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Abstract

Time series forecasting is a very important research area because of its practical

application in many fields. Due to the importance of time series forecasting, much

research effort has gone into the development of forecasting models and in improving

prediction accuracies. The interest in using artificial neural networks (NNs) to model

and forecast time series has been growing. The most popular type of NN is arguably the

feedforward NN (FNN). FNNs have structures capable of learning static input-output

mappings, suitable for prediction of non-linear stationary time series. To model non-

stationary time series, recurrent NNs (RNNs) are often used. The recurrent/delayed

connections in RNNs give the network dynamic properties to effectively handle temporal

sequences. These recurent/delayed connections, however, increase the number of weights

that are required to be optimized during training of the NN.

Particle swarm optimization (PSO) is an efficient population based search algorithm

based on the social dynamics of group interactions in bird flocks. Several studies have

applied PSO to train NNs for time series forecasting, and the results indicated good

performance on stationary time series, and poor performance on non-stationary and

highly noisy time series. These studies have assumed static environments, making the

original PSO, which was designed for static environments, unsuitable for training NNs

for forecasting many real-world time series generated by non-stationary processes.

In dealing with non-stationary data, modified versions of PSOs for optimization in

dynamic environments are used. These dynamic PSOs are yet to be applied to train

NNs on forecasting problems. The first part of this thesis formulates training of a FNN
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forecaster as a dynamic optimization problem, to investigate the application of a dynamic

PSO algorithm to train FNNs in forecasting time series in non-stationary environments.

For this purpose, a set of experiments were conducted on ten forecasting problems under

nine different dynamic scenarios. Results obtained are compared to the results of FNNs

trained using a standard PSO and resilient backpropagation (RPROP). The results show

that the dynamic PSO algorithm outperform the PSO and RPROP algorithms. These

findings highlight the potential of using dynamic PSO in training FNNs for real-world

forecasting applications.

The second part of the thesis tests the hypothesis that recurrent/delayed connections

are not necessary if a dynamic PSO is used as the training algorithm. For this purpose,

set of experiments were carried out on the same problems and under the same dynamic

scenarios. Each experiment involves training a FNN using a dynamic PSO algorithm,

and comparing the result to that obtained from four different types of RNNs (i.e. Elman

NN, Jordan NN, Multi-Recurrent NN and Time Delay NN), each trained separately

using RPROP, standard PSO and the dynamic PSO algorithm. The results show that

the FNNs trained with the dynamic PSO significantly outperform all the RNNs trained

using any of the algorithms considered. These findings show that recurrent/delayed

connections are not necessary in NNs used for time series forecasting (for the time series

considered in this study) as long as a dynamic PSO algorithm is used as the training

method.

Keywords: Time Series, Feedforward Neural Networks, Recurrent Neural Networks,

Particle Swarm Optimization, Cooperative Quantum Particle Swarm Optimization, Dy-

namic Environment.
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“Our world is increasingly complex, often chaotic, and always fast-flowing.

This makes forecasting something between tremendously difficult and actu-

ally impossible, with a strong shift toward the latter as timescales get longer.”

Andrew McAfee

“When the number of factors coming into play in a phenomenological

complex is too large scientific method in most cases fails. One need only

think of the weather, in which case the prediction even for a few days ahead

is impossible.”

Albert Einstein
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Chapter 1

Introduction

Forecasting is an essential task in dealing with uncertainties. Most decisions taken by

businesses, governments, and people are based on forecasts. Forecasting in general,

involves estimating or predicting future events (values) of a time based sequence of

historical data (time series). The oldest and simplest method used in forecasting is

human judgment, and is often subject to errors. These errors may be within acceptable

limits when the data to be predicted is well understood. When the forecasting problem

is relatively more complex and less understood, other methods that require little or no

human judgment become more appropriate. A time series forecasting problem becomes

increasingly more complex in an environment with continuously shifting conditions. In

such conditions, a method that can adapt to the changing environment is required.

Due to the importance of time series forecasting, much research effort has gone into

the development of forecasting models and in improving prediction accuracies. Statistical

methods were the largely used time series forecasting tools [30]. Statistical methods are,

however, known to have two main drawbacks, namely, high mathematical complexity and

dependence on prior knowledge of how the time series was generated [76, 101]. Neural

networks (NNs), as an alternative approach to time series modeling, address these issues

and have shown to be more efficient in terms of prediction accuracy [4, 5].

The interest in using NNs to model and forecast time series has been growing. The

most popular type of NN is arguably the feedforward NN (FNN). FNNs have structures

capable of learning static input-output mappings [49], suitable for prediction of non-

1
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linear stationary time series. A stationary time series is one whose unconditional joint

probability distribution does not change when shifted in time. To model non-stationary

time series, NN forecasters are often implemented using recurrent/delayed connections

to give the network dynamic properties to effectively handle temporal sequences. The

NNs implimented with recurrent connections are generally referred to as recurrent NNs

(RNN).

Even though NNs have done well in many time series forecasting problems, their per-

formance depends on the selection of the right network architecture and an appropriate

training algorithm [3, 153].

Particle swarm optimization (PSO) is an efficient population based search algorithm

based on the social dynamics of group interactions in bird flocks. PSO is now an es-

tablished method for training NNs, and was shown to outperform the classical back-

propagation (BP) training algorithm in a number of specific applications [128, 129, 151].

The original PSO was, however, designed for static environments. In dealing with non-

stationary data, modified versions of the PSOs designed for optimization in dynamic

environments are used.

This thesis applies dynamic PSO to training NN forecasters for non-stationary time

series modelling.

Motivation for this thesis is given in Section 1.1. Section 1.2 highlight the research

objectives. The contributions of the study are given in Section 1.3. Outline of the thesis

is given in Section 1.4.

1.1 Motivation

A study of the NN literature reveals that researchers and analysts arbitrarily choose the

type of NN they use in forecasting applications. While the FNN is the type dominantly

used, recent trends indicate that RNNs are now the widely used architecture because of

their ability to model dynamic systems implicitly. The recurent/delayed connections in

RNNs, however, increase the number of weights that are required to be optimized during

training of the NN.

To build a NN forecaster using RNNs, one has to choose among the different special
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cases of RNNs (such as Elman NN, Jordan NN, or Multirecurrent NN). It is, however,

very difficult to single out a particular special case of the RNNs that is better in modeling

different types of time series [1]. Thus, selecting which RNN to use becomes a problem.

Another issue that needs to be resolved is how to decide on the number of context layers

if an Elman NN is used, or the number of state layers if a Jordan NN is used, or how to

decide on the number of previous values to remember if a time delay NN is used.

Even though several studies have applied PSO to the task of training NN forecasters,

producing favorable results, these studies have assumed static environments, making

them unsuitable for many real-world time series which are generated by varying pro-

cesses. Since PSO was developed for optimization in a stationary environment, it seems

more appropriate to use PSO variants designed for solving problems in dynamic envi-

ronments in order to train NN forecasters under non-static environments. For example,

the performance of PSO as a training algorithm for FNNs in forecasting non-stationary

time series was evaluated in [3], where the authors considered the problem as a static

optimization problem. The results showed that PSO performed better than BP, but

concluded that the result of PSO could significantly be improved by using a suitable NN

structure (that can handle dynamic data). Jar et al [76] compared the performance of

PSO and BP in training FNNs for time series forecasting. The results indicate superior-

ity of the PSO over BP, but Jar et al concluded that the PSO trained FNNs were unable

to track non-stationary data.

Dynamic PSOs have been used to train NNs on classification problems under non-

stationary environments [42, 108, 110]. These studies showed that dynamic PSOs are

indeed applicable to NN training on classification problems for dynamic environments,

by yielding significantly better or similar results compared to the classic BP algorithm

and the original PSO.

To the knowledge of the author, there is no study yet that applies a dynamic PSO

algorithm to train NN forecasters for non-static environments. Thus, if dynamic PSO is

efficiently applicable to training FNN forecasters for non-stationary evironments, then

it is possible that the recurrent/delayed connections (required for handling the temporal

component of a non-stationary time series) are no longer necessary in NN forecasters

for dynamic environments. If this holds true, then the problems associated with using
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RNNs to model time series under non-stationary environments are resolved by using

FNN trained with dynamic PSO.

1.2 Objectives

The primary objectives of this thesis can be summarized as follows:

• To formulate training of a NN forecaster as a dynamic optimization problem.

• To investigate the applicability and performance of a dymanic PSO as a training

algorithm for FNN forecasters for non-stationary environments.

• To investigate if recurrent/delayed connections are necessary for a NN time series

forecaster when a dynamic PSO is used as the training algorithm.

1.3 Contributions

The main contributions of the this thesis are:

• The formulation of training a NN forecaster for non-stationary time series as a

dynamic optimization problem.

• The first analysis of the applicability of a dynamic PSO algorithm to the training

of NN forecasters under different kinds of dynamic environments.

• The implementation of the RPROP algorithm, and addition of the algorithm to

CIlib [102].

• An empirical analysis comparing the performance of a cooperative quantum PSO

to the RPROP and the standard PSO algorithms in training FNNs and simple

recurrent NN forecasters under different dynamic environmental scenarios.

• An empirical analysis showing that recurrent/delayed connections are not necessary

for NN forecasters if a dynamic PSO is used as the training method.
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1.4 Thesis Outline

Chapter two provides an overview of time series forecasting. The chapter starts by

defining a time series, and discussions on the characteristic components of a time series.

This is followed by discussions on time series analysis and applications, which includes

forecasting, classification, explanation, and transformation. In this context, discussions

on the most important and widely used time series forecasting methods are provided,

which includes autoregressive integrated moving average, k-nearest neighbour, support

vector regression, and NNs.

Chapter three reviews different types of NNs used in modeling time series. This

includes FNNs, time delay NNs, Elman NNs, Jordan NNs and multi-recurrent NNs.

The chapter also discusses a number of optimization methods applied to training NNs,

namely BP, resilient propagation, and PSO. This is followed by discussions on the major

performance issues in designing NN forecasters.

Chapter four provides a review of the basic PSO algorithm. The chapter also describes

the application of PSO to the training of NNs.

Chapter five briefly discusses dynamic optimization problems, and the different char-

acteristics of dynamic environments. This is followed by a discussion of the challenges

faced by standard PSO when applied to dynamic environments, and methods of ad-

dressing these challenges. Existing PSO approaches to dynamic optimization are then

discussed.

Chapter six formulates training of a NN as a dynamic optimization problem to in-

vestigate the applicability and efficiency of a dynamic PSO algorithm in training FNN

forecasters for non-stationary environments. The chapter provides a detailed descrip-

tion of the experimental procedure followed, which includes detailed descriptions of the

datasets, data pre-processing methods, dynamic environments considered, parameter op-

timization process, and performance measures. Experimental results are then presented

and analysed, and conclusions are given.

Chapter seven investigates the need for recurrent/delayed connections for NNs used

for non-stationary time series forecasting if a dynamic PSO is used as the training al-

gorithm. Results from the experiments carried out are presented and discussed, and

conclusions are given.
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Chapter eight summarises the findings of this thesis, followed by a discussion of future

research directions.

The appendices provide a list of acronyms used throughout the text along with their

definitions, a list of symbols used in this thesis, and a list of publications derived from

the work discussed in this thesis.



Chapter 2

Time Series Forecasting

“It is difficult to make predictions, especially about the future.”

– NEILS BOHR

Forecasting is the process of estimating or predicting future events (or values) of a time

based sequence of historical data (called a time series) in order to deal with future

uncertainties. Most decisions taken by businesses, governments, and people are based

on forecasts, and the quality of those decisions largely depends on the prediction errors.

The oldest and simplest method used in forecasting is human judgment, and is often

subject to errors. These errors may be within acceptable limits when the data to be

predicted is well understood. When the time series problem is relatively more complex

and less understood, other methods that require little or no human judgment become

more appropriate. The time series problem becomes increasingly more complex in an

environment with continuously shifting conditions.

This chapter looks at time series forecasting methods from a more general point of

view in order to provide a basis for the methods studied in this thesis. To effectively do

that, some background information on what a time series is, its characteristics, and its

analysis are discussed.

In the remainder of the chapter, Section 2.1 gives an overview on time series and

Section 2.2 discusses time series forecasting methods.

7
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2.1 Time Series

A time series is a collection of observations measured at discrete times. The order in

which time series observations are taken is very crucial. Mathematically, a time series

is defined as a set of vectors, x(t), t = 1, 2, · · · , n, where t is the time interval and n

is the number of observations. Some examples of time series are records of the annual

numbers of students enrolled at the university of Pretoria between 1990 and 2017, and

records of the daily minimum temperature in Johannesburg between 1st January, 2016

and 31st December, 2016.

A time series is said to be discrete if observations are measured at discrete points of

time, usually at an equally spaced interval such as monthly, quarterly, or yearly. If the

observations are measured at every instance of time, the time series becomes continuous.

A continuous time series can be easily transformed to a discrete one by merging data

together over a specified time interval. The selected time interval determines the number

of data points in the time series, referred to as the sampling frequency. The sampling

frequency has an influence on the main characteristics of the resulting time series.

A time series containing a single variable is called univariate. When a time series

contains more than one variable, it is called multivariate. Univariate time series process-

ing forms the basis of this work, and as such, all discussions henceforth, are limited to

it.

In the remainder of this section, Section 2.1.1 describes the characteristic features of

time series, and Section 2.1.2 discusses time series analysis. Stochastic processes in time

series is are discussed in Section 2.1.3.

2.1.1 Characteristics of Time Series

To process a time series for any application, certain components (features) that charac-

terize the series have to be considered. These features are:

• The trend, which indicates an average increase or decline in the values of a time

series over a long-term period. Figure 2.1 shows an example of what a trend looks

like, where the dotted line indicates a long-term linear trend. A nonlinear trend

may also be observed in a time series. An upward trend is commonly seen in
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Figure 2.1: Linear trend

time series relating to population growth and water consumption in a community,

whereas a downward trend may be observed in series related to epidemics and

illiteracy rate.

• Seasonality, which is a regular fluctuation in time series values over fixed and known

periods. Seasonal movement may be observed quarterly, monthly, weekly or even

daily, and the seasonality is either deterministic or stochastic. The appearance of

seasonal variation is exemplified in Figure 2.2. Seasonal fluctuations may be due

to customs, preferences, weather, and climate changes and technologies.

• Cyclical variations, which are regular changes in time series values over an unknown

variable period (typically more than one year period). Cyclical variations are

caused by events which occur in cycles. Figure 2.3 shows an example of a time

series with cycles of approximately 10 years (some lasting eight, nine or 10 years).

In contrast to seasonality, cyclical variation covers a longer time period and has a

systematic pattern that is not easily predictable. Cyclical variations may be seen

in most financial and economic series.

• Random variations, also called residual errors, are irregular movements in a time

series caused by unpredictable circumstances that are not regular and do not repeat

in a particular pattern. They are caused by events such as outbreak of disease,
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Figure 2.2: Seasonal variation

revolution, war, or strikes. Figure 2.4 illustrates an example of a series with random

variations. Random variations are not predictable.

Other features such as outliers and missing observations are often observed in a time

series. Outliers are data observations that deviate substantially from the data distribu-

tion, causing large errors on models constructed from the data. Outliers are normally

removed using statistical techniques during data preparation before model construction.

Even though such action will alleviate the problems of outliers, other important informa-
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Figure 2.4: Random variation

tion may be lost at the same time. Chatfield [30] noted that treatment of some specific

features such as outliers, missing observations, or possible errors can be more important

than the choice of forecasting method.

A plot of a time series reveals the presence of different features contained in the series,

and is generally used in studying and assessing the properties of a time series.

Since time series usually have different combinations of characteristic components,

decomposition is employed in classical time series analysis to separately describe these

components. Based on the way that these components are combined, linear modeling

can be classified in additive, multiplicative, and pseudo additive compositions [29].

An additive model,

Yt = T + S +R (2.1)

where T , S and R are the trend, seasonal and random variations respectively, assumes

that the characteristic components are independent of one another.

A multiplicative model,

Yt = T × S ×R (2.2)

on the other hand assumes that the characteristic components are not necessarily inde-

pendent of one another. Pseudo additive decomposition has features of both the additive

and the multiplicative models.
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2.1.2 Time Series Analysis

Time series analysis is the process of using a mathematical model to extract meaningful

statistics or other characteristics from a time series in order to understand its underlying

structure and functions that produces it. Some typical applications in time series analyses

are:

• forecasting, which is the process of estimating future values of a time series based

on previous ones;

• classification, which is the process of grouping time series into a number of classes;

• explanation, which is the process of describing a time series in terms of the param-

eters of a model; and

• transformation, which is the process of mapping one time series onto another.

Forecasting applications are the most widely spread and imminent in literature due

to their huge importance in many fields. Most strategic decisions are often based on

forecast results. Therefore, fitting a model that can adequately model a time series is

quite important.

In modeling a time series forecaster, the series values are analyzed to develop a

mathematical model that captures the underlying data generating process of the series.

The mathematical model developed is then used to predict future values of the series.

The analysis is based on the fact that successive observations are not independent and

their chronological order must be taken into account.

As described in [40], time series forecasting is the problem of finding a function

f : Rn → R such as to obtain an estimate y(t + d) of y at time (t + d), given n

observations of y up to time t:

y(t+ d) ≈ f(y(t),y(t− 1), . . . ,y(t− n)) (2.3)

where d is the prediction lag (also called the forecasting horizon). This implies that time

series forecasting is a function approximation problem.
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2.1.3 Stochastic Processes in Time Series

A time series is said to be deterministic if exact future values can be determined. How-

ever, in most time series applications, future values can not be predicted with certainty

due to residual error, ε, which is as the result of noise processes (produced randomly

from uncontrollable influencing factors). Future values of a series have a probability

distribution which is conditioned by knowledge of past values,

y(t+ d) = f(y(t),y(t− 1), · · · ) + ε, ε ∼ N (0, σ2) (2.4)

where N is a zero-mean normal distribution with a variance of σ2.

A mathematical expression that describes the probability structure of a time series is

called a stochastic process [66]. Therefore, a time series is actually a sample realization

of a stochastic process that produces the series [30]. Observations of a time series are

usually assumed to be independent and identically distributed (i.i.d), following a normal

distribution. However, this assumption is not exactly correct, because a time series

exhibits a more or less regular pattern in the long run [30], except for a chaotic time

series.

2.2 Time series forecasting methods

In over a half century’s active research in the area of time series analysis, many time series

forecasting methods were developed. These methods range from simple techniques such

as naive forecast (which involves setting the forecast to the last time series observation) to

more complex computational intelligence (CI) methods such as artificial neural networks

(NNs). This section provides an overview of the time series forecasting methods most

relevant to this thesis, widely used and often cited in the literature, in order to provide

a basis for the remainder of the thesis.

Section 2.2.1 discusses statistical methods used in modelling time series. Section 2.2.2

describes the k -nearest neighbour technique and its application in time series forecasting.

Support vector regression is discussed in Section 2.2.3. Section 2.2.4 discusses artificial

neural networks for time series processing.
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2.2.1 Statistical Methods

There are several statitistical techniques used in time series modelling. The prominent

among these techniques are the moving average (MA) [20], exponential smoothing [55],

auroregressive (AR) [20], autoregressive moving average (ARMA) [91], and autoregres-

sive integrated moving average (ARIMA) [20, 21]. Chartfield [30] observed that statisti-

cal methods were the largely used time series forecasting tools. Among all the statistical

techniques, ARIMA is more popular and the most widely used [21].

The ARIMA model was developed by Box and Jenkins in 1970 [20], and became very

popular and important in forecasting due to the practical approach (called Box-Jenkin’s

methodology) developed for building the model. In ARIMA, the future value of a time

series is assumed to be a linear function of the series’ past observations plus a random

error. Hence, the underlying function that produces the time series is expressed as

ŷt = φ0 + εt +

p∑
i=1

φiyt−i +

q∑
j=1

θjεt−j (2.5)

where ŷt is the forecasted value, εt is the random error with the property of zero mean

and constant variance; φi and θj are the model parameters.

From Equation (2.5), if the value of q = 0, the model reduces to a pure AR model

of order p. If p = 0, the model becomes an MA model of order q. Therefore, in building

an ARIMA model, the main task is to find the appropriate order, (p, q), of the model.

Box-Jenkins’ methodology describes three iterative steps in order to select a satisfactory

ARIMA model:

• Model identification step, which entails preprocessing the data series for better

modeling and the determination of the order (p, q) of the ARIMA model. If the

time series is non-stationary, it is reduced to a stationary series via simple differenc-

ing of degree, ð, until there are no obvious patterns such as a trend or seasonality

left in the series. Differencing means taking the difference between consecutive ob-

servations. Once the data is stationary, the order (p, q) of the model is determined.

• Parameter estimation step, which deals with optimizing the model parameters,

φi and θj, such that the overall measure of error is minimized using nonlinear
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optimization techniques such as maximum likelihood estimation and non-linear

least square methods.

• Diagnostic checking step, which involves checking the goodness of fit of the model

to the series. The model is then used for forecasting if the model is adequate. If

the model is found to be inadequate, the three Box-Jenkins’s steps are repeated

until a better alternative model is identified.

Even though ARIMA models are very popular, they are constrained to handling only

linear time series. To overcome this issue, many non-linear statistical models such as the

threshold autoregressive (TAR) model [134], the auto regressive conditional heteroscedas-

ticity (ARCH) model [51], the generalized auto regressive conditional heteroscedasticity

(GARCH) model [18], and the non-linear autoregressive (NAR) model [154] were pro-

posed. These models are capable of handling non-linear time series, but their mathe-

matical complexities is high and they also largely depend on specific knowledge of how

the time series is generated [76, 101].

2.2.2 k-Nearest Neighbours Technique

The k -nearest neighbour (k -NN) [52] is a simple nonparametric learning method used in

classification and forecasting. The k -NN algorithm uses local neighbourhoods to make

a decision, based on the assumption that objects that are near each other share similar

characteristics [34]. Therefore, the training data is considered a feature metric space. In

k -NN, the training set is memorized and no model is associated to the learning concept.

To forecast a time series using the k -NN technique, the series is organised into k

subsequences that are similar to the most recent subsequence before the point of forecast.

Thus, histories with similar dynamic behavior are detected in the past series and used

later in forecasting the next point at the end of the series.

Three pre-determined parameters are required in k -NN forecasting, namely the em-

bedding dimension, m, the sampling frequency (i.e. delay time), τ , and the number of

nearest neighbours, k. Once these parameters are determined, the given time series,

say (y1, y2, . . . , yt, . . . , yT ), is transformed into subsequences of equal lengths as vectors,
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containing m observations sampled from the series at intervals of τ , i.e.

ym,Tt = (yt, yt−τ , . . . , yt−(m−1)τ ); t = m,m+ 1, . . . , T (2.6)

These vectors are often called m-history vectors [118]. The k -NN employ k m-history

vectors that have similar dynamic behavior as the delay vector, ym,TT , to predict the time

series value at the next time step, t = T + 1, i.e.

ym,TT = (yT , yT−τ , yT−2τ , . . . , yT−(m−1)τ ) (2.7)

Selection of the k m-histories similar to the delay vector is based on a similarity measure,

typically a distance function such as the Euclidean distance. Recently, Durbin and

Rumelhart [104] showed that the Mahalanobis distance is more appropriate because of

possible correlation among vectors at different time frames, compared to distances based

on deterministic vectors, such as the Euclidean distance. Thus, the closest k history

vectors that minimizes the distance function, f(ym,TT , ym,Tt ), are selected.

The value at t = T + 1 is then predicted as the average (if there are no outliers,

otherwise the median) of the target output values on the closest k history vectors. Other

simple methods, such as simple weighted averaging [64], and local linear regression [90]

are also used.

The cost of learning in k-NN is zero and no assumptions are required about the char-

acteristics of the concepts to learn. The k-NN also employs simple local approximation

procedures to learn complex concepts. However, the learned concepts have no descrip-

tion (which means that the model can not be interpreted). Another drawback of k-NN

is that finding k nearest neighbours becomes computationally expensive for large data

sets. Also, the technique suffers from the curse of dimensionality (i.e. the non-intuitive

properties of data observed when working in high-dimensional space).

2.2.3 Support Vector Machines

A support vector machine (SVM) [19, 33] is a supervised learning method use for classi-

fication purposes. When SVM is used for forecasting, it is referred to as support vector

regression (SVR) [41]. SVMs are based on the idea of constructing a hyperplane that

best separates a dataset into two distinct classes as shown in Figure 2.5.
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Figure 2.5: SVM sepration of data points

The data points closer to the either side of the separating hyperplane are called

support vectors and are considered critical elements in the dataset. To have a greater

chance of correctly classifying new data, the hyperplane with the greatest possible margin

(i.e. the distance between support vectors of opposing classes) is chosen. This type

of linear classifier with a maximum-margin hyperplane is called a maximum-margin

classifier.

In order to classify linearly non-separable data, the kernel trick is applied to the

maximum-margin hyperplane. Kerneling results in mapping data into a higher dimen-

sional space where the data is linearly separable. Thus, to classify non-linear data, a

maximum-margin hyperspace is fitted in the transformed feature space.

A similar process is followed in SVR. The data series is mapped into a high dimen-

sional feature space via nonlinear mapping, and linear regression is carried out in this

space [99]. Carrying out linear regression in a high dimensional feature space corresponds

to the nonlinear regression in the low dimensional input space.

SVRs have been used to forecast time series data when the underlying processes are

typically nonlinear, non-stationary and not defined a-priori [82]. The main advantage of

SVM is that it provides unique and globaly optimal solution, unlike other methods such

as NNs [25]. SVM also provides accurate model even with small dataset. However, the

model has high algorithmic complexity and requires extensive model selection process.
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For a comprehensive survey on SVMs used in forecasting, please refer to [119].

2.2.4 Artificial Neural Networks

Artificial neural networks (NNs) are the most successful and frequently used computa-

tional intelligence model in time series forecasting [86]. A traditional NN has an archi-

tecture composed of interconnected artificial neurons (nodes) organised in three layers,

i.e. input, hidden and output layers. NNs are data driven models that can represent

any type of nonlinear function [68]. Basically, a NN is a complex function representing

a nonlinear mapping from a given input space to an output space. For accurate approx-

imation in the mapping, the NN is required to be trained to learn patterns contained in

a data set. Even though NNs have done well in many time series forecasting problems,

their performance depends on the selection of the right NN architecture and appropriate

training algorithm [3, 153].

In forecasting problems, a NN carries out the following mapping:

yt+1 = f(y1, y2, . . . , yt) (2.8)

where yt+1 is the forecasted observation produced as the NN output and y1, y2, . . . , yt

are the historical values of the series fed into the NN as input. For example, a NN

with nine input nodes and one output uses the series values y1, y2, . . . , y9 to forecast the

value y10. The training window then shifts one step to extract m− 9 training examples

from the series with m observations. The NN learns to forecast yt using yt−9, . . . , yt−1 as

input, and the process continues for several training steps until the prediction accuracy

is satisfactory.

For explicit handling of the order between observations when learning a mapping

function from input to output, recurrent NNs (RNNs) [59] are used. The addition

of the temporal component of the series adds a new dimension to the function being

approximated. Thus, instead of mapping input and output alone, the network gain the

capability of learning the mapping function for the inputs over time to an output. This

capability unlocks the time series for the neural networks.

For an extensive review on NNs applied to time series prediction, please refer to

[6, 146, 153].
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2.3 Summary

This chapter provided a brief overview of time series forecasting. Section 2.1 defined a

time series, giving some examples, and discussed the characteristic components of a time

series. These components are trend, seasonality, cyclic and random variations. A time

series may have these components combined in different ways. To assess and study the

properties of a given time series, a plot of the time series was used.

Time series analysis is performed in order to fit a model that adequately describes a

time series. Some applications of time series analysis includes forecasting, classification,

explanation, and transformation. In forecasting, historical time series values are analyzed

to develop a mathematical model that captures the underlying data generating process

of the series, which is then used to predict future values of the series. The future values,

however, can not be predicted with certainty in most time series due to residual errors.

Section 2.2 discussed the most important and widely used time series forecasting

methods, which includes ARIMA, k-NN, SVM and NNs. The next chapter reviews NN

architectures and NN training algorithms.



Chapter 3

Artificial Neural Networks

“There are billions of neurons in our brains, but what are neurons? Just cells.

The brain has no knowledge until connections are made between neurons. All

that we know, all that we are, comes from the way our neurons are connected.”

– Tim Berners-Lee, 1999

NNs are computational models inspired from the structural/functional studies of the

human brain. The human brain is a highly sophisticated parallel and non-linear system

that is responsible for the emergence of consciousness and complex behaviors such as

perception, pattern recognition, and motor control [63]. A huge number of interconnected

elementary cells called neurons constitute the human brain, and the main essence of this

neural ensemble is “control through communication” [24]. The neurons communicate

by sending signals via interconnections called synapses. A single neuron fires or sends a

signal only if a threshold local to the neuron is exceeded, strengthening the connections

of actively communicating neurons and weakening idle connections. The brain, via this

neural communication, learns the mapping between the sensed input and the desired

output. Thus, NNs were designed to mimic the learning process of the human brain

described above.

Because of a NN’s ability to learn and to generalize from experience, they have

been used with success in many fields to carry out complex tasks such as classification,

optimization, pattern recognition, and time series modeling [49].

In the remainder of this chapter, Section 3.1 provides an overview on NNs for fore-

20
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casting. Section 3.2 describes NN training algorithms. Performance issues in designing

NN forecasters are discussed in Section 3.3. Finally, the chapter is summarized in Sec-

tion 3.4.

3.1 Neural Network Forecasters

NNs are mathematical models built up from weighted connections among simple pro-

cessing units or nodes, called artificial neurons. In a traditional NN, these nodes are

organised in three layers: input, hidden and output. A NN with enough nodes in the

hidden layer is capable of approximating any non-linear function to any required accuracy

[68], without the need of prior knowledge on the underlying data generation process.

NNs are non-linear, non-parametric and data driven models. Because of these salient

features, NNs are now widely applied in time series processing. This section reviews NNs

applied in time series forecasting.

3.1.1 Feedforward Neural Networks

Feedforward NN (FNN) is arguably the most popular type of NNs. A FNN has an

acyclic structure, where information flows through the network in only one direction.

FNNs were shown to be universal function approximators [36]. This implies that a FNN

can approximate any function, f : Rn −→ Rm, i.e.

f(~y) = ϕ

(
k∑
j=1

υj,lλ

(
n∑
i=1

wi,jyi − βj

)
− βl

)
, l = 1 . . .m (3.1)

where ϕ and λ are the activation functions, k is the number of hidden neurons, υj,l and

wi,j are weights, and βi, βj are biases (thresholds). A FNN carries out approximation of

non-linearity through superposition of several instances of the activation functions.

In modeling a time series using FNNs, a time window mechanism is employed. The

window, which is a restricted part of the series, is presented to the network. After

analyzing the observations in the window, the window is shifted by one or more steps

further in time. Thus, the mapping of a FNN from an input window to an output can
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be written as

ŷt = f(y(t− 1), y(t− 2), . . . , y(t− p)) (3.2)

where p is size of the window, f is an arbitrary non-linear function, and (y(t− 1), y(t−
2), . . . , y(t − p)) is sequence of observations in the series. Making f dependent on p

previous observations is similar to having p input units fed with p adjacent observations

of the series as shown in Figure 3.1. The time window approach reduced the temporal

dimension of the series to zero by parallelizing the observations [136].

y(t-1)

y(t-2)

y(t-3)

y(t-p)

ො𝑦(t)

𝑓(y(t-1), … y(t-p))

Figure 3.1: A feedforward neural network forecaster

The main advantage of using the window approach is that the underlying network

architecture is not affected. The window approach may, however, result in relatively

large networks, since the window dictates the number of input units and connections

used in the network.

A FNN is comparable with the classical time series model, i.e. the linear autore-

gressive of order p (AR[p]). The AR[p] assumes linear combination of a fixed number of

previous time series observations, i.e.

ŷt = fL(y(t− 1), . . . ,y(t− p)) (3.3)

where fL is a linear function. Apart from the non-linearity, the FNN and AR[p] models

are identical [135].
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3.1.2 Time Delay Neural Networks

Time delay NNs (TDNNs) [145] are a special case of FNNs designed with extra time

delay connections (which is a form of memory mechanism) for effective handling of

temporal data. Input patterns to the network are delayed to arrive at hidden units at

different points in time. A special type of neurons with nt delayed patterns, illustrated

in Figure 3.2 are used in the input layer of a TDNN.

𝑦1(𝑡)

𝑦𝐼(𝑡)

𝑦1(𝑡 − 1)

𝑦𝑃(𝑡 − 𝑛𝑡)

𝑦𝐼(𝑡 − 1)

𝑦𝐼(𝑡 − 𝑛𝑡)

−1

𝒲𝑗,1(𝑡)

𝒲𝑗,1 𝑡−1

𝒲𝑗,1(𝑡−𝑛𝑡)

𝒲𝑗,𝐼(𝑡)

𝒲𝑗,𝐼(𝑡−1)

𝒲𝑗,𝐼(𝑡−𝑛𝑡)

𝒲𝑗,𝐼+1

Figure 3.2: Time-Delay neuron

The TDNN is identical to a time window and can also be viewed as an autoregressive

model. The major disadvantage of the TDNN is that the time period processed is strictly

limited by the number and arrangement of the time delays.

3.1.3 Simple Recurrent Neural Networks

Recurrent NNs (RNNs) are bidirectional networks specifically designed for learning se-

quential or time varying patterns. RNNs have feedback connections (which serves as

internal memories) that allow the networks to incorporate a trace of what has been

processed by the networks (i.e. past experience). The reason for using this recurrent

mechanism is that, theoretically, any past observation in a time series can have an influ-

ence on the predicted future values of the series. Also, the memory capacity of networks

not employing the recurrent mechanisms is limited by the size of the window or the

number of delay connections.

The class of RNN models that are updated with a single update cycle (as in the

FNNs) are called simple recurrent NNs (SRNNs). Among the different types of SRNNs
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developed, the Elman NN [48] and the Jordan NN [77] are the most common types

applied in time series processing. While the Elman NN extends a FNN by adding

feedback connections from the hidden layer to a context layer as shown in Figure 3.3a,

the Jordan NN have its feedback connections from the output layer to a state layer as

illustrated in Figure 3.3b. The context/state layers serve as extensions of the input layer,

and are used to keep the previous state of the hidden/output layers respectively.

−1

−1Context 

layer

Inputs

Output

(a) Elman neural network

−1 −1

State layer

Inputs
Output

(b) Jordan neural network

Figure 3.3: Simple recurrent neural networks

It is clear from the above that the output of the Elman or the Jordan SRNN is

dependent on the input, z(t), and the state of the network, s(t), i.e.

y(t) = f(z(t), s(t)) (3.4)

Typically, the input consists of an observation from a time series

y(t) = f(y(t− 1), s(t)) (3.5)

where the state s(t) is a function of the input z(t − 1) and the previous state s(t − 1),

i.e.

s(t) = g(z(t− 1), s(t− 1)) (3.6)

By replacing s(t) in Equation 3.4 (n− 1) times, the output y becomes dependent on the

inputs z(t), z(t− 1), . . . , z(t− n),

y(t) = h(z(t), z(t− 1), . . . , z(t− n), s(t− n)) (3.7)
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where h is an unknown function. As part of the network, Equation 3.4 represents feed-

forward mapping of all the available information (z(t) and s(t)) to the output y(t).

Equation 3.6 represents the next-state function, modeling the mapping from the past

state s(t− 1) and additional information to the current state s(t).

The weights of the feedforward connections in SRNNs represent the long term memory

holding all the required information, while the state provides context for the new input

(as required in processing time series). The introduction of recurrence generally improves

the performance of NNs in sequence prediction.

The Multi-recurrent NN (MRNN) is another type of SRNN often applied in processing

time series [40]. The MRNN has feedback connections from both the hidden and the

output layers to the state layer, as shown in Figure 3.4. The MRNN is simply a hybrid

of Elman and Jordan SRNNs, and shares the properties of the two networks.

−1

−1

OutputInputs

State

layer

Figure 3.4: Multirecurrent neural network

3.2 Neural Network Training

Even though NNs are capable of mapping a given input pattern to an output value,

they are required to be trained to learn patterns contained in a data set for accurate

approximation in the mapping. The objective of training a NN is to find an optimal set

of weights (including biases) that minimizes the NN error. The training can be via a

supervised, unsupervised or re-enforcement process. The supervised method of training

is used in NNs designed for time series prediction. In supervised training, a set of input
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and associated output examples (i.e. training set) is presented to a network with the

aim to adjust the weight values such that the measure of difference between the actual

output and the target outputs (called the error function) is minimized.

A number of optimization algorithms have been developed for training NNs [13, 14,

44, 149]. This section provides an overview on some algorithms commonly applied in

training NN forecasters.

Section 3.2.1 describes the backpropagation algorithm. Section 3.2.2 discusses the

resilient propagation algorithm. The particle swarm optimization algorithm is described

in Section 3.2.3.

3.2.1 Backpropagation Algorithm

Backpropagation (BP) is a classical optimization algorithm for training NNs. The BP

algorithm uses gradient descent to minimize the overall NN error by calculating the

gradient of the training error, E , in weight space and moving the weight vector along a

negative gradient, i.e.

wi,j(t+ 1) = wi,j(t) + η
∂E
∂wi,j

(t) (3.8)

where wi,j is the weight on connection from neuron i to j; η is the learning rate, a positive

constant that controls the size of steps taken in the weight space. It is important to note

that η has huge impact on the convergence of the algorithm: A too small value may lead

to many steps before an acceptable solution is reached, making convergence extremely

slow. On the other hand, if η is too large, it may lead to successive steps in the gradient

descent oscillating back and forth along the gradient, making convergence difficult.

Since the weight update is not only dependent on the size of η, but also on ∂E
∂wi,j

,

unforeseen influence of the derivative size may seriously disturb the effect of a carefully

chosen η. To avoid this problem, the resilient propagation training method was developed

[116]. Resilient propagation is an efficient training algorithm and is used in this work.

3.2.2 Resilient Propagation Algorithm

Resilient propagation (RPROP) [116] is an efficient supervised batch learning scheme

that performs a direct adaption of the weight step based on local gradient information.
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During the learning process, the sign of the partial derivative, ∂E
∂wi,j

, is used to dictate the

direction of the weight update. The size of the weight update is exclusively determined

by a weight specific update value, ∆i,j(t), instead of using the size of ∂E
∂wi,j

as in BP.

For each weight, wi,j, the change in weight is determined as;

∆wi,j(t) =


−∆i,j if ∂E

∂wi,j
(t) > 0

+∆i,j if ∂E
∂wi,j

(t) < 0

0 otherwise

(3.9)

where ∂E
∂wi,j

(t) is the sum gradient information over all patterns of the training set and

the new update values, ∆i,j(t) are determined as follows;

∆i,j(t) =


η+∆i,j(t− 1) if ∂E

∂wi,j
(t− 1) ∂E

∂wi,j
(t) > 0

η−∆i,j(t− 1) if ∂E
∂wi,j

(t− 1) ∂E
∂wi,j

(t) < 0

∆i,j(t) otherwise

(3.10)

where 0 < η− < 1 < η+. Using the equations above, a weight is adjusted as

wi,j(t+ 1) = wi,j(t) + ∆wi,j(t) (3.11)

Since BP and RPROP are based on gradient descent, they are both susceptible to

premature convergence on a local optimum. Another disadvantage of these methods is

their dependence on search starting points (i.e. initial weights of a NN).

3.2.3 Particle Swarm Optimization

Particle swarm optimization (PSO) is a population based search algorithm inspired by

the social behaviour of birds in a flock. A PSO algorithm manipulates a swarm of

particles, where each particle is a potential solution to an optimization problem. The

swarm traverses a search space searching for an optimum solution. As the particles move

around, each particle is attracted to both the best position it has found so far, as well as

the overall best position found within its neighborhood. Due to these dynamics, a swarm

that was uniformly distributed in the search space converges on a small area around the

optimum position [32, 138]. Refer to [44, 49] for a detailed description of PSO.
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To train a NN using PSO, each particle in the swarm represents a weight vector of the

NN, and the quality of each particle is computed using the sum square error (SSE) over

the training set. Unlike gradient based methods where weights and biases are updated

per training pattern, PSO uses position and velocity update equations to adjust weights

and biases, after which the training set is used to evaluate the quality of the particle (or

NN).

3.3 Issues in Modeling Neural Network Forecaster

Designing a NN time series forecaster for a particular problem is a non-trivial task.

Researchers often face problems at different design stages that affect the performance

of a NN [71]. This section reviews the key issues in the design/implementation of NN

forecasters.

Section 3.3.1 describes data collection and preparation issues in designing NN fore-

casters. Selection of network type and architecture is discussed in Section 3.3.2. Sec-

tion 3.3.3 discusses issues in NN weight initialization.

3.3.1 Data Collection and Preparation

There is no explicit way of determining the size of data sample required for modeling

a time series using NNs. The size usually depends on characteristics of the data series

and the number of hidden layer nodes employed. Empirical analysis has shown that the

accuracy of a NN forecaster improves with increased training data [100]. However, to

avoid under/over fitting problems, increasing the size of the data series has to be done

while considering the number of hidden layer nodes.

Preprocessing the data set is important for achieving good prediction performance.

Thus, the data series should be scaled to an active range and domain of the activation

functions used in the output layer. For faster convergence in backpropagation training,

the data is required to be normalized after scaling by setting the mean of the dataset to

be close to zero.

As in most NN applications, the dataset is normally divided into independent subsets

for training and testing. The training set is used to estimate the unknown connection
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weights, while the test set is used to assess the generalisation ability of the trained NN.

In time series applications, the data series is split such that the first subset is used for

training, and the second subset is reserved for testing. The common training and testing

split ratios found in the literature are 90/10, 80/20, 70/30 and 50/50, with the 70/30

being the most popular. It is a generally accepted fact that the training set should be

larger than the testing set [35]. Shuffling the dataset before the split (as recommended in

other NN applications) will lead to poor performance of a NN forecaster. The sequential

order of the data series must be maintained.

3.3.2 Selection of Network Type and Architecture

In modeling a NN forecaster, determining the right NN architecture to use is very im-

portant and yet a difficult task. Choosing the right NN architecture involves deciding

on the number of nodes in each layer, the activation functions, and the way that infor-

mation flows through the network. A study of the literature reveals that researchers and

analysts arbitrarily choose the type of NN they use in forecasting applications. While

the FNN is the type dominantly used, recent trends indicate that RNNs are now the

widely used architecture because of their ability to model dynamic systems implicitly.

To build a time series forecaster using either a FNN or RNNs, some issues have to

be resolved. For example, how to make use of temporal dependencies if a FNN is used.

How to decide on the number of context layers if Elman NN used, or how to decide

on the number of previous values to remember if a TDNN is used. Another issue with

using RNNs is that, among the different special cases of the RNNs (such as Elman NN,

Jordan NN, and Multirecurrent NN), it is very difficult to single out a particular one

that is better in modeling different types of time series [1]. Thus, selecting which one

to use becomes a problem. This thesis hypothesizes that recurrent connections are not

necessary if a dynamic particle swarm optimizer is used to train a FNN in time series

forecasting. Therefore, if the hypothesis holds true, then the problem of deciding the

type of NN to use as above is resolved.
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Number of Input Neurons

There is no systematic procedure to find the number of input nodes for time series mod-

eling. The number of input nodes is mostly determined via trial and error, empirically,

or based on experience. Some heuristics are to use [84, 121, 131]

• four input neurons for quarterly data, and

• twelve input neurons for monthly data.

Some authors directly adopt the number of input nodes used in prior studies. There

has been no consistent result in determining this parameter in the literature. Many

researchers have reported the advantage of using a large number of input nodes while

others report the contrary [153].

Fixing the Number Hidden Neurons

A single hidden layer is generally used because it is capable of approximating any con-

tinuous function, given enough number of neurons [68]. One of the major problems faced

by researchers in implementing a NN, is the selection of the number of hidden neurons

[122]. This parameter has a huge influence on the behaviour and final output of a NN

and as such, must be selected carefully. Choosing a too small number of neurons in the

hidden layer may result in underfitting. Underfitting happens when the neurons in the

hidden layer are not enough to adequately learn the functional mapping between the

input space and the output spaces. On the other hand, choosing too many neurons in

the hidden layer may cause overfitting. Overfitting happens when a NN overestimates

the complexity of the target problem, causing the NN to lose its generalization ability

by learning the noise. Another problem of choosing too many hidden layer neurons is

the increase in training time. Hence, an optimal number of neurons has to be selected.

A number of methods for selecting the optimal number of hidden neurons have been

proposed over the years by several researchers. These methods can be classified into

pruning, constructive, and regularization/penalty approaches. Pruning approaches start

with a large enough network that is capable of capturing the functional input-output re-

lationship, and then dispensable neurons/weights are removed. Construction approaches
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work in an opposite way, where a minimal possible network is optimized by adding neu-

rons/weight to the network. Please refer to [122] for an excellent review on methods

proposed in the last few decades for fixing the number of hidden neurones.

There is no generally accepted theory for determining the optimal number of hidden

neurons. Several rules of thumb were proposed, however, none of them works well for

all problems [153]. A simple approach is to construct a number of NNs with different

architectures, compare their training and generalization performance on a given problem,

and then to select the architecture with the best generalization error [49].

Deciding the Number of Previous Values to Remember

As in the case of selecting the number of hidden layer nodes, there is no generally

accepted theory for determining the number of delay connections to use if TDNNs are

employed or the number of context/state layers to use if SRNNs are employed. Mostly,

pruning or constructive approaches (discussed in Section 3.3.2) are used to select these

important parameters.

Number of Output Nodes

Deciding on the number of output nodes is relatively simple since it often corresponds

to the forecasting horizon of the problem. The forecasting horizon is said to be one-

step-ahead when the objective is to predict the next future value in a time series. In a

one-step-ahead problem, the obvious number of output nodes required is one.

In the case of a multi-step-ahead forecasting problem, where the objective is to predict

a sequence of values into the future, two strategies are often employed. The first strategy

involves recursive use of one-step-ahead forecasting. In this approach, the model is

constructed with a single output node, and the current predicted value is used as one

of the inputs in the next forecasting iteration, replacing one of the true observations in

the time series. The second approach, called the direct method, uses several (horizon-

specific) output nodes to directly predict each step into the future.

The problem of selecting the best implementation strategy for the multi-step-ahead

forecasting becomes an issue. Due to error accumulation (i.e. propagation of past predic-

tion errors into future predictions) in recursive methods, the direct method is generally
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considered to be better. Some experimental results [11, 31] confirm the superiority of

the direct method against the recursive method.

3.3.3 Weight Initialization

The connection links of a NN are first initialized with weight values which are subse-

quently adjusted during training to learn the functional mapping between the input and

output spaces. For a time series forecaster, the function mapping does a non-linear

regression. The weights (i.e. the weight matrix between each pair of layers) has an in-

fluence on the performance of a NN. When a gradient-based training algorithm is used,

the initial weights serve as the starting point of the hill climbing search for an optimum

on the error surface. If the initial search position is close the optimum, fast convergence

is observed. However, if the initial position is on a flat region, slow convergence is expe-

rienced. Also, setting the initial weights to large values prematurely saturates neurons

because large weights result in large net input signals [72]. For population based training

algorithms such as genetic algorithm and PSO, the initialization should be uniform over

the entire search space to ensure that different parts of the search space are covered.

A good strategy to initialize weights is to randomly generate small weight values

centered around zero. This will ensure that the net input signal to a neuron is within

the active domain of the activation function, so that the activation function will produce

midrange output values without bias to any solution regardless of the input values.

Generating the random weights in the range ( −1√
fanin

, 1√
fanin

) was shown to be effective,

where fanin is the number of connections into a neuron [148].

3.4 Summary

This chapter provided an overview on how different types of NNs are used in model-

ing time series. The NNs discussed are FNNs, TDNNs, Elman NNs, Jordan NNs and

MRNNs. A number of optimization methods applied in training NNs were discussed,

namely BP, RPROP, and PSO. Performance issues in designing NN forecasters, such as

data preprocessing, architecture selection and weight initialisation, were also discussed.

The next chapter provides an overview of PSO.



Chapter 4

Particle Swarm Optimization

“It is the long history of humankind (and animal kind, too) that those who

learned to collaborate and improvise most effectively have prevailed.”

– Charles Darwin

PSO is a simple and efficient population-based search algorithm based on the social

dynamics of group interactions in bird flocks. It was first introduced by Eberhart and

Kennedy in 1995 [44].

In PSO, individuals called particles are initialized to move through a hyper-

dimensional search space to find an optimum position (i.e. the solution). As the particles

move around, each particle keeps track of the best solution it found so far. The particles

also have social contact with other particles in the neighborhood, where the particles

can query for the best solution found within the neighborhood. The search behaviour

of each particle is therefore partly influenced by its personal experience, the knowledge

of its neighbours, and also its previous search direction. Through this simple social be-

havior, collective effort resulted in the emerged behaviour of finding an optimal solution

in the search space. Observations from natural swarms have shown that collective effort

by a group is usually more rewarding than individual effort [67].

This chapter discusses the PSO algorithm, and its application in training NNs. The

remainder of the chapter is structured as follows: Section 4.1 provides an overview of the

basic PSO, Section 4.2 discusses the parameters of the basic PSO algorithm, Section 4.3

discusses PSO application to NNs, and Section 4.4 summarizes the chapter.
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4.1 Basic PSO Algorithm

PSO manipulates a swarm of particles that share information about the best position

found in the search space. Each particle in the swarm represents a potential solution

to an optimization problem. For an n variable problem, the swarm operates in an n-

dimensional search space. Each particle i in the swarm is represented by its position

vector, xi and the quality of the solution represented by the particle is evaluated using

an objective function. Depending on the type of problem, the quality of the solution

represented by a particle can be computed in different ways: In the case of a function

minimization problem, a particle that yields a smaller value when its position is passed

as a parameter to the objective function is regarded as being of better quality than a

particle that yields a larger value.

The position of each particle i, at time step t, is changed by adding a velocity vector,

vi(t), to the current position as follows:

xi(t+ 1) = xi(t) + vi(t+ 1) (4.1)

The entire optimization process is driven by the velocity vector, which is determined by

a combination of experiential knowledge of the particle (often referred to as the cognitive

component), the information shared in the neighbourhood of the particle (referred to as

the social component), and the momentum term. The velocity vector is updated using

vi(t+ 1) = ωvi(t) + c1r1(t)⊗ (yi(t)− xi(t)) + c2r2(t)⊗ (ŷi(t)− xi(t)) (4.2)

where ω is the inertia weight [125], used to control the influence of the previous velocity

on the current one; vi(t) is the step size and direction; c1 and c2 are positive acceleration

constants used to scale the influence of the cognitive component (i.e. second term) and

the social component (i.e. third term) respectively; r1(t) and r2(t) are vectors of random

values (introducing the stochastic element to the equation) sampled from a uniform

distribution, U(0, 1); ⊗ is a component-wise multiplication; yi(t) is the best position

so far visited by particle i (known as the personal best or pbest); and ŷi(t) is the best

position found by any of the particles within the neighborhood of particle i (referred to

as the neighbourhood best or nbest).
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Algorithm 1 Basic PSO

Create and randomly initialize an n-dimensional swarm;

while stopping condition(s) is (are) not true do

for each particle do

if position is better than pbest then

Update pbest using equation (4.3)

end if

if position is better than nbest then

Update nbest using equation (4.4)

end if

end for

for each particle do

Update velocity using equation (4.2)

Update position using equation (4.1)

end for

end while

The PSO algorithm is summarized in Algorithm 1. All particles are randomly po-

sitioned in the search space, and the velocity of each particle is set to the vector ~0.

The quality of each particle is evaluated at every time step and the corresponding pbest

and nbest updated as necessary. The pbest of each particle is updated as (assuming

minimization)

yi(t+ 1) =

{
yi(t) if f(xi(t+ 1)) ≤ f(yi(t))

xi(t+ 1) if f(xi(t+ 1)) > f(yi(t))
(4.3)

and the nbest for particle i, in the neighborhood Ni, is updated using [49]

ŷi(t) ∈ {Ni | {f (ŷi(t)) = min{f(x)}, ∀ x ∈ Ni} (4.4)

where f : Rn −→ R is the objective function. The algorithm terminates after meeting

certain stopping conditions, such exceeding a fixed number of iterations, no improvement

observed over number of iterations, or discovering an acceptable solution.
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4.2 Control Parameters of Particle Swarm Opti-

mization Algorithms

The dynamics and efficiency of PSO algorithms are affected by a number of control

parameters [123, 124, 126, 140, 143]. Values for these parameters have to be chosen

carefully, because best values are problem dependent and have interconnected influences

on performance. These parameters are:

• The swarm size, which is the number of particles in a swarm. An adequate swarm

size is required for good initial swarm diversity that will cover the entire search

space. A small number of particles may not give the required initial swarm diversity

even with a good uniform initialization scheme. A high number of particles allows

a larger part of the search space to be covered, but at the expense of increased

computational complexity per iteration and the likelihood of degrading the search

into a parallel random search. A too large swarm size may degrade the performance

of PSO [50, 92].

• The neighbourhood size, which determines the degree of interaction among the

swarm particles. When the neighbourhood size is small, the degree of interaction

among the particles is low. This imply that small neighbourhoods facilitate ex-

ploitation (i.e. the concentration search effort around a particular region). On

the other hand, when the neighbourhood size is large, the degree of interaction

among the particles is high, thereby facilitating exploration (i.e scouting different

regions of the search space in order to locate a good optimum). Different social

network structures (topologies) that dictates neighbourhood size have been devel-

oped [78, 79, 80]. For example, a star topology has a fully interconnected structure,

where each particle can communicate with every other particle within the swarm.

The ring topology has a loosely connected structure, where each particle is con-

nected to two others in ring shape fashion. Von Neumann topology has a grid-like

structure where each particle is connected to its four immediate neighbours.

• The acceleration coefficients, which determines the influence of the cognitive and

the social components on the trajectory of a particle, respectively. When the value
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of c2 >> c1, particles are more strongly attracted to the nbest than their pbest

positions. This facilitates exploration. When the value for c1 >> c2, each particle

becomes more attracted to its pbest position, decreasing the social interaction

within the swarm. This result in more exploitation.

• The inertia weight, which is used to scale the influence of the previous velocity

on the new velocity. Setting it to a large value facilitates exploration. However,

when ω > 1, the velocity grows with time, causing the swarm to diverge. A

small value for ω promotes exploitation. A too small value will, however, limit the

swarm exploration ability. Thus, the trade-off between exploration and exploitation

depends on both ω and c1 and c2.

• Maximum velocity, Vmax, is used to prevent a likely scenario of particles leaving

the search space. In the velocity clamping strategy [45], escalating velocity values

that exceed a certain maximum velocity are clamped down, to force the particles

stay within boundary limits. Care must be taken in selecting the value of Vmax

because it affects the dynamic behaviour of the swarm. Choosing a large value

promotes global exploration while a small value favours local exploitation. If the

value is too large, particles may leap over good solutions, while a too small value

may lead to particles trapped in local optima. Even though velocity clamping ad-

dress the issue of escalating velocities, it has some drawbacks. During step size

adjustment, unintended change in particle’s flight direction occurs. Also, with ve-

locity clamping, it is possible to have all velocities equal to Vmax, where all particles

searches only on the boundaries of a hypercube define by [xi(t)−Vmax, xi(t)+Vmax].

• The number of iterations, often used as a terminating condition in PSO. When the

number of iterations specified is too small, the algorithm terminates prematurely.

On the other hand, when it is too large, it results in unnecessary computational

cost.
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4.3 Applications of Particle Swarm Optimization

PSO has a wide and diverse range of application areas, including scheduling [94], clus-

tering [56] and classification [12], signal analysis [150], robotics [37], process control [8],

NNs [44], and many more [106]. This study deals with PSO application in NNs, and

therefore provides a review of PSO application to NN training.

One of the first applications of PSO was to train FNNs [44, 81], and the results from

these applications have shown PSO to be an efficient training alternative. Since then,

many researchers have successfully used PSO to train different types of NNs, including

FNNs [95], RNNs [65, 73], radial bases function networks (RBFs) [9, 105], self-organising

map NNs [89, 120] and product unit NNs [75]. It has also been applied successfully to

train support vector machines [103]. PSO was shown to provide more accurate results

compared to other learning algorithms in some specific applications [49].

To train a NN using PSO, particles are randomly initialized in an n-dimensional

search space, where n is the total number of weights and biases of the NN. The position

vector of each particle represents a solution (weight vector) of the NN, and the quality of

each particle’s position is determined by constructing the NN from the weight vector and

calculating the sum square error (SSE) over the training set. Using this representation

and fitness function, particles follow the PSO procedure described above to determine

their direction and step size as they travel searching to find the best set of weights that

minimizes the NN’s error.

The performance of NNs trained using PSO was recently shown to be hindered by

saturation of the activation functions in the hidden layer [111]. Saturation happens when

the nodes in the hidden layer of a NN mostly output values near the asymptotic ends of

the activation function range, thereby restricting the overall information capacity of the

NN. The hidden unit saturation problem can be avoided by using unbounded activation

functions. Van Wyk and Engelbrecht [144] have shown that the rectified linear function,

which is left unbounded, has performance equal to that of the sigmoid or tanh functions.

Due to the successful application of PSO to train NNs in a number of problems,

many researchers and analysts have applied PSO to time series forecasting [2, 57, 60,

97, 152]. PSO was also combined with other learning algorithms in order to improve

forecasting accuracy. For example, [7] and [96] applied a hybrid of a GA and a PSO to
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train a feedforward NN to predict the power of solar stirling heat engines, and reservoir

permeability, respectively.

The forecasting accuracy of NNs trained using PSO was evaluated in several studies,

such as in [3, 76], and the results showed that PSO outperformed BP. Jha et al [76],

however, concluded that PSO was not able to track non-stationary data. In a separate

study, PSO was also shown to outperform a GA for a load forecasting problem [58].

Even though several studies have applied PSO to the task of training NN forecasters,

producing favorable results, these studies have assumed a static environment, making

them unsuitable for many real-world time series which are generated by varying processes.

Comparing the advantages of PSO to the classical BP, PSO is less dependent on

initial weight values (since multiple starting points are used), PSO is less susceptible to

premature convergence on a local optimum, and do not need derivatives of the NN to

be computed. The main drawbacks of PSO in comparison with BP are slower speed of

convergence [108], and a higher number of parameters are required to be tuned in order

to achieve best performance.

4.4 Summary

This chapter provided an overview of the basic PSO algorithm for static optimization

problems, and the various control parameters that have an influence on the algorithm’s

performance. Also, it describes the application of PSO in training NNs. Since basic PSO

was designed to handle static optimization problems, the next chapter discusses the chal-

lenges of applying PSO to dynamic optimization problems. The chapter also describes

various PSO algorithms modified to deal with optimization in dynamic environments.



Chapter 5

Particle Swarm Optimization in

Dynamic Environments

“Adapt or perish, now as ever, is natures inexorable imperative.”

– H. G. Wells

Basic PSO introduced in Chapter 4 assumes a static environment. In such environ-

ment, the objective function (i.e. the search landscape) does not change over time. This

assumption is, however, not true for most real-world problems, because changes in the

environment are observed, resulting in a dynamic environment (DE). Given an optimiza-

tion problem in a DE (also referred to as a dynamic optimization problem), a solution

once found may become suboptimal as the environment changes over time. This tem-

poral property adds extra complexity to the problem since the optimization algorithm

must not only find the optimal solution, but must also keep track of the optimum as it

moves through the search space, as well as detect new optimal solutions as they appear.

The objectives of this chapter are to provide an overview on the challenges faced by

PSO when applied to dynamic optimization problems, and to review some PSO algo-

rithms modified to suit DEs. Before that, it is important to define dynamic optimization

problems and to discuss the characteristics of different types of DEs.

The chapter is structured as follows: Section 5.1 briefly discusses dynamic optimiza-

tion problems. The challenges faced by basic PSO in DEs are discussed in Section 5.2.

Section 5.3 describes the mechanisms for change detection and response in a DE. Sec-
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tion 5.4 gives an overview of popular PSO algorithms designed for DEs. Section 5.5

summarizes the chapter.

5.1 Dynamic Optimization Problems

In computational sciences, an optimization problem refers to the problem of finding the

best solution from a set of all feasible solutions. Formally, an optimisation problem is

defined as the problem of either minimising or maximising an objective function within

a search space, where the search space is the set of all feasible and infeasible solutions.

Training a NN is a classical example of an optimisation problem, since the aim is to find

a set of weights that minimizes the error produced by the NN, where the error function

is the objective function of the NN.

When the objective function of an optimization problem changes over time, the prob-

lem becomes a dynamic optimization problem (DOP). Assuming a minimization problem,

a boundary constrained DOP is mathematically defined as [49]

minimize f(~x, ~ϕ(t))

subject to xd ∈ dom(xd)
(5.1)

where ~ϕ(t) is a vector of time-dependent control parameters of the objective function,

and dom(xd) is the domain of xd for dimension d. The objective of a DOP is to find

~x∗(t) = min~x f(~x, ~ϕ(t)), where ~x∗(t) is the minimum found at time step t.

Considering the landscape of the objective function as a hypersurface, it can then be

said that environmental changes are basically disturbances of this hypersurface. Thus,

changes in an environment leads to volatile optima of the objective function, where exist-

ing optima may disappear and a new optima may appear elsewhere in the hypersurface.

For a DOP, the objective is then not just to locate an optimum of the objective

function (as for static optimization problems), but also to track the changing optima, as

well as locating new emerging optima, and detecting disappearing optima.

Section 5.1.1 describes characteristics specific to dynamic optimization problems and

Section 5.1.2 briefly discusses the types of DEs.
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5.1.1 Characteristics of Dynamic Environments

Dynamic environments are characterized by the nature of the modifications that the

objective function undergoes over time. A DE is characterized by,

• the direction of change, which specifies if a change can alter the objective function

value of the optimum, the location of the optimum, or both.

• the homogeneity of movement, which involves systematic change over the search

space. When a change takes place in a homogeneous environment, all the optima

enjoy uniform transformations, and the peaks show the same behaviour at any

given time. However, when the change happens in a heterogeneous environment,

every optimum may experience different transformations, and different peaks can

exhibit completely different bahaviours.

• the presence or absence of patterns in the changes to the landscape of the objective

function. If there are patterns in the changes, the shape of these patterns (i.e. the

trajectory of the optima) defines the dynamics of the environment, which can

also be used to classify the DE. These trajectories could lead to environments with

linear, circular or random dynamics. For a pattern that repeats itself over time, the

cycle length (which is the number of environmental states between two consecutive

occurrence of the same states) is another characteristic of DEs.

• temporal severity, which refers to the number of times an environment changes

in a unit of time. The changes can occur continuously, at irregular intervals, or

periodically. Changes due to regular periodic modifications can be defined in terms

of a frequency update [10], which is usually measured by the number of iterations,

the number of function evaluations, or the time between successive changes. The

landscape of an environment is said to have the lowest possible temporal severity

when changes take place only once. When the modification to the environment

occurs at each time step (causing the environment to change continuously), the

landscape is said to have the highest temporal severity. The delay between any

two changes due to the low temporal severity of a landscape gives an optimization

algorithm a chance to find solutions. However, frequent changes in the landscape
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due to higher temporal severity compels the optimization algorithm to continually

adjust the solution(s) found in response to the changes that occur.

• spacial severity, which refers to the magnitude of the changes in the environment.

When the intensity of modification to the optimum is invariably similar after every

change, the spatial severity is said to be regular. Otherwise, the spatial severity

may follow a pattern when the intensity of alterations is predictable after every

change. The severity of the changes can also vary randomly within a certain range.

For environments with non-regular spatial severity, spatial severity is determined

as the average spatial severity over the entire time period. For environments with

multiple optima, spatial severity can be evaluated by either considering only the

most extensive alteration in objective function value or location, or by considering

changes to a randomly selected peak [22]. Alternatively, the spatial severity can

be measured by averaging the changes experienced by all optima. Generally, the

level of severity of change affects the performance of an optimization algorithm. A

large change makes it difficult for the optimization algorithm to recover from the

change, because the new optimum may have been displaced to a location far away

from the old optimum. But in the case of a small change, the new optimum may

be within the area surrounding the old optimum.

5.1.2 Types of Dynamic Environments

A number of DE classification schemes have been proposed in the literature, and they are

all based on one specific, or combination of, DE characteristic discussed in Section 5.1.1.

Eberhart et al identified the following three types of DEs based on the direction of

change [47, 69]:

• Type I environments, where the position of an optimum in the problem space

changes, while the objective function value remains the same. For this type of

environment, an optimization algorithm is required to first find the optimum, and

then keep track of the optimum as it moves in the search space. This is required

because a new optimum can not appear in the search space, nor a local optimum

become a global optimum.
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• Type II environments, where the value of an optimum changes with time, but

the position of the optimum remains unchanged. This kind of environment can

be realised through fitness rescaling of the landscape components [147]. In a type

II environment, where there are multiple peaks, a decrease in the value of a local

optimum or an increase in the value of a global optimum may result in a change

of the global optimum, if minimization is assumed. An optimization algorithm

applied to a type II environment must aim to detect the emergence of a new

optimum and disappearance of existing optima.

• Type III environments combine the properties of type I and type II environments,

where both the value of an optimum and its location are subject to changes.

Angeline proposed another scheme for classifying DEs into distinct categories, based

on the trajectories of the optima over a number of iterations [10]. Three types of DEs are

defined, namely, environments with linear peak trajectories, environments with circular

trajectories, and environments with random trajectories.

Even though the Eberhart et al and the Angeline classifications provide information

on different features of the changes that take place in the environment, none of the two

classifications provide explicit information about the temporal or spatial severity of the

changes.

Duhain and Engelbrecht [43] proposed a DE classification scheme based on the tem-

poral and spatial severity of changes an environment undergo:

• Quasi-static environments, where changes in the environment are negligible com-

pared to the scale of the problem, such that the performance of the algorithm is

not affected for the duration of the simulation.

• Progressively changing environments, where the frequency of modification to the

environment is high, and the magnitude is small, resulting in gradually changing

environments. For efficient optimization in the progressively changing environ-

ments, an algorithm needs to re-optimize fast and to inject some diversity.

• Abruptly changing environments, where the changes are severe, but do not occur

often. This allows the environment to remain static for some time, enabling the
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algorithm to find a good solution before the severe change that occurs abruptly,

which may significantly change the objective function value and/ or location of the

optimum. Therefore, an optimization algorithm needs to inject much diversity.

• Chaotic environments, where the environment is frequently and severely changing

due to the high spatial and temporal severity. In an environment with a chaotic

nature of behaviour, the algorithm must be able to adapt to the frequent and severe

changes simultaneously. The optimization process in a chaotically changing envi-

ronment may be highly difficult if, after every iteration, the optimum is randomly

displaced to a different area of the search space. Thus, an optimization algorithm

needs to re-optimize fast and to inject much diversity.

The DE classes proposed by Duhain and Engelbrecht require defining levels of spa-

tial and temporal severity. However, there is no absolute value that can be used to

distinguish between severely and non-severely changes or frequently and infrequently

changing environments. Hence, measuring the level of spatial and temporal severity is

considered problem dependent. Thus, in measuring spatial severity, the size of the en-

tire search space should be considered. Similarly, in differentiating between frequently

and infrequently changing environments, the duration of the entire simulation should be

considered.

To analyse the influence of the behaviours of different environments on the perfor-

mance of an algorithm, experimental test cases can be simulated with varying spatial

and temporal severity to test the algorithm. Duhain and Engelbrecht [43] proposed

that the three classification schemes can be combined to produce 27 different dynamic

optimization problem classes.

5.2 Standard PSO in Dynamic Environments

Standard PSO was shown to have an inherent ability to adapt to minor changes in the

environmental landscape [26, 47, 69]. Consider a converging swarm, where the particles

are oscillating around the global optimum, moving progressively closer to the global best

position. If there is a shift in the position of an optimum to a nearby location, it is likely
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that one of the oscillating particles may discover the new optimum, and attract other

particles to the new optimum. However, if the shift in the position of an optimum is

large, displacing the optimum to a location outside the radius of the contracting swarm,

PSO will fail to detect the new optimum since there are no particles exploring that part

of the search space. The PSO will also fail to discover a peak appearing outside the

region of the contracting swarm due to loss of diversity. Loss of swam diversity is one of

the major challenges faced by PSO when applied to DEs. To address the loss of diversity

problem, diversity need to be re-injected or maintained at all times.

The issue of outdated memory is the other major challenge faced by PSO when

applied to DEs. When a change occurs, the swarm attractors (i.e. the personal and

neighborhood best positions) may no longer be representative of the new environment,

as the optimum may have moved to a new position. Thus, the attractors may lead the

swarm to part of the search space that contains poor solutions. To avoid this issue, this

personal best positions have to be re-evaluated.

5.3 Change Detection and Response

To address the challenges faced by PSO in dynamic environments, mechanisms need to

be put in place that will ensure any change in the environment is timely and correctly

detected. When a change in the environment is detected, an appropriate response strat-

egy must be triggered to enable the optimization algorithm to adapt to these changes.

This section discusses change detection and response strategies for adapting PSO to DEs

in Sections 5.3.1 and 5.3.2 respectively.

5.3.1 Change Detection

Change in a landscape can occur at a predefined interval or known frequency. In such

case, the task of detecting the change becomes easy. However, in most cases, prior

knowledge about when changes occur is not known. Thus, some mechanisms are required

to detect changes based on feedback from the environment.

In PSO literature, a change detection mechanism is commonly implemented by using

sentry particles, as proposed by Carlisle and Dozier [26]. A sentry is chosen to be any
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particle in the swarm or a randomly selected fixed point in the search space [28]. At the

beginning of each iteration, the quality of each sentry point is evaluated. If the quality of

any of the sentry points differ between the current and the previous iterations, a change

is assumed to have occurred.

When one particle is used as the sentry for all iterations, it is likely that changes in

the environment may not be detected if the area around the sentry remains static while

changes occur elsewhere. To avoid this issue, Carlisle and Dozier [26] used randomly

selected particles as the sentries for each iteration in order to get feedback from different

parts of the environment. As an alternative, Hu and Eberhart [69] proposed using the

global best position as the sentry. This approach ensures that global information is used

in detecting changes, and is based on the assumption that if the position of an optimum

changes, then the optimum value of the current position also changes. However, only

changes around the global best position will be detected. Thus, using the global best

position as the sentry will only work for quasi-static and progressive environments (to

some extent). To improve the change detection accuracy, Hu and Eberhart [70] further

used the global best position and the global second-best position as the sentries. Even

with this improvement, the approach still suffers from the same issue mentioned above.

Swarm particles used as sentries are effective only before the swarm converges, be-

cause the sentry particles that are supposed to be scouting the search space are now

converged at a point. To avoid this problem, fixed point sentries uniformly distributed

in the search space can be used. Selecting the number of sentries to use is problem de-

pendent. When a large number of sentries are used, the chance of detecting the change

increases, as well as the overall computational complexity in evaluating sentry particles.

5.3.2 Response to Change

Once a change in an environment is detected, the problems of outdated memory and

diversity loss are addressed using the following strategies:

Memory Update

To address the issue of outdated memory, the swarm memory has to be reset. Carlisle

and Dizier [26] and Hu and Eberhart [69] suggested that once change is detected, the
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personal best positions of all the particle to be reset to their current positions in order to

prevent the particles returning to staled positions. However, if the swarm has converged

to a solution, resetting the personal best positions of all the particles to their current

positions will introduce the diversity problem. This problem can be addressed by carrying

out partial reinitialization of the swarm (to increase diversity) in combination with the

resetting of the personal best position of the particles [70]. Forgetting the experience

gained by the swarm about the search space by resetting all the particles may not be ideal

if changes are less severe or gradual, since it is likely that, after a change, the personal

best position may be closer to the new optimum than the current positions. Carlisle

and Dozier [27] proposed resetting the personal best positions only if the fitness of the

current positions for the new environment is better than the personal best positions.

Also, to prevent the global (or the neighbourhood) best position to lead the swarm

to out-of-date positions, the global best position should be selected from the most recent

personal best positions obtained after change detection. An alternative strategy is to

recalculate the global best position only if it is worse under the new environment.

Diversity Enhancement

Loss of diversity results from convergence, where swarm particles remain in a stable state

and can no longer explore the search space, even if the optimum does change. Loss of

diversity is the most critical problem for algorithms in dynamic environments. This prob-

lem is solved by enhancing the swarm diversity using the concepts of re-diversification,

repulsion, multi-population or dynamic neighbourhood topology. These diversity en-

hancement schemes are described in detail in the following section where some PSO

algorithms modified for dynamic environments are discussed.

5.4 Particle Swarm Optimizers for Dynamic Envi-

ronments

A number of modified PSO algorithms have been developed to track optima in dynamic

environments. This section reviews the most popular versions of these algorithms.
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5.4.1 Reinitialising Particle Swarm Optimization

The reinitialising PSO algorithm is basically a standard PSO augmented with a change

detection and response strategy. When no environment change is detected, the algorithm

behaves like a standard PSO. When a change is detected, a percentage of the swarm

particles are randomly repositioned in the search space to reintroduce diversity into the

search space. To prevent these particles from being immediately pulled back to their

previous positions, their personal best positions are set to the current positions. The

percentage of particles repositioned is problem dependent and should be determined

empirically.

Reinitialisation of PSO heavily relies on the detection mechanism employed, and if

some changes in the search space pass undetected, the algorithm may experience the

limitations of a standard PSO. Also, frequent reinitialisations due to high temporal

severity may reduce the exploitation capacity of the algorithm. Another disadvantage is

partial loss of knowledge about the search space due to particle reinitialisation [70].

5.4.2 Charged Particle Swarm Optimization

The charged PSO (CPSO), proposed by Blackwell and Bentley [17] use Coulomb repul-

sion among particles to maintain diversity. All the particles in CPSO store a charge.

These charged particles repel each other if the distance between them is too small. This

repelling property prevents the particles from converging to a single point in the search

space, thus promoting exploration. A slight variant, called the atomic PSO, has a mix

of charged and neutral particles. The neutral particles behave according to the posi-

tion and velocity update rules of a standard PSO. The neutral particles fine-tune the

solutions found, thereby facilitating exploitation. The interaction between charged and

neutral particles helps the algorithm to maintain a balance between exploration and

exploitation.

The atomic PSO was shown to be superior to the CPSO and the standard PSO

in solving some DOPs [17]. The study also showed that a swarm with a 50/50 split

between charged and neural particles are more efficient on some problems. The main

disadvantage of CPSO is its computational complexity of O(n2) (where n is the number
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of charged particles), since the distance between all charged particles is required to be

computed for calculating inter-particle repulsion. Also, CPSO introduces additional

control parameters that have to be tuned.

5.4.3 Quantum Particle Swarm Optimization

The quantum PSO algorithm (QPSO) [16] is inspired by the quantum model of an atom.

A portion of the particles implement the standard PSO velocity and position updates.

The rest of the particles, referred to as quantum particles, have their positions sampled

from a probability distribution centered on the global best position. Positions of the

quantum particles are calculated as,

xi ∼ d(ŷ, rcloud) (5.2)

where d is the probability distribution and rcloud is the quantum radius. The control

parameter, rcloud, is problem and environment dependent [16, 42].

Recently, Harrison et al [62] proposed using a parent centric crossover (PCX) oper-

ator [38] to generate the positions of quantum particles instead of using the radius and

probability distribution parameters used in the standard QPSO. In an empirical study

using single-peak dynamic environment types, the new variant (i.e. QPSO-PCX) was

shown to be superior to QPSO on progressive and chaotic environments, while no supe-

rior approach on quasi-static and abrupt environments was found [62]. The performance

of the QPSO-PCX algorithm was, however, not evaluated on real-world and multi-peak

environments.

Compared to charged particles, quantum particles behave better due to lower com-

plexity. The main issue with QPSO is that it can not detect changes outside the rcloud.

5.4.4 Multiswam Particle Swarm Optimization

Blackwell and Branke [15] proposed employing multiple swarms for optimization in dy-

namic environments. The multiswarm PSO (MPSO) uses independent sub-swarms where

each subswarm tracks a different peak in the search space. The sub-swarms interact lo-

cally through exclusion to prevent more than one sub-swarm from settling on a single
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peak. This process ensures that swarm diversity is maintained. The process involves cen-

tering an exclusion radius rexcl around the best particle of each sub-swarm (also called

the swarm attractor). If any sub-swarm enters the rexcl of another, the sub-swarm with

the worst swarm attractor’s quality is reinitialized.

Due to exclusion, different swarms may converge on different local optima. A swarm

is considered to have converged if its radius (i.e half of the maximum distance between

two particles in the swarm) is smaller than the convergence radius, rconv.. In a situa-

tion where a new optimum appears while the swarms have started contracting around

their local optima, detecting a new emerging optimum becomes a challenge due to loss

of swarm diversity. To address loss of swarm diversity, MPSO employs another global

interaction mechanism, called anti-convergence, to ensure that the algorithm maintains

its exploration capacity. When all the swarms have converged, anti-convergence reini-

tializes the weak sub-swarm (i.e. the one with the worst swarm attractor’s quality). This

process compels the weak swarm to patrol the search space for a new optimum, which

helps the algorithm to regain its diversity.

In order to maintain diversity within the sub-swarms (which is a requirement for

effective tracking of moving optima), the CPSO (discussed in section 5.4.2) or the QPSO

(discussed in section 5.4.3) are used in the sub-swarms. The main disadvantage of the

MPSO algorithm is the large number of control parameters required to be set.

5.4.5 Cooperative Particle Swarm Optimization

Cooperative PSO was introduced by Van den Bergh and Engelbrecht [139, 142] to im-

prove the performance of standard PSO for large dimensional problems. A divide-and-

conquer approach is followed to break the n dimensional problem into a number of

smaller-dimensional problems that are easier to solve. Results presented in [141] showed

that, as the dimensionality of a problem increases, cooperative PSO performs better

than standard PSO.

The cooperative PSO partitions the search space dimension-wise into k disjoint

groups where each group is assigned to an individual sub-swarm to optimize. The al-

gorithm maintains a complete solution (or context) vector that individual sub-swarms

use to evaluate the quality of its particles. Quality is evaluated for each particle in a
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sub-swarm by substituting values of the decision variables the sub-swarm is accountable

for into the context vector, while keeping constant the remaining values in the vector

(which are the best values from other sub-swarms). The particle that, when substituted

into the context vector, had the best quality is returned as the best solution in the sub-

swarm. After all sub-swarms have evaluated their particles’ quality, the context vector

contains the optimal solution discovered so far.

The main drawback of the cooperative PSO algorithm is its likelihood of converging

onto a pseudominimum that is created due the decomposition of the search space. The

effectiveness of this decomposition is also affected by the level of correlation between the

subproblems. Despite these potential problems, the cooperative PSO algorithms showed

significantly better performance on many of the problems tested [142].

Rakitianskaia and Engelbrecht [109] proposed the cooperative charged PSO (CCPSO)

for optimization in dynamic environments. The CCPSO simply use charged PSO as the

sub-swarms in a cooperative PSO. Unger et al [137] introduced another cooperative PSO

strategy for dynamic environments called the cooperating quantum PSO (CQSO). The

CQSO employs QPSO in the sub-swarms of a cooperative PSO. Experimental results

from [137] suggested the superiority of CQSO over a number of other PSO variants for

dynamic environments.

5.5 Summary

This chapter briefly discussed dynamic optimization problems and the different charac-

teristics of dynamic environments. The challenges of diversity loss and outdated memory

faced by standard PSO when applied to DEs were presented. Mechanisms for environ-

mental change detection and appropriate response strategies to the problems faced by

PSO in DEs were discussed. An overview of some popular PSO algorithms modified to

suit DEs is given. The next chapter formulates training of a NN forecaster as a dynamic

optimization problem to investigate the applicability and efficiency of a dynamic PSO

algorithm as training algorithm for FNN forecasters under non-stationary environments.



Chapter 6

Training Feedforward Neural

Network Forecasters using Dynamic

Particle Swarm Optimizer

“We must never make experiments to confirm our ideas, but simply to control

them.”

– Claude Bernard -1865

PSO is now an established method for training NNs, and was shown in several studies

to outperform the classical BP training algorithm [113, 133, 141]. The effectiveness of

standard PSO as a training algorithm for FNNs in forecasting non-stationary time series

was evaluated in [3], where the authors considered the problem as a static optimization

problem. The results showed that PSO performed better than BP, but concluded that

the result of PSO could significantly be improved by using a suitable NN structure that

can handle dynamic data. Jar et al [76] compared the performance of PSO and BP in

training FNNs for time series forecasting. The results indicated superiority of PSO over

BP, but concluded that the PSO trained FNNs were unable to track the non-stationary

data.

The original PSO was, however, designed for static environments. In dealing with

non-stationary data, modified versions of PSO for optimization in dynamic environ-

ments are used (refer to Chapter 5). Dynamic PSOs have been used to train NNs on

53
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classification problems under non-stationary environments [42, 109, 112], as discussed in

Chapter 5. These studies showed that dynamic PSOs are indeed applicable to NN train-

ing in dynamic environments, producing significantly better or similar results compared

to the classic BP.

This chapter formulates training of a NN forecaster as a dynamic optimization prob-

lems, and investigates the applicability and efficiency of a dymanic PSO algorithm as

training algorithm for FNN forecasters under non-stationary environments. The results

obtained for the dynamic PSO are then compared against standard PSO and back-

propagation (RPROP) algorithms.

The rest of the chapter is organised as follows: Section 6.1 describes the experimental

procedure followed. Experimental results are presented and discussed in Section 6.2.

Section 6.3 summarizes the chapter.

6.1 Experimental Procedure

This section describes the general methodology followed. In the study, sets of experi-

ments were conducted on ten different forecasting problems. Each set of experiments

entails separately training a FNN using a dynamic PSO, a standard PSO, and a BP un-

der nine different dynamic scenarios to forecast one of the problems. For each problem,

the performance of the FNN trained with a dynamic PSO algorithm was compared to

the performance of the FNN trained using BP and standard PSO. For effective evalua-

tion of the performance, 30 independent runs for each experiment were carried out and

averages with confidence interval over these 30 runs were computed.

All algorithms used were implemented in the Computational Intelligence Library

(CIlib), version 0.9. CIlib is an open source collective project aimed at building a generic

framework, designed to accommodate the implementation and execution of computa-

tional intelligence algorithms [102]. CIlib is available at http://github.com/cirg-up/cilib.

Section 6.1.1 describes the various datasets used. Section 6.1.2 discusses the data

preparation process employed. The process of simulating a dynamic environment is

described in section 6.1.3. Section 6.1.4 describes the assignment of values to the control

parameters of the algorithms. The performance metrics and statistical methods used in
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the study are discussed in Section 6.1.5.

6.1.1 Datasets

A set of ten different well studied time series with varying complexities were used in the

study. Seven are real-world time series obtained online from the Time Series Data Library

at http://robjhyndman.com/TSDL, and the other three are artificially generated. The

time series studied are:

• Sunspot Annual Measure Time Series

The Sunspot Annual Measure (SAM) dataset consists of 289 points representing

the total annual measure of sunspots from 1770 to 1988. Illustrated in Figure 6.1a,

the SAM series has a strong seasonal pattern with somewhat constant trend. The

SAM time series has been extensively studied in statistical literature, and is often

used as a standard for evaluating and comparing new forecasting methods. The

data is known to be non-linear, non-stationary and non-Gaussian [153].

• Airline Passengers Time Series

The International Airline Passengers (IAP) dataset has a total of 144 observations

representing the monthly number of international airline passengers from January

1949 to December 1960. The IAP time series is a well-known dataset and was used

in the classical work by Box and Jenkins [21]. As shown in Figure 6.1b, the series

follows a multiplicative seasonal pattern with an upward trend and no outliers. The

IAP dataset is non-stationary due to the presence of strong seasonal variation.

• Australian Wine Sales Time Series

The Australian Wine Sales (AWS) series contains 187 observations of monthly

wine sales (in thousands of liters) in Australia from January 1980 to July 1995.

Illustrated in Figure 6.1c, the AWS time series has a slightly increasing trend and

a strong seasonal pattern (peaks in July, and troughs in January) with no obvious

outliers. Another distinct feature of the series is an increase in variability.
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Figure 6.1: Time plot of four datasets used

• Standard and Poor 500 Indexes

The Standard and Poor (S&P) series has 388 values of historical quarterly S&P

500 indexes from 1990 to 1996. It is a very common financial time series used as

a benchmark by many researchers in testing forecasting models [30, 107, 127]. A

plot of the dataset is given in Figure 6.1d, which reveals a constant trend with

long-run cycles.

• US Death Time Series

The US Death (USD) time series contains the total monthly deaths caused by

accidents in the USA between January 1973 and December 1978, making a total of
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72 observations. Shown in Figure 6.2a, the USD series reveals a slightly constant

trend with seasonal variations (peaks in January).

• Hourly Internet Traffic Time Series

The Hourly Internet Traffic (HIT) time series has 1657 data points representing

aggregated hourly Internet traffic data (in bits) from an Internet service provider

in the United Kingdom academic network backbone. It was collected between 19

November 2004, at 09:30 hours and 27 January 2005, at 11:11 hours. As shown in

Figure 6.2b, the HIT time series is non-stationary and with a slightly downward

trend.

• Daily Minimum Temperature Time Series

The Daily Minimum Temperature (DMT) time series contains a total of 3650

observations representing daily minimum temperatures in Melbourne, Australia,

1981-1990. Figure 6.2c displays the DMT time series graphically. The series is

highly noisy with a constant trend over the entire time span.

• Lorenz Time Series

The Lorenz time series is a widely studied chaotic series generated from a Lorenz

system. Described in the equations below, the Lorenz system is known to be a

simplified model of various physical systems [87]:

x(t+ 1) = x(t) +Kσ[y(t)− x(t)]

y(t+ 1) = y(t) +K(x(t)[r − z(t)]− y(t))

z(t+ 1) = z(t) +K(x(t)y(t)− bz(t))

(6.1)

where x(t), y(t), z(t) are states of the Lorenz system, r, σ, b are constant parameters

of the system, and K is the sampling time. A total of 5000 samples were generated

using σ = 10.500001, r = 28.200001, b = 2.700001, K = 0.0130001, x(0) =

1.200001, y(0) = 1.500001, and z(0) = 1.600001. The y(t) state data was chosen

for the study, and only the last 4000 samples were used to avoid a transient mode

(i.e. prevailing influence of parameters used in generating the series). A plot of

the time series is given in Figure 6.2d.



6.1. Experimental Procedure 58

6500

7500

8500

9500

10500

11500

N
u

m
b

er
 o

f 
d

ea
th

Month

(a) USD Time Series

10000

30000

50000

70000

90000

110000

130000

1 201 401 601 801 1001 1201 1401 1601

In
te

rn
et

 t
ra

ff
ic

 (
in

 b
it

s)
Hour

(b) HIT Time Series

0

5

10

15

20

25

1

2
0

1

4
0

1

6
0

1

8
0

1

1
0

0
1

1
2

0
1

1
4

0
1

1
6

0
1

1
8

0
1

2
0

0
1

2
2

0
1

2
4

0
1

2
6

0
1

2
8

0
1

3
0

0
1

3
2

0
1

3
4

0
1

3
6

0
1

Te
m

p
ra

tu
re

 (
in

 c
el

ci
u

s)

Day

(c) DMT Time Series

 

-30

-20

-10

0

10

20

30

1

1
6

8

3
3

5

5
0

2

6
6

9

8
3

6

1
0

0
3

1
1

7
0

1
3

3
7

1
5

0
4

1
6

7
1

1
8

3
8

2
0

0
5

2
1

7
2

2
3

3
9

2
5

0
6

2
6

7
3

2
8

4
0

3
0

0
7

3
1

7
4

3
3

4
1

3
5

0
8

3
6

7
5

3
8

4
2

y(
t)

 v
al

u
es

 o
f 

lo
rn

z 
sy

st
em

t

(d) Lorenz Time Series

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 51 101 151 201 251 301 351 401 451

M
ac

ke
y 

G
la

ss
 v

al
u

es

t

(e) MG Time Series

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 13 25 37 49 61 73 85 97 109 121 133 145

x(
n
+1
)

n

(f) LM Time Series

Figure 6.2: Time plot of six datasets used
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• Mackay Glass Time Series

The Mackay Glass (MG) time series is a chaotic series generated from a solution

of the Mackay-Glass delay-differential equation [83],

dx

dt
=

ax(t− τ)

1− xc(t− τ)
− bx(t) (6.2)

using τ = 30, a = 0.2, b = 0.1, c = 10, and initial condition x(t) = 0.9 for

0 ≤ t ≤ τ . A 500 points dataset was generated for this study, where 480 data

points after the initial transients were used for training and testing. A plot of the

MG series is given in Figure 6.2e.

• Logistic Map Time Series

The Logistic Map (LM) time series is a chaotic series generated from logistic map

equation [74],

x(n+ 1) = x(n) +Gx(n)(1− x(n)) (6.3)

For this study, data points were generated by iterating the equation 150 times

starting from a random initial value set to 0.1 and G = 3. The equation behaves

chaotically when G is set to 3. The LM time series as illustrated in Figure 6.2f is

chaotic, non-linear and non-stationary.

6.1.2 Dataset Preparation

All the datasets were scaled to the range [-1, 1] and normalised such that the mean of

each input variable over the training set is close to zero (to promote faster convergence)

as suggested in [85]. The normalization was done using,

x′n =
xn√
N

(6.4)

where xn is an observation, x′n is the normalised observation, and N is the number of

observations in the dataset. Each of the datasets was divided into two independent

subsets. The first 80% of the dataset was used for training and the remaining 20%

for testing. Since the work deals with time series, the datasets were not shuffled. For

parameter optimization purposes only, the training subset was split further into a 70:30

ratio for training and validation respectively.
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6.1.3 Simulating Dynamic Environments

For each dataset, performance was investigated under nine different dynamic environ-

mental scenarios. The scenarios were simulated using a sliding time window technique.

This involves choosing a window of size w and a step value s for sliding the window

over the dataset. The window is used to train the NNs for f number of iterations (i.e

change frequency) before the window slides over the dataset. The sliding process involves

throwing away the s values at the beginning of the window and adding the next s values

in the data series to the end of the window. The training and sliding process is repeated

until all of the datasets are used. An example to illustrate this process with w = 6 and

s = 4 is given in Figure 6.3. When the window slides, four values, {x1, x2, x3, x4}, are

discarded and new values, {x7, x8, x9, x10}, are added, while x5 and x6 remain in the

window.

𝑥1 𝑥4
𝑥3𝑥 2 𝑥9𝑥8𝑥7𝑥6𝑥5 𝑥13𝑥12𝑥10

𝑤

𝑠

Dynamic change

Shift

𝑤

Figure 6.3: Sliding Time Window

The step size determines the spatial severity of the change. A small value for s

implies a slight change, while a large value implies a drastic change. An algorithm

runs on a window for f iterations before the window slides, controlling the temporal

severity. Table 6.1 presents the parameter setup used to simulate the nine different

dynamic scenarios for all the problems. As shown in the table, the combination of s and

f differs under different scenarios, and therefore requires different numbers of iterations

to traverse the entire dataset, calculated as

T = f ∗ N − w
s

+ f (6.5)
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Table 6.1: Dynamic scenarios settings for each dataset

Dataset Parameters Scenarios

A1 A2 A3 B1 B2 B3 C1 C2 C3

SAM Window size 60 60 60 60 60 60 60 60 60

Step size 20 40 60 20 40 60 20 40 60

change frequency 50 50 50 100 100 100 150 150 150

HIT Window size 584 584 584 584 584 584 584 584 584

Step size 100 250 528 100 250 528 100 250 528

Change frequency 50 50 50 100 100 100 150 150 150

DMT Window size 510 510 510 510 510 510 510 510 510

Step size 200 400 510 200 400 510 200 400 510

Change frequency 50 50 50 100 100 100 150 150 150

MG Window size 84 84 84 84 84 84 84 84 84

Step size 30 60 84 30 60 84 30 60 84

change frequency 50 50 50 100 100 100 200 200 200

Lorenz Window size 330 330 330 330 330 330 330 330 330

Step size 100 250 330 100 250 330 100 250 330

change frequency 50 50 50 100 100 100 150 150 150

IAP Window size 32 32 32 32 32 32 32 32 32

Step size 10 25 32 10 25 32 10 25 32

Change frequency 50 50 50 100 100 100 150 150 150

AWS Window size 42 42 42 42 42 42 42 42 42

Step size 20 35 42 20 35 42 20 35 42

Change frequency 50 20 50 100 100 100 150 150 150

S&P Window size 58 58 58 58 58 58 58 58 58

Step size 20 40 58 20 40 58 20 40 58

Change frequency 50 50 50 100 100 100 150 150 150

USD Window size 20 20 20 20 20 20 20 20 20

Step size 8 16 20 8 16 20 8 16 20

change frequency 50 50 50 100 100 100 150 150 150

LM Window size 31 31 31 31 31 31 31 31 31

Step size 10 25 31 10 25 31 10 25 31

Change frequency 50 50 50 100 100 100 150 150 150
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6.1.4 Parameter Selection

In order to ensure that all the algorithms exhibited efficient performance and to facilitate

fair comparison among the training algorithms, the relevant algorithm parameters were

optimised and set up as follows:

1. NN Configuration

The NN for each dataset was determined as follows:

• Input layer: For datasets collected annually, 10 input nodes were used, each

representing a year in the decade. For monthly datasets, 12 input nodes were

used, each representing a month of the year. For quarterly/weekly datasets,

four input nodes were used, each representing a quarter of the year or a

week of the month respectively. For data collected hourly, 24 input nodes

were used. This intuitive method was used by a number of analysts such as

[61, 84, 121, 130, 132], and has been effective in constructing optimal NN

structures. For the synthetic datasets, the number of input nodes where

adopted from previous studies as shown in Table 6.2.

• Hidden layer: A single hidden layer was used for all the NNs and the number

of hidden nodes was iteratively optimized on the validation set, where discrete

numbers in the range [2, 50] were considered. For every value within the range,

30 independent runs were conducted and the value that yielded the minimum

average validation error was chosen as optimal. Due to the saturation problem

caused by bounded functions when PSO is used to train FNNs (refer to section

4.3), linear activation functions were used in the hidden units.

• Output layer: A single output node with a modified hyperbolic tangent func-

tion was used for all the NNs (one step ahead forecasting was considered).

All NN weights were randomly initialized in the range [− 1√
F
, 1√

F
], where F is the

number of incoming connections for a specific node. Wessels and Barnard [148]

have shown this to be a good initialization range.
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Table 6.2: Input nodes for synthetic datasets adopted from previous studies

Dataset Input Nodes Researchers

MG 4 [23]

Lorenz 5 [53]

LM 3 [54]

2. RPROP Setup

Default RPROP parameters were used in this study, since RPROP does not require

optimizing parameters to obtain optimal convergence times on many problems

[115]. Thus, for all experiments, η+ = 1.2, η− = 0.5, ∆0 = 0.0125 (initial value of

∆i,j), ∆min = 0 and ∆max = 50, see [114, 116].

3. PSO Setup

For all the experiments, a linearly decreasing inertia weight was used, with an

initial value of 0.9 and a final value of 0.5. Acceleration coefficients values were

fixed at c1 = c2 = 1.49 to ensure convergence, based on [32, 46]. Velocity was not

constrained and the Von Neumann topology was used since it facilitates diversity

[79, 88], which is good for dynamic problems. For each experiment, the swarm

size was determined as equal to the total number of particles used in the CQSO in

order to facilitate fair comparison.

4. CQSO Setup

In addition to the PSO parameter setup, the radius of the quantum cloud and

the percentage of quantum particles per swarm were iteratively selected from the

ranges given in Table 6.3, as suggested in [15].

For each dataset, the number of sub-swarms, k, in the CQSO was determined as

the ratio [Nw/d], where Nw is the total number of weights and biases in the NN

and d is the number of weights grouped together. The value of parameter d was

iteratively optimized from the range of values given in Table 6.3. The size of each

sub-swarm was set to 10 particles based on [140, 142].
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Table 6.3: PSO parameter ranges considered

Parameter Range

Quantum radius, r [0.2, 0.5, 0.8, 1, 2]

% of quantum particles [10, 20, 30, 40, 50]

Number of dimensions per group [4, 6, 8, 10,12]

6.1.5 Performance Measure

In this study, the collective mean fitness (CMF) proposed by Morrison [98] was employed

as the performance measure for all experiments. CMF reflects algorithm performance

across the entire range of landscape dynamics, and is given as:

CMF =

∑T
t=1 F (t)

T
(6.6)

where F (t) is a measure of quality of the solution and T is the total number of iterations.

CMF is quite interesting for dynamic problems because it captures an algorithm’s entire

performance history. This measure allows for convenient statistical comparison between

algorithms [108]. The mean square error (MSE) calculated over the dataset during each

epoch was used as the algorithm performance at each iteration.

The generalization factor ρ proposed in [117] was used to check the overfitting be-

havior of the algorithms used in this study. Overfitting is a phenomenon where NN

performs well on training data but poorly on generalization data. The generalization

factor is defined as ρ = GE/TE, where GE and TE are the generalization and training

errors, respectively. A ρ < 1 is an indication of good generalization performance, while

ρ > 1 is an indication of overfitting. The ρ was calculated in the same way as the CMF

(equation (6.6)). Thus, all reported values of ρ reflect the generalization factor across

the entire algorithm run.

A two-tailed non-parametric Mann-Whitney U test [93] was used to determine

whether the difference in performance between two algorithms is statistically significant

or not. The choice of the significance test is based on [39], where the authors showed

that the Mann-Whitney U test is safer than parametric tests such as the t-test, since the

Mann-Whitney U test assumes neither normal distributions of data nor homogeneity of



6.2. Results 65

variance. The null hypothesis, H0 : µ1 = µ2, where µ1 and µ2 are the means of the two

samples being compared, was evaluated at a significance level of 95%. The alternative

hypothesis was defined as H1 : µ1 6= µ2. Thus, any p-value less than 0.05 corresponds

to rejection of the null hypothesis that there was no statistically significant difference

between the sample means. For the sake of convenience, all p-values were bounded below

by 0.0001.

6.2 Results

This section presents and discusses the results obtained from the experiments carried

out and the conclusion arrived at based on the overall findings from the experiments.

For each problem, the results are presented in three tables. The first table summarizes

the CMF TE and GE with their confidence interval obtained in forecasting the problem

under the nine dynamic scenarios considered. Also reported in the table are the ρ values.

The p-values of the Mann Whitney U test between the algorithms are listed in the second

table. The second table is given only when many of the pairs have have p-values greater

than the threshold. The third table presents the performance ranking of the algorithms

based on the CMF TE and GE values, taking into account the p-values.

To investigate performance of the training algorithms over time, both training and

generalization errors were plotted against the iteration of the algorithms. The figures

shown for each problem are only the results considered as representative or interesting

because it is infeasible to show the results for all the nine dynamic scenarios of the ten

problems used in the entire experiments.

6.2.1 SAM Time Series

Table 6.4 summarises the CMF TE, GE and ρ obtained by the algorithms in forecasting

the SAM problem for the nine dynamic scenarios considered. Table 6.4 shows that CQSO

produced the lowest training and generalization errors for all the scenarios. The CQSO

algorithm also showed no sign of overfitting, with ρ < 1 for all the scenarios. The p-

values indicates that there is a significant difference in performance between CQSO and

the other two algorithms.



6.2. Results 66

Table 6.4: SAM Time Series Results

Algorithm Scenario

A1 (f:50, s:20) A2 (f:50, s:40) A3 (f:50, s:60)

TE GE ρ TE GE ρ TE GE ρ

RPROP 2.80E-04 3.03E-04 1.10 3.84E-04 3.85E-04 1.00 6.69E-04 6.48E-04 0.96

±3.48E-05 ±3.31E-05 ±0.03 ±4.29E-05 ±4.55E-05 ±0.01 ±1.48E-04 ±1.49E-04 ±0.02

PSO 2.78E-04 3.76E-04 1.35 3.97E-04 2.74E-04 0.69 3.33E-04 3.29E-04 0.99

±1.30E-05 ±2.85E-05 ±0.07 ±1.81E-05 ±2.02E-05 ±0.03 ±2.00E-05 ±2.17E-05 ±0.03

CQSO 1.45E-04 1.27E-04 0.88 1.59E-04 8.41E-05 0.53 1.39E-04 1.02E-04 0.73

±2.95E-06 ±2.36E-06 ±0.01 ±3.55E-06 ±1.57E-06 ±0.01 ±3.30E-06 ±2.75E-06 ±0.00

B1 (f:100, s:20) B2 (f:100, s:40) B3 (f:100, s:60)

TE GE ρ TE GE ρ TE GE ρ

RPROP 1.77E-04 2.05E-04 1.18 2.68E-04 2.96E-04 1.12 3.87E-04 3.92E-04 1.02

±2.49E-05 ±2.36E-05 ±0.02 ±4.00E-05 ±3.94E-05 ±0.02 ±5.56E-05 ±5.42E-05 ±0.02

PSO 2.37E-04 2.78E-04 1.17 3.34E-04 1.95E-04 0.58 2.62E-04 2.26E-04 0.86

±7.00E-06 ±2.00E-05 ±0.07 ±1.68E-05 ±1.82E-05 ±0.04 ±9.74E-06 ±1.51E-05 ±0.04

CQSO 1.32E-04 1.19E-04 0.91 1.49E-04 8.13E-05 0.55 1.29E-04 9.36E-05 0.73

±2.76E-06 ±2.18E-06 ±0.00 ±2.99E-06 ±1.03E-06 ±0.01 ±1.97E-06 ±1.56E-06 ±0.00

C1 (f:150, s:20) C2 (f:150, s:40) C3 (f:150, s:60)

TE GE ρ TE GE ρ TE GE ρ

RPROP 1.50E-04 1.91E-04 1.29 2.17E-04 2.73E-04 1.29 2.63E-04 2.74E-04 1.05

±1.40E-05 ±1.39E-05 ±0.03 ±3.45E-05 ±3.32E-05 ±0.03 ±3.77E-05 ±3.64E-05 ±0.02

PSO 2.16E-04 2.05E-04 0.95 2.77E-04 1.44E-04 0.52 2.40E-04 2.10E-04 0.87

±9.35E-06 ±1.26E-05 ±0.05 ±1.17E-05 ±1.11E-05 ±0.03 ±1.11E-05 ±1.43E-05 ±0.03

CQSO 1.29E-04 1.18E-04 0.91 1.44E-04 8.09E-05 0.56 1.24E-04 8.93E-05 0.72

±2.48E-06 ±1.93E-06 ±0.00 ±2.01E-06 ±6.72E-07 ±0.01 ±1.90E-06 ±1.57E-06 ±0.00

The results showed that all the three algorithms performed better in scenarios with

the lowest temporal severity (i.e. scenarios C1, C2 and C3). The errors produced by

the algorithms increased with increase in temporal severity (i.e. the errors produced by

the algorithms in B scenarios is lower than the errors obtained the A scenarios). For the

scenarios with lowest spatial severity (i.e. A1, B1, and C1), the three algorithms again



6.2. Results 67

Table 6.5: Mann-Whitney U p-values obtained for the average training and generalization

error comparisons with reference to the null hypothesis that the means of the compared samples

are equal at the significance level of 95%

Algorithm Training Generalization

A1 A2 A3 A1 A2 A3

RROP vs PSO 0.2675 0.2612 0.0001 0.0014 0.0001 0.0001

RROP vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B1 B2 B3 B1 B2 B3

RROP vs PSO 0.0001 0.0001 0.0005 0.0001 0.0001 0.0001

RROP vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C1 C2 C3 C1 C2 C3

RROP vs PSO 0.0001 0.0002 0.6789 0.0948 0.6789 0.0030

RROP vs CQSO 0.0246 0.0001 0.0001 0.0001 0.0001 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

produced the lowest errors compared to the scenarios with higher spatial severity.

For all scenarios, PSO showed no sign of overfitting except under scenarios A1 and

B1, which indicated some slight overfitting behaviour. Considering that scenarios A1,

B1 and C1 share the same step size with varying value of f (i.e. 50, 100 and 150

respectively), and that the level of overfitting decreased with increase in the value of f ,

it can be concluded that the overfitting was caused by too many iterations before the

change (i.e. window sliding). The RPROP algorithms also showed some slight signs of

overfitting behaviour under all scenarios except scenarios A2 and A3. Contrary to PSO,

the overfitting behaviour shown by RPROP increased with increase in the value of f .

Table 6.6 lists the algorithm ranks based on the CMF TE and GE values in forecasting

the SAM problem. Table 6.6 shows that CQSO had the highest average ranks under

scenarios A, B and C. Hence, CQSO emerged as the overall winner among the training

algorithms. There is no clear winner in the overall ranking between RPROP and the PSO
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Table 6.6: SAM time series Algorithm Ranking for Scenarios A to C

Algorithm
A1 A2 A3 Average Ranking

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 2.5 2 2.5 3 3 3 2.67 2.67

PSO 2.5 3 2.5 2 2 2 2.33 2.33

CQSO 1 1 1 1 1 1 1 1

B1 B2 B3 Average Ranking

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 2 2 2 3 3 3 2.33 2.67

PSO 3 3 3 2 2 2 2.67 2.33

CQSO 1 1 1 1 1 1 1 1

C1 C2 C3 Average Ranking

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 2 2.5 2 2.5 2.5 3 2.16 2.67

PSO 3 2.5 3 2.5 2.5 2 2.83 2.33

CQSO 1 1 1 1 1 1 1 1

Average R(A) Average R(B) Average R(C) Overall Ranking

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 2.67 2.67 2.33 2.67 2.16 2.67 2.38 2.67

PSO 2.33 2.33 2.67 2.33 2.83 2.33 2.61 2.33

CQSO 1 1 1 1 1 1 1 1

algorithm. Thus, in terms of training performance, RPROP achieved 2nd and PSO 3rd

ranking positions, while in terms of generalization, PSO ranked overall 2nd and RPROP

3rd.

Figure 6.4 illustrates the progression of the error over time, obtained for the SAM

problem under scenarios B1, B2, and B3. As visualized in Figure 6.4, all the training

algorithms showed stable performance progression with initial increases in peaks due

to environment changes, and later adapted well to environmental changes toward the

middle to the end. The figure shows that CQSO adapted better by producing the

lowest generalization errors during almost the entire algorithm run. The CQSO produced

the lowest initial errors and took about ten algorithm iterations to locate a minimum
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Figure 6.4: Training and generalization error results for SAM time series, scenarios B1 to B3

under all scenarios, while the other algorithms took about 100 algorithm iterations.

This indicates that CQSO benefited from the component wise optimization. Once the
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algorithms located a minimum, they constantly tracked it and successfully recovered

from changes throughout the experiment.

6.2.2 HIT Time Series

Table 6.7 presents the CMF TE, GE, and ρ values obtained in forecasting the HIT time

series. Table 6.8 lists the p-values obtained from the pairwise comparisons between the

algorithms.

Table 6.7 shows that RPROP produced the worst errors, while CQSO yielded the

best errors under all the scenarios. The p-values in Table 6.8 indicate that the difference

in training and generalization performance between any two of the training algorithms

were significant for all scenarios.

The ρ values reported in Table 6.7 indicate that RPROP did not overfit under any

of the nine scenarios. The PSO algorithm exhibited slight overfitting behaviour under

scenarios B1 and C1. This slight overfitting behaviour was due to training on the sliding

window for too long before the window slides, since PSO did not show any sign of

overfitting under scenario A1 (where f = 50), and the ρ value under scenario B1 (where

f = 100) is lower than under scenario C1 (where f = 150). The CQSO overfitted under

the scenarios A1, B1 and C1. Since these scenarios have smaller step sizes, the sliding

window retains a larger amount of stale data, which the algorithm fitted too well.

Table 6.9 presents the performance ranking of the training algorithms in forecasting

the HIT problem. As shown in Table 6.9, the CQSO algorithm had the best average

training and generalization ranks for the A, B and C scenarios. Thus, CQSO achieved

the overall first ranking position. The PSO and RPROP algorithms achieved the overall

second and third positions, respectively.

Figure 6.5 illustrates the progression of TE and GE over time, obtained by the training

algorithms under scenarios A1 to A3. Scenarios A1 to A3 simulated frequent changes

(after every 50 iterations). As shown in Figure 6.5, all the algorithms exhibited stable

performance progression. The CQSO took about five algorithm iterations to locate a

minimum while the PSO and the RPROP took about 20 and 30 algorithm iterations,

respectively. The figure shows that after about 30 initial iterations, RPROP and CQSO

produced similar performance throughout the algorithm runs. Figure 6.5 also show that
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PSO had the worst performance throughout the algorithm runs.

6.2.3 DMT Time series

Table 6.10 presents the CMF TE and GE, and also the ρ results obtained by the training

algorithms in forecasting the DMT time series. Table 6.10 reports the p-values of the

Table 6.7: HIT Time Series Results
Algorithm Scenario

A1 (f:50, s:100) A2 (f:50, s:250) A3 (f:50, s:584)

TE GE ρ TE GE ρ TE GE ρ

RPROP 2.42E-04 2.41E-04 1.00 4.19E-04 4.18E-04 0.99 1.56E-03 1.55E-03 0.99

±8.36E-05 ±8.33E-05 ±0.00 ± 1.08E-04 ± 1.09E-04 ± 0.01 ± 4.59E-04 ± 4.58E-04 ± 0.01

PSO 2.83E-05 2.78E-05 0.99 5.15E-05 4.85E-05 0.93 1.21E-04 1.18E-04 0.94

±4.38E-06 ±4.36E-06 ± 0.02 ± 7.41E-06 ± 7.68E-06 ± 0.02 ± 5.38E-05 ± 5.62E-05 ± 0.03

CQSO 4.59E-06 5.62E-06 1.22 5.55E-06 5.17E-06 0.93 1.35E-05 1.24E-05 0.93

±2.25E-07 ±3.05E-07 ±0.001 ± 3.69E-07 ± 3.21E-07 ± 0.01 ± 1.20E-06 ± 1.04E-06 ± 0.02

B1 (f:100, step s:100) B2 (f:100, step s:250) B3 (f:100, step s:584)

TE GE ρ TE GE ρ TE GE ρ

RPROP 1.80E-04 1.77E-04 0.99 1.88E-04 1.84E-04 0.99 6.06E-04 6.06E-04 1.00

±5.67E-05 ±5.58E-05 ±0.09 ± 4.78E-05 ± 4.59E-05 ± 0.01 ± 1.94E-04 ± 1.95E-04 ± 0.00

PSO 1.85E-05 1.89E-05 1.03 3.11E-05 2.70E-05 0.86 5.24E-05 4.69E-05 0.89

±2.45E-06 ±2.48E-06 ±0.02 ± 5.90E-06 ± 5.44E-06 ± 0.02 ± 5.85E-06 ± 5.63E-06 ± 0.02

CQSO 1.20E-05 1.35E-05 1.16 5.01E-06 4.67E-06 0.93 6.75E-06 6.38E-06 0.95

±1.82E-06 ±1.64E-06 ±0.04 ± 2.11E-07 ± 1.86E-07 ± 0.00 ± 5.10E-07 ± 4.26E-07 ± 0.01

C1 (f:150, step s:100) C2 (f:150, step s:250) C3 (f:150, step s:584)

TE GE ρ TE GE ρ TE GE ρ

RPROP 8.92E-05 8.74E-05 0.98 1.45E-04 1.44E-04 0.99 4.11E-04 4.07E-04 1.00

±3.04E-05 ±2.96E-05 ±0.01 ± 4.94E-05 ± 5.00E-05 ± 0.01 ± 1.43E-04 ± 1.40E-04 ± 0.00

PSO 1.48E-05 1.57E-05 1.07 2.06E-05 1.73E-05 0.84 4.42E-05 3.65E-05 0.82

±1.93E-06 ±1.80E-06 ±0.02 ± 1.44E-06 ± 1.29E-06 ± 0.01 ± 5.48E-06 ± 5.31E-06 ± 0.02

CQSO 3.88E-06 4.69E-06 1.21 5.08E-06 4.73E-06 0.93 6.18E-06 5.65E-06 0.92

±1.33E-07 ±1.59E-07 ±0.00 ± 2.09E-07 ± 1.78E-07 ± 0.01 ± 3.93E-07 ± 3.40E-07 ± 0.01



6.2. Results 72

Table 6.8: Mann-Whitney U p-values obtained for the average training and generalization

error comparisons with reference to the null hypothesis that the means of the compared samples

are equal at the significance level of 95%

Algorithm Training generalization

A1 A2 A3 A1 A2 A3

RROP vs PSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RROP vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B1 B2 B3 B1 B2 B3

RROP vs PSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RROP vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C1 C2 C3 C1 C2 C3

RROP vs PSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RROP vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

pairwise comparisons between errors produced by the algorithms.

As shown in Table 6.10, the CQSO yielded the lowest cumulative mean TE and GE

compared to the PSO and the Rprop for all nine dynamic scenarios. Rprop produced

the worst performance among the algorithms under all scenarios.

Table 6.11 lists the p-values of the Mann Whitney U test between the algorithms in

forecasting the DMT problem. The p–values in Table 6.11 indicate that the difference

in performance between the algorithms were significant.

The ρ values given in Table 6.10 show that under all the scenarios, the training

algorithms exhibited just slight or no overfiiting behaviour. The slight overfitting was

due to training on the sliding window for too long before the window slides, as seen in

Section 6.2.2.

Table 6.12 lists the performance ranking of the algorithms in forecasting the DMT

problem under all scenarios, based on the CMF GE and TE values given in Table 6.10.



6.2. Results 73

Table 6.9: HIT Time Series Algorithm Ranking for Scenarios A to C

Algorithm A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 3 3 3 3 3 3 3 3

PSO 2 2 2 2 2 2 2 2

CQSO 1 1 1 1 1 1 1 1

A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 3 3 3 3 3 3 3 3

PSO 2 2 2 2 2 2 2 2

CQSO 1 1 1 1 1 1 1 1

C1 C2 C3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 3 3 3 3 3 3 3 3

PSO 2 2 2 2 2 2 2 2

CQSO 1 1 1 1 1 1 1 1

Average R(A) Average R(B) Average R(C) Overall Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 3 3 3 3 3 3 3 3

PSO 2 2 2 2 2 2 2 2

CQSO 1 1 1 1 1 1 1 1

Table 6.12 illustrates that CQSO obtained the highest rank for all scenarios. The PSO

achieved the second highest average rank, while RPROP had the lowest average rank.

Thus, CQSO emerged as the overall winner.

Figure 6.6 illustrates the progression of TE and GE over time, obtained by the al-

gorithms under scenarios C1, C2 and C3. Scenarios C1 to C3 simulated low change

frequency (after every 150 iterations). As shown in Figure 6.6, all the algorithms exhib-

ited stable and similar performance progression after about 100 iterations. The CQSO

achieved best accuracy faster (within the first five iterations) than the PSO and RPROP,

which took about 50 algorithm iterations. This shows that CQSO must have benefited
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Figure 6.5: Training and generalization error Results for HIT Time Series, Scenarios A1 to

A3

from the component wise optimization strategy or had better exploration due to the

QSO used in the subswarms, which maintains diversity.
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Table 6.10: DMT Time Series Results

Algorithm Scenario

A1 (f:10, s:200) A2 (f:10, s:400) A3 (f:10, s:510)

TE GE ρ TE GE ρ TE GE ρ

RPROP 5.65E-04 5.66E-04 1.01 1.50E-03 1.51E-03 1.01 1.78E-03 1.77E-03 0.99

±1.61E-04 ±1.60E-04 ±0.00 ±3.80E-04 ±3.80E-04 ±0.01 ±4.59E-04 ±4.56E-04 ±0.01

PSO 2.93E-05 3.05E-05 1.04 5.34E-05 5.84E-05 1.17 4.37E-05 4.27E-05 0.98

±6.34E-06 ±6.78E-06 ±0.02 ±1.76E-05 ±1.76E-05 ±0.08 ±1.26E-05 ±1.22E-05 ±0.03

CQSO 1.19E-05 1.24E-05 1.04 1.19E-05 1.39E-05 1.17 1.20E-05 1.30E-05 1.09

±2.43E-07 ±2.75E-07 ±0.00 ±3.12E-07 ±2.81E-07 ±0.01 ±2.93E-07 ±2.40E-07 ±0.01

B1 (f:50, s:200) B2 (f:50, s:400) B3 (f:50, s:510)

TE GE ρ TE GE ρ TE GE ρ

RPROP 1.46E-04 1.47E-04 1.01 3.01E-04 3.02E-04 1.01 2.76E-04 2.75E-04 1.00

±3.82E-05 ±3.80E-05 ±0.01 ±8.28E-05 ±8.25E-05 ±0.01 ±9.55E-05 ±9.49E-05 ±0.01

PSO 1.59E-05 1.61E-05 1.02 2.00E-05 2.32E-05 1.19 2.01E-05 2.06E-05 1.03

±2.89E-06 ±2.62E-06 ±0.01 ±3.50E-06 ±3.16E-06 ±0.03 ±2.45E-06 ±2.46E-06 ±0.02

CQSO 1.10E-05 1.17E-05 1.06 1.09E-05 1.30E-05 1.20 1.09E-05 1.19E-05 1.10

±1.29E-07 ±1.39E-07 ±0.00 ±1.30E-07 ±1.59E-07 ±0.00 ±1.60E-07 ±2.10E-07 ±0.00

C1 (f:100, s:200) C2 (f:100, s:400) C3 (f:100, s:510)

TE GE ρ TE GE ρ TE GE ρ

RPROP 5.40E-05 5.51E-05 1.03 8.54E-05 8.77E-05 1.04 1.69E-04 1.69E-04 1.01

±1.36E-05 ±1.37E-05 ±0.01 ±2.07E-05 ±2.07E-05 ±0.01 ±4.64E-05 ±4.60E-05 ±0.01

PSO 1.38E-05 1.43E-05 1.03 1.75E-05 2.00E-05 1.16 1.62E-05 1.70E-05 1.05

±8.17E-07 ±8.69E-07 ±0.01 ±2.94E-06 ±2.91E-06 ±0.02 ±1.36E-06 ±1.39E-06 ±0.02

CQSO 1.08E-05 1.15E-05 1.06 1.07E-05 1.28E-05 1.20 1.08E-05 1.17E-05 1.09

±1.13E-07 ±1.31E-07 ±0.00 ±1.29E-07 ±1.62E-07 ±0.00 ±2.97E-07 ±2.90E-07 ±0.00

6.2.4 Mackay Glass

Table 6.13 show that, for all nine dynamic scenarios, CQSO consistently produced the

lowest training and generalization errors, while RPROP yielded the worst errors. The

p-values in Table 6.14 indicate that the difference in performance between the algorithms
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Table 6.11: Mann-Whitney U p-values obtained for the average training and generalization

error comparisons with reference to the null hypothesis that the means of the compared samples

are equal at the significance level of 95%, for scenarios A1 to A3

Algorithm Training Generalization

A1 A2 A3 A1 A2 A3

RROP vs PSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RROP vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B1 B2 B3 B1 B2 B3

RROP vs PSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RROP vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C1 C2 C3 C1 C2 C3

RROP vs PSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RROP vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

were statistically significant.

Table 6.13 also illustrates that increased spatial severity of changes (i.e. from A1 to

A3, B1 to B3, and C1 to C3) made adaption to the changes more difficult for the training

algorithms, since both training and generalization errors increased with an increase in

spatial severity. The table also indicates that a decrease in temporal severity (such as

from A1 to B1 and to C1) improved the performance of the training algorithms.

All the three training algorithms showed no sign of overfitting, as indicated by the ρ

values given in Table 6.13. However, RPROP had the largest ratio between the general-

ization and training error.

Figure 6.7 illustrates the progression of the algorithms over time on the MG problem

under scenarios A1, A2, and A3. As visualized in the figure, CQSO and RPROP clearly

outperformed the PSO throughout the algorithm runs. Within the first 100 iterations,
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Table 6.12: DMT Time Series Algorithm Ranking for Scenarios A to C

Algorithm A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 3 3 3 3 3 3 3 3

PSO 2 2 2 2 2 2 2 2

CQSO 1 1 1 1 1 1 1 1

B1 B2 B3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 3 3 3 3 3 3 3 3

PSO 2 2 2 2 2 2 2 2

CQSO 1 1 1 1 1 1 1 1

C1 C2 C3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 3 3 3 3 3 3 3 3

PSO 2 2 2 2 2 2 2 2

CQSO 1 1 1 1 1 1 1 1

Average R(A) Average R(B) Average R(C) Overall Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 3 3 3 3 3 3 3 3

PSO 2 2 2 2 2 2 2 2

CQSO 1 1 1 1 1 1 1 1

CQSO yielded the lowest errors, but after that, RPROP improved, and produced similar

performance to CQSO throughout the remaining training time.

Table 6.15 shows that, for the A, B and C scenarios, the CQSO algorithm obtained

the highest average rank, both in terms of TE and GE, while RPROP obtained the lowest

average ranks. Thus, CQSO emerged as the overall winner.
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Figure 6.6: Training and generalization error Results for DMT Time Series, Scenarios C1 to

C3
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Table 6.13: MG Time Series Results

Algorithm Scenario

A1 (f:50, s:30) A2 (f:50, s:60) A3 (f:50, s:84)

TE GE ρ TE GE ρ TE GE ρ

RPROP 2.50E-04 2.40E-04 0.96 4.43E-04 4.28E-04 0.96 6.21E-04 5.94E-04 0.95

±2.76E-05 ±2.60E-05 ±0.01 ±5.29E-05 ±5.21E-05 ±0.01 ±7.58E-05 ±7.54E-05 ±0.02

PSO 7.85E-05 3.87E-05 0.50 1.01E-04 5.44E-05 0.56 1.27E-04 5.41E-05 0.44

±5.21E-06 ±2.92E-06 ±0.03 ±9.72E-06 ±4.31E-06 ±0.04 ±1.17E-05 ±4.49E-06 ±0.03

CQSO 5.69E-06 3.50E-06 0.62 8.66E-06 5.80E-06 0.67 1.03E-05 8.31E-06 0.82

±4.29E-07 ±2.33E-07 ±0.02 ±9.69E-07 ±6.63E-07 ±0.02 ±9.17E-07 ±7.09E-07 ±0.03

B1 (f:100, s:30) B2 (f:100, s:60) B3 (f:100, s:84)

TE GE ρ TE GE ρ TE GE ρ

RPROP 2.55E-04 2.46E-04 0.96 4.32E-04 4.19E-04 0.97 2.84E-04 2.73E-04 0.96

±2.58E-05 ±2.64E-05 ±0.01 ±4.25E-05 ±4.24E-05 ±0.01 ±3.01E-05 ±2.97E-05 ±0.01

PSO 3.89E-05 1.88E-05 0.48 6.95E-05 4.33E-05 0.62 8.47E-05 3.97E-05 0.47

±3.93E-06 ±2.60E-06 ±0.04 ±6.95E-06 ±5.86E-06 ±0.04 ±6.22E-06 ±3.80E-06 ±0.03

CQSO 4.22E-06 2.74E-06 0.65 5.29E-06 3.84E-06 0.73 5.93E-06 5.22E-06 0.89

±2.65E-07 ±1.53E-07 ±0.02 ±5.17E-07 ±3.51E-07 ±0.02 ±5.81E-07 ±4.58E-07 ±0.02

C1 (f:200, s:30) C2 (f:200, s:60) C3 (f:200, s:84)

TE GE ρ TE GE ρ TE GE ρ

RPROP 6.43E-05 6.23E-05 0.97 1.09E-04 1.05E-04 0.96 1.37E-04 1.31E-04 0.96

±8.34E-06 ±7.98E-06 ±0.01 ±9.43E-06 ±9.53E-06 ±0.02 ±1.36E-05 ±1.32E-05 ±0.02

PSO 2.10E-05 9.41E-06 0.44 3.82E-05 2.24E-05 0.58 4.60E-05 2.28E-05 0.50

±2.13E-06 ±1.36E-06 ±0.03 ±3.68E-06 ±2.78E-06 ±0.05 ±4.24E-06 ±2.46E-06 ±0.04

CQSO 3.32E-06 2.53E-06 0.77 4.01E-06 3.12E-06 0.78 4.34E-06 4.42E-06 1.05

±1.53E-07 ±8.79E-08 ±0.02 ±1.98E-07 ±1.23E-07 ±0.02 ±3.51E-07 ±1.77E-07 ±0.06

6.2.5 Lorenz Time Series

Table 6.16 clearly shows that, under all nine scenarios for the Lorenz time series, CQSO

outperformed the PSO and the RPROP algorithms by producing the lowest cumulative

mean training and generalization errors. It is also clearly illustrated in the table that
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Table 6.14: Mann-Whitney U p-values obtained for the average training and generalization

error comparisons with reference to the null hypothesis that the means of the compared samples

are equal at the significance level of 95%

Algorithm Training Generalization

A1 A2 A3 A1 A2 A3

RROP vs PSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RROP vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B1 B2 B3 B1 B2 B3

RROP vs PSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RROP vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C1 C2 C3 C1 C2 C3

RROP vs PSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RROP vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

PSO produced lower errors in terms of both training and generalization, when compared

to RPROP under all scenarios. The p-values given in Table 6.17 confirmed that the

differences in performance between the algorithms were significant for all the scenarios.

Table 6.16 also shows that the training and generalization errors produced by the

algorithms increased with increase in spatial severity, a phenomenon that indicates that

adaptation became more difficult for the algorithms as spatial severity of changes in-

creased. Performance of the algorithms also improved with a decrease in temporal sever-

ity.

The ρ values in Table 6.16 indicate that none of the training algorithms overfitted.

RPROP, however, produced the highest ρ value (equal to 1 under all the scenarios),

which is an indication that RPROP produced the largest ratio between generalization

and training error, than the PSO and CQSO (as seen in Section 6.2.4).
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Table 6.15: MG Time Series Algorithm Ranking for Scenarios A to C

Algorithm A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 3 3 3 3 3 3 3 3

PSO 2 2 2 2 2 2 2 2

CQSO 1 1 1 1 1 1 1 1

B1 B2 B3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 3 3 3 3 3 3 3 3

PSO 2 2 2 2 2 2 2 2

CQSO 1 1 1 1 1 1 1 1

C1 C2 C3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 3 3 3 3 3 3 3 3

PSO 2 2 2 2 2 2 2 2

CQSO 1 1 1 1 1 1 1 1

Average R(A) Average R(B) Average R(C) Overall Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 3 3 3 3 3 3 3 3

PSO 2 2 2 2 2 2 2 2

CQSO 1 1 1 1 1 1 1 1

Figure 6.8 shows for scenarios C1, C2, and C3 that the CQSO produced the lowest

errors within the initial 50 iterations, while RPROP had the worst errors. Thereafter,

RPROP’s performance improved and outperformed the CQSO for the remaining train-

ing time. After the initial 50 iterations, PSO clearly produced the worst performance

throughout the remaining training time.

Table 6.18 shows that the CQSO and the RPROP algorithms obtained the overall

highest and lowest average ranks, respectively. Thus, CQSO emerged as the overall

winner.
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Figure 6.7: Training and generalization error Results for MG Time Series, Scenatios A1 to

A3
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Table 6.16: Lorenz Time Series Results

Algorithm Scenario

A1 (f:10, s:100) A2 (f:10, s:250) A3 (f:10, s:330)

TE GE ρ TE GE ρ TE GE ρ

RPROP 3.66E-04 3.65E-04 1.00 7.77E-04 7.76E-04 1.00 9.69E-04 9.66E-04 1.00

±7.92E-05 ±7.85E-05 ±0.01 ± 1.17E-04 ± ±1.16E-04 ±0.01 ±1.52E-04 ±1.51E-04 ±0.01

PSO 2.42E-05 2.38E-05 0.98 4.55E-05 4.50E-05 1.00 5.31E-05 5.05E-05 0.98

±5.75E-06 ±5.29E-06 ±0.05 ±1.24E-05 ±1.18E-05 ±0.03 ±1.66E-05 ±1.51E-05 ±0.06

CQSO 3.03E-06 1.99E-06 0.66 4.72E-06 3.80E-06 0.78 6.86E-06 5.81E-06 0.85

±3.78E-07 ±2.61E-07 ±0.03 ±7.44E-07 ±7.02E-07 ±0.03 ±1.22E-06 ±1.07E-06 ±0.04

B1 (f:50, s:100) B2 (f:50, s:250) B3 (f:50, s:330)

TE GE ρ TE GE ρ TE GE ρ

RPROP 6.71E-05 6.72E-05 1.00 1.64E-04 1.63E-04 1.00 1.97E-04 1.97E-04 1.00

±1.28E-05 ±1.30E-05 ±0.01 ±3.69E-05 ±3.63E-05 ±0.01 ±3.26E-05 ±3.32E-05 ±0.01

PSO 1.03E-05 8.73E-06 0.80 1.68E-05 1.63E-05 0.94 2.94E-05 2.92E-05 0.94

±3.20E-06 ±3.06E-06 ±0.06 ±7.25E-06 ±7.64E-06 ±0.04 ±1.06E-05 ±1.17E-05 ±0.06

CQSO 8.40E-07 4.47E-07 0.53 1.62E-06 1.18E-06 0.73 2.08E-06 1.53E-06 0.74

±1.60E-07 ±8.65E-08 ±0.02 ±1.83E-07 ±1.38E-07 ±0.01 ±2.32E-07 ±1.61E-07 ±0.03

C1 (f:100, s:100) C2 (f:100, s:250) C3 (f:100, s:330)

TE GE ρ TE GE ρ TE GE ρ

RPROP 3.13E-05 3.13E-05 1.00 7.13E-05 7.09E-05 1.00 1.16E-04 1.16E-04 1.00

±5.20E-06 ±5.29E-06 ±0.01 ±8.60E-06 ±8.61E-06 ±0.01 ±1.71E-05 ±1.71E-05 ±0.01

PSO 5.09E-06 3.67E-06 0.67 1.58E-05 1.46E-05 0.90 1.20E-05 1.03E-05 0.85

±1.25E-06 ±1.15E-06 ±0.05 ±4.96E-06 ±4.77E-06 ±0.05 ±4.41E-06 ±3.73E-06 ±0.05

CQSO 5.15E-07 3.21E-07 0.63 1.02E-06 6.87E-07 0.68 1.12E-06 7.25E-07 0.65

±6.51E-08 ±3.71E-08 ±0.02 ±1.31E-07 ±8.21E-08 ±0.01 ±1.10E-07 ±7.43E-08 ±0.02

6.2.6 IAP Time Series

Table 6.19 and Table 6.20 show that the PSO produced the worst errors compared to

CQSO and RPROP under all scenarios, with statistical significance.

For the gradually changing scenarios A1, B1 and C1, RPROP significantly outper-

formed CQSO, except for B1, where CQSO produced a lower GE. For the severely
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Table 6.17: Mann-Whitney U p-values obtained for the average training and generalization

error comparisons with reference to the null hypothesis that the means of the compared samples

are equal at the significance level of 95%

Algorithm Training Generalization

A1 A2 A3 A1 A2 A3

RROP vs PSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RROP vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B1 B2 B3 B1 B2 B3

RROP vs PSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RROP vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C1 C2 C3 C1 C2 C3

RROP vs PSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RROP vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

changing scenarios (i.e. A2, B2 and C2), CSQO produced significantly lower GE com-

pared to RPROP. The CQSO also outperformed RPROP in terms of TE for scenario

B2. The two algorithms, however, had similar TE for scenarios A2 and C2. For the

abruptly changing scenarios A3, B3 and C3, CQSO produced significantly lower errors

than RPROP, except for A3, where the two algorithms produced similar performance.

All these show that RPROP performed better than CQSO for the gradually changing

scenarios, while CQSO outperformed the RPROP for the severely and abruptly changing

scenarios.

It is observed that the performance of both RPROP and PSO improved for the C sce-

narios, while that of CQSO deteriorated compared to the corresponding performance for

the B scenarios. Since the temporal severity of the C scenarios is lower, the improvement

or deterioration in performance was caused by the higher number of iterations allowed
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Table 6.18: Lorenz Time Series Algorithm Ranking for Scenarios A to C

Algorithm A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 3 3 3 3 3 3 3 3

PSO 2 2 2 2 2 2 2 2

CQSO 1 1 1 1 1 1 1 1

B1 B2 B3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 3 3 3 3 3 3 3 3

PSO 2 2 2 2 2 2 2 2

CQSO 1 1 1 1 1 1 1 1

C1 C2 C3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 3 3 3 3 3 3 3 3

PSO 2 2 2 2 2 2 2 2

CQSO 1 1 1 1 1 1 1 1

Average R(A) Average R(B) Average R(C) Overall Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 3 3 3 3 3 3 3 3

PSO 2 2 2 2 2 2 2 2

CQSO 1 1 1 1 1 1 1 1

before any change (i.e. window sliding).

The ρ values in Table 6.19 illustrate that all training algorithms exhibited overfitting

behaviour, which was due to training for too long on a small dataset (since the NNs

parameters were optimized).

Table 6.21 shows that the CQSO achieved the overall best rank, RPROP came second,

and the PSO came last.

Figure 6.9 shows the error progression for the three algorithms throughout the al-

gorithms runs. The errors produced by the algorithms peak out at each environmental
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Figure 6.8: Training and generalization error Results for Lorenz Time Series, Scenarios C1

to C3

change. RPROP produced the highest peaks after the changes, but it recovered before

another change occurred. CQSO produced the lowest peaks after all of the changes.
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Table 6.19: IAP Time series Results

Algorithm Scenario

A1 (f:50, s:10) A2 (f:50, s:25) A3 (f:50, s:32)

TE GE ρ TE GE ρ TE GE ρ

RPROP 1.82E-04 2.28E-04 1.36 3.47E-04 4.73E-04 1.39 4.59E-04 5.55E-04 1.29

±3.51E-05 ±3.08E-05 ±0.09 ±4.47E-05 ±5.59E-05 ±0.07 ±1.32E-04 ±1.24E-04 ±0.09

PSO 2.52E-03 2.75E-03 1.08 1.95E-03 2.75E-03 1.42 1.73E-03 3.39E-03 1.98

±4.36E-04 ±4.90E-04 ±0.02 ±2.35E-04 ±3.15E-04 ±0.05 ±2.21E-04 ±3.99E-04 ±0.03

CQSO 3.10E-04 3.64E-04 1.21 3.89E-04 4.30E-04 1.30 2.76E-04 5.57E-04 1.98

±2.03E-04 ±2.38E-04 ±0.06 ±1.32E-04 ±1.36E-04 ±0.13 ±1.07E-04 ±2.13E-04 ±0.12

B1 (f:100, s:10) B2 (f:100, s:25) B3 (f:100, s:32)

TE GE ρ TE GE ρ TE GE ρ

RPROP 9.80E-05 1.36E-04 1.53 2.02E-04 2.78E-04 1.45 2.61E-04 3.58E-04 1.52

±2.27E-05 ±2.10E-05 ±0.11 ±3.87E-05 ±3.84E-05 ±0.08 ±5.72E-05 ±5.60E-05 ±0.12

PSO 1.44E-03 1.57E-03 1.08 1.16E-03 1.76E-03 1.55 1.16E-03 2.33E-03 2.02

±2.03E-04 ±2.30E-04 ±0.02 ±1.69E-04 ±2.40E-04 ±0.06 ±1.56E-04 ±2.88E-04 ±0.03

CQSO 8.84E-05 9.78E-05 1.08 1.30E-04 1.70E-04 1.54 8.91E-05 1.51E-04 1.59

±2.50E-05 ±2.97E-05 ±0.06 ±4.91E-05 ±5.01E-05 ±0.13 ±2.04E-05 ±4.75E-05 ±0.18

C1 (f:150, s:10) C2 (f:150, s:25) C3 (f:150, s:32)

TE GE ρ TE GE ρ TE GE ρ

RPROP 6.07E-05 1.05E-04 1.86 1.41E-04 2.11E-04 1.71 1.75E-04 2.75E-04 1.80

±1.03E-05 ±1.11E-05 ±0.12 ±3.53E-05 ±3.12E-05 ±0.17 ±3.60E-05 ±3.22E-05 ±0.19

PSO 9.41E-04 1.04E-03 1.09 9.54E-04 1.33E-03 1.45 9.64E-04 1.95E-03 2.06

±2.04E-04 ±2.29E-04 ±0.01 ±1.76E-04 ±2.41E-04 ±0.09 ±1.64E-04 ±3.07E-04 ±0.04

CQSO 1.43E-04 1.61E-04 1.14 1.43E-04 1.61E-04 1.14 1.00E-04 1.28E-04 1.33

±4.59E-05 ±5.49E-05 ±0.08 ±4.59E-05 ±5.49E-05 ±0.08 ±2.43E-05 ±3.02E-05 ±0.16

PSO produced the worst performance throughout the remaining training time.
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Table 6.20: Mann-Whitney U p-values obtained for the average training and generalization

error comparisons with reference to the null hypothesis that the means of the compared samples

are equal at the significance level of 95%

Algorithm Training Generalization

B1 B2 B3 B1 B2 B3

RROP vs PSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RROP vs CQSO 0.1984 0.0003 0.0001 0.0002 0.0001 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

A1 A2 A3 A1 A2 A3

RROP vs PSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RROP vs CQSO 0.0385 0.3292 0.0010 0.0101 0.0413 0.0625

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C1 C2 C3 C1 C2 C3

RROP vs PSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RROP vs CQSO 0.0001 0.3750 0.0002 0.5250 0.0002 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

6.2.7 S&P 500 Time Series

Table 6.22 shows that the CQSO yielded the lowest TE and GE for all scenarios. The p-

values in Table 6.23 confirmed that the performance of CQSO was significantly superior

to RPROP and PSO, except for scenario B2 where PSO produced similar GE. In general,

the errors produced by all three algorithms worsen as temporal severity increased.

The ρ values reported in Table 6.22 indicate that all the training algorithms overfitted.

Table 6.24 shows that, the CQSO obtained the highest average rank in A, B and C

scenarios. Thus, the CSQO achieved the overall best rank, the RPROP came second,

and the PSO came last.

Figure 6.10 shows the progression of the algorithms over time in forecasting the

S&P problem for scenarios C1, C2, and C3. As visualized in the figure, the CQSO
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Table 6.21: AIP Algorithm Ranking for scenarios A to C

Algorithm A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 1 1 1.5 2 2 1.5 1.5 1.5

PSO 3 3 3 3 3 3 3 3

CQSO 2 2 1.5 1 1 1.5 1.5 1.5

B1 B2 B3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 1.5 2 2 2 2 2 1.83 2

PSO 3 3 3 3 3 3 3 3

CQSO 1.5 1 1 1 1 1 1.75 1

C1 C2 C3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 1 1 1.5 2 2 2 1.5 1.67

PSO 3 3 3 3 3 3 3 3

CQSO 2 2 1.5 1 1 1 1.5 1.33

Average R(A) Average R(B) Average R(C) Overall Ranking

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 1.5 1.5 1.83 2 1.5 1.67 1.61 1.72

PSO 3 3 3 3 3 3 3 3

CQSO 1.5 1.5 1.75 1 1.5 1.33 1.58 1.28

produced the lowest errors within the initial 50 iterations, while RPROP had the worst

errors. After the 50 iterations, PSO produced the worst performance throughout the

remaining algorithm run. The CQSO benefitted from its component wise optimization

strategy and the QSO used in the subswarms, since it outperformed PSO before the

first environmental change for all scenarios. Also, the CSQO adapted better than PSO

after all environmental changes. However, RPROP tracked the changing minima better

than the CQSO throughout the algorithm runs. The figures also illustrate that CQSO’s

adaption to dynamic changes improved with increase in spatial severity.
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Figure 6.9: Training and generalization error results for IAP time series, scenarios C1 to C3
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Table 6.22: S&P Time Series Results
Algorithm Scenario

A1 (f:50, s:20) A2 (f:50, s:40) A3 (f:50, s:58)

TE GE ρ TE GE ρ TE GE ρ

RPROP 3.62E-04 5.15E-04 1.46 6.54E-04 8.43E-04 1.31 8.97E-04 1.10E-03 1.24

± 3.22E-05 ± 3.28E-05 ± 0.07 ± 6.00E-05 ± 6.39E-05 ± 0.04 ± 6.07E-05 ± 7.40E-05 ± 0.04

PSO 7.88E-04 9.68E-04 1.25 8.11E-04 1.18E-03 1.47 5.42E-04 6.62E-04 1.38

± 9.42E-05 ± 1.04E-04 ± 0.03 ± 9.15E-05 ± 1.23E-04 ± 0.02 ± 9.98E-05 ± 9.59E-05 ± 0.16

CQSO 2.47E-04 3.78E-04 1.70 4.18E-04 6.71E-04 1.63 1.83E-04 2.77E-04 2.36

± 4.13E-05 ± 4.49E-05 ± 0.16 ± 5.20E-05 ± 7.54E-05 ± 0.03 ± 5.98E-05 ± 5.92E-05 ± 0.52

B1 (f:100, s:20) B2 (f:100, s:40) B3 (f:100, s:58)

TE GE ρ TE GE ρ TE GE ρ

RPROP 1.91E-04 3.31E-04 1.76 3.63E-04 5.08E-04 1.43 4.26E-04 5.53E-04 1.32

1.47E-05 1.80E-05 0.07 3.41E-05 3.44E-05 0.06 4.09E-05 4.51E-05 0.04

PSO 6.06E-04 7.68E-04 1.29 5.61E-04 8.53E-04 1.53 4.63E-04 6.00E-04 1.66

7.21E-05 8.13E-05 0.03 5.20E-05 7.18E-05 0.02 9.37E-05 9.00E-05 0.31

CQSO 8.82E-05 2.21E-04 2.66 2.34E-04 4.17E-04 1.94 6.91E-05 1.75E-04 3.67

1.09E-05 1.31E-05 0.18 4.20E-05 5.89E-05 0.13 1.75E-05 8.25E-06 0.66

C1 (f:150, s:20) C2 (f:150, s:40) C3 (f:150, s:58)

TE GE ρ TE GE ρ TE GE ρ

RPROP 1.32E-04 2.48E-04 1.95 2.49E-04 3.76E-04 1.54 3.25E-04 4.52E-04 1.42

1.25E-05 1.20E-05 0.12 2.29E-05 2.79E-05 0.06 3.66E-05 3.87E-05 0.04

PSO 4.54E-04 5.96E-04 1.34 4.74E-04 7.38E-04 1.56 3.35E-04 4.46E-04 1.78

5.23E-05 5.96E-05 0.03 3.96E-05 5.61E-05 0.02 7.18E-05 6.62E-05 0.39

CQSO 5.60E-05 1.85E-04 3.33 1.08E-04 2.45E-04 2.39 4.20E-05 1.73E-04 4.78

2.73E-06 5.57E-06 0.09 2.24E-05 3.01E-05 0.11 7.97E-06 5.96E-06 0.53

6.2.8 AWS Time Series

Table 6.25 show that, for scenarios A1, A2, and A3 (where f = 50), CQSO obtained the

lowest training and generalization errors. The p-values in Table 6.26 indicate that CQSO

produced significantly superior performance compared to the RPROP and PSO, except

for scenario A1, where RPROP produced similar generalization performance. Comparing

the performance of RPROP and PSO algorithms, RPROP outperformed PSO under the
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Table 6.23: Mann-Whitney U p-values obtained for the average training and generalization

error comparisons with reference to the null hypothesis that the means of the compared samples

are equal at the significance level of 95%

Algorithm Training Generalization

A1 A2 A3 A1 A2 A3

RROP vs PSO 0.0001 0.0021 0.0001 0.0001 0.0001 0.0001

RROP vs CQSO 0.0003 0.0001 0.0001 0.0001 0.0022 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B1 B2 B3 B1 B2 B3

RROP vs PSO 0.0001 0.0001 0.1646 0.0001 0.0001 0.2311

RROP vs CQSO 0.0001 0.0002 0.0001 0.0001 0.0584 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C1 C2 C3 C1 C2 C3

RROP vs PSO 0.0001 0.0001 0.7117 0.0001 0.0001 0.9764

RROP vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

scenario A1, which has the lowest spatial severity. For scenarios with higher spatial

severity, A2 and A3, PSO produced superior results.

For scenarios B1, B2 and B3 where the temporal severity (f = 100) is lower compared

to the A scenarios, the performance of RPROP and PSO improved while CQSO did not.

This shows that RPROP and PSO requires more iterations before environmental change

than the CQSO. Even though the performance of RPROP and PSO improved, CQSO

still produced significantly lower errors for scenarios B2 and B3. For scenario B1, RPROP

produced the lowest errors, but the difference in training performance with CQSO was

insignificant.

For the C scenarios (where f = 150), the performance of RPROP and PSO improved

compared to their performance on the B scenarios. RPROP produced significantly su-

perior results for scenarios C1 and C3, while CQSO yielded the best performance for
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Table 6.24: S&P Time Series Algorithm Ranking for Scenarios A to C

Algorithm A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 2 2 2 2 3 3 2.33 2.33

PSO 3 3 3 3 2 2 2.67 2.67

CQSO 1 1 1 1 1 1 1 1

B1 B2 B3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 2 2 2 1.5 2.5 2.5 2.17 2.83

PSO 3 3 3 3 2.5 2.5 2.83 2.83

CQSO 1 1 1 1.5 1 1 1 1.17

C1 C2 C3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 2 2 2 2 2.5 2.5 2.16 2.16

PSO 3 3 3 3 2.5 2.5 2.83 2.83

CQSO 1 1 1 1 1 1 1 1

Average R(A) Average R(B) Average R(C) Overall Ranking

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 2.33 2.33 2.17 2.83 2.16 2.16 2.22 2.44

PSO 2.67 2.67 2.83 2.83 2.83 2.83 2.78 2.78

CQSO 1 1 1 1.17 1 1 1 1.06

scenario C2.

The ρ values reported in Table 6.25 indicate that all the algorithm’s overfitted. The ρ

values obtained by the algorithms increased with a decrease in temporal severity (higher

value of f). This implies that the overfitting behaviours exhibited by the algorithms were

due to training for a long time on a dataset that has a small number of observations.

Table 6.27 indicated that the CQSO obtained the highest average rank for the A and

B scenarios, while RPROP obtained the highest average rank for the C scenarios. Thus,

CSQO achieved the overall best rank, the RPROP came second, and the PSO came last.
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Figure 6.10: Training and generalization error results for S&P time series, scenarios C1 to

C3

Figure 6.11 shows the performance progression of the algorithms over time in fore-
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Table 6.25: AWS Time Series Results
Algorithm Scenario

A1 (f:50, s:20) A2 (f:50, s:45) A3 (f:50, s:42)

TE GE ρ TE GE ρ TE GE ρ

RPROP 5.53E-04 6.77E-04 1.23 8.46E-04 1.13E-03 1.35 9.56E-04 1.31E-03 1.39

± 2.58E-05 ± 2.62E-05 ± 0.02 ± 6.54E-05 ± 6.86E-05 ± 0.03 ± 7.35E-05 ± 7.49E-05 ± 0.03

PSO 6.34E-04 9.96E-04 1.56 7.55E-04 7.76E-04 1.03 8.04E-04 1.27E-03 1.57

± 2.35E-05 ± 8.09E-05 ± 0.08 ± 3.74E-05 ± 5.27E-05 ± 0.05 ± 4.53E-05 ± 9.98E-05 ± 0.07

CQSO 3.92E-04 6.71E-04 1.70 3.83E-04 5.98E-04 1.54 4.12E-04 8.06E-04 1.94

± 2.29E-05 ± 5.27E-05 ± 0.04 ± 2.29E-05 ± 5.79E-05 ± 0.07 ± 3.21E-05 ± 8.04E-05 ± 0.05

B1 (f:100, s:20) B2 (f:100, s:35) B3 (f:100, s:42)

TE GE ρ TE GE ρ TE GE ρ

RPROP 3.85E-04 5.44E-04 1.42 5.00E-04 8.16E-04 1.65 4.95E-04 8.67E-04 1.77

± 1.98E-05 ± 1.95E-05 ± 0.03 ± 3.37E-05 ± 3.37E-05 ± 0.05 ± 3.02E-05 ± 3.18E-05 ± 0.04

PSO 5.45E-04 9.02E-04 1.65 6.61E-04 6.78E-04 1.03 6.99E-04 1.15E-03 1.64

± 1.49E-05 ± 4.70E-05 ± 0.07 ± 2.21E-05 ± 3.24E-05 ± 0.04 ± 3.57E-05 ± 8.83E-05 ± 0.06

CQSO 4.07E-04 7.05E-04 1.73 3.59E-04 6.06E-04 1.68 4.10E-04 8.35E-04 2.02

± 1.88E-05 ± 4.08E-05 ± 0.02 ± 1.45E-05 ± 3.42E-05 ± 0.04 ± 2.22E-05 ± 5.73E-05 ± 0.03

C1 (f:150, s:20) C2 (f:150, s:35) C3 (f:150, s:42)

TE GE ρ TE GE ρ TE GE ρ

RPROP 3.20E-04 4.87E-04 1.53 3.89E-04 7.29E-04 1.89 3.61E-04 7.48E-04 2.09

± 9.21E-06 ± 9.35E-06 ± 0.02 ± 1.89E-05 ± 1.70E-05 ± 0.05 ± 1.68E-05 ± 1.84E-05 ± 0.05

PSO 5.20E-04 8.98E-04 1.72 6.48E-04 6.75E-04 1.04 6.38E-04 1.09E-03 1.70

± 2.41E-05 ± 5.79E-05 ± 0.05 ± 2.81E-05 ± 4.24E-05 ± 0.04 ± 3.17E-05 ± 7.96E-05 ± 0.05

CQSO 3.84E-04 6.56E-04 1.70 3.51E-04 6.10E-04 1.73 4.11E-04 8.51E-04 2.07

± 1.35E-05 ± 3.04E-05 ± 0.02 ± 1.40E-05 ± 2.89E-05 ± 0.02 ± 1.43E-05 ± 3.34E-05 ± 0.02

casting the AWS problem for scenarios A1, A2, and A3. As shown in the figure, all the

algorithms exhibited a stable performance progression. The CQSO located a minimum

faster (within the first five iterations) than the PSO and RPROP, which took about 50

algorithm iterations. Training errors generated by the algorithms peaked out at each en-

vironmental change. For all scenarios, RPROP recovered from the change before another

one occurs, unlike the CQSO and the PSO. The figure clearly illustrate that the PSO
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Table 6.26: Mann-Whitney U p-values obtained for the average training and generalization

error comparisons with reference to the null hypothesis that the means of the compared samples

are equal at the significance level of 95%

Algorithm Training Generalization

A1 A2 A3 A1 A2 A3

RROP vs PSO 0.0001 0.0459 0.0021 0.0001 0.0001 0.3516

RROP vs CQSO 0.0001 0.0001 0.0001 0.4333 0.0001 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B1 B2 B3 B1 B2 B3

RROP vs PSO 0.0001 0.0001 0.0399 0.0001 0.0001 0.0001

RROP vs CQSO 0.1103 0.0001 0.0001 0.0001 0.0001 0.0105

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0052 0.0001

C1 C2 C3 C1 C2 C3

RROP vs PSO 0.0001 0.0001 0.0001 0.0001 0.0228 0.0001

RROP vs CQSO 0.0001 0.0030 0.0002 0.0001 0.0001 0.0001

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0276 0.0001

produced the worst training performance. The figure also show that the generalization

performance of RPROP deteriorated and that of CQSO improved with an increase in

spatial severity.

6.2.9 USD Time Series

Table 6.28 and Table 6.29 show that, for the scenarios A1, A2 and A3, the CQSO

significantly outperformed the PSO and the RPROP in forecasting the USD time series,

except for A1, where RPROP produced a similar TE.

For scenarios B1, B2 and B3, the performance of all the training algorithms improved

compared to their performance for scenarios A1, A2 and A3. This is attributed to the

increase in the value of f from 50 to 100. Examining the performance of the algorithms
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Table 6.27: AWS Algorithm Ranking for scenarios A to C

Algorithm A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 2 1.5 3 3 3 2.5 2.67 2.33

PSO 3 3 2 2 2 2.5 2.33 2.5

CQSO 1 1.5 1 1 1 1 1 1.17

B1 B2 B3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 1.5 1 2 3 2 2 1.83 2

PSO 3 3 3 2 3 3 3 2.67

CQSO 1.5 2 1 1 1 1 1.17 1.33

C1 C2 C3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 1 1 2 3 1 1 1.33 1.67

PSO 3 3 3 2 3 3 3 2.67

CQSO 2 2 1 1 2 2 1.67 1.67

Average R(A) Average R(B) Average R(C) Overall Ranking

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 2.67 2.33 2.83 2 1.33 1.67 2.28 2

PSO 2.33 2.5 3 2.67 3 2.67 2.78 2.61

CQSO 1 1.17 1.17 1.33 1.67 1.67 1.28 1.39

relative to each other revealed that, for scenarios B2 and B3, the CQSO produced the

lowest errors, similar to the performance seen for A2 and A3. These errors are signifi-

cantly different compared to the errors obtained by PSO. The errors produced by CQSO

are, however, not significantly different compared to errors obtained by RPROP, except

for GE for B2. Even though RPROP had the best training error for scenario B1, the

CQSO had a superior generalization error.

For scenarios C1, C2 and C3, the performance of all the training algorithms improved

compared to their performance for scenarios B1, B2 and B3. This is also attributed
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Figure 6.11: Training and generalization error Result for AWS Time Series, scenarios A1 to

A3

to the increase in the value of f from 100 to 150. The improvement was, however,

minor for CQSO. For scenario C1, while RPROP had the best training performance,
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Table 6.28: USD Time Series Results
Algorithm Scenario

A1 (f:50, s:8) A2 (f:50, s:16) A3 (f:50, s:20)

TE GE ρ TE GE ρ TE GE ρ

RPROP 4.71E-04 1.20E-03 3.11 1.07E-03 1.99E-03 2.25 9.62E-04 1.65E-03 1.99

± 1.23E-04 ± 1.17E-04 ± 0.34 ± 2.54E-04 ± 2.87E-04 ± 0.26 ± 2.63E-04 ± 3.09E-04 ± 0.19

PSO 6.49E-04 1.29E-03 2.00 6.98E-04 1.73E-03 2.50 8.74E-04 1.52E-03 1.75

± 2.70E-05 ± 6.60E-05 ± 0.10 ± 4.00E-05 ± 8.12E-05 ± 0.10 ± 3.74E-05 ± 8.11E-05 ± 0.08

CQSO 4.90E-04 1.01E-03 2.11 4.12E-04 1.16E-03 2.93 5.66E-04 1.10E-03 1.95

± 2.37E-05 ± 5.77E-05 ± 0.16 ± 3.64E-05 ± 4.50E-05 ± 0.21 ± 3.08E-05 ± 4.18E-05 ± 0.07

B1 (f:100, s:8) B2 (f:100, s:16) B3 (f:100, s:20)

TE GE ρ TE GE ρ TE GE ρ

RPROP 3.18E-04 1.19E-03 4.25 6.21E-04 1.02E-03 1.94 5.64E-04 1.19E-03 2.69

± 5.05E-05 ± 5.67E-05 ± 0.46 ± 1.70E-04 ± 1.51E-04 ± 0.17 ± 1.43E-04 ± 1.37E-04 ± 0.34

PSO 6.02E-04 1.01E-03 1.71 6.29E-04 1.04E-03 1.66 6.42E-04 1.26E-03 1.97

± 4.50E-05 ± 7.57E-05 ± 0.11 ± 2.65E-05 ± 5.82E-05 ± 0.05 ± 2.96E-05 ± 5.19E-05 ± 0.07

CQSO 4.61E-04 9.05E-04 1.98 3.96E-04 6.28E-04 1.59 4.97E-04 1.05E-03 2.13

± 1.92E-05 ± 5.39E-05 ± 0.12 ± 1.77E-05 ± 2.46E-05 ± 0.04 ± 2.47E-05 ± 2.81E-05 ± 0.09

C1 (f:150, s:8) C2 (f:150, s:16) C3 (f:150, s:20)

TE GE ρ TE GE ρ TE GE ρ

RPROP 2.60E-04 1.21E-03 5.39 4.60E-04 9.25E-04 2.22 3.44E-04 9.78E-04 3.16

± 4.25E-05 ± 4.03E-05 ± 0.62 ± 8.59E-05 ± 9.42E-05 ± 0.17 ± 5.49E-05 ± 5.04E-05 ± 0.30

PSO 5.42E-04 9.39E-04 1.74 5.45E-04 8.79E-04 1.61 5.44E-04 1.18E-03 2.19

± 2.02E-05 ± 3.72E-05 ± 0.08 ± 2.34E-05 ± 4.22E-05 ± 0.03 ± 2.15E-05 ± 3.86E-05 ± 0.07

CQSO 4.42E-04 9.05E-04 2.05 3.84E-04 6.15E-04 1.61 4.53E-04 1.02E-03 2.28

± 1.27E-05 ± 5.31E-05 ± 0.11 ± 1.80E-05 ± 2.40E-05 ± 0.03 ± 2.22E-05 ± 2.39E-05 ± 0.08

it produced the worst generalization errors. This clearly shows that an increase in the

value of f caused the algorithm to overfit. However, PSO benefited, as it produced

similar generalization performance with CQSO (which produced the best generalization

performance in A1 and B1). For scenario C2, CQSO produced the lowest training and

generalization errors as it did for A2 and B2. For scenario C3, RPROP had the lowest

errors.
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Table 6.29: Mann-Whitney U p-values obtained for the average training and generalization

error comparisons with reference to the null hypothesis that the means of the compared samples

are equal at the significance level of 95%

Algorithm Training Generalization

A1 A2 A3 A1 A2 A3

RROP vs PSO 0.0001 0.2939 0.1039 0.0081 0.8476 0.1171

RROP vs CQSO 0.1515 0.0001 0.0052 0.0228 0.0001 0.0005

PSO vs CQSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B1 B2 B3 B1 B2 B3

RROP vs PSO 0.0001 0.0024 0.0256 0.0001 0.0120 0.0134

RROP vs CQSO 0.0001 0.7227 0.1515 0.0001 0.0001 0.9058

PSO vs CQSO 0.0001 0.0001 0.0001 0.0139 0.0001 0.0001

C1 C2 C3 C1 C2 C3

RROP vs PSO 0.0001 0.0047 0.0001 0.0001 0.6361 0.0001

RROP vs CQSO 0.0001 0.9411 0.0002 0.0001 0.0001 0.0017

PSO vs CQSO 0.0001 0.0001 0.0001 0.1738 0.0001 0.0001

The ρ values reported in Table 6.28 indicate that all the algorithms overfitted, which

is likely caused by using too many iterations on a small dataset.

As illustrated in Table 6.30, CSQO obtained the highest average training and gen-

eralization rank for the A and B scenarios. For the C scenarios, RPROP obtained the

highest average rank in training, while CQSO had the highest average rank in general-

ization. Thus, CQSO achieved the overall best rank, the RPROP came second, and the

PSO came last.

Figure 6.12 shows the performance progression of the algorithms over time for the

scenarios B1, B2, and B3, in forecasting the USD problem. The figures clearly show

that the training errors generated by the algorithms peaked out at each environmental

change. RPROP, unlike CQSO and PSO, recovered from the change before another

one occurred. The figure also illustrates that training performance of the algorithms
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Table 6.30: USD Time Series Algorithm Ranking for Scenarios A to C

Algorithm A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 1 2 2.5 2.5 2.5 2.5 2 2.33

PSO 3 3 2.5 2.5 2.5 2.5 2.67 2.67

CQSO 2 1 1 1 1 1 1.33 1

B1 B2 B3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 1 3 1.5 3 2.25 2.25 1.58 2.75

PSO 3 2 3 2 2.25 2.25 2.75 2.08

CQSO 2 1 1.5 1 1.5 1.5 1.67 1.16

C1 C2 C3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 1 3 1.5 2.5 1 1 1.17 2.17

PSO 3 1.5 3 2.5 3 3 3 2.33

CQSO 2 1.5 1.5 1 2 2 1.83 1.5

Average R(A) Average R(B) Average R(C) Overall Ranking

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 2 2.33 1.5 2.17 1.58 2.75 1.67 2.42

PSO 2.67 2.67 3 2.67 2.75 2.08 2.81 2.47

CQSO 1.33 1 1.5 1.17 1.67 1.16 1.5 1.11

improved with increase in spatial severity. It is also clearly shown in the figure that the

algorithms produced higher generalization errors, which indicates overfitting behaviour.

6.2.10 LM Time Series

Table 6.31 shows that RPROP produced the lowest training error for scenario A1, while

PSO produced the worst error. However, the p-values in Table 6.32 indicate that the

difference in performance between RPROP and CQSO was insignificant. In terms of

generalization, RPROP produced significantly the highest error, while PSO and CQSO
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Figure 6.12: Training and generalization error results for USD time series, scenarios B1 to

B3

produced lower errors that are not significantly different. For scenario A2, CQSO yielded

the lowest training and generalization erros while RPROP yielded the highest errors. The
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Table 6.31: LM Time Series Results

Algorithm
Scenario

A1 (f:50, s:10) A2 (f:50, s:25) A3 (f:50, s:31)

TE GE ρ TE GE ρ TE GE ρ

RPROP 2.21E-03 3.81E-03 1.72 2.94E-03 3.12E-03 1.06 3.13E-03 3.00E-03 0.96

±4.27E-05 ±4.74E-05 ±0.02 ±9.41E-05 ±9.61E-05 ±0.01 ±1.24E-04 ±1.21E-04 ± 0.01

PSO 2.54E-03 3.58E-03 1.43 2.40E-03 2.57E-03 1.07 2.39E-03 2.29E-03 0.96

± 1.32E-04 ± 7.46E-05 ± 0.07 ± 1.09E-05 ± 1.61E-05 ± 0.01 ± 1.25E-05 ± 3.36E-05 ± 0.01

CQSO 2.29E-03 3.67E-03 1.61 2.38E-03 2.56E-03 1.07 2.37E-03 2.26E-03 0.95

± 7.76E-05 ± 7.04E-05 ± 0.06 ± 1.70E-06 ± 4.53E-06 ± 0.00 ± 1.38E-05 ± 3.65E-05 ± 0.02

B1 (f:100, s:10) B2 (f:100, s:25) B3 (f:100, s:31)

TE GE ρ TE GE ρ TE GE ρ

RPROP 2.06E-03 3.72E-03 1.81 2.63E-03 2.92E-03 1.11 2.73E-03 2.68E-03 0.98

± 2.06E-05 ± 2.06E-05 ± 0.01 ± 2.70E-05 ± 2.81E-05 ± 0.00 ± 5.68E-05 ± 5.65E-05 ± 0.00

PSO 2.75E-03 3.58E-03 1.31 2.40E-03 2.56E-03 1.07 2.39E-03 2.23E-03 0.93

± 8.53E-05 ± 2.67E-05 ± 0.04 ± 8.90E-06 ± 1.99E-05 ± 0.01 ± 1.30E-05 ± 1.89E-05 ± 0.01

CQSO 2.39E-03 3.78E-03 1.60 2.38E-03 2.55E-03 1.07 2.41E-03 2.26E-03 0.94

± 8.84E-05 ± 4.56E-05 ± 0.06 ± 7.10E-07 ± 3.54E-06 ± 0.00 ± 1.14E-05 ± 1.77E-05 ± 0.01

C1 (f:150, s:10) C2 (f:150, s:25) C3 (f:150, s:31)

TE GE ρ TE GE ρ TE GE ρ

RPROP 1.97E-03 3.70E-03 1.87 2.58E-03 2.98E-03 1.16 1.00E+00 2.56E-03 1.00

± 1.16E-05 ± 1.15E-05 ± 0.01 ± 3.86E-05 ± 3.98E-05 ± 0.00 ± 3.18E-05 ± 3.03E-05 ± 0.00

PSO 2.99E-03 3.68E-03 1.25 2.39E-03 2.53E-03 1.06 2.41E-03 2.27E-03 0.94

± 1.18E-04 ± 2.36E-05 ± 0.06 ± 5.24E-06 ± 1.11E-05 ± 0.00 ± 7.96E-06 ± 1.46E-05 ± 0.01

CQSO 2.58E-03 3.74E-03 1.48 2.38E-03 2.54E-03 1.07 2.42E-03 2.26E-03 0.93

± 1.34E-04 ± 4.64E-05 ± 0.07 ± 5.57E-06 ± 1.15E-05 ± 0.01 ± 7.85E-06 ± 1.67E-05 ± 0.01

p-values in Table 6.32 indicate that CQSO and PSO produced similar generalization

errors. For scenario A3, RPROP produced the worst training and generalization errors,

while CQSO produced lower errors that do not differ significantly from that of PSO. The

generalization error produced by the three algorithms, i.e. CQSO, PSO and RPROP,

improved as spatial severity increased for the A scenarios.

Table 6.31 shows that, for scenarios B1, B2, and B3 (where f = 100), the performance
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Table 6.32: Mann-Whitney U p-values obtained for the average training and generalization

error comparisons with reference to the null hypothesis that the means of the compared samples

are equal at the significance level of 95%

Algorithm Training Generalization

A1 A2 A3 A1 A2 A3

RROP vs PSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RROP vs CQSO 0.3440 0.0001 0.0001 0.0010 0.0001 0.0001

PSO vs CQSO 0.0018 0.0001 0.1474 0.0546 0.0604 0.1691

B1 B2 B3 B1 B2 B3

RROP vs PSO 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RROP vs CQSO 0.0001 0.0001 0.0001 0.0068 0.0001 0.0001

PSO vs CQSO 0.0001 0.0002 0.1039 0.0001 0.1474 0.0493

C1 C2 C3 C1 C2 C3

RROP vs PSO 0.0001 0.001 0.0001 0.3440 0.001 0.0001

RROP vs CQSO 0.0001 0.0001 0.0001 0.3077 0.0001 0.0001

PSO vs CQSO 0.0001 0.0371 0.1515 0.0863 0.2200 0.2675

of CQSO and PSO deteriorated compared to their performance for the corresponding

scenarios A1, A2 and A3 (where f = 50). Even though the performance of RPROP

improved, it still produced the worst training and generalization errors for scenarios B2

and B3. For scenario B1, RPROP produced the best training error and PSO the worst.

In terms of generalization, PSO produced the lowest error and CQSO the highest. For

scenarios B1 and B2, both PSO and CQSO yielded similar training and generalization

errors, except for B1, where CQSO produced a significantly lower training error.

For scenario C1, while RPROP yielded the lowest and PSO the highest training errors,

all the three algorithms produced similar generalization performance. For scenarios

C2 and C3, RPROP produced the worst errors, while CQSO and PSO showed similar

performance.

The ρ values in Table 6.31 showed that for scenarios A1, B1 and C1, all the train-
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Table 6.33: LM Time Series Algorithm Ranking for Scenarios A to C

Algorithm A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 1.5 3 3 3 3 3 2.5 3

PSO 3 1.5 2 1.5 1.5 1.5 2.17 1.5

CQSO 1.5 1.5 1 1.5 1.5 1.5 1.33 1.5

B1 B2 B3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 1 2 3 3 3 3 2.33 2.67

PSO 3 1 2 1.5 1.5 1.5 2.17 1.33

CQSO 2 3 1 1.5 1.5 1.5 1.5 2

C1 C2 C3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 1 2 3 3 3 3 2.33 2.67

PSO 3 2 1.5 1.5 1.5 1.5 2 1.67

CQSO 2 2 1.5 1.5 1.5 1.5 1.67 1.67

Average R(A) Average R(B) Average R(C) Overall Ranking

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

RPROP 2.5 3 2.33 2.67 2 2.63 2.27 2.77

PSO 2.17 1.5 2.17 1.33 2.75 2.25 2.36 1.69

CQSO 1.33 1.5 1.5 2 1.25 1.38 1.36 1.62

ing algorithms overfitted. For the more spatially severe scenarios A2, B2 and C2, the

algorithms only showed minor signs of overfitting. For scenarios A3, B3 and C3, where

the whole window is discarded during change, none of the training algorithms showed

any sign of overfitting. This shows good adaption by the algorithms as spacial severity

increased.

Table 6.33 show that CQSO achieved the overall best rank.

Figure 6.13 shows that all the algorithms exhibited similar performance progression

throughout the experiment runs, except during the initial few iterations.
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Figure 6.13: Training and generalization error Results for LM Time Series, Scenarios B1 to

B3
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Table 6.34: Average Algorithm Ranking Overall Time Series

Problem
RPROP PSO CQSO

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

SAM 2.38 2.67 2.61 2.33 1 1

HIT 3 3 2 2 1 1

DMT 3 3 2 2 1 1

MG 3 3 2 2 1 1

Lorenz 3 3 2 2 1 1

IAP 1.67 1.72 3 3 1.58 1.28

S&P 2.22 2.44 2.78 2.78 1 1.06

AWS 2.28 2 2.78 2.61 1.28 2.39

USD 1.67 2.42 2.81 2.47 1.5 1.11

LM 2.27 2.77 2.36 1.69 1.36 1.62

Overall average rank 2.45 2.60 2.43 2.29 1.17 1.25

6.3 Summary

The aim of this chapter was to investigate the applicability and efficiency of a dynamic

PSO algorithm in training FNN forecasters under non-static environments, and to com-

pare the performance against standard PSO and back-propagation (RPROP). Experi-

ments were conducted by training a FNN using the algorithms investigated to forecast

ten problems under nine different dynamic scenarios.

The chapter provided a detailed description of the experimental procedure followed,

which includes descriptions of the datasets used and the data pre-processing employed,

a discussion on simulating dynamic environments, the parameter optimization process

employed, and the performance measures used. The rest of the chapter was dedicated

to the experimental results obtained.

Table 6.34 summarizes the overall average ranks obtained by the algorithms for the

ten different forecasting problems considered. The highest rank for each problem is

given in bold. The overall average algorithm ranks for the ten problems are also listed
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in Table 6.34. Table 6.34 shows that the dynamic PSO (CQSO) outperformed both the

standard PSO and the RPROP algorithms in terms of TE and GE. Thus, CQSO was

shown to be very efficient in training FNN forecasters, and is a viable alternative to both

the standard PSO and RPROP.

It was observed throughout the empirical analysis carried out in this chapter that

the CQSO and the PSO were more successful under the severely and abruptly changing

scenarios, while RPROP was more successful under the gradually changing scenarios.

The CQSO also converged faster than PSO and RPROP. RPROP was, however, more

sensitive to stale data.

The CQSO involved more parameter optimization than both PSO and RPROP, since,

in addition to the standard PSO parameters, other parameters specific to the CQSO

also require optimization. Hence, the CQSO required more fine-tuning than PSO and

RPROP, but have a higher potential to outperform the other two algorithms.

RPROP overfitted whenever the temporal severity allowed RPROP to train for too

long. The CQSO, however, exhibited minor or no overfitting for most scenarios consid-

ered. A multiple number of factors may be responsible for such behaviour by CQSO,

which remains a topic for future research.

The next chapter investigates if recurrent connections in NN forecasters provide any

benefit if the NN is trained using a dynamic PSO algorithm.



Chapter 7

Recurrent Connections: Are They

Necessary?

“A central lesson of science is that to understand complex issues (or even simple

ones), we must try to free our minds of dogma and to guarantee the freedom

to publish, to contradict, and to experiment. Arguments from authority are

unacceptable. ”

– Carl Sagan -1998

Chapter 6 evaluated the applicability and performance of a dynamic PSO algorithm

as a training algorithm for FNN forecasters under non-stationary environments. This

chapter tests the hypothesis that recurrent/delayed connections are not necessary in a

NN trained for non-stationary time series forecasting if a dynamic PSO algorithm is used

as the training algorithm.

The experimental methodology used to test the hypothesis is given in Section 7.1.

The results and discussion of the findings are given in Section 7.2. Section 7.3 summarises

the chapter.

7.1 Methodology

This chapter investigates the necessity of recurrent/delayed connections in NN forecast-

ers if a dynamic PSO algorithm is used as the training method. For this purpose, a set

109
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of experiments under the nine different dynamic environmental scenarios described in

Section 6.1.3 were carried out on the same ten forecasting problems. Each experiment in-

volves training a FNN using a dynamic PSO algorithm, and comparing the result to that

obtained from four different types of RNNs (i.e. Elman NN, Jordan NN, Multi-Recurrent

NN and Time Delay NN), each trained separately using RPROP, standard PSO and the

dynamic PSO algorithm. For effective performance evaluation, 30 independent runs for

each experiment were carried out and the average with confidence interval over these

30 runs was computed. The performance metrics described in Section 6.1.5 were used

in all the experiments. All algorithms used were implemented in the Computational

Intelligence library (CIlib) version 0.9 [102].

The remainder of this section discusses the problems used in the experiments and

the process used to assign values to the control parameters of the algorithms used.

7.1.1 Datasets

In keeping with the work of the previous chapter, the datasets described in Section 6.1.1

were used for the experimental work in this chapter. Similarly, the datasets were pre-

processed using the methods described in Section 6.1.2.

7.1.2 Parameter Selection

All the relevant algorithm parameters were optimised and setup as follows:

NN Configuration

For each problem, the number of input, hidden, and output layer nodes of the NNs were

selected as described in Section 6.1.4. The number of time steps (or delayed patterns) in

the TDNNs were also iteratively optimized in a similar way that the optimal number of

hidden nodes were selected. The parameters selected for the NNs per problem are listed

in Table 7.1.

Linear activation functions were used in the hidden units of the FNNs due to satura-

tion issues, as discussed in Section 4.3. However, modified hyperbolic tangent functions

suggested in [85], were used in the hidden layer nodes of the RNNs and in the output
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Table 7.1: Neural network parameters for each dataset

Problem
Input

nodes

Delays for

TDNN

Hidden nodes Output

nodesFNN Elman NN Jordan NN MRNN TDNN

MG 4 1 11 3 6 2 4 1

Lorenz 5 6 6 2 3 2 2 1

LM 3 4 6 13 6 10 4 1

S&P 4 2 14 3 8 3 4 1

HIT 12 2 3 3 8 3 2 1

AWS 12 2 13 4 6 3 2 1

USD 12 1 2 2 7 2 2 1

SAM 10 1 4 3 11 5 2 1

HIT 24 1 2 3 3 2 2 1

DMT 30 6 3 3 3 3 3 1

nodes of all the NN models. The modified hyperbolic tangent function has a softer

slope and wider activation range compared to the sigmoid function. Bounded activation

functions were used in the RNNs in order to avoid passing blown-up activations (i.e.

large outputs) from the unbounded functions to the context/state layer, since large con-

text/state layer inputs may dominate the real NN inputs (which were normalized to be

close to zero).

All NN weights were initialized randomly in the range [− 1√
fanin

, 1√
fanin

], where fanin

is the number incoming connections to a node.

Training algorithms setup

The control parameters of the training algorithms were assigned values as follows:

• Default parameters were used for the RPROP algorithm, since the algorithm does

not require optimizing parameters to obtain optimal convergence times on most

problems [116].
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• The PSO setup described in section 6.1.4 was used.

• In addition to the parameter values used for the standard PSO, the optimal CQSO

parameter values obtained in section 6.1.4 were used in setting up the CQSOs used

for the purpose of this chapter.

7.2 Results

This section presents and discusses the results obtained from the experiments carried

out in this chapter. The conclusions arrived at, based on the overall findings from the

experiments, are also discussed.

For convenience, the naming convention Y-X was employed, where Y refers to either

Elman, Jordan, MRNN, or TDNN, and X refers to either RPROP, PSO, or CQSO.

7.2.1 SAM Time Series

Scenarios A1 to A3: Table 7.2 summarizes the CMF TE, GE, and ρ values obtained

by the forecasting models in predicting the SAM problem. Table 7.3 presents the per-

formance ranking of the models based on their CMF TE and GE values.

The error values in Table 7.2 show that the FNN-CQSO outperformed the other

models by yielding the lowest CMF TE and GE values, except for scenario A3, where

the Jordan-CQSO yielded a slightly lower generalization error.

All the p-values for the pairwise comparisons between the FNN-CQSO and the other

models are less than the 0.0001 threshold, except for the FNN-CQSO vs Jordan-CQSO

comparison, where the models produced statistically similar GE values for the three

scenarios, and similar TE values for scenario A1.

The ρ values obtained by the models illustrate that all the models had good gener-

alization behaviour, except for scenario A1, where the RPROP and the standard PSO

trained models overfitted. It was observed that the generalisation behaviour of all the

models improved for scenario A2, compared to scenario A1.

Figure 7.1 illustrates the progression of TE and GE values over time for the FNN-

CQSO and the three top performing models, one from each of the RPROP, PSO and
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Table 7.2: Results of SAM time series, scenarios A1 to A3

Model

Scenario
A1 (f:50, s:20) A2 (f:50, s:40) A3 (f:50, s:60)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 1.45E-04 1.27E-04 0.88 1.59E-04 8.41E-05 0.53 1.39E-04 1.01E-04 0.73

± 2.95E-06 ± 2.36E-06 ± 0.01 ± 3.55E-06 ± 1.57E-06 ± 0.01 ± 3.30E-06 ± 2.75E-06 ± 0

Elman-RPROP 3.77E-04 4.18E-04 1.14 6.55E-04 6.45E-04 0.98 9.37E-04 1.05E-03 1.08

± 7.47E-05 ± 7.37E-05 ± 0.04 ± 1.26E-04 ± 1.30E-04 ± 0.03 ± 2.10E-04 ± 3.39E-04 ± 0.2

Elman-PSO 2.96E-04 3.81E-04 1.29 4.39E-04 2.84E-04 0.65 3.89E-04 3.58E-04 0.92

± 1.30E-05 ± 2.78E-05 ± 0.04 ± 2.44E-05 ± 2.03E-05 ± 0.03 ± 1.85E-05 ± 1.99E-05 ± 0.2

Elman-CQPSO 2.41E-04 2.49E-04 1.02 2.72E-04 1.31E-04 0.48 2.32E-04 1.90E-04 0.83

± 1.27E-05 ± 3.17E-05 ± 0.1 ± 1.35E-05 ± 1.30E-05 ± 0.03 ± 1.42E-05 ± 1.22E-05 ± 0.04

Jordan-RPROP 1.89E-02 1.88E-02 1.12 4.28E-02 4.21E-02 1.04 2.36E-03 2.54E-03 1.01

± 3.41E-02 ± 3.36E-02 ± 0.05 ± 7.92E-02 ± 7.73E-02 ± 0.03 ± 2.24E-03 ± 2.47E-03 ± 0.03

Jordan-PSO 4.90E-04 6.40E-04 1.31 7.56E-04 5.80E-04 0.74 5.80E-04 5.79E-04 1

± 3.79E-05 ± 8.48E-05 ± 0.11 ± 7.89E-05 ± 9.11E-05 ± 0.04 ± 7.70E-05 ± 8.01E-05 ± 0.04

Jordan-CQPSO 1.45E-04 1.31E-04 0.91 1.64E-04 8.16E-05 0.5 1.37E-04 1.02E-04 0.74

± 5.40E-06 ± 5.19E-06 ± 0.04 ± 4.87E-06 ± 2.04E-06 ± 0.01 ± 5.45E-06 ± 4.88E-06 ± 0.01

MRNN-RPROP 5.36E-02 5.60E-02 1.11 1.40E-02 1.44E-02 1.03 3.95E-03 3.92E-03 0.97

± 8.63E-02 ± 8.94E-02 ± 0.08 ± 8.37E-03 ± 8.70E-03 ± 0.02 ± 2.07E-03 ± 2.03E-03 ± 0.03

MRNN-PSO 3.91E-04 4.97E-04 1.28 6.02E-04 4.03E-04 0.67 5.06E-04 4.88E-04 0.97

± 2.32E-05 ± 4.12E-05 ± 0.09 ± 3.46E-05 ± 2.98E-05 ± 0.03 ± 4.09E-05 ± 4.02E-05 ± 0.05

MRNN-CQPSO 2.20E-04 1.89E-04 0.86 2.45E-04 1.10E-04 0.45 2.04E-04 1.64E-04 0.8

± 1.00E-05 ± 1.88E-05 ± 0.06 ± 1.79E-05 ± 8.22E-06 ± 0.02 ± 7.26E-06 ± 8.52E-06 ± 0.03

TDNN-RPROP 4.03E-04 4.36E-04 1.11 6.58E-04 6.69E-04 1.04 1.06E-03 1.00E-03 0.95

± 7.96E-05 ± 7.95E-05 ± 0.03 ± 1.54E-04 ± 1.44E-04 ± 0.02 ± 2.05E-04 ± 1.95E-04 ± 0.02

TDNN-PSO 3.16E-04 3.89E-04 1.24 4.22E-04 2.65E-04 0.62 3.49E-04 3.20E-04 0.91

± 1.54E-05 ± 2.47E-05 ± 0.07 ± 2.09E-05 ± 2.34E-05 ± 0.03 ± 1.68E-05 ± 2.07E-05 ± 0.03

TDNN-CQPSO 2.55E-04 2.31E-04 0.9 2.93E-04 1.41E-04 0.48 2.33E-04 1.96E-04 0.84

± 1.19E-05 ± 2.08E-05 ± 0.05 ± 1.45E-05 ± 1.22E-05 ± 0.03 ± 7.36E-06 ± 1.29E-05 ± 0.04

CQSO trained models. As visualized in Figure 7.1, the two CQSO based models (i.e.

FNN-CQSO and Jordan-CQSO) had the lowest initial TE and GE values, and took

about 10 epochs to reach the lowest value, while the other two models, the Elman-

RPROP and the Elman-PSO took about 50 epochs. The figure also shows that, after
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Figure 7.1: Training and generalization error progression in predicting SAM time series under

scenario A1

the first environmental change, the Elman-PSO consistently produced the worst TE

and GE values. The Elman-RPROP, however, had the best training performance after

the initial 50 epochs, while the FNN-CQSO and the Jordan-CQSO provided the best

generalization performance throughout the experiments.

Table 7.3: Models ranking in forecasting SAM time series, scenarios A1-A3

Model
A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 1 2 1 1 1 1.33

Elman-RPROP 8 8 9 10 10 11 9 9.67

Elman-PSO 6 6 7 7 7 7 6.67 6.67

Elman-CQPSO 4 5 4 4 4 4 4 4.33

Jordan-RPROP 12 12 13 13 12 12 12.33 12.33

Jordan-PSO 11 11 11 9 9 9 10.33 9.67

Jordan-CQPSO 2 2 2 1 2 2 2 1.67

MRNN-RPROP 13 13 12 12 13 13 12.67 12.67

MRNN-PSO 9 10 8 8 8 8 8.33 8.67

MRNN-CQPSO 3 3 3 3 3 3 3 3

TDNN-RPROP 10 9 10 11 11 10 10.33 10

TDNN-PSO 7 7 6 6 6 6 6.33 6.33

TDNN-CQPSO 5 4 5 5 5 5 5 4.67
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Table 7.3 shows that the FNN-CQSO model achieved the highest average training

and generalization ranks over the three scenarios. The table also reveals that all the

CQSO based models achieved higher ranks compared to the PSO and the RPROP based

models. The RPROP based models achieved the lowest average ranks.

Scenarios B1 to B3: Table 7.4 shows that the FNN-CQSO model produced the lowest

TE and GE values compared to all the other models, except for scenario B2, where the

Jordan-CQSO yielded the lowest GE value. All the p-values for the pairwise comparisons

between the FNN-CQSO and the other models were below the 0.0001 threshold, except

for the FNN-CQSO vs Jordan-CQSO comparison. The FNN-CQSO and the Jordan-

CQSO produced statistically similar TE values for the three scenarios, and similar GE

values for scenario B3. It is observed that all the models yielded lower errors compared to

their performance for the corresponding A scenarios (i.e where the models have the same

spatial severity). The improvement in performance was due to an increase in the value

of the change frequency f (i.e the number of iterations before environmental change).

The ρ values in Table 7.4 indicate that, for all three scenarios, none of the CQSO

trained models overfitted. For scenario B1, both the PSO and the RPROP trained

models overfitted. However, for scenarios B2 and B3, the PSO trained models did not

overfit. The ρ obtained by the RPROP trained models showed slight overfitting for

scenario B2, and no sign of overfitting for scenario B3. It is observed that the ρ values

for the RPROP models decreased with increase in spatial severity.

Figure 7.2 illustrates the performance progression over time for the four best per-

forming models for scenario B2. As visualized in the figure, the FNN-CQSO and the

Jordan-CQSO located the lowest value faster, in about 10 epochs during training, while

the other models took about 100 epochs. The generalization performance over time for

the two CQSO trained models also took about only 10 epochs to achieve the lowest

value, while the other models took about 50 epochs. All four models kept track of the

lowest value once located. During training, the TDNN-PSO had the worst performance

throughout the model’s run, and the CQSO based models had the best generalization

performance. It is observed that, after the initial 100 epochs, all four models produced

lower generalization errors, adapting well to the environmental changes. Thus, the pro-

gression of the errors show that the FNN-CQSO model had at least similar or better
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Table 7.4: Results of SAM time series, scenario B1 to B3

Model

Scenario
B1 (f:100, s:20) B2 (f:100, s:40) B3 (f:100, s:60)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 1.32E-04 1.19E-04 0.91 1.49E-04 8.13E-05 0.55 1.29E-04 9.36E-05 0.73

± 2.76E-06 ± 2.18E-06 ± 0 ± 2.99E-06 ± 1.03E-06 ± 0.01 ± 1.97E-06 ± 1.56E-06 ± 0

Elman-RPROP 3.44E-04 4.11E-04 1.22 3.14E-04 3.62E-04 1.17 5.94E-04 5.97E-04 1.01

± 1.54E-04 ± 1.69E-04 ± 0.04 ± 4.94E-05 ± 5.31E-05 ± 0.06 ± 3.45E-04 ± 3.52E-04 ± 0.02

Elman-PSO 2.68E-04 3.18E-04 1.17 3.52E-04 1.88E-04 0.53 3.03E-04 2.59E-04 0.86

± 1.43E-05 ± 3.61E-05 ± 0.04 ± 1.83E-05 ± 1.69E-05 ± 0.06 ± 1.66E-05 ± 1.49E-05 ± 0.02

Elman-CQPSO 2.46E-04 2.35E-04 0.95 2.63E-04 1.37E-04 0.53 2.13E-04 1.93E-04 0.91

± 1.35E-05 ± 2.37E-05 ± 0.08 ± 1.29E-05 ± 1.14E-05 ± 0.06 ± 1.02E-05 ± 8.75E-06 ± 0.04

Jordan-RPROP 2.78E-03 2.87E-03 1.19 4.32E-03 4.52E-03 1.09 1.14E-03 1.19E-03 1.04

± 2.97E-03 ± 2.93E-03 ± 0.07 ± 3.94E-03 ± 3.99E-03 ± 0.03 ± 4.90E-04 ± 5.10E-04 ± 0.03

Jordan-PSO 5.02E-04 6.98E-04 1.39 6.59E-04 4.78E-04 0.71 5.17E-04 5.57E-04 1.08

± 5.58E-05 ± 9.38E-05 ± 0.07 ± 8.29E-05 ± 7.48E-05 ± 0.05 ± 5.75E-05 ± 6.21E-05 ± 0.06

Jordan-CQPSO 1.34E-04 1.24E-04 0.93 1.54E-04 7.91E-05 0.51 1.30E-04 9.71E-05 0.75

± 3.58E-06 ± 3.98E-06 ± 0.03 ± 3.87E-06 ± 2.59E-06 ± 0.01 ± 4.50E-06 ± 4.09E-06 ± 0.02

MRNN-RPROP 5.15E-03 5.75E-03 1.15 7.45E-03 7.61E-03 1.02 6.52E-03 6.48E-03 1.01

± 2.22E-03 ± 2.62E-03 ± 0.07 ± 4.11E-03 ± 4.42E-03 ± 0.03 ± 3.94E-03 ± 4.03E-03 ± 0.03

MRNN-PSO 3.24E-04 4.39E-04 1.36 5.03E-04 3.15E-04 0.64 4.29E-04 4.11E-04 0.95

± 1.07E-05 ± 2.75E-05 ± 0.08 ± 3.84E-05 ± 1.99E-05 ± 0.04 ± 2.35E-05 ± 3.39E-05 ± 0.05

MRNN-CQPSO 2.19E-04 1.88E-04 0.86 2.38E-04 1.10E-04 0.46 1.96E-04 1.61E-04 0.82

± 8.62E-06 ± 1.30E-05 ± 0.04 ± 1.28E-05 ± 8.67E-06 ± 0.02 ± 9.33E-06 ± 1.17E-05 ± 0.04

TDNN-RPROP 2.31E-04 2.80E-04 1.24 4.07E-04 4.67E-04 1.21 5.58E-04 5.42E-04 0.99

± 3.21E-05 ± 3.10E-05 ± 0.05 ± 9.01E-05 ± 8.75E-05 ± 0.05 ± 1.28E-04 ± 1.22E-04 ± 0.02

TDNN-PSO 2.74E-04 2.81E-04 1.03 3.38E-04 1.76E-04 0.52 2.80E-04 2.47E-04 0.88

± 1.01E-05 ± 1.70E-05 ± 0.06 ± 1.63E-05 ± 1.62E-05 ± 0.03 ± 1.13E-05 ± 1.54E-05 ± 0.03

TDNN-CQPSO 2.35E-04 2.08E-04 0.88 2.59E-04 1.25E-04 0.48 2.25E-04 1.86E-04 0.83

± 6.15E-06 ± 1.27E-05 ± 0.04 ± 9.16E-06 ± 7.63E-06 ± 0.02 ± 7.43E-06 ± 1.01E-05 ± 0.04

performance compared to the other models.

The performance ranking of the models given in Table 7.5 shows that the FNN-

CQSO model obtained the highest average training and generalization ranks, and the

remaining CQSO based models achieved higher average ranks compared to the PSO and



7.2. Results 117

0.000010

0.000100

0.001000

0.010000

0.100000

 0  100  200  300  400  500  600

A
ve

ra
g
e
 E

rr
o
r 

(l
o
g
)

iteration Count

FNN-CQSO
Jordan-CQSO

TDNN-PSO
Elman-Rprop

(a) TE

0.000010

0.000100

0.001000

0.010000

0.100000

 0  100  200  300  400  500  600

A
ve

ra
g
e
 E

rr
o
r 

(l
o
g
)

iteration Count

FNN-CQSO
Jordan-CQSO

TDNN-PSO
Elman-Rprop

(b) GE

Figure 7.2: Training and generalization error results for SAM time series, scenario B2

the RPROP based models.

Scenarios C1 to C3: Table 7.6 shows that the FNN-CQSO model produced the lowest

training and generalization errors compared to the remaining models, except for scenario

C2, where the Jordan-CQSO produced a slightly lower generalization error. All the p-

Table 7.5: Models ranking in forecasting the SAM time series, scenarios B1 to B3

Model
B1 B2 B3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 1 2 1 1 1 1.33

Elman-RPROP 10 9 6 9 11 11 9 9.67

Elman-PSO 7 8 8 7 7 7 7.33 7.33

Elman-CQPSO 6 5 5 5 4 5 5 5

Jordan-RPROP 12 12 12 12 12 12 12 12

Jordan-PSO 11 11 11 11 9 10 10.33 10.67

Jordan-CQPSO 2 2 2 1 2 2 2 1.67

MRNN-RPROP 13 13 13 13 13 13 13 13

MRNN-PSO 9 10 10 8 8 8 9 8.67

MRNN-CQPSO 3 3 3 3 3 3 3 3

TDNN-RPROP 4 6 9 10 10 9 7.67 8.33

TDNN-PSO 8 7 7 6 6 6 7 6.33

TDNN-CQPSO 5 4 4 4 5 4 4.67 4
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Table 7.6: Results of SAM time series, scenario C1 to C3

Model

Scenario
C1 (f:150, s:20) C2 (f:150, s:40) C3 (f:150, s:60)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 1.29E-04 1.18E-04 0.91 1.44E-04 8.09E-05 0.56 1.24E-04 8.93E-05 0.72

± 2.48E-06 ± 1.93E-06 ± 0 ± 2.01E-06 ± 6.72E-07 ± 0.01 ± 1.90E-06 ± 1.57E-06 ± 0

Elman-RPROP 2.99E-04 3.77E-04 1.34 4.16E-04 4.60E-04 1.19 5.02E-04 5.13E-04 1.04

± 1.35E-04 ± 1.58E-04 ± 0.07 ± 1.36E-04 ± 1.27E-04 ± 0.07 ± 2.02E-04 ± 2.01E-04 ± 0.02

Elman-PSO 2.45E-04 2.40E-04 0.97 2.89E-04 1.38E-04 0.48 2.71E-04 2.16E-04 0.8

± 1.22E-05 ± 2.53E-05 ± 0.07 ± 1.07E-05 ± 9.19E-06 ± 0.07 ± 2.31E-05 ± 1.75E-05 ± 0.02

Elman-CQPSO 2.35E-04 2.13E-04 0.9 2.51E-04 1.22E-04 0.49 2.13E-04 2.04E-04 0.96

± 1.26E-05 ± 1.91E-05 ± 0.05 ± 1.04E-05 ± 1.17E-05 ± 0.05 ± 9.74E-06 ± 9.73E-06 ± 0.03

Jordan-RPROP 1.84E-01 1.80E-01 1.14 2.33E-03 2.42E-03 1.12 2.89E-03 3.08E-03 1.09

± 2.01E-01 ± 1.96E-01 ± 0.05 ± 1.45E-03 ± 1.48E-03 ± 0.05 ± 1.45E-03 ± 1.55E-03 ± 0.05

Jordan-PSO 4.35E-04 6.18E-04 1.39 5.69E-04 4.26E-04 0.73 6.53E-04 6.75E-04 1.06

± 4.02E-05 ± 8.99E-05 ± 0.11 ± 4.96E-05 ± 5.54E-05 ± 0.04 ± 1.47E-04 ± 1.51E-04 ± 0.05

Jordan-CQPSO 1.33E-04 1.22E-04 0.92 1.47E-04 7.59E-05 0.52 1.25E-04 9.01E-05 0.72

± 4.41E-06 ± 4.34E-06 ± 0.03 ± 4.12E-06 ± 2.11E-06 ± 0.01 ± 3.56E-06 ± 2.89E-06 ± 0

MRNN-RPROP 5.16E-03 5.35E-03 1.14 5.25E-03 5.37E-03 1.08 4.65E-03 5.30E-03 1.17

± 2.52E-03 ± 2.62E-03 ± 0.07 ± 2.02E-03 ± 2.02E-03 ± 0.06 ± 2.10E-03 ± 2.42E-03 ± 0.09

MRNN-PSO 3.08E-04 4.08E-04 1.33 3.99E-04 2.73E-04 0.68 4.00E-04 3.61E-04 0.91

± 1.44E-05 ± 2.61E-05 ± 0.07 ± 2.39E-05 ± 2.06E-05 ± 0.03 ± 2.69E-05 ± 2.21E-05 ± 0.05

MRNN-CQPSO 2.13E-04 1.80E-04 0.84 2.27E-04 1.04E-04 0.46 1.85E-04 1.52E-04 0.83

± 1.11E-05 ± 1.77E-05 ± 0.07 ± 1.05E-05 ± 7.51E-06 ± 0.02 ± 1.06E-05 ± 8.78E-06 ± 0.04

TDNN-RPROP 2.28E-04 2.88E-04 1.3 3.16E-04 4.13E-04 1.37 3.65E-04 3.72E-04 1.05

± 3.01E-05 ± 3.07E-05 ± 0.06 ± 4.69E-05 ± 4.14E-05 ± 0.08 ± 8.38E-05 ± 7.81E-05 ± 0.03

TDNN-PSO 2.49E-04 2.26E-04 0.91 2.94E-04 1.41E-04 0.48 2.55E-04 2.07E-04 0.81

± 7.21E-06 ± 9.96E-06 ± 0.04 ± 9.26E-06 ± 7.39E-06 ± 0.02 ± 9.63E-06 ± 1.08E-05 ± 0.03

TDNN-CQPSO 2.35E-04 2.06E-04 0.87 2.64E-04 1.20E-04 0.46 2.14E-04 1.70E-04 0.8

± 9.37E-06 ± 1.42E-05 ± 0.03 ± 1.02E-05 ± 6.27E-06 ± 0.01 ± 5.85E-06 ± 9.03E-06 ± 0.04

values for the pairwise comparisons between the FNN-CQSO and the other models are

less than the 0.0001 threshold, except for the FNN-CQSO vs Jordan-CQSO comparison.

The difference in GE performance between the FNN-CQSO and the Jordan-CQSO was

statistically significant for scenario C2 (where the Jordan-CQSO yielded a lower GE
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value). It is observed that the performance of the FNN-CQSO model improved with

increase in spatial severity, from C1 to C3, while the reverse is the case for the RPROP

trained models. This means that the RPROP based models did better for scenario C1,

where spatial changes were gradual. For the PSO and the other CQSO based models,

the performance deteriorated from scenario C1 to C2 due to an increase in the spatial

severity. However, the performance improved for scenario C3 compared to C2. This

shows that the number of iterations (f = 150) was enough for the training algorithms

to learn the new patterns in the sliding window.

The ρ values listed in Table 7.6 show that none of the CQSO trained NNs overfit-

ted. The NN models trained using RPROP, however, overfitted. It is observed that

the ρ values obtained by the RPROP based models decreased as the change severity

increased. Thus, for scenario C3, where the spatial severity is abrupt, the models’ over-

fitting behaviour was only slight. All these indicate that the generalization behaviour of

the CQSO and the RPROP based models were not affected by an increase in the value

of the change frequency. The models trained using PSO also showed no or slight signs

of overfitting for all the scenarios except for scenario C1, where the Jordan-PSO and

the MRNN-PSO overfitted. This shows that an increase in the value of f improved the

generalization behaviour of the Elman-PSO and the TDNN-PSO models.

Figure 7.3 illustrates the performance progression over time for the FNN-CQSO and

three other top performing models, which includes the Jordan-CQSO, TDNN-RPROP

and TDNN-PSO, for scenario C3. As shown in Figure 7.3, the TDNN-RPROP model
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Figure 7.3: Training and generalization error results for SAM time series, scenario C3



7.2. Results 120

had the worst initial errors. The two CQSO based models (i.e. the FNN-CQSO and the

Jordan-CQSO) produced the lowest initial errors. The figure also illustrates that, during

training, all four models had an initial increase in peak after the first environment change,

but later adapted to the environmental changes. The progression of the GE values shows

that the two CQSO based models produced the best performance throughout the training

process.

Table 7.7 shows that, for the three chaotic scenarios, the CQSO trained models

achieved the highest average ranks compared to the PSO and the RPROP trained models.

The RPROP trained models obtained the lowest average ranks.

The overall ranking of the models trained to predict the SAM time series for the

nine scenarios is presented in Table 7.8. The table shows that the FNN-CQSO model

emerged as the overall winner. The table also shows that all the CQSO based models

achieved higher ranks compared to the PSO and the RPROP models. All these show

that the CQSO training algorithm generally improved the performance of all the NNs in

predicting the SAM problem under non-stationary environments.

Table 7.7: Models ranking in forecasting the SAM time series, scenarios C1 to C3

Model
C1 C2 C3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 1 2 1 1 1 1.33

Elman-RPROP 9 9 10 11 10 10 9.67 10

Elman-PSO 7 7 6 6 7 7 6.67 6.67

Elman-CQPSO 6 5 4 5 4 5 4.67 5

Jordan-RPROP 13 13 12 12 12 12 12.33 12.33

Jordan-PSO 11 11 11 10 11 11 11 10.67

Jordan-CQPSO 2 2 2 1 2 2 2 1.67

MRNN-RPROP 12 12 13 13 13 13 12.67 12.67

MRNN-PSO 10 10 9 8 9 8 9.33 8.67

MRNN-CQPSO 3 3 3 3 3 3 3 3

TDNN-RPROP 4 8 8 9 8 9 6.67 8.67

TDNN-PSO 8 6 7 7 6 6 7 6.33

TDNN-CQPSO 5 4 5 4 5 4 5 4
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Table 7.8: Overall models ranking in forecasting the SAM time series, scenarios A to C

Model
Scenario A Scenario B Scenario C Overall Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1.5 1 1.33 1 1.33 1 1.39

Elman-RPROP 9 9.67 9 9.67 9.67 10 9.22 9.78

Elman-PSO 6.67 6.67 7.33 7.33 6.67 6.67 6.89 6.89

Elman-CQPSO 4 4.33 5 5 4.67 5 4.56 4.78

Jordan-RPROP 12.33 12.33 12 12 12.33 12.33 12.22 12.22

Jordan-PSO 10.33 9.67 10.33 10.67 11 10.67 10.55 10.34

Jordan-CQPSO 2 1.5 2 1.67 2 1.67 2 1.61

MRNN-RPROP 12.67 12.67 13 13 12.67 12.67 12.78 12.78

MRNN-PSO 8.33 8.67 9 8.67 9.33 8.67 8.89 8.67

MRNN-CQPSO 3 3 3 3 3 3 3 3

TDNN-RPROP 10.33 10 7.67 8.33 6.67 8.67 8.22 9

TDNN-PSO 6.33 6.33 7 6.33 7 6.33 6.78 6.33

TDNN-CQPSO 5 4.67 4.67 4 5 4 4.89 4.22

7.2.2 HIT Time Series

Scenarios A1 to A3: Table 7.9 shows that the FNN-CQSO produced the lowest CMF

TE and GE values for scenario A1. For scenarios A2 and A3, the Jordan-CQSO model

yielded the lowest errors. The FNN-CQSO, however, outperformed the remaining models

by producing lower errors. It is observed that the errors produced by all the models

worsen as the spatial severity increased, similar to the observation made in Section 7.2.1.

All the p-values for the pairwise comparisons between the FNN-CQSO and the other

models were less than the 0.0001 threshold, except for the FNN-CQSO vs MRNN-CQSO

comparison for scenarios A2 and A3, and for the FNN-CQSO vs TDNN-CQSO compar-

ison for scenario A3.

All the models showed good generalisation behaviour, as indicated by the ρ values

given in Table 7.9.

Figure 7.4 illustrates the progression of the TE and GE values over time for the

FNN-CQSO and three other top performing models for scenario A2. Figure 7.4a shows



7.2. Results 122

Table 7.9: Results of HIT time series, scenario A1 to A3

Model

Scenario
A1 (f:50, s:250) A2 (f:50, s:500) A3 (f:50, s:528)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 5.55E-06 5.17E-06 0.93 1.11E-05 1.10E-05 1.01 1.35E-05 1.24E-05 0.93

± 3.69E-07 ± 3.21E-07 ± 0.01 ± 1.25E-06 ± 9.58E-07 ± 0.02 ± 1.20E-06 ± 1.04E-06 ± 0.02

Elman-RPROP 4.73E-04 4.77E-04 1.01 8.04E-04 8.04E-04 1 1.08E-03 1.08E-03 1

± 1.09E-04 ± 1.10E-04 ± 0.01 ± 2.44E-04 ± 2.45E-04 ± 0.01 ± 2.58E-04 ± 2.57E-04 ± 0.01

Elman-PSO 8.26E-05 8.37E-05 1.01 1.39E-04 1.29E-04 0.88 1.58E-04 1.43E-04 0.9

± 1.04E-05 ± 1.14E-05 ± 0.01 ± 3.41E-05 ± 3.78E-05 ± 0.01 ± 5.61E-05 ± 5.12E-05 ± 0.01

Elman-CQPSO 1.21E-05 1.09E-05 0.91 1.37E-05 1.32E-05 0.97 1.67E-05 1.59E-05 0.95

± 8.75E-07 ± 7.35E-07 ± 0.01 ± 1.09E-06 ± 1.01E-06 ± 0.01 ± 1.37E-06 ± 1.22E-06 ± 0.02

Jordan-RPROP 9.57E-03 9.85E-03 0.99 1.13E-02 1.12E-02 1 1.52E-02 1.51E-02 1

± 5.05E-03 ± 5.59E-03 ± 0.01 ± 4.28E-03 ± 4.25E-03 ± 0.01 ± 5.87E-03 ± 5.83E-03 ± 0.01

Jordan-PSO 8.23E-05 8.07E-05 0.97 1.37E-04 1.20E-04 0.86 1.07E-04 9.30E-05 0.88

± 1.57E-05 ± 1.63E-05 ± 0.03 ± 3.93E-05 ± 3.66E-05 ± 0.04 ± 1.88E-05 ± 1.66E-05 ± 0.04

Jordan-CQPSO 8.28E-06 7.77E-06 0.94 9.34E-06 9.44E-06 1.01 1.21E-05 1.16E-05 0.96

± 4.84E-07 ± 4.26E-07 ± 0.01 ± 5.85E-07 ± 6.08E-07 ± 0.01 ± 3.13E-06 ± 3.03E-06 ± 0.01

MRNN-RPROP 1.09E-02 1.08E-02 0.99 1.19E-02 1.19E-02 1 2.69E-02 2.68E-02 1

± 4.14E-03 ± 4.07E-03 ± 0 ± 3.62E-03 ± 3.61E-03 ± 0 ± 8.38E-03 ± 8.34E-03 ± 0

MRNN-PSO 5.46E-05 5.09E-05 0.93 7.24E-05 6.12E-05 0.83 7.58E-05 6.82E-05 0.89

± 7.59E-06 ± 7.06E-06 ± 0.02 ± 9.23E-06 ± 9.84E-06 ± 0.02 ± 9.01E-06 ± 9.93E-06 ± 0.03

MRNN-CQPSO 1.01E-05 9.35E-06 0.93 1.15E-05 1.15E-05 1.02 2.55E-05 2.51E-05 0.96

± 1.04E-06 ± 8.81E-07 ± 0.01 ± 1.45E-06 ± 1.19E-06 ± 0.02 ± 2.67E-05 ± 2.67E-05 ± 0.01

TDNN-RPROP 5.57E-04 5.54E-04 1 1.08E-03 1.07E-03 1 1.70E-03 1.64E-03 0.98

± 1.50E-04 ± 1.48E-04 ± 0.01 ± 2.96E-04 ± 2.92E-04 ± 0.01 ± 4.89E-04 ± 4.65E-04 ± 0.02

TDNN-PSO 1.20E-04 1.16E-04 0.99 4.26E-04 4.19E-04 0.95 2.00E-04 1.85E-04 0.91

± 3.23E-05 ± 2.90E-05 ± 0.04 ± 2.39E-04 ± 2.36E-04 ± 0.05 ± 9.71E-05 ± 9.16E-05 ± 0.04

TDNN-CQPSO 3.10E-05 2.99E-05 0.95 1.60E-05 1.52E-05 0.99 1.04E-04 9.18E-05 0.93

± 3.76E-05 ± 3.70E-05 ± 0.02 ± 3.13E-06 ± 1.95E-06 ± 0.03 ± 1.25E-04 ± 1.10E-04 ± 0.02

that the models trained using either of the PSO variants produced the lowest initial

training errors, and also had similar training error progression throughout the models’

runs. However, Figure 7.4b shows that the CQSO trained models generalized better

than the PSO trained models. This obviously indicates that using CQSO improved the
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Figure 7.4: Training and generalization error results for HIT time series, scenario A2

performance of the NN models. Figure 7.4 also shows that the FNN trained using CQSO

performed on par or even better than the RNN models.

The average ranking of the models over the three scenarios shown in Table 7.10

indicates that the Jordan-CQSO and the FNN-CQSO achieved the first and second

Table 7.10: Models ranking in forecasting the HIT time series, scenarios A1 to A3

Model
A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 2 2 2 2 1.67 1.67

Elman-RPROP 10 10 10 10 10 10 10 10

Elman-PSO 8 8 8 8 8 8 8 8

Elman-CQPSO 4 4 4 4 3 3 3.67 3.67

Jordan-RPROP 12 12 12 12 12 12 12 12

Jordan-PSO 7 7 7 7 7 7 7 7

Jordan-CQPSO 2 2 1 1 1 1 1.33 1.33

MRNN-RPROP 13 13 13 13 13 13 13 13

MRNN-PSO 6 6 6 6 5 5 5.67 5.67

MRNN-CQPSO 3 3 3 3 4 4 3.33 3.33

TDNN-RPROP 11 11 11 11 11 11 11 11

TDNN-PSO 9 9 9 9 9 9 9 9

TDNN-CQPSO 5 5 5 5 6 6 5.33 5.33
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Table 7.11: Results of HIT time series, scenarios B1 to B3

Model

Scenario
B1 (f:100, s:250) B2 (f:100, s:500) B3 (f:100, s:528)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 5.01E-06 4.67E-06 0.93 6.14E-06 6.36E-06 1.04 6.75E-06 6.38E-06 0.95

± 2.11E-07 ± 1.86E-07 ± 0 ± 3.87E-07 ± 3.83E-07 ± 0.01 ± 5.10E-07 ± 4.26E-07 ± 0.01

Elman-RPROP 2.07E-04 2.08E-04 1 3.68E-04 3.66E-04 1 6.63E-03 6.59E-03 1

± 5.33E-05 ± 5.32E-05 ± 0.01 ± 9.45E-05 ± 9.37E-05 ± 0.01 ± 2.41E-03 ± 2.39E-03 ± 0.01

Elman-PSO 6.94E-05 6.29E-05 0.91 7.42E-05 6.25E-05 0.84 9.79E-05 9.13E-05 0.92

± 2.23E-05 ± 1.97E-05 ± 0.01 ± 1.02E-05 ± 9.03E-06 ± 0.01 ± 2.17E-05 ± 2.39E-05 ± 0.01

Elman-CQPSO 9.62E-06 8.66E-06 0.9 1.19E-05 1.16E-05 0.98 1.59E-05 1.51E-05 0.94

± 5.95E-07 ± 4.96E-07 ± 0.01 ± 7.57E-07 ± 6.27E-07 ± 0.02 ± 4.37E-06 ± 4.53E-06 ± 0.01

Jordan-RPROP 4.82E-03 4.78E-03 0.99 5.62E-03 5.59E-03 1 6.63E-03 6.59E-03 1

± 1.85E-03 ± 1.82E-03 ± 0 ± 2.36E-03 ± 2.35E-03 ± 0.01 ± 2.41E-03 ± 2.39E-03 ± 0.01

Jordan-PSO 5.98E-05 5.70E-05 0.92 7.20E-05 6.41E-05 0.87 8.22E-05 7.50E-05 0.9

± 2.20E-05 ± 2.44E-05 ± 0.03 ± 1.01E-05 ± 1.09E-05 ± 0.03 ± 1.25E-05 ± 1.32E-05 ± 0.03

Jordan-CQPSO 6.91E-06 6.46E-06 0.93 8.27E-06 8.50E-06 1.03 1.02E-05 9.72E-06 0.95

± 4.11E-07 ± 3.79E-07 ± 0.01 ± 4.39E-07 ± 4.41E-07 ± 0.01 ± 9.26E-07 ± 8.83E-07 ± 0.01

MRNN-RPROP 4.94E-03 4.86E-03 0.99 8.72E-03 8.64E-03 1 1.77E-02 1.77E-02 1

± 1.33E-03 ± 1.31E-03 ± 0.01 ± 3.26E-03 ± 3.22E-03 ± 0.01 ± 5.35E-03 ± 5.34E-03 ± 0.01

MRNN-PSO 3.43E-05 3.03E-05 0.87 5.23E-05 4.66E-05 0.87 7.25E-05 6.47E-05 0.88

± 4.83E-06 ± 4.84E-06 ± 0.03 ± 9.93E-06 ± 1.06E-05 ± 0.03 ± 1.47E-05 ± 1.49E-05 ± 0.02

MRNN-CQPSO 8.85E-06 8.22E-06 0.93 5.23E-05 4.66E-05 0.87 1.32E-05 1.26E-05 0.96

± 7.08E-07 ± 5.99E-07 ± 0.01 ± 9.93E-06 ± 1.06E-05 ± 0.03 ± 1.52E-06 ± 1.36E-06 ± 0.01

TDNN-RPROP 2.36E-04 2.27E-04 0.98 6.56E-04 6.46E-04 0.99 7.71E-04 7.51E-04 0.99

± 5.84E-05 ± 5.47E-05 ± 0.02 ± 1.99E-04 ± 1.95E-04 ± 0.01 ± 2.18E-04 ± 2.10E-04 ± 0.02

TDNN-PSO 8.08E-05 8.06E-05 0.99 1.33E-04 1.16E-04 0.86 7.71E-04 7.51E-04 0.99

± 1.80E-05 ± 1.89E-05 ± 0.03 ± 4.93E-05 ± 4.47E-05 ± 0.03 ± 2.18E-04 ± 2.10E-04 ± 0.02

TDNN-CQPSO 9.59E-06 9.02E-06 0.94 1.41E-05 1.37E-05 1.03 1.28E-05 1.23E-05 0.96

± 7.72E-07 ± 6.95E-07 ± 0.01 ± 5.62E-06 ± 3.95E-06 ± 0.02 ± 1.01E-06 ± 8.63E-07 ± 0.01

highest average ranks respectively. It is observed that the CQSO based models achieved

higher average ranks than the other models.

Scenarios B1 to B3: Table 7.11 shows that the FNN-CQSO model produced superior

performance compared to the other models. All the p-values for the pairwise comparisons
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between the FNN-CQSO and the other models were below the 0.0001 threshold. This

indicates that the difference in performance between the FNN-CQSO and the other

models were statistically significant. The performance ranking of the models given in

Table 7.12 shows that the FNN-CQSO model achieved the highest rank in terms of both

training and generalization. The remaining CQSO trained models achieved higher ranks

compared to the PSO and the RPROP trained models. The RPROP based models

achieved the lowest ranks.

The ρ values obtained by all the models indicated good generalization behaviour.

Figure 7.5 visually illustrates the error progression over time for four selected top

performing models for scenario B2. The figure shows that the MRNN-PSO model had

the worst error progression. The figure also shows that the FNN-CQSO located the

lowest value faster than the other models, and performed better than the Jordan-CQSO

throughout the experiment. Figure 7.5a shows that the Elman-RPROP recovered from

environmental changes faster than the other models.

It is observed that the performance of all the models, more especially that of the

FNN-CQSO, improved compared to the results obtained for scenarios A1, A2 and A3

(where f = 50). This improvement in performance was due to an increase in the value

of f (i.e the number of iterations allowed before a change). The errors in Table 7.11

illustrate that tracking of optima became more difficult for all the models as the spatial

severity increased. Examination of the average rank achieved by all the models revealed

that the CQSO trained models obtained the highest average ranks, while the RPROP
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Figure 7.5: Training and generalization error results for HIT time series, scenario B2
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Table 7.12: Models ranking in forecasting the HIT time series, scenarios B1 to B3

Model
B1 B2 B3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 1 1 1 1 1 1

Elman-RPROP 10 10 10 10 12 12 10.5 10.5

Elman-PSO 8 8 8 7 8 8 8 7.67

Elman-CQPSO 5 4 3 3 5 5 4.33 4

Jordan-RPROP 12 12 12 12 12 12 11.83 11.83

Jordan-PSO 7 7 7 8 7 7 7 7.33

Jordan-CQPSO 2 2 2 2 2 2 2 2

MRNN-RPROP 13 13 13 13 13 13 13 13

MRNN-PSO 6 6 6 6 6 6 5.83 5.83

MRNN-CQPSO 3 3 6 6 4 4 4.17 4.17

TDNN-RPROP 11 11 11 11 10 10 10.5 10.5

TDNN-PSO 9 9 9 9 10 10 9.17 9.17

TDNN-CQPSO 4 5 4 4 3 3 3.67 4

models achieved the lowest average ranks.

Scenarios C1 to C3: The FNN-CQSO model yielded the lowest training and gen-

eralization errors compared to all the other models, similar to the results obtained for

scenarios B1, B2 and B3. All the p-values for the pairwise comparisons between the

FNN-CQSO and the other models were less than the 0.0001 threshold. Thus, the FNN-

CQSO achieved the highest performance rank in terms of training and generalization, as

shown in Table 7.13.

The ρ values in Table 7.6 indicate that all the models showed a slight or no sign of

overfitting.

Figure 7.7 shows the performance progression over time for the FNN-CQSO and three

other top performing models (i.e Jordan-CQSO, MRNN-PSO and Elman-RPROP) for

scenario C2. Figure 7.7a shows that, after the initial few epochs, the Elman-RPROP

produced lowest training errors throughout the experiments. Figure 7.7b, however, shows

that both the Elman-RPROP and the FNN-CQSO produced similar generalization error
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Figure 7.6: Results of HIT time series, scenarios C1 to C3

Model

Scenario
C1 (f:150, s:250) C2 (f:150, s:500) C3 (f:150, s:528)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 5.08E-06 4.73E-06 0.93 5.58E-06 5.84E-06 1.05 6.18E-06 5.65E-06 0.92

± 2.09E-07 ± 1.78E-07 ± 0.01 ± 2.07E-07 ± 2.01E-07 ± 0.01 ± 3.93E-07 ± 3.40E-07 ± 0.01

Elman-RPROP 2.18E-04 2.18E-04 1 1.99E-04 2.00E-04 1.01 3.87E-04 3.88E-04 1

± 8.96E-05 ± 8.80E-05 ± 0.01 ± 5.67E-05 ± 5.63E-05 ± 0.01 ± 1.04E-04 ± 1.05E-04 ± 0.01

Elman-PSO 4.10E-05 3.65E-05 0.89 5.71E-05 4.85E-05 0.84 7.02E-05 6.55E-05 0.92

± 9.28E-06 ± 8.08E-06 ± 0.01 ± 7.31E-06 ± 7.42E-06 ± 0.01 ± 1.02E-05 ± 1.20E-05 ± 0.01

Elman-CQPSO 8.70E-06 7.91E-06 0.91 1.08E-05 1.07E-05 0.99 1.25E-05 1.15E-05 0.92

± 4.88E-07 ± 4.17E-07 ± 0.01 ± 7.58E-07 ± 6.66E-07 ± 0.01 ± 1.02E-06 ± 8.95E-07 ± 0.01

Jordan-RPROP 3.74E-03 3.71E-03 0.99 6.08E-03 6.01E-03 0.99 1.07E-02 1.06E-02 0.99

± 1.14E-03 ± 1.13E-03 ± 0 ± 1.45E-03 ± 1.42E-03 ± 0.01 ± 4.15E-03 ± 4.06E-03 ± 0

Jordan-PSO 3.47E-05 2.86E-05 0.8 4.67E-05 3.97E-05 0.85 8.50E-05 8.02E-05 0.92

± 4.79E-06 ± 5.24E-06 ± 0.03 ± 5.65E-06 ± 5.10E-06 ± 0.02 ± 2.53E-05 ± 2.66E-05 ± 0.03

Jordan-CQPSO 6.00E-06 5.55E-06 0.93 7.74E-06 7.92E-06 1.03 8.21E-06 7.85E-06 0.96

± 4.67E-07 ± 3.31E-07 ± 0.01 ± 5.87E-07 ± 5.17E-07 ± 0.01 ± 4.50E-07 ± 4.09E-07 ± 0.01

MRNN-RPROP 2.98E-03 2.91E-03 0.98 7.03E-03 6.98E-03 1 5.17E-03 5.15E-03 1

± 1.13E-03 ± 1.10E-03 ± 0.01 ± 2.02E-03 ± 2.00E-03 ± 0 ± 1.98E-03 ± 1.97E-03 ± 0.01

MRNN-PSO 2.73E-05 2.29E-05 0.83 3.39E-05 2.92E-05 0.86 5.07E-05 4.46E-05 0.87

± 3.81E-06 ± 3.54E-06 ± 0.02 ± 2.70E-06 ± 2.50E-06 ± 0.02 ± 1.27E-05 ± 1.18E-05 ± 0.02

MRNN-CQPSO 8.28E-06 7.76E-06 0.94 9.59E-06 9.71E-06 1.02 1.12E-05 1.07E-05 0.96

± 8.26E-07 ± 7.33E-07 ± 0.01 ± 9.82E-07 ± 8.34E-07 ± 0.01 ± 2.39E-06 ± 2.10E-06 ± 0.01

TDNN-RPROP 1.91E-04 1.88E-04 1 3.24E-04 3.12E-04 0.99 4.50E-04 4.33E-04 0.98

± 5.94E-05 ± 5.74E-05 ± 0.01 ± 9.91E-05 ± 9.36E-05 ± 0.02 ± 1.37E-04 ± 1.32E-04 ± 0.02

TDNN-PSO 8.06E-05 7.74E-05 0.95 1.44E-04 1.36E-04 0.89 9.87E-05 9.65E-05 0.93

± 2.20E-05 ± 2.23E-05 ± 0.03 ± 5.19E-05 ± 5.37E-05 ± 0.03 ± 2.53E-05 ± 3.00E-05 ± 0.04

TDNN-CQPSO 1.23E-05 1.14E-05 0.93 1.22E-05 1.24E-05 1.04 1.59E-05 1.49E-05 0.95

± 5.16E-06 ± 4.87E-06 ± 0.01 ± 2.81E-06 ± 2.63E-06 ± 0.01 ± 7.42E-06 ± 6.77E-06 ± 0.01

progression after the first environmental change. Other observations made are similar to

that of Figure 7.5.

The performance ranking of the models presented in Table 7.13 shows that the CQSO

trained models obtained the highest average ranks, and that the RPROP based models
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Figure 7.7: Training and generalization error results for HIT time series, scenario C2

achieved the lowest average ranks.

Table 7.14 shows that the FNN-CQSO model obtained the overall highest average

rank in predicting the HIT problem for all nine scenarios. The table also indicates that all

the CQSO based models achieved higher ranks than the PSO and RPROP based models.

Table 7.13: Models ranking in forecasting the HIT time series, scenarios C1 to C3

Model
C1 C2 C3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 1 1 1 1 1 1

Elman-RPROP 11 11 10 10 10 10 10.33 10.33

Elman-PSO 8 8 8 8 7 7 7.67 7.67

Elman-CQPSO 4 4 4 4 4 4 4 4

Jordan-RPROP 13 13 12 12 13 13 12.67 12.67

Jordan-PSO 7 7 7 7 8 8 7.33 7.33

Jordan-CQPSO 2 2 2 2 2 2 2 2

MRNN-RPROP 12 12 13 13 12 12 12.33 12.33

MRNN-PSO 6 6 6 6 6 6 6 6

MRNN-CQPSO 3 3 3 3 3 3 3 3

TDNN-RPROP 10 10 11 11 11 11 10.67 10.67

TDNN-PSO 9 9 9 9 9 9 9 9

TDNN-CQPSO 5 5 5 5 5 5 5 5
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Table 7.14: Models ranking in forecasting the HIT time series, scenarios A to C

Model
A B C Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1.67 1.67 1 1 1 1 1.22 1.22

Elman-RPROP 10 10 10.5 10.5 10.33 10.33 10.28 10.28

Elman-PSO 8 8 8 7.67 7.67 7.67 7.89 7.78

Elman-CQPSO 3.67 3.67 4.33 4 4 4 4 3.89

Jordan-RPROP 12 12 11.83 11.83 12.67 12.67 12.17 12.17

Jordan-PSO 7 7 7 7.33 7.33 7.33 7.11 7.22

Jordan-CQPSO 1.33 1.33 2 2 2 2 1.78 1.78

MRNN-RPROP 13 13 13 13 12.33 12.33 12.78 12.78

MRNN-PSO 5.67 5.67 5.83 5.83 6 6 5.83 5.83

MRNN-CQPSO 3.33 3.33 4.17 4.17 3 3 3.50 3.50

TDNN-RPROP 11 11 10.5 10.5 10.67 10.67 10.72 10.72

TDNN-PSO 9 9 9.17 9.17 9 9 9.06 9.06

TDNN-CQPSO 5.33 5.33 3.67 4 5 5 4.67 4.78

This implies that using CQSO as a training algorithm improved the performance of all

the RNN models.

7.2.3 DMT Time Series

Scenarios A1 to A3: Table 7.15 shows that the FNN-CQSO model outperformed

the other models by producing the lowest training and generalization errors. All the

p-values for the comparisons between the FNN-CQSO and any of the other models were

below the 0.0001 threshold. This implies that the FNN-CQSO produced errors that were

statistically not similar to any of the remaining models. The ρ values given in Table 7.15

shows that all the models showed either a slight or no sign of overfitting for scenarios

A1 and A3, except the MRNN-RPROP model which overfitted. For scenario A2, the

CQSO and the PSO based models overfitted, while the RPROP based models did not.

It is observed that the GE values produced by the CQSO and the RPROP trained

models worsened as the spatial severity increased.
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Table 7.15: Result of DMT time series, scenarios A1 to A3

Model

Scenario
A1 (f:10, s:200) A2 (f:10, s:400) A3 (f:10, s:510)

TE GE ρ TE GE ρ TE GE ρ

FNN-CQSO 1.19E-05 1.24E-05 1.04 1.19E-05 1.39E-05 1.17 1.20E-05 1.30E-05 1.09

± 2.43E-07 ± 2.75E-07 ± 0 ± 3.12E-07 ± 2.81E-07 ± 0.01 ± 2.93E-07 ± 2.40E-07 ± 0.01

Elman-RPROP 7.29E-04 7.29E-04 1 1.57E-03 1.58E-03 1 1.32E-03 1.32E-03 1

± 2.35E-04 ± 2.36E-04 ± 0.01 ± 3.53E-04 ± 3.54E-04 ± 0.01 ± 3.21E-04 ± 3.17E-04 ± 0.01

Elman-PSO 4.42E-05 4.58E-05 1.04 5.29E-05 5.74E-05 1.14 6.63E-05 6.58E-05 1

± 1.31E-05 ± 1.38E-05 ± 0.01 ± 1.72E-05 ± 1.90E-05 ± 0.01 ± 2.43E-05 ± 2.49E-05 ± 0.01

Elman-CQPSO 1.35E-05 1.38E-05 1.02 1.25E-05 1.45E-05 1.16 1.26E-05 1.36E-05 1.08

± 2.05E-06 ± 1.94E-06 ± 0.01 ± 3.16E-07 ± 4.02E-07 ± 0.01 ± 3.21E-07 ± 3.91E-07 ± 0.01

Jordan-RPROP 1.47E-02 1.48E-02 1 2.52E-02 2.51E-02 1 3.91E-02 3.92E-02 1

± 5.10E-03 ± 5.16E-03 ± 0 ± 6.27E-03 ± 6.26E-03 ± 0 ± 1.34E-02 ± 1.34E-02 ± 0

Jordan-PSO 2.91E-05 3.02E-05 1.05 3.81E-05 4.32E-05 1.19 7.30E-05 7.27E-05 1.02

± 5.71E-06 ± 5.80E-06 ± 0.03 ± 7.66E-06 ± 7.50E-06 ± 0.07 ± 3.91E-05 ± 3.66E-05 ± 0.04

Jordan-CQPSO 1.23E-05 1.27E-05 1.03 1.65E-05 1.88E-05 1.16 1.23E-05 1.32E-05 1.07

± 4.29E-07 ± 3.91E-07 ± 0.01 ± 8.09E-06 ± 8.49E-06 ± 0.02 ± 4.11E-07 ± 4.18E-07 ± 0.01

MRNN-RPROP 1.62E-02 1.63E-02 1.01 2.26E-02 2.26E-02 1 3.01E-02 3.02E-02 1.03

± 4.71E-03 ± 4.72E-03 ± 0 ± 8.14E-03 ± 8.17E-03 ± 0.02 ± 9.69E-03 ± 9.68E-03 ± 0.04

MRNN-PSO 3.18E-05 3.19E-05 1.02 7.93E-05 8.70E-05 1.17 6.20E-05 6.40E-05 1.02

± 7.96E-06 ± 7.33E-06 ± 0.03 ± 3.50E-05 ± 3.52E-05 ± 0.06 ± 1.90E-05 ± 2.01E-05 ± 0.04

MRNN-CQPSO 1.28E-05 1.31E-05 1.03 1.26E-05 1.48E-05 1.18 2.75E-05 3.05E-05 1.21

± 5.76E-07 ± 5.28E-07 ± 0.01 ± 3.88E-07 ± 5.22E-07 ± 0.01 ± 2.80E-05 ± 2.82E-05 ± 0.03

TDNN-RPROP 7.99E-04 7.81E-04 0.98 1.69E-03 1.60E-03 0.96 1.31E-03 1.23E-03 0.95

± 2.40E-04 ± 2.33E-04 ± 0.04 ± 4.26E-04 ± 4.02E-04 ± 0.01 ± 3.79E-04 ± 3.48E-04 ± 0.02

TDNN-PSO 4.90E-04 4.91E-04 1.04 3.11E-04 3.29E-04 1.12 1.88E-04 1.87E-04 0.99

± 2.44E-04 ± 2.42E-04 ± 0.02 ± 1.74E-04 ± 1.80E-04 ± 0.05 ± 1.02E-04 ± 1.01E-04 ± 0.01

TDNN-CQPSO 1.19E-05 1.25E-05 1.05 3.14E-05 3.33E-05 1.17 3.49E-05 3.52E-05 1.08

± 2.59E-07 ± 2.71E-07 ± 0.01 ± 3.85E-05 ± 3.80E-05 ± 0.01 ± 4.46E-05 ± 4.35E-05 ± 0.01

Figure 7.8 shows the performance progression over time for the FNN-CQSO and three

other best performing models (which includes the Jordan-CQSO, TDNN-RPROP and

TDNN-PSO) for scenario A1. As visualized in the figure, the Elman-RPROP model had

the worst initial errors. The two CQSO based models (i.e. FNN-CQSO and TDNN-
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Figure 7.8: Training and generalization error results for DMT time series, scenario A1

CQSO) produced the lowest initial errors and took less than five epochs to locate the

lowest error, while the other models took a minimum of about 35 epochs. This indicates

that the CQSO based models benefited from the component wise optimization strategy,

and enhanced diversity due to the QSO used in the subswarm. The figure also illustrates

that, after the initial 35 epochs, all four models successfully recovered from the changes,

producing similar performance throughout the remaining epochs, with the Jordan-PSO

yielding slightly the worst errors.

The performance ranking of the models given in Table 7.16 shows that the FNN-

CQSO model achieved the highest average ranks.

Scenarios B1 to B3: Table 7.17 shows that the FNN-CQSO obtained the lowest CMF

TE and GE values. All the p-values obtained from the Mann Whitney U tests between

the FNN-CQSO and the other models were below the 0.0001 threshold.

The ρ values in Table 7.17 show that all the models showed either a slight or no sign of

overfitting for scenarios B1 and B3. For scenario B2, none of the RPROP trained models

overfited, while the CQSO and the PSO trained models overfitted. These generalization

behaviours exhibited by the models are similar to what was seen for scenarios A1 to A3.

Figure 7.9 illustrates the error progression over time achieved by the FNN-CQSO

and three other selected top performing models for scenario B2. The observations made

from the figure are similar to that of Figure 7.8 above.

Table 7.18 shows that the FNN-CQSO obtained the highest performance rank for
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Table 7.16: Models ranking in forecasting the DMT time series, scenarios A1 to A3

Model
A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 1 1 1 1 1 1

Elman-RPROP 10 10 10 10 11 11 10.33 10.33

Elman-PSO 8 8 7 7 7 7 7.33 7.33

Elman-CQPSO 5 5 2 2 3 3 3.33 3.33

Jordan-RPROP 12 12 13 13 13 13 12.67 12.67

Jordan-PSO 6 6 6 6 8 8 6.67 6.67

Jordan-CQPSO 3 3 4 4 2 2 3 3

MRNN-RPROP 13 13 12 12 12 12 12.33 12.33

MRNN-PSO 7 7 8 8 6 6 7 7

MRNN-CQPSO 4 4 3 3 4 4 3.67 3.67

TDNN-RPROP 11 11 11 11 10 10 10.67 10.67

TDNN-PSO 9 9 9 9 9 9 9 9

TDNN-CQPSO 2 2 5 5 5 5 4 4
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Figure 7.9: Training and generalization error results for DMT time series, scenario B2

each of the scenarios, both in terms of training and generalization. Thus, the FNN-

CQSO achieved the highest average rank over the three scenarios.

Scenarios C1 to C3: The results in Table 7.19 show that the FNN-CQSO model

produced superior performance compared to the other models. All the p-values for the
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Table 7.17: Results of DMT time series, scenario B1 to B3

Model

Scenario
B1 (f:50, s:200) B2 (f:50, s:400) B3 (f:50, s:510)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 1.10E-05 1.17E-05 1.06 1.09E-05 1.30E-05 1.2 1.09E-05 1.19E-05 1.1

± 1.29E-07 ± 1.39E-07 ± 0 ± 1.30E-07 ± 1.59E-07 ± 0 ± 1.60E-07 ± 2.10E-07 ± 0

Elman-RPROP 2.07E-04 2.12E-04 1.02 3.42E-04 3.44E-04 1.01 4.02E-04 4.02E-04 1

± 5.24E-05 ± 5.53E-05 ± 0.02 ± 1.04E-04 ± 1.03E-04 ± 0.01 ± 1.06E-04 ± 1.06E-04 ± 0.01

Elman-PSO 1.77E-05 1.83E-05 1.03 2.54E-05 2.81E-05 1.14 2.06E-05 2.17E-05 1.04

± 2.55E-06 ± 2.79E-06 ± 0.02 ± 6.05E-06 ± 5.87E-06 ± 0.01 ± 3.70E-06 ± 4.14E-06 ± 0.01

Elman-CQPSO 1.14E-05 1.19E-05 1.05 1.13E-05 1.34E-05 1.19 1.14E-05 1.23E-05 1.08

± 1.25E-07 ± 1.23E-07 ± 0 ± 1.39E-07 ± 1.74E-07 ± 0.01 ± 2.15E-07 ± 2.71E-07 ± 0.01

Jordan-RPROP 2.10E-03 2.12E-03 1.01 5.11E-03 4.96E-03 0.99 9.51E-03 9.51E-03 1

± 6.50E-04 ± 6.55E-04 ± 0 ± 1.91E-03 ± 1.81E-03 ± 0.02 ± 2.95E-03 ± 2.93E-03 ± 0

Jordan-PSO 1.59E-05 1.62E-05 1.02 2.10E-05 2.44E-05 1.18 2.12E-05 2.13E-05 1.01

± 1.17E-06 ± 1.21E-06 ± 0.01 ± 3.21E-06 ± 3.44E-06 ± 0.03 ± 3.15E-06 ± 2.89E-06 ± 0.02

Jordan-CQPSO 1.13E-05 1.19E-05 1.05 1.10E-05 1.31E-05 1.18 1.11E-05 1.20E-05 1.08

± 1.67E-07 ± 1.86E-07 ± 0.01 ± 1.56E-07 ± 1.87E-07 ± 0.01 ± 1.62E-07 ± 2.11E-07 ± 0.01

MRNN-RPROP 3.85E-03 3.88E-03 1.01 4.47E-03 4.44E-03 0.99 5.62E-03 5.64E-03 1.01

± 2.14E-03 ± 2.17E-03 ± 0.01 ± 1.14E-03 ± 1.14E-03 ± 0.01 ± 2.17E-03 ± 2.18E-03 ± 0.01

MRNN-PSO 1.66E-05 1.72E-05 1.04 2.27E-05 2.60E-05 1.17 2.26E-05 2.34E-05 1.03

± 1.40E-06 ± 1.52E-06 ± 0.01 ± 5.45E-06 ± 5.10E-06 ± 0.03 ± 5.04E-06 ± 5.30E-06 ± 0.02

MRNN-CQPSO 1.14E-05 1.20E-05 1.05 1.20E-05 1.40E-05 1.18 1.13E-05 1.23E-05 1.08

± 1.45E-07 ± 1.69E-07 ± 0 ± 8.11E-07 ± 7.08E-07 ± 0.01 ± 2.10E-07 ± 3.08E-07 ± 0.01

TDNN-RPROP 3.98E-04 3.99E-04 1 4.85E-04 4.48E-04 0.97 6.28E-04 6.34E-04 0.97

± 1.78E-04 ± 1.79E-04 ± 0.02 ± 2.14E-04 ± 1.87E-04 ± 0.02 ± 2.46E-04 ± 2.60E-04 ± 0.03

TDNN-PSO 4.11E-04 4.13E-04 1.04 4.32E-04 4.46E-04 1.06 7.65E-05 7.56E-05 1

± 2.68E-04 ± 2.70E-04 ± 0.02 ± 2.65E-04 ± 2.77E-04 ± 0.05 ± 5.35E-05 ± 5.12E-05 ± 0.04

TDNN-CQPSO 1.48E-05 1.54E-05 1.06 1.30E-05 1.51E-05 1.18 2.64E-05 2.66E-05 1.08

± 5.07E-06 ± 4.85E-06 ± 0.01 ± 2.31E-06 ± 2.31E-06 ± 0.01 ± 2.06E-05 ± 1.94E-05 ± 0.02

pairwise comparisons between the FNN-CQSO and the other models were less than the

0.0001 threshold, except for scenario C1, where the FNN-CQSO produced statistically

similar errors compared to the TDNN-RPROP model. For scenario C2, the p-values

indicate that the performance of the FNN-CQSO, compared to the Elman-CQSO, the
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Jordan-RPROP, the Jordan-PSO, the MRNN-CQSO and the TDNN-RPROP, were sta-

tistically similar. For scenario C3, the difference in performance between the FNN-CQSO

and the TDNN-RPROP was statistically insignificant.

Figure 7.10 shows the error progression over time for the FNN-CQSO and three

Table 7.18: Models ranking in forecasting the DMT time series, scenarios B1-B3

Model
B1 B2 B3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 1 1 1 1 1 1

Elman-RPROP 9 9 9 9 10 10 9.33 9.33

Elman-PSO 8 8 8 8 5 6 7 7.33

Elman-CQPSO 3 3 3 3 4 4 3.33 3.33

Jordan-RPROP 12 12 13 13 13 13 12.67 12.67

Jordan-PSO 6 6 6 6 6 5 6 5.67

Jordan-CQPSO 2 2 2 2 2 2 2 2

MRNN-RPROP 13 13 12 12 12 12 12.33 12.33

MRNN-PSO 7 7 7 7 7 7 7 7

MRNN-CQPSO 4 4 4 4 3 3 3.67 3.67

TDNN-RPROP 10 10 11 11 11 11 10.67 10.67

TDNN-PSO 11 11 10 10 9 9 10 10

TDNN-CQPSO 5 5 5 5 8 8 6 6
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Figure 7.10: Training and generalization error results for DMT time series, scenario C3
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Table 7.19: Results of DMT time series, scenario C1 to C3

Model

Scenario
C1 (f:100, s:200) C2 (f:100, s:400) C3 (f:100, s:510)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 1.08E-05 1.15E-05 1.06 1.07E-05 1.28E-05 1.2 1.08E-05 1.17E-05 1.09

± 1.13E-07 ± 1.31E-07 ± 0 ± 1.29E-07 ± 1.62E-07 ± 0 ± 2.97E-07 ± 1.16E-07 ± 0

Elman-RPROP 9.14E-05 9.25E-05 1.02 1.68E-04 1.70E-04 1.02 1.88E-04 1.88E-04 1

± 2.01E-05 ± 2.00E-05 ± 0.01 ± 5.76E-05 ± 5.77E-05 ± 0.01 ± 4.75E-05 ± 4.72E-05 ± 0.01

Elman-PSO 1.46E-05 1.49E-05 1.03 1.61E-05 1.86E-05 1.16 1.91E-05 1.97E-05 1.04

± 1.08E-06 ± 1.18E-06 ± 0.01 ± 1.69E-06 ± 1.86E-06 ± 0.01 ± 2.78E-06 ± 2.81E-06 ± 0.01

Elman-CQPSO 1.12E-05 1.17E-05 1.05 1.09E-05 1.31E-05 1.2 1.09E-05 1.17E-05 1.07

± 1.03E-07 ± 1.23E-07 ± 0.01 ± 2.32E-07 ± 2.55E-07 ± 0.01 ± 1.33E-07 ± 1.81E-07 ± 0.01

Jordan-RPROP 1.22E-03 1.24E-03 1.02 3.60E-03 3.51E-03 1.01 3.79E-03 3.78E-03 1

± 3.67E-04 ± 3.76E-04 ± 0.01 ± 2.52E-03 ± 2.31E-03 ± 0.01 ± 9.82E-04 ± 9.83E-04 ± 0.01

Jordan-PSO 1.53E-05 1.57E-05 1.03 2.00E-05 2.25E-05 1.16 1.73E-05 1.78E-05 1.03

± 1.96E-06 ± 2.01E-06 ± 0.01 ± 7.91E-06 ± 7.71E-06 ± 0.02 ± 2.05E-06 ± 2.03E-06 ± 0.02

Jordan-CQPSO 1.22E-05 1.27E-05 1.04 1.11E-05 1.33E-05 1.2 1.10E-05 1.19E-05 1.08

± 1.64E-06 ± 1.43E-06 ± 0.01 ± 2.65E-07 ± 2.41E-07 ± 0.01 ± 3.71E-07 ± 4.09E-07 ± 0.01

MRNN-RPROP 1.79E-03 1.77E-03 0.99 2.78E-03 2.79E-03 1 3.13E-03 3.13E-03 1

± 5.23E-04 ± 5.36E-04 ± 0.04 ± 9.93E-04 ± 1.01E-03 ± 0.01 ± 1.20E-03 ± 1.21E-03 ± 0.01

MRNN-PSO 1.43E-05 1.47E-05 1.02 1.78E-05 2.00E-05 1.14 1.54E-05 1.62E-05 1.05

± 7.84E-07 ± 8.81E-07 ± 0.01 ± 2.63E-06 ± 2.59E-06 ± 0.02 ± 8.06E-07 ± 8.61E-07 ± 0.02

MRNN-CQPSO 1.12E-05 1.19E-05 1.06 1.09E-05 1.31E-05 1.2 1.11E-05 1.19E-05 1.08

± 1.17E-07 ± 1.50E-07 ± 0.01 ± 1.49E-07 ± 1.88E-07 ± 0.01 ± 1.10E-07 ± 1.65E-07 ± 0.01

TDNN-RPROP 1.50E-04 1.32E-04 0.96 2.39E-04 2.17E-04 0.96 2.97E-04 2.90E-04 0.99

± 6.51E-05 ± 4.85E-05 ± 0.03 ± 8.17E-05 ± 6.41E-05 ± 0.03 ± 9.35E-05 ± 9.15E-05 ± 0.01

TDNN-PSO 1.82E-04 1.84E-04 1.03 5.46E-04 5.35E-04 0.99 3.41E-04 3.39E-04 0.98

± 8.13E-05 ± 8.09E-05 ± 0.02 ± 3.12E-04 ± 3.05E-04 ± 0.05 ± 1.45E-04 ± 1.45E-04 ± 0.01

TDNN-CQPSO 1.19E-05 1.26E-05 1.06 1.57E-05 1.77E-05 1.17 1.17E-05 1.27E-05 1.09

± 4.79E-07 ± 4.15E-07 ± 0.01 ± 4.06E-06 ± 3.90E-06 ± 0.02 ± 8.94E-07 ± 8.28E-07 ± 0.01

selected top performing models for scenario C3. All observations made are similar to

that of Figure 7.8 above.

The ρ values in Table 7.19 indicate that all the models showed good generalisation

behaviour for scenarios C1 and C3. For scenario C2, the CQSO and the PSO trained
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models overfitted, while the RPROP trained models exhibited either minor, or no over-

fitting baheviour.

Table 7.20 shows that the FNN-CQSO model obtained the highest average rank over

the three scenarios. It is observed that the CQSO based models achieved higher ranks

compared to the PSO and RPROP based models.

Table 7.20: Models ranking in forecasting the DMT time series, scenarios C1 to C3

Model
C1 C2 C3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 1 1 1 1 1 1

Elman-RPROP 9 9 9 9 9 9 9 9

Elman-PSO 7 7 6 6 8 8 7 7

Elman-CQPSO 2 2 3 3 2 2 2.33 2.33

Jordan-RPROP 12 12 13 13 13 13 12.67 12.67

Jordan-PSO 8 8 8 8 7 7 7.67 7.67

Jordan-CQPSO 5 5 4 4 3 3 4 4

MRNN-RPROP 13 13 12 12 12 12 12.33 12.33

MRNN-PSO 6 6 7 7 6 6 6.33 6.33

MRNN-CQPSO 3 3 2 2 4 4 3 3

TDNN-RPROP 10 10 10 10 10 10 10 10

TDNN-PSO 11 11 11 11 11 11 11 11

TDNN-CQPSO 4 4 5 5 5 5 4.67 4.67

The values in Table 7.21 show that the FNN-CQSO obtained the overall highest

average rank for all nine scenarios, and therefore emerged as the winner in predicting

the DMT problem. The table also reveals that the CQSO trained models achieved higher

average ranks compared to the PSO and the RPROP trained models. This implies that

the CQSO generally improved the performance of the RNNs in predicting the DMT time

series for the nine dynamic scenarios considered.
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Table 7.21: Overall ranking of the models in predicting the DMT problem, scenarios A to C

Model
A B C Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 1 1 1 1 1 1

Elman-RPROP 10.33 10.33 9.33 9.33 9 9 9.56 9.56

Elman-PSO 7.33 7.33 7 7.33 7 7 7.11 7.22

Elman-CQPSO 3.33 3.33 3.33 3.33 2.33 2.33 2.99 2.99

Jordan-RPROP 12.67 12.67 12.67 12.67 12.67 12.67 12.67 12.67

Jordan-PSO 6.67 6.67 6 5.67 7.67 7.67 6.78 6.67

Jordan-CQPSO 3 3 2 2 4 4 3 3

MRNN-RPROP 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33

MRNN-PSO 7 7 7 7 6.33 6.33 6.78 6.78

MRNN-CQPSO 3.67 3.67 3.67 3.67 3 3 3.45 3.45

TDNN-RPROP 10.67 10.67 10.67 10.67 10 10 10.45 10.45

TDNN-PSO 9 9 10 10 11 11 10 10

TDNN-CQPSO 4 4 6 6 4.67 4.67 4.89 4.98

7.2.4 MG Time Series

Scenarios A1 to A3: The results presented in Table 7.22 show that the FNN-CQSO

achieved the best performance by yielding the lowest training and generalization errors

compared to all the other models. All the p-values for the Mann Whitney U test com-

parisons between the FNN-CQSO and the other models were below the 0.0001 threshold.

These p-values confirmed that the difference in performance between the FNN-CQSO

and the other models were statistically significant. Therefore, the FNN-CQSO achieved

the highest rank, both in terms of training and generalization, as shown in Table 7.23.

The ρ values in Table 7.22 illustrate that none of the CQSO and the PSO trained

models overfitted. The RPROP trained models, however, either overfitted or showed

slight signs of overfitting for scenario A1. For scenario A2, the RPROP trained models

overfitted slightly. For scenario A3, none of the models trained using RPROP overfitted.

Figure 7.11 illustrates the performance progression over time for the FNN-CQSO and

three other selected models for scenario A1. The three models selected obtained the best
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Table 7.22: Results of MG time series, scenario A1-A3

Model

Scenario
A1 (f:50, s:30) A2 (f:50, s:60) A3 (f:50, s:84)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 5.69E-06 3.50E-06 0.62 8.66E-06 5.80E-06 0.67 1.03E-05 8.31E-06 0.82

± 4.29E-07 ± 2.33E-07 ± 0.02 ± 9.69E-07 ± 6.63E-07 ± 0.02 ± 9.17E-07 ± 7.09E-07 ± 0.03

Elman-RPROP 5.82E-04 6.86E-04 1.15 5.20E-04 5.54E-04 1.06 5.29E-04 5.27E-04 0.93

± 4.42E-04 ± 5.14E-04 ± 0.1 ± 1.55E-04 ± 1.74E-04 ± 0.17 ± 1.89E-04 ± 2.10E-04 ± 0.04

Elman-PSO 7.71E-05 4.66E-05 0.61 9.73E-05 5.56E-05 0.57 1.44E-04 6.11E-05 0.45

± 6.92E-06 ± 6.07E-06 ± 0.1 ± 8.31E-06 ± 5.56E-06 ± 0.17 ± 1.88E-05 ± 4.88E-06 ± 0.04

Elman-CQPSO 3.69E-05 3.55E-05 0.97 4.55E-05 4.38E-05 0.97 5.15E-05 3.79E-05 0.73

± 5.28E-06 ± 6.37E-06 ± 0.11 ± 5.17E-06 ± 5.02E-06 ± 0.05 ± 5.49E-06 ± 4.43E-06 ± 0.03

Jordan-RPROP 1.99E-01 2.02E-01 1.06 1.18E-01 1.07E-01 1.01 4.23E-02 4.27E-02 0.99

± 1.86E-01 ± 1.89E-01 ± 0.06 ± 1.25E-01 ± 1.15E-01 ± 0.05 ± 7.03E-02 ± 7.03E-02 ± 0.03

Jordan-PSO 7.59E-05 4.21E-05 0.55 8.77E-05 5.04E-05 0.59 1.18E-04 4.99E-05 0.44

± 5.75E-06 ± 4.03E-06 ± 0.03 ± 6.10E-06 ± 4.39E-06 ± 0.06 ± 1.10E-05 ± 4.46E-06 ± 0.04

Jordan-CQPSO 1.36E-05 1.31E-05 0.94 2.06E-05 1.86E-05 0.9 2.46E-05 1.82E-05 0.73

± 1.41E-06 ± 2.22E-06 ± 0.11 ± 2.27E-06 ± 2.35E-06 ± 0.04 ± 3.07E-06 ± 2.44E-06 ± 0.02

MRNN-RPROP 9.64E-03 9.90E-03 1.03 1.42E-02 1.66E-02 1.06 1.09E-02 1.11E-02 0.98

± 2.84E-03 ± 2.86E-03 ± 0.02 ± 6.73E-03 ± 9.29E-03 ± 0.07 ± 6.11E-03 ± 6.33E-03 ± 0.03

MRNN-PSO 7.60E-05 4.81E-05 0.63 1.02E-04 5.59E-05 0.57 1.13E-04 4.81E-05 0.44

± 5.99E-06 ± 5.11E-06 ± 0.04 ± 1.17E-05 ± 6.56E-06 ± 0.06 ± 8.38E-06 ± 3.05E-06 ± 0.03

MRNN-CQPSO 9.15E-05 5.45E-05 0.61 1.15E-04 9.66E-05 0.86 1.21E-04 6.69E-05 0.59

± 1.13E-05 ± 6.06E-06 ± 0.05 ± 1.38E-05 ± 1.28E-05 ± 0.06 ± 1.52E-05 ± 6.00E-06 ± 0.06

TDNN-RPROP 1.33E-04 1.70E-04 1.29 2.97E-04 2.93E-04 1 2.88E-04 2.71E-04 0.93

± 2.50E-05 ± 3.12E-05 ± 0.07 ± 5.72E-05 ± 5.56E-05 ± 0.02 ± 8.04E-05 ± 7.76E-05 ± 0.02

TDNN-PSO 6.83E-05 4.46E-05 0.64 8.19E-05 4.59E-05 0.56 1.05E-04 4.99E-05 0.48

± 6.71E-06 ± 6.34E-06 ± 0.05 ± 5.03E-06 ± 5.28E-06 ± 0.05 ± 9.19E-06 ± 4.42E-06 ± 0.03

TDNN-CQPSO 1.81E-05 1.61E-05 0.91 2.14E-05 1.72E-05 0.81 2.80E-05 2.03E-05 0.73

± 2.97E-06 ± 2.48E-06 ± 0.04 ± 2.48E-06 ± 1.91E-06 ± 0.03 ± 2.87E-06 ± 2.15E-06 ± 0.02

results from the RPROP, the PSO and the CQSO trained models. Figure 7.11 shows

that all the models had a stable performance progression throughout the experiments,

with a slight drop in training errors and a minor increase in the peak of the generalization

errors after environmental changes. The figure also shows that the FNN-CQSO model
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Figure 7.11: Training and generalization error results for MG time series, scenario A1

outperformed the other models right from the first epoch to the end.

Scenarios B1 to B3: Table 7.24 shows that the FNN-CQSO produced the lowest

CMF TE and GE values compared to the other models. All the p-values for the pair-

wise comparisons between the FNN-CQSO and the other models were below the 0.0001

Table 7.23: Models ranking in forecasting the MG time series, scenarios A1 to A3

Model
A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 1 1 1 1 1 1

Elman-RPROP 11 11 11 11 11 11 11 11

Elman-PSO 8 7 7 7 9 8 8 7.33

Elman-CQPSO 4 4 4 4 4 4 4 4

Jordan-RPROP 13 13 13 13 13 13 13 13

Jordan-PSO 6 5 6 6 7 6 6.33 5.67

Jordan-CQPSO 2 2 2 3 2 2 2 2.33

MRNN-RPROP 12 12 12 12 12 12 12 12

MRNN-PSO 7 8 8 8 6 5 7 7

MRNN-CQPSO 9 9 9 9 8 9 8.67 9

TDNN-RPROP 10 10 10 10 10 10 10 10

TDNN-PSO 5 6 5 5 5 7 5 6

TDNN-CQPSO 3 3 3 2 3 3 3 2.67
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Table 7.24: Results of MG time series, scenario B1 to B3

Model

Scenario
B1 (f:100, s:30) B2 (f:100, s:60) B3 (f:100, s:84)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 4.22E-06 2.74E-06 0.65 5.29E-06 3.84E-06 0.73 5.93E-06 5.22E-06 0.89

± 2.65E-07 ± 1.53E-07 ± 0.02 ± 5.17E-07 ± 3.51E-07 ± 0.02 ± 5.81E-07 ± 4.58E-07 ± 0.02

Elman-RPROP 9.85E-04 1.04E-03 1.17 7.78E-04 8.62E-04 1.03 3.90E-04 3.57E-04 0.89

± 8.32E-04 ± 8.46E-04 ± 0.09 ± 4.55E-04 ± 5.19E-04 ± 0.04 ± 2.12E-04 ± 2.07E-04 ± 0.06

Elman-PSO 4.77E-05 3.80E-05 0.83 6.95E-05 4.33E-05 0.62 8.13E-05 3.94E-05 0.5

± 7.25E-06 ± 6.17E-06 ± 0.09 ± 6.95E-06 ± 5.86E-06 ± 0.04 ± 1.15E-05 ± 3.73E-06 ± 0.06

Elman-CQPSO 2.50E-05 2.89E-05 1.16 4.05E-05 2.72E-05 0.84 3.54E-05 2.37E-05 0.72

± 2.77E-06 ± 4.45E-06 ± 0.13 ± 1.80E-05 ± 3.34E-06 ± 0.07 ± 7.08E-06 ± 2.84E-06 ± 0.05

Jordan-RPROP 1.08E-01 1.17E-01 1.05 9.91E-02 9.35E-02 1.04 3.99E-02 4.18E-02 0.99

± 1.45E-01 ± 1.59E-01 ± 0.03 ± 1.32E-01 ± 1.25E-01 ± 0.04 ± 7.24E-02 ± 7.58E-02 ± 0.02

Jordan-PSO 4.14E-05 2.42E-05 0.58 5.74E-05 3.11E-05 0.55 6.25E-05 3.29E-05 0.53

± 5.43E-06 ± 3.79E-06 ± 0.05 ± 4.36E-06 ± 3.92E-06 ± 0.06 ± 4.10E-06 ± 2.94E-06 ± 0.04

Jordan-CQPSO 1.03E-05 1.26E-05 1.05 1.37E-05 1.19E-05 0.85 1.33E-05 9.66E-06 0.73

± 1.98E-06 ± 4.09E-06 ± 0.18 ± 1.88E-06 ± 2.05E-06 ± 0.06 ± 1.38E-06 ± 9.18E-07 ± 0.03

MRNN-RPROP 7.71E-03 8.34E-03 1.08 1.53E-02 1.61E-02 1.07 8.79E-03 9.11E-03 0.99

± 2.83E-03 ± 3.05E-03 ± 0.05 ± 6.85E-03 ± 7.02E-03 ± 0.04 ± 4.22E-03 ± 4.46E-03 ± 0.03

MRNN-PSO 4.77E-05 3.50E-05 0.78 6.60E-05 3.84E-05 0.62 6.67E-05 3.43E-05 0.51

± 6.73E-06 ± 4.49E-06 ± 0.09 ± 1.21E-05 ± 4.51E-06 ± 0.06 ± 4.69E-06 ± 3.00E-06 ± 0.03

MRNN-CQPSO 4.58E-05 3.76E-05 0.86 6.89E-05 4.93E-05 0.73 8.99E-05 5.09E-05 0.61

± 5.19E-06 ± 3.53E-06 ± 0.08 ± 6.26E-06 ± 5.22E-06 ± 0.06 ± 1.40E-05 ± 4.48E-06 ± 0.05

TDNN-RPROP 7.64E-05 1.12E-04 1.53 1.22E-04 1.28E-04 1.05 1.76E-04 1.71E-04 0.96

± 1.27E-05 ± 1.60E-05 ± 0.14 ± 2.40E-05 ± 2.54E-05 ± 0.02 ± 5.01E-05 ± 4.93E-05 ± 0.02

TDNN-PSO 3.39E-05 2.39E-05 0.7 5.65E-05 3.05E-05 0.54 6.60E-05 3.33E-05 0.51

± 3.31E-06 ± 3.28E-06 ± 0.04 ± 4.29E-06 ± 3.07E-06 ± 0.03 ± 5.13E-06 ± 3.23E-06 ± 0.04

TDNN-CQPSO 1.29E-05 1.26E-05 1 1.43E-05 1.21E-05 0.86 1.62E-05 1.29E-05 0.82

± 1.35E-06 ± 1.13E-06 ± 0.06 ± 1.26E-06 ± 9.63E-07 ± 0.04 ± 2.46E-06 ± 1.52E-06 ± 0.03

threshold. This indicates that the errors produced by the FNN-CQSO are significantly

different compared to the errors produced by the other models.

The ρ values in Table 7.24 indicate that all the models showed a slight or no sign

of overfitting behaviour, except for scenario B1, where the Elman-RPROP, the TDNN-
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Table 7.25: Models ranking in forecasting the MG time series, scenarios B1 to B3

Model
B1 B2 B3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 1 1 1 1 1 1

Elman-RPROP 11 11 11 11 11 11 11 11

Elman-PSO 8 9 9 8 8 8 8.33 8.33

Elman-CQPSO 4 6 4 4 4 4 4 4.67

Jordan-RPROP 13 13 13 13 13 13 13 13

Jordan-PSO 6 5 6 6 5 5 5.67 5.33

Jordan-CQPSO 2 3 2 2 2 2 2 2.33

MRNN-RPROP 12 12 12 12 12 12 12 12

MRNN-PSO 9 7 7 7 7 7 7.67 7

MRNN-CQPSO 7 8 8 9 9 9 8 8.67

TDNN-RPROP 10 10 10 10 10 10 10 10

TDNN-PSO 5 4 5 5 6 6 5.33 5

TDNN-CQPSO 3 2 3 3 3 3 3 2.67

RPROP, and the Elman-CQSO overfitted.

Figure 7.12 illustrates performance progression over time, achieved by the FNN-

CQSO and three selected top performing models for scenario B2. Observations from the

figure are similar to that of Figure 7.11.
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Figure 7.12: Training and generalization error results for MG time series, scenario B2
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The performance ranking of the models given in Table 7.25 shows that the FNN-

CQSO achieved the highest average rank.

Scenarios C1 to C3: The TE and GE values in Table 7.26 show that the FNN-

CQSO outperformed the other models. All the p-values for the pairwise comparisons

Table 7.26: Results of MG time series, scenario C1 to C3

Model

Scenario
C1 (f:200, s:30) C2 (f:200, s:60) C3 (f:200, s:84)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 3.32E-06 2.53E-06 0.77 4.01E-06 3.12E-06 0.78 4.34E-06 4.42E-06 1.05

± 1.53E-07 ± 8.79E-08 ± 0.02 ± 1.98E-07 ± 1.23E-07 ± 0.02 ± 3.51E-07 ± 1.77E-07 ± 0.06

Elman-RPROP 1.35E-03 1.71E-03 1.31 9.11E-04 1.11E-03 1.13 1.52E-04 1.48E-04 0.93

± 1.57E-03 ± 2.34E-03 ± 0.25 ± 6.30E-04 ± 8.40E-04 ± 0.12 ± 7.57E-05 ± 7.88E-05 ± 0.04

Elman-PSO 3.63E-05 3.15E-05 0.93 4.42E-05 2.93E-05 0.65 5.26E-05 2.66E-05 0.53

± 8.52E-06 ± 6.72E-06 ± 0.25 ± 5.96E-06 ± 5.54E-06 ± 0.12 ± 9.79E-06 ± 3.71E-06 ± 0.04

Elman-CQPSO 1.70E-05 2.59E-05 1.57 2.56E-05 2.02E-05 0.86 1.96E-05 1.48E-05 0.76

± 2.32E-06 ± 4.60E-06 ± 0.22 ± 5.66E-06 ± 3.43E-06 ± 0.07 ± 2.24E-06 ± 1.59E-06 ± 0.04

Jordan-RPROP 1.92E-01 1.90E-01 1.08 8.40E-02 6.62E-02 1.03 2.71E-01 2.77E-01 1.03

± 1.88E-01 ± 1.84E-01 ± 0.06 ± 1.19E-01 ± 9.39E-02 ± 0.05 ± 2.17E-01 ± 2.20E-01 ± 0.05

Jordan-PSO 2.27E-05 1.75E-05 0.76 3.45E-05 1.98E-05 0.57 4.30E-05 2.03E-05 0.5

± 3.32E-06 ± 3.64E-06 ± 0.12 ± 3.19E-06 ± 2.53E-06 ± 0.04 ± 7.24E-06 ± 2.50E-06 ± 0.05

Jordan-CQPSO 8.08E-06 1.40E-05 1.61 9.44E-06 9.12E-06 0.93 8.83E-06 6.85E-06 0.8

± 1.06E-06 ± 3.52E-06 ± 0.26 ± 1.38E-06 ± 1.76E-06 ± 0.07 ± 8.92E-07 ± 4.77E-07 ± 0.03

MRNN-RPROP 3.43E-03 3.41E-03 1.01 5.97E-03 6.86E-03 1.16 9.58E-03 1.01E-02 1.13

± 1.25E-03 ± 1.28E-03 ± 0.06 ± 2.61E-03 ± 3.49E-03 ± 0.09 ± 5.22E-03 ± 5.40E-03 ± 0.21

MRNN-PSO 4.35E-05 4.05E-05 1.15 3.97E-05 3.17E-05 0.79 4.41E-05 2.18E-05 0.51

± 1.56E-05 ± 6.14E-06 ± 0.18 ± 5.73E-06 ± 5.38E-06 ± 0.04 ± 6.33E-06 ± 3.05E-06 ± 0.05

MRNN-CQPSO 3.88E-05 3.21E-05 0.97 4.40E-05 3.32E-05 0.78 4.91E-05 3.23E-05 0.69

± 1.28E-05 ± 3.87E-06 ± 0.11 ± 5.25E-06 ± 2.78E-06 ± 0.05 ± 5.14E-06 ± 2.62E-06 ± 0.06

TDNN-RPROP 4.23E-05 7.35E-05 1.82 7.08E-05 7.65E-05 1.09 9.37E-05 8.84E-05 0.93

± 9.46E-06 ± 1.57E-05 ± 0.23 ± 1.48E-05 ± 1.56E-05 ± 0.03 ± 1.99E-05 ± 2.00E-05 ± 0.02

TDNN-PSO 2.19E-05 1.75E-05 0.81 3.28E-05 2.04E-05 0.63 3.42E-05 1.79E-05 0.53

± 1.83E-06 ± 1.71E-06 ± 0.06 ± 2.51E-06 ± 1.75E-06 ± 0.03 ± 2.76E-06 ± 1.37E-06 ± 0.02

TDNN-CQPSO 1.07E-05 2.01E-05 1.89 1.09E-05 1.05E-05 0.99 1.00E-05 8.42E-06 0.85

± 6.10E-07 ± 1.35E-06 ± 0.08 ± 1.05E-06 ± 8.30E-07 ± 0.06 ± 7.41E-07 ± 5.85E-07 ± 0.04
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between the FNN-CQSO and the other models were less than the 0.0001 threshold. This

confirmed that the difference in performance between the FNN-CQSO and each of the

other models was statistically significant.

Figure 7.13 shows the error progression over time for the FNN-CQSO and the three

best performing models for scenario C2. The figure shows that the FNN-CQSO outper-

formed the other models throughout the experiment runs. The figure also shows that

the GE values of the FNN-CQSO model dropped after environmental changes, while at

the same time the peak of the GE of the other models increased. This indicates that the

FNN-CQSO’s adaptation to the changes was superior compared to the other models.
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Figure 7.13: Training and generalization error results for MG time series, scenario C2

The ρ values presented in Table 7.26 show that the CQSO and RPROP trained models

exhibited overfitting behaviours for scenario C1, except for the FNN-CQSO and the

MRNN-CQSO. None of the PSO trained models overfitted, except for the MRNN-PSO

model which showed minor signs of overfitting. For scenario C2, the CQSO and PSO

trained models had good generalisation behaviour, while the RPROP trained models

overfitted. For scenario C3, all the models exhibited minor or no overfitting behaviours,

except for the MRNN-RPROP which overfitted.

The ranking of the models shown in Table 7.27 shows that the FNN-CQSO achieved

the highest average rank in terms of both training and generalization. The ranking of

the models shown in Table 7.27 shows that the FNN-CQSO achieved the highest average

rank in terms of both training and generalization.

The overall performance ranking of the models for all nine scenarios, as given in
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Table 7.27: Models ranking in forecasting the MG time series, scenarios C1-C3

Model
C1 C2 C3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 1 1 1 1 1 1

Elman-RPROP 11 11 11 11 11 11 11 11

Elman-PSO 7 7 9 7 9 8 8.33 7.33

Elman-CQPSO 4 6 4 5 4 4 4 5

Jordan-RPROP 13 13 13 13 13 13 13 13

Jordan-PSO 6 3 6 4 6 6 6 4.33

Jordan-CQPSO 2 2 2 2 2 2 2 2

MRNN-RPROP 12 12 12 12 12 12 12 12

MRNN-PSO 10 9 7 8 7 7 8 8

MRNN-CQPSO 8 8 8 9 8 9 8 8.67

TDNN-RPROP 9 10 10 10 10 10 9.67 10

TDNN-PSO 5 4 5 6 5 5 5 5

TDNN-CQPSO 3 5 3 3 3 3 3 3.67

Table 7.28, show that the FNN-CQSO achieved the highest average rank. This means

that a FNN trained using a dynamic PSO (i.e CQSO) outperformed the SRNNs trained

using either the RPROP, the PSO, or the CQSO algorithm in predicting the MG time

series for the nine different dynamic scenarios considered.

7.2.5 Lorenz Time Series

Scenarios A1 to A3: Table 7.29 shows that the Jordan-CQSO and the FNN-CQSO

outperformed all the other models by yielding lower errors. The Jordan-CQSO, how-

ever, generated lower errors compared to the FNN-CQSO. Thus, the Jordan-CQSO and

the FNN-CQSO achieved the 1st and 2nd performance ranking positions, as shown in

Table 7.30. All the p-values for the pairwise comparisons between the FNN-CQSO and

the remaining models were below the 0.0001 threshold, except for the FNN-CQSO vs

MRNN-CQSO comparison. This indicates that the performance of the FNN-CQSO

was significantly different compared to the other models, except when compared to the
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Table 7.28: Overall ranking of the models in predicting the MG problem, scenarios A to C

Model
A B C Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 1 1 1 1 1 1

Elman-RPROP 11 11 11 11 11 11 11 11

Elman-PSO 8 7.33 8.33 8.33 8.33 7.33 8.2 7.66

Elman-CQPSO 4 4 4 4.67 4 5 4 4.56

Jordan-RPROP 13 13 13 13 13 13 13 13

Jordan-PSO 6.33 5.67 5.67 5.33 6 4.33 6 5.11

Jordan-CQPSO 2 2.33 2 2.33 2 2 2 2.22

MRNN-RPROP 12 12 12 12 12 12 12 12

MRNN-PSO 7 7 7.67 7 8 8 7.6 7.33

MRNN-CQPSO 8.67 9 8 8.67 8 8.67 8.2 8.78

TDNN-RPROP 10 10 10 10 9.67 10 9.9 10

TDNN-PSO 5 6 5.33 5 5 5 5.1 5.33

TDNN-CQPSO 3 2.67 3 2.67 3 3.67 3 3

MRNN-CQSO.

Figure 7.14 shows the performance progression over time for the four best performing

models for scenario A1. The figure shows that, after the initial few epochs, the Jordan-

PSO model produced the worst errors throughout the experiments. The TDNN-RPROP
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Figure 7.14: Training and generalization error results for Lorenz time series, scenario A1
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Table 7.29: Results of Lorenz time series, scenario A1 to A3

Model

Scenario
A1 (f:10, s:100) A2 (f:10, s:250) A3 (f:10, s:330)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 3.03E-06 1.99E-06 0.66 4.72E-06 3.80E-06 0.78 6.86E-06 5.81E-06 0.85

± 3.78E-07 ± 2.61E-07 ± 0.03 ± 7.44E-07 ± 7.02E-07 ± 0.03 ± 1.22E-06 ± 1.07E-06 ± 0.04

Elman-RPROP 4.71E-04 4.94E-04 1.16 1.30E-03 1.31E-03 1.01 1.64E-03 1.65E-03 1.01

± 1.86E-04 ± 1.83E-04 ± 0.16 ± 5.29E-04 ± 5.34E-04 ± 0.01 ± 4.98E-04 ± 4.99E-04 ± 0.01

Elman-PSO 2.05E-05 1.51E-05 0.69 4.01E-05 3.26E-05 0.84 4.21E-05 3.35E-05 0.8

± 5.86E-06 ± 6.20E-06 ± 0.16 ± 1.08E-05 ± 8.69E-06 ± 0.01 ± 1.00E-05 ± 8.96E-06 ± 0.01

Elman-CQPSO 1.62E-05 1.59E-05 0.94 2.04E-05 2.05E-05 0.98 2.67E-05 2.51E-05 0.94

± 3.32E-06 ± 3.65E-06 ± 0.04 ± 3.73E-06 ± 4.17E-06 ± 0.04 ± 1.10E-05 ± 9.90E-06 ± 0.05

Jordan-RPROP 6.02E-03 6.05E-03 1 1.08E-02 1.10E-02 1 1.55E-02 1.56E-02 1

± 1.83E-03 ± 1.84E-03 ± 0 ± 4.22E-03 ± 4.28E-03 ± 0.01 ± 5.48E-03 ± 5.51E-03 ± 0

Jordan-PSO 1.56E-05 1.29E-05 0.81 3.16E-05 2.81E-05 0.89 3.56E-05 3.50E-05 0.94

± 2.24E-06 ± 2.49E-06 ± 0.08 ± 9.53E-06 ± 9.74E-06 ± 0.07 ± 8.73E-06 ± 1.05E-05 ± 0.06

Jordan-CQPSO 2.22E-06 1.51E-06 0.7 3.06E-06 2.29E-06 0.73 3.26E-06 2.85E-06 0.86

± 3.73E-07 ± 2.36E-07 ± 0.04 ± 5.04E-07 ± 4.64E-07 ± 0.04 ± 6.25E-07 ± 5.83E-07 ± 0.05

MRNN-RPROP 8.28E-03 8.51E-03 1.02 1.67E-02 1.70E-02 1.01 1.88E-02 1.89E-02 1

± 2.37E-03 ± 2.56E-03 ± 0.01 ± 6.13E-03 ± 6.19E-03 ± 0.01 ± 7.43E-03 ± 7.47E-03 ± 0.01

MRNN-PSO 2.15E-05 1.45E-05 0.76 3.94E-05 3.10E-05 0.74 4.27E-05 3.65E-05 0.83

± 5.92E-06 ± 2.96E-06 ± 0.07 ± 7.98E-06 ± 8.80E-06 ± 0.08 ± 7.18E-06 ± 7.37E-06 ± 0.07

MRNN-CQPSO 3.42E-06 2.31E-06 0.71 7.80E-06 5.46E-06 0.77 7.30E-06 6.19E-06 0.82

± 6.01E-07 ± 3.26E-07 ± 0.06 ± 3.34E-06 ± 2.10E-06 ± 0.06 ± 2.08E-06 ± 1.92E-06 ± 0.05

TDNN-RPROP 4.83E-04 4.78E-04 1 1.23E-03 1.22E-03 1.01 1.44E-03 1.41E-03 0.99

± 1.66E-04 ± 1.63E-04 ± 0.01 ± 3.41E-04 ± 3.32E-04 ± 0.01 ± 4.37E-04 ± 4.26E-04 ± 0.01

TDNN-PSO 5.90E-04 5.85E-04 0.98 7.49E-04 7.48E-04 0.96 4.32E-04 4.46E-04 0.95

± 3.47E-04 ± 3.43E-04 ± 0.03 ± 5.05E-04 ± 5.07E-04 ± 0.03 ± 1.73E-04 ± 1.84E-04 ± 0.06

TDNN-CQPSO 2.36E-04 2.34E-04 1.03 2.19E-04 2.21E-04 1.01 2.90E-04 2.91E-04 0.99

± 3.10E-04 ± 3.02E-04 ± 0.04 ± 2.17E-04 ± 2.19E-04 ± 0.03 ± 2.26E-04 ± 2.25E-04 ± 0.05

model yielded the highest initial errors, but improved subsequently, yielding the lowest

TE value. Figures 7.14a and 7.14b clearly show that the training performance of the

TDNN-RPROP was slightly better than its generalization performance, which is an

indication of minor overfitting by the model. The figures also show that the two CQSO
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Table 7.30: Models ranking in forecasting the Lorenz time series, scenarios A1 to A3

Model
A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 2 2 2 2 2 2 2 2

Elman-RPROP 9 10 11 11 11 11 10.33 10.67

Elman-PSO 6 6 7 7 6 5 6.33 6

Elman-CQPSO 5 7 4 4 4 4 4.33 5

Jordan-RPROP 12 12 12 12 12 12 12 12

Jordan-PSO 4 4 5 5 5 6 4.67 5

Jordan-CQPSO 1 1 1 1 1 1 1 1

MRNN-RPROP 13 13 13 13 13 13 13 13

MRNN-PSO 7 5 6 6 7 7 6.67 6

MRNN-CQPSO 3 3 3 3 3 3 3 3

TDNN-RPROP 10 9 10 10 10 10 10 9.67

TDNN-PSO 11 11 9 9 9 9 9.67 9.67

TDNN-CQPSO 8 8 8 8 8 8 8 8

based models (i.e. FNN-CQSO and Jordan-CQSO) had similar error progression profiles.

Figure 7.14b shows that the CQSO based models adapted better to the changes than

the other models.

The ρ values in Table 7.29 reveal that none of the CQSO or the PSO based models

overfitted, except the TDNN-CQSO which exhibited minor overfitting for scenarios A1

and A2. The RPROP trained models exhibited either slight or no signs of overfitting,

except for scenario A1, where the Elman-RPROP overfitted.

Table 7.30 shows that the FNN-CQSO achieved the second highest average rank over

three scenarios in predicting the Lorenz time series.

Scenarios B1 to B3: Table 7.29 shows that the FNN-CQSO and the Jordan-CQSO

outperformed all the other models by producing the lowest TE and GE values. However,

the two models outperformed each other under different scenarios. While the FNN-

CQSO had superior performance for scenario B1, the Jordan-CQSO outperformed the

FNN-CQSO for scenario B2. For scenario B3, the Jordan-CQSO produced superior



7.2. Results 148

Table 7.31: Results of Lorenz time series, scenario B1 to B3

Model

Scenario
B1 (f:50, s:100) B2 (f:50, s:250) B3 (f:50, s:330)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 8.40E-07 4.47E-07 0.53 1.62E-06 1.18E-06 0.73 2.08E-06 1.53E-06 0.74

± 1.60E-07 ± 8.65E-08 ± 0.02 ± 1.83E-07 ± 1.38E-07 ± 0.01 ± 2.32E-07 ± 1.61E-07 ± 0.03

Elman-RPROP 8.50E-05 8.55E-05 1.01 3.20E-04 3.23E-04 1.01 3.66E-04 3.66E-04 1

± 2.61E-05 ± 2.60E-05 ± 0.01 ± 8.77E-05 ± 8.83E-05 ± 0.01 ± 1.34E-04 ± 1.34E-04 ± 0.01

Elman-PSO 8.20E-06 3.08E-06 0.49 1.29E-05 7.68E-06 0.59 1.31E-05 8.22E-06 0.63

± 2.41E-06 ± 4.70E-07 ± 0.01 ± 4.54E-06 ± 4.42E-06 ± 0.01 ± 2.30E-06 ± 2.02E-06 ± 0.01

Elman-CQPSO 5.14E-06 3.39E-06 0.65 7.49E-06 5.99E-06 0.78 1.69E-05 1.50E-05 0.87

± 1.10E-06 ± 9.10E-07 ± 0.05 ± 1.06E-06 ± 1.05E-06 ± 0.05 ± 9.47E-06 ± 8.66E-06 ± 0.04

Jordan-RPROP 1.29E-03 1.33E-03 1.01 2.54E-03 2.55E-03 1.01 3.18E-03 3.20E-03 1

± 4.48E-04 ± 4.76E-04 ± 0.02 ± 9.85E-04 ± 9.86E-04 ± 0 ± 1.33E-03 ± 1.33E-03 ± 0.01

Jordan-PSO 5.42E-06 3.14E-06 0.61 1.30E-05 1.01E-05 0.75 1.25E-05 6.37E-06 0.65

± 9.05E-07 ± 5.85E-07 ± 0.07 ± 3.46E-06 ± 3.20E-06 ± 0.07 ± 5.29E-06 ± 1.11E-06 ± 0.07

Jordan-CQPSO 8.64E-07 6.43E-07 0.76 1.21E-06 9.21E-07 0.75 1.87E-06 1.64E-06 0.83

± 1.52E-07 ± 1.08E-07 ± 0.05 ± 1.98E-07 ± 1.74E-07 ± 0.04 ± 6.23E-07 ± 6.57E-07 ± 0.04

MRNN-RPROP 1.71E-03 1.78E-03 1.05 4.87E-03 4.90E-03 1.01 9.14E-03 9.02E-03 1

± 4.17E-04 ± 4.41E-04 ± 0.04 ± 1.62E-03 ± 1.64E-03 ± 0.01 ± 4.49E-03 ± 4.30E-03 ± 0.01

MRNN-PSO 1.01E-05 3.97E-06 0.47 1.90E-05 8.05E-06 0.57 2.09E-05 8.79E-06 0.57

± 3.12E-06 ± 9.55E-07 ± 0.07 ± 6.03E-06 ± 1.65E-06 ± 0.1 ± 9.56E-06 ± 2.53E-06 ± 0.08

MRNN-CQPSO 1.78E-06 1.12E-06 0.76 2.80E-06 2.06E-06 0.72 2.54E-06 1.99E-06 0.79

± 5.27E-07 ± 1.59E-07 ± 0.09 ± 8.81E-07 ± 8.17E-07 ± 0.04 ± 2.89E-07 ± 2.33E-07 ± 0.04

TDNN-RPROP 9.53E-05 1.18E-04 1.26 1.82E-04 1.84E-04 1.02 2.72E-04 2.67E-04 0.99

± 2.56E-05 ± 3.31E-05 ± 0.1 ± 5.95E-05 ± 5.99E-05 ± 0.01 ± 7.93E-05 ± 7.67E-05 ± 0.02

TDNN-PSO 3.13E-04 3.07E-04 0.97 2.55E-04 2.52E-04 0.97 2.08E-04 2.03E-04 0.94

± 2.10E-04 ± 2.13E-04 ± 0.04 ± 1.27E-04 ± 1.27E-04 ± 0.02 ± 1.06E-04 ± 1.07E-04 ± 0.06

TDNN-CQPSO 4.52E-05 4.43E-05 0.91 3.14E-04 3.20E-04 0.99 3.64E-05 3.54E-05 0.93

± 4.31E-05 ± 4.29E-05 ± 0.06 ± 3.83E-04 ± 3.89E-04 ± 0.04 ± 2.40E-05 ± 2.48E-05 ± 0.04

training performance and the FNN-CQSO had the best generalization error. All the

p-values for the pairwise comparisons between the FNN-CQSO and the other models are

less than the 0.0001 threshold, except for scenarios B1 and B3, where the FNN-CQSO

and the Jordan-CQSO produced statistically similar TE and GE values.
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Table 7.32: Models ranking in forecasting the Lorenz time series, scenarios B1 to B3

Model
B1 B2 B3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 2 2 2 1 1.67 1.33

Elman-RPROP 9 9 11 11 11 11 10.33 10.33

Elman-PSO 6 4 5 5 5 5 5.33 4.67

Elman-CQPSO 4 6 4 4 6 7 4.67 5.67

Jordan-RPROP 12 12 12 12 12 12 12 12

Jordan-PSO 5 5 6 7 4 4 5 5.33

Jordan-CQPSO 2 2 1 1 1 2 1.33 1.67

MRNN-RPROP 13 13 13 13 13 13 13 13

MRNN-PSO 7 7 7 6 7 6 7 6.33

MRNN-CQPSO 3 3 3 3 3 3 3 3

TDNN-RPROP 10 10 8 8 10 10 9.33 9.33

TDNN-PSO 11 11 9 9 9 9 9.67 9.67

TDNN-CQPSO 8 8 10 10 8 8 8.67 8.67

Figure 7.15 illustrates the performance progression over time for the four selected best

performing models for scenario B1. As visualized in the figure, the FNN-CQSO clearly

outperformed the other models in terms of both training and generalization performance.
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Figure 7.15: Training and generalization error results for Lorenz time series, scenario B1

The performance ranking of the models presented in Table 7.32 shows that the FNN-
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CQSO achieved the second and the first highest average training and generalization

ranks, respectively.

Scenarios C1 to C3: Table 7.33 shows that the Jordan-CQSO produced the lowest

training and generalization errors, except for scenario C1, where the FNN-CQSO yielded

Table 7.33: Results of Lorenz time series, scenario C1 to C3

Model

Scenario
C1 (f:100, s:100) C2 (f:100, s:250) C3 (f:100, s:330)

TE GE ρ TE GE ρ TE GE ρ

FF-CQSO 5.15E-07 3.21E-07 0.63 1.02E-06 6.87E-07 0.68 1.12E-06 7.25E-07 0.65

± 6.51E-08 ± 3.71E-08 ± 0.02 ± 1.31E-07 ± 8.21E-08 ± 0.01 ± 1.10E-07 ± 7.43E-08 ± 0.02

Elman-RPROP 1.21E-04 1.25E-04 1.02 1.19E-04 1.32E-04 1.17 1.57E-04 1.57E-04 0.99

± 7.41E-05 ± 7.85E-05 ± 0.04 ± 3.35E-05 ± 3.97E-05 ± 0.33 ± 4.70E-05 ± 4.73E-05 ± 0.02

Elman-PSO 1.31E-05 2.06E-06 0.37 1.20E-05 4.11E-06 0.5 1.06E-05 4.11E-06 0.58

± 8.80E-06 ± 4.37E-07 ± 0.04 ± 4.60E-06 ± 6.35E-07 ± 0.33 ± 4.13E-06 ± 5.77E-07 ± 0.02

Elman-CQSO 3.22E-06 2.08E-06 0.65 5.65E-06 4.59E-06 0.8 5.80E-06 3.84E-06 0.72

± 4.20E-07 ± 2.86E-07 ± 0.04 ± 8.86E-07 ± 8.30E-07 ± 0.04 ± 1.29E-06 ± 6.62E-07 ± 0.06

Jordan-RPROP 3.99E-02 4.00E-02 1.01 1.79E-03 1.79E-03 1 2.39E-03 2.40E-03 1.01

± 7.70E-02 ± 7.73E-02 ± 0.01 ± 6.02E-04 ± 6.00E-04 ± 0 ± 1.24E-03 ± 1.23E-03 ± 0.01

Jordan-PSO 3.95E-06 1.57E-06 0.5 8.60E-06 4.38E-06 0.59 6.73E-06 4.31E-06 0.66

± 1.16E-06 ± 2.03E-07 ± 0.07 ± 2.91E-06 ± 1.45E-06 ± 0.08 ± 1.06E-06 ± 7.49E-07 ± 0.07

Jordan-CQSO 4.80E-07 4.52E-07 0.97 7.76E-07 5.56E-07 0.71 9.30E-07 6.72E-07 0.73

± 9.39E-08 ± 8.22E-08 ± 0.08 ± 1.79E-07 ± 1.38E-07 ± 0.03 ± 1.48E-07 ± 1.07E-07 ± 0.03

MRNN-RPROP 8.72E-04 9.45E-04 1.17 2.99E-03 3.01E-03 1.01 2.98E-03 3.02E-03 1.01

± 2.83E-04 ± 2.93E-04 ± 0.3 ± 1.59E-03 ± 1.59E-03 ± 0.01 ± 1.52E-03 ± 1.54E-03 ± 0.01

MRNN-PSO 8.29E-06 1.90E-06 0.43 1.01E-05 4.02E-06 0.48 1.16E-05 4.99E-06 0.52

± 3.73E-06 ± 2.52E-07 ± 0.08 ± 2.23E-06 ± 8.35E-07 ± 0.09 ± 2.79E-06 ± 1.24E-06 ± 0.08

MRNN-CQSO 1.28E-06 8.24E-07 0.79 1.76E-06 1.30E-06 0.75 2.12E-06 1.70E-06 0.81

± 4.06E-07 ± 1.03E-07 ± 0.09 ± 2.50E-07 ± 1.76E-07 ± 0.03 ± 3.78E-07 ± 2.93E-07 ± 0.02

TDNN-RPROP 5.40E-05 1.11E-04 1.99 1.22E-04 1.22E-04 1.02 1.15E-04 1.15E-04 1.01

± 1.78E-05 ± 3.78E-05 ± 0.4 ± 3.55E-05 ± 3.52E-05 ± 0.01 ± 3.43E-05 ± 3.37E-05 ± 0.01

TDNN-PSO 4.49E-04 4.45E-04 0.97 3.14E-04 3.11E-04 0.96 2.23E-04 2.26E-04 1

± 2.69E-04 ± 2.68E-04 ± 0.03 ± 1.86E-04 ± 1.88E-04 ± 0.03 ± 1.67E-04 ± 1.72E-04 ± 0.06

TDNN-CQSO 1.10E-05 9.94E-06 0.9 9.02E-06 8.78E-06 0.96 3.22E-05 2.96E-05 0.8

± 5.07E-06 ± 4.51E-06 ± 0.05 ± 2.75E-06 ± 2.93E-06 ± 0.04 ± 1.97E-05 ± 1.97E-05 ± 0.05



7.2. Results 151

the lowest generalization error. The FNN-CQSO also outperformed the remaining mod-

els. All the p-values for the Mann Whitney U test comparisons between the FNN-CQSO

and the other models are less than the 0.0001 threshold, except for the FNN-CQSO vs

Jordan-CQSO comparison, where the two models had statistically similar TE values for

scenario C1, and similar GE values for scenario C3.

Figure 7.16 shows the performance progression over time achieved by the FNN-CQSO

and three top performing models (which includes the Jordan-CQSO, TDNN-RPROP and

the Jordan-PSO) for scenario C1. As visualized in Figure 7.16, the FNN-CQSO clearly

outperformed the other models. Figure 7.16a illustrates that the Jordan-PSO fluctuated

a lot in terms of TE.

The ρ values in Table 7.33 shows that none of the CQSO and RPROP trained models

overfitted. However, all the RPROP trained models exhibited minor signs of overfitting,

except for scenario C1 where the MRNN-RPROP and the TDNN-RPROP overfitted,

and for scenario C2 where the Elman-RPROP overfitted.

The performance ranking of the models for the three scenarios given in Table 7.34

Table 7.34: Models ranking in forecasting the Lorenz time series, scenarios C1 to C3

Model
C1 C2 C3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 2 1 2 2 2 2 2 1.67

Elman-RPROP 10 10 9 10 10 10 9.67 10

Elman-PSO 8 6 8 5 6 5 7.33 5.33

Elman-CQPSO 4 7 4 7 4 4 4 6

Jordan-RPROP 13 13 12 12 12 12 12.33 12.33

Jordan-PSO 5 4 5 6 5 6 5 5.33

Jordan-CQPSO 1 2 1 1 1 1 1 1.33

MRNN-RPROP 12 12 13 13 13 13 12.67 12.67

MRNN-PSO 6 5 7 4 7 7 6.67 5.33

MRNN-CQPSO 3 3 3 3 3 3 3 3

TDNN-RPROP 9 9 10 9 9 9 9.33 9

TDNN-PSO 11 11 11 11 11 11 11 11

TDNN-CQPSO 7 8 6 8 8 8 7 8



7.2. Results 152

0.0000000010

0.0000000100

0.0000001000

0.0000010000

0.0000100000

0.0001000000

0.0010000000

0.0100000000

0.1000000000

 0  500  1000  1500  2000  2500  3000

A
ve

ra
g
e
 E

rr
o
r 

(l
o
g
)

iteration Count

FNN-CQSO
Jordan-CQSO

Jordan-PSO
TDNN-Rprop

(a) TE

0.0000000010

0.0000000100

0.0000001000

0.0000010000

0.0000100000

0.0001000000

0.0010000000

0.0100000000

0.1000000000

 0  500  1000  1500  2000  2500  3000

A
ve

ra
g
e
 E

rr
o
r 

(l
o
g
)

iteration Count

FNN-CQSO
Jordan-CQSO

Jordan-PSO
TDNN-Rprop

(b) GE

Figure 7.16: Training and generalization error results for Lorenz time series, scenario C1

shows that the Jordan-CQSO emerged as the winner by achieving the highest average

ranks. The FNN-CQSO model achieved the second highest average rank.

Table 7.35: Overall models ranking in forecasting the Lorenz time series, scenario error A-C

Model
A B C Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 2 2 1.67 1.33 2 1.67 1.89 1.67

Elman-RPROP 10.33 10.67 10.33 10.33 9.67 10 10.11 10.33

Elman-PSO 6.33 6 5.33 4.67 7.33 5.33 6.33 5.33

Elman-CQPSO 4.33 5 4.67 5.67 4 6 4.33 5.56

Jordan-RPROP 12 12 12 12 12.33 12.33 12.11 12.11

Jordan-PSO 4.67 5 5 5.33 5 5.33 4.89 5.22

Jordan-CQPSO 1 1 1.33 1.67 1 1.33 1.11 1.33

MRNN-RPROP 13 13 13 13 12.67 12.67 12.89 12.89

MRNN-PSO 6.67 6 7 6.33 6.67 5.33 6.78 5.89

MRNN-CQPSO 3 3 3 3 3 3 3.00 3

TDNN-RPROP 10 9.67 9.33 9.33 9.33 9 9.55 9.33

TDNN-PSO 9.67 9.67 9.67 9.67 11 11 10.11 10.11

TDNN-CQPSO 8 8 8.67 8.67 7 8 7.89 8.22

The overall ranking of the models for all nine scenarios, given in Table 7.35, shows

that the FNN-CQSO achieved the second overall highest average rank. The Jordan-
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CQSO, however, emerged as the overall winner. This indicates that the FNN-CQSO

outperformed all the RNN models, except the Jordan-CQSO.

7.2.6 IAP Time Series

Scenarios A1 to A3: Table 7.36 shows that the Elman-RPROP produced the lowest

CMF TE for the gradually changing scenario A1, outperforming all the other models.

However, in terms of generalization performance, the Jordan-CQSO model yielded the

lowest error. For the severely and abruptly changing scenarios A2 and A3, the FNN-

CQSO produced the lowest TE and GE values. All the p-values for the pairwise com-

parisons between the FNN-CQSO and the remaining models are less than the 0.0001

threshold, except for the FNN-CQSO vs Jordan-CQSO comparison for the three scenar-

ios, and for the FNN-CQSO vs Elman-RPROP comparison for scenario A2 with reference

to the training error. For these exceptions, the difference in performance between the

models were statistically insignificant.

Figure 7.17 illustrates the performance progression over time for four of the top

performing models for scenario A1. For the models shown in the figure, the peak of

the TE increased after every change (i.e. 50 epochs) without recovering, except for the

Elman-RPROP which recovers immediately and kept track of the moving lowest value.

The increase in the GE peak after the changes, however, were smaller compared to those

of the TE as shown Figure 7.17b.
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Figure 7.17: Training and generalization error results for AIP time series, scenario A1
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Table 7.36: Results of IAP time series, scenario A1 to A3

Model A1 (f:50, s:10) A2 (f:50, s:25) A3 (f:50, s:32)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 3.10E-04 3.60E-04 1.21 3.89E-04 4.30E-04 1.3 2.76E-04 5.57E-04 1.98

±2.00E-04 ± 2.40E-04 ± 0.06 ± 1.32E-04 ± 1.36E-04 ± 0.13 ± 1.07E-04 ± 2.13E-04 ± 0.12

Elman-RPROP 2.30E-04 3.10E-04 1.46 4.11E-04 5.41E-04 1.49 5.48E-04 6.80E-04 1.33

± 4.00E-05 ± 5.00E-05 ± 0.11 ± 1.07E-04 ± 1.05E-04 ± 0.12 ± 2.06E-04 ± 2.15E-04 ± 0.09

Elman-PSO 2.15E-03 2.32E-03 1.07 2.16E-03 3.12E-03 1.46 2.05E-03 3.95E-03 1.94

± 2.30E-04 ± 2.60E-04 ± 0.11 ± 2.21E-04 ± 2.88E-04 ± 0.12 ± 2.20E-04 ± 3.94E-04 ± 0.09

Elman-CQPSO 1.75E-03 2.15E-03 1.23 2.49E-03 2.11E-03 0.83 2.07E-03 3.28E-03 1.57

± 2.30E-04 ± 2.80E-04 ± 0.03 ± 2.83E-04 ± 2.84E-04 ± 0.03 ± 2.37E-04 ± 4.08E-04 ± 0.05

Jordan-RPROP 1.45E-01 1.47E-01 1.05 3.84E-03 3.93E-03 1.2 2.20E-03 2.88E-03 1.24

± 1.24E-01 ± 1.25E-01 ± 0.02 ± 3.03E-03 ± 2.93E-03 ± 0.07 ± 1.96E-03 ± 2.87E-03 ± 0.08

Jordan-PSO 2.60E-03 2.82E-03 1.08 2.41E-03 3.70E-03 1.56 2.17E-03 4.18E-03 1.97

± 5.90E-04 ± 6.40E-04 ± 0.03 ± 4.81E-04 ± 7.27E-04 ± 0.07 ± 4.44E-04 ± 8.08E-04 ± 0.08

Jordan-CQPSO 2.40E-04 2.70E-04 1.1 5.03E-04 6.32E-04 1.33 4.24E-04 8.42E-04 1.9

± 7.00E-05 ± 8.00E-05 ± 0.05 ± 2.39E-04 ± 3.06E-04 ± 0.1 ± 1.63E-04 ± 3.15E-04 ± 0.13

MRNN-RPROP 1.47E-02 1.58E-02 1.13 9.72E-03 1.09E-02 1.37 8.28E-03 9.15E-03 1.31

± 1.11E-02 ± 1.14E-02 ± 0.06 ± 6.15E-03 ± 6.94E-03 ± 0.12 ± 8.29E-03 ± 9.14E-03 ± 0.11

MRNN-PSO 2.09E-03 2.27E-03 1.08 2.03E-03 2.94E-03 1.48 1.92E-03 3.71E-03 1.94

± 2.20E-04 ± 2.50E-04 ± 0.01 ± 3.17E-04 ± 4.22E-04 ± 0.05 ± 2.01E-04 ± 3.53E-04 ± 0.02

MRNN-CQPSO 1.36E-03 1.49E-03 1.09 1.15E-03 1.62E-03 1.47 1.12E-03 2.24E-03 2.04

± 3.50E-04 ± 3.90E-04 ± 0.02 ± 2.84E-04 ± 4.00E-04 ± 0.09 ± 2.78E-04 ± 5.16E-04 ± 0.05

TDNN-RPROP 4.30E-04 8.60E-04 1.93 7.49E-04 1.23E-03 1.7 1.08E-03 1.55E-03 1.47

± 1.10E-04 ± 3.10E-04 ± 0.2 ± 1.66E-04 ± 3.08E-04 ± 0.15 ± 2.89E-04 ± 4.17E-04 ± 0.14

TDNN-PSO 2.37E-03 2.58E-03 1.09 2.37E-03 3.47E-03 1.48 2.23E-03 4.25E-03 1.93

± 3.80E-04 ± 4.10E-04 ± 0.01 ± 3.01E-04 ± 4.23E-04 ± 0.05 ± 2.49E-04 ± 4.37E-04 ± 0.06

TDNN-CQPSO 3.58E-03 4.01E-03 1.21 3.85E-03 4.60E-03 1.55 2.47E-03 4.41E-03 1.78

± 1.65E-03 ± 1.83E-03 ± 0.07 ± 2.05E-03 ± 2.35E-03 ± 0.18 ± 1.09E-03 ± 1.91E-03 ± 0.1

The ρ values in Table 7.36 indicate that all the models overfitted. It is observed that

the ρ values produced by the models increased with increase in spatial severity.

The performance ranking of the models shown in Table 7.37 illustrate that the FNN-

CQSO obtained the highest average rank over the three scenarios.
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Table 7.37: Models ranking in forecasting the IAP time series, scenario A1 to A3

Model
A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQSO 3 3 1 1 1 1 1.67 1.67

Elman-RPROP 1 2 2 2 3 2 2 2

Elman-PSO 8 8 7 8 7 9 7.33 8.33

Elman-CQSO 6 6 10 6 8 7 8 6.33

Jordan-RPROP 13 13 11 11 10 6 11.33 10

Jordan-PSO 10 10 9 10 9 10 9.33 10

Jordan-CQSO 2 1 3 3 2 3 2.33 2.33

MRNN-RPROP 12 12 13 13 13 13 12.67 12.67

MRNN-PSO 7 7 6 7 6 8 6.33 7.33

MRNN-CQSO 5 5 5 5 5 5 5 5

TDNN-RPROP 4 4 4 4 4 4 4 4

TDNN-PSO 9 9 8 9 11 11 9.33 9.67

TDNN-CQSO 11 11 12 12 12 12 11.67 11.67

Scenarios B1 to B3: The TE and GE values shown in Table 7.38 indicate that the

FNN-CQSO model outperformed the other models. All the p-values for the pairwise com-

parisons between the FNN-CQSO and the other models were below the 0.0001 threshold,

with a few exceptions. The exceptions indicate that the difference in errors produced

by the FNN-CQSO and the Jordan-CQSO was statistically insignificant for scenarios B2

and B3. The p-values also show that the TDNN-PSO and the TDNN-CQSO produced

similar training errors for scenario B1 compared to the FNN-CQSO.

The ρ values in Table 7.38 indicate that all the models overfitted, except for scenario

B2 where the Elman-CQSO did not overfit.

Figure 7.18 illustrates the performance progression over time for scenario B1. The

models shown in the figure obtained the best results, one from each of the RPROP,

PSO, and CQSO trained models. Observations made from the figure are similar to that

of Figure 7.17.

The average performance ranks achieved by the models are shown in Table 7.39. The

ranks in the table indicate that the FNN-CQSO outperformed all the other models.
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Table 7.38: IAP time series results for scenarios B1 to B3
Model B1 (f:50, s:10) B2 (f:50, s:25) B3 (f:50, s:32)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 8.84E-05 9.78E-05 1.08 1.30E-04 1.70E-04 1.54 8.91E-05 1.51E-04 1.59

± 2.50E-05 ± 2.97E-05 ± 0.06 ± 4.91E-05 ± 5.01E-05 ± 0.13 ± 2.04E-05 ± 4.75E-05 ± 0.18

Elman-RPROP 1.10E-04 2.05E-04 2.01 2.07E-04 3.18E-04 1.71 4.11E-04 6.23E-04 1.60

± 2.11E-05 ± 3.99E-05 ± 0.28 ± 4.75E-05 ± 5.71E-05 ± 0.15 ± 1.25E-04 ± 1.92E-04 ± 0.18

Elman-PSO 1.79E-03 1.93E-03 1.07 2.03E-03 2.97E-03 1.47 1.72E-03 3.32E-03 1.95

± 2.17E-04 ± 2.44E-04 ± 0.28 ± 2.34E-04 ± 3.41E-04 ± 0.15 ± 2.20E-04 ± 3.89E-04 ± 0.18

Elman-CQPSO 1.72E-03 2.11E-03 1.21 2.28E-03 1.94E-03 0.83 8.68E-04 1.71E-03 1.99

± 2.54E-04 ± 3.23E-04 ± 0.05 ± 3.37E-04 ± 3.32E-04 ± 0.04 ± 2.52E-04 ± 4.78E-04 ± 0.09

Jordan-RPROP 4.04E-02 4.22E-02 1.19 1.09E-02 1.09E-02 1.23 1.14E-01 1.32E-01 1.14

± 5.05E-02 ± 5.25E-02 ± 0.07 ± 1.00E-02 ± 1.00E-02 ± 0.09 ± 1.13E-01 ± 1.37E-01 ± 0.07

Jordan-PSO 2.93E-03 3.22E-03 1.08 2.72E-03 3.97E-03 1.51 2.21E-03 4.20E-03 1.99

± 7.24E-04 ± 8.12E-04 ± 0.03 ± 5.75E-04 ± 7.77E-04 ± 0.08 ± 4.78E-04 ± 8.21E-04 ± 0.09

Jordan-CQPSO 1.90E-04 2.21E-04 1.14 1.65E-04 2.16E-04 1.60 1.57E-04 2.93E-04 1.68

± 7.83E-05 ± 9.29E-05 ± 0.05 ± 6.76E-05 ± 6.55E-05 ± 0.16 ± 6.00E-05 ± 1.28E-04 ± 0.18

MRNN-RPROP 6.44E-03 7.12E-03 1.18 1.17E-02 1.42E-02 1.26 1.35E-02 1.74E-02 1.29

± 2.78E-03 ± 2.95E-03 ± 0.11 ± 5.62E-03 ± 7.57E-03 ± 0.13 ± 6.27E-03 ± 8.50E-03 ± 0.15

MRNN-PSO 1.79E-03 1.92E-03 1.06 1.83E-03 2.70E-03 1.49 1.67E-03 3.24E-03 1.95

± 3.25E-04 ± 3.57E-04 ± 0.03 ± 1.93E-04 ± 2.72E-04 ± 0.05 ± 2.01E-04 ± 3.63E-04 ± 0.03

MRNN-CQPSO 1.09E-03 1.21E-03 1.18 8.74E-04 1.17E-03 1.38 8.92E-04 1.78E-03 2.08

± 3.47E-04 ± 3.80E-04 ± 0.07 ± 2.64E-04 ± 3.58E-04 ± 0.10 ± 2.71E-04 ± 5.12E-04 ± 0.04

TDNN-RPROP 2.32E-04 5.60E-04 2.21 6.53E-04 1.28E-03 1.88 5.56E-04 8.34E-04 1.66

± 7.16E-05 ± 2.56E-04 ± 0.19 ± 2.57E-04 ± 6.92E-04 ± 0.16 ± 1.42E-04 ± 1.97E-04 ± 0.21

TDNN-PSO 1.92E-03 2.11E-03 1.10 2.16E-03 3.09E-03 1.45 2.32E-03 4.40E-03 1.91

± 2.30E-04 ± 2.47E-04 ± 0.02 ± 2.29E-04 ± 3.01E-04 ± 0.04 ± 2.12E-04 ± 3.71E-04 ± 0.02

TDNN-CQPSO 2.08E-03 2.36E-03 1.30 2.33E-03 2.84E-03 1.57 7.98E-04 1.45E-03 1.67

± 7.03E-04 ± 7.67E-04 ± 0.10 ± 1.30E-03 ± 1.48E-03 ± 0.19 ± 4.02E-04 ± 7.29E-04 ± 0.17

Scenarios C1 to C3: The error values in Table 7.40 show that the FNN-CQSO out-

performed the other models. All the p-values for the pairwise comparisons between

the FNN-CQSO and the remaining models are less than the 0.0001 threshold, except

for two cases: FNN-CQSO vs Jordan-CQSO for the three scenarios, and FNN-CQSO
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Figure 7.18: Training and generalization error results for IAP time series, scenario B1

vs ELMAN-RPROP with reference to the TE for scenario C2. Thus, the FNN-CQSO

achieved the highest performance rank as shown in Table 7.41.

Figure 7.19 illustrates the performance progression over time for the four best per-

forming models for scenario C1. The models selected include the FNN-CQSO, Jordan-

Table 7.39: Models ranking in forecasting the IAP time series, scenario error B1-B3

Model
B1 B2 B3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQSO 1 1 1 1 1 1 1 1

Elman-RPROP 2 2 3 3 3 3 2.67 2.67

Elman-PSO 8 7 7 9 9 9 8 8.33

Elman-CQSO 6 9 9 6 6 6 7 7

Jordan-RPROP 13 13 12 12 13 13 12.67 12.67

Jordan-PSO 11 11 11 11 10 10 10.67 10.67

Jordan-CQSO 3 3 2 2 2 2 2.33 2.33

MRNN-RPROP 12 12 13 13 12 12 12.33 12.33

MRNN-PSO 7 6 6 7 8 8 7 7

MRNN-CQSO 5 5 5 4 7 7 5.67 5.33

TDNN-RPROP 4 4 4 5 4 4 4 4.33

TDNN-PSO 9 8 8 10 11 11 9.33 9.67

TDNN-CQSO 10 10 10 8 5 5 8.333 7.67
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Table 7.40: IAP Results for scenarios C1-C3
Model C1 (f:50, s:10) C2 (f:50, s:25) C3 (f:50, s:32)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 1.43E-04 1.61E-04 1.14 1.43E-04 1.61E-04 1.14 1.00E-04 1.28E-04 1.33

± 4.59E-05 ± 5.49E-05 ± 0.08 ± 4.59E-05 ± 5.49E-05 ± 0.08 ± 2.43E-05 ± 3.02E-05 ± 0.16

Elman-RPROP 1.23E-03 2.46E-03 1.54 1.49E-04 2.46E-04 1.84 2.41E-04 4.04E-04 1.97

± 1.66E-03 ± 3.55E-03 ± 0.25 ± 3.07E-05 ± 3.48E-05 ± 0.19 ± 6.30E-05 ± 8.08E-05 ± 0.29

Elman-PSO 1.65E-03 1.80E-03 1.08 1.48E-03 2.15E-03 1.49 1.90E-03 2.98E-03 1.56

± 2.62E-04 ± 2.85E-04 ± 0.25 ± 2.19E-04 ± 2.88E-04 ± 0.19 ± 1.74E-04 ± 2.95E-04 ± 0.29

Elman-CQPSO 7.21E-04 8.08E-04 1.17 2.31E-03 2.02E-03 0.86 1.81E-03 2.90E-03 1.60

± 3.32E-04 ± 3.73E-04 ± 0.08 ± 2.97E-04 ± 3.08E-04 ± 0.03 ± 1.88E-04 ± 3.10E-04 ± 0.01

Jordan-RPROP 2.30E-01 2.37E-01 1.14 7.04E-02 7.42E-02 1.15 2.07E-02 1.98E-02 1.09

. ± 1.56E-01 ± 1.64E-01 ± 0.06 ± 1.08E-01 ± 1.14E-01 ± 0.04 ± 2.72E-02 ± 2.49E-02 ± 0.06

Jordan-PSO 2.10E-03 2.27E-03 1.08 2.41E-03 3.45E-03 1.51 1.89E-03 3.70E-03 2.03

± 4.06E-04 ± 4.36E-04 ± 0.02 ± 5.07E-04 ± 6.33E-04 ± 0.07 ± 3.40E-04 ± 5.87E-04 ± 0.06

Jordan-CQPSO 1.32E-04 1.58E-04 1.24 1.42E-04 1.96E-04 1.52 1.51E-04 2.56E-04 1.57

± 7.60E-05 ± 8.97E-05 ± 0.11 ± 4.68E-05 ± 5.12E-05 ± 0.14 ± 6.37E-05 ± 1.32E-04 ± 0.21

MRNN-RPROP 8.98E-03 9.64E-03 1.15 1.40E-02 1.54E-02 1.22 1.56E-02 1.72E-02 1.36

± 7.98E-03 ± 8.26E-03 ± 0.05 ± 7.60E-03 ± 8.39E-03 ± 0.13 ± 1.63E-02 ± 1.78E-02 ± 0.19

MRNN-PSO 1.90E-03 2.07E-03 1.08 1.67E-03 2.40E-03 1.46 1.55E-03 3.04E-03 1.99

± 2.37E-04 ± 2.61E-04 ± 0.01 ± 2.37E-04 ± 3.29E-04 ± 0.06 ± 2.34E-04 ± 4.23E-04 ± 0.03

MRNN-CQPSO 7.02E-04 8.01E-04 1.18 8.66E-04 1.18E-03 1.44 6.99E-04 1.42E-03 2.11

± 2.15E-04 ± 2.44E-04 ± 0.06 ± 3.37E-04 ± 4.49E-04 ± 0.08 ± 2.61E-04 ± 4.83E-04 ± 0.04

TDNN-RPROP 2.03E-04 5.50E-04 2.41 4.02E-04 7.86E-04 2.08 4.50E-04 8.71E-04 2.00

± 5.61E-05 ± 2.76E-04 ± 0.25 ± 9.27E-05 ± 1.66E-04 ± 0.18 ± 9.44E-05 ± 2.42E-04 ± 0.26

TDNN-PSO 1.81E-03 1.99E-03 1.10 1.69E-03 2.50E-03 1.51 1.69E-03 3.27E-03 1.98

± 2.72E-04 ± 2.96E-04 ± 0.01 ± 2.19E-04 ± 3.05E-04 ± 0.06 ± 2.87E-04 ± 5.12E-04 ± 0.04

TDNN-CQPSO 2.15E-03 2.50E-03 1.74 1.96E-03 2.34E-03 1.49 2.38E-03 4.21E-03 1.77

± 1.62E-03 ± 1.81E-03 ± 0.32 ± 7.46E-04 ± 8.36E-04 ± 0.19 ± 1.45E-03 ± 2.50E-03 ± 0.13

CQSO, TDNN-Rprop and Elman-PSO. As visualized in Figure 7.19a, the peak of the

models’ TE increased after every change without recovering, except for the TDNN-Rprop

which immediately recovered from the changes, tracking the moving lowest value. The

peak of the models’ GE also increased after the changes, but were smaller compared to
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Figure 7.19: Training and generalization error results for IAP time series, scenario C1

Table 7.41: Models ranking in forecasting the IAP time series, scenario C1-C3

Model
C1 C2 C3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQSO 1 1 1 1 1 1 1 1

Elman-RPROP 6 10 3 3 3 3 4 5.33

Elman-PSO 7 6 6 7 10 7 7.67 6.67

Elman-CQSO 5 5 10 6 8 6 7.67 5.67

Jordan-RPROP 13 13 13 13 13 13 13 13

Jordan-PSO 10 9 11 11 9 10 10 10

Jordan-CQSO 2 2 2 2 2 2 2 2

MRNN-RPROP 12 12 12 12 12 12 12 12

MRNN-PSO 9 8 7 9 6 8 7.33 8.33

MRNN-CQSO 4 4 5 5 5 5 4.67 4.67

TDNN-RPROP 3 3 4 4 4 4 3.67 3.67

TDNN-PSO 8 7 8 10 7 9 7.67 8.67

TDNN-CQSO 11 11 9 8 11 11 10.33 10

the TE peaks. Figure 7.19b shows that the FNN-CQSO generalized better than the other

models by producing a lower GE throughout the search process.

The overall ranking of the models presented in Table 7.42 shows that the FNN-CQSO

achieved the highest average rank. Thus, the FNN-CQSO emerged as the overall winner.

This indicates that a FNN trained with CQSO is sufficient in forecasting the AIP problem
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Table 7.42: Overall models ranking in forecasting the IAP time series, scenario error A-C

Model
A B C Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQSO 1.67 1.67 1 1 1.33 1 1 1.22

Elman-RPROP 2 2 2.67 2.67 4 5.33 2.89 3.33

Elman-PSO 7.33 8.33 8 8.33 7.67 6.67 7.67 7.78

Elman-CQSO 8 6.33 7 7 7.67 5.67 7.56 6.33

Jordan-RPROP 11.33 10 12.67 12.67 13 13 12.33 11.89

Jordan-PSO 9.33 10 10.67 10.67 10 10 10.00 10.22

Jordan-CQSO 2.33 2.33 2.33 2.33 1.67 2 2.11 2.22

MRNN-RPROP 12.67 12.67 12.33 12.33 12 12 12.33 12.33

MRNN-PSO 6.33 7.33 7 7 7.33 8.33 6.89 7.55

MRNN-CQSO 5 5 5.67 5.33 4.67 4.67 5.11 5.00

TDNN-RPROP 4 4 4 4.33 3.67 3.67 3.89 4.00

TDNN-PSO 9.33 9.67 9.33 9.67 7.67 8.67 8.78 9.34

TDNN-CQSO 11.67 11.67 8.333 7.67 10.33 10 10.11 9.78

for the nine scenarios, and has performed better than the RNNs trained using either of

the RPROP, PSO or CQSO algorithms.

7.2.7 S&P Time Series

Scenarios A1 to A3: The values in Table 7.43 show that the TDNN-RPROP and the

FNN-CQSO models produced the lowest training and generalization errors for scenario

A1. For scenario A2, where the spatial changes are more severe compared to scenario

A1, the TDNN-RPROP model outperformed all the other models by yielding the lowest

errors. For scenario A3, where the spatial changes are abrupt, the FNN-CQSO yielded

the lowest errors. All the p-values for the pairwise comparisons between the FNN-

CQSO and the other models were below the 0.0001 threshold, except for a few cases.

The exceptions are the FNN-CQSO vs Jordan-CQSO comparison where the two models

produced statistically similar errors for the three scenarios, and the FNN-CQSO vs

Elman-RPROP comparison where the two models produced similar TE and GE values
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Table 7.43: Results of S&P time series, scenario A1 to A3

Model

Scenario
A1 (f:50, s:20) A2 (f:50, s:40) A3 (f:50, s:58)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 2.47E-04 3.78E-04 1.70 4.18E-04 6.71E-04 1.63 1.83E-04 2.77E-04 2.36

± 4.13E-05 ± 4.49E-05 ± 0.16 ± 5.20E-05 ± 7.54E-05 ± 0.03 ± 5.98E-05 ± 5.92E-05 ± 0.52

Elman-RPROP 3.44E-04 5.10E-04 1.77 1.29E-03 1.46E-03 1.53 1.21E-03 1.50E-03 1.51

± 8.11E-05 ± 7.98E-05 ± 0.21 ± 1.01E-03 ± 9.30E-04 ± 0.16 ± 1.32E-03 ± 1.44E-03 ± 0.11

Elman-PSO 8.06E-04 9.82E-04 1.24 9.68E-04 1.37E-03 1.42 7.45E-04 7.82E-04 1.15

± 1.06E-04 ± 1.15E-04 ± 0.21 ± 8.32E-05 ± 1.14E-04 ± 0.16 ± 1.21E-04 ± 1.03E-04 ± 0.11

Elman-CQPSO 4.81E-04 6.37E-04 1.42 7.81E-04 1.13E-03 1.47 4.53E-04 5.58E-04 1.67

± 7.98E-05 ± 8.88E-05 ± 0.10 ± 7.84E-05 ± 1.03E-04 ± 0.05 ± 1.23E-04 ± 1.11E-04 ± 0.34

Jordan-RPROP 1.53E-01 1.58E-01 1.42 2.51E-03 2.67E-03 1.40 4.73E-02 4.52E-02 1.27

± 1.77E-01 ± 1.83E-01 ± 0.16 ± 1.90E-03 ± 1.82E-03 ± 0.12 ± 7.47E-02 ± 6.95E-02 ± 0.08

Jordan-PSO 7.76E-04 9.52E-04 1.25 8.35E-04 1.22E-03 1.47 6.14E-04 7.16E-04 1.31

± 9.42E-05 ± 1.06E-04 ± 0.03 ± 7.25E-05 ± 9.90E-05 ± 0.02 ± 1.16E-04 ± 1.10E-04 ± 0.16

Jordan-CQPSO 2.55E-04 3.93E-04 1.74 3.86E-04 6.32E-04 1.71 1.85E-04 2.88E-04 2.43

± 4.86E-05 ± 5.42E-05 ± 0.17 ± 6.06E-05 ± 8.77E-05 ± 0.08 ± 6.82E-05 ± 6.83E-05 ± 0.50

MRNN-RPROP 8.28E-03 8.75E-03 1.31 1.25E-02 1.33E-02 1.20 1.43E-02 1.62E-02 1.26

± 4.30E-03 ± 4.31E-03 ± 0.16 ± 4.37E-03 ± 4.70E-03 ± 0.13 ± 6.82E-03 ± 8.38E-03 ± 0.14

MRNN-PSO 1.03E-03 1.23E-03 1.20 9.77E-04 1.38E-03 1.41 6.56E-04 7.02E-04 1.18

± 1.04E-04 ± 1.15E-04 ± 0.01 ± 7.62E-05 ± 1.03E-04 ± 0.02 ± 1.15E-04 ± 1.03E-04 ± 0.12

MRNN-CQPSO 5.19E-04 6.85E-04 1.40 8.60E-04 1.33E-03 1.53 4.06E-04 4.87E-04 1.84

± 8.82E-05 ± 1.00E-04 ± 0.09 ± 2.93E-04 ± 4.87E-04 ± 0.03 ± 1.31E-04 ± 8.02E-05 ± 0.40

TDNN-RPROP 1.79E-04 5.04E-04 3.04 3.30E-04 5.68E-04 1.87 4.92E-04 6.16E-04 1.34

± 3.42E-05 ± 5.89E-05 ± 0.21 ± 6.81E-05 ± 8.00E-05 ± 0.14 ± 1.29E-04 ± 1.39E-04 ± 0.10

TDNN-PSO 1.20E-03 1.43E-03 1.20 1.10E-03 1.61E-03 1.46 1.06E-03 1.05E-03 1.01

± 1.04E-04 ± 1.13E-04 ± 0.01 ± 8.22E-05 ± 1.16E-04 ± 0.02 ± 1.06E-04 ± 8.29E-05 ± 0.04

TDNN-CQPSO 8.76E-04 1.06E-03 1.22 7.53E-04 1.21E-03 1.61 7.62E-04 7.79E-04 1.16

± 7.00E-05 ± 7.62E-05 ± 0.01 ± 4.90E-05 ± 7.52E-05 ± 0.02 ± 1.27E-04 ± 9.33E-05 ± 0.17

for scenario A1, and a similar GE for scenario A2.

Figure 7.20 shows the performance progression over time achieved by the FNN-CQSO

and three other top performing models (which includes the Jordan-CQSO, TDNN-

RPROP and MRNN-PSO). As visualized in the figure, the peak of the TE for the four
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Table 7.44: Models ranking in forecasting the S&P time series, scenarios A1 to A3

Model
A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 2 1 3 3 1 1 2 1.67

Elman-RPROP 4 4 11 10 11 11 8.67 8.33

Elman-PSO 8 8 8 8 8 9 8 8.33

Elman-CQPSO 5 5 5 4 4 4 4.67 4.33

Jordan-RPROP 13 13 12 12 13 13 12.67 12.67

Jordan-PSO 7 7 6 6 6 7 6.33 6.67

Jordan-CQPSO 3 2 2 2 2 2 2.33 2

MRNN-RPROP 12 12 13 13 12 12 12.33 12.33

MRNN-PSO 10 10 9 9 7 6 8.67 8.33

MRNN-CQPSO 6 6 7 7 3 3 5.33 5.33

TDNN-RPROP 1 3 1 1 5 5 2.33 3

TDNN-PSO 11 11 10 11 10 10 10.33 10.67

TDNN-CQPSO 9 9 4 5 9 8 7.33 7.33

models increased after the first environmental change, and the TDNN-RPROP recov-

ered faster than the other models. However, for the third and subsequent changes, the

FNN-CQSO produced better performance. Figure 7.20b shows that, on an average, the

FNN-CQSO had a better GE progression throughout the experiment runs compared to
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Figure 7.20: Training and generalization error results for SP time series, scenario A3
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the other models.

The ρ values in Table 7.43 indicate that all the models overfitted. The performance

ranking of the models given in Table 7.44 shows that the FNN-CQSO emerged as the

winner, by achieving the highest average rank.

Scenarios B1 to B3: The cumulative mean training and generalization error values in

Table 7.45 show that the FNN-CQSO outperformed the other models for scenario B1.

For scenario B2, the TDNN-CQSO model yielded the lowest training and generalization

errors compared to the other models. For scenario B3, the FNN-CQSO model yielded the

best errors compared to the remaining models. All the p-values for the pairwise compar-

isons between the FNN-CQSO and the other models were less than the 0.0001 threshold,

except for a few cases. The exceptions are the FNN-CQSO vs Jordan-CQSO comparison

for scenarios B1 and B2, and the FNN-CQSO vs Elman-RPROP and FNN-CQSO vs

TDNN-RPROP comparisons for scenario B2, where the models produced statistically

similar results.

The performance ranking given in Table 7.46 shows that the TDNN-CQSO and the

FNN-CQSO achieved the first and second highest ranking positions, respectively.

Figure 7.21 shows the performance progression over time achieved by the FNN-CQSO

and three other best models (which includes the Jordan-CQSO, TDNN-RPROP and

Jordan-PSO) in predicting the S&P time series for scenario B3. The FNN-CQSO had

superior TE and GE progressions throughout the search, compared to the other models.
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Figure 7.21: Training and generalization error results for SP time series, scenario B3
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Table 7.45: Results for S&P time series, scenarios B1-B3

Model

Scenario
B1 (f:100, s:20) B2 (f:100, s:40) B3 (f:100, s:58)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 8.82E-05 2.21E-04 2.66 2.34E-04 4.17E-04 1.94 6.91E-05 1.75E-04 3.67

± 1.09E-05 ± 1.31E-05 ± 0.18 ± 4.20E-05 ± 5.89E-05 ± 0.13 ± 1.75E-05 ± 8.25E-06 ± 0.66

Elman-RPROP 2.47E-04 4.28E-04 2.30 1.59E-03 1.78E-03 1.77 3.75E-04 5.02E-04 1.56

± 9.58E-05 ± 1.11E-04 ± 0.31 ± 2.51E-03 ± 2.52E-03 ± 0.17 ± 9.93E-05 ± 1.03E-04 ± 0.16

Elman-PSO 6.94E-04 8.55E-04 1.25 6.13E-04 9.17E-04 1.53 4.56E-04 5.64E-04 1.55

± 8.53E-05 ± 9.36E-05 ± 0.31 ± 8.17E-05 ± 1.10E-04 ± 0.17 ± 9.57E-05 ± 8.26E-05 ± 0.16

Elman-CQPSO 3.12E-04 4.84E-04 1.74 5.71E-04 8.77E-04 1.56 2.75E-04 3.87E-04 2.12

± 6.37E-05 ± 6.81E-05 ± 0.13 ± 1.00E-04 ± 1.47E-04 ± 0.05 ± 1.01E-04 ± 9.77E-05 ± 0.44

Jordan-RPROP 7.97E-02 7.98E-02 1.49 7.01E-02 6.77E-02 1.36 4.63E-02 4.70E-02 1.37

± 1.06E-01 ± 1.06E-01 ± 0.20 ± 9.31E-02 ± 8.93E-02 ± 0.10 ± 8.57E-02 ± 8.67E-02 ± 0.12

Jordan-PSO 4.55E-04 5.98E-04 1.37 5.86E-04 8.82E-04 1.52 3.97E-04 5.01E-04 1.45

± 8.23E-05 ± 9.22E-05 ± 0.04 ± 5.37E-05 ± 7.28E-05 ± 0.02 ± 8.67E-05 ± 8.45E-05 ± 0.18

Jordan-CQPSO 1.16E-04 2.61E-04 2.57 3.00E-04 5.07E-04 1.83 1.26E-04 2.34E-04 3.09

± 3.56E-05 ± 4.01E-05 ± 0.18 ± 5.45E-05 ± 7.62E-05 ± 0.13 ± 4.72E-05 ± 4.10E-05 ± 0.62

MRNN-RPROP 5.64E-03 6.80E-03 1.49 6.03E-02 6.12E-02 1.26 1.08E-02 1.17E-02 1.22

± 2.83E-03 ± 3.11E-03 ± 0.23 ± 1.08E-01 ± 1.09E-01 ± 0.14 ± 5.05E-03 ± 5.24E-03 ± 0.12

MRNN-PSO 7.16E-04 8.86E-04 1.27 6.71E-04 9.93E-04 1.50 5.38E-04 6.13E-04 1.24

± 1.05E-04 ± 1.15E-04 ± 0.03 ± 7.29E-05 ± 9.50E-05 ± 0.03 ± 9.70E-05 ± 9.04E-05 ± 0.14

MRNN-CQPSO 3.14E-04 4.68E-04 1.69 4.66E-04 7.31E-04 1.61 2.83E-04 4.01E-04 2.12

± 7.17E-05 ± 7.80E-05 ± 0.14 ± 7.40E-05 ± 1.12E-04 ± 0.08 ± 9.28E-05 ± 8.88E-05 ± 0.45

TDNN-RPROP 1.15E-04 4.02E-04 3.74 1.91E-04 3.96E-04 2.27 3.11E-04 4.51E-04 1.73

± 1.59E-05 ± 3.57E-05 ± 0.30 ± 3.47E-05 ± 4.28E-05 ± 0.19 ± 1.37E-04 ± 1.31E-04 ± 0.15

TDNN-PSO 1.01E-03 1.21E-03 1.20 9.40E-04 1.41E-03 1.51 1.10E-03 9.33E-04 0.89

± 8.09E-05 ± 8.69E-05 ± 0.01 ± 8.27E-05 ± 1.11E-04 ± 0.03 ± 1.35E-04 ± 8.15E-05 ± 0.05

TDNN-CQPSO 6.48E-04 8.35E-04 1.41 6.83E-04 1.12E-03 1.64 4.74E-04 5.27E-04 1.18

± 9.41E-05 ± 9.33E-05 ± 0.15 ± 4.53E-05 ± 6.87E-05 ± 0.01 ± 9.54E-05 ± 1.08E-04 ± 0.15

This indicates that the FNN-CQSO model handled the abrupt scenario B3 better than

the RNNs trained with any of the three training algorithms.

The ρ values obtained by all the models show that all the models overfitted, except

the TDNN-PSO for scenario B3. Table 7.46 shows that the FNN-CQSO emerged as the
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Table 7.46: Models ranking in forecasting the S&P time series, scenarios B1 to B3

Model
B1 B2 B3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 2 2 1 1 1.33 1.33

Elman-RPROP 4 4 11 11 6 7 7 7.33

Elman-PSO 9 9 7 7 8 9 8 8.33

Elman-CQPSO 5 6 5 5 3 3 4.33 4.67

Jordan-RPROP 13 13 13 13 13 13 13 13

Jordan-PSO 7 7 6 6 7 6 6.67 6.33

Jordan-CQPSO 3 2 3 3 2 2 2.67 2.33

MRNN-RPROP 12 12 12 12 12 12 12 12

MRNN-PSO 10 10 8 8 10 10 9.33 9.33

MRNN-CQPSO 6 5 4 4 4 4 4.67 4.33

TDNN-RPROP 2 3 1 1 5 5 2.67 3

TDNN-PSO 11 11 10 10 11 11 10.67 10.67

TDNN-CQPSO 8 8 9 9 9 8 8.67 8.33

winner by obtaining the highest average rank over the three scenarios.

Scenarios C1 to C3: The results in Table 7.47 show that the FNN-CQSO model

obtained the lowest cumulative training and generalization errors compared to all the

remaining models. All the p-values for the pairwise comparisons between the FNN-CQSO

and each of the other models are below the 0.0001 threshold, except for scenario C3,

where the Jordan-CQSO produced statistically similar performance. The performance

ranking of the models given in Table 7.48 shows that the FNN-CQSO obtained the

highest average rank.

The performance progression over time for the four top performing models for scenario

C3 is shown in Figure 7.22. The observations made from the figure are similar to that

of Figure 7.21.

The ρ values given in Table 7.47 indicate that all the models overfitted, except the

TDNN-PSO for scenario C3. The TDNN-RPROP model had the worst generalization

performance for scenarios C1 and C2, while the FNN-CQSO had the worst generalization
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Table 7.47: Results of S&P time series, scenario C1 to C3

Model

Scenario
C1 (f:150, s:20) C2 (f:150, s:40) C3 (f:150, s:58)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 5.60E-05 1.85E-04 3.33 1.08E-04 2.45E-04 2.39 4.20E-05 1.73E-04 4.78

± 2.73E-06 ± 5.57E-06 ± 0.09 ± 2.24E-05 ± 3.01E-05 ± 0.11 ± 7.97E-06 ± 5.96E-06 ± 0.53

Elman-RPROP 2.59E-04 6.06E-04 2.63 9.27E-04 1.11E-03 1.92 1.18E-03 1.32E-03 1.81

± 1.46E-04 ± 3.44E-04 ± 0.26 ± 1.04E-03 ± 1.06E-03 ± 0.23 ± 1.33E-03 ± 1.29E-03 ± 0.18

Elman-PSO 5.65E-04 7.18E-04 1.30 5.97E-04 8.96E-04 1.52 4.77E-04 5.32E-04 1.42

± 8.60E-05 ± 9.61E-05 ± 0.26 ± 6.19E-05 ± 8.20E-05 ± 0.23 ± 9.93E-05 ± 7.90E-05 ± 0.18

Elman-CQPSO 2.73E-04 4.10E-04 1.86 3.90E-04 6.28E-04 1.66 1.42E-04 2.57E-04 2.60

± 8.45E-05 ± 8.51E-05 ± 0.20 ± 6.92E-05 ± 9.95E-05 ± 0.05 ± 4.29E-05 ± 1.36E-05 ± 0.46

Jordan-RPROP 6.18E-02 6.02E-02 1.74 2.79E-01 2.88E-01 1.31 1.03E-01 1.05E-01 1.44

± 1.19E-01 ± 1.16E-01 ± 0.24 ± 2.28E-01 ± 2.38E-01 ± 0.15 ± 1.42E-01 ± 1.41E-01 ± 0.14

Jordan-PSO 4.25E-04 5.65E-04 1.35 4.53E-04 7.11E-04 1.59 3.14E-04 4.08E-04 1.89

± 4.36E-05 ± 4.89E-05 ± 0.03 ± 6.26E-05 ± 8.65E-05 ± 0.03 ± 8.90E-05 ± 7.50E-05 ± 0.38

Jordan-CQPSO 8.23E-05 2.17E-04 2.95 1.48E-04 3.01E-04 2.20 5.21E-05 1.77E-04 4.28

± 2.25E-05 ± 2.51E-05 ± 0.19 ± 3.37E-05 ± 4.57E-05 ± 0.13 ± 1.40E-05 ± 6.67E-06 ± 0.53

MRNN-RPROP 3.38E-03 4.36E-03 1.41 8.33E-02 8.41E-02 1.38 7.81E-03 9.83E-03 1.43

± 1.38E-03 ± 2.00E-03 ± 0.19 ± 1.49E-01 ± 1.48E-01 ± 0.15 ± 5.40E-03 ± 6.20E-03 ± 0.14

MRNN-PSO 6.28E-04 7.84E-04 1.27 5.47E-04 8.13E-04 1.52 4.03E-04 4.80E-04 1.38

± 8.52E-05 ± 9.18E-05 ± 0.03 ± 6.85E-05 ± 8.73E-05 ± 0.04 ± 8.82E-05 ± 7.75E-05 ± 0.19

MRNN-CQPSO 2.91E-04 4.46E-04 1.86 4.82E-04 7.55E-04 1.61 1.11E-04 2.51E-04 2.92

± 8.09E-05 ± 7.97E-05 ± 0.19 ± 9.44E-05 ± 1.37E-04 ± 0.05 ± 2.40E-05 ± 1.26E-05 ± 0.47

TDNN-RPROP 8.79E-05 3.62E-04 4.35 1.36E-04 3.45E-04 2.70 1.69E-04 3.19E-04 2.05

± 1.28E-05 ± 3.71E-05 ± 0.35 ± 1.92E-05 ± 2.41E-05 ± 0.18 ± 3.04E-05 ± 3.57E-05 ± 0.15

TDNN-PSO 9.20E-04 1.10E-03 1.20 8.10E-04 1.23E-03 1.54 1.11E-03 9.11E-04 0.83

± 5.93E-05 ± 6.11E-05 ± 0.01 ± 7.33E-05 ± 7.81E-05 ± 0.04 ± 7.77E-05 ± 4.76E-05 ± 0.03

TDNN-CQPSO 6.36E-04 8.05E-04 1.38 6.15E-04 1.02E-03 1.65 2.15E-04 2.66E-04 1.55

± 7.79E-05 ± 7.56E-05 ± 0.14 ± 3.00E-05 ± 4.86E-05 ± 0.01 ± 4.87E-05 ± 4.07E-05 ± 0.27

performance for scenario C3.

The overall performance ranking of the models for all nine scenarios, given in Ta-

ble 7.49, shows that the FNN-CQSO achieved the first ranking position in predicting the

S&P time series.
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Figure 7.22: Training and generalization error results for SP time series, scenario C3

Table 7.48: Models ranking in forecasting the S&P time series, scenarios C1 to C3

Model
C1 C2 C3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 1 1 1 1 1 1

Elman-RPROP 4 7 11 10 11 11 8.67 9.33

Elman-PSO 8 8 8 8 9 9 8.33 8.33

Elman-CQPSO 5 4 4 4 4 4 4.33 4

Jordan-RPROP 13 13 13 13 13 13 13 13

Jordan-PSO 7 6 5 5 7 7 6.33 6

Jordan-CQPSO 2 2 3 2 2 2 2.33 2

MRNN-RPROP 12 12 12 12 12 12 12 12

MRNN-PSO 9 9 7 7 8 8 8 8

MRNN-CQPSO 6 5 6 6 3 3 5 4.67

TDNN-RPROP 3 3 2 3 5 6 3.33 4

TDNN-PSO 11 11 10 11 10 10 10.33 10.67

TDNN-CQPSO 10 10 9 9 6 5 8.33 8

7.2.8 AWS Time Series

Scenarios A1 to A3: The CMF TE and GE values given in Table 7.50 indicate that

the FNN-CQSO outperformed the other models for scenarios A1 and A2. For scenario

A3, the TDNN-CQSO and MRNN-CQSO models obtained the lowest TE and GE values,
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Table 7.49: Overall models average ranking in forecasting the S&P time series, scenarios A

to C

Model
A B C Overall Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 2 1.67 1.33 1.33 1 1 1.44 1.33

Elman-RPROP 8.67 8.33 7 7.33 8.67 9.33 8.11 8.33

Elman-PSO 8 8.33 8 8.33 8.33 8.33 8.11 8.33

Elman-CQPSO 4.67 4.33 4.33 4.67 4.33 4 4.44 4.33

Jordan-RPROP 12.67 12.67 13 13 13 13 12.89 12.89

Jordan-PSO 6.33 6.67 6.67 6.33 6.33 6 6.44 6.33

Jordan-CQPSO 2.33 2 2.67 2.33 2.33 2 2.44 2.11

MRNN-RPROP 12.33 12.33 12 12 12 12 12.11 12.11

MRNN-PSO 8.67 8.33 9.33 9.33 8 8 8.67 8.55

MRNN-CQPSO 5.33 5.33 4.67 4.33 5 4.67 5 4.78

TDNN-RPROP 2.33 3 2.67 3 3.33 4 2.78 3.33

TDNN-PSO 10.33 10.67 10.67 10.67 10.33 10.67 10.44 10.67

TDNN-CQPSO 7.33 7.33 8.67 8.33 8.33 8 8.11 7.89

respectively. All the p-values for the pairwise comparisons between the FNN-CQSO and

the other models are below the 0.0001 threshold, except for a few cases. The exceptions

for scenario A1 are the FNN-CQSO vs Elman-RPROP and the FNN-CQSO vs Elman-

CQSO comparisons, where the difference in GE values were statistically insignificant.

For scenario A2, the FNN-CQSO produced a statistically similar GE compared to each

one of the CQSO trained models. For scenario A3, the exceptions are the FNN-CQSO

vs MRNN-CQSO and the FNN-CQSO vs TDNN-CQSO comparisons, where the models

also produced similar GE.

The ρ values in Table 7.50 show that all the models overfitted.

Figure 7.23 shows the performance of the four top performing models for scenario

A3. The figure shows that the FNN-CQSO had the best initial TE progression, but

subsequently produced the worst performance throughout the remaining epochs, where

the peak increased after every change. The MRNN-CQSO had, on average, the best TE

progression throughout the search. For the GE, however, the FNN-CQSO had similar or

better performance compared to the other models, adapting well to the changes, until
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Table 7.50: Results of AWS time series, scenarios A1 to A3

Model A1 (f:50, s:20) A2 (f:50, s:35) A3 (f:50, s:42)

TE GE ρ TE GE ρ TE GE ρ

FF-CQSO 3.92E-04 6.71E-04 1.70 3.83E-04 5.98E-04 1.54 4.12E-04 8.06E-04 1.94

± 2.29E-05 ± 5.27E-05 ± 0.04 ± 2.29E-05 ± 5.79E-05 ± 0.07 ± 3.21E-05 ± 8.04E-05 ± 0.05

Elman-RPROP 5.71E-04 7.27E-04 1.33 7.49E-04 1.08E-03 1.55 8.96E-04 1.29E-03 1.53

± 1.10E-04 ± 1.07E-04 ± 0.07 ± 1.44E-04 ± 1.43E-04 ± 0.12 ± 1.49E-04 ± 1.60E-04 ± 0.10

Elman-PSO 5.98E-04 9.71E-04 1.63 7.09E-04 7.25E-04 1.02 6.89E-04 1.09E-03 1.58

± 2.78E-05 ± 5.66E-05 ± 0.07 ± 1.94E-05 ± 3.24E-05 ± 0.12 ± 2.37E-05 ± 5.76E-05 ± 0.10

Elman-CQSO 4.31E-04 7.38E-04 1.70 4.81E-04 6.65E-04 1.38 4.89E-04 9.19E-04 1.84

± 2.37E-05 ± 6.53E-05 ± 0.08 ± 2.00E-05 ± 5.37E-05 ± 0.09 ± 4.14E-05 ± 1.16E-04 ± 0.10

Jordan-RPROP 5.61E-03 6.08E-03 1.15 2.80E-02 2.80E-02 1.27 8.45E-02 8.85E-02 1.33

± 2.29E-03 ± 2.49E-03 ± 0.05 ± 3.87E-02 ± 3.73E-02 ± 0.08 ± 1.19E-01 ± 1.19E-01 ± 0.10

Jordan-PSO 5.40E-04 9.03E-04 1.67 6.88E-04 7.36E-04 1.07 6.77E-04 1.14E-03 1.68

± 1.78E-05 ± 5.65E-05 ± 0.07 ± 2.34E-05 ± 3.95E-05 ± 0.04 ± 2.49E-05 ± 6.49E-05 ± 0.06

Jordan-CQSO 4.42E-04 7.71E-04 1.72 4.46E-04 6.36E-04 1.41 4.79E-04 9.20E-04 1.89

± 2.74E-05 ± 7.33E-05 ± 0.07 ± 2.72E-05 ± 6.07E-05 ± 0.08 ± 3.78E-05 ± 1.08E-04 ± 0.08

MRNN-RPROP 1.01E-02 1.04E-02 1.12 3.09E-02 3.37E-02 1.16 1.60E-02 1.63E-02 1.14

± 6.75E-03 ± 6.59E-03 ± 0.05 ± 2.19E-02 ± 2.29E-02 ± 0.08 ± 9.13E-03 ± 9.16E-03 ± 0.06

MRNN-PSO 5.70E-04 9.58E-04 1.69 6.70E-04 6.96E-04 1.04 3.56E-04 4.29E-04 1.22

± 2.99E-05 ± 5.09E-05 ± 0.06 ± 2.69E-05 ± 3.13E-05 ± 0.04 ± 1.59E-05 ± 1.54E-05 ± 0.05

MRNN-CQSO 4.87E-04 8.70E-04 1.78 5.03E-04 6.14E-04 1.21 2.25E-04 3.28E-04 1.47

± 2.82E-05 ± 7.97E-05 ± 0.10 ± 3.17E-05 ± 6.30E-05 ± 0.07 ± 9.17E-06 ± 1.41E-05 ± 0.06

TDNN-RPROP 4.11E-03 5.91E-03 1.43 6.10E-02 6.69E-02 1.13 1.74E-03 1.95E-03 1.14

± 1.32E-03 ± 1.78E-03 ± 0.12 ± 6.15E-02 ± 6.63E-02 ± 0.12 ± 4.94E-04 ± 5.70E-04 ± 0.05

TDNN-PSO 5.15E-04 9.09E-04 1.75 6.52E-04 6.77E-04 1.03 3.16E-04 4.34E-04 1.38

± 2.43E-05 ± 6.87E-05 ± 0.07 ± 2.36E-05 ± 4.16E-05 ± 0.04 ± 1.61E-05 ± 1.62E-05 ± 0.05

TDNN-CQSO 4.96E-04 9.13E-04 1.80 5.23E-04 6.06E-04 1.14 2.11E-04 3.32E-04 1.59

± 3.58E-05 ± 1.09E-04 ± 0.12 ± 3.65E-05 ± 7.23E-05 ± 0.07 ± 8.00E-06 ± 6.86E-06 ± 0.05

the last environmental change, where the performance deteriorated.

The ranking of the models in Table 7.51 shows that the FNN-CQSO is superior

compared to the other models.
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Figure 7.23: Training and generalization error results for AWS time series, scenario A3

Table 7.51: Models ranking in forecasting the AWS time series, scenarios A1 to A3

Model
A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQSO 1 1 1 1 5 5 2.33 2.33

Elman-RPROP 9 2 10 10 10 10 9.97 7.3

Elman-PSO 10 10 9 8 9 8 9.33 8.67

Elman-CQSO 2 3 3 5 7 6 4 4.67

Jordan-RPROP 12 12 11 11 13 13 12 12

Jordan-PSO 7 6 8 9 8 9 7.67 8

Jordan-CQSO 3 4 2 4 6 7 3.67 5

MRNN-RPROP 13 13 12 12 12 12 12.3 12.3

MRNN-PSO 8 9 7 7 4 3 6.33 6.33

MRNN-CQSO 4 5 4 3 2 1 3.33 3

TDNN-RPROP 11 11 13 13 11 11 11.67 11.67

TDNN-PSO 6 7 6 6 3 4 5 5.67

TDNN-CQSO 5 8 5 2 1 2 3.67 4

Scenarios B1 to B3: The error values given in Table 7.52 show that the FNN-CQSO

outperformed the other twelve models by yielding the lowest errors, except for scenario

B2, where the Jordan-CQSO had lowest training error. All the p-values for the Mann

Whitney U test between the FNN-CQSO and the other models are less than the 0.0001

threshold, except for the following pairs comparing the GE values:
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Table 7.52: Results of AWS time series, scenarios B1 to B3

Model B1 (f:100, s:20) B2 (f:100, s:35) B3 (f:100, s:42)

TE GE ρ TE GE ρ TE GE ρ

FF-CQSO 4.07E-04 7.05E-04 1.73 3.59E-04 6.06E-04 1.68 4.10E-04 8.35E-04 2.02

± 1.88E-05 ± 4.08E-05 ± 0.02 ± 1.45E-05 ± 3.42E-05 ± 0.04 ± 2.22E-05 ± 5.73E-05 0.03

Elman-RPROP 8.13E-04 1.04E-03 1.39 9.53E-04 1.32E-03 1.7 2.50E-03 3.17E-03 1.68

± 2.62E-04 ± 2.78E-04 ± 0.07 ± 6.51E-04 ± 6.27E-04 ± 0.13 ± 2.46E-03 ± 2.75E-03 ± 0.17

Elman-PSO 5.36E-04 8.93E-04 1.67 5.97E-04 6.42E-04 1.08 6.00E-04 1.02E-03 1.69

± 2.39E-05 ± 4.80E-05 ± 0.07 ± 2.66E-05 ± 2.92E-05 ± 0.13 ± 2.77E-05 ± 6.82E-05 ± 0.17

Elman-CQSO 4.56E-04 8.03E-04 1.73 4.52E-04 6.28E-04 1.38 5.23E-04 9.80E-04 1.88

± 3.71E-05 ± 9.44E-05 ± 0.08 ± 2.76E-05 ± 6.59E-05 ± 0.09 ± 1.16E-04 ± 1.90E-04 ± 0.06

Jordan-RPROP 4.98E-03 5.45E-03 1.2 6.22E-02 5.72E-02 1.42 7.30E-03 8.02E-03 1.27

± 3.54E-03 ± 3.81E-03 ± 0.06 ± 1.16E-01 ± 1.05E-01 ± 0.17 ± 3.44E-03 ± 3.56E-03 ± 0.14

Jordan-PSO 5.01E-04 8.53E-04 1.7 5.83E-04 6.23E-04 1.07 5.74E-04 1.01E-03 1.75

± 1.89E-05 ± 5.09E-05 ± 0.06 ± 2.82E-05 ± 3.48E-05 ± 0.04 ± 2.50E-05 ± 5.94E-05 ± 0.05

Jordan-CQSO 4.61E-04 8.47E-04 1.82 4.36E-04 6.49E-04 1.48 4.72E-04 9.12E-04 1.91

± 3.45E-05 ± 8.03E-05 ± 0.06 ± 2.29E-05 ± 5.57E-05 ± 0.07 ± 3.15E-05 ± 8.37E-05 ± 0.06

MRNN-RPROP 9.47E-03 9.90E-03 1.14 1.32E-02 1.40E-02 1.24 1.79E-02 1.97E-02 1.17

± 4.56E-03 ± 4.55E-03 ± 0.04 ± 5.08E-03 ± 5.27E-03 ± 0.13 ± 7.26E-03 ± 8.23E-03 ± 0.10

MRNN-PSO 5.23E-04 8.87E-04 1.69 5.81E-04 6.34E-04 1.09 5.69E-04 9.77E-04 1.72

± 2.54E-05 ± 6.24E-05 ± 0.07 ± 2.81E-05 ± 4.07E-05 ± 0.05 ± 2.37E-05 ± 5.13E-05 ± 0.05

MRNN-CQSO 4.65E-04 8.37E-04 1.78 4.64E-04 5.91E-04 1.27 5.04E-04 9.66E-04 1.89

± 2.49E-05 ± 7.99E-05 ± 0.09 ± 1.91E-05 ± 4.38E-05 ± 0.07 ± 3.80E-05 ± 1.11E-04 ± 0.09

TDNN-RPROP 1.69E-03 2.45E-03 1.48 4.83E-03 5.71E-03 1.16 2.92E-03 4.45E-03 1.55

± 5.65E-04 ± 8.40E-04 ± 0.08 ± 2.90E-03 ± 3.22E-03 ± 0.07 ± 9.72E-04 ± 1.56E-03 ± 0.09

TDNN-PSO 4.76E-04 8.38E-04 1.75 5.82E-04 6.34E-04 1.09 5.41E-04 9.91E-04 1.82

± 1.84E-05 ± 5.61E-05 ± 0.06 ± 2.17E-05 ± 3.52E-05 ± 0.04 ± 2.34E-05 ± 5.94E-05 ± 0.05

TDNN-CQSO 4.92E-04 9.62E-04 1.93 5.28E-04 6.51E-04 1.19 5.58E-04 1.15E-03 2.02

± 3.59E-05 ± 9.41E-05 ± 0.08 ± 4.50E-05 ± 1.05E-04 ± 0.09 ± 5.62E-05 ± 1.52E-04 ± 0.09

• FNN-CQSO vs Elman-RPROP and FNN-CQSO vs Elman-CQSO for scenario B1,

• FNN-CQSO vs any of the PSO or CQSO trained models for sceanrio B2, and

• FNN-CQSO vs Elman-RPROP, FNN-CQSO vs Elman-CQSO, FNN-CQSO vs
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Jordan-CQSO and FNN-CQSO vs MRNN-CQSO for scenario B3.

The ρ values obtained by the models, given in Table 7.52, indicate that all the models

overfitted.

Table 7.53: Models ranking in forecasting the AWS time series, scenarios B1 to B3

Model
B1 B2 B3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQSO 1 1 1 2 1 1 1 1.33

Elman-RPROP 10 10 10 10 12 12 10.67 10.67

Elman-PSO 9 8 9 7 9 9 9 8

Elman-CQSO 2 2 3 4 4 6 3 4

Jordan-RPROP 12 12 13 13 14 14 13 13

Jordan-PSO 7 6 8 3 8 8 7.67 5.67

Jordan-CQSO 3 5 2 8 2 2 2.33 5

MRNN-RPROP 13 13 12 12 15 15 13.33 13.33

MRNN-PSO 8 7 6 6 7 5 7 6

MRNN-CQSO 4 3 4 1 3 4 3.67 2.67

TDNN-RPROP 11 11 11 11 13 13 11.67 11.67

TDNN-PSO 5 4 7 5 5 7 5.67 5.33

TDNN-CQSO 6 9 5 9 6 10 5.67 9.33
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Figure 7.24: Training and generalization error results for AWS time series, scenario B3
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Figure 7.24 illustrates the performance progression over time for the four models

that achieved the best results in predicting the AWS time series for scenario B3. The

models selected include the FNN-CQSO, Jordan-CQSO, Elman-RPROP and TDNN-

PSO. As visualized in Figure 7.24, the FNN-CQSO had the best TE and GE progression

throughout the search, adapting well to the changes.

The performance ranking in Table 7.53 shows that the FNN-CQSO outperformed all

the other models by achieving the highest average performance rank.

Scenarios C1 to C3: The cumulative mean error values in Table 7.54 show that

the FNN-CQSO outperformed the remaining models, except for scenario C2, where the

TDNN-CQSO models had the best generalization performance. All the p-values for the

pairwise statistical comparisons between FNN-CQSO and each of the other models were

less than the 0.0001 threshold, except for the following few cases: FNN-CQSO vs Elman-

CQSO for scenario C1, and FNN-CQSO vs any of the RPROP and the CQSO trained

models in terms of GE for scenarios C2 and C3.

The ρ values given in Table 7.54 show that all the models exhibited overfitting be-

haviours.

Figure 7.25 shows the performance progression over time for the four models that

achieved the best results for scenario C3. As visualized in Figure 7.25, while the Elman-

RPROP model fluctuated a lot, the other three models had more stable error progression.

Figure 7.25a shows that the FNN-CQSO had the best TE progression throughout the
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Figure 7.25: Training and generalization error results for AWS time series, scenario C3
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Table 7.54: Results of AWS time series, scenarios C1 to C3

Model C1 (f:150, s:20) C2 (f:150, s:35) C3 (f:150, s:42)

TE GE ρ TE GE ρ TE GE ρ

FF-CQSO 3.84E-04 6.56E-04 1.70 3.51E-04 6.10E-04 1.73 4.11E-04 8.51E-04 2.07

± 1.35E-05 ± 3.04E-05 ± 0.02 ± 1.40E-05 ± 2.89E-05 ± 0.02 ± 1.43E-05 ± 3.34E-05 ± 0.02

Elman-RPROP 9.33E-04 1.19E-03 1.41 8.27E-04 1.21E-03 1.82 1.53E-03 1.80E-03 1.71

± 3.03E-04 ± 3.33E-04 ± 0.09 ± 3.49E-04 ± 3.80E-04 ± 0.19 ± 9.33E-04 ± 7.71E-04 ± 0.19

Elman-PSO 5.24E-04 9.19E-04 1.76 5.55E-04 6.26E-04 1.14 5.54E-04 9.37E-04 1.68

± 2.64E-05 ± 5.41E-05 ± 0.09 ± 2.80E-05 ± 3.21E-05 ± 0.19 ± 3.46E-05 ± 8.28E-05 ± 0.19

Elman-CQSO 4.34E-04 7.73E-04 1.76 4.31E-04 6.28E-04 1.45 4.69E-04 9.29E-04 1.96

± 3.72E-05 ± 8.58E-05 ± 0.06 ± 2.04E-05 ± 4.78E-05 ± 0.08 ± 3.77E-05 ± 9.39E-05 ± 0.05

Jordan-RPROP 2.51E-03 2.85E-03 1.35 1.47E-01 1.46E-01 1.32 5.47E-02 5.74E-02 1.27

± 1.60E-03 ± 1.63E-03 ± 0.11 ± 1.64E-01 ± 1.64E-01 ± 0.15 ± 9.59E-02 ± 1.00E-01 ± 0.12

Jordan-PSO 4.70E-04 8.06E-04 1.71 5.03E-04 5.87E-04 1.17 4.92E-04 8.65E-04 1.75

± 1.78E-05 ± 5.23E-05 ± 0.06 ± 1.85E-05 ± 3.31E-05 ± 0.05 ± 2.06E-05 ± 5.52E-05 ± 0.06

Jordan-CQSO 4.54E-04 8.47E-04 1.85 4.24E-04 6.06E-04 1.43 4.93E-04 9.96E-04 1.99

± 2.43E-05 ± 6.31E-05 ± 0.05 ± 2.03E-05 ± 4.82E-05 ± 0.08 ± 3.64E-05 ± 1.01E-04 ± 0.06

MRNN-RPROP 7.50E-03 7.72E-03 1.13 7.69E-03 8.32E-03 1.13 7.19E-03 8.38E-03 1.28

± 2.87E-03 ± 2.76E-03 ± 0.06 ± 2.66E-03 ± 2.98E-03 ± 0.10 ± 3.48E-03 ± 3.70E-03 ± 0.16

MRNN-PSO 4.85E-04 8.57E-04 1.76 5.25E-04 5.97E-04 1.14 5.04E-04 8.66E-04 1.71

± 1.72E-05 ± 4.77E-05 ± 0.06 ± 2.39E-05 ± 3.28E-05 ± 0.05 ± 2.12E-05 ± 4.99E-05 ± 0.05

MRNN-CQSO 4.82E-04 9.01E-04 1.85 5.00E-04 6.99E-04 1.39 5.10E-04 9.95E-04 1.92

± 3.11E-05 ± 8.31E-05 ± 0.07 ± 2.89E-05 ± 6.89E-05 ± 0.09 ± 4.12E-05 ± 1.17E-04 ± 0.08

TDNN-RPROP 1.28E-03 1.73E-03 1.47 3.51E-03 4.21E-03 1.15 2.12E-03 2.68E-03 1.48

± 5.93E-04 ± 6.29E-04 ± 0.07 ± 1.66E-03 ± 2.23E-03 ± 0.07 ± 6.95E-04 ± 7.22E-04 ± 0.10

TDNN-PSO 4.51E-04 8.39E-04 1.85 5.32E-04 6.17E-04 1.16 4.81E-04 8.87E-04 1.83

± 2.03E-05 ± 5.08E-05 ± 0.06 ± 2.16E-05 ± 3.51E-05 ± 0.04 ± 2.67E-05 ± 7.45E-05 ± 0.06

TDNN-CQSO 4.79E-04 9.14E-04 1.89 4.92E-04 5.70E-04 1.14 4.56E-04 8.68E-04 1.85

± 5.22E-05 ± 1.13E-04 ± 0.07 ± 2.73E-05 ± 6.15E-05 ± 0.08 ± 4.23E-05 ± 1.23E-04 ± 0.10

search. The GE progression of the models shown in Figure 7.23b indicates that the

FNN-CQSO had similar or better performance compared to the other models, adapting

well to the changes until the last environmental change, where the FNN-CQSO produced

slightly the worst error.
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Table 7.55: Models ranking in forecasting the AWS time series, scenarios C1 to C3

Model
C1 C2 C3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQSO 1 1 1 5 1 1 1 2.33

Elman-RPROP 10 10 10 10 10 10 10 10

Elman-PSO 9 9 9 7 9 7 9 7.67

Elman-CQSO 2 2 3 8 3 6 2.67 5.33

Jordan-RPROP 12 12 13 13 13 13 12.67 12.67

Jordan-PSO 5 3 6 2 5 2 3.67 2.33

Jordan-CQSO 4 5 2 4 6 9 4 6

MRNN-RPROP 13 13 12 12 12 12 12.33 12.33

MRNN-PSO 8 6 7 3 7 3 7.33 4

MRNN-CQSO 7 7 5 9 8 8 6.67 8

TDNN-RPROP 11 11 11 11 11 11 11 11

TDNN-PSO 3 4 8 6 4 5 5 5

TDNN-CQSO 6 8 4 1 2 4 4 4.33

The performance ranking of the models presented in Table 7.55 indicates that the

FNN-CQSO achieved the highest average rank over the three scenarios.

The overall ranking of the models for the nine scenarios, as given in Table 7.56, shows

that the FNN-CQSO obtained the highest average rank, and thus emerged as the overall

winner in predicting the AWS time series.

7.2.9 USD Time Series

Scenarios A1 to A3: The error values in Table 7.57 show that the Jordan-CQSO

and the FNN-CQSO outperformed the other models for scenario A1. A comparison

of the best performing models showed that the Jordan-CQSO had the best training

performance, while the FNN-CQSO produced the best generalization performance. For

scenario A2, the Jordan-CQSO model yielded the lowest errors, outperforming all the

other models. The values in Table 7.58 show that the FNN-CQSO achieved the third and

fifth ranking positions in terms of training and generalization performance, respectively.
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Table 7.56: Overall models’ ranking in forecasting the AWS time series, scenarios A to C

Model
A B C Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQSO 2.33 2.33 1 1.33 1 2.33 1.44 2.00

Elman-RPROP 9.97 7.3 10.67 10.67 10 10 10.21 9.32

Elman-PSO 9.33 8.67 9 8 9 7.67 9.11 8.11

Elman-CQSO 4 4.67 3 4 2.67 5.33 3.22 4.67

Jordan-RPROP 12 12 13 13 12.67 12.67 12.56 12.56

Jordan-PSO 7.67 8 7.67 5.67 3.67 2.33 6.34 5.33

Jordan-CQSO 3.67 5 2.33 5 4 6 3.33 5.33

MRNN-RPROP 12.3 12.3 13.33 13.33 12.33 12.33 12.65 12.65

MRNN-PSO 6.33 6.33 7 6 7.33 4 6.89 5.44

MRNN-CQSO 3.33 3 3.67 2.67 6.67 8 4.56 4.56

TDNN-RPROP 11.67 11.67 11.67 11.67 11 11 11.45 11.45

TDNN-PSO 5 5.67 5.67 5.33 5 5 5.22 5.33

TDNN-CQSO 3.67 4 5.67 9.33 4 4.33 4.45 5.89

For scenario A3, the Jordan-CQSO produced the lowest training error and the FNN-

CQSO produced the lowest generalization error. The ranking of the models shows that

the FNN-CQSO achieved the first position in terms of generalization, and the fourth in

terms of training for scenario C3.

All the p-values for the pairwise comparisons between the FNN-CQSO and the other

models were less than the threshold, except for the following: for scenario A1, FNN-

CQSO vs Elman-RPROP, FNN-CQSO vs Jordan-RPROP in terms of TE, and FNN-

CQSO vs Jordan-CQSO in terms of GE; for scenario A2, FNN-CQSO vs Elman-CQSO,

FNN-CQSO vs Jordan-CQSO in terms of TE; and FNN-CQSO vs Elman-CQSO for

scenario A3.

The ρ values given in Table 7.57 show that all the models exhibited overfitting be-

haviour.

Figure 7.26 illustrates the performance progression over time for the four models

that achieved the highest performance rank for scenario A2. As visualized in the figure,

the TE obtained by the models increased after every change. However, the GE values
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Table 7.57: Results of USD time series, scenarios A1 to A3

Model

Scenario
A1 (f:50, s:8) A2 (f:50, s:16) A3 (f:50, s:20)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 4.90E-04 1.01E-03 2.11 4.12E-04 1.16E-03 2.93 5.66E-04 1.10E-03 1.95

± 2.37E-05 ± 5.77E-05 ± 0.16 ± 3.64E-05 ± 4.50E-05 ± 0.21 ± 3.08E-05 ± 4.18E-05 ± 0.07

Elman-RPROP 1.02E-03 2.06E-03 2.91 1.64E-03 2.18E-03 1.53 1.64E-03 2.32E-03 1.68

± 5.95E-04 ± 6.74E-04 ± 0.42 ± 4.07E-04 ± 4.21E-04 ± 0.13 ± 5.84E-04 ± 6.15E-04 ± 0.21

Elman-PSO 6.74E-04 1.52E-03 2.29 6.47E-04 1.30E-03 2.02 8.70E-04 1.59E-03 1.84

± 3.94E-05 ± 1.05E-04 ± 0.42 ± 3.40E-05 ± 8.90E-05 ± 0.13 ± 5.58E-05 ± 1.11E-04 ± 0.21

Elman-CQPSO 5.44E-04 1.30E-03 2.39 3.82E-04 8.27E-04 2.19 5.39E-04 1.12E-03 2.11

± 2.98E-05 ± 1.25E-04 ± 0.17 ± 1.85E-05 ± 4.81E-05 ± 0.13 ± 2.33E-05 ± 4.60E-05 ± 0.11

Jordan-RPROP 2.75E-03 3.64E-03 2.03 2.00E-03 2.47E-03 1.61 1.22E-03 1.78E-03 1.94

± 1.39E-03 ± 1.59E-03 ± 0.31 ± 1.46E-03 ± 1.41E-03 ± 0.11 ± 6.17E-04 ± 5.66E-04 ± 0.21

Jordan-PSO 7.48E-04 1.73E-03 2.33 9.08E-04 1.58E-03 1.76 1.03E-03 1.72E-03 1.68

± 3.78E-05 ± 1.07E-04 ± 0.12 ± 7.25E-05 ± 1.21E-04 ± 0.09 ± 5.54E-05 ± 1.10E-04 ± 0.09

Jordan-CQPSO 4.45E-04 1.04E-03 2.34 3.62E-04 7.46E-04 2.1 4.17E-04 1.19E-03 2.89

± 1.81E-05 ± 9.22E-05 ± 0.18 ± 2.24E-05 ± 2.93E-05 ± 0.11 ± 1.58E-05 ± 3.96E-05 ± 0.12

MRNN-RPROP 8.52E-03 9.43E-03 1.77 7.66E-03 8.53E-03 1.47 1.34E-02 1.45E-02 1.75

± 3.17E-03 ± 3.22E-03 ± 0.39 ± 4.01E-03 ± 4.22E-03 ± 0.16 ± 7.03E-03 ± 7.39E-03 ± 0.27

MRNN-PSO 6.97E-04 1.75E-03 2.54 6.67E-04 1.36E-03 2.06 8.55E-04 1.55E-03 1.82

± 4.93E-05 ± 1.45E-04 ± 0.17 ± 3.60E-05 ± 6.15E-05 ± 0.1 ± 4.43E-05 ± 9.20E-05 ± 0.07

MRNN-CQPSO 6.67E-04 1.72E-03 2.59 4.61E-04 9.83E-04 2.14 6.66E-04 1.23E-03 1.85

± 4.54E-05 ± 1.29E-04 ± 0.13 ± 2.69E-05 ± 6.98E-05 ± 0.12 ± 2.95E-05 ± 6.93E-05 ± 0.11

TDNN-RPROP 8.46E-04 2.54E-03 3.34 1.36E-03 1.93E-03 1.59 1.04E-03 1.96E-03 2.33

± 1.42E-04 ± 2.08E-04 ± 0.33 ± 2.77E-04 ± 2.95E-04 ± 0.15 ± 2.84E-04 ± 2.80E-04 ± 0.26

TDNN-PSO 7.46E-04 2.36E-03 3.2 6.47E-04 1.42E-03 2.2 8.53E-04 1.60E-03 1.89

± 3.18E-05 ± 1.24E-04 ± 0.2 ± 3.02E-05 ± 8.30E-05 ± 0.11 ± 4.02E-05 ± 7.61E-05 ± 0.08

TDNN-CQPSO 6.76E-04 1.73E-03 2.54 4.39E-04 8.30E-04 2 4.94E-04 1.31E-03 2.68

± 3.25E-05 ± 1.53E-04 ± 0.16 ± 5.79E-05 ± 3.59E-05 ± 0.14 ± 2.41E-05 ± 5.24E-05 ± 0.11

obtained by the models dropped after every change, except for the FNN-CQSO model

which had its GE values increased after the changes. This indicates that the other three

models adapted to changes better than the FNN-CQSO model for scenario A2.

The performance ranking of the models given in Table 7.58 show that the Jordan-
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Figure 7.26: Training and generalization error results for USD time series, scenario A2

Table 7.58: Models ranking in forecasting the USD time series, scenarios A1 to A3

Model
A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 2 1 3 5 4 1 3 2.33

Elman-RPROP 11 9 11 11 12 12 11.33 10.67

Elman-PSO 5 4 6 6 8 7 6.33 5.67

Elman-CQPSO 3 3 2 2 3 2 2.67 2.33

Jordan-RPROP 12 12 12 12 11 10 11.67 11.33

Jordan-PSO 9 7 9 9 9 9 9 8.33

Jordan-CQPSO 1 2 1 1 1 3 1 2

MRNN-RPROP 13 13 13 13 13 13 13 13

MRNN-PSO 7 8 8 7 7 6 7.33 7

MRNN-CQPSO 4 5 5 4 5 4 4.67 4.33

TDNN-RPROP 10 11 10 10 10 11 10 10.67

TDNN-PSO 8 10 7 8 6 8 7 8.67

TDNN-CQPSO 6 6 4 3 2 5 4 4.67

CQSO obtained the highest average rank over the three scenarios. The FNN-CQSO

obtained the second highest average rank.

Scenarios B1 to B3: The error values presented in Table 7.59 show that the FNN-

CQSO obtained the lowest cumulative mean training and generalisation errors for sce-
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Table 7.59: Results of USD time series, scenarios B1 to B3

Model

Scenario
B1 (f:100, s:8) B2 (f:100, s:16) B3 (f:100, s:20)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 4.61E-04 9.05E-04 1.98 3.96E-04 6.28E-04 1.59 4.97E-04 1.05E-03 2.13

± 1.92E-05 ± 5.39E-05 ± 0.12 ± 1.77E-05 ± 2.46E-05 ± 0.04 ± 2.47E-05 ± 2.81E-05 ± 0.09

Elman-RPROP 7.72E-04 1.73E-03 3.52 1.11E-03 1.55E-03 1.69 8.25E-04 1.45E-03 2.22

± 2.92E-04 ± 2.79E-04 ± 0.64 ± 5.78E-04 ± 6.40E-04 ± 0.15 ± 2.41E-04 ± 1.96E-04 ± 0.26

Elman-PSO 6.13E-04 1.33E-03 2.19 5.95E-04 9.75E-04 1.65 6.23E-04 1.26E-03 2.03

± 2.60E-05 ± 8.53E-05 ± 0.64 ± 3.06E-05 ± 5.28E-05 ± 0.15 ± 2.04E-05 ± 4.29E-05 ± 0.26

Elman-CQPSO 5.13E-04 1.37E-03 2.65 4.10E-04 7.15E-04 1.75 5.48E-04 1.17E-03 2.17

± 2.48E-05 ± 1.55E-04 ± 0.23 ± 1.94E-05 ± 3.28E-05 ± 0.07 ± 4.03E-05 ± 8.22E-05 ± 0.13

Jordan-RPROP 1.71E-03 2.63E-03 2.52 1.74E-03 2.30E-03 1.81 3.35E-03 3.84E-03 1.47

± 6.83E-04 ± 6.86E-04 ± 0.45 ± 1.03E-03 ± 1.12E-03 ± 0.16 ± 1.06E-03 ± 1.09E-03 ± 0.22

Jordan-PSO 6.49E-04 1.33E-03 2.10 6.99E-04 1.16E-03 1.67 8.17E-04 1.43E-03 1.77

± 4.14E-05 ± 8.23E-05 ± 0.16 ± 3.52E-05 ± 6.90E-05 ± 0.07 ± 4.34E-05 ± 8.15E-05 ± 0.08

Jordan-CQPSO 4.74E-04 1.05E-03 2.21 4.38E-04 6.96E-04 1.61 3.85E-04 1.24E-03 3.22

± 1.83E-05 ± 7.85E-05 ± 0.13 ± 2.04E-05 ± 2.29E-05 ± 0.08 ± 1.43E-05 ± 5.39E-05 ± 0.11

MRNN-RPROP 7.51E-03 8.77E-03 1.40 8.76E-03 9.49E-03 1.43 9.78E-03 1.06E-02 1.41

± 1.80E-03 ± 1.74E-03 ± 0.22 ± 3.92E-03 ± 3.84E-03 ± 0.18 ± 3.71E-03 ± 3.86E-03 ± 0.30

MRNN-PSO 6.14E-04 1.44E-03 2.35 6.11E-04 1.01E-03 1.67 6.65E-04 1.38E-03 2.09

± 2.76E-05 ± 1.42E-04 ± 0.20 ± 4.36E-05 ± 5.55E-05 ± 0.07 ± 3.18E-05 ± 6.02E-05 ± 0.10

MRNN-CQPSO 5.83E-04 1.52E-03 2.64 4.68E-04 7.95E-04 1.71 6.09E-04 1.22E-03 2.03

± 4.17E-05 ± 1.25E-04 ± 0.18 ± 1.62E-05 ± 3.13E-05 ± 0.07 ± 2.86E-05 ± 5.91E-05 ± 0.12

TDNN-RPROP 5.61E-04 2.45E-03 4.49 7.39E-04 1.22E-03 1.88 6.63E-04 1.49E-03 2.69

± 4.76E-05 ± 1.59E-04 ± 0.28 ± 1.47E-04 ± 1.10E-04 ± 0.19 ± 1.34E-04 ± 1.30E-04 ± 0.34

TDNN-PSO 6.84E-04 2.00E-03 2.91 6.20E-04 1.11E-03 1.80 6.60E-04 1.46E-03 2.22

± 2.87E-05 ± 1.57E-04 ± 0.17 ± 3.04E-05 ± 4.11E-05 ± 0.07 ± 2.24E-05 ± 3.90E-05 ± 0.07

TDNN-CQPSO 6.84E-04 2.00E-03 2.91 4.91E-04 7.65E-04 1.58 4.55E-04 1.34E-03 2.98

± 2.87E-05 ± 1.57E-04 ± 0.17 ± 3.31E-05 ± 3.18E-05 ± 0.06 ± 1.78E-05 ± 4.09E-05 ± 0.13

narios B1 and B2. For scenario B3, the Jordan-CQSO and the FNN-CQSO yielded

the lowest training and generalization errors, respectively. All the p-values for the pair-

wise comparisons between the FNN-CQSO and the other models were below the 0.0001

threshold, except when compared to:
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• Elman-RPROP and Jordan-CQSO (in terms of TE) for scenario B1,

• Elman-CQSO for scenario B2, and

• Elman-RPROP, Elman-CQSO, TDNN-RPROP, TDNN-CQSO, Jordan-CQSO (in

terms of GE) for scenario B3.

Figure 7.27 shows the performance progression over time for the four best performing

models. Observations made from the figure are similar to that of Figure 7.26. In addition

to that, the FNN-CQSO model slightly outperformed the other models. This indicate

that the performance of the FNN-CQSO improved compared to how the algorithm fared

for scenario A2.
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Figure 7.27: Training and generalization error results for USD time series, scenario B2

The ρ values in Table 7.59 indicate that all the models overfitted, where the MRNN-

RPROP model overfitted the least.

The average performance rank obtained by the models show that the FNN-CQSO

model emerged as the winner in predicting the USD time series for scenarios B1, B2 and

B3.

Scenarios C1 to C3: The error values given in Table 7.61 show that the FNN-CQSO

outperformed the other models, except for scenario C3, where the Jordan-CQSO yielded

the lowest training error. All the p-values for the pairwise comparisons between the FNN-

CQSO and the other models were below the 0.0001 threshold, except in terms of the TE



7.2. Results 181

Table 7.60: Models ranking in forecasting the USD time series, scenarios B1 to B3

Model
B1 B2 B3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 1 1 3 1 1.67 1

Elman-RPROP 11 8 11 11 11 9 11 9.33

Elman-PSO 6 3 6 6 6 5 6 4.67

Elman-CQPSO 3 5 2 3 4 2 3 3.33

Jordan-RPROP 12 12 12 12 12 12 12 12

Jordan-PSO 8 4 9 9 10 8 9 7

Jordan-CQPSO 2 2 3 2 1 4 2 2.67

MRNN-RPROP 13 13 13 13 13 13 13 13

MRNN-PSO 7 6 7 7 9 7 7.67 6.67

MRNN-CQPSO 5 7 4 5 5 3 4.67 5

TDNN-RPROP 4 11 10 10 8 11 7.33 10.67

TDNN-PSO 9.5 9.5 8 8 7 10 8.17 9.17

TDNN-CQPSO 9.5 9.5 5 4 2 6 5.5 6.5

of the following: FNN-CQSO vs Elman-RPROP, FNN-CQSO vs Jordan-RPROP, and

FNN-CQSO vs TDNN-CQSO for scenario C1; FNN-CQSO vs Jordan-RPROP for sce-

nario C2; FNN-CQSO vs Elman-RPROP, FNN-CQSO vs TDNN-RPROP, FNN-CQSO

vs TDNN-CQSO for scenario C3. The only exception in terms of the GE comparisons

is FNN-CQSO vs Jordan-CQSO for scenarios C1 and C3.

All 13 models exhibited overfitting behaviour, as indicated by the ρ values given in

Table 7.61. The MRNN-RPROP, however, was the least overfitted model.

Figure 7.28 illustrates the performance progression over time for the four models that

achieved best performance in predicting the USD time series for scenario C2. Observa-

tions made from the figure are similar to that of Figure 7.27.

The average performance rank obtained by the models for the three scenarios, as

shown in Table 7.62, indicates that the FNN-CQSO model emerged as the winner.

The overall ranking of the models in predicting the USD time series for all nine scenar-

ios, presented in Table 7.63, shows that the Jordan-CQSO and the FNN-CQSO achieved

the highest rank in terms of training and generalization performance, respectively.
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Table 7.61: Results of USD time series, scenarios C1 to C3

Model

Scenario
C1 (f:150, s:8) C2 (f:150, s:16) C3 (f:150, s:20)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 4.42E-04 9.05E-04 2.05 3.84E-04 6.15E-04 1.61 4.53E-04 1.02E-03 2.28

± 1.27E-05 ± 5.31E-05 ± 0.11 ± 1.80E-05 ± 2.40E-05 ± 0.03 ± 2.22E-05 ± 2.39E-05 ± 0.08

Elman-RPROP 8.08E-04 2.12E-03 4.28 1.27E-03 1.87E-03 1.97 1.65E-03 2.18E-03 2.28

± 3.00E-04 ± 3.46E-04 ± 0.71 ± 7.08E-04 ± 8.04E-04 ± 0.21 ± 1.18E-03 ± 1.16E-03 ± 0.33

Elman-PSO 5.79E-04 1.41E-03 2.43 5.75E-04 8.83E-04 1.55 5.91E-04 1.33E-03 2.27

± 2.90E-05 ± 1.26E-04 ± 0.71 ± 2.76E-05 ± 3.65E-05 ± 0.21 ± 2.95E-05 ± 6.18E-05 ± 0.33

Elman-CQPSO 5.37E-04 1.38E-03 2.55 4.13E-04 7.06E-04 1.72 4.91E-04 1.20E-03 2.46

± 3.50E-05 ± 1.52E-04 ± 0.20 ± 1.81E-05 ± 3.92E-05 ± 0.10 ± 2.23E-05 ± 4.97E-05 ± 0.12

Jordan-RPROP 1.51E-03 2.66E-03 2.99 1.97E-03 2.62E-03 1.91 3.59E-03 4.29E-03 1.45

± 5.65E-04 ± 7.13E-04 ± 0.63 ± 8.07E-04 ± 9.19E-04 ± 0.25 ± 1.48E-03 ± 1.62E-03 ± 0.21

Jordan-PSO 5.76E-04 1.20E-03 2.10 5.69E-04 9.39E-04 1.66 6.80E-04 1.31E-03 1.94

± 2.85E-05 ± 8.70E-05 ± 0.13 ± 2.76E-05 ± 5.25E-05 ± 0.08 ± 2.67E-05 ± 5.98E-05 ± 0.08

Jordan-CQPSO 4.84E-04 1.08E-03 2.23 4.49E-04 6.96E-04 1.56 3.76E-04 1.28E-03 3.41

± 2.60E-05 ± 8.96E-05 ± 0.13 ± 1.72E-05 ± 1.97E-05 ± 0.05 ± 1.02E-05 ± 3.65E-05 ± 0.10

MRNN-RPROP 6.71E-03 8.38E-03 1.64 6.65E-03 7.12E-03 1.56 9.84E-03 1.03E-02 1.15

± 2.19E-03 ± 2.28E-03 ± 0.42 ± 3.16E-03 ± 2.95E-03 ± 0.25 ± 4.17E-03 ± 4.08E-03 ± 0.11

MRNN-PSO 6.16E-04 1.47E-03 2.39 5.94E-04 9.33E-04 1.59 5.94E-04 1.47E-03 2.48

± 3.84E-05 ± 1.45E-04 ± 0.19 ± 3.03E-05 ± 3.58E-05 ± 0.08 ± 2.33E-05 ± 7.34E-05 ± 0.12

MRNN-CQPSO 6.25E-04 1.68E-03 2.72 4.46E-04 8.28E-04 1.87 5.97E-04 1.25E-03 2.12

± 4.83E-05 ± 1.30E-04 ± 0.17 ± 1.49E-05 ± 4.07E-05 ± 0.09 ± 3.00E-05 ± 6.23E-05 ± 0.11

TDNN-RPROP 5.23E-04 2.57E-03 5.00 6.22E-04 1.21E-03 2.12 5.27E-04 1.47E-03 3.12

± 4.90E-05 ± 2.06E-04 ± 0.25 ± 9.26E-05 ± 9.19E-05 ± 0.18 ± 8.36E-05 ± 1.57E-04 ± 0.38

TDNN-PSO 6.64E-04 1.80E-03 2.71 5.86E-04 9.41E-04 1.61 5.86E-04 1.42E-03 2.46

± 3.08E-05 ± 1.36E-04 ± 0.16 ± 2.56E-05 ± 4.15E-05 ± 0.05 ± 2.55E-05 ± 6.24E-05 ± 0.15

TDNN-CQPSO 5.23E-04 2.57E-03 5.00 4.72E-04 7.32E-04 1.56 4.22E-04 1.34E-03 3.18

± 4.90E-05 ± 2.06E-04 ± 0.25 ± 1.91E-05 ± 2.22E-05 ± 0.06 ± 1.18E-05 ± 4.54E-05 ± 0.10

7.2.10 LM Time Series

Scenarios A1 to A3: Table 7.64 shows that the FNN-CQSO outperformed the other

models by producing the lowest errors. All the p-values for the pairwise comparisons

between the TE produced by FNN-CQSO and the remaining models were less than the
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Figure 7.28: Training and generalization error results for USD time series, scenario C2

Table 7.62: Models ranking in forecasting the USD time series, scenarios C1 to C3

Model
C1 C2 C3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 1 1 3 1 1.67 1

Elman-RPROP 11 9 11 11 11 11 11 10.33

Elman-PSO 7 5 7 6 7 6 7 5.67

Elman-CQPSO 5 4 2 3 4 2 3.67 3

Jordan-RPROP 12 12 12 12 12 12 12 12

Jordan-PSO 6 3 6 8 10 5 7.33 5.33

Jordan-CQPSO 2 2 4 2 1 4 2.33 2.67

MRNN-RPROP 13 13 13 13 13 13 13 13

MRNN-PSO 8 6 9 7 8 9 8.33 7.33

MRNN-CQPSO 9 7 3 5 9 3 7 5

TDNN-RPROP 4 11 10 10 5 10 6.17 10.17

TDNN-PSO 10 8 8 9 6 8 8 8.33

TDNN-CQPSO 4 11 5 4 2 7 3.5 7.17

0.0001 threshold, except for the FNN-CQSO vs Jordan-CQSO comparison for scenario

A3, where the error difference between the two models was statistically insignificant.

The p-values for the GE comparisons indicate that, for the pairs FNN-CQSO vs Elman-

RPROP, FNN-CQSO vs Elman-CQSO, FNN-CQSO vs Jordan-PSO, FNN-CQSO vs

Jordan-CQSO, FNN-CQSO vs MRNN-PSO, FNN-CQSO vs TDNN-RPROP, and FNN-
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Table 7.63: Overall models ranking in forecasting the USD time series, scenarios A to C

Model
A B C Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 3 2.33 1.67 1 1.67 1 2.33 1.44

Elman-RPROP 11.33 10.67 11 9.33 11 10.33 11.11 10.11

Elman-PSO 6.33 5.67 6 4.67 7 5.67 6 5.34

Elman-CQPSO 2.67 2.33 3 3.33 3.67 3 2.67 2.89

Jordan-RPROP 11.67 11.33 12 12 12 12 11.67 11.78

Jordan-PSO 9 8.33 9 7 7.33 5.33 8.78 6.89

Jordan-CQPSO 1 2 2 2.67 2.33 2.67 1.67 2.45

MRNN-RPROP 13 13 13 13 13 13 13.00 13

MRNN-PSO 7.33 7 7.67 6.67 8.33 7.33 7.33 7

MRNN-CQPSO 4.67 4.33 4.67 5 7 5 4.56 4.78

TDNN-RPROP 10 10.67 7.33 10.67 6.17 10.17 9.33 10.50

TDNN-PSO 7 8.67 8.17 9.17 8 8.33 7.95 8.72

TDNN-CQPSO 4 4.67 5.5 6.5 3.5 7.17 4.72 6.11

CQSO vs TDNN-CQSO, the difference in performance was insignificant for scenario

A1. For scenario A2, the difference in performance was insignificant for the pairs FNN-

CQSO vs Jordan-PSO and FNN-CQSO vs Jordan-RPROP. For scenario A3, the p-values

indicate that the FNN-CQSO model produced similar generalization results compared

to the remaining CQSO trained models and the Jordan-PSO model.
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Figure 7.29: Training and generalization error results for LM time series, scenario A1
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Table 7.64: Results of LM time series, scenario A1 to A3

Model

Scenario
A1 (f:50, s:10) A2 (f:50, s:25) A3 (f:50, s:31)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 2.29E-03 3.47E-03 1.51 2.38E-03 2.56E-03 1.07 2.37E-03 2.24E-03 0.98

± 7.76E-05 ± 7.04E-05 ± 0.06 ± 1.70E-06 ± 4.53E-06 ± 0 ± 1.38E-05 ± 3.65E-05 ± 0.02

Elman-RPROP 5.10E-03 6.54E-03 1.47 4.95E-03 5.48E-03 1.13 5.13E-03 5.23E-03 1.02

± 1.29E-03 ± 1.19E-03 ± 0.15 ± 1.04E-03 ± 1.06E-03 ± 0.04 ± 2.10E-03 ± 2.09E-03 ± 0.03

Elman-PSO 3.27E-03 3.73E-03 1.17 3.38E-03 2.77E-03 0.83 3.71E-03 2.53E-03 0.73

± 2.21E-04 ± 2.57E-04 ± 0.15 ± 1.96E-04 ± 1.12E-04 ± 0.04 ± 4.25E-04 ± 1.25E-04 ± 0.03

Elman-CQPSO 2.48E-03 3.78E-03 1.55 2.54E-03 2.63E-03 1.04 2.66E-03 2.30E-03 0.87

± 1.26E-04 ± 8.31E-05 ± 0.07 ± 5.18E-05 ± 4.22E-05 ± 0.01 ± 8.07E-05 ± 5.83E-05 ± 0.03

Jordan-RPROP 4.96E-03 6.38E-03 1.4 1.71E-02 1.68E-02 1.07 9.80E-03 1.00E-02 1.03

± 1.62E-03 ± 1.62E-03 ± 0.08 ± 1.02E-02 ± 9.22E-03 ± 0.03 ± 3.21E-03 ± 3.21E-03 ± 0.01

Jordan-PSO 2.62E-03 3.63E-03 1.41 2.58E-03 2.62E-03 1.02 2.56E-03 2.30E-03 0.9

± 1.28E-04 ± 8.90E-05 ± 0.07 ± 5.63E-05 ± 5.12E-05 ± 0.02 ± 7.67E-05 ± 4.61E-05 ± 0.03

Jordan-CQPSO 2.54E-03 3.76E-03 1.51 2.43E-03 2.60E-03 1.07 2.40E-03 2.27E-03 0.95

± 1.51E-04 ± 9.30E-05 ± 0.08 ± 2.92E-05 ± 3.78E-05 ± 0.01 ± 2.27E-05 ± 4.59E-05 ± 0.02

MRNN-RPROP 6.52E-03 7.65E-03 1.22 7.49E-03 8.13E-03 1.09 9.32E-03 9.67E-03 1.04

± 1.33E-03 ± 1.29E-03 ± 0.05 ± 2.48E-03 ± 2.82E-03 ± 0.04 ± 2.22E-03 ± 2.36E-03 ± 0.02

MRNN-PSO 3.55E-03 4.06E-03 1.2 3.70E-03 2.88E-03 0.8 3.75E-03 2.57E-03 0.71

± 3.85E-04 ± 4.17E-04 ± 0.1 ± 2.85E-04 ± 1.47E-04 ± 0.05 ± 3.52E-04 ± 1.50E-04 ± 0.05

MRNN-CQPSO 2.38E-03 3.77E-03 1.59 2.55E-03 2.62E-03 1.03 2.57E-03 2.31E-03 0.9

± 6.72E-05 ± 6.46E-05 ± 0.05 ± 6.27E-05 ± 3.93E-05 ± 0.02 ± 5.97E-05 ± 4.19E-05 ± 0.02

TDNN-RPROP 2.41E-03 3.91E-03 1.63 4.81E-03 5.96E-03 1.28 3.46E-03 3.85E-03 1.06

± 2.47E-04 ± 3.61E-04 ± 0.03 ± 2.31E-03 ± 2.48E-03 ± 0.05 ± 6.08E-04 ± 9.69E-04 ± 0.06

TDNN-PSO 2.57E-03 3.55E-03 1.4 2.74E-03 2.93E-03 1.07 3.15E-03 2.92E-03 0.94

± 1.64E-04 ± 1.98E-04 ± 0.07 ± 1.28E-04 ± 1.73E-04 ± 0.04 ± 3.30E-04 ± 2.42E-04 ± 0.04

TDNN-CQPSO 2.77E-03 3.80E-03 1.38 2.57E-03 2.77E-03 1.08 2.64E-03 2.25E-03 0.85

± 1.08E-04 ± 9.71E-05 ± 0.06 ± 5.40E-05 ± 5.21E-05 ± 0.04 ± 3.41E-05 ± 3.56E-05 ± 0.02

The ρ values in Table 7.64 show that all the models overfitted for the gradual sce-

nario A1. However, for the more severely changing scenario A2, the models exhibited

minor or no signs of overfitting, except for the Elman-RPROP and the TDNN-RPROP

models which overfitted. The ρ values also indicated that the generalization behaviour
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Table 7.65: Models ranking in forecasting the LM time series, scenarios A1 to A3

Model
A1 A2 A3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 1 1 1 1 1 1 1 1

Elman-RPROP 12 12 11 10 11 11 11.33 11

Elman-PSO 9 4 8 7 9 7 8.67 6

Elman-CQPSO 4 7 3 5 6 5 4.33 5.67

Jordan-RPROP 11 11 13 13 13 13 12.33 12.33

Jordan-PSO 7 3 6 4 3 4 5.33 3.67

Jordan-CQPSO 5 5 2 2 2 3 3 3.33

MRNN-RPROP 13 13 12 12 12 12 12.33 12.33

MRNN-PSO 10 10 9 8 10 8 9.67 8.67

MRNN-CQPSO 2 6 4 3 4 6 3.33 5

TDNN-RPROP 3 9 10 11 8 10 7 10

TDNN-PSO 6 2 7 9 7 9 6.67 6.67

TDNN-CQPSO 8 8 5 6 5 2 6 5.33

of the models improved for abrupt scenario A3 compared to scenario A2, where only the

RPROP trained models slightly overfitted.

Figure 7.29 illustrates the performance progression over time for the four best per-

forming models for scenario A1. The models selected include the FNN-CQSO, MRNN-

CQSO, TDNN-RPROP and TDNN-PSO. As visualized in Figure 7.29a, all the models

kept track of the moving lowest value during training, and adapted well to the changes.

The MRNN-PSO, however, had the worst TE progression compared to the other models,

while the FNN-CQSO had the best TE progression. Figure 7.29b clearly shows that

the GE values produced by the four models throughout the search were higher than the

corresponding TE values shown in Figure 7.29a. Therefore, all four models overfitted the

data. Figure 7.29b also shows that, after the initial 50 epochs (i.e. when the first win-

dow slide occur), the models produced a similar GE throughout the remaining epochs.

This implies that, in predicting the LM time series for the A1 scenario, the FNN-CQSO

produced at least an equal or better performance compared to the RNNs trained using

either RPROP, PSO or CQSO.
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The performance ranking of the models given in Table 7.65 shows that the FNN-

CQSO achieved the highest average rank over the three scenarios.

Scenarios B1 to B3: The error values presented in Table 7.66 show that the TDNN-

RPROP outperformed the remaining models for scenario B1. For scenario B2, the FNN-

Table 7.66: Results of LM time series, scenario B1 to B3

Model

Scenario
B1 (f:100, s:10) B2 (f:100, s:25) B3 (f:100, s:31)

TE GE ρ TE GE ρ TE GE ρ

FF-CQPSO 2.39E-03 3.78E-03 1.6 2.38E-03 2.55E-03 1.07 2.41E-03 2.26E-03 0.94

± 8.84E-05 ± 4.56E-05 ± 0.06 ± 7.10E-07 ± 3.54E-06 ± 0 ± 1.14E-05 ± 1.77E-05 ± 0.01

Elman-RPROP 6.22E-03 8.06E-03 1.41 5.32E-03 5.73E-03 1.12 6.28E-03 6.71E-03 1.08

± 2.29E-03 ± 2.60E-03 ± 0.11 ± 1.36E-03 ± 1.32E-03 ± 0.05 ± 2.24E-03 ± 2.34E-03 ± 0.05

Elman-PSO 3.37E-03 3.79E-03 1.15 3.78E-03 2.88E-03 0.78 3.96E-03 2.52E-03 0.67

± 1.85E-04 ± 2.07E-04 ± 0.11 ± 2.50E-04 ± 1.44E-04 ± 0.05 ± 3.87E-04 ± 1.68E-04 ± 0.05

Elman-CQPSO 2.42E-03 3.79E-03 1.58 2.67E-03 2.69E-03 1.01 2.71E-03 2.33E-03 0.87

± 1.05E-04 ± 8.47E-05 ± 0.05 ± 1.01E-04 ± 7.21E-05 ± 0.02 ± 1.00E-04 ± 5.33E-05 ± 0.03

Jordan-RPROP 6.62E-02 6.57E-02 1.44 7.65E-02 8.15E-02 1.09 5.65E-03 5.81E-03 1.03

± 1.21E-01 ± 1.17E-01 ± 0.07 ± 1.35E-01 ± 1.44E-01 ± 0.02 ± 1.36E-03 ± 1.41E-03 ± 0.02

Jordan-PSO 2.46E-03 3.68E-03 1.52 2.54E-03 2.59E-03 1.02 2.48E-03 2.33E-03 0.94

± 1.39E-04 ± 7.05E-05 ± 0.08 ± 6.58E-05 ± 5.00E-05 ± 0.02 ± 3.65E-05 ± 3.97E-05 ± 0.02

Jordan-CQPSO 2.32E-03 3.99E-03 1.75 2.44E-03 2.58E-03 1.06 2.42E-03 2.28E-03 0.94

± 1.16E-04 ± 9.43E-05 ± 0.09 ± 2.45E-05 ± 3.52E-05 ± 0.01 ± 2.38E-05 ± 3.41E-05 ± 0.02

MRNN-RPROP 4.40E-03 5.68E-03 1.35 5.99E-03 6.38E-03 1.07 6.99E-03 7.19E-03 1.03

± 8.68E-04 ± 9.01E-04 ± 0.08 ± 9.01E-04 ± 9.13E-04 ± 0.02 ± 2.29E-03 ± 2.39E-03 ± 0.02

MRNN-PSO 3.44E-03 3.95E-03 1.18 3.67E-03 2.80E-03 0.78 3.84E-03 2.69E-03 0.74

± 2.80E-04 ± 3.39E-04 ± 0.11 ± 2.80E-04 ± 1.49E-04 ± 0.05 ± 4.47E-04 ± 1.60E-04 ± 0.06

MRNN-CQPSO 2.59E-03 3.66E-03 1.44 2.64E-03 2.71E-03 1.03 2.65E-03 2.34E-03 0.89

± 1.46E-04 ± 7.00E-05 ± 0.07 ± 5.24E-05 ± 4.89E-05 ± 0.01 ± 7.23E-05 ± 4.04E-05 ± 0.02

TDNN-RPROP 2.09E-03 3.51E-03 1.68 2.68E-03 3.48E-03 1.3 3.09E-03 3.36E-03 1.07

± 7.59E-05 ± 1.40E-04 ± 0.05 ± 2.41E-04 ± 3.38E-04 ± 0.04 ± 3.05E-04 ± 4.29E-04 ± 0.04

TDNN-PSO 2.66E-03 3.89E-03 1.47 2.95E-03 3.09E-03 1.06 2.73E-03 2.67E-03 0.98

± 1.62E-04 ± 2.71E-04 ± 0.06 ± 2.63E-04 ± 2.14E-04 ± 0.04 ± 1.17E-04 ± 1.60E-04 ± 0.04

TDNN-CQPSO 3.64E-03 4.08E-03 1.16 2.60E-03 2.83E-03 1.09 2.61E-03 2.24E-03 0.86

± 2.31E-04 ± 1.21E-04 ± 0.11 ± 4.85E-05 ± 4.90E-05 ± 0.03 ± 2.80E-05 ± 3.09E-05 ± 0.01
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CQSO outperformed the other models by yielding the lowest errors. For scenario B3, the

FNN-CQSO and the TDNN-CQSO respectively obtained the best TE and GE values. All

the p-values for the pairwise comparisons between the FNN-CQSO and the other models

were less than the 0.0001 threshold, except for the following pairs: for scenario B1, FNN-

CQSO vs Elman-CQSO in terms of TE, and FNN-CQSO vs Elman-PSO, FNN-CQSO vs

Elman-CQSO, FNN-CQSO vs MRNN-PSO, and FNN-CQSO vs TDNN-CQSO in terms

of GE. For scenario B2, the exceptions are FNN-CQSO vs Jordan-PSO and FNN-CQSO

vs Jordan-CQSO, all in terms of GE. The exceptions for scenario B3 are FNN-CQSO vs

Jordan-CQSO in terms of both TE and GE, and FNN-CQSO vs TDNN-CQSO in terms

of GE.

The ρ values in Table 7.66 reveal that all the models overfitted for scenario B1. For

scenario B2, the models exhibited either minor or no sign of overfitting. For scenario

B3, the PSO and the CQSO trained models did not overfit, while the RPROP models

slightly overfitted.

Figure 7.30 illustrates the performance progression over time for the FNN-CQSO and

three other models in predicting the LM time series for scenario B2. Figure 7.30 shows

that the RPROP based model took about 40 epochs to locate the lowest value, while the

other three models, including the FNN-CQSO, took less than five epochs. The figure also

reveals that the models kept close track of the moving lowest value. The FNN-CQSO

progression indicates that it performed mostly better than the other models throughout

the search.

 0.001

 0.01

 0.1

 0  50  100  150  200  250  300  350  400

A
ve

ra
g
e
 E

rr
o
r 

(l
o
g
)

iteration Count

FNN-CQSO
Jordan-CQSO

Jordan-PSO
TDNN-Rprop

(a) TE

 0.001

 0.01

 0.1

 0  50  100  150  200  250  300  350  400

A
ve

ra
g
e
 E

rr
o
r 

(l
o
g
)

iteration Count

FNN-CQSO
Jordan-CQSO

Jordan-PSO
TDNN-Rprop

(b) GE

Figure 7.30: Training and generalization error results for LM time series, scenario B2
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Table 7.67: Models ranking in forecasting the LM time series, scenarios B1 to B3

Model
B1 B2 B3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQPSO 3 4 1 1 1 2 1.67 2.33

Elman-RPROP 12 12 11 11 12 12 11.67 11.67

Elman-PSO 8 6 10 8 10 7 9.33 7

Elman-CQSO 4 5 6 4 6 5 5.33 4.67

Jordan-RPROP 13 13 13 13 11 11 12.33 12.33

Jordan-PSO 5 3 3 3 3 4 3.67 3.33

Jordan-CQSO 2 9 2 2 2 3 2 4.67

MRNN-RPROP 11 11 12 12 13 13 12 12

MRNN-PSO 9 8 9 6 9 9 9 7.67

MRNN-CQSO 6 2 5 5 5 6 5.33 4.33

TDNN-RPROP 1 1 7 10 8 10 5.33 7

TDNN-PSO 7 7 8 9 7 8 7.33 8

TDNN-CQSO 10 10 4 7 4 1 6 6

The average performance ranking of the models given in Table 7.67 shows that the

FNN-CQSO emerged as the winner.

Scenarios C1 to C3: Table 7.68 shows that the TDNN-RPROP obtained the lowest

TE and GE values for scenario C1 compared to the remaining models. For scenarios C2

and C3, the performance of the FNN-CQSO improved by producing the best results. All

the p-values for the pairwise comparisons between the FNN-CQSO and the other models

are below the 0.0001 threshold, except when compared to:

• ELMAN-PSO in terms of GE for scenario C1,

• ELMAN-CQSO for scenario C1,

• JORDAN-RPROP in terms of TE for scenario C1,

• JORDAN-PSO in terms of GE for scenarios C2 and C2,

• JORDAN-CQSO for scenarios C1, C2 and C3,
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• MRNN-PSO in terms of GE for scenario C1,

• MRNN-CQSO in terms of TE and GE for scenarios C1 and C3, respectively,

• TDNN-RPROP in terms of TE for scenario C2,

Table 7.68: Results of LM time series, scenario C1 to C3

Model

Scenario
C1 (f:150, s:10) C2 (f:150, s:25) C3 (f:150, s:31)

TE GE ρ TE GE ρ TE GE ρ

FF-CQSO 2.58E-03 3.74E-03 1.48 2.38E-03 2.54E-03 1.07 2.42E-03 2.26E-03 0.93

± 1.34E-04 ± 4.64E-05 ± 0.07 ± 5.57E-06 ± 1.15E-05 ± 0.01 ± 7.85E-06 ± 1.67E-05 ± 0.01

Elman-RPROP 4.08E-03 5.31E-03 1.42 5.72E-03 6.13E-03 1.12 8.76E-03 9.10E-03 1.01

± 8.13E-04 ± 6.67E-04 ± 0.09 ± 1.95E-03 ± 1.97E-03 ± 0.05 ± 2.87E-03 ± 3.25E-03 ± 0.04

Elman-PSO 2.99E-03 3.68E-03 1.25 3.83E-03 2.85E-03 0.77 3.51E-03 2.45E-03 0.72

± 1.18E-04 ± 2.36E-05 ± 0.09 ± 3.38E-04 ± 1.04E-04 ± 0.05 ± 2.41E-04 ± 1.14E-04 ± 0.04

Elman-CQSO 2.53E-03 3.75E-03 1.51 2.69E-03 2.73E-03 1.02 2.86E-03 2.37E-03 0.84

± 1.41E-04 ± 7.92E-05 ± 0.07 ± 8.03E-05 ± 4.93E-05 ± 0.02 ± 1.31E-04 ± 5.75E-05 ± 0.03

Jordan-RPROP 3.22E-03 4.65E-03 1.51 7.13E-02 7.69E-02 1.14 4.32E-03 4.39E-03 1.02

± 6.14E-04 ± 6.43E-04 ± 0.07 ± 1.22E-01 ± 1.32E-01 ± 0.03 ± 6.13E-04 ± 5.91E-04 ± 0.02

Jordan-PSO 2.50E-03 3.62E-03 1.47 2.49E-03 2.58E-03 1.04 2.47E-03 2.30E-03 0.93

± 9.54E-05 ± 6.41E-05 ± 0.06 ± 4.13E-05 ± 2.69E-05 ± 0.02 ± 5.24E-05 ± 3.56E-05 ± 0.02

Jordan-CQSO 2.46E-03 3.92E-03 1.64 2.41E-03 2.57E-03 1.07 2.42E-03 2.28E-03 0.94

± 1.44E-04 ± 9.69E-05 ± 0.11 ± 1.73E-05 ± 2.33E-05 ± 0.01 ± 1.81E-05 ± 3.50E-05 ± 0.01

MRNN-RPROP 3.88E-03 4.92E-03 1.34 4.92E-03 5.27E-03 1.08 4.94E-03 5.04E-03 1.02

± 7.60E-04 ± 7.34E-04 ± 0.08 ± 4.17E-04 ± 4.40E-04 ± 0.03 ± 7.75E-04 ± 7.92E-04 ± 0.02

MRNN-PSO 3.54E-03 3.88E-03 1.17 3.87E-03 2.78E-03 0.74 3.99E-03 2.64E-03 0.7

± 3.95E-04 ± 2.86E-04 ± 0.11 ± 2.87E-04 ± 1.05E-04 ± 0.04 ± 4.39E-04 ± 2.50E-04 ± 0.07

MRNN-CQSO 2.61E-03 3.88E-03 1.5 2.65E-03 2.67E-03 1.01 2.67E-03 2.32E-03 0.87

± 1.30E-04 ± 8.06E-05 ± 0.06 ± 5.44E-05 ± 4.53E-05 ± 0.02 ± 8.17E-05 ± 5.60E-05 ± 0.02

TDNN-RPROP 2.10E-03 3.54E-03 1.69 2.56E-03 3.37E-03 1.32 3.16E-03 3.40E-03 1.06

± 1.06E-04 ± 1.78E-04 ± 0.05 ± 1.74E-04 ± 2.54E-04 ± 0.03 ± 5.18E-04 ± 6.99E-04 ± 0.04

TDNN-PSO 2.69E-03 3.64E-03 1.39 2.74E-03 2.98E-03 1.1 2.74E-03 2.61E-03 0.95

± 2.13E-04 ± 1.78E-04 ± 0.07 ± 2.47E-04 ± 2.40E-04 ± 0.03 ± 1.53E-04 ± 1.76E-04 ± 0.03

TDNN-CQSO 5.22E-03 4.76E-03 0.92 2.68E-03 2.80E-03 1.05 2.69E-03 2.28E-03 0.85

± 2.42E-04 ± 1.36E-04 ± 0.04 ± 6.66E-05 ± 4.58E-05 ± 0.04 ± 2.91E-05 ± 2.63E-05 ± 0.01
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• TDNN-PSO in terms of TE for scenario C1, and

• TDNN-CQSO in terms of GE for scenario C3.

For these exceptions, all the models produced statistically similar errors.

The ρ values in Table 7.68 show that, while all the models overfitted for scenario C1,

the models exhibited no or minor overfitting behaviour for scenarios C2 and C3, except

for the Jordan-RPROP and the TDNN-RPROP that overfitted for scenario C2.

Figure 7.31 illustrates the performance progression over time achieved by the FNN-

CQSO and three other models for the C3 scenario. The observations made from the

figure are similar to that of Figure 7.30.

The average performance ranking over the three scenarios shown in Table 7.69 shows

that the FNN-CQSO emerged as the winner.

The overall average ranking of the models in predicting the LM time series for all

nine scenarios is presented in Table 7.70. The table shows that the FNN-CQSO model

emerged as the overall winner in predicting the LM time series. This shows that the FNN

Table 7.69: Models ranking in forecasting the LM time series, scenarios C1 to C3

Model
C1 C2 C3 Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQSO 5 5 1 1 1 1 2.33 2.33

Elman-RPROP 12 13 12 12 13 13 12.33 12.67

Elman-PSO 8 4 9 8 9 7 8.67 6.33

Elman-CQSO 4 6 7 5 7 6 6 5.67

Jordan-RPROP 9 10 13 13 11 11 11 11.33

Jordan-PSO 3 2 3 3 3 4 3 3

Jordan-CQSO 2 9 2 2 2 2 2 4.33

MRNN-RPROP 11 12 11 11 12 12 11.33 11.67

MRNN-PSO 10 7 10 6 10 9 10 7.33

MRNN-CQSO 6 8 5 4 4 5 5 5.67

TDNN-RPROP 1 1 4 10 8 10 4.33 7

TDNN-PSO 7 3 8 9 6 8 7 6.67

TDNN-CQSO 13 11 6 7 5 3 8 7
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Figure 7.31: Training and generalization error results for LM time series, scenario C3

trained using CQSO performed better than the RNNs trained using either a RPROP,

PSO or CQSO algorithm.

Table 7.70: Overall model’s average ranking in forecasting the LM time series, scenarios A

to C

Model
A B C Average Rank

R(TE) R(GE) R(TE) R(GE) R(TE) R(GE) R(TE) R(GE)

FF-CQSO 1 1 1.67 2.33 2.33 2.33 1.67 1.89

Elman-RPROP 11.33 11 11.67 11.67 12.33 12.67 11.78 11.78

Elman-PSO 8.67 6 9.33 7 8.67 6.33 8.89 6.44

Elman-CQSO 4.33 5.67 5.33 4.67 6 5.67 5.22 5.34

Jordan-RPROP 12.33 12.33 12.33 12.33 11 11.33 11.89 12

Jordan-PSO 5.33 3.67 3.67 3.33 3 3 4 3.33

Jordan-CQSO 3 3.33 2 4.67 2 4.33 2.33 4.11

MRNN-RPROP 12.33 12.33 12 12 11.33 11.67 11.89 12

MRNN-PSO 9.67 8.67 9 7.67 10 7.33 9.56 7.89

MRNN-CQSO 3.33 5 5.33 4.33 5 5.67 4.55 5

TDNN-RPROP 7 10 5.33 7 4.33 7 5.55 8

TDNN-PSO 6.67 6.67 7.33 8 7 6.67 7 7.11

TDNN-CQSO 6 5.33 6 6 8 7 6.67 6.11
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7.3 Summary

The chapter aimed to investigate if using recurrent/delayed connections are unnecessary

in NNs used for non-stationary time series forecasting when a PSO designed for dynamic

environments is used as the training algorithm. A set of experiments using ten forecasting

problems were carried out to test this hypothesis. In the experiments, FNNs were trained

using CQSO to forecast each of the problems under nine different dynamic scenarios and

the results were compared to the results obtained from four different RNNs (i.e. Elman

NN, Jordan NN, MRNN and TDNN), each trained differently using RPROP, PSO and

dynamic PSO algorithms. Mann Whitney U tests were used to check the statistical

significance of the differences in performance between the results obtained from the

FNN trained with CQSO and each of the remaining NN models.

An analysis of the results showed that for nine out of the ten problems, the FNN

trained with CQSO achieved the highest performance ranking. For the tenth problem,

a Jordan NN trained with the CQSO algorithm outperformed the FNN-CQSO model.

However, the FNN-CQSO model had significantly superior performance compared to all

the other models, including the Jordan NN trained with RPROP and PSO algorithms.

It was observed that, in general, training the RNNs with CQSO improved perfor-

mance over training with RPROP or PSO.

The results supported the hypothesis that a FNN trained with a dynamic PSO algo-

rithm is sufficient for time series forecasting in non-stationary environments and that the

model is able to handle temporal relationships without necessarily introducing recurrent

connections.



Chapter 8

Conclusions

“It’s how you get to the conclusion that makes it interesting”

– Sylvester Stallone

This chapter provides a summary of the major findings and contributions of this thesis.

The chapter also suggests related opportunities for future research. Section 8.1 presents

the conclusions arrived at and Section 8.2 discusses the possible topics for future research.

8.1 Summary of Conclusions

This thesis had two primary objectives. The first objective was to investigate the applica-

bility and efficiency of a dynamic PSO algorithm as training algorithm for FNN forecast-

ers for non-stationary environments. The second objective was to test the hypothesis

that recurrent/delayed connections are not necessary in NNs used for non-stationary

time series forecasting if a dynamic PSO algorithm is used as the training algorithm.

Thus, two empirical studies were conducted. In the first empirical analysis, a dynamic

PSO algorithm (i.e. CQSO) was applied to train a FNN forecaster on a number of fore-

casting problems under a representative selection of dynamic scenarios to examine the

applicability of the dynamic PSO as a training algorithm. The second empirical analysis

trained a FNN and four different types of SRNNs using a dynamic PSO on a selection

of forecasting problems under different dynamic scenarios, to test if the recurrent/delay

connections in the SRNNs are necessary. For the two empirical studies, the results ob-

194
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tained for the dynamic PSO are compared against standard PSO and backpropagation

(RPROP) algorithms. This chapter summarizes the major observations and contribution

made in the course of this study.

The research work started with a review of time series analysis and forecasting, as well

as discussions on the widely used time series forecasting methods. NNs used in modeling

time series were discussed next, with performance issues in designing NN forecasters.

The optimization methods applied to training NNs were also discussed.

The basic PSO algorithm and its control parameters were discussed, followed by a

description of PSO’s application to NN training. Even though PSO has been successfully

applied to train NNs, it was usually assumed that the training data is static. It was

suggested in this thesis that dynamic PSO algorithms be used to train NN forecasters

under non-stationary environments as an alternative to standard PSO. Thus, dynamic

optimization problems, and the different characteristics of dynamic environments were

discussed. This was followed by discussion on the challenges faced by standard PSO

when applied to dynamic environments, and methods of addressing these challenges.

Modificaions of PSO to suit dynamic environments were discussed.

For the first empirical study, an experimental procedure was designed to compare the

performance of the CQSO, PSO and RPROP on a representative selection of forecasting

problems under a representative selection of dynamic environments. A sliding window

approach was used to simulate dynamic environments of varying spatial and temporal

severity, by adjusting the step size of the sliding window and the number of algorithm

iterations between the sliding window shifts, respectively.

A set of ten, different well studied time series with varying complexities were used in

the study. Seven of these are real world time series and the other three were artificially

generated.

An empirical comparison, in terms of TE and GE, shows that the dynamic PSO

(i.e. the CQSO) outperformed both the standard PSO and the RPROP algorithms.

Thus, CQSO was shown to be very efficient in training FNN forecasters, and is a viable

alternative to both the standard PSO and RPROP.

It was observed throughout the empirical analysis that the CQSO and the PSO were

more successful under the severely and abruptly changing scenarios, while RPROP was
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more successful under the gradually changing scenarios. The CQSO also converged faster

than PSO and RPROP. RPROP was, however, more sensitive to stale data in the sliding

window.

The CQSO involved more parameter optimization than both PSO and RPROP, since,

in addition to the standard PSO parameters, other parameters specific to the CQSO

also require optimization. Hence, the CQSO required more fine-tuning than PSO and

RPROP, but have a higher potential to outperform the other two algorithms.

RPROP overfitted whenever the temporal severity allowed RPROP to train for too

long. The CQSO, however, exhibited minor or no overfitting for most of the scenarios

considered.

For the second empirical study, the performance of FNNs trained using a dynamic

PSO algorithm to forecast ten problems under different dynamic scenarios was compared

to that of four different types of RNNs (i.e. Elman NN, Jordan NN, Multi-Recurrent

NN and Time Delay NN), each trained separately using RPROP, standard PSO and the

dynamic PSO algorithm.

An analysis of the results showed that the FNN trained with CQSO achieved superior

performance compared to the other RNN models. It was observed that, in general,

training the RNNs with CQSO improved performance over training with RPROP or

PSO.

It is also observed that the Jordan NN trained with CQSO achieved the best result

under most of the scenarios for all the problems.

The findings supported the hypothesis that a FNN trained with a dynamic PSO

algorithm is sufficient for time series forecasting in non-stationary environments (for

the time series considered in this study), and the model is able to handle temporal

relationship without necessarily introducing recurrent connections.

8.2 Future Work

This section briefly summarizes possible future research topics suggested by the work

presented in this thesis.

This study considered only one dynamic PSO algorithm as a representation of the
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existing dynamic PSO algorithms. Thus, evaluation of additional dynamic PSO algo-

rithms can provide further insight into the applicability and behaviours of the dynamic

PSOs in training NN forecasters for non-stationary environments. Other properties of

training algorithms not explored in this work, such as recovery speed after a change can

also be investigated.

The control parmeters of all the training algorithms used in this study, including the

dynamic PSO, were optimised once for each problem. Afterwards, the algorithm con-

trol parameters remained static throughout the algorithm runs. Since existing adaptive

parameter strategies for PSO were developed for static environments, they can not be

blindly applied to dynamic problems. The efficiency of existing dynamic NN training

algorithms can be improved by considering adaptive control parameter strategies, ei-

ther by adapting the existing strategies accordingly, or by developing new self-adaptive

control parameter strategies specific to dynamic environments.

The number of hidden units and the number of connections in the NN were optimised

once for each problem, and did not change during the algorithm run. However, a real-life

forecasting problem with non stationary data may require changes to the NN architec-

ture in order to prevent underfitting and overfitting. Developing adaptive architecture

selection strategies specific to dynamic environments is an important topic for future

research.

PSO is not the only CI technique that has already been adapted to dynamic environ-

ments. Another broad CI field that has been successfully applied to dynamic problems is

evolutionary computation (EC). EC algorithms have been applied to NN training before,

and it would be interesting to determine the applicability and efficiency of dynamic EC

algorithms to the training of NN forecasters for non-stationary environments.
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[22] J Branke, E Salihoğlu, and Ş Uyar. Towards an Analysis of Dynamic Environ-

ments. In Proceedings of the 7th Annual Conference on Genetic and Evolutionary

Computation, pages 1433–1440. ACM, 2005.

[23] D Brezak, T Bacek, D Majetic, J Kasac, and B Novakovic. A Comparison of Feed-

forward and Recurrent Neural Networks in Time Series Forecasting. In Proceedings

of IEEE Conference on Computational Intelligence for Financial Engineering and

Economics, pages 1–6, 2012.

[24] A G Brown. Nerve Cells and Nervous Systems: An Introduction to Neuroscience.

Springer Science & Business media, 2012.

[25] L Cao and F E H Tay. Support Vector Machine with Adaptive Parameters in Finan-

cial Time Series Forecasting. IEEE Transactions on Neural Networks, 14(6):1506–

1518, 2003.

[26] A Carlisle and G Dozier. Adapting Particle Swarm Optimization to Dynamic En-

vironments. In Proceedings of International Conference on Artificial Intelligence,

volume 1, pages 429–434, 2000.



Bibliography 202

[27] A Carlisle and G Dozier. An Off-the-shelf PSO. In Proceedings of the Workshop

on Particle Swarm Optimization, volume 1, pages 1–6. Citeseer, 2001.

[28] A Carlisle and G Dozler. Tracking Changing Extrema with Adaptive Particle

Swarm Optimizer. In Proceedings of the 5th Biannual World Automation Congress,

volume 13, pages 265–270. IEEE, 2002.

[29] K Chang, R Chen, and T B Fomby. Prediction-based Adaptive Compositional

Model for Seasonal Time Series Analysis. Journal of Forecasting, 36(7):842–853,

2017.

[30] C Chatfield. The Analysis of Time Series: An Introduction. CRC press, 2016.

[31] H Cheng, P Tan, J Gao, and J Scripps. Multistep-ahead Time Series Prediction.

Advances in knowledge discovery and data mining, pages 765–774, 2006.

[32] M Clerc and J Kennedy. The Particle Swarm Explosion , Stability , and Conver-

gence in a Multidimensional Complex Space. IEEE Transaction on Evolutionary

Computation, 6(1):58–73, 2002.

[33] C Cortes and V Vapnik. Support-vector Networks. Machine learning, 20(3):273–

297, 1995.

[34] T Cover and P Hart. Nearest Neighbor Pattern Classification. IEEE Transactions

on Information Theory, 13(1):21–27, 1967.

[35] P S Crowther and R J Cox. A method for optimal division of data sets for use in

neural networks. In Proceedings of International Conference on Knowledge-Based

and Intelligent Information and Engineering Systems, pages 1–7. Springer, 2005.

[36] G Cybenko. Approximation by Superpositions of a Sigmoidal Function. Mathe-

matics of Control, Signals and Systems, 2(4):303–314, 1989.

[37] M Dadgar, S Jafari, and A Hamzeh. A PSO-based Multi-robot Cooperation

Method for Target Searching in Unknown Environments. Neurocomputing, 177:62–

74, 2016.



Bibliography 203

[38] K Deb, D Joshi, and A Anand. Real-coded Evolutionary Algorithms with Parent-

centric Recombination. In Proceedings of Congress on Evolutionary Computation,

volume 1, pages 61–66. IEEE, 2002.
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Appendix A

Acronyms

A list of acronyms used throughout the text is given in this appendix.

AR Auto Regressive

ARCH Auto Regressive Conditional Heteroscedasticity

AWS Australian Wine Sales Time Series

BP Backpropagation

CI Computational Intelligence

CIlib Computational Intelligence Library

CMF Collective Mean Fitness

CPSO Charged Particle Swarm Optimization

CCPSO Cooperative Charged Particle Swarm Optimization

CQSO Cooperating Quantum Particle Swarm Optimization

DE Dynamic Environment

DMT Daily Minimum Temperature Time Series

DOP Dynamic Optimization Problem

EC Evolutionary Computation

FNN Feedforward Neural Network

GA Genetic Algorithm

GARCH Generalized Auto Regressive Conditional Heteroscedasticity

HIT Hourly Internet Traffic Time Series

IAP International Airline Passengers Time Series

215



216

k-NN k -Nearest Neighbour

LM Logistic Map Time Series

MG Mackay Glass Time Series

MPSO Multiswarm Particle Swarm Optimization

MRNN Multi-Recurrent Neural Network

MSE Mean Square Error

NAR Non-linear Auto Regressive

NN Artificial Neural Network

PSO Particle Swarm Optimization

PCX Parent Centric Crossover

QPSO Quantum Particle Swarm Optimization

RBF Radial Bases Function Network

RNN Recurrent Neural Network

RPROP Resilient Propagation

SAM Sunspot Annual Measure Time Series

SSE Sum Square Error

S&P Standard and Poor Time Series

SRNN Simple Recurrent Neural Network

SVM Support Vector Machine

SVR Support Vector Regression

TAR Threshold Autoregressive

TDNN Time Delay Neural Network

USD United State Death Time Series



Appendix B

Symbols

B.1 Chapter 2

This appndix lists the mathematical symbols, with their definations, used throughout

this thesis. Each section lists the symbols used per chapter. Symbols in bold text indicate

vectors.

t Time step

Y Time series

T Trend

S Seasonal variation

R Random variation

d Prediction horizon (lag)

ε Residual error

N Normal distribution

σ2 Variance

ŷ Forecasted value

φ Model parameter

θ Model parameter

(p, q) Order of ARIMA model

ð Differencing of degree

m k-NN embedding dimension
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τ k-NN sampling frequency

k Number of nearest neighbours

f Distance function

B.2 Chapter 3

ϕ Output layer activation function

λ Hidden layer activation function

υ Hidden to output layer weight vector

w Input to hidden layer weight vector

β Bias

p Size of the sliding window

fL Linear function

nt Special type of neurons with delayed patterns

η Learning rate

∆ Update value

x Position vector

z Neural network input layer

s Neural network state layer

E Neural network Error

fanin Number of connections into a neuron

B.3 Chapter 4

v Velocity vector

ω Inertia weight

c1 PSO cognitive acceleration coefficient

c2 PSO social acceleration coefficient

r Vectors of random values

⊗ Component-wise multiplication operator

y or pbest Best position so far visited by a particle

ŷ or nbest Best position found within the neighborhood
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~ϕ Vector of time-dependent control parameters

B.4 Chapter 5

d Dimension

dom Domain

~x∗ Minimum found

rcloud Vector of quantum radius

rexcl Exclusion radius

rconv. Convergence radius

B.5 Chapter 6

x(t), y(t), z(t) States of the Lorenz system at time t

r, σ, b Constant parameters of the Lorenz system

K Sampling time for Lorenz system

τ , a, b, c Constant parameters of MG time series

G Constant parameter of the Logistic map equation

N Number of observations in dataset

w Window size

s Step value for sliding the window over the dataset

f Frequency of change

T Numbers of iterations to traverse the entire dataset

Nw The total number of weights and biases

CMF Cummulative mean fitness

F (t) Measure of quality of the solution

ρ Generalization factor

GE Generalization error

TE Training error

µ Mean

H0 Null hypothesis

H1 Alternative hypothesis



Appendix C

Derived publications

This appendix lists all papers that are currently under review, that led to, or are derived

from the work presented in this thesis.

Abdulkarim, S.A., and Engelbrecht, A.P.: Time Series Forecasting with Feedforward

Neural Networks Trained using Particle Swarm Optimizers for Dynamic Environments.

Under review.

Abdulkarim, S.A., and Engelbrecht, A.P.: Time Series Forecasting using Neural Net-

works: Are Recurrent Connections Necessary. Under review.
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