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Abstract

We show that the only monic orthogonal polynomials {Pn}∞n=0 that satisfy

π(x)D2
qPn(x) =

2∑
j=−2

an,n+jPn+j(x), x = cos θ, an,n−2 ̸= 0, n = 2, 3, . . . ,

where π(x) is a polynomial of degree at most 4 and Dq is the Askey-Wilson operator, are Askey-Wilson polynomials
and their special or limiting cases. This completes and proves a conjecture by Ismail concerning a structure relation
satisfied by Askey-Wilson polynomials. We use the structure relation to derive upper bounds for the smallest zero
and lower bounds for the largest zero of Askey-Wilson polynomials and their special cases.

1 Introduction
A sequence of polynomials {pn}∞n=0, deg(pn) = n, is orthogonal with respect to a positive measure µ on the real
numbers R, if ∫

S

pm(x)pn(x)dµ(x) = dnδm,n, m, n ∈ N,

where S is the support of µ, dn > 0 and δm,n the Kronecker delta. A sequence {Pn}∞n=0 of monic polynomials
orthogonal with respect to a positive measure satisfies a three-term recurrence relation

Pn+1 = (x− an)Pn − bnPn−1, n = 0, 1, 2, . . . (1)

with initial conditions P−1 ≡ 0, P0 ≡ 1 (note that with this choice of P−1, the initial value of b0 is irrelevant) and
recurrence coefficients an ∈ R, n = 0, 1, 2 . . . , bn > 0, n = 1, 2, . . . .

A sequence of monic orthogonal polynomials is classical if the sequence {Pn}∞n=0 as well as DmPn+m, m ∈ N,
whereD is the usual derivative d

dx or one of its extensions (difference, q-difference or divided-difference operator) sat-
isfies a three-term recurrence of the form (1). When D = d

dx , Hahn [13] showed that a sequence of monic orthogonal
polynomials {Pn(x)}∞n=0 satisfying

1

n+ 1

dPn+1

dx
(x) = (x− a′n)

1

n

dPn

dx
(x)− b′n

n− 1

dPn−1

dx
(x), a′n, b

′
n ∈ R, b′n ̸= 0,

satisfies a second order Sturm-Liouville differential equation of the form

ϕ(x)
d2

dx2
Pn(x) + ψ(x)

d

dx
Pn(x) + λn Pn = 0. (2)

where, ϕ and ψ are polynomials independant of n with deg(ϕ) ≤ 2 and deg(ψ) = 1 while λn is a constant dependant
on n. Bochner [4] first considered sequences of polynomials satisfying (2) and showed that the orthogonal polynomial
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solutions of (2) are Jacobi, Laguerre and Hermite polynomials, a result known as Bochner’s theorem. Bochner’s
theorem has been generalized and used to characterize Askey-Wilson polynomials (cf. [15]). See also [12, 23].

A related problem, due to Askey (cf. [1]), is to characterize the orthogonal polynomials whose derivatives satisfy
a structural relation of the form

π(x)
d

dx
Pn(x) =

s∑
j=−r

an,n+jPn+j(x), n = 1, 2, . . .

and this problem was considered by Maroni (cf. [21], [22]) who called such orthogonal polynomial sequences semi-
classical.

Al-Salam and Chihara [1] characterized Jacobi, Laguerre and Hermite as the only orthogonal polynomials with a
structure relation of form

π(x)
d

dx
Pn(x) =

1∑
j=−1

an,n+jPn+j(x), n = 1, 2, . . . (3)

where π(x) is a polynomial of degree at most two. Replacing the usual derivative in (3) by the forward difference
operator

∆f(s) = f(s+ 1)− f(s),

Garcı́a, Marcellán and Salto [11] proved that Hahn, Krawtchouk, Meixner and Charlier polynomials are the only
orthogonal polynomial sequences satisfying

π(x)∆Pn(x) =

1∑
j=−1

an,n+jPn+j(x), n = 1, 2, . . .

with π(x) a polynomial of degree two or less. More recently, replacing the derivative in (3) by the Hahn operator (cf.
[17, (11.4.1)], [14]), also known as the q-difference operator or Jackson derivative [18],

(Dqf)(x) =
f(x)− f(qx)

(1− q)x
,

Datta and Griffin [7] characterized the big q-Jacobi polynomial or one of its special or limiting cases (Al-Salam-Carlitz
1, little and big q-Laguerre, little q-Jacobi, and q-Bessel polynomials) as the only orthogonal polynomials that satisfy

π(x)DqPn(x) =

1∑
j=−1

an,n+jPn+j , n = 1, 2, . . . (4)

where π(x) is a polynomial of degree at most two.
The polynomials mentioned above are all special or limiting cases of the Askey-Wilson polynomials [2, (1.15)],

[19, (14.1.1)]

anpn(x; a, b, c, d|q)
(ab, ac, ad; q)n

= 4ϕ3

(
q−n, abcdqn−1, ae−iθ, aeiθ

ab, ac, ad
; q, q

)
, x = cos θ, (5)

with the multiple q-shifted factorials defined by (a1, . . . , ai; q)k =

i∏
j=1

(aj ; q)k where the q-shifted factorials are given

by (a; q)0 = 1, (a; q)k =

k−1∏
j=0

(
1− aqj

)
,

k = 1, 2, . . . or ∞ and

s+1ϕs

(
a1, . . . , as+1

b1, . . . , bs
; q, z

)
=

∞∑
k=0

(a1, . . . , as+1; q)k
(b1, . . . , bs; q)k

zk

(q; q)k
.

Askey-Wilson polynomials do not satisfy either (3) or (4) but they do satisfy the shift relation (cf. [19, (14.1.9)])

Dqpn(x, a, b, c, d|q) =
2q

1−n
2 (1− qn)(1− abcdqn−1)

1− q
pn−1(x; aq

1
2 , bq

1
2 cq

1
2 , dq

1
2 |q)
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where Dq is the Askey-Wilson divided difference operator (cf. [2, p.35], [19, (1.16.4)], [17, (12.1.12)])

Dqf(x) =
f̆(q

1
2 eiθ)− f̆(q−

1
2 eiθ)

(eiθ − e−iθ)(q
1
2 − q−

1
2 )/2

, f̆(z) = f

(
z + z−1

2

)
, z = e±iθ. (6)

The Askey problem involving the Askey-Wilson operator Dq is still open but in 2005, Ismail [17] gave an important
hint to the solution of this problem with the following conjecture.

Conjecture 1.1. [17, Conjecture 24.7.9] Let {Pn} be orthogonal polynomials and π be a polynomial of degree at
most 4. Then {Pn(x)} satisfies

π(x)D2
qPn(x) =

s∑
j=−r

an,n+jPn+j(x)

if and only if {Pn(x)} are Askey-Wilson polynomials or special cases of them.

The aim of this paper is to complete and prove this conjecture in §3 and to apply the explicit structure relation that
characterizes Askey-Wilson polynomials to obtain inequalities satisfied by the extreme zeros of these polynomials in
§4.

2 Preliminaries
Before moving to our main result let us recall some basic results. Taking eiθ = qs, the operator (6) reads

Dqf(x(s)) =
f(x(s+ 1

2 ))− f(x(s− 1
2 ))

x(s+ 1
2 )− x(s− 1

2 )
, x(s) =

q−s + qs

2
.

Moreover, x(s) satisfies (cf. [3])

x(s+ n)− x(s) = γn
(
x
(
s+ 1

2n+ 1
2

)
− x

(
s+ 1

2n− 1
2

))
,

x(s+ n) + x(s) = 2αn x
(
s+ 1

2n
)
, (7)

for n = 0, 1, . . . , with the sequences (αn), (γn) given explicitly by

2αn = q
n
2 + q−

n
2 , (q

1
2 − q−

1
2 )γn = q

n
2 − q−

n
2 , α1 = α (8)

The following hold (cf. [17, p.302], [9, p.169])

Dq(fg) = Sq(f)Dq(g) +Dq(f)Sq(g) (9)
Sq(fg) = Sq(f)Sq(g) + U2Dq(f)Dq(g) (10)
Dq Sq = αSq Dq + U1 D2

q (11)

S2
q = U1 Sq Dq + αU2 D2

q + I, (12)

where U1(x) = (α2 − 1)x, U2(x) = (α2 − 1)(x2 − 1), I(f) = f and Sq is the averaging operator [17, (12.1.21)]

Sq f(x(s)) =
1
2

(
f(x(s+ 1

2 )) + f(x(s− 1
2 ))
)
.

Unless otherwise indicated, 0 < q < 1.

3 Proving the conjecture due to Ismail

We begin by proving a lemma that generalizes a result proved by Hahn in [13]. We will denote a monic orthogonal
polynomial of precise degree n, n = 1, 2, . . . by Pn(x) which implies that 1

γn
DqPn(x) will be monic. To see this,

normalise the basis in [17, (20.3.9)], to obtain the monic polynomial base {Fk(x)} where

Fk(x) =
q
−
k2

4

(−2)k
(q

1
4 qs, q

1
4 q−s; q

1
2 )k =

k−1∏
j=0

[x− ζj ], for k = 0, 1, ..., x = cos θ with ζj = 1
2 (q

− 1
4−

j
2 + q

1
4+

j
2 ). It

follows from [16, Thm 2.1] that Pn(x) = Fn(x) + ... and, since DqFk(x) = γkFk−1(x) (cf. [17, 20.3.11]),
DqPn(x) = γnFn−1(x) + ....
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Lemma 3.1. Let {Pn}∞n=0 a sequence of monic orthogonal polynomials. If there are two sequences (a′n) and (b′n)
such that

1

γn+1
DqPn+1(x) = (x− a′n)

1

γn
DqPn(x)−

b′n
γn−1

DqPn−1(x) + cn, cn ∈ R, (13)

then there are two polynomials ϕ(x) and ψ(x) of degree at most two and of degree one respectively and a sequence
{λn}∞n=0 depending on n such that Pn(x) satisfies the divided difference equation

ϕ(x)D2
qPn(x) + ψ(x)SqDqPn(x) + λnPn(x) = 0, n ≥ 5. (14)

Proof. Since {Pn}∞n=0 is monic and orthogonal, there exist sequences {an}∞n=0 and {bn}∞n=1 such that the recurrence
relation (1) is satisfied. If f(x) = x− an, it follows from (7) and (8) that

Sq f(x) = αx− an. (15)

Applying the operator Dq to both sides of (1) and using the product rule (9) together with (15), yields

DqPn+1(x) = (αx− an)DqPn(x) + SqPn(x)− bnDqPn−1(x). (16)

If we apply Sq to both sides of (13) and (16), and use the products (10) and (12), we obtain respectively

1

γn+1
SqDqPn+1(x) = (αx− a′n)

1

γn
SqDqPn(x) +

1

γn
U2(x)D2

qPn(x)

− b′n
γn−1

SqDqPn−1(x) + cn. (17a)

SqDqPn+1(x) =
(
α2x+ U1(x)− an

)
SqDqPn(x) + 2αU2(x)D2

qPn(x)

+ Pn(x)− bnSqDqPn−1(x) (17b)

Applying Dq to both sides of (13) and (16) and then using (9) and (11) we obtain respectively

1

γn+1
D2

qPn+1(x) =
(αx− a′n)

γn
D2

qPn(x) +
1

γn
SqDqPn(x)−

b′n
γn−1

D2
qPn−1(x). (18a)

D2
qPn+1(x) =

(
α2x+ U1(x)− an

)
D2

qPn(x) + 2αSqDqPn(x)− bnD2
qPn−1(x), (18b)

Eliminating SqDqPn−1(x) in the system (17), by subtracting bn times (17a) from b′n
γn−1

times (17b), we have

AnSqDqPn+1(x) = DnU2(x)D2
qPn(x) +

b′n
γn−1

Pn(x)− bncn +Bn(x)SqDqPn(x) (19)

where An =
b′n
γn−1

− bn
γn+1

, Bn(x) =
(

α2b′n
γn−1

− α bn
γn

)
x +

b′n
γn−1

U1(x) +
bna

′
n

γn
− b′nan

γn−1
and Dn =

(
2αb′n
γn−1

− bn
γn

)
.

Eliminating SqDqPn+1(x) in (17), by subtracting 1
γn+1

times (17b) from (17a), using the relation γn+1 = αn + αγn
obtained by direct computation from (8) and substituting n by n+ 1, yields

Pn+1(x)

γn+2
= Cn(x)SqDqPn+1(x)− EnU2(x)D2

qPn+1(x)−An+1SqDqPn(x) + cn+1 (20)

where Cn(x) =
ααn+1

γn+1γn+2
x− U1(x)

γn+2
+
an+1

γn+2
−
a′n+1

γn+1
and En =

(
2α

γn+2
− 1

γn+1

)
. Subtracting b′n

γn−1
times (18b)

from bn times (18a) we obtain

AnD2
qPn+1(x) = Bn(x)D2

qPn(x) +DnSqDqPn(x) (21a)

Subtracting 1
γn+1

times (18b) from (18a), using again the relation γn+1 = αn + αγn and substituting n by n + 1,
yields

EnSqDqPn+1(x) = Cn(x)D2
qPn+1(x)−An+1D2

qPn(x). (21b)
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Eliminating D2
qPn+1(x) in (21b), by substituting (21a) into (21b), we obtain

AnEnSqDqPn+1(x)(Cn(x)Bn(x)−AnAn+1)D2
qPn(x) + Cn(x)DnSqDqPn(x). (22)

Using (19), we eliminate SqDqPn+1(x) from (22) to obtain

ϕn(x)D2
qPn(x) + ψn(x)SqDqPn(x)−En

b′n
γn−1

Pn(x) = −Enbncn, (23)

where

ϕn(x) = Cn(x)Bn(x)−AnAn+1 − EnDnU2(x)

ψn(x) = Cn(x)Dn −Bn(x)En.

Similarly, eliminating D2
qPn(x) in (21b) by adding Bn(x) times (21b) to An+1 times (21a), and then substituting the

resulting relation into (20) to eliminate SqDq Pn(x), yields

ϕn(x)D2
qPn+1(x) + ψn(x)SqDq Pn+1(x)−

Dn

γn+2
Pn+1(x) = −Dncn+1, (24)

where ϕn(x) and ψn(x) are the polynomial coefficients of (23). Substituting U1(x) = (α2 − 1)x into (18b) and
subtracting 1

γn
times the obtained equation from 2α times (18a) to elliminate SqDqPn(x), yields

x

γn
D2

qPn(x) = En−1D2
qPn+1(x) +

(2αa′n − an)

γn
D2

qPn(x) +DnD2
qPn−1(x). (25)

Substituting SqDqPn+1, SqDqPn and SqDqPn−1 obtained from (21b), into (17a) and repeatedly applying (25), we

obtain cn =

2∑
k=−2

dn,kD2
qPn+k(x), n ≥ 2. Since D2

qPj+2 is of degree j, {D2
qPj+2}∞j=0 forms a basis for the space of

polynomials and therefore cn = 0 for n ≥ 5. In the sequel of this proof, we will assume that n ≥ 5.

Using the relation

Sqf(x(s)) = T1f(x(s))−
x(s+ 1

2 )− x(s− 1
2 )

2
Dqf(x(s)), Tνf(x(s)) = f(x(s+ ν

2 )),

that follows from the definitions of Sq and Dq , in (23) with n replaced by n+1 and also in (24), we obtain respectively

σn+1(x(s))D2
qPn+1(x(s)) + ψn+1(x(s))T1DqPn+1(x(s))−

En+1b
′
n+1

γn
Pn+1(x(s)) = 0, (26a)

σn(x(s))D2
qPn+1(x) + ψn(x(s))T1DqPn+1(x(s))−Dn

1

γn+2
Pn+1(x(s)) = 0, (26b)

where

σn(x(s)) = ϕn(x(s))−
x(s+ 1

2 )− x(s− 1
2 )

2
ψn(x(s)).

Subtracting σn+1(x(s)) times (26b) from σn(x(s)) times (26a), yields

(ϕn(x(s))ψn+1(x(s))− ϕn+1(x(s))ψn(x(s))) T1DqPn+1(x(s))+ (27)(
σn+1(x(s))Dn

γn+2
−
σn(x(s))En+1b

′
n+1

γn

)
Pn+1(x(s)) = 0,

where T1DqPn+1(x(s)) =
Pn+1(x(s+1))−Pn+1(x(s))

x(s+1)−x(s) by definition. Since Pn+1 is a function of the variable x = cos θ,

its zeros are in the interval (−1, 1). Let −1 < x(s1) < x(s2) < ... < x(sn+1) < 1 denote the zeros of Pn+1(x(s)).
For j = 1, 2, ..., n + 1 there is θj , 0 < θj < π, such that x(sj) = qsj+q−sj

2 = eiθj+e−iθj

2 and it follows that

x(sj + 1) = qeiθj+q−1e−iθj

2 =
(q2+1) cos θj+i(q2−1) sin θj

2q /∈ R for 0 < q < 1. Therefore Pn+1(x(sj + 1)) ̸= 0 and
hence T1DqPn+1(x(sj)) ̸= 0 for j = 1, 2, ..., n+1. So, by (27), the polynomial Fn(x(s)) = ϕn(x(s))ψn+1(x(s))−
ϕn+1(x(s))ψn(x(s)), which is of degree at most 3, will vanish at n+1 zeros of Pn+1, n ≥ 5. Hence Fn(x) is equal to
zero for all x and there exists Gn, n ∈ N, such that ϕn+1(x) = Gnϕn(x) and ψn+1(x) = Gnψn(x). Iterating these

relations, we obtain ϕn(x) = Hnϕ5(x) and ψn(x) = Hnψ5(x), Hn =

n−1∏
j=5

Gj . Finally, dividing both sides of (23) by

Hn and keeping in mind that cn = 0 for n ≥ 5, we obtain the result.
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We now state and prove our main result.

Theorem 3.2. Let {Pn}∞n=0 be a sequence of monic polynomials orthogonal with respect to a positive weight function
w(x). The following properties are equivalent.

(a) There is a polynomial π(x) of degree at most 4 and constants an,n+k, k ∈ {−2,−1, 0, 1, 2} with an,n−2 ̸= 0
such that Pn satisfies the structure relation

π(x)D2
qPn(x) =

2∑
k=−2

an,n+kPn+k(x), n = 2, 3, . . . ;

(b) There is a polynomial π(x) of degree at most four such that {D2
qPj}∞j=2 is orthogonal with respect to π(x)w(x);

(c) There are two polynomials ϕ(x) and ψ(x) of degree at most two and of degree one respectively and a constant
λn such that

ϕ(x)D2
qPn(x) + ψ(x)SqDqPn(x) + λnPn(x) = 0, n = 5, 6, . . . . (28)

Proof of Theorem 3.2. The proof is organized as follows.
Step 1 (a) ⇒ (b) ⇒ (a) which is equivalent to (a) ⇔ (b).
Step 2 (b) ⇒ (c) ⇒ (a) which, taking into account Step 1, is equivalent to (b) ⇔ (c).

Step 1: Assume that (a) is satisfied. Let m,n ∈ N, m,n ≥ 2 and m ≤ n. From (a), there is a polynomial π(x) of
degree at most four and there exist constants an,n+j , j ∈ {−2, −1, 0, 1, 2} such that

π(x)D2
qPn(x) =

2∑
j=−2

an,n+jPn+j(x), with an,n−2 ̸= 0. (29)

Since m ≤ n we have that m− 2 ≤ n− 2 ≤ n+ j ≤ n+ 2 for j ∈ {−2, −1, 0, 1, 2}. Multiplying both sides of
(29) by w(x)D2

qPm(x), integrating on (a, b) and then taking into account the fact that {Pj}∞j=0 is orthogonal on the
interval (a, b) with respect to the weight function w(x), we obtain∫ b

a

D2
qPm(x)D2

qPn(x)π (x)w(x)dx

{
= 0 if m < n
̸= 0 if m = n.

If n < m, interchanging m and n in the above argument yields∫ b

a

D2
qPn(x)D2

qPm(x)π (x)w(x)dx = 0.

Now let n ∈ N, n ≥ 2 and assume (b). Since π (x)D2
qPn(x) is a polynomial of degree less or equal to n+2, it can be

expanded in the orthogonal basis {Pj}∞j=0 as π (x)D2
qPn(x) =

n+2∑
k=0

an,kPk(x), where, for k ∈ {0, ..., n+ 2}, an,k is

given by

an,k

∫ b

a

(Pk(x))
2
w(x)dx =

∫ b

a

Pk(x)D2
qPn(x)π(x)w(x)dx.

Since D2
qPn(x) is of degree n−2 we deduce from the hypothesis that an,k = 0 for k ∈ {0, ..., n−3} and an,n−2 ̸= 0.

Step 2: We suppose (b) and we prove (c). Firstly, we prove that polynomials in the sequence {Pn}∞n=0 satisfy an
equation of type (13). Let n ∈ N, n ≥ 2 and denote the leading coefficient of Pn by γn, then, since x

γn
Dq Pn is a

monic polynomial of degree n, it can be expanded as

x
1

γn
Dq Pn(x) =

1

γn+1
Dq Pn+1(x) +

n∑
j=1

en,j
γj

Dq Pj(x), en,j ∈ R. (30)

Applying Dq to both sides of (30) and using (9), we obtain

(αx)
1

γn
D2

q Pn(x) +
1

γn
SqDq Pn(x) =

1

γn+1
D2

q Pn+1(x) +

n∑
j=2

en,j
γj

D2
qPj(x). (31)
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Substituting U1(x) = (α2 − 1)x into (18b), yields

D2
qPn+1(x) = [

(
2α2 − 1

)
x− an]D2

qPn(x) + 2αSqDq Pn(x)− bnD2
qPn−1(x). (32)

Eliminating SqDq Pn(x) in (31) by subtracting 1
λn

times (32) from 2α times (31), we obtain

x+ an
γn

D2
q Pn(x) +

bn
γn

D2
qPn−1(x) (33)

=

(
2α

γn+1
− 1

γn

)
D2

q Pn+1(x) +

n∑
j=2

2α en,j
γj

D2
qPj(x).

Since { D2
q Pn

γnγn−1
} is a family of monic orthogonal polynomials, there are a′′n and b′′n > 0 such that

x
D2

qPn(x)

γn
=

γn−1

γn+1γn
D2

qPn+1(x) + a′′nD2
qPn(x) + b′′nD2

qPn−1(x). (34)

Substituting (34) into (33) and using the relation γn+1 − 2αγn + γn−1 = 0, obtained by direct computation from (8),
we obtain (

a′′n +
an
γn

)
D2

qPn(x) +

(
b′′n +

bn
γn

)
D2

qPn−1(x) =

n∑
j=2

2αen,j
γj

D2
qPj(x).

Therefore, en,j = 0 for j ∈ {2, 3, ...n− 2} and (30) can be written as

x

γn
Dq Pn(x) =

1

γn+1
Dq Pn+1(x) +

en,n
γn

Dq Pn(x) +
en,n−1

γn−1
Dq Pn−1(x) + en,1.

The result follows from Lemma 3.1. Finally, we prove that (c) ⇒ (a).
Adding ψ(x) times (17b) to ϕ(x) times (18b) and then using the assumption (c), we obtain

λn+1Pn+1(x) =λn
(
α2x+ U1(x)− an

)
Pn(x)− 2α(ϕ(x)SqDq Pn(x) (35)

+ U2(x)ψ(x)D2
qPn(x))− ψ(x)Pn(x)− bnλn−1Pn−1(x).

Multiplying (35) by ψ(x) and substituting ψ(x)SqDq Pn(x) = −ϕ(x)D2
qPn(x) − λnPn(x) obtained from (28) and

U1(x) =
(
α2 − 1

)
x, yields

2α
(
ϕ2(x)− U2(x)ψ

2(x)
)
D2

qPn(x) = λn+1ψ(x)Pn+1(x) + [ψ2(x)− 2αλnϕ(x)

−λnψ(x)
(
(α2 − 1)x− an

)
]Pn(x) + λn−1bnψ Pn−1(x).

Taking ϕ (x) = ϕ2x
2+ϕ1x+ϕ0 and ψ (x) = ψ1x+ψ0 and using the three-term recurrence relation (1), we transform

the above equation into (
ϕ2(x)− U2(x)ψ

2(x)
)
D2

qPn(x) =

2∑
j=−2

an,n+jPn+j(x), (36)

where 2αan,n−2 = ψ1bn−1bn
(
ψ1 − λn(2αϕ2 + (α2 − 1) + λn−1

)
. Clearly an,n−2 ̸= 0 for bn > 0, since ψ1 ̸= 0

and ψ1 also does not depend on n. This yields the required result.

Corollary 3.3. A sequence of monic orthogonal polynomials satisfies the relation

π(x)D2
qPn(x) =

2∑
k=−2

an,n+kPn+k(x), an,n−2 ̸= 0, x = cos θ, (37)

where π is a polynomial of degree at most 4, if and only if Pn(x) is a multiple of the Askey-Wilson polynomial for
some parameters a, b, c, d, including limiting cases as one or more of the parameters tend to ∞.

Proof. Let {Pn(x)}∞n=0, x = cos θ, be a sequence of monic orthogonal polynomials and π(x) be a polynomial of
degree at most 4. It follows from Theorem 3.2 that {Pn(x)} satisfies (37) if and only if Pn(x) is polynomial solution
of (28). It was proved in [15, Thm. 3.1] that (28) has a polynomial solution of degree n if and only if the solution is up
to a multiplactive factor equal to an Askey-Wilson polynomial, a special case or a limiting case of an Askey-Wilson
polynomial when one or more of the parameters tend to ∞ and these limiting cases are orthogonal [15, Remark 3.2],
which yields the result.
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Remark 3.4. It follows from (36) and Theorem 3.2 that {D2
qPn}∞n=2 is orthogonal with respect to(

ϕ2(x)− U2(x)ψ
2(x)

)
w(x). So, there is a positive constant c such that π(x) = c

(
ϕ2(x)− U2(x)ψ

2(x)
)
. Without

loss of generality, we can take c = 1 so that

π(x) = ϕ2(x)− U2(x)ψ
2(x). (38)

In the following remark we provide the polynomial coefficients ϕ(x) and ψ(x) of (28) as well as the polynomial
π(x) in (37) for the monic Askey-Wilson polynomials.

Remark 3.5. Let an := an(a, b, c, d) and bn := bn(a, b, c, d) be the coefficients of (1) for the monic Askey-Wilson
polynomials

2n(abcdqn−1; q)nPn(x; a, b, c, d|q) = pn(x; a, b, c, d|q).

Since DqPn(x; a, b, c, d|q) = γnPn−1(x; aq
1
2 , bq

1
2 , cq

1
2 , dq

1
2 |q), the coefficients of (13) can be deduced from those of

(1) as follows
a′n = an−1(aq

1
2 , bq

1
2 , cq

1
2 , dq

1
2 ) and b′n = bn−1(aq

1
2 , bq

1
2 , cq

1
2 , dq

1
2 ). (39)

It is shown in the proof of Lemma 3.1 that ϕ(x) and ψ(x) in (28) are obtained by letting n = 5 in the polynomial
coefficients of (23). Hence, taking n = 5 in the expressions for ϕn(x) and ψn(x) (cf. (23)) and using (39) together
with the three-term recurrence relation for monic Askey-Wilson polynomials (cf. [19, 14.1.5]), we obtain, up to a
multiplicative factor,

ϕ(x) =2(abcd+ 1)x2 − (abc+ abd+ acd+ bcd+ a+ b+ c+ d)x

+ ab+ ca+ ad+ bc+ bd+ cd− dcba− 1; (40)

ψ(x) =
(abcd− 1)4

√
qx

q − 1
+

(a+ b+ c+ d− abc− abd− acd− bcd)2
√
q

q − 1
. (41)

Substituting the expressions (40) and (41) for ϕ(x) and ψ(x) into (38) and taking into account the fact that U2(x) =
(α2 − 1)(x2 − 1), we obtain after simplification,

π(x) = 16abcd(x− a−1+a
2 )(x− b−1+b

2 )(x− c−1+c
2 )(x− d−1+d

2 ).

Ismail [15, Remark 3.2] points out that solutions to (28) do not necessarily satisfy the orthogonality relation of
Askey-Wilson polynomials using the example lim

d→∞
pn(x; a, b, c, d) to show that the moment problem is indeterminate

for 0 < q < 1 and max{ab, ac, ad} < 1 while, for q > 1 and min{ab, ac, ad} > 1, the moment problem is determinate
and the polynomials are special Askey-Wilson polynomials. In the next proposition, we explicitly state the various
limiting cases for Askey-Wilson polynomials.

Proposition 3.6. Let q > 0, q ̸= 1. Then, for the Askey-Wilson polynomials pn(x; a, b, c, d|q), we have

(i) lim
d→∞

pn(x; a, b, c, d|q)
(ad; q)n

= (bc)nqn(n−1)pn(x; a
−1, b−1, c−1|q−1), where

pn(x; a
−1, b−1, c−1|q−1) denotes continuous dual q-Hahn polynomials with the orthogonality relation for q > 1

given by [19, (14.4.2)]).

(ii) lim
c,d→∞

anpn(x; a, b, c, d|q)
(ac; q)n(ad; q)n

= (−b)nq
n(n−1)

2 Qn(x; a
−1, b−1|q−1), where Qn denotes the Al-Salam-Chihara

polynomials with the orthogonality relation for q > 1 given by [19, (14.8.2)].

(iii) lim
b,c,d→∞

anpn(x; a, b, c, d|q)
(ab; q)n(ac; q)n(ad; q)n

= a−nHn(x; a
−1|q−1), whereHn is the continuous big q-Hermite polynomi-

als with the orthogonality relation for q > 1 given by [19, (14.8.2)] .

(iv) lim
a,b,c,d→∞

a2npn(x; a, b, c, d|q)
(ab; q)n(ac; q)n(ad; q)n

= Hn(x|q−1), where Hn denotes the continuous q-Hermite polynomials

[19, (14.26.2)].
Proof.

lim
d→∞

anpn(x; a, b, c, d|q)
(ab; q)n(ac; q)n(ad; q)n

=

n∑
k=0

(q−n; q)k(bcq
n)k

(ab; q)k(ac; q)k(q; q)k

k−1∏
j=0

(1− 2aqjx+ a2q2j)

=
(2 abc)

n
qn(n−1)

(ab; q)n(ac; q)n
qn(x; a, b, c|q),
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where qn is a monic polynomial satisfying the three-term recurrence relation

qn+1(x; a, b, c|q) = (x− ãn)qn(x; a, b, c|q)− b̃nqn−1(x; a, b, c|q), (42)

where ãn = abqn+acqn+bcqn+qnq−q−1
2ac(qn)2b

and b̃n = (qn−1)(bcqn−q)(acqn−q)(abqn−q)

2a2c2(qn)4b2
. From (42) and [19, (14.3.5)] ,

we obtain 2nqn(x; a, b, c|q) = pn(x; a
−1, b−1, c−1|q−1) where pn(x; a−1, b−1, c−1|q−1) denotes continuous dual q-

Hahn polynomials [19, (14.3.1)]. Therefore limd→∞
pn(x;a,b,c,d|q)

(ad;q)n
= (bc)nqn(n−1)pn(x; a

−1, b−1, c−1|q−1). The
other limits are obtained in an analogous manner.

In [20], Koornwinder obtained another structure relation for Askey -Wilson polynomials in the form Lpn =
rnpn+1 + snpn−1, where L is the divided q-difference linear operator defined by [20, (1.8)]. The connection of the
structure relation [20, (4.7)] to (37) is provided in the following proposition.

Proposition 3.7. Let Pn(x) = Pn(x; a, b, c, d|q) = pn(x;a,b,c,d|q)
2n(abcdqn−1;q)n

denote the monic Askey-Wilson polynomials.
Then, for the operator L defined by [20, (1.8)] we have that, for x = cos θ,

ψ(x)(LPn)(x) =
1− q2

2q
π(x)D2

qPn(x) +
q − 1
√
q

× [ψ(x)2 +
4
√
q(qn − 1)(qn−1abcd− 1)

(q − 1)2qn−1
(
1
√
q
ϕ(x) +

(q − 1)2

2q
xψ(x))]Pn(x),

where ϕ(x) and ψ(x) are the polynomial coefficients of (28) given by (40) and (41).

Proof. It follows from [10, Thm 6] that the structure relation [20, (4.7)] can be written as
(LPn)(x(s)) = ξ

(
2ϕ(x(s))DqSq + 2ψ(x(s))S2

q − ψ(x(s))
)
Pn(x(s)), where x(s) = q−s+qs

2 (qs = eiθ) and ξ is a
constant. Take n = 1, to obtain, after simplification, 2qξ = 1− q2. Use (11) and (12) to write LPn in terms of D2

q and
SqDq . Now, multiply the relation by ψ and use the fact that Askey-Wilson polynomials satisfy (28) with polynomial
coefficients ϕ and ψ and the constant λn = −4

√
q(qn−1)(qnabcd−q)

(−1+q)2qn given in [17, (16.3.19) and (16.3.20)], to obtain
the result.

In the following proposition we consider the conditions under which the nth degree polynomial Pn(x) in a se-
quence of polynomials orthogonal with respect to a weight w(x) can be written as a linear combination of the poly-
nomials D2

qPn+j(x), j, n ∈ N. A structure relation of this type involving the forward arithmetic mean operator
1
2 (f(s+ 1) + f(s)) is proved in [5].

Proposition 3.8. Let {Pn}∞n=0 be a sequence of monic polynomials orthogonal with respect to a weight function w(x)
defined on (a, b). Suppose {D2

qPj}∞j=2 is a sequence of polynomials orthogonal with respect to the weight function
π(x)w(x) on (a, b) where π(x) is a polynomial of degree at most 4. Then for each n ∈ N, n ≥ 4, there exist constants
bn,n+j , j ∈ {−2, −1, 0, 1, 2} such that

Pn(x) =

2∑
j=−2

bn,n+jD2
qPn+j(x). (43)

Proof. Let n ∈ N, n ≥ 4. Since {D2
qPj}∞j=2 is orthogonal with respect to a weight function π(x)w(x) on (a, b),

Pn can be expanded in terms of the orthogonal basis as Pn(x) =

n+2∑
k=2

bn,kD2
qPk(x), where, for each fixed k, k ∈

{2, 3, ..., n+ 2}, bn,k is given by

bn,k

∫ b

a

(
D2

qPk(x)
)2
π(x)w(x)dx =

∫ b

a

D2
qPk(x)Pn(x)π(x)w(x)dx.

Since π(x)D2
qPk(x) is a polynomial of degree at most k+2 and {Pj}∞j=0 is orthogonal with respect tow(x) on (a, b),

it follows that bn,k = 0, for k ∈ {2, .., n− 3}.
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4 Extreme zeros of Askey-Wilson polynomials and special cases
In this section we obtain the explicit structure relation (37) characterizing Askey-Wilson polynomials and then use the
relation to derive bounds for the extreme zeros of the Askey-Wilson polynomials and their special cases.

Lemma 4.1. The monic Askey-Wilson polynomials Pn(x; a, b, c, d|q) satisfy the following contiguous relations(
x− a−1+a

2

)
Pn(x; aq, b, c, d|q) = Pn+1(x; a, b, c, d|q) + k(a,b,c,d)n Pn(x; a, b, c, d|q),(

x− b−1+b
2

)
Pn(x; a, bq, c, d|q) = Pn+1(x; a, b, c, d|q) + k(b,a,c,d)n Pn(x; a, b, c, d|q),(

x− c−1+c
2

)
Pn(x; a, b, cq, d|q) = Pn+1(x; a, b, c, d|q) + k(c,b,a,d)n Pn(x; a, b, c, d|q),(

x− d−1+d
2

)
Pn(x; a, b, c, dq|q) = Pn+1(x; a, b, c, d|q) + k(d,b,c,a)n Pn(x; a, b, c, d|q),

with k(a,b,c,d)n = −
(1− abqn) (1− acqn) (1− adqn)

(
1− abcdqn−1

)
2a (1− abcdq2n−1) (1− abcdq2n)

.

Proof. Substitute Pn(x; a, b, c, d|q) into [2, (2.15)] to obtain the first relation. For the others, permute a and e, e ∈
{b, c, d} in the first relation and use the fact that Pn(x; a, b, c, d|q) is symmetric with respect to a, b, c, d, (cf. [2, p.6]),
to obtain the result.

Proposition 4.2. The structure relation (37) for monic Askey-Wilson polynomials is

16abcd
(
x− a−1+a

2

)(
x− b−1+b

2

)(
x− c−1+c

2

)(
x− d−1+d

2

)
D2

qPn(x; a, b, c, d|q)

=

2∑
j=−2

an,n+jPn+j(x; a, b, c, d|q), where (44)

an,n+2 = 16abcdγnγn−1,

an,n+1 = an,n+2

(
k
(a,bq,cq,dq)
n−2 + k

(b,a,cq,dq)
n−1 + k(c,b,a,dq)n + k

(d,b,c,a)
n+1

)
,

an,n = an,n+2

[
k
(a,bq,cq,dq)
n−2 k

(b,a,cq,dq)
n−2 + k

(c,b,a,dq)
n−1

(
k
(a,bq,cq,dq)
n−2 + k

(b,a,cq,dq)
n−1

)
+ k(d,b,c,a)n

(
k
(a,bq,cq,dq)
n−2 + k

(b,a,cq,dq)
n−1 + k(c,b,a,dq)n

)]
,

an,n−1 = an,n+2

[
k
(a,bq,cq,dq)
n−2 k

(b,a,cq,dq)
n−2 k

(c,b,a,dq)
n−2 + k

(d,b,c,a)
n−1 k

(a,bq,cq,dq)
n−2 k

(b,a,cq,dq)
n−2

+k
(d,b,c,a)
n−1 k

(c,b,a,dq)
n−1

(
k
(a,bq,cq,dq)
n−2 + k

(b,a,cq,dq)
n−1

)]
,

an,n−2 = an,n+2

(
k
(a,bq,cq,dq)
n−2 k

(b,a,cq,dq)
n−2 k

(c,b,a,dq)
n−2 k

(d,b,c,a)
n−2

)
,

and kn is given in Lemma 4.1.

Proof. Using the fact that D2
qPn(x; a, b, c, d|q) = γnγn−1Pn−2(x; aq, bq, cq, dq|q) (cf. [19, (14.1.9)]) and taking into

account the expression for the polynomial π(x), given in Remark 3.5, (37) can be written as(
x− a−1+a

2

)(
x− b−1+b

2

)(
x− c−1+c

2

)(
x− d−1+d

2

)
Pn−2(x; aq, bq, cq, dq|q)

=

2∑
j=−2

an,n+j

16abcdγnγn−1
Pn+j(x; a, b, c, d|q). (45)

Replace n by n− 2, b by bq, c by cq and d by dq in the first equation of Lemma 4.1 to obtain

(
x− a−1+a

2

)
Pn−2(x; aq, bq, cq, dq|q)

= Pn−1(x; a, bq, cq, dq|q) + k
(a,bq,cq,dq)
n−2 Pn−2(x; a, bq, cq, dq|q). (46)

Multiply (46) by
(
x− b−1+b

2

)(
x− c−1+c

2

)(
x− d−1+d

2

)
and use the other relations in Lemma 4.1 to transform (46)

into (45) where the coefficients an,n+j , j ∈ {−2, ..., 2} are written in terms of kn+j .
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Theorem 4.3. Let xn,1 (xn,n) be the smallest (largest) zero of the Askey-Wilson polynomial Pn(x; a, b, c, d|q). Then

x1,n <
2( qn−1 + 1)

(
qn−1 (aA+ C)− a−B

) (
aCqn−1 − 1

)
−

√
In

8 ( aCq2n−2 − 1) (aCqn−1 − 1)
(47)

xn,n >
2( qn−1 + 1)

(
qn−1 (aA+ C)− a−B

) (
aCqn−1 − 1

)
+

√
In

8 ( aCq2n−2 − 1) (aCqn−1 − 1)
(48)

where A = bc+ bd+ cd, B = b+ c+ d, C = bcd and

In = −16
(
aCq2n−2 − 1

) (
aCqn−1 − 1

) [(
−q3n−3aC − 1

)
(aC − aB −A+ 1)

+ ((C2 + b2c2 + b2d2 + c2d2 + bcdB −A)a2 +A (C −B) a+ C2 − CB)q2n−2

+((1−A)a2 − (A− 1)Ba− CB + b2 +A+ c2 + d2 + 1)qn−1
]

+ 4
(
qn−1 + 1

)2 (
qn−1aA+ qn−1C − a−B

)2 (
aCqn−1 − 1

)2
.

Proof. Use the three-term relation [19, (14.1.5)] to transform (44) into(
x− a−1+a

2

)(
x− b−1+b

2

)(
x− c−1+c

2

)(
x− d−1+d

2

)
Pn−2(x; aq, bq, cq, dq|q)

=
(1− q)

(
dbca (qn)

2 − q
)

4a
√
q (−q + qn) (−1 + qn) cdb

ψ(x)Pn+1(x; a, b, c, d|q) +G2,n(x)Pn(x; a, b, c, d|q)

where ψ is the polynomial coefficient of (28) given in (41) and

4abcd(qn; q−1)2(abcdq
2n − 1)

abcdqn−1 − 1
G2,n(x) = 4(abcdq2n − 1)(abcdqn − 1)x2

− (2qn + 2)(qn(abc+ abd+ acd+ qbcd)− a− b− c− d)(abcdqn−1 − 1)x

− (q3nabcd+ 1)(dbca− ab− ac− ad− bc− bd− cd+ 1) + ((b2c2d2 + b2c2 + b2cd

+ b2d2 + bc2d+ bcd2 + c2d2 − bc− bd− cd)a2 + (bc+ bd+ cd)(dbc− b− c− d)a

+ bdc(dbc− b− c− d))q2n + ((1− bc− bd− cd)a2 − (bc+ bd+ cd− 1)(d+ c+ b)a

− b2cd− bc2d− bcd2 + b2 + bc+ bd+ c2 + cd+ d2 + 1)qn.

It follows from [6, Cor. 2.2] that the zeros of the second degree polynomial G2,n−1 yield inner bounds for the extreme
zeros of Pn(x; a, b, c, d|q) and the result follows.

Bounds for the zeros of Askey-Wilson polynomials obtained in Theorem 4.3 for some special values of the param-
eters n, a, b, c, d and q are illustrated in Table 1.

Table 1: Zeros of monic Askey-Wilson polynomials for n = 7, 9, 12 respectively and (a, b, c, d, q) = ( 67 ,
5
7 ,

4
7 ,

3
7 ,

1
9 )

Value of n 7 9 12
Smallest zeros of Pn(x; a, b, c, d|q) -0.864348856 -0.922505234 -0.95879261

Upper bound (47) 0.33690627 0.336904827 0.336904809
Lower bound (48) 0.948809497 0.948809477 0.948809477

Largest zeros of Pn(x; a, b, c, d|q) 0.981913401 0.986122226 0.990012586

Special cases of Askey-Wilson polynomials arise when one or more of the parameters vanish and bounds for the
extreme zeros of these special cases, namely continuous dual q-Hahn, Al-Salam Chihara, continuous big q-Hermite
and continuous q-Hermite polynomials, can be deduced from the bounds in Theorem 4.3.
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