A ∧ A = 0, F = dA+ A ∧ A = 0. (2.11)
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It is required to relate these equations of motion to the spin-3 Einstein equations, and as such
we use the vielbein e and the spin connection ω in such a form that

A = ω + e, A = ω − e. (2.12)

We then expand the vielbeins and spin connections in a basis of 1-forms dxµ. We can then
write the spacetime metric gµν and the spin-3 field ϕµνγ as

gµν =
1

2
tr(eµeν), ϕµνγ =

1

9
√
−σ

tr(e(µeνeγ)). (2.13)

The parameter σ is assumed to be negative, but it can be kept arbitrary for the moment. For
the vanishing of the spin-3 fields, i.e. where ϕ = 0, the flatness condition is equivalent to
Einstein’s equations for the metric gµν with a torsion-free spin connection.

Upon acting on the metric and spin-3 field, the SL(3, R)×SL(3, R) gauge symmetries of the
Chern-Simons theory turn into diffeomorphisms as well as the spin-3 gauge transformations.
Under these diffeomorphisms, the metric and the spin-3 field will transform the same as the
standard tensor transformation rules. The spin -3 gauge transformations however act non-
trivially with the metric and spin-3 field. Ignoring the spin-3 gauge transformation will allow
us to view the theory as a particular diffeomorphism invariant theory of a metric and rank-3
symmetric tensor field.

A quick look at the asymptotic AdS3 boundary conditions shows that the metric of global
AdS3 in terms of the Fefferman-Graham coordinates [33] can be written as

ds2
AdS = dρ2 − (eρ +

1

4
e−ρ)2dt2 + (eρ − 1

4
e−ρ)2dφ2 (2.14)

which is obtainable from the connections

AAdS = (eρL1 +
1

4
e−ρL−1)dx+ + L0dρ (2.15)

AAdS = −(eρL−1 +
1

4
e−ρL1)dx− − L0dρ (2.16)

with x± = t± φ, φ ∼= φ+ 2π and the Li’s are the generators for SL(3, R).
We will introduce b(ρ) = eρL0 such that the connection becomes

AAdS = b−1(L1 +
1

4
L−1)bdx+ + b−1∂ρbdρ (2.17)

AAdS = −b(L−1 +
1

4
L1)b−1dx− + b∂ρb

−1dρ. (2.18)

The form of these connections can be said to be asymptotically AdS3 if, accordingly to [21],
the connection A obeys A− = 0, Aρ = b−1(ρ)∂ρb(ρ), and

A = AAdS ∼ O(1) as ρ→∞ (2.19)

and similarly for A.
It is possible to make gauge transformations to essentially ”gauge away” the radial depen-

dence, and as such the asymptotic AdS3 connections take the form

A = b−1a(x+)b+ b−1db, A = ba(x−)b−1 + bdb−1, (2.20)
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where the a and a connections are given by

a(x+) = (L1 −
2π

k
L(x+)L−1 +

π

2kσ
W(x+)W−2)dx+ (2.21)

a(x−) = −(L−1 −
2π

k
L(x−)L1 +

π

2kσ
W(x−)W2)dx−. (2.22)

The convention differs between many sources as to the specific writing of these connections,
such as the naming of the sources L andW , and the form of the coefficients, etc. However in this
case, the modes L and W are identified with the stress tensor and spin-3 current respectively.

Our discussions thus far have all been to be able to write out a general black hole using the
framework we have established. However we must still cover an exceptionally important case of
a black hole, named the BTZ black hole, due to its relevance in almost all of black hole physics
since it is so well understood.

2.2 BTZ Black Hole in Higher Spin

The BTZ black hole, so named after the original creators, Bañados, Teitelboim and Zanelli, is
a black hole in (2 + 1) dimensions with negative cosmological constant [34]. It has a metric in
Schwarzschild coordinates as

ds = −(−M +
r2

l2
+
J2

4r2
)dt2 + (−M +

r2

l2
+
J2

4r2
)−1dr2 + r2(dφ− J

2r2
dt)2, (2.23)

with M and J the mass and angular momentum parameters considered for a black hole. One
can check that this metric satisfies the Einstein equation for 2 + 1 dimensions, with a negative
cosmological constant, which we can take as Λ = −1/l2. The Einstein equations then look like

Rµν −
1

2
gµνR =

1

l2
gµν . (2.24)

We also have an inner and outer horizon at r = r±, corresponding to singular locations of
the metric, at

r2
± =

Ml2

2

(
1±

√
1− J2

M2l2

)
. (2.25)

We can then typically express the mass and angular momentum iin terms of these r±,

M =
r2

+ + r2
−

l2
, J =

2r+r−
l

. (2.26)

We choose the units in such a way that satisfies Newton’s constant to be 8G = 1. Also note
that the M = −1, J = 0 metric results in three dimensional anti-de Sitter space (AdS3).

For a BTZ black hole of mass M and angular momentum J , we have

L =
M − J

4π
, L =

M + J

4π
(2.27)

and W =W = 0, which then produces the connections

A = (eρL1 −
2π

k
e−ρLL−1)dx+ + L0dρ (2.28)

A = −(eρL−1 −
2π

k
Le−ρL1)dx− − L0dρ. (2.29)
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Using the equations we defined for relating the vielbeins and connections as well with the
metric and spin-3 field, we can then write the BTZ metric as

ds2 = dρ2 +
2π

k
(L(dx+)2 + L(dx−)2)− (e2ρ + (

2π

k
)2LLe−2ρ)dx+dx−. (2.30)

The entropy is given by

S =
AH
4G

= 2π(
√

2πkL+
√

2πkL). (2.31)

In terms of the Brown-Henneaux central charge,

c =
3

2G
= 6k, (2.32)

we have the well known entropy result that takes the form of Cardy’s formula [35].
If we move to the Euclidean signature, x+ → z and x− → −z, and demanding that there is

the absence of a conical singularity at the horizon, we then have the periodicity conditions

(z, z) ∼= (z + 2πτ, z + 2πτ), (2.33)

with the modular parameters

τ =
ik

2

1√
2πkL

, τ =
−ik

2

1√
2πkL

. (2.34)

To cap off we define the Hawking temperature T = 1/β and the angular velocity of the horizon
Ω to be expressed similarly

τ =
iβ + iβΩ

2π
, τ =

−iβ + iβΩ

2π
, (2.35)

and looking at the framework of the AdS3/CFT2 correspondence, the BTZ black hole is con-
tributing to the partition function

Z(τ, τ = TrAdSe
4π2iτ L̂−4π2iτ L̂ = TrCFT (qL0− c

24 qL0− c
24 ) (2.36)

where L̂ and L̂ denote the Virasoro zero mode operators: 2πL̂ = L0, 2πL̂ = L0.
With this finished, we can comfortably begin describing the next step in our journey: to

review extremality, realise this does not cover our specific case and then redefine extremality
to still be consistent.
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Chapter 3

Extremal Higher Spin Black Holes

We aim towards finding black hole solutions for three-dimensional Chern-Simons theory, and
as such we start off with its Euclidean action

ICS =
ikcs
4π

∫
M

Tr[CS(A)− CS(Ā)] (3.1)

with A and Ā valued in the same algebra. Also

CS(A) = A ∧ dA+
2

3
A ∧ A ∧ A (3.2)

is seen as the Chern-Simons form and Tr denotes the trace (or supertrace if sypersymmetry is
involved) for the given representation. It is important to note that in the Euclidean signature
the connections are usually complex, and as such we have

A† = −Ā. (3.3)

This is our reality condition for the action and any physical observables. If we work in the
Lorentzian signature however, one works with two independent connections A and Ā, each
valued in the appropriate real form of its gauge algebra. In either case, charges and conjugate
potentials are real in both sectors.

The Chern-Simons theory is useful in its own right due to its gauge freedoms. We will
exploit these to essentially ”gauge-away” the radial dependence on the connection, i.e:

A(ρ, z, z̄) = b−1(ρ)(a(z, z̄) + d)b(ρ), Ā(ρ, z, z̄) = b(ρ)(ā(z, z̄) + d)b−1(ρ), (3.4)

and from here we will focus on the boundary connections a(z, z̄) and ā(z, z̄). The reason we
can gauge away this dependence, is due to the fact that in a purely 3d gravitation setting, the
Fefferman-Graham expansion will truncate after a set amount of terms in its radial component
[36].

3.1 Extremality

Extremality is typically tied to the confluence of two horizons, or at least this is the case with
conventional gravitational theories. By taking a non-extremal black hole and considering the
extremal limit, the standard static coordinates then become pathological [37], and that the
region between the degenerating horizons remains of constant four-volume. If one considers
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regions which are a finite distance away from the horizon, and then take the extremal limit,
one then has extremal black holes.

Black holes radiate and exhibit some formal similarity with thermodynamical systems, hence
it is possible to associate a Bekenstein-Hawking entropy to the black hole, which is proportional
to the area of the event horizon [7], [6], [5]. There have been many successes in reproducing
the Bekenstein-Hawking entropy formula, however the theory for black hole entropy is still
incomplete. An inconsistency arises for extremal black holes when considering solutions using
semi-classical methods, which indicate that the entropy for these extremal black holes vanishes
even if the event horizon area is non-zero. Despite this, extremal black holes were specifically
used for string theory microstate counting in determining non-zero entropy [38].

A method to determine the entropy that is both complementary to the semi-classical meth-
ods as well as the string theory microstates counting, is referred to as ”dual microstate count-
ing”. The main point of this approach is that for the near-horizon case, the geometry of an
extremal black hole locally matches that of two-dimensional anti-de Sitter space times a two
sphere (AdS2×S2). The symmetries of this geometry define a CFT (Conformal Field Theory),
of which the entropy can be determined and then associated with a black hole [29]. This method
has many successes and does not mention string theory, nor does it rely on supersymmetry.
The discrepancy between the string theory and the semi-classical calculations remain elusive.

The following background closely follows [39], and as such we start off with four-dimensional,
static, spherically symmetric solutions to the Einstein-Maxwell system with zero cosmological
constant, with G = 1,

S =
1

16π

∫
d4x
√
−g(R− F 2

4
). (3.5)

This action admits solutions of the Reissner-Nordström type, with a metric of the form

ds2 = −(r − r+)(r − r−)

r2
dt2 +

r2

(r − r+)(r − r−)
dr2 + r2dΩ2

2 (3.6)

and a field strength of

F =
Qe

r2
dt ∧ dr +Qm sin θdθ ∧ dφ. (3.7)

These coordinates do not cover the entire manifold, and event horizons are located at the
coordinate singularities

r± = M ±
√
M2 −Q2 (3.8)

where
Q ≡

√
Q2
e +Q2

m. (3.9)

We will always take this relation to be positive. We then look at extremality, where M = Q,
and find that the event horizons coincide at the extremal radius:

ρ ≡ r+ = r− = M = Q. (3.10)

We then have an extremal black hole metric as

ds2 = −(r − ρ)2

r2
dt2 +

r2

(r − ρ)2
dr2 + r2dΩ2

2. (3.11)

We can also find a set of solutions to the Einstein-Maxwell system with the AdS2 × S2

conditions, where the metric would look like

ds2 =
ρ2

cos2 θ
(−dτ 2 + dθ2) + ρ2dΩ2

2, (3.12)
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with ρ = Q, −π
2
≤ θ ≤ π

2
and −∞ ≤ τ ≤ ∞. Both the extremal and the compactification

solutions can be specified by the charges {Qe, Qm}, since the mass of the black hole is no
longer an independent parameter. However, the charges alone are insufficient to specify the
global properties of the solution. That being said, it is possible to find an equivalence for the
solutions locally, when taking the near-horizon limit.

If one changes the spacelike radial coordinate to λ = r−ρ
ρ

, then the metric becomes

ds2 = − λ2

(1 + λ)2
dt2 +

(1 + λ)2

λ2
dλ2 + ρ2(1 + λ)2dΩ2

2. (3.13)

This extremal metric has the property that the proper distance along a t = constant slice
form a point λ to the horizon at λ0 → 0 which is logarithmically divergent∫ λ

λ0

dλ
1 + λ

λ
= λ− λ0 + log(

λ

λ0

). (3.14)

One then takes the near horizon limit of the extremal black hole (λ → 0), then the metric
becomes

ds2 = −λ2dt2 +
ρ2

λ2
dλ2 + ρ2dΩ2

2, (3.15)

which, after transforming the coordinates in the original metric, can be recognised as AdS2×S2

t =
ρ sin τ

cos τ − sin θ
, λ =

cos τ − sin θ

cos θ
. (3.16)

From this, the horizon at λ = 0 is identified with θ = ±τ + π/2. The extremal solution
regions are locally approximated AdS2 × S2 near the horizon, but the approximation is only
exact at the horizon, which has infinite proper distance from any point outside of the black
hole.
The feature of the confluence of two horizons usually implies zero Hawking temperature of the
black hole. It would therefore make sense to declare that for higher spin theories a black hole
solution is one where a solution has zero temperature. However, we would like a definition that
only depends on the topological formulation of the theory, which incorporates the degeneration
or confluence as well as yielding the condition of zero temperature as a result. This is a main
condition on the thermodynamics of the system and is a required condition for extremality,
which is difficult to encode into a general condition for extremality, as we shall see shortly.

Even the BTZ black hole, the simplest case for the study of black holes, can achieve an
extremal state. The metric of a rotating BTZ black hole [40] is given by

ds2 = −
(r2 − r2

+)(r2 − r2
−)

R2r2
dt2 +

R2r2

(r2 − r2
+)(r2 − r2

−)
dr2 + r2(dφ− r+r−

Rr2
dt)2 (3.17)

where r± are the radii of the outer and inner horizons, and R is the radius of AdS space. In
terms of the mass M , the angular momentum J and the Hawking temperature TH , we can
express them as

M =
r2

+ + r2
−

R2
, J =

2r+r−
R

, TH =
r2

+ − r2
−

2πR2r+

. (3.18)

The extremal limit is realised when MR = J which is achieved when r0 ≡ r+ = r− in the
metric. This of course causes the Hawking temperature to vanish and reduces our metric to

ds2 = −(r2 − r2
0)2

R2r2
dt2 +

R2r2

(r2 − r2
0)2

dr2 + r2(dφ− r2
0

Rr2
dt)2 (3.19)

27



In the case that it might interest someone in studying the ultraviolet set of conformal
theories, it will be necessary to map this to Poincaré form

ds2 = R2dU
2 + dω+dω−

U2
(3.20)

which has coordinates [41]

ω− =
R

2r0

e
2r0
r

(φ−t/R), ω+ = φ+
t

R
− Rr0

r2 − r2
0

, U =
r√

r2 − r2
0

e
r0
R

(φ−t/R). (3.21)

Seeing now that multiple different types of extremal black holes exist, one must wonder how
to write an extremality condition since the thermodynamics of the black hole are not a simple
matter. Or rather, we must try and define a new set of conditions that still encapsulate the
zero temperature condition. It might be a point of concern as to why we do not use the already
established conditions for extremality in the higher spin case. This is due to the fact that we are
dealing with higher spin gauge transformations on top of coordinate transformations. Under
these transformations not even the metric remains invariant. As such we must define new
conditions which are higher spin gauge invariant, and holonomies of the connection are such
conditions. As such one needs to express extremality in terms of properties of the connection
without referring to the confluence of horizons, etc. which are concepts that do not translate
well in higher spin theory.

3.1.1 Proposed Conditions for Extremality

Following [42], we propose that a 3d extremal higher spin black hole is a solution of Chern-
Simons theory that corresponds to flat boundary connections a and ā that satisfies the following:

1. They obey Drinfeld-Sokolov boundary conditions (which will be shown later),

2. They are stationary solutions, i.e. their components are constant,

3. They carry charges and chemical potentials, which are real in the Lorentzian signature,

4. The angular component of one (or both) of the connections a and ā is non-diagonalizable.

All these conditions are important, however the most time and effort will be placed on the final
condition, the fact that the angular component must be non-diagonalizable. The reasoning
behind this is as follows: Suppose that both aφ and āφ are diagonalizable. We have assumed
that the boundary conditions are constant, since by the equations of motion, the Euclidean
time components of the connection commute with the angular components, and can then be
diagonalized with them simultaneously. By the smoothness condition for higher spin black
holes [32]

Eigen(acontract) = Eigen(τaω + τ̄ aω̄) = Eigen(iL0) (3.22)

where acontract denotes the connection along the cycle of the boundary torus which becomes
contractible in the bulk. This can be solved to find a non-zero temperature and chemical
potential. However, if at least one of aφ and āφ is non-diagonalizable, then acontract will also be
non-diagonalizable. By (3.22), both features are compatible if a zero temperature limit is taken,
since the smoothness condition becomes degenerate as well. This seems to be consistent with
the fact that the solid torus topology of a finite-temperature black hole changes at extremality.
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We also add that for a general connection, the degeneration of eigenvalues does not nec-
essarily imply non-diagonalizability, however the specific form of the flat connection from the
Drinfeld-Sokolov boundary conditions guarantees that if two eigenvalues of aφ are degenerate,
then the connection will be non-diagonalizable [42]. Looking from this point of view, it is pos-
sible that equating the eigenvalues of aφ is tied to the confluence of horizons for extremal black
holes found in general relativity.

We now want to investigate the main section of this thesis, where we construct the sl(4|3)
black hole. This, as one might readily assume, is no simple matter, and as such we must first
review the sl(N |N − 1) Racah basis, which is the algebra that the generators are constructed
from.

Concerning extremality of black holes, what follows here is a review of the construction of
the sl(3|2) black hole, one which is consistent with our definition of extramality and which is
the foundation that we will be using to construct our own solutions in a higher spin. The aim
of this is that in understanding the construction of a higher spin case, one might be able to
obtain insight into the generalization to a spin-N case.

3.2 sl(3|2) Solutions
Here we quickly review the construction of solutions for sl(3|2) black holes, in much the same
style as [42], however it will be condensed since it is not the main study of the thesis. It is
however the foundation of the methodology used to create the sl(4|3) solutions. As such, these
solutions will not be focussed on with as much depth as the following chapters. Note that the
entire basis was constructed from the Racah basis, which will be covered in more detail in the
next chapter, since its study and understanding is tantamount to the construction of any higher
dimensional cases.

From the embedding of sl(2|1) in sl(3|2), the even graded sector of this superalgebra de-
composes into sl(2) generators (Li), a spin 0 element (J), a spin 1 multiplet (Ai) and a spin 2
multiplet (WM). The odd-graded elements decompose to two spin 1/2 multiplets (Hr and Gr)
and two spin 3/2 multiplets (Ts and Ss).

As in (2.20), we will gauge away the radial dependence on the connection, and have the
charges carried only by the the angular component of the connection. This component ends up
looking like

aφ = L1 − LL−1 − iQ1J −Q2A−1 − iQ3W−2, (3.23)

with L, Q1, Q2 and Q3 all real and constant. Using the form of this connection, we redefine
the charges in terms of the eigenvalues of aφ + iQ1J , which we will label as

eigen(aφ + iQ1J) = [λ1,−λ1 + λ2,−λ2,
1

2
λ3,−

1

2
λ3]. (3.24)

To motivate as to the specific choice of these eigenvalues, it is simply chosen in such a way as
to ensure a traceless connection (and even supertraceless if necessary). We specifically aim to
define each eigenvalue in terms of the previous diagonal, depending on the size of the block
under consideration. What we mean by a block is the separation between what we call the
upper- and lower-block, in the current case the upper-block being the 3 × 3 matrix along the
diagonal, and similarly the lower being the 2× 2 on the bottom right diagonal. We will see the
same methodology being applied in the construction of the higher dimensional case in the next
section.
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This equation has a characteristic polynomial that factorizes into a cubic and quadratic
part,

det(λ− aφ − iQ1J) = (λ3 − 4(L+Q2)λ+ 8iQ3)(λ2 − L+Q2) (3.25)

= (λ− λ1)(λ+ λ1 − λ2)(λ+ λ2)(λ− 1

2
λ3)(λ+

1

2
λ3). (3.26)

These have respective discriminants as

∆3 = 64(4(L+Q2)3 + 27Q2
3) (3.27)

= (2λ1 − λ2)2(2λ2 − λ1)2(λ1 + λ2)2, (3.28)

and

∆2 = 4(L −Q2) (3.29)

= λ2
3. (3.30)

Due to the fact that L, Q2 and Q3 are real, the eigenvalues λ1, −λ1 + λ2 and −λ2 are then
purely imaginary when ∆3 < 0. For ∆3 > 0, two eigenvalues are minus complex conjugates of
each other and the third is purely imaginary. For λ3 it is easy to see that it is imaginary for
∆2 < 0 and real for ∆2 > 0. We split these solutions into two different sectors, namely black
holes, and smooth conical defects:

Table 3.1: Discriminant conditions for black holes and smooth conical defects in sl(3|2)
sl(3|2) solutions ∆3 ∆2

Black holes ≥ 0 ≥ 0
Smooth conical defects < 0 < 0

It was proposed in [42] that for the case of ∆3 = 0 or ∆2 = 0, the solutions are extremal.
Using this assumption we have that

L =
1

8
(λ2

1 + λ2
2 − λ1λ2 + λ2

3), (3.31)

Q2 =
1

8
(λ2

1 + λ2
2 − λ1λ2 − λ2

3), (3.32)

Q3 = − i
8

(−λ1 + λ2)λ1λ2. (3.33)

These charges are symmetric polynomials in the eigenvalues. We have chosen the normal-
ization in the eigenvalues such that the choice of λ1 = λ2 = λ3 results in the sl(2|1) theory

L =
1

4
λ2

1, Q2 = 0, Q3 = 0, (3.34)

as well as
∆3 = 4λ6

1, ∆2 = λ2
1. (3.35)

From this point on one can specialise the classification further, by considering specific Jordan
classes, looking at the signs of the respective discriminants, and then classify them based on
their eigenvalues. This will be looked at in more detail in the following chapter. Following on
the method used in this chapter, in the next chapter we will turn to the construction of the
sl(4|3) black hole solutions in full.
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Chapter 4

The sl(N |N − 1) Racah Basis and the
Construction of sl(4|3)

An incredibly useful tool in the construction of our basis generators comes from the Racah
basis [43]. This basis is set in a continuous-parametric family of infinite-dimensional associative
and Lie algebras, and we will specifically be studying the supersymmetric versions of this
algebra. One possible application of this basis is a possible method of constructing higher
spin generalizations of the Virasoro algebra, which involves an infinite tower of higher spin
generators. This will be looked at briefly in a following section.

4.1 The sl(N |N − 1) Racah Basis

One of the main ingredients that is necessary for the study of higher-spin black holes are
the generators of the sl(N |N − 1) superalgebra1. The general sl(N |N − 1) element can be
decomposed [43] into

sl(N |N − 1) = sl(2)⊕ (
N−1⊕
s=2

g(s))⊕ (
N−2⊕
s=0

g(s))⊕ 2× (
N−2⊕
s=0

g(s+ 1
2

)) (4.1)

where g(s) is defined as the chosen spin-s multiplet of sl(2). This quantity is one less than the
conformal/spacetime spin. The actual spacetime spin of the corresponding fields is one higher,
and as such the current setup describes a system with a maximal spin of 4. The total amount
of generators found for any N is discussed more thoroughly in the Appendix.

Typically we take the normal Chern-Simons action at level k to be

SCS =
k

4π

∫
tr(Γ ∧ dΓ +

2

3
Γ ∧ Γ ∧ Γ) (4.2)

however in our case we have to consider the difference between two super-Chern Simons actions:

SCS[Γ, Γ̄] =
k

4π

∫
str(Γ ∧ dΓ +

2

3
Γ ∧ Γ ∧ Γ)− k

4π

∫
str(Γ̄ ∧ dΓ̄ +

2

3
Γ̄ ∧ Γ̄ ∧ Γ̄) (4.3)

where ’str’ is the super-trace, Γ is the connection one form’s chiral sector and Γ̄ is the anti-
chiral sector. It is necessary to specify how the gravitational sl(2) sector is embedded in the
gauge algebra, specifically when we have the higher-spin theory cast as a Chern-Simons theory.

1Additional information on the construction of this superalgbera can be found in the Appendix
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This can be seen if we look at, for example, the sl(N) case, where the Chern-Simons theory
based upon this algebra can realize distinct higher spin theories from inequivalent embeddings
of sl(2). If we demand that the gravitational sl(2) is part of the osp(2|2) superalgebra, then
it is allowed to use the Racah basis for the generators and as such the commutation relations.
The Racah basis is better suited to identify any physical interpretations of the fields.

So, following [43], we start from gl(N |N − 1) and quotient out its center. These generators
are Z2-graded by the Grassmann parity function P (T ) = P (U) = 0,P (Q) = P (Q̄) = 1. We
have that the bosonic generators are denoted by T and U , which generate the gl(N) and
gl(N − 1) in (4.1) and the fermionic generators by Q and Q̄, which generate the half-integer
multiplets. The following are the supercommutation relations in schematic form (the complete
expressions can be found in the Appendix), with the structure constants being multiples of the
Wigner 6j-symbols, however they are omitted here:

[T, T ] ∼ T, [U,U ] ∼ U, {Q, Q̄} ∼ T + U,

[T, Q̄] ∼ Q̄, [U, Q̄] ∼ Q̄, [T,Q] ∼ Q, [U,Q] ∼ Q. (4.4)

In the complete description of the generators, we denote T sm to generate each g(s) multiplet,
where −s ≤ m ≤ s and similarly for U , Q and Q̄. We have an identity matrix 1 =

√
NT 0

0 +√
N − 1U0

0 as the center, which we previously stated is modded out, so that sl(N |N − 1) ∼
gl(N |N − 1)/1.

Now it is necessary to re-define the generators such that they can form a basis for the sl(2)
in (4.1), where all the other generators will transform under its irreducible representations.
Within the Appendix, it is carefully explained how the generators are constructed for the
principal embedding of sl(2) within sl(4|3). Considering linear combinations of T sm and U s

m, we
have the following for generators of sl(N |N − 1) with N = 3:

L0 =
1√
2

(2T 1
0 + U1

0 ), (4.5)

L±1 = 2T 1
±1 + U1

±1, (4.6)

A0 =
1√
2

(2T 1
0 − U1

0 ), (4.7)

A±1 = 2T 1
±1 − U1

±1, (4.8)

W±2 = 4T 2
±2, W±1 = 2T 2

±1, W0 =

√
8

3
T 2

0 , (4.9)

U0 =
1√
3
T 0

0 +
1√
2
U0

0 . (4.10)

It might prove necessary to explain in detail the form of the generators. Depending on the
choice of N , the size of the generators will of course differ. We will look at the choice of N = 3
for an example. If N = 3, then we are working in sl(3|2), with generators that are comprised
of 5× 5 matrices, sorted into specific ’blocks’.

As a very generic example, let us look at the generator L0 for sl(3|2):

L0 =


1 0 0 0 0
0 0 0 0 0
0 0 −1 0 0
0 0 0 1

2
0

0 0 0 0 −1
2

 . (4.11)
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The structure essentially describes along the diagonal certain blocks which are the sizes of our
N and N − 1. For our bosonic cases, these generators will only have elements on the diagonal
blocks, with the off-diagonal blocks being empty, and vice versa for our fermionic blocks. These
blocks can further be refined into what is called ’Jordan blocks’, however we will go into more
detail concerning those at a later stage. Note that the set of generators {(Li+Ai)/2,Wi} forms
the sl(3) algebra.

4.2 The sl(4|3) Generators

The sl(4|3) generators were constructed using a linear combination of the Racah basis generators
mentioned in the previous section, however needed to be properly normalized accordingly. The
construction of the generators in the sl(3|2) case from [42] was vague, and as such much time
had to be spent in understanding and de-constructing the methodology such that we may
define any dimensional algebra’s generators. This is an on-going attempt, especially in the
generalization to spin-N , however the framework laid out in the current study will make the
process much simpler in future.

Initially the generators are constructed with the appropriate Racah generators being added
while being multiplied by an unknown coefficient, for example W1 = aT 2

1 + bU2
1 . Let us note,

the notation for these generators are associated with their individual spin cases, such that in
the current example, the W matrices are the generators for spin-2, hence the use of the upper
indices. The lower indices indicate the specific range of matrices inherent to each spin class,
such that for any generator Amn , we have −m ≤ n ≤ m. Following this, the generators are then
commuted with the raising and lowering generators L1 and L−1 respectively. We do know the
commutation relations for these operators, since they remain coherent for any spin and any
dimension. We relate these to the coefficients and then compare the two to find the values
of the coefficients in terms of a central coefficient. In our case these were related to the zero
elements of our generators’ coefficients i.e. W0 has coefficients e and f, these were related to e0

and f0.
From this, we start commuting the generators with each other. This unfortunately is largely

a trial and error process, to see which combinations give valid commutation relations, but the
same process is followed as with the raising and lowering generator commutations, comparing
the coefficients, and solving. However, certain cases contain elements of other dimensional
generators, for example [X0, X1] contains a combination of L1 and A1, but also X1. These add
yet more coefficients which we call x and y, and are then solved in the form a polynomial.

The generators are then finally achieved, and can be found in the Appendix. They satisfy:

L†i = (−1)iL−i, A†i = (−1)iA−i,

W †
m = (−1)mW−m, Z†m =(−1)mZ−m, X†n = (−1)nX−n

(4.12)

with the following commutation relations:

[Li, Lj] = (i− j)Li+j, (4.13)

[Li, Aj] = (i− j)Ai+j, (4.14)

[Li,Wj] = (2i− j)Wi+j, (4.15)

[Li, Zj] = (2i− j)Zi+j, (4.16)

[Li, Xj] = (3i− j)Xi+j (4.17)
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and with the non-vanishing commutations as

[Ai, Aj] = (i− j)Li+j, (4.18)

[Ai,Wj] = (2i− j)Wi+j, (4.19)

[Ai, Zj] = (2i− j)Wi+j, (4.20)

[Ai, Xj] = (3i− j)Xi+j, (4.21)

[Xm, Xn] =
1

72
(m− n)(3m4 − 2m3 − 39m2 + 4m2n2 + 20mn− 2n3m

+ 108− 39n2 + 3n4)Lm+n +
1

6
(m− n)(m2 −mn− 7 + n2)Xm+n,

(4.22)

[Wm,Wn] =− 1

40
(m− n)(2m2 −mn+ 2n2 − 8)(51Lm+n + 21Am+n)

+
54

5
(m− n)Xm+n

(4.23)

[Zm, Zn] =− 1

40
(m− n)(2m2 −mn+ 2n2 − 8)(51Lm+n + 21Am+n)

+
54

5
(m− n)Xm+n

(4.24)

As a quick summary, Table 4.1 is simply a reminder of the different spins each generator
represents, including the fermionic generators (which were not included above, since they are
not strictly necessary in the construction of the connection, but are vital in the description of
the Killing spinors. This will be covered in more detail in a following chapter).

Table 4.1: Generators and their corresponding spins
Spin Generators Spin Generators

1 L, A 1
2

G, H
2 W, Z 3

2
S, T

3 X 5
2

P, R

In essence, we tried a principal embedding of sl(2|1) in sl(4|3). By doing this, the even-
graded sector of the superalgebra is decomposed into the sl(2) generators Li, a spin 1 multiplet
Ai, two spin 2 multiplets Wm and Zm, a spin 3 multiplet Xn and a spin 0 element J . The
indices of these multiplets range from −S to S, where S is the sl(2) spin. This of course then
gives us a total of 1 + 3 + 3 + 5 + 5 + 7 = 24 bosonic generators. The odd-graded elements are
made up of two spin 1

2
multiplets, Hr and Gr, two spin 3

2
multiplets, Ts and Ss and two spin 5

2

multiplets Rt and Pt. There are 2 + 2 + 4 + 4 + 6 + 6 = 24 fermionic generators.
The full list of commutation relations between the bosonic generators and fermionic gener-

ators can be found in the Appendix.
We now have all the tools necessary to start the construction of our sl(4|3) solutions and

discussing the definition of extremality in our framework and what that implies for an N -
dimensional case.
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Chapter 5

sl(4|3) Solutions

We currently study the case of non-perturbative solutions of sl(4|3) ⊕ sl(4|3) Chern-Simons
supergravity. We will in future simply refer to these as ’sl(4|3) black holes’ for the sake of
simplicity.

We start by looking at the relevant superalgebra. As explained in the previous section,
it is required to embed sl(2|1) into sl(4|3), where the even-graded sector of the superalgebra
decomposes into the sl(2) generators (Li), a spin 0 element (J), a spin 1 multiplet (Ai), two
spin 2 multiplets (Wi, Zi) and a spin 3 multiplet (Xi). These together then span the bosonic
sub-algebra sl(4) ⊕ sl(3) ⊕ sl(2) ⊕ u(1). Of course by spin we imply the sl(2) spin S, so that
each multiplet has indices that range from −S to S. The complex superalgebra sl(4|3,C) has
several real forms, it proves useful to look at su(3, 1|2, 1), which is linked to the dual W(4|3)

symmetry.
The aim is to characterize a wide class of solutions that is supported by the even-graded

sector of the su(3, 1|2, 1) superalgebra, which will include solutions to black holes and smooth
conical defects. We must incorporate the higher spin sources to the non-extremal case. To this
end, after gauge fixing the radial dependence of our connection [42], we are left with only the
angular component aφ carrying the charges. We are then left with the following connection:

aφ = L1 − LL−1 − iQ1J −Q2A−1 − iQ3W−2 −Q4Z−2 − iQ5X−3 (5.1)

with L, Q1, Q2, Q3, Q4 and Q5 taken to be constant and real. This is required so that aφ lies
on the real form su(3, 1|2, 1). As to whether or not the generators are real, the properties of
these generators are discussed in the appendix, and can be referred to in order to know the
state of each individual generator. The above is of course the same type of expression we would
expect for āφ, the complex conjugate case, however those solutions will be omitted simply to
avoid redundancy for the sake of simplicity.

Now it is possible to show that the charges are real relating to the W-symmetry, however
we focus on the eigenvalues of these charges. Simply put, we redefine the charges to be in terms
of the eigenvalues of aφ + iQ1J , which are explicitly written as

eigen(aφ + iQ1J) = [λ1,−λ1 + λ2,−λ2 + λ3,−λ3, λ4,−λ4 + λ5,−λ5]. (5.2)

Certain structures must be noted here. We have subtracted the U(1) piece from the con-
nection simply because it already commutes with the rest of the generators and it is al-
ready diagonal. It also forces the matrix aφ + iQ1J to be traceless as well as super-traceless.
Also the choice of eigenvalues are not unique. Any choice of corresponding eigenvalues that
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causes the matrix to be traceless will have the desired effect, for example choosing [λ1 + λ2 +
λ3,−λ1,−λ2,−λ3, λ4+λ5,−λ4,−λ5] would have been sufficient.

Now since this matrix is block-diagonal, it has a characteristic polynomial which can fac-
torise into a quartic and cubic part, such that

det(λ− aφ − iQ1J) = (λ4 − 10λ2L − 10λ2Q2 − 12Q3iλ+ 9L2 + 18LQ2 + 9Q2
2

− 12Q4λ− 6iQ5)(λ3 − 4λL − 4Q4

√
5 + 4λQ2 − 4iQ3

√
5)

= (λ− λ1)(λ+ λ1 − λ2)(λ+ λ2 − λ3)(λ+ λ3)(λ− λ4)(λ+ λ4 − λ5)(λ+ λ5). (5.3)

Typically, we do not expect to have a closed-form expression for the eigenvalues. However, since
we assign the eigenvalues ourselves, instead of trying to calculate them using the discriminant
of a polynomial, we can configure the discriminants accordingly. These discriminants for the
quartic and cubic parts respectively, are:

∆4 = (λ3 + λ1)2(2λ1 − λ2)2(λ1 + λ2 − λ3)2(λ1 − λ2 − λ3)2(λ1 − 2λ2 + λ3)2(λ2 − 2λ3)2 (5.4)

and
∆3 = (λ4 + λ5)2(2λ4 − λ5)2(λ4 − 2λ5)2. (5.5)

We are now extending the definition of [42], which was reviewed in Chapter 3.2, to the
sl(4|3) case. It is possible to classify the existence of black holes or smooth conical defects if
they fall within certain sectors. These sectors are partitioned based on the sign of the respective
discriminants, and they can be classified as follows:

Table 5.1: Discriminant conditions for black holes and smooth conical defects in sl(4|3)
sl(4|3) solutions ∆4 ∆3

Black holes ≥ 0 ≥ 0
Smooth conical defects < 0 < 0

There are of course other possibilities, such as ∆4 < 0,∆3 ≥ 0 and ∆4 ≥ 0,∆3 < 0, however
they won’t be explicitly solved in this review. We aim to find specifically extremal black holes,
and according to the definition of extremality in [42], the conditions indicate that such cases
are found when either ∆4 = 0 or ∆3 = 0. As such, we can naturally classify the connection in
terms of the discriminants to generalize the pure gravity solutions as hyperbolic, elliptic and
parabolic conjugacy classes in SL(2).

Following up on our discriminant cases, we can match the discriminants of the eigenvalues
with the discriminants of our connection in terms of the charges to explicitly solve the charges
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in terms of the eigenvalues. By doing this, we find that the charges are:

L = −1

8
λ2

5 −
1

20
λ1λ2 +

1

20
λ2

2 +
1

20
λ2

1 +
1

20
λ2

3 −
1

8
λ2

4 −
1

20
λ2λ3 +

1

8
λ4λ5 (5.6)

Q2 =
1

8
λ2

5 −
1

20
λ1λ2 +

1

20
λ2

2 +
1

20
λ2

1 +
1

20
λ2

3 +
1

8
λ2

4 −
1

20
λ2λ3 +

1

8
λ4λ5 (5.7)

Q3 =
i

144
(−λ2λ

2
3 + 18λ4λ

2
5 − 18λ2

4λ5 − λ1λ
2
2 + λ2

2λ3 + λ2
1λ2) (5.8)

Q4 = − 1

144
(λ2λ

2
3 + 18λ4λ

2
5 − 18λ2

4λ5 + λ1λ
2
2 − λ2

2λ3 − λ2
1λ2) (5.9)

Q5 = − i

6000
(82λ2

1λ2λ3 + 82λ1λ2λ
2
3 − 82λ1λ

2
2λ3 − 82λ2

1λ
2
3 + 27λ2

1λ
2
2

−18λ1λ
3
2 − 18λ3

1λ2 + 27λ2
2λ

2
2 − 18λ3

2λ3 − 18λ3
3λ2 + 9λ4

2 + 9λ4
1 + 9λ4

3) (5.10)

We have chosen the relative normalization of the eigenvalues in such a way that the sl(2|1)
theory corresponds to λ1 = λ2 = λ3 = λ4 = λ5, which gives

L = − 3

40
λ2

1, Q2 =
7

40
λ2

1, Q3 = 0, Q4 = 0, Q5 = − 3i

2000
λ4

1 (5.11)

and
∆4 = 0,∆3 = 4λ6

1. (5.12)

We once again refer back to our definition of extremality, particularly the condition that involves
the diagonalizability of the angular component of the connection. Looking at our case, it is
easily seen that aφ is diagonalizable if and only if ∆4 6= 0 and ∆3 6= 0. If that is the case, there
exists a similarity matrix V that will bring the connection to the form

V −1aφV = aDφ (5.13)

where aDφ is constructed of a linear combination of the diagonal generators with the eigenvalues,
and lies in the Cartan subalgebra of sl(4|3). However, if aφ is not diagonalizable, and is
then according our definition extremal, either ∆4 = 0 or ∆3 = 0. This leads to a Jordan
decomposition of the form

V −1aφV = aDφ + aNφ (5.14)

where aφ would be the same diagonal matrix as the one above and aNφ a nilpotent matrix which
commutes with aDφ . Depending on the class under consideration, the exact form of aNφ may
change, as it depends on the multiplicity of zeroes in the discriminants.

We can then construct a classification system which states that a general sl(4|3) Drinfeld-
Sokolov connection can be found in Table 5.2.

We can further refine this classification if we investigate specific signs of the discriminants
∆4 and ∆3. A quick look back at some changes that we implemented begs the question as to
the importance of the charge Q1. While the U(1) charge is important in other sections that
we consider, it plays no role in the characterization of our connections’ Jordan class. This is
because it is already diagonal and commutes with all the other generators of sl(4|3). We must
state that while our Jordan form of the connection does belong to sl(4|3;C), our similarity
matrix does not axiomatically belong in the supergroup SU(3, 1|2, 1), which is to say that our
connection involving the nilpotent and diagonal matrices do not necessarily take values in the
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Table 5.2: Classes for extremal and non-extremal solutions solutions of sl(4|3) black hole
Eigenvalues (4 x 4) ∆4

λ1 = λ2 = λ3 = 0 = 0
λ1 = −λ3 6= 0, λ2 = 0 = 0
λ1 = −λ3 6= 0, λ2 6= 0 = 0
λ2 = 2λ1 6= 0, λ3 = 0 = 0
λ2 = 2λ1 6= 0, λ3 6= 0 = 0
λ2 = 2λ3 6= 0, λ1 = 0 = 0
λ2 = 2λ3 6= 0, λ1 6= 0 = 0
λ3 = λ1 6= 0, λ2 = 0 = 0
λ3 = λ2 6= 0, λ1 = 0 = 0
λ1 = λ2 6= 0, λ3 = 0 = 0
λ1 = 2λ2 6= 0, λ3 = 0 = 0

2λ1 6= λ2 6= λ1 6= λ3 6= 2λ3 6= 0

⊗
Eigenvalues (3 x 3) ∆3

λ4 = λ5 = 0 = 0
λ5 = 2λ4 6= 0 = 0
λ4 = 2λ5 6= 0 = 0
λ4 = −λ5 6= 0 = 0

2λ5 6= λ4 6= −λ5 6= −2λ4 6= 0

real form of su(3, 1|2, 1) of sl(4, 3;C). We will impose the necessary reality properties which
will vastly decrease the amount of possible black hole classes.

A quick note to the existence of smooth conical defects. These so-called defects are solutions
to the Lorentzian theory which have trivial holonomy along a cycle of the form φ ∼ φ+ 2π. By
trivial we simply imply it belongs to the center of the gauge group. This triviality works much
the same as for black holes along the thermal direction, such that it has the form

Hφ ≡ Pe
∮
aφdφ = Γ± (5.15)

It is assumed that the background topology is related to AdS3, such that smoothness of the
fermionic fields at the origin requires that Hφ = Γ− since the φ cycles are contractible. Similarly
we allow the possibility of periodic fermions such that Hφ = Γ+. From [42] however, this implies
that we introduce a singularity at the origin, which can only appear in the bulk if the theory
is coupled to matter in a UV complete fashion.

The holonomy condition implies that all the eigenvalues of aφ are purely imaginary, such
that we are working in the sector ∆4 < 0 and ∆3 < 0. Our choices of eigenvalues that will
adhere to the holonomy condition can then be generalized with the only restriction that the
eigenvalues be non-degenerate.

As was stated earlier, it might prove insightful to review our knowledge on supersymmetry,
but now in the context of our solutions.

5.1 Supersymmetry

It is now necessary to consider the supersymmetric Chern-Simons theory. Within this theory,
a BPS solution is a solution where a gauge transformation exists that is supported by the
odd elements of the gauge group which leaves the connection invariant. Much of the work
follows closely that of [44], [45] and [46], specifically where the odd roots of the superalgebra
and the eigenvalues of the connection were used. This is because we allow the possibility
that the connection can be non-diagonalizable, since that is the main point on our definition
of extremality. Following from [47], the boundary conditions used are similar to those used
here, however the superalgebra used is osp(1|4), which then displays hypersymmetry instead of
supersymmetry.
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We now move on to the supersymmetry conditions for Chern-Simons theory. From our
construction of the connection, the radial dependence has been eliminated, and as such the
residual gauge transformations on the boundary connection are given by

a→ a′ = e−εaeε + dε (5.16)

with ε being an arbitrary element of the gauge superalgebra. If a′ = a for odd transformation
parameters, then the background is supersymmetric as stated above. The BPS conditions can
be found after linearising (5.16):

∂tε+ [at, ε] = 0, ∂φε+ [aφ, ε] = 0. (5.17)

Depending on the amount of independent solutions to the above conditions, they will determine
the amount of supersymmetries preserved by the background. These equations will be referred
to as ’Killing equations’, with its solutions being called ’Killing spinors’.

Killing spinors exists for fermionic generators and arbitrary connections, and since we focus
on constant at and aφ in the backgrounds, we then have an integrability condition [at, aφ] = 0
which allows us to write a general solution for the BPS conditions:

ε(t, φ) = e−att−aφφε0e
att+aφφ. (5.18)

ε0 in this case is a constant odd element of the superalgebra su(3, 1|2, 1). We are interested in
the admissible, globally defined solutions, and these are only possible if they possess the correct
periodicity in φ, such that the spinors are periodic in the Ramond sector or anti-periodic in the
Neveu-Schwarz sector. For a black hole, the φ-cycle is non-contractible, so NS and R boundary
conditions are allowed. We will focus on the φ-dependence of ε(φ) ≡ ε(0, φ).

We now bring aφ to its Jordan normal form, remembering that aNφ is nilpotent and commutes
with aDφ and vanishes for diagonalizable connections. From this decomposition, the general
solution becomes:

ε(φ) = e−a
D
φ φe−a

N
φ φε0e

aDφ φea
N
φ φ (5.19)

with
ε(φ) ≡ V −1ε(φ)V, ε0 ≡ V −1ε0V, (5.20)

and V a constant matrix which is independent of φ as was had previously. An important note
to point out is that aDφ , a

N
φ , ε and ε0 need not belong to su(3, 1|2, 1). It is only necessary to

belong there once the transformation that takes the connection to its Jordan form is reverted.
We also move over to the EIJ basis of sl(4|3) generators. There are 49 of these 7× 7 matrices
of the form

(eIJ)KL = δIKδJL. (5.21)

We can split the index I = (1, 2, 3, 4, 5, 6, 7) into I = (i, ī) with i = (1, 2, 3, 4) and ī = (5, 6, 7).
Then the even elements of the superalgebra have a basis of the form

Eij = eij − δij1, (5.22)

Eīj̄ = eīj̄ + δīj̄1, (5.23)

and odd elements spanned by

Eij̄ = eij̄, (5.24)

Eīj = eīj. (5.25)
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Lastly concerning the construction of this basis, is that the basis is over-complete, since∑
i

Eii = −
∑
ī

Eīi. (5.26)

Following the discussion of this new basis, aDφ takes the form

aDφ =λ1(E11 − E22) + λ2(E22 − E33) + λ3(E33 − E44) + λ4(E55 − E66) + λ5(E66 − E77)

+ iQ1(E11 + E22 + E33 + E44),
(5.27)

and aNφ can be constructed from a linear combination of E12, E13, E14, E23, E24, E34, E56, E57

and E67, depending on the Jordan class that is being inspected. This basis is also useful since
it diagonalizes the adjoint action of the Cartan elements. We use this advantage to write

[aDφ , EIJ ] = ωIJEIJ , (5.28)

with
ωIJ = (aDφ )II − (aDφ )JJ . (5.29)

The frequencies ωIJ = −ωJI are determined by the roots of the superalgebra and the connection
holonomy [47], so following this, let αj represent a root of the bulk gauge superalgebra. Also,
let aDφ denote the Jordan normal form’s diagonal part of the Drinfeld-Sokolov connection aφ
with the appropriate boundary conditions. We know that aDφ belongs to the Cartan subalgebra

C, so we can associate a particular element ~Λφ ∈ C∗ of the root space with it. We may also
associate another Cartan element Hj with αj if the isomorphism between C and CC is used.
If we then use the bilinear form on C∗, then the frequencies can be written in a way that is
representation-independent:

ωj = 〈~Λφ, αj〉. (5.30)

We are currently interested in fermionic symmetries only, so looking at only the odd symmetries,
we have the following:

ω15 = λ1 − λ4 + iQ1, (5.31)

ω25 = −λ1 + λ2 − λ4 + iQ1, (5.32)

ω35 = −λ2 + λ3 − λ4 + iQ1, (5.33)

ω45 = −λ3 − λ4 + iQ1, (5.34)

ω16 = λ1 + λ4 − λ5 + iQ1, (5.35)

ω26 = −λ1 + λ2 + λ4 − λ5 + iQ1, (5.36)

ω36 = −λ2 + λ3 + λ4 − λ5 + iQ1, (5.37)

ω46 = −λ3 + λ4 − λ5 + iQ1, (5.38)

ω17 = λ1 + λ5 + iQ1, (5.39)

ω27 = −λ1 + λ2 + λ5 + iQ1, (5.40)

ω37 = −λ2 + λ3 + λ5 + iQ1, (5.41)

ω47 = −λ3 + λ5 + iQ1. (5.42)

We must also expand the element ε0 into U(1) eigenstates

ε0 = ε−0 + ε+
0 , (5.43)

40



with
ε−0 =

∑
i,j̄

εij̄Eij̄, ε+
0 =

∑
ī,j

εījEīj, (5.44)

where i = (1, 2, 3, 4) and ī = (5, 6, 7). In this case there are 24 complex parameters εij̄ and εīj.
Only half of these are independent however, due to the reality constraints that are satisfied by
the elements within su(3, 1|2, 1), where the two U(1) sectors are tied by complex conjugation.
From this then it can be deemed that a fully supersymmetric solution is one that will permit a
total of 24 real parameters, one 1/2-BPS solution that will preserve 12 symmetries, a 1/3-BPS
background that will preserve 8, etc. We must remember that the sector ā is not currently
being counted.

From this point the necessary conditions for invariant sl(4|3) solutions under supersymmet-
ric transformations can be studied. Firstly, within the decomposition of our general solution for
ε, the expansion of ea

N
φ φ will be truncated at some finite order. This is because we specifically

chose aNφ to be nilpotent. We must also require that

[aNφ , ε0] = 0, (5.45)

to avoid any φ-dependence within the Killing spinors, since the spinors are neither periodic
nor anti-periodic. This also restricts the number of independent coefficients that appear within
(5.44). Then the only φ-dependence for ε(φ) is found within [aDφ , ε0]. Then by the Baker-
Campbell-Hausdorff formula and (5.28), our general solution becomes

ε(φ) = ε−(φ) + ε+(φ), (5.46)

where
ε−(φ) =

∑
i,j̄

εij̄Eij̄e
ωij̄φ, ε+(φ) =

∑
ī,j

εījEīje
ωījφ. (5.47)

The above then suggests that the frequencies ωij̄ = −ωj̄i must be quantized into either integer
or half-integer imaginary values so that the solution has the correct periodicity,i.e:

ωij̄ ∈

{
Z R sector

Z + 1
2

NS sector
(5.48)

The quantization condition imposes additional constraints, and some of these might not be
satisfied automatically, which in turn then lowers the amount of preserved charges as well.

After the Killing spinor ε(φ) is found explicitly, the similarity transformation is undone and
the solution is then expressed in terms of ε(φ)1. We then have the general fermionic gauge
parameter which still preserves the Drinfeld-Sokolov form of our connection as:

ε(φ) =ε+− 1
2

(φ)H 1
2

+ ε−− 1
2

(φ)G 1
2

+ ε+− 3
2

(φ)T 3
2

+ ε−− 3
2

(φ)S 3
2

+ ε+− 5
2

(φ)R 5
2

+ ε−− 5
2

(φ)P 5
2

+ h− 1
2
(φ)H− 1

2
+ g− 1

2
(φ)G− 1

2
+ t− 3

2
(φ)T− 3

2
+ t− 1

2
(φ)T− 1

2

+ t 1
2
(φ)T 1

2
+ s− 3

2
(φ)S− 3

2
+ s− 1

2
(φ)S− 1

2
+ s 1

2
(φ)S 1

2
+ p− 5

2
(φ)P− 5

2

+ p− 3
2
(φ)P− 3

2
+ p− 1

2
(φ)P− 1

2
+ p 1

2
(φ)P 1

2
+ p 3

2
(φ)P 3

2
+ r− 5

2
(φ)R− 5

2

+ r− 3
2
(φ)R− 3

2
+ r− 1

2
(φ)R− 1

2
+ r 1

2
(φ)R 1

2
+ r 3

2
(φ)R 3

2
.

(5.49)

1Refer to the appendix on the use of the real form su(3, 1|2, 1)
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In the above equation, the higher weight terms are fixed in terms of the lower weight
components, and algebraically is simple to solve, however the higher spin cases gets much more
complicated and as such much messier to work with with each higher spin, as will be seen.
Technically, every coefficient in the above expression has a time dependence, however in none
of the calculations is this a necessary dependence, and as such has been omitted. The above
was achieved from explicitly calculating the φ-dependence of (5.17), since the globally defined
solutions are the ones that have the correct periodicity in φ. The lower weight components
were calculated by first commuting the above expression with the connection, after which
many individual commutations had to be considered. One then considers a single generator (in
descending order of weights) after which one gathers all like-terms of the generators and sets to
zero. The coefficients commute out naturally, after which one simply solves for the coefficient.
This process continues, where each following case depends on the preceding case. As one might
expect, the final cases are exceptionally cluttered. These lower weight components are:

h− 1
2

= −∂φε+− 1
2

− iQ1ε
+
− 1

2

− 5Q2ε
+
− 3

2

+ 60Q4ε
+
− 5

2

(5.50)

g− 1
2

= −∂φε−− 1
2

+ iQ1ε
−
− 1

2

+ 5Q2ε
−
− 3

2

− 60Q4ε
−
− 5

2

(5.51)

t 1
2

= −∂φε+− 3
2

− iQ1ε
+
− 3

2

+
11

2
Q2ε

+
− 5

2

(5.52)

s 1
2

= −∂φε−− 3
2

+ iQ1ε
−
− 3

2

+
11

2
Q2ε

−
− 5

2

(5.53)

r 3
2

= −∂φε+− 5
2

− iQ1ε
+
− 5

2

(5.54)

p 3
2

= −∂φε−− 5
2

+ iQ1ε
−
− 5

2

(5.55)

t− 1
2

=
1

2
∂2
φε

+
− 3

2

+ iQ1∂φε
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− 3

2

+
4

5
Q2∂φε

+
− 5

2

+
1

2
(3L − 7

5
Q2 −Q2

1)ε+− 3
2

+
1

2
(72iQ3 + 24Q4 −

47i

5
Q1Q2)ε+− 5

2

(5.56)

s− 1
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=
1

2
∂2
φε
−
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2

− iQ1∂φε
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2

− 47

20
Q2∂φε

−
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− 1
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(3L+

7
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(5.57)

r 1
2

=
1

2
∂2
φε

+
− 5

2

+ iQ1∂φε
+
− 5

2

− 1

2
(5L −Q2 +Q2

1)ε+− 5
2

(5.58)

p 1
2

=
1

2
∂2
φε
−
− 5

2

− iQ1∂φε
−
− 5

2

− 1

2
(5L −Q2 +Q2

1)ε−− 5
2

(5.59)

r− 1
2

=− 1

6
∂3
φε

+
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2

− i

2
Q1∂

2
φε

+
− 5

2

+ (
13

6
L+

1

10
Q2 +

1

2
Q2

1)∂φε
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2

− 1

5
Q2ε
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− 3

2

+
i

30
(65LQ1 + 3Q1Q2 + 5Q3
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2

(5.60)
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Q1∂
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(5.61)
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(5.67)

A final note on the use of supersymmetry. In principle, it would be possible to find the
Killing spinors by solving the differential equations for (ε+− 5

2

, ε+− 3
2

, ε+− 1
2

) without the need to use

the Jordan form of aφ, however that makes it extremely difficult to differentiate between the
cases that are extremal and those that are not, due to the use of the Drinfeld-Sokolov form
which is written in terms of the charges instead of its eigenvalues.
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Chapter 6

Black Hole Class Analysis

We now have the necessary information to start with the analysis of the supersymmetry con-
ditions for the Jordan class of the black hole. We have the tools available to consider all the
classes, however we will only look at some sample classes. It is important to remember that
the diagonal section of the connection for black holes is automatically part of su(3, 1|2, 1),
due to the reality properties of our eigenvalues. We must also make sure that the nilpotent
part in the Jordan decomposition also has values in the superalgebra, and that any similarity
transformations of aφ which puts it in its Jordan form is part of the corresponding supergroup.
This will ensure that the Killing spinors that are found are in the correct real form, regardless
of the basis used. We will be generalizing [42] from sl(3|2) to sl(4|3), but will be following
the same procedure as the source material. According to [42], it is then only necessary to

perform the analysis on ε−0 since the parameters are then tied to ε±
†

0 = −Kε∓0 K such that
ε0 = ε−0 + ε+

0 ∈ su(3, 1|2, 1).

Class I: λ1 = λ2 = λ3 = 0, λ4 = λ5 = 0

In this example we will look at the construction of Killing spinors with a specific choice of
eigenvalues which are identified with the supersymmetric sector of the sl(2|1) truncation which
happens to map to N = 2 supergravity. These can be called ”BPS charged BTZ black holes.”

Our choice of eigenvalues gives us our charges as

L = 0, Q2 = 0, Q3 = 0, Q4 = 0, Q5 = 0, (6.1)

which leads to a Jordan decomposition of the form

aDφ = iQ1(E11 + E22 + E33 + E44), aNφ = −(E12 + E23 + E34 + E56 + E67) (6.2)

Now, this choice of aNφ is by no means unique, any choice of matrix which is related to this one
by a similarity transformation will yield similar results. We then use the expansions of ε+

0 and
ε−0 to see that

ε−0 =
∑
i,j̄

εij̄Eij̄

= ε15E15 + ε16E16 + ε17E17 + ε25E25 + ε26E26 + ε27E27 + ε35E35

+ ε36E36 + ε37E37 + ε45E45 + ε46E46 + ε47E47

(6.3)

such that

[aNφ , ε
−
0 ] = −ε25E15 + (ε15 − ε26)E16 + (ε16 − ε27)E17 − ε35E25 + (ε25 − ε36)E26

+ (ε26 − ε37)E27 − ε45E35 + (ε35 − ε46)E36 + (ε36 − ε47)E37 + ε45E46 + ε46E47. (6.4)
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We have argued that the commutator above needs to vanish, and as such, it sets the following:

ε25 = ε35 = ε45 = ε46 = ε36 = ε47 = 0, (6.5)

ε16 = ε27, (6.6)

ε15 = ε26 = ε37. (6.7)

This leaves us then with three independent complex coefficients, namely ε17, ε27 and ε37. From
this then, we can see for Class I solutions, we can preserve at most 6 real supercharges.

We must also ensure that the Killing spinors have the required periodicity. From (5.31) and
(5.1), we have

ε−(φ) = (ε17E17 + ε27(E27 + E16) + ε37(E37 + E26 + E15))e−iQ1φ. (6.8)

This implies that

−Q1 = η +
1

2
∈

{
Z R sector

Z + 1
2

NS sector
(6.9)

Such that the U(1) charge must be appropriately quantized 1.
We then undo the similarity transformation which places aφ into its Jordan form, and casting

the generators into the general Killing spinor, we then have the following for the transformation
parameters

ε+− 1
2

=ε+− 1
2

(0)ei(η+ 1
2

)φ,

ε+− 3
2

=ε+− 3
2

(0)ei(η+ 1
2

)φ,

ε+− 5
2

=ε+− 5
2

(0)ei(η+ 1
2

)φ,

(6.10)

where we have exchanged the coefficients ε17, ε27, and ε37 for ε+− 1
2

(0), ε+− 3
2

(0) and ε+− 5
2

(0). Natu-

rally, all the other components for the Killing spinor vanishes due to our choice of eigenvalues
and as such we are left with the Killing spinor

ε(φ) = ε+− 1
2

(φ)H 1
2

+ iε̄+− 1
2

(φ)G 1
2

+ ε+− 3
2

(φ)T 3
2
− iε̄+− 3

2

(φ)S 3
2

+ ε+− 5
2

(φ)R 5
2

+ iε̄+− 5
2

(φ)P 5
2

(6.11)

Class II: λ2 = 2λ1 6= 0, λ3 6= 0, λ4 = λ5 = 0

For these solutions we see that λ3 6= 0, so for convenience we will choose λ1 = −λ3. From
this, the charges are carried by

L =
3

10
λ2

1, Q2 =
3

10
λ2

1, Q3 = − i

18
λ3

1, Q4 =
i

18
λ3

1, Q5 = − 13i

125
λ4

1. (6.12)

The Jordan form of the connection due to our choice of eigenvalues then reads

aDφ = λ1(E11 + E22 − 3E33 + E44) +
1

6
iQ1(E11 + E22 + E33 + E44) (6.13)

aNφ = −(E12 + E24 + E56 + E67). (6.14)

1As a small note, the use of the η is mostly just for convention. We could just as simply have said that the
value of the charge must be either an integer value, thus making it periodic (in the R sector) or half-integer
valued, thus making it anti-periodic (in the NS sector).
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As a reminder, it is important to check that the nilpotent and diagonal connections commute.
Now, the condition [aNφ , ε

−
0 ] = 0 sets the following conditions

ε25 = ε35 = ε36 = ε45 = ε46 = 0 (6.15)

ε16 = ε27, ε15 = ε26 = ε47 (6.16)

We work with the parameter εi7, which we use to describe the Killing spinors with the aid of
the fermionic frequencies

ε−(φ) =(ε17E17 + ε27(E16 + E27) + ε47(E15 + E26 + E47))e−i(−iλ1+ 1
6
Q1)φ

+ ε37(E26 + E37)e−i(3iλ1+ 1
6
Q1)φ.

(6.17)

There are two exponentials in the above expression, each one requiring its own periodicity. We
can impose different quantization conditions, which will preserve different supersymmetries.
This then creates two separate subclasses. The first subclass we consider is the vanishing of
the second term in (6.17)

iλ1 −
1

6
Q1 = η +

1

2
∈

{
Z R sector

Z + 1
2

NS sector
(6.18)

which preserves 6 supercharges. We can define the transformation parameters in this quanti-
zation by

ε+− 1
2

(φ) = ε+− 1
2

(0)ei(η+ 1
2

)φ, ε+− 3
2

(φ) = ε+− 3
2

(0)ei(η+ 1
2

)φ, ε+− 5
2

(φ) = ε+− 5
2

(0)ei(η+ 1
2

)φ. (6.19)

If we then instead study subclass two, then

− 3iλ1 −
1

6
Q1 = η +

1

2
∈

{
Z R sector

Z + 1
2

NS sector
(6.20)

then this preserves only two supersymmetries which in terms of the Drinfeld-Sokolov form of
the connection is read as

ε+− 5
2

(φ) = ε+− 5
2

(0)ei(η+ 1
2

)φ, ε+− 3
2

(φ) = k1ε
+
− 5

2

(φ), ε+− 1
2

(φ) = k2ε
+
− 5

2

(φ) (6.21)

where

k1 = − 3
√

2

18
√

2λ1 + 90
√

6 + 5iQ1

√
2

(6.22)

and

k2 = − 72i
√

2λ1

−125i
√

2Q2
1λ1 − 900λ2

1

√
2Q1 + 1512i

√
2λ3

1 − 3600λ1Q1

√
6 + 12960i

√
6λ2

1 − 1800i
√

6
. (6.23)

It is possible to satisfy both quantization conditions simultaneously, which is possible when

λ1 =
i

4
(η2 − η1) and Q1 =

1

4
(η2 − 3η1)− 1

2
. (6.24)

This case preserves eight supersymmetries. It is also an interesting case to study, since this
shows that a charged BTZ black hole is not the most supersymmetric configuration for higher

47



spin theory. All the solutions for Class II or Class I have entropy S = 0 + other sector, due
to the fact that the entropy of an sl(4|3) black hole is [42]

S = 2πkCS(λ1 + λ2 − 2λ3 + λ4 − λ5) + other sector. (6.25)

Now, the most symmetric configuration minimizes the entropy, however between the two current
classes, this argument cannot distinguish between them. This is quite unorthodox, since one
would näıvely expect that these classes be distinguishable at the entropy level.

Class III: λ1 = λ2 = λ3 = 0, λ4 = −λ5 6= 0

This class has the following for the charges

L = −1

8
λ2

5 −
1

8
λ2

4 +
1

8
λ4λ5, Q2 =

1

8
λ2

5 +
1

8
λ2

4 −
1

8
λ4λ5, Q3 =

i

144
(18λ4λ

2
5 − 18λ2

4λ5),

Q4 =
1

8
λ4λ

2
5 −

1

8
λ2

4λ5, Q5 = 0. (6.26)

The Jordan form of the connection is

aDφ = λ4(E55−E66)− λ5(E66−E77) + iQ1(E11 +E22 +E33 +E44), aNφ = −(E12 +E23 +E34).
(6.27)

However, this class does not contain any supersymmetric solutions, due to the fact that the
exponential dependence of the Killing spinor contains all non-zero real parts. This is an inter-
esting case due to the fact that this is a extremal solution (at least according to our definition
of extremality), but is not supersymmetric.

Class IV: λ1 6= λ2 6= λ3, λ4 6= −λ5

Within this class all the charges are generically independent, such that the connections are
diagonalizable, with the Jordan form:

aDφ = λ1(E11 − E22) + λ2(E22 − E33) + λ3(E33 + E44) + λ4(E55 − E66) + λ5(E66 − E77)

+ iQ1(E11 + E22 + E33 + E44), (6.28)

aNφ = 0. (6.29)

According to our definition of extremality, these solutions are therefore not extremal. We
also have a trivial aNφ , which automatically satisfies (5.45).

We must ensure that the ε−(φ) are single- or double-valued along the φ-cycle, which we can
achieve by manipulation the fermionic frequencies. Now, if we take into account our eigenvalue
parameters λ1 6= λ2 6= λ3 and λ4 6= −λ5 as well as some reality conditions that follow from [42]
(λ1 = λ∗2, λ2 = λ∗3, λ1 = λ∗3, λ4 = λ∗5) then we can see that ω16, ω25, ω26, ω27, ω35, ω36, ω37 and
ω46 all cannot be purely imaginary in the current class. Using the frequencies we have left, we
may set

λ4 = λ5 =
1

2
(λ1 + λ3) and

i

2
(λ1 − λ3)−Q1 = η +

1

2
∈

{
Z R sector

Z + 1
2

NS sector
(6.30)

then we have ω15 and ω47 properly quantized. This has a corresponding global Killing spinor

ε−(φ) = (ε15E15 + ε47E47)ei(η+ 1
2

)φ, (6.31)
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which conserves 4 real and independent supersymmetries. We may also impose as an alternative

λ4 = λ5 = −1

2
(λ1 + λ3) and

i

2
(λ1 − λ3)−Q1 = η +

1

2
∈

{
Z R sector

Z + 1
2

NS sector
(6.32)

which properly quantizes ω17 and ω45 with a Killing spinor of

ε−(φ) = (ε17E17 + ε45E45)ei(η+ 1
2

)φ. (6.33)

This solution also preserves 4 real supercharges, and in both cases the following is true

ε+− 1
2

(φ) = ε+− 1
2

(0)ei(η+ 1
2

)φ, ε+− 3
2

(φ) = ε+− 3
2

(0)ei(η+ 1
2

)φ, ε+− 5
2

(φ) = ε+− 5
2

(0)ei(η+ 1
2

)φ. (6.34)

The charges in (5.6) are all independent of the choice of sign of λ4 and λ5 (there would normally
be a sign dependence for Q3 and Q4, but due to our choice of λ4 and λ5, those specific terms
cancel in the (5.6)). As such, we have a corresponding set of bosonic charges that will always
read

L =
1

4
(

3

40
λ2

1 −
1

4
λ1λ3 +

3

40
λ2

3 −
1

5
λ1λ2 +

1

5
λ2

2 −
1

5
λ2λ3), (6.35)

Q2 =
1

4
(
13

40
λ2

1 +
1

5
λ2

2 +
13

40
λ2

3 −
1

5
λ1λ2 +

1

4
λ1λ3 −

1

5
λ2λ3), (6.36)

Q3 =
i

144
(λ1 − λ2 + λ3)(λ1 − λ3)λ2, (6.37)

Q4 =− i

144
(λ1 − λ2 + λ3)(λ1 − λ3)λ2, (6.38)

Q5 =− i

6000
(82λ2

1λ2λ3 + 82λ1λ2λ
2
3 − 82λ1λ

2
2λ3 − 82λ2

1λ
2
3 + 27λ2

1λ
2
2

− 18λ1λ
3
2 − 18λ3

1λ2 + 27λ2
2λ

2
2 − 18λ3

2λ3 − 18λ3
3λ2 + 9λ4

2 + 9λ4
1 + 9λ4

3). (6.39)

It is important to note however that the chemical potentials (as well as the entropy) are
sensitive to the choice of signs for λ4 and λ5. This is the point that is slightly unsettling. We
see now that if we choose our eigenvalues in a specific way we can conserve supersymmetry
within our class of diagonalizable connections, however we have deduced that according to
our definition of extremality these solutions are not extremal. This seems to go against the
convention regarding supersymmetric theories, where extremality is usually a condition for
supersymmetry. These solutions correspond to the solutions found for the sl(3|2) [42], albeit
in a higher spin dimension. It should be possible to determine the stability of each solution, be
it extremal and not supersymmetric, or vice versa, by identifying the sign of each eigenvalue
corresponding to each class, then classifying the solutions to describe thermodynamical stability,
for example. This classification is beyond the scope of the thesis, but could be interesting to
study for future work. We can rather look at the particular non-extremal supersymmetric
solution in more detail to perhaps attempt to explain the unorthodox phenomenon. As a side
note, we stated that there are many different classes to consider, and we have only investigated
four of these. However, we intentionally examine the classes that we could expect beforehand
would have certain characteristics, such that the main differences between the classes may
become apparent. We can explore some of the features we have uncovered:

1. In our current configuration we have only focussed on the φ-dependence of the Killing
spinors. We have been purposefully aloof concerning the thermal cycles. We know that
the spinor ε(t, φ) is anti-periodic, which is required for a smooth fermionic field. For our
Class IV solutions, the topology of the solutions is a solid torus, which is not true for the
other solutions due to vanishing temperature [42].
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2. The Class IV solutions have BPS conditions that do not allow solutions in the sl(2|1)
truncation. As such, supersymmetric BTZ black holes in higher spin are not affected by
our findings.

3. Regarding the supercharges conserved by Class IV solutions, they are a non-trivial mix-
ture of spin-3 and spin-4 multiplets constructed from fermionic generators. The cor-
responding variation of the charges contain non-linear bosonic and fermionic field re-
lations, which corresponds to the asymptotic symmetry group. The belief is that the
non-linearities allow the solutions to balance the periodic bosons with the anti-periodic
fermions on a topology with a contractible cycle, which is not a feature that exists in
standard supergravity, due to the BPS conditions always involving a linear fermionic field
relation.

4. It should be possible to reproduce the BPS bounds from calculating the Kac determinant
in aW(3|2) symmetry CFT. That is not the focus of this thesis, but is theoretically possible
due to similar calculations done in [42].

This concludes the main section of the thesis, containing a partial classification of higher
spin sl(4|3) black holes. The classification was made with the aim that some insight could be
achieved on how to generalize the construction of solution for any N dimensions, i.e. sl(N |N−1)
solutions. Following from this we would like to lightly touch on the concept of hs[λ] theory,
which is a different method used to describe higher spin black holes. This topic has much
depth to it and is not specifically the aim of this thesis, hence why we cover it only in minor
detail. However we would like to possibly use the information achieved from the study to
gather insights into a duality between the construction of higher spin black hole solutions in
both representations, which in turn could again be used to describe an sl(N |N − 1) theory.
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Chapter 7

hs[λ] theory

Throughout this study, we have focused on defining smooth extremal black holes in sl(3, R)
and sl(4, R), with the hopes to somehow generalize the process to construct extremal black
holes within sl(N,R). One such attempt is to study the Vasiliev theory rather than moving to
progressively higher spins. The aim is then to define a Vasiliev theory that is dual to this, since
the Vasiliev theory is said to be more useful in providing a link between higher spin gravity
theories and string theory.

The three dimensional Vasiliev theory contains an infinite tower of higher spins s ≥ 2.
The method used to construct higher spin black holes using this theory is that we require the
higher spin sector to be cast as two Chern-Simons theory copies with the connections being
valued in the infinite-dimensional hs[λ] Lie algebra, hence the name. To accomplish this, the
matter fields in the Vasiliev theory are set to zero in the black hole background [17]. We now
focus on the unbarred Chern-Simons connection, with the barred being implied. By this we
mean we mostly work with the following simplified connection: a = azdz + az̄dz̄, which has no
ρ-dependence. We will now quickly review the necessary background to be able to define the
non-supersymmetric case of sl(N,R).

7.1 hs[λ] higher spin gravity

The hs[λ] Lie algebra is spanned by generators that have two labels, each integers, that consist
of a spin and a mode index. This can be represented as

V s
m, s ≥ 2, |m|< 2. (7.1)

Following [48], these have the following commutation relation

[V s
m, V

t
n ] =

s+t−|s−t|−1∑
u=2,4,6,...

gstu (m,n;λ)V s+t−u
m+n , (7.2)

where the structure constants can be found in the appendix. We use the parameter λ to
signify inequivalent algebras; it appears via generalized hypergeometric functions but simplify
to polynomials in λ2 when evaluated for integer (s,m). The appearance of the λ2 polynomial
is due to the construction of hs[λ] as a subspace of a quotient of the universal sl(2, R) by its
quadratic Casimir. The Casimir C2 for sl(2, R) is fixed as

C2 = (L0)2 − 1

2
(L1L−1 + L−1L1) =

1

4
(λ2 − 1). (7.3)
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One then constructs the hs[λ] generators using the sl(2, R) generators

V s
m = (−1)m+s−1 (m+ s− 1)!

(2s− 2)!
[L−1, ...[L−1, [L−1,︸ ︷︷ ︸

s-1-m

Ls−1
1 ]]]. (7.4)

These generate hs[λ] when modding out the Casimir ideal, and dropping V 1
0 , which is the

identity element.
The generators with s = 2 form an sl(2, R) subalgebra, where the remaining generators

transform under the adjoint sl(2, R) action as

[V 2
m, V

t
n ] = (m(t− 1)− n)V t

m+n. (7.5)

These will be required for constructing the BTZ solution. We can also move back from the
a-connection to the φ-dependent connection A by simply making b = eρV

2
0 and giving generators

with mode index m a factor of emp.
The reason as to why this algebra might prove more useful is that unlike the sl(N,R)

algebras, hs[λ] has only a single sl(2, R) subalgebra, without any other nontrivial subalgebras.
Any commutator of two generators with spin s > 2 produces a generator with spin t > s. This
changes at λ = N , where an ideal forms, which consists of all generators with s > N , and by
modding out this ideal, one recovers sl(N,R) [48]. This causes the viewpoint that sl(N,R) are
limiting cases of hs[λ] gravity. There is however the problem that it is not yet fully understood
how to couple matter to sl(N,R) gauge fields, such that it is possible to truncate the full
Vasiliev theory while still including non-trivial fields other than the gauge fields.

The general λ commutator can be realized by using a star commutator

[V s
m, V

t
n ] = V s

m ? V
t
n − V t

n ? V
s
m (7.6)

where the associative product is defined as

V s
m ? V

t
n =

1

2

s+t−|s−t|−1∑
u=1,2,3,...

gstu (m,n;λ)V s+t−u
m+n . (7.7)

This is known as the ”lone star product”, and from here on out, all multiplication of hs[λ]
generators will be done by using this star product. The hs[λ] structure constants are given by

gstu (m,n;λ) =
qu−2

2(u− 1)!
φstu (λ)N st

u (m,n) (7.8)

with

N st
u (m,n) =

u−1∑
k=0

(−1)k
(
u− 1
k

)
[s− 1 +m]u−1−k[s− 1−m]k[t− 1 + n]k[t− 1− n]u−1−k (7.9)

φstu (λ) = 4F3

[
1
2

+ λ, 1
2
− λ, 2−u

2
, 1−u

2
3
2
− s, 3

2
− t, 1

2
+ s+ t− u 1

]
(7.10)

This made use of the descending Pochhammer symbol

[a]n = a(a− 1)...(a− n+ 1). (7.11)

Also q is a normalization constant which can be scaled away by simply taking V s
m → qs−2V s

m.
We set it to be q = 1/4.
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Useful structure constant properties:

φstu

(
1

2

)
= φst2 (λ) = 1 (7.12)

N st
u (m,n) = (−1)u+1N ts

u (n,m) (7.13)

N st
u (0, 0) = 0, u even (7.14)

N st
u (n,−n) = N ts

u (n,−n). (7.15)

The first three of these imply a few things, chief among them the isomorphism hs[1
2
]∼=hs(1,1);

that the lone star product can be used to define the Lie algebra of hs[λ] and that the zero modes
commute.

To factor out the ideal as we stated previously, we construct the bilinear trace, by picking
out the V 1

0 element of the lone star product, and up to some normalization this is found to be

Tr(V s
mV

t
n) ∝ gsts+t−1(m,n;λ)δstδm,−n. (7.16)

The structure constants can be written as

gss2s−1(m,−m;λ) = (−1)m
23−2sΓ(s+m)Γ(s−m)

(2s− 1)! ! (2s− 3)! !

s−1∏
σ=1

(λ2 − σ2). (7.17)

To remain consistent with [32], we choose to normalize the trace as

Tr(V s
mV

t
n) =

12

(λ2 − 1)
gss2s−1(m,−m;λ). (7.18)

The asymptotic symmetry group of hs[λ] gravity with generalized AdS boundary conditions
was found to be W∞[λ], the infinite-dimensional W -algebra [32]. We can construct the unbarred
sector of the connection in this algebra by using the highest-weight gauge in the hs[λ]-valued
connection,

az = V 2
1 −

2π

k
L(z)V 2

−1 +
∞∑
s=3

J (s)(z)V s
1−s (7.19)

with J (s)(z) as spin-s currents. This algebra does not contain hs[λ] as a proper subalgebra, but
in the infinite charge limit where the nonlinear terms drop off, hence we can consider hs[λ] as
the ”wedge subalgebra” of W∞[λ].

Perhaps this is then a good place to ask how we can define black holes in this new language.
This is a good question, and the link between how the hs[λ] theory solutions can be matched
to the AdS solutions is still under investigation.

7.2 Constructing the hs[λ] black hole

We aim to construct higher spin black holes in a generic theory of higher spin gravity with
a Lie algebra that contains at least one sl(2, R) subalgebra. The following follows essentially
identical to [48]. Before starting, it is required to write out the solution for the BTZ black
hole using sl(2, R) generators and to compute its Euclidean time circle holonomy eigenvalues.
Following this is the simple steps to construct the black hole [48]:

1. Write the higher spin black hole connection with some non-zero higher spin chemical
potentials.
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2. Make the black hole smooth.

What is meant by smoothness of the black hole is in terms of the holonomy. As a brief
overview, one compactifies the Euclidean time direction to form the topology of a solid torus
in the 3d manifold. It then has boundary conditions (w, w̄) which are subject to identifications
w ' w + 2π ' w + 2πτ , where τ is the modular parameter of the boundary torus. The
smoothness condition for higher spin black holes was given by 3.22. Recall that the sl(3, R)
connection has Ward identities that indicates that the leading term in az̄ represents a nonzero
spin-3 chemical potential, which we will generalize to our Lie algebra. The unbarred connection
for a higher spin black hole with nonzero spin-s chemical potential µs in the wormhole gauge
is generalized to

az = aBTZz + (higher spin charges) (7.20)

az̄ µs[(az)
s−1 − trace] (7.21)

and the ρ-dependence can again be restored by putting b = eρL0 . Now it must be made smooth.
This can be accomplished by fixing all the charges in terms of the potentials (µs, τ) consistent
with an integrability condition. To complete this, return to the BTZ holonomy condition, to
compute the Euclidean time circle holonomy matrix ω,

ω = 2π(τaz + τ̄ az̄) (7.22)

and demand that the eigenvalues equal the BTZ solution.

Tr(ωn) = Tr(ωnBTZ), n = 2, 3, ..., rk(ω) (7.23)

will then be known as the holonomy condition with rk(ω) being the rank of ω.
The smooth Euclidean horizon from the perspective of the tower of higher spin fields pro-

duces the holonomy equations exactly.
For an hs[λ] black hole with spin-3 chemical potential, the smooth BTZ solution is

az = V 2
1 +

1

4τ 2
V 2
−1 (7.24)

az̄ = 0 (7.25)

and the BTZ holonomy matrix is

ωBTZ = 2πτ(V 2
1 +

1

4τ 2
V 2
−1). (7.26)

All of the odd-n traces vanish, and as such some low even-n traces are found to be

Tr(ω2
BTZ) = −8π2 (7.27)

Tr(ω4
BTZ) =

8π4

5
(3λ2 − 7) (7.28)

Tr(ω6
BTZ) = −8π6

7
(3λ4 − 18λ2 + 31). (7.29)

An ansatz is then constructed for the simplest case of a higher spin black hole with spin-3
chemical potential [48]

az = V 2
1 −

2πL
k
V 2
−1 −N(λ)

πW
2k

V 3
−2 + J (7.30)

az̄ = −µN(λ)(az ? az −
2πL
3k

(λ2 − 1)) (7.31)
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where
J = J (4)V 4

−3 + J (5)V 5
−4 + ... (7.32)

allows an infinite series of higher spin charges. N(λ) is a normalization factor

N(λ) =

√
20

(λ2 − 4)
(7.33)

chosen in such a way that it simplifies the comparison to the sl(3, R) result.
It proves to be instructive to compare the hs[λ] black hole with the sl(3, R) black hole,

where we have a few interesting infinities:

• The amount of holonomy equations, due to the infinite dimensionality of hs[λ]. We fix
smoothness at the horizon for the metric and an infinite tower of higher spin fields.

• The UV behaviour of the tower of metric-like higher spin fields. Generically, spin-s fields
will involve traces over s vielbeins.

• The number of non-zero higher spin J (s) charges, which is a generic solution to the infinite
set of holonomy equations.

Note that in our attempt to write out solutions for our sl(4|3) black holes, we required
supersymmetry with certain solutions, and as such it would make sense to include supersym-
metry to the hs[λ] theory to best represent any possible link between the two theories. As such
we will now incredibly briefly look at the so-called super higher spin λ theory, or simply shs[λ]
theory.

7.3 shs(λ) theory

The previous section on hs[λ] is useful in describing higher spin black hole solutions and has
been fairly well researched, however the continuation to include extremal solutions are lacking.
As we have seen in our analysis, the number of classes increases dramatically as N increases,
however if it is possible to describe a theory much the same as hs[λ], where a chosen spin is
just a specific case concerning the infinite tower of spins, then the same should hold for our
sl(N |N − 1). It is possible to extend the hs(λ) theory to a supersymmetric one which admits
a super-higher-spin algebra, which should hold for all sl(N |N − 1) theories. The aim is to
better understand how to define extremality in this framework such that defining extremality
in sl(N |N − 1) is simpler.

Now, the super-higher-spin algebra is generated by the bosonic generators L
(s)±
m as well as the

newly-added fermionic generatorsG
(s)±
r . It is achievable from the wedge subalgebra of the super-

W∞[λ] algebra. The wedge condition can be seen as |m|≤ s−1, |r|≤ s− 3
2
. The wedge condition

restrict the spin s generators to be in the finite-dimensional irreducable representations of the
bosonic section of the sl(2, R) algebra. The super-W∞[λ] algebra constucted as well as the
operator realizations as N = 1 differential operators can be found in [28].

The shs[λ] algebra can be defined in the following way [49]. We consider the universal
enveloping algebra of Osp(1, 2). Since U(Osp(1, 2)) is an associative algebra, we denote the
associative multiplication between any two elements in U(Osp(1, 2)) as J ?L. The commutator
is then defined by

[J ,L] = J ? L − L ? J . (7.34)
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We also define a bilinear trace of the product of two elements in SB[λ]:

Tr(K,L) =
K ? L

(2λ2 − λ)

∣∣∣∣∣
J=0

, ∀J 6= 1. (7.35)

The algebraic structure of the shs[λ] algebra can be seen from the following commutation
relations

[L(s)
m , L(t)

n ] =
s+t−1∑
u=1

gstu (m,n, λ)L
(s+t−u)
m+n (7.36)

{G(s)
p , G(t)

q } =
s+t−1∑
u=1

g̃stu (p, q, λ)L
(s+t−u)
p+q (7.37)

[L(s)
m , G(t)

q ] =
s+t−1∑
u=1

hstu (m, q, λ)G
(s+t−u)
p+q (7.38)

[G(s)
p , L(t)

n ] =
s+t−1∑
u=1

h̃stu (p, n, λ)G
(s+t−u)
p+n (7.39)

(7.40)

with hstu (m, q, λ) = −h̃tsu (q,m, λ). The rest of the structure constants can all be found by the
associative product found above. These commutation relations show that for any N > 2, the
generators L

(s)
m , G

(s)
n with an s > N will generate a subalgebra at λ = 1−N

2
. Also, the bilinear

trace we defined earlier will degenerate

Tr(L(s)
m L(t)

n ) = 0, T r(G(s
p G

(t)
q ) = 0, for s > N. (7.41)

What this all implies is that we can set all the generators L
(s)
m , G

(s)
n with s > N to be zero and

obtain a finite Lie superalgebra sl(N,N − 1). Knowing this, an aim we might have for the
future is to incorporate some of the information regarding shs[λ] in defining extremality.
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Chapter 8

Discussion

At this point we are left with some interesting concepts that was discovered throughout the
study. We have seen that it is possible to find solutions which are both supersymmetric as well
as extremal, as was usually the norm for these types of solutions. However we have also found
solutions which are extremal but not supersymmetric, which is odd but not against reason.
The oddity is however that we have found supersymmetric solutions which are not extremal as
well.

One is then right to ask, why are the solutions required to be supersymmetric then? Is
the definition of extremality incomplete? Or are there other reasons as to why these solutions
appear to be supersymmetric and non-extremal? Some of these questions have simple answers
while others are interesting topics to perhaps investigate in a future study.

Our main aim was to replicate results found in [42] as well as construct our own solutions
following from the previous work to gain possible insight into constructing solutions for spin-N .

As such, we started by defining a general definition of extremal black hole solutions, which
is expressed in terms of the diagonalizability of the angular component of the connection.
Then that extremality is compatible with the notion of zero Hawking temperature using the
non-trivial Jordan classes in the connection. We also identify our real forms of the algebra
corresponding to Lorentzian theories, which was su(3, 1|2, 1). It was notable that unlike zero-
temperature BTZ solutions, our extremal black holes in higher spin gravity carried residual
entropy in the extremal sector. Following from this, we define the discriminants of the char-
acteristic polynomial of aφ, which initially we thought was impossible to achieve due to the
nature of discriminant solutions with more than five eigenvalues. We were able to circumvent
this issue by assuming that the discriminants can always be expressed in terms of these eigen-
values, even if the specific values of these are not explicitly known. These discriminants were
vital in describing the extremal conditions of the solutions, particularly when the discriminant
would equal zero.

We then began with the actual classification of the black holes, which was time consuming,
especially deciding on which classes to use. It can very easily be seen that the amount of classes
that appear in the higher spin dwarf the amount in the lower. As such we can say with relative
certainty that the amount of classes increases dramatically as we increase the spin. Luckily
to illustrate the core concepts of extremality and supersymmetry only a few classes had to be
examined in detail. From this study we found that the solutions need not be extremal to be
supersymmetric, which is contrary to the convention previously assumed.

As was alluded to in the final chapter, is the existence of the hs[λ] theory, or more relevant to
our description, the shs[λ] theory. The difficulty of the shs[λ] theory is that in the bulk it proves
to be difficult to impose holonomy conditions. However, the advantage of this framework is that
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one can study the tensionless limit of string theories and the dual CFT. Ideally we would have
liked to study this connection in much more detail, and perhaps try and describe the sl(4|3)
solutions in terms of a simple hs[λ] representation, but due to time constraints this was simply
not possible. On shs[λ], the framework has the versatility to describe many sections on the
sl(N |N−1) solutions simply, but we would perhaps like to investigate the analogues statements
to the discriminant conditions which describes the extremality of our solutions. Finding the
equivalent in that framework should simplify the generalization and improve a general definition
of extremality in shs[λ].

To summarise the extent of the work done throughout this study, specifically in writing
down solutions for the black holes we are working with, one has to go through many steps:

1. Firstly, one must define the generators that one is working with in the Racah basis,
according to the spin under consideration. These of course must be normalised appropri-
ately, as well as determining the correct commutation relations, since these are vital later
on.

2. One then constructs the appropriate φ-dependent connection, which will be used in the
full connection that satisfies the Chern-Simons action. This is done by coupling charges
to the lowest-weight components.

3. The eigenvalues of this connection must then be found, with corresponding discriminants,
since these are essential in determining extremality. The charges can then also be found
in terms of the eigenvalues.

4. Following the previous steps, it is finally possible to start classifying each class based on
individual eigenvalues, with the amount of classes growing rapidly with each increase in
spin. Note, in this study we have merely looked at four classes, however we have laid the
foundation to be able to classify any of the available classes, should the need arise. We
merely investigate the classes which clearly showcase each class’ difference.

We can also make some comments as to how we might suspect the construction of solutions
might entail in even higher spins. As was seen throughout the thesis, specifically in the clas-
sification of the solutions, the supersymmetries that were preserved according to our choice of
eigenvalues increased at a linear rate with respect to the lower spin case. However, the cases
themselves grew at an exponential rate, with subclasses emerging from them according to spe-
cific choices of the eigenvalues. This was not a feature that we expected when simply looking
at the sl(3|2) case, and we must expect that the amount of classes in higher spins to be more
complicated and numerous still. It was encouraging to note that the same principle stands
in both spin cases: That we found evidence of extremal black hole solutions that were not
supersymmetric, and vice versa as well. As such, it is reasonable to assume that the property
holds for higher spin cases as well, however it is merely speculation at this point. It might come
to pass that above a certain spin threshold the property is not valid, however as it stands we
have no reason to think this.

As to the use and addition of the hs[λ] theory and its supersymmetric continuation, one
might see the sl(N |N−1) theory to be a specific case of the hs[λ] theory, with certain restrictions
and conditions imposed to lower the infinite tower of spins to an integer number of spins. Of
course, to revert the sl(N |N − 1) theory back into the shs[λ] counterpart will be by no means
a simple procedure, and such studies might prove fruitful in the future.

As a matter of interest, it would be intriguing to study the higher dimensional cases of
lower spin gravity, or perhaps non-AdS theories. These are all of course not very relevant to
this thesis, but might prove insightful for future study.
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Appendix A

sl(4|3) Generators, Clebsch-Gordan
Symbols and hs[λ]

A.1 The sl(4|3) Racah Generators

The superalgebra sl(m|n;C) consists of all complex (m + n) × (m + n) supermatrices of the
form

M =

(
A B
C D

)
(A.1)

The matrices required to construct the generators for the sl(4|3) connections were derived
from the Racah basis of generators and then adapted to fit our needs. The final product of
these generators are as follows:

T 3
3 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, T 3

−3 =



0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(A.2)

T 3
2 =


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with commutation relations

[T sm, T
s′

m′ ] =
∑
s′′,m′′

f(s, s′, s′′|N + 1)Cs,s′,s′′

m,m′,m′′T
s′′

m′′ (A.30)

[U s
m, U

s′

m′ ] =
∑
s′′,m′′

f(s, s′, s′′|N)Cs,s′,s′′

m,m′,m′′U
s′′

m′′ (A.31){
Qs
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s′
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}
=
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m,m′,m′′(g1(s, s′, s′′|N)T s
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m′′) (A.32)
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∑
s′′,m′′

(−1)s+s
′−s′′−1h1(s, s′, s′′|N)Cs,s′,s′′

m,m′,m′′Q
s′′

m′′ (A.35)

[U s
m, Q

s′

m′ ] =
∑
s′′,m′′

(−1)s+s
′−s′′−1h2(s, s′, s′′|N)Cs,s′,s′′

m,m′,m′′Q
s′′

m′′ (A.36)

where

f(s, s′, s′′|N) = (1− (−1)s+s
′−s′′)(−1)s

′′+N−1
√

(2s+ 1)(2s′ + 1)

{
s s′ s′′

j j j

}
, j =

N − 1

2
(A.37)

g1(s, s′, s′′|N) = (−1)s+s
′+N−1

√
(2s+ 1)(2s′ + 1)

{
s s′ s′′
N
2

N
2

N−1
2

}
(A.38)

g2(s, s′, s′′|N) = (−1)s
′′+N

√
(2s+ 1)(2s′ + 1)

{
s s′ s′′

N−1
2

N−1
2

N
2

}
(A.39)

h1(s, s′, s′′|N) = (−1)s
′′+N− 1

2

√
(2s+ 1)(2s′ + 1)

{
s s′ s′′

N−1
2

N
2

N
2

}
(A.40)

h2(s, s′, s′′|N) = (−1)s+s
′+N+ 1

2

√
(2s+ 1)(2s′ + 1)

{
s s′ s′′
N
2

N−1
2

N−1
2

}
(A.41)

(A.42)
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A.2 The sl(4|3) Generators

The generators for sl(4|3):

J =



1
2

0 0 0 0 0 0
0 1

2
0 0 0 0 0

0 0 1
2

0 0 0 0
0 0 0 1

2
0 0 0

0 0 0 0 2
3

0 0
0 0 0 0 0 2

3
0

0 0 0 0 0 0 2
3


(A.43)

L0 =



3
2

0 0 0 0 0 0
0 1

2
0 0 0 0 0

0 0 −1
2

0 0 0 0
0 0 0 −3

2
0 0 0

0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −1


(A.44)

L1 =



0 0 0 0 0 0 0

−
√

3 0 0 0 0 0 0
0 −2 0 0 0 0 0

0 0 −
√

3 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 −
√

2 0 0

0 0 0 0 0 −
√

2 0


, L−1 =



0
√

3 0 0 0 0 0
0 0 2 0 0 0 0

0 0 0
√

3 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0
√

2 0

0 0 0 0 0 0
√

2
0 0 0 0 0 0 0


(A.45)

A0 =



3
2

0 0 0 0 0 0
0 1

2
0 0 0 0 0

0 0 −1
2

0 0 0 0
0 0 0 −3

2
0 0 0

0 0 0 0 −1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1


(A.46)

A1 =



0 0 0 0 0 0 0

−
√

3 0 0 0 0 0 0
0 −2 0 0 0 0 0

0 0 −
√

3 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0
√

2 0 0

0 0 0 0 0
√

2 0


A−1 =



0
√

3 0 0 0 0 0
0 0 2 0 0 0 0

0 0 0
√

3 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 −
√

2 0

0 0 0 0 0 0 −
√

2
0 0 0 0 0 0 0


(A.47)
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W0 =



3 0 0 0 0 0 0
0 −3 0 0 0 0 0
0 0 −3 0 0 0 0
0 0 0 3 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 1


(A.48)

W1 =



0 0 0 0 0 0 0

−3
√

3 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 3
√

3 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 − 3√

2
0 0

0 0 0 0 0 3√
2

0


W2 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0

6
√

3 0 0 0 0 0 0

0 6
√

3 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 2 0 0


(A.49)

W−1 =



0 3
√

3 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 −3
√

3 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 3√

2
0

0 0 0 0 0 0 − 3√
2

0 0 0 0 0 0 0


W−2 =



0 0 6
√

3 0 0 0 0

0 0 0 6
√

3 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 2
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(A.50)

Z0 =



3 0 0 0 0 0 0
0 −3 0 0 0 0 0
0 0 −3 0 0 0 0
0 0 0 3 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 −1


(A.51)

Z1 =



0 0 0 0 0 0 0

−3
√

3 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 3
√

3 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 3√

2
0 0

0 0 0 0 0 − 3√
2

0


Z2 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0

6
√

3 0 0 0 0 0 0

0 6
√

3 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −2 0 0


(A.52)

Z−1 =



0 3
√

3 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 −3
√

3 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 − 3√

2
0

0 0 0 0 0 0 3√
2

0 0 0 0 0 0 0


Z−2 =



0 0 6
√

3 0 0 0 0

0 0 0 6
√

3 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −2
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(A.53)
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X0 =



1
2

0 0 0 0 0 0
0 −3

2
0 0 0 0 0

0 0 3
2

0 0 0 0
0 0 0 −1

2
0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(A.54)

X1 =



0 0 0 0 0 0 0
− 2√

3
0 0 0 0 0 0

0 2 0 0 0 0 0
0 0 − 2√

3
0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


X−1 =



0 2√
3

0 0 0 0 0

0 0 −2 0 0 0 0
0 0 0 2√

3
0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(A.55)

X2 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
5√
3

0 0 0 0 0 0

0 − 5√
3

0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


X−2 =



0 0 5√
3

0 0 0 0

0 0 0 − 5√
3

0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(A.56)

X3 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−10 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


X−3 =



0 0 0 10 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(A.57)

L†i = (−1)iL−i, A†i = (−1)iA−i, (A.58)

W †
m = (−1)mW−m, Z†m = (−1)mZ−m, X†n = (−1)nX−n (A.59)

with the following commutation relations:

[Li, Lj] = (i− j)Li+j, (A.60)

[Li, Aj] = (i− j)Ai+j, (A.61)

[Li,Wm] = (2i−m)Wi+m, (A.62)

[Li, Zm] = (2i−m)Zi+m, (A.63)

[Li, Xn] = (3i− n)Xi+n, (A.64)

[J, Li] = 0 (A.65)
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and with the non-vanishing commutations as

[Ai, Aj] = (i− j)Li+j, (A.66)

[Ai,Wm] = (2i− j)Wi+m, (A.67)

[Ai, Zm] = (2i− j)Wi+m, (A.68)

[Ai, Xn] = (3i− j)Xi+n, (A.69)

[J,Ai] = 0 (A.70)

[Xm, Xn] =
1

72
(m− n)(3m4 − 2m3 − 39m2 + 4m2n2 + 20mn− 2n3m+ 108

− 39n2 + 3n4)Lm+n +
1

6
(m− n)(m2 −mn− 7 + n2)Xm+n,

(A.71)

[Wm,Wn] =− 1

40
(m− n)(2m2 −mn+ 2n2 − 8)(51Lm+n + 21Am+n)

+
54

5
(m− n)Xm+n

(A.72)

[Zm, Zn] =− 1

40
(m− n)(2m2 −mn+ 2n2 − 8)(51Lm+n + 21Am+n)

+
54

5
(m− n)Xm+n

(A.73)

[J,Wn] = 0, (A.74)

[J, Zn] = 0, (A.75)

[J,Xn] = 0. (A.76)

G 1
2

=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0√
2
√

3 0 0 0 0 0 0
0 2 0 0 0 0 0

0 0
√

2 0 0 0 0


G− 1

2
=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0
√

2 0 0 0 0 0
0 0 2 0 0 0 0

0 0 0
√

2
√

3 0 0 0


(A.77)

H 1
2

=



0 0 0 0 0 0 0

0 0 0 0 −
√

2 0 0
0 0 0 0 0 −2 0

0 0 0 0 0 0 −2
√

2
√

3
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


H− 1

2
=



0 0 0 0
√

2
√

3 0 0
0 0 0 0 0 2 0

0 0 0 0 0 0
√

2
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(A.78)

S 3
2

=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−3
3
2 0 0 0 0 0 0

0 −3
√

2 0 0 0 0 0


S 1

2
=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0√
2
√

3 0 0 0 0 0 0
0 −1 0 0 0 0 0

0 0 −2
3
2 0 0 0 0


(A.79)
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S− 1
2

=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 2
3
2 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 −
√

2
√

3 0 0 0


S− 3

2
=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 3
√

2 0 0 0 0

0 0 0 3
3
2 0 0 0

0 0 0 0 0 0 0


(A.80)

T 3
2

=



0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 3
√

2 0 0

0 0 0 0 0 3
3
2 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


T 1

2
=



0 0 0 0 0 0 0

0 0 0 0 −2
3
2 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0
√

2
√

3
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(A.81)

T− 1
2

=



0 0 0 0
√

2
√

3 0 0
0 0 0 0 0 −1 0

0 0 0 0 0 0 −2
3
2

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


T− 3

2
=



0 0 0 0 0 3
3
2 0

0 0 0 0 0 0 3
√

2
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(A.82)

P 5
2

=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2
3
2 5
√

3 0 0 0 0 0 0


P 3

2
=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−4
√

3 0 0 0 0 0 0

0 2
3
2 3 0 0 0 0 0


(A.83)

P 1
2

=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0√
2
√

3 0 0 0 0 0 0
0 −6 0 0 0 0 0

0 0 3
√

2 0 0 0 0


P− 1

2
=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 3
√

2 0 0 0 0 0
0 0 −6 0 0 0 0

0 0 0
√

2
√

3 0 0 0


(A.84)

P− 3
2

=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 2
3
2 3 0 0 0 0

0 0 0 −4
√

3 0 0 0
0 0 0 0 0 0 0


P− 5

2
=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 2
3
2 5
√

3 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(A.85)
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R 5
2

=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 −2
3
2 5
√

3 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


R 3

2
=



0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 2
3
2 3 0 0

0 0 0 0 0 −4
√

3 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(A.86)

R 1
2

=



0 0 0 0 0 0 0

0 0 0 0 −3
√

2 0 0
0 0 0 0 0 6 0

0 0 0 0 0 0 −
√

2
√

3
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


R− 1

2
=



0 0 0 0
√

2
√

3 0 0
0 0 0 0 0 −6 0

0 0 0 0 0 0 3
√

2
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(A.87)

R− 3
2

=



0 0 0 0 0 4
√

3 0

0 0 0 0 0 0 −2
3
2 3

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


R− 5

2
=



0 0 0 0 0 0 2
3
2 5
√

3
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(A.88)

{Gm, Hn} = 2(m− n)J + 2Lm+n (A.89)

{Gm, Tn} =
1

4
(3m− n)(7Lm+n − 3Am+n) + 4m2Wm+n (A.90)

{Gm, Rn} =
1

6
(5m− n)(7Wm+n − 5Zm+n) + 24m2Xm+n (A.91)

{Hm, Sn} = −1

4
(3m− n)(7Lm+n − 3Am+n) + 4m2Wm+n (A.92)

{Hm, Pn} = −1

6
(5m− n)(7Wm+n − 5Zm+n) + 24m2Xm+n (A.93)

{Sm, Tn} =− 5

8
(2m2 + 2n2 − 5)(m− n)J − 1

10
(
3

4
m2 +

3

4
n2 −mn− 9

8
)(Lm+n + 21Am+n)

+
1

8
(m− n)(7Wm+n − 9Zm+n) +

27

10
Xm+n

(A.94)

{Sm, Rn} =
3

4
(
17

8
m− 31

40
n−m3 +

3

5
m2n− 3

10
n2m+

1

10
n3)(7Lm+n − 3Am+n)

+
1

24
(40m2 + 12n2 − 32mn− 45)(Wm+n − 2Zm+n) + (

3

5
n−m)6Xm+n

(A.95)

{Pm, Rn} =
5

96
(16m4 − 140m2 + 16m2n2 − 140n2 + 16n4 + 259)(m− n)J + (

31

8
m2 − 135

32
− 26

5
mn

+
31

8
n2 − 9

10
m2n2 − 1

2
m4 − 1

2
n4 +

4

5
m3n+

4

5
mn3)(Lm+n − 4Am+n) +

1

24
(10m2

− 8mn− 55 + 10n2)(m− n)(3Wm+n + Zm+n) + 3(m2 +
5

2
− 8

5
mn+ n2)Xm+n

(A.96)
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[J,Gs] =
1

2
Gs, [J,Hs] = −1

2
Hs, [J, Ss] =

1

2
Ss, [J, Ts] = −1

2
Ts,

[J, Ps] =
1

2
Ps, [J,Rs] = −1

2
Rs

(A.97)

[Lr, Gs] = (
r

2
− s)Gr+s, [Lr, Hs] = (

r

2
− s)Hr+s (A.98)

[Lr, Ss] = (
3r

2
− s)Sr+s, [Lr, Ts] = (

3r

2
− s)Tr+s (A.99)

[Lr, Ps] = (
5r

2
− s)Pr+s, [Lr, Rs] = (

5r

2
− s)Rr+s (A.100)

[Ar, Gs] =
7

6
(r − 2s)Gr+s −

4

3
Sr+s (A.101)

[Ar, Hs] =
7

6
(r − 2s)Hr+s +

4

3
Tr+s (A.102)

[Ar, Ss] =
5

24
(12r2 − 8rs+ 4s2 − 9)Gr+s +

7

30
(3r − 2s)Sr+s −

3

5
Pr+s (A.103)

[Ar, Ts] = − 5

24
(12r2 − 8rs+ 4s2 − 9)Hr+s +

7

30
(3r − 2s)Tr+s −

3

5
Rr+s (A.104)

[Ar, Ps] =
1

10
(40r2 − 16rs− 25)Sr+s +

5r − 2s

10
Pr+s (A.105)

[Ar, Rs] =
1

10
(40r2 − 16rs− 25)Tr+s +

5r − 2s

10
Rr+s (A.106)

[Wr, Gs] = −(4s− r)Sr+s (A.107)

[Wr, Hs] = −(4s− r)Tr+s (A.108)

[Wr, Ss] =
5

32
(16s3 − 12rs2 + 8r2s− 36s− 4r3 + 19r)Gr+s

− 7

4
(4s2 − 4rs+ 2r2 − 5)Sr+s −

9

20
(4s− 3r)Pr+s

(A.109)

[Wr, Ts] =
5

32
(16s3 − 12rs2 + 8r2s− 36s− 4r3 + 19r)Hr+s

− 7

4
(4s2 − 4rs+ 2r2 − 5)Tr+s −

9

20
(4s− 3r)Rr+s

(A.110)

[Wr, Ps] =
3

40
(16s3−36rs2 +48r2s−100s−40r3 +145r)Sr+s−

1

20
(12s2−24rs+20r2−35)Pr+s

(A.111)

[Wr, Rs] =
3

40
(16s3−36rs2 +48r2s−100s−40r3 +145r)Tr+s−

1

20
(12s2−24rs+20r2−35)Rr+s

(A.112)

[Zr, Gs] = −7

5
(4s− r)Sr+s −

6

5
Pr+s (A.113)

[Zr, Hs] = −7

5
(4s− r)Tr+s +

6

5
Rr+s (A.114)

[Zr, Ss] =
7

32
(16s3 − 12rs2 + 8r2s− 36s− 4r3 + 19r)Gr+s

+
29

20
(4s2 − 4rs+ 2r2 − 5)Sr+s −

3

20
(4s− 3r)Pr+s

(A.115)
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[Zr, Ts] =
7

32
(16s3 − 12rs2 + 8r2s− 36s− 4r3 + 19r)Hr+s

− 29

20
(4s2 − 4rs+ 2r2 − 5)Tr+s −

3

20
(4s− 3r)Rr+s

(A.116)

[Zr, Ps] = − 1

32
(16s4 − 32rs3 + 48r2s2 − 136s2 − 64r3s+ 264rs+ 80r4 − 380r2 + 225)Gr+s

+
1

40
(16s3 − 36rs2 + 48r2s− 100s− 40r3 + 145r)Sr+s −

1

20
(12s2 − 24rs+ 20r2 − 35)Pr+s

(A.117)

[Zr, Rs] =
1

32
(16s4 − 32rs3 + 48r2s2 − 136s2 − 64r3s+ 264rs+ 80r4 − 380r2 + 225)Hr+s

+
1

40
(16s3 − 36rs2 + 48r2s− 100s− 40r3 + 145r)Tr+s −

1

20
(12s2 − 24rs+ 20r2 − 35)Rr+s

(A.118)

[Xr, Gs] = −6s− r
6

Pr+s (A.119)

[Xr, Hs] = −6s− r
6

Rr+s (A.120)

[Xr, Ss] =
1

40
(40s3 − 20rs2 + 8r2s− 82s− 2r3 + 23r)Sr+s −

1

120
(60s2 − 40rs+ 12r2 − 63)Pr+s

(A.121)

[Xr, Ts] =
1

40
(40s3 − 20rs2 + 8r2s− 82s− 2r3 + 23r)Tr+s +

1

120
(60s2 − 40rs+ 12r2 − 63)Rr+s

(A.122)

[Xr, Ps] = − 5

1152
(96s5 − 80rs4 + 54r2s3 − 816s3 − 48r3s2 + 632rs2 + 32r4s+ 1350s

− 16r5 + 220r3− 729r)Gr+s +
1

720
(240s4− 320rs3 + 288r2s2− 1752s2− 192r3s+ 1808rs+ 80r4

− 920r2 + 1575)Sr+s −
1

240
(40s3 − 60rs2 + 48r2s− 202s− 20r3 + 155r)Pr+s (A.123)

[Xr, Rs] = − 5

1152
(96s5 − 80rs4 + 54r2s3 − 816s3 − 48r3s2 + 632rs2 + 32r4s+ 1350s

− 16r5 + 220r3− 729r)Hr+s−
1

720
(240s4− 320rs3 + 288r2s2− 1752s2− 192r3s+ 1808rs+ 80r4

− 920r2 + 1575)Tr+s −
1

240
(40s3 − 60rs2 + 48r2s− 202s− 20r3 + 155r)Rr+s (A.124)

As noted with the definition of the Killing spinors, we work with the real form of su(3, 1|2, 1).
We work with the real forms associated to sl(4|3,C), specifically

su(p, 3− p|q, 2− q) ⊃ su(p, 3− p)⊕ su(q, 2− q)⊕ iR (A.125)

with p = 3 and q = 2. We use this bulk superalgebra due to the fact that it naturally makes
contact with the boundary W(3|2) theory and by extension with the W(4|3) theory, which we
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are using. We define the superalgebra su(3, 1|2, 1) ⊃ su(3, 1) ⊕ su(2, 1) ⊕ iR by the set of
supertraceless 7× 7 supermatrices M which satisfy

M †K +KM = 0 (A.126)

with K a non-degenerate Hermitian form of signature (3, 1|2, 1). From our representation of
sl(4, 3) the generators

Li, Ai, iWm, iJ, iZm, Xm, (A.127)

as well as

eiπ/4(Hr +Gr), eiπ/4(Hr −Gr),

e3iπ/4(Tr + Sr), e3iπ/4(Tr − Sr),
e5iπ/4(Pr +Rr), e5iπ/4(Pr −Rr),

(A.128)

do satisfy the property with

K =



0 0 0 −1 0 0 0
0 0 1 0 0 0 0
0 −1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 i
0 0 0 0 0 −i 0
0 0 0 0 i 0 0


. (A.129)

We also decompose the fermionic parameter as

ε = ε− + ε+ (A.130)

where the ε± are the U(1) eigenstates. If we demand that this belongs to su(3, 1|2, 1) then

ε†K +Kε = 0 ⇔ ε±† = −Kε∓K. (A.131)
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A.3 The Non-zero Clebsch-Gordan Symbols

Clebsch-Gordan Symbol Numerical Value Clebsch-Gordan Symbol Numerical Value

< 3
2

3 ; −3
2

3 | 3
2

3
2
> −2

√
1
7

< 3
2

3 ; −1
2

2 | 3
2

3
2
>

√
2
7

< 3
2

3 ; −3
2

2 | 3
2

1
2
> −

√
2
7

< 3
2

3 ; 1
2

1 | 3
2

3
2
> −2

√
1
35

< 3
2

3 ; −1
2

1 | 3
2

1
2
> 2

√
3
35

< 3
2

3 ; −3
2

1 | 3
2
−1
2
> −2

√
1
35

< 3
2

3 ; 3
2

0 | 3
2

3
2
>

√
1
35

< 3
2

3 ; 1
2

0 | 3
2

1
2
> −3

√
1
35

< 3
2

3 ; −1
2

0 | 3
2
−1
2
> 3

√
1
35

< 3
2

3 ; −3
2

0 | 3
2
−3
2
> −

√
1
35

< 3
2

2 ; −1
2

2 | 3
2

3
2
>

√
2
5

< 3
2

2 ; −3
2

2 | 3
2

1
2
>

√
2
5

< 3
2

2 ; 1
2

1 | 3
2

3
2
> −

√
2
5

< 3
2

2 ; −3
2

1 | 3
2
−1
2
>

√
2
5

< 3
2

2 ; 3
2

0 | 3
2

3
2
>

√
1
5

< 3
2

2 ; 1
2

0 | 3
2

1
2
> −

√
1
5

< 3
2

2 ; −1
2

0 | 3
2
−1
2
> −

√
1
5

< 3
2

2 ; −3
2

0 | 3
2
−3
2
>

√
1
5

< 3
2

1 ; 1
2

1 | 3
2

3
2
> −

√
2
5

< 3
2

1 ; −1
2

1 | 3
2

1
2
> −2

√
2
15

< 3
2

1 ; −3
2

1 | 3
2
−1
2
> −

√
2
5

< 3
2

1 ; 3
2

0 | 3
2

3
2
>

√
3
5

< 3
2

1 ; 1
2

0 | 3
2

1
2
>

√
1
15

< 3
2

1 ; −1
2

0 | 3
2
−1
2
> −

√
1
15

< 3
2

1 ; −3
2

0 | 3
2
−3
2
> −

√
3
5

< 3
2

0 ; 3
2

0 | 3
2

3
2
> 1

< 3
2

0 ; 1
2

0 | 3
2

1
2
> 1 < 1 2 ; −1 2 | 1 1 >

√
3
5

< 3
2

0 ; −3
2

0 | 3
2
−3
2
> 1 < 1 2 ; −1 1 | 1 0 > 1

2

√
6
5

< 1 2 ; 0 1 | 1 1 > −1
2

√
6
5

< 3
2

0 ; −1
2

0 | 3
2
−1
2
> 1

< 1 2 ; −1 1 | 1 0 > 1
2

√
2
5

< 1 2 ; 0 0 | 1 0 > −
√

2
5
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Clebsch-Gordan Symbol Numerical Value Clebsch-Gordan Symbol Numerical Value

< 1 2 ; −1 0 | 1 − 1 > 1
2

√
2
5

< 1 1 ; 0 1 | 1 1 > −
√

1
2

< 1 1 ; −1 1 | 1 0 > −
√

1
2

< 1 0 ; 1 0 | 1 1 > 1

< 1 0 ; 0 0 | 1 0 > 1 < 1 1 ; 1 0 | 1 0 >
√

1
2

< 1 0 ; −1 0 | 1 − 1 > 1 < 1 ; −1 0 | 1 − 1 > −
√

1
2

< 3
2

1
2

; 3
2
−1
2
| 1 1 > 1

2

√
3 < 3

2
1
2

; 1
2
−1
2
| 1 0 > 1

2

√
2

< 3
2

1
2

; −1
2
−1
2
| 1 − 1 > 1

2
< 3

2
1
2

; 1
2

1
2
| 1 1 > −1

2

< 3
2

1
2

; −1
2

1
2
| 1 0 > −1

2

√
2 < 3

2
1
2

; −3
2

1
2
| 1 − 1 > −1

2

√
3

< 3
2

3
2

; 3
2
−3
2
| 1 0 > 3

10

√
5 < 3

2
3
2

; 1
2
−3
2
| 1 − 1 > 1

10

√
30

< 3
2

3
2

; 3
2
−1
2
| 1 1 > 1

10

√
30 < 3

2
3
2

; 1
2
−1
2
| 1 0 > − 1

10

√
5

< 3
2

3
2

; −1
2
−1
2
| 1 − 1 > −1

5

√
10 < 3

2
3
2

; 1
2

1
2
| 1 1 > −1

5

√
10

< 3
2

3
2

; −1
2

1
2
| 1 0 > − 1

10

√
5 < 3

2
3
2

; −3
2

1
2
| 1 − 1 > 1

10

√
30

< 3
2

3
2

; −1
2

3
2
| 1 1 > 1

10

√
30 < 3

2
3
2

; −3
2

3
2
| 1 0 > 3

10

√
5

< 3
2

5
2

; 3
2
−5
2
| 1 − 1 > 1

2

√
2 < 3

2
5
2

; 3
2
−3
2
| 1 0 > 1

5

√
5

< 3
2

5
2

; 1
2
−3
2
| 1 − 1 > − 1

10

√
30 < 3

2
5
2

; 3
2
−1
2
| 1 1 > 1

10

√
5

< 3
2

5
2

; 1
2
−1
2
| 1 0 > − 1

10

√
30 < 3

2
5
2

; −1
2
−1
2
| 1 − 1 > 1

10

√
15

< 3
2

5
2

; −1
2

1
2
| 1 0 > 1

10

√
30 < 3

2
5
2

; −3
2

1
2
| 1 − 1 > − 1

10

√
5

< 3
2

5
2

; −1
2

3
2
| 1 1 > 1

10

√
30 < 3

2
5
2

; −3
2

3
2
| 1 0 > −1

5

√
5

< 3
2

5
2

; −3
2

5
2
| 1 1 > −1

2

√
2 < 1 1

2
; −1 −1

2
| 3

2
1
2
> 1

3

√
3

< 1 1
2

; 0 −1
2
| 3

2
−1
2
> 1

3

√
6 < 1 1

2
; −1 −1

2
| 3

2
−3
2
> 1

< 1 1
2

; 1 1
2
| 3

2
3
2
> 1 < 1 1

2
; 0 1

2
| 3

2
1
2
> 1

3

√
6

< 1 1
2

; −1 1
2
| 3

2
−1
2
> 1

3

√
3 < 1 3

2
; 1 −3

2
| 3

2
−1
2
> 1

5

√
10

< 1 3
2

; 0 −3
2
| 3

2
−3
2
> 1

5

√
15 < 1 3

2
; 1 −1

2
| 3

2
1
2
> 2

15

√
30
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Clebsch-Gordan Symbol Numerical Value Clebsch-Gordan Symbol Numerical Value

< 1 3
2

; 0 −1
2
| 3

2
−1
2
> 1

15

√
15 < 1 3

2
; −1 −1

2
| 3

2
−3
2
> −1

5

√
10

< 1 3
2

; 1 1
2
| 3

2
3
2
> 1

5

√
10 < 1 3

2
; 0 1

2
| 3

2
1
2
> − 1

15

√
15

< 1 3
2

; −1 1
2
| 3

2
−1
2
> − 2

15

√
30 < 1 3

2
; 0 3

2
| 3

2
3
2
> −1

5

√
15

< 1 3
2

; −1 3
2
| 3

2
1
2
> −1

5

√
10 < 1 5

2
; 1 −5

2
| 3

2
−3
2
> 1

3

√
6

< 1 5
2

; 1 −3
2
| 3

2
−1
2
> 1

5

√
10 < 1 5

2
; 0 −3

2
| 3

2
−3
2
> 2

15

√
15

< 1 5
2

; 1 −1
2
| 3

2
1
2
> 1

5

√
5 < 1 5

2
; 1 −1

2
| 3

2
−1
2
> −1

5

√
10

< 1 5
2

; −1 −1
2
| 3

2
−3
2
> 1

15

√
15 < 1 5

2
; 1 1

2
| 3

2
3
2
> 1

15

√
15

< 1 5
2

; 0 1
2
| 3

2
1
2
> 1

5

√
10 < 1 5

2
; −1 1

2
| 3

2
−1
2
> 1

5

√
5

< 1 5
2

; 0 3
2
| 3

2
3
2
> − 2

15

√
15 < 1 5

2
; −1 3

2
| 3

2
1
2
> 1

5

√
10

< 1 5
2

; −1 5
2
| 3

2
3
2
> 1

3

√
6

A.4 Maple Code

It was found throughout the study that most of the mathematics calculated could not be found by
working out the solutions explicitly by hand, and as such, we have turned to using Maple for the
calculations. Specifically, the version number that was used was Maple 15, which as of this writing
was not the most up-to-date version. This could impact some of the procedures that could be used
in the calculations to perhaps shorten some of the processes, however they were unavailable at the
time. Also, certain features might be updated in future releases which could cause the process to not
compile correctly, but no such issues exist in the version used.
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> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

Here follows a rough explanaition of the process create in describing the classification of solutions in 
Maple. Of course, this is only for Class I, but it can easily be adapted for any class under consideration.

We start off by first defining all the necessary generators, which is not shown here to conserve space. 
We can the define the connection we will be using:

Then we define the charges as was explicitly calculated in Chapter 5:

We can then start with the specific class we are considering. We must first define the general spinor 
which we will be using:

And then we may substitute the correct eigenvalues of this case into the charges

The solution of the charges is then substituted into the connection, which we will rename to Snew

However, the following step where we must calculate the Jordan form of this specific connection is 
calculated by Maple in a strange way. It automatically permutes the eigenvalues according to its own 
algorithms and the final solution does not correspond to what we expect. As such, we must construct a 
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> > 
> > 

> > 

> > 

> > 

> > 

(1)(1)

> > 

permutation matrix, using Maple to calculate the transformational matrix which it would use to 
calculate the Jordan form, and then manually calculate the Jordan form:

The output of the above will then give the correct Jordan form of the connection. It is then split into a 
diagonal section (D) as well as a nilpotent section (n), which we will now use. We calculate the 

of the spinor:

We then substitute the corresponding elements which should equate zero into our case specific spinor:

Once again, Maple has it's limitations in that it struggles to simplify certain expressions, and as such we
manually define the exponentiated diagonal into

We may then find the Killing spinor in this class if we first find
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(1)(1)

> > 

> > 

(2)(2)

and following 

we may find the expressions of the Killing spinor. This following expression is attained by computing 
specific entries of the above matrix and equating them to the corresponding elements and coefficients 
of the appropriate fermionic generators which make up the Killing spinor in (5.49) and using a 
differential solve function
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