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Abstract

In this paper, we extend our previous work on greedy constructive heuristics for the Mixed Capacitated Arc Routing
Problem under Time Restrictions with Intermediate Facilities (MCARPTIF) by developing efficient Local Search im-
provement heuristics for the problem. Five commonly used arc routing move operators were adapted for the problem,
and basic Local Search implementations were tested on waste collection benchmark sets. Tests showed that despite
the application of commonly used speed-up techniques, the Local Search implementations are very slow on large test
instances with more than one-thousand required arcs and edges. In response, more advanced Local Search acceler-
ation mechanisms from literature were adapted and combined for the MCARPTIF and tested on the same instances.
On the large instances, the basic Local Search setups took between fifteen minutes and three hours to improve a single
solution to local optima, whereas the accelerated implementations took at most four minutes while producing similar
quality local optima. The best performing implementation made use of two existing acceleration mechanisms, namely
Static-Move-Descriptors and Greedy-Compound-Independent-Moves. A third mechanism, Nearest-Neighbour-Lists
was also tested and although it reduced execution times it resulted in Local Search terminating at worse quality local
optima. Given the importance of Local Search within metaheuristics, the developed Local Search heuristics provide a
significant contribution to arc routing. First, the implementations can be extended to and incorporated into metaheuris-
tics for the MCARPTIF. Second, the acceleration mechanisms can be applied to existing Local Search metaheuristics
for Capacitated Arc Routing Problems, thereby improving the efficiency of the metaheuristics and allowing them to
better deal with large instances.

Keywords: Waste management, Capacitated Arc Routing Problem, Mixed network, Intermediate Facilities, Time
restrictions, Local Search

1. Introduction

In this paper, we extend our previous work in [25, 27] on constructive heuristics for the Mixed Capacitated Arc
Routing Problem under Time Restrictions with Intermediate Facilities (MCARPTIF) by developing efficient Local
Search based improvement heuristics for the problem. The MCARPTIF, which closely models residential waste
collection, is a generalisation of the classical Capacitated Arc Routing Problem (CARP), first proposed by Golden and
Wong [12]. The objective of the MCARPTIF is to determine routes of minimal total cost for a fleet of homogeneous
vehicles so that each road segment with demand, representing waste to be collected, is serviced exactly once by
a vehicle. The fleet size can be either unlimited, which is the version dealt with in this paper, limited, or left as
a decision variable and total cost can also be measured in total distance travelled or the sum of the time taken to
complete all routes. Consistent with the Mixed Capacitated Arc Routing Problem (MCARP), studied in [1, 7, 13, 15],
the MCARPTIF takes into consideration a mixed road network that can consist of one-way streets that can be traversed
or serviced in only one direction, busy two-way streets that require each side to be serviced separately, and two-way
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streets that can be traversed or serviced in either direction. Consistent with the Capacitated Arc Routing Problem under
Time Restrictions with Intermediate Facilities (CARPTIF), first proposed in [11], the MCARPTIF also accounts for
Intermediate Facilities (IFs), representing waste transfer stations and landfills, where vehicles are allowed to unload
their waste and resume their collection rounds.

The sum of demand collected on a subtrip between IF visits may then not exceed vehicle capacity and the route
must include a final IF visit before returning to the depot. Furthermore, the total time of a vehicle route may not
exceed a time restriction, typically equal to the available working hours per shift. For the latest review of Arc Routing
Problems, including the CARP, MCARPTIF and MCARP, we refer the reader to Corberán and Laporte [5] and Mourão
and Pinto [17], which builds on the previous reviews of Dror [9] and Corberán and Prins [6].

Since the CARP and all its extensions are NP-hard the most effective methods for solving the problems are
based on heuristic and metaheuristic methods [6]. In [25, 27], we developed constructive heuristics to generate initial
solutions for the MCARPTIF, but computational tests showed that their performance is inconsistent, and the gener-
ated initial solutions leave room for improvement. When higher quality solutions are required and when sufficient
computing time is available, metaheuristics can be used to generate improved solutions. For a general review of meta-
heuristics, we refer the reader to [21]. Despite their popularity, Prins [19] state that CARP metaheuristics currently
have certain limitations, one of which is that they cannot yet produce solutions within reasonable computing times for
large instances met in real applications, such as waste collection. Furthermore, no metaheuristic implementations are
currently available for the MCARPTIF. As a first step to address the two research gaps this paper presents efficient
Local Search (LS) improvement heuristics that are capable of dealing with large MCARPTIF instances. The motiva-
tion for focussing on LS is that it is a widely applied improvement method and the core optimisation component of
metaheuristic strategies for CARPs. In fact, all recent CARP metaheuristics reviewed by Muyldermans and Pang [18]
and Prins [19] rely on some form of LS.

Studies on LS with the aim of improving its efficiency are not uncommon, and include, amongst others, the work
of Beullens et al. [2], Chen and Hao [3] and Vidal [22] who focus on CARPs, and the work of Ergun et al. [10], Irnich
et al. [14] and [28] who focus on the VRP, which is the node routing equivalent of the CARP. Except for [14], the ad-
vantages of more efficient LS implementations are ultimately demonstrated using LS-based metaheuristics. However,
all these studies focussed on existing problem variants with their underlying LS components, such as move operators,
well established and documented. Although it would be extremely valuable for the MCARPTIF, we consider such a
full study, focussing on both the efficacy of LS and the impact thereof on to-be-developed MCARPTIF metaheuristics,
to be beyond the scope of one paper. The focus of this paper is therefore exclusively on efficient LS heuristics for the
problem. For preliminary results for the full study, including tests on the MCARP, we refer the reader to [23].

To develop efficient LS heuristics, we first adapted existing LS components, developed in [1, 15] for the MCARP,
to the MCARPTIF. Then, to improve the efficiency of our implementations on large problem instances, we adapted
and combined three existing LS acceleration methods, namely Greedily Compounding Independent Moves [10], Static
Move Descriptors [28], and Nearest Neighbour Lists [2]. To our knowledge, this paper presents the first results on
their combined usage. We tested the accelerated LS setups on MCARPTIF instances available from [26], and results
showed that the three methods significantly improve the efficiency of LS on large instances, but most often at a trade-
off in solution quality. As a final test, we directly compared all our LS implementations using their average execution
times to reach local optima and percentage cost improvement over initial solutions. The analysis was then used to
identify non-dominated implementations, and to make a final recommendation on to the LS setup that can be extended
to and incorporated into metaheuristic solution methods for the MCAPRTIF.

The rest of the paper is structured as follows. In the next section we formally introduce MCARPTIF terms,
symbols and its solution representation that are used throughout the paper. This is followed in Section 3 by a brief
review of LS and its commonly used moved operators for the MCARP and existing LS acceleration mechanisms that
have been developed for the CARP and VRP. In Section 4 we show how the MCARP move operators can be adapted
to the MCARPTIF. Section 5 is dedicated to our adaptation and combination of existing LS acceleration mechanisms
to the MCARPTIF. Computational results are presented in Section 6 followed by a discussion of our main findings
and opportunities for further research.
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2. Problem notation and solution representation

To better explain and review existing LS implementations for CARPs, we first introduce basic MCARPTIF terms
and symbols and its solution representation. Consistent with the notation of Willemse and Joubert [25], the MCARP-
TIF considers a graph GGG = (VVV ,EEE ∪AAA), where VVV represents the set of vertices, EEE represents the set of undirected edges
where an edge links two vertices and may be traversed in both directions, and AAA represents the set of arcs where an
arc also links two vertices but can only be traversed in one direction. Edges and arcs are given in the form (vi, v j) ∈ EEE
where vi, v j ∈ VVV represent the start and end vertices of the arc or edge. For waste collection, VVV corresponds to road
intersections and dead-ends, while EEE and AAA model road segments between vertices. A subset of required edges and
arcs, EEEr ⊆ EEE and AAAr ⊆ AAA, must be serviced by a fleet of K homogeneous vehicles with limited capacity, Q, that are
based at the depot vertex, v0. The fleet size K can be either fixed, left as a decision variable or treated as unlimited.
Vehicles are allowed to unload their waste at any Intermediate Facility (IF) at the cost of λ and resume their collection
routes. At the end of its route, a vehicle must first visit an IF before returning to the depot. The set of IFs is modelled
in GGG as ΓΓΓ, where ΓΓΓ ⊂ VVV . The sum of demand on each sub-trip between IF visits may not exceed Q, and unless v0 ∈ ΓΓΓ,
a vehicle has to visit an IF before returning to the depot. Lastly, a route length or time restriction of L is imposed on
each vehicle route, typically corresponding to available work hours in a day.

To solve the MCARPTIF, the graph GGG is transformed into a fully directed graph, GGG∗ = (VVV ,AAA∗), by including all
arcs AAA in AAA∗, and by replacing each edge, (vi, v j) ∈ EEE, with two opposite arcs, {(vi, v j), (v j, vi)} ∈ AAA∗. Arcs in AAA∗ are
identified by indices from 1 to β, where β = |AAA∗|. Each arc u∗ ∈ AAA∗ has a deadheading time, c(u∗), denoting the time of
traversing the arc without servicing it. The cost of the shortest path between arcs u∗ and v∗ ∈ AAA∗, which excludes the
costs of deadheading u∗ and v∗, is given by D(u∗, v∗), which is pre-calculated for all arcs in AAA∗. Shortest paths can be
efficiently calculated using a modified version of Dijkstra’s algorithm, and may also incorporate forbidden turns and
turn-penalties [15]. The Floyd-Warshall shortest-path algorithm can also be adapted. Details for this can be found
in [23]. The depot is modelled by including in AAA∗ a fictitious loop, σ = {v0, v0}, with zero deadheading and service
times. Similarly, the set of IFs are modelled in AAA∗ as a set of dummy arcs, III, such that each IF in ΓΓΓ is modelled as a
fictitious loop, Φi ∈ III, and Φi also has zero deadheading times.

Required arcs, AAAr, and edges, EEEr, of GGG correspond in GGG∗ to a subset RRR ⊆ AAA∗ of required arcs. Each required arc,
u ∈ RRR, has a demand, q(u), a servicing time, w(u), and a pointer, inv(u), to the arc between the same vertices but in the
opposite direction. Each required arc in the original graph, GGG, is coded in RRR by one arc, u, with inv(u) = 0, while each
required edge is encoded as two opposite arcs, u and v, such that inv(u) = v and inv(v) = u. Where u represents the
edge (vi, v j) ∈ EEE in the original graph, inv(u) will represent (v j, vi). The best IF to visit after servicing arc u and before
servicing arc v can be pre-calculated using

Φ∗(u, v) = arg min{D(u, k) + D(k, v) : k ∈ III}, (1)
µ∗(u, v) = D

(
u,Φ∗(u, v)

)
+ D

(
Φ∗(u, v), v

)
+ λ, (2)

where Φ∗(u, v) gives the best IF to visit, and µ∗(u, v) gives the duration of the visit, including the unloading time, λ,
and deadheading time.

An MCARPTIF solution, TTT , is a list, [TTT 1, . . . ,TTT |TTT |], of |TTT | vehicle routes. Each route, TTT i, is a list of subtrips
[TTT i,1, . . . ,TTT i,|TTT i |], and each subtrip, TTT i, j, consists of a sequence, [Ti, j,1, . . . ,Ti, j,|TTT i, j |], of required arcs and edges to be
serviced, referred to simply as tasks. It is assumed that the shortest path is always followed between consecutive
tasks Ti, j,k and Ti, j,k+1. Thereby, the deadheading of arcs and edges between Ti, j,k and Ti, j,k+1 is not explicitly included
in TTT , but their deadheading costs is still accounted for via D(Ti, j,k,Ti, j,k+1). Further, the first subtrip, TTT i,1, in a route
always starts at the depot. All other subtrips, excluding the last one, starts and ends with the best IF visits, given by
Equation (1). The last subtrip ends with an IF and depot visit. With their direct inclusion in TTT , the depot and dummy
arcs are assigned servicing times and demand of zero.

The capacity of each subtrip is calculated as
∑|TTT i, j |

n=1 w(Ti, j,n), which may not exceed Q. The durations of a subtrip
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and a route, and the cost of a solution is calculated using Equations (3) to (5):

Zsubtrip(TTT i, j) =

|TTT i, j |−1∑
n=1

(
D(Ti, j,n,Ti, j,n+1)

)
+

|TTT i, j |∑
n=1

w(Ti, j,n) + λ (3)

Zroute(TTT i) =

|TTT i |∑
j=1

Zsubtrip(TTT i, j), (4)

Z(TTT ) =

|TTT |∑
i=1

Zroute(TTT i), (5)

where Zroute(TTT i) ≤ L.
In the subsequent review, when referring to an MCARP solution, also denoted by TTT , it consists of a list, [TTT 1, . . . ,TTT K],

of K vehicle routes, and each route, TTT i ∈ TTT , consists of a list of tasks [Ti,1, . . . ,Ti,|TTT i |] with Ti,1 = Ti,|TTT i | = σ. Its cost,
also denoted Z(TTT ), is similarly calculated as with the MCARPTIF.

3. A review of Local Search for CARPs and acceleration mechanisms

3.1. Local Search for the MCARP

In its basic form, LS starts with an initial solution and iteratively moves to an improving solution belonging to the
neighbourhood of the current one. Let TTT ∈ XXX be a feasible solution for the MCARP where XXX is the set of all feasible
solutions, and let Z(TTT ) be the cost of the solution. The neighbourhood, N , is a mapping N : XXX → 2XXX , and each
element TTT ′ ∈ N (TTT ) is called a neighbour of TTT . Neighbours with cost Z(TTT ′) < Z(TTT ) are improving neighbours. LS
starts with a given initial solution TTT (0) ∈ XXX. In each iteration t, local search replaces the current solution TTT (t) by an
improving neighbour TTT (t+1) ∈ N (TTT (t)). The search terminates when a local optimum is reached, meaning there are
no improving neighbours in N (TTT (t)). For a comprehensive review of LS, we refer the reader to [16]. Typically, the
neighbourhood is defined implicitly by a set of moves M , where each move, π ∈M , transforms the current solution
into a neighbouring one. For CARPs, moves typically change the position of tasks between and within routes.

Belenguer et al. [1] and Lacomme et al. [15] use seven move operators within their LS implementations for the
MCARP, which they embed within Memetic Algorithms. As noted by Prins [19], such move operators have been
extensively used within other CARP metaheuristics, including the recent implementations of Chen and Hao [3], Chen
et al. [4] and Vidal [22], and which we also adapted to the MCARPTIF. Five of the seven MCARP move operators are
shown in Figure 1. For illustrative purposes, ai represents an arc task with inv(ai) = 0 and ei represents an edge task
with inv(ei) = e′i . An edge task can be serviced in either of its directions, ei or e′i . Lastly, let u and v be two different
tasks, which can be in the same or different routes.

The first operator, relocate, moves task u before task v, which can be in the same or a different route. It also
considers the special case to insert u after v if v is the last task of its route. The second operator, double-relocate,
is similar to relocate, therefore not illustrated in Figure 1, with adjacent tasks moved together to a new position.
The exchange operator, shown in the figure, exchanges the positions of two tasks, u and v, and the third operator,
flip, inverts an edge task u so that the edge is traversed in its opposing direction. Advanced versions of the operator
are used by Beullens et al. [2] and Vidal [22] in which the optimal orientation of all tasks in a route is efficiently
determined.

The rest of the MCARP operators employ two-opt moves that first delete links in the visitation sequence and then
relinks the route segments to create new routes. In certain cases, the route segments are first reversed before being
relinked. Three relinking options are considered, each constituting a different move. The first move, two-opt-1, is
applied when u and v are in the same route, and two-opt-2 and two-opt-3 are applied when they are in different routes.
All three two-opt moves are illustrated in Figure 1. Two-opt-2 is more intuitively referred to as cross by Beullens et al.
[2] since the move results in end portions of the routes being crossed. It is also easier to implement compared to the
other two-opt moves since it does not result in segments being reversed.

Two-opt-1 and two-opt-3 involve the reversal of certain route segments to be relinked. For the symmetric CARP,
this can be automatically done without any additional calculations. The same does not always hold for the asymmetric
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Figure 1: Examples of relocate, exchange and two-opt move operators for the MCARP.
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MCARP. For an MCARP route segment to be symmetric, all its tasks must consist of edges, and the shortest path
between two tasks must have the same cost in both directions for all consecutive tasks. Unless these conditions hold,
the move operators cannot be implemented with the same efficiency since the cost of reversing segments have to be
calculated. To overcome this, Lacomme et al. [15] and Belenguer et al. [1] discard two-opt moves if the segments
contain any arc-task. The example two-opt-1 move in Figure 1 will thus be allowed, but the two-opt-3 move will be
discarded. For our MCARPTIF LS versions, we only implemented two-opt-1 and cross and did not consider two-opt-
3. This was done to limit the implementation burden for what is the first study on LS for the MCARPTIF, and we
therefore leave the implementation of two-opt-2 and other move-operators for future work.

The relocate move is applied between all tasks u and v in the current solution. For exchange and two-opt moves,
the move between u and v is to the same as the one between v and u, thus only one of the two has to be evaluated.
Lastly, flip is individually applied to all tasks u in the solution. When a move involves two distinct routes, the resulting
changes in route-loads are calculated. Moves that result in the vehicle capacity limit being exceeded are then ignored.
There are also several options for choosing which improving move to implement, should there be more than one. When
the neighbourhood is searched by evaluating moves one by one, LS may implement the best move found among all
those evaluated, or it may implement the first improving move found. The two move strategies are referred to as best-
move and first-move. Both Lacomme et al. [15] and Belenguer et al. [1] use a first-move strategy, which is quicker than
best-move. Since first-move terminates the iteration at the first improving move found it only has to partially scan the
neighbourhood, unless a local optimum has already been reached. Belenguer et al. [1] further attempt to improve the
efficiency of their LS implementation by forcing two-opt to discard moves involving asymmetrical route segments.
Despite this initiative and the use of first-move, they found that the execution time of their Memetic Algorithm is
excessive on the biggest of their MCARP test instances. As a remedy, they recommend using advanced acceleration
mechanisms to speed-up the LS component of their Memetic Algorithm. In the rest of review, we discuss three such
mechanisms and their possible application to the MCARPTIF.

3.2. Nearest neighbour lists

Nearest-Neighbour-Lists was first implemented for the CARP by Beullens et al. [2] to improve the efficiency of
their Guided Local Search metaheuristic, which is still one of the fastest heuristics for the CARP [19]. The mechanism
has recently been applied by Chen and Hao [3] and Vidal [22], and it is the mechanism that Belenguer et al. [1] suggest
to improve their Memetic Algorithm. The lists enable LS to scan a promising subset of the full neighbourhood. For
each task u, a nearest neighbour list, NNNu ∈ NNN, is established that contains a fraction, f , of its closest required tasks
v ∈ NNNu, where 0 < f ≤ 1. The lists are sorted based on the distance from v to u, and the parameter f is user-specified
at the beginning of the procedure. The evaluation of moves can then be limited through Nearest-Neighbour-Lists. For
example, when evaluating a relocate move where u is inserted after v, the condition v ∈ NNNu can be enforced, in which
case the insert position is limited to closest neighbours of u. The length of the Nearest-Neighbour-Lists is controlled
through f . A low value of f produces a small subset of the move neighbourhood that can be quickly scanned, but
improving moves outside of the neighbourhood subset will not be considered, resulting in LS terminating prematurely.
As f → 1 the full set of moves will be evaluated but without any sort of acceleration taking place. A balance is thus
sought between keeping f low enough to accelerate LS, but high enough so that it terminates at high-quality solutions.

Based on the recommendation of Belenguer et al. [1] to use Nearest-Neighbour-Lists to accelerate LS for the
MCARP, and its successful application to the CARP, we chose to adapt the mechanism for the MCARPTIF. A
downside of the mechanism, which we formally investigate, is that there is a trade-off between its acceleration and
solution improvement capabilities.

3.3. Static move descriptors

In most LS implementations, after a move is made the entire move-neighbourhood is rescanned, despite the move
only modifying a small portion of the solution. For example, when a task is relocated in the same route, all moves
not involving that route will be unaffected, yet in most cases, the moves will be rescanned. The same also holds for
first-move implementations, where towards the end of the search an increasing portion of the neighbourhood has to be
searched for the last remaining improving moves, of which only one is made per iteration. To address this inefficiency,
Zachariadis and Kiranoudis [28] develop Static-Move-Descriptors for the VRP that describe every possible LS move
towards a new solution. Importantly, they allow information on all moves to be recorded and reused in following
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iterations. During an LS iteration the best move is identified and implemented, and in the following iterations, only
moves that involve nodes that were influenced by previously implemented moves are rescanned, and their descriptors
updated. The best move is then identified, and the process repeats until a local optimum is reached. Static-Move-
Descriptors allow LS to return the same local optima as basic LS with a best-move strategy. As such, its application
does not result in any trade-off on solution quality.

Zachariadis and Kiranoudis [28] test the acceleration mechanism on the VRP and found that on small test instances
with less than 400 required nodes, their accelerated LS has a similar execution time of a basic best-move version.
On larger problems, the accelerated LS was much faster per iteration, exhibiting linearithmic (n log n) growth with
problem size, whereas the basic LS heuristic exhibits quadratic growth. On a 1200 required-nodes VRP instance, the
basic LS implementation takes about eight times longer per iteration than the accelerated version.

Beullens et al. [2] implement a similar strategy, which they refer to as edge-marking, for the CARP. They further
link edge-marking with Nearest-Neighbour-Lists and a first-move strategy. As such, their LS is not guaranteed to re-
turn true local optima with respect to its move operators. Their tests are also limited to the small benchmark instances,
making it difficult to predict what effect the acceleration mechanism will have on large MCARPTIF instances. Conse-
quently, we chose to only adapt the Static-Move-Descriptors of Zachariadis and Kiranoudis [28] for the MCARPTIF.
The adaptation was made easier due to the solution representation, encoding scheme, and move operators of the VRP
being similar to those of the MCARPTIF. We further linked Static-Move-Descriptors with Nearest-Neighbour-Lists
and evaluated the solution cost and execution time trade-off of the linked and unlinked versions on large waste collec-
tion instances.

3.4. Compounding independent moves

The last acceleration mechanism that we review is Compound-Independent-Moves, as applied to the VRP by Ergun
et al. [10] and by Dell’Amico et al. [8] to the Mixed Capacitated General Routing Problem (MCGRP). The MCGRP
is a generalisation of the MCARP in which vertices as well as arcs and edges have to be serviced on a mixed road
network. Compound-Independent-Moves is based on the same principle as Static-Move-Descriptors. Moves that are
not influenced by a previous move are considered independent from that move. All independent improving moves
will remain improving regardless of the sequence in which they are implemented, and can, therefore, be made in the
same LS iteration. Ergun et al. [10] use this principle to create new neighbourhoods by compounding (combining)
smaller independent moves. A series of compounded independent moves, constituting a single super-move, is then
made in each iteration, which allows LS to reach local optima in fewer iterations.

There are different methods to determine which independent moves to compound. Dell’Amico et al. [8] use a
greedy approach, which we refer to as Greedy-Compound-Independent-Moves, that starts with the best move and
then continue to the next best improving move that is independent of all previous moves made. LS will then move
to the next iteration when no more independent moves are left, after that the full neighbourhood is again scanned.
Since Compounded-Independent-Moves are seen as a single super-move, this greedy approach may not produce the
best compounded move in terms of total improvement. To illustrate, let π1 be the best move which is dependent
on the second and third best moves, π2 and π3, with π2 and π3 being independent of each other and having a better
combined savings than π1. In this case, making the compounded move of π2 and π3 instead of π1 is a better move in
the compounded neighbourhood.

Ergun et al. [10] show that finding the best moves to compound into a super-move is in itself an NP-hard problem,
for which they develop a multi-label shortest path algorithm to search the compounded neighbourhood heuristically.
Implementing the heuristic is non-trivial, and we leave its application to the MCARPTIF for future work. We instead
implemented and tested the Greedy-Compounded-Independent-Moves mechanism. We then linked the mechanisms
with Static-Move-Descriptors as well as Nearest-Neighbour-Lists.

4. Basic Local Search for the MCARPTIF

In this section we build on the MCARPTIF solution representation given in Section 2, with key terms summarised
in Table 1, and illustrate how one of the move operators can be adapted to the MCARPTIF. Full details on our
adaptation of all the move operators to the MCARPTIF can be found in [23]. To make our illustrations more concise
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Table 1: MCARPTIF symbols and solution representation summary.

RRR Set of required tasks
σ Depot dummy arc
D(u, v) Shortest dead-heading path time from u to v
Φ∗(u, v) Best IF to visit between u and v
inv(u) Pointer to opposite arc of u, where inv(u) = 0 for arc tasks
TTT MCARPTIF solution
TTT i Route i
TTT i, j Subtrip j of route TTT i
Ti, j,n nth task in subtrip TTT i, j
RRRT Set of required tasks currently in solution TTT

we use Φ′ as a placeholder to denote the best IF visit between the last and first tasks of consecutive subtrips TTT i, j and
TTT i, j+1, such that Φ′ = Φ∗(Ti, j,|Ti, j |−1,Ti, j+1,2). Routes are then illustrated in the form

TTT i = [. . . [. . . ,Ti, j,|TTT i, j |−2,Ti, j,|TTT i, j |−1,Φ
′], [Φ′,Ti, j+1,2,Ti, j+1,3, . . .] . . .].

Another modification that we made to the solution representation of Willemse and Joubert [25] is that the last IF and
depot visit tasks are included in a separate subtrip at the end of the route, such that

TTT i =
[
. . . , [. . . ,Ti, j∗−1,k∗−1,Φ

′], [Φ′, σ]
]
,

where j∗ = |TTT i| and k∗ = |TTT i, j−1|. This allows all the subtrips, except for the last which is never subjected to moves, to
be treated the same by the LS operators. Otherwise, special checks have to be preformed to ensure that tasks are not
relocated between the IF and depot.

4.1. Basic LS framework and the relocate move operator
Our basic LS heuristic for the MCARPTIF relied on five move operators that are a subset of those used in [1, 15]

and reviewed in Section 3.1 for the MCARP. The operators are flip, relocate, exchange and two versions of two-
opt, namely cross, which evaluates moves between different routes, and two-opt-1 which evaluates moves in a single
route. To analyse its full savings potential, two-opt-1 considers all route-segment inversions, including asymmetrical
segments.

The main extension required for the MCARPTIF was to adapt the MCARP move operators to deal with IFs and
the route time-duration constraint. IFs influence cost calculations and the additional constraint has to be checked
for move feasibility. To illustrate the adaptations, consider the relocate move shown in Figure 2. The MCARPTIF
move relocates a task to a different position in the same subtrip, a different subtrip of the same route, or to another
route. In our implementation, we chose to make the relocate position the new position of task u. With a relocate
position of Tl,m,n = v, task u is inserted before v such that Tl,m,n = u, Tl,m,n+1 = v and Tl,m,n+i = Tl,m,n+i−1 for all
i ∈ {1, . . . , |TTT m,n| − 1 − n}. It should be noted that this version produces an identical neighbourhood to the more
commonly used version of relocating task u after v. The move is evaluated between the removal of all tasks in TTT and
their insertions into all the possible new positions.

The cost of the relocate move, ∆Z, consists of the cost of removing the task from a subtrip, and the cost of inserting
it into a new position. Compared to the MCARP, the removal of tasks next to IF visits can impact the choice of the
best IF to visit, and therefore require different cost calculations than with the other tasks. Special cost calculations,
relying on µ∗(u, v) are also required when the insert positions are next to IFs. With reference to the example move in
Figure 2, the cost of the move, ∆Z, is calculated as

∆Z = D(u1, u3) − D(u1, u2) − D(u2, u3) + µ∗(v3, u2) + D(u2, v4) − µ∗(v3, v4) (6)

There are special calculations when a task is removed from a subtrip servicing only that task, for example when
removing task v6 in Figure 2, in which case the subtrip is removed.

In addition to the new cost calculations for the MCARPTIF, subtrip load-capacity and route-duration feasibility
checks are performed, depending on where the task is relocated. If the task is relocated to the same subtrip, demand
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Figure 2: Example of the MCARPTIF relocate move where a task is removed from a subtrip, and inserted into another position. The taks can be
inserted in the same subtrip, a different subtrip in the same route, or in a subtrip of a different route.

will remain unchanged, and the cost of the route will be reduced, thus no checks are required. If it is relocated to a
different subtrip in the same route, then a load-capacity check is performed on the subtrip to which the task is relocated.
Lastly, if it is relocated to a different route, then a subtrip load-capacity and route-duration check is performed on the
subtrip and route to which the task is relocated.

The flip, exchange, cross and two-opt-1 move operators were similarly adapted from the MCARP to MCARPTIF.
To limit the length of the article, we refer the reader to [23] for the full implementation details of all the move operators
including their cost calculations, feasibility checks and technical implementations.

4.2. Extending the move operators

In addition to the five classical move operators, the following extensions to cross, relocate and exchange were
considered. The first extension allows cross to swap the end portions of subtrips, instead of the end portions of entire
routes. When this alternative cross move is applied between Ti, j,k = u and Tl,m,n = v, where

TTT i =
[
. . . ,TTT i, j−1, [. . . ,Ti, j,k−2,Ti, j,k−1,Ti, j,k,Ti, j,k+1, . . .],TTT i, j+1, . . .

]
, (7)

TTT l =
[
. . . ,TTT l,m−1, [. . . ,Tl,m,n−2,Tl,m,n−1,Tl,m,n,Tl,m,n+1, . . .],TTT l,m+1, . . .

]
, (8)

the end result would then be

TTT ′i =
[
. . . ,TTT i, j−1, [. . . ,Ti, j,k−2,Ti, j,k−1,Tl,m,n,Tl,m,n+1, . . .],TTT i, j+1, . . .

]
, (9)

TTT ′l =
[
. . . ,TTT l,m−1, [. . . ,Tl,m,n−2,Tl,m,n−1,Ti, j,k,Ti, j,k+1, . . .],TTT l,m+1, . . .

]
. (10)

Note that TTT i, j+1 remains in TTT ′i and TTT l,m+1 in TTT ′l . In our implementations we only evaluated the subtrip cross move
between Ti, j,k = u and Tl,m,n = v if Ti, j+1 and Ti,m+1 start at the same IF, in which case the cost of the move between
Ti, j+1,2 and Tl,m+1,2 will be zero. Otherwise, a normal cross move between the routes was evaluated. The evaluation
was always done in the order of first checking if a feasible subtrip move can be made, otherwise checking if a feasible
route move can be made.

The second extension that we implemented was to compound two cross moves on the same subtrip. There are
cases where two cross moves on the same subtrip can be compounded into a single double-cross move, without having
to recalculate move costs. Let ∆Z1 be the cost for the cross move between tasks Ti, j,k1 = u1 and Ti, j,n1 = v1, and let ∆Z2
be the cost of the second move on the same subtrip between Ti, j,k2 = u2 and Ti, j,n2 = v2. If k1 < k2 − 1, k2 < n1 − 1 and
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n1 < n2 − 1 the two cross moves can be compounded to produce an exchange between sections [Ti, j,k1 , . . . ,Ti, j,k2−1]
and [Ti, j,n1 , . . . ,Ti, j,n2−1]. In this case the original subtrip

TTT i, j = [. . . ,Ti, j,k1−1,Ti, j,k1 . . . ,Ti, j,k2−1,Ti, j,k2 , . . . ,Ti, j,n1−1,Ti, j,n1 , . . . ,Ti, j,n2−1,Ti, j,n2 , . . .], (11)

will become

TTT ′i, j = [. . . ,Ti, j,k1−1,Ti, j,n1 , . . . ,Ti, j,n2−1,Ti, j,k2 , . . . ,Ti, j,n1−1,Ti, j,k1 , . . . ,Ti, j,k2−1,Ti, j,n2 , . . .]. (12)

The cost of the double-cross move is ∆Z1 + ∆Z2, and it can also be implemented if k2 < k1 − 1, k1 < n2 − 1 and
n2 < n1.

The last extension that we implemented was to compound an infeasible improving move with a non-improving
move. We applied this for exchange and relocate between different subtrips on the same route; thereby only the
capacity constraint is of concern. A move that violates the capacity constraint of subtrip TTT l,m can be linked with an
independent relocate move that removes task v′ from TTT l,m. The two moves are compounded if v′ can be feasibly
inserted into another subtrip, and if its removal frees-up enough capacity in TTT l,m for the infeasible move to become
feasible. This type of move is referred to as an infeasible-compound move.

For the double-cross moves we used a greedy approach to decide which two moves to compound. Cross moves
were grouped according to the subtrips on which they are applied, and the moves in each group were sorted from best
to worst savings. Starting with the best move, the heuristic would scan the rest of the moves in the subtrip group until
one is found that meets all the double-cross conditions. If none is found, the process repeats from the second best
move in a group. If a move was found, both are implemented. Each subtrip group is scanned through this process.
Importantly, this approach simply reuses the existing acceleration mechanisms.

The same approach is followed for infeasible-compound moves. First, infeasible subtrip moves are grouped
according to subtrips together with complimentary non-improving relocate moves that remove tasks from the subtrip.
Starting with the best infeasible move, the non-improving complimentary relocate moves for that subtrip are scanned
from best to worst. When a non-improving move is found that releases enough capacity from the subtrip both are
implemented. The process is applied to all subtrip groups.

For our LS implementations, we searched for and applied double-cross and infeasible-compound only once LS
reached a local optimum. If improving double-cross or infeasible-compound moves were found, LS reverted to the
normal search, otherwise it terminated.

Both double-cross and infeasible-compound further evaluates pairing improving and non-improving moves, as
long as the combined moves result in an improvement. The move neighbourhood can thus be extended by evaluating
non-improving moves, which can be limited by specifying a threshold saving ∆Z. Only moves with ∆Z < ∆Z are
then evaluated. Feasible moves with ∆Z < 0 can be directly implemented, and double-cross and infeasible-compound
moves can be implemented if ∆Z1 + ∆Z2 < 0, where ∆Z1 and ∆Z2 are the respective savings of the two compounded
moves. The challenge is then to find a threshold saving that improves the local optima at which LS terminates while
still keeping it efficient, keeping in mind that a good threshold may be instance specific. In this paper, we formally
analysed the move-cost landscape of our LS move operators to find appropriate threshold values.

Additional move operators can also be adapted for the MCARPTIF, such as double-relocate and more advanced
two-opt-1 and cross moves. It is not uncommon for researchers to use as much as twelve operators [20]. However,
care must be taken when extending the operators as it increases the computational time of LS, and as mentioned, basic
LS implementations have already been found to be slow on large problem instances. For this reason, double-cross
and infeasible-compound moves were only used in our accelerated implementations that could afford the additional
computational time.

5. Acceleration mechanisms for the MCARPTIF

To accelerate our LS implementations, we adapted and ultimately combined three existing acceleration mecha-
nisms, namely Nearest-Neighbour-Lists, Greedy-Compounded-Independent-Moves and Static-Move-Descriptors. The
mechanisms were applied to relocate, exchange and cross, as they are easier to incorporate within the mechanisms
and, as we will show in the next section, they contribute the most to the total savings obtained through LS on large
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MCARPTIF instances. Before presenting the acceleration mechanisms in detail, we first give general LS functions
required for their implementation.

All the three acceleration mechanisms require a task focused search, whereby a move is defined between two
tasks, u and v. To enable this, we define a mapping function, T−1(u) = (i, j, k), that maps each task u ∈ RRR to its current
location in the solution such that Ti, j,k = u. When inv(u) , 0, the function lets inv(u) point to the same position as u,
such that

T−1(inv(u)) = T−1(u) = (i, j, k) (13)

The mapping function is automatically updated whenever the solution changes. Using relocate as an example, moves
will be evaluated between all the required tasks, u ∈ RRR, and all the required tasks currently in the solution, v ∈ RRRT . The
function lets inv(u) point to the same position as u when inv(u) , 0 thereby allowing relocate to automatically consider
task inversion moves. For this reason, relocate moves are evaluated for u ∈ RRR. The reason for only considering insert
position for v ∈ RRRT is that if v ∈ RRR was considered, it would result in needlessly testing the same insertion positions
twice when inv(v) , 0. A specific relocate move in which u is relocated in-front of v is referred to as relocate(u, v);
an exchange move in which task u is exchanged with task v is referred to as exchange(u, v); and a cross move where
two routes are crossed at tasks u and v is referred to as cross(u, v). Exchange moves are evaluated between all tasks
u, v ∈ RRR to allow for the possible inversions of u and v. Cross moves are only considered for u ∈ RRRT and v ∈ RRRT since
it does not consider task inversions.

When searching move neighbourhoods within each LS iteration, information on all improving moves are stored
in an improving move list MMM. Information per improving move π ∈ MMM include π = (∆Z,movei, u, v), where ∆Z is
the cost of the move, movei is the unique identifier of the move, and u and v are the tasks between which the move
is applied. Feasibility checks are initially ignored when searching for improving moves. Instead, all the improving
moves are returned, and the feasibility checks are performed on a subset of improving candidate moves before their
implementation. Using MMM, the best feasible, or multiple feasible moves can be implemented. The conditions and
move cost calculations for each move, depending on the location of the tasks in the current solution, can be found
in [23].

Nearest-Neighbour-Lists attempt to accelerate LS by reducing the task sets RRR and RRRT between which moves are
evaluated, whereas Greedy-Compounded-Independent-Moves and Static-Move-Descriptors attempt to more efficiently
use and update the improving move list MMM. All three mechanisms are described in detail in the rest of the section.

5.1. Nearest neighbour lists

Nearest-Neighbour-Lists are used in each LS iteration to scan a promising subset of the full solution neighbour-
hood. To illustrate why this may be beneficial, consider the example network shown in Figure 3. Assume that u is
serviced together with all its nearest neighbours in a route, and that v is serviced with all its neighbours in a different
route. A relocate move between tasks u and v would evaluate the move of relocating task u from its current service
position to be serviced directly before v. Traveling from v to u and then back to the neighbours of v will significantly
increase the amount of deadheading in the route of v. From a route design perspective, it would be ideal for task u to
be serviced directly after one of its nearest neighbour tasks. Similarly, if task is to be relocated before v, it would be
ideal if the task is one of the nearest neighbours of v. Nearest-Neighbour-Lists formally encapsulate this concept and
enables LS to ignore unpromising moves. There may, however, be cases where such unpromising moves still improve
the solution, in which case LS may terminate before reaching local optima.

The Nearest-Neighbour-Lists of u ∈ RRR is formally defined as NNNu ⊂ RRR/{u, inv(u)} and it contains its s = d f × |RRR|e
closest required tasks, where 0 < f ≤ 1 and is user-specified. With our implementation, the lists are sorted in non-
decreasing order based on the travel time from u to v, given by D(u, v). The full neighbourhood list is always available
and f , which we defined as a global variable, is directly used to limit the move set. Individual tasks in NNNu are given as
Nu,i where Nu,1 is the nearest neighbour of u.

Finding improving relocate moves can be accelerated through the Nearest-Neighbour-Lists as shown in Algo-
rithm 1. The algorithm takes as input a set of tasks, RRR, to be relocated to new positions and a set of tasks, RRRT , to which
the tasks will be relocated. The acceleration takes place in lines 3 to 5 and depends on f . If f is small, relatively few
relocate positions will be considered, but the risk of the algorithm missing improving moves increases. If f = 1, no
acceleration will take place and all improving moves will be considered.
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Figure 3: Example of a waste collection area to be serviced. Moves involving u or v should ideally be limited to their respective nearest neighbour
tasks.

Algorithm 1: Find-Relocate-Moves

Input : Current solution TTT ; savings threshold, ∆Z = 0; tasks RRR to be considered for relocation; tasks RRRT before which the relocate tasks
can be placed; savings list MMM consisting of information needed to implement moves.

Output: Updated savings list MMM, with information of moves with savings less (better) than ∆Z added to MMM.

1 for u ∈ RRR do
2 (i, j, k) = T−1(u);
3 s =

⌈
f × |RRR|

⌉
;

4 RRR′T = RRRT ∩ {Nu,1,Nu,2, . . . ,Nu,s} // the possible relocation positions are limited to tasks that are in the RRRT and that are nearest
neighbours of u //;

5 for v ∈ RRR′T do
6 (l,m, n) = T−1(v);
7 Using TTT and i, j, k of u, and l, m, n of v, calculate ∆Z for the relocate move;
8 if ∆Z < ∆Z then
9 MMM = MMM ∪ {(∆Z,movei = 1, u, v)} ;

10 return (MMM)
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Exchange and cross require slightly different implementations. Using Figure 3 as an example, assume that v
is serviced in a route together with the neighbours of u and that u is serviced together with the neighbours of v.
In this case, an exchange move between u and v would make sense. However, checking if u ∈ {Nv,1, . . . ,Nv,s} or
v ∈ {Nu,1, . . . ,Nu,s} would eliminate the move, unless f → 1. For this reason, we instead enforced the membership
condition that v ∈ {Nupre,1, . . . ,Nupre,s} where T−1(u) = (i, j, k) and upre = Ti, j,k−1 on exchange moves. A cross move
between Ti, j,k = u and Tl,m,n = v will relocate task v directly after Ti, j,k−1. The Nearest-Neighbour-List membership
condition for exchange can thus also be used for cross. The full NNL implementations for both moves can be found
in Algorithms 2 and 3 in Appendix A.

5.2. Greedily compounding independent moves

In our basic best-move LS implementations, all improving moves are compared, and the best move implemented.
The idea behind Independent-Compound-Moves is to identify independent improving moves and to apply them all
simultaneously in a single LS iteration to form a single super-improving move. A move between tasks u1 and v1 is
considered independent from a move between u2 and v2 if implementing either of the moves does not change the
move-cost of the other move. The independent moves can then be made together in one LS iteration without having
to recalculate their move costs.

Figure 4 shows four possible improving moves on the example route TTT 1 as well as the outcome of compounding
two of the independent moves into a single super-move. To determine if moves are independent, consider Move 1

Figure 4: Four possible improving moves on the example route TTT 1. The tasks between which the moves are applied are highlighted in grey, and
tasks used to calculate the costs of the moves are underlined.

which involves relocating task u2 before task u8. The cost of the move is calculated as

∆Z = D(u1, u3) − D(u1, u2) − D(u2, u3) + D(u7, u2) + D(u2, u8) − D(u7, u8). (14)
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Task used in the cost calculation, in addition to u2 and u8, are underlined in Figure 4. Move 2 will change the location
of u2 and u3 relative to each other and is thus dependent on Move 1, the reason being that the cost calculation for
Move 2 would no longer be valid after Move 1 is implemented. Move 4 will change the location of u8 by removing
it from the solution and replacing it with inv(u8). As such, it is also dependent on Move 1. Move 3 does not change
the location of any of the tasks used for the cost calculation of Move 1. Should Move 1 be implemented, the cost
of Move 3 will remain the same, which is why the moves are considered independent and can be implemented,
thereby compounded in the same LS iteration, resulting in a compounded savings of −40 − 15 = −55. If Move 2
is implemented instead of Move 1, the cost of Move 4 will be unchanged, so these two moves can be compounded,
instead of Moves 1 and 3, for a compounded saving of −35 − 10 = −45. The last option is to compound Moves 3 and
4 for a cost of −15 − 10 = −25. From all the options, move 1 and 3 should be compounded into a super-move as it
gives the best compounded savings.

To identify a sequence of independent moves, we refer to two consecutive tasks, θk and θk+1, in a route as being
linked, with the link given as (θk, θk+1). When determining the cost of a move, the links that will change (be broken)
and the new links that will be formed through the move are used for the cost calculation. For the relocate move in
Figure 4 between tasks u2 and u8, the links used to calculate ∆Z are those between the underlined and highlighted
tasks, specifically (u1, u2), (u2, u3) and (u7, u8). These links are referred to as the move’s cost-links. If another move
were to break any of the cost-links of a move, the two moves are dependent and cannot be compounded into a super-
move. Costs-links can be broken if one of the tasks in the links is removed or replaced, or if a task is inserted in
between the linked tasks.

To simplify our notations, the functions pre(u) and post(u) are defined to return the tasks before and after u,
respectively, such that:

(i, j, k) = T−1(u), (15)

pre(u) =

Ti, j,k−1 if k > 2 or j = 1,
Ti, j−1,|TTT i, j−1 |−1 otherwise,

(16)

post(u) =

Ti, j,k+1 if k < |TTT i, j − 1|,
Ti, j+1,2 otherwise.

(17)

Equations (15) to (17) allow for cost-links to be established between two tasks that are separated by an IF visit. This
is necessary when a move involves tasks that are adjacent to IF visits. To check if two moves are independent, one
simply needs to check if any of the move’s cost-links are broken by the other move. The cost-links for all the move
types are shown in Table 2, and the conditions under which each type of move will break a cost-link can found in
Table 3. Once MMM has been populated with information of improving moves, Tables 2 and 3 can be used to determine

Table 2: Cost-links of moves between tasks u and v with pre(u) and post(u) defined in Equations (15) to (17).

Move operator Cost-links involving u Cost-links involving v

Relocate(u, v)
(
pre(u), u

)
and

(
u, post(u)

) (
pre(v), v

)
Exchange(u, v)

(
pre(u), u

)
and

(
u, post(u)

) (
pre(v), v

)
and

(
v, post(v)

)
Cross(u, v)

(
pre(u), u

) (
pre(v), v

)

Table 3: Conditions for a move between tasks u and v to break the cost-link (θk , θk+1).

Move operator Condition for breaking the cost-link (θk , θk+1)

Relocate(u, v) If u = θk or u = θk+1 or v = θk+1
Exchange(u, v) If u = θk or u = θk+1 or v = θk or v = θk+1
Cross(u, v) If u = θk+1 or v = θk+1

which of the moves are independent. The next step is then to compound the moves into a single feasible super-move.
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When taking capacity and route-duration constraints into consideration, finding the best moves to compound into
a feasible super move becomes an NP-Hard problem [10]. To solve the compounding problem, we implemented
a greedy heuristic, termed Greedy-Compound-Independent-Moves, that identifies and immediately makes feasible
independent moves. The heuristic takes as input MMM which is ordered from the best to the worst improving move.
Starting with the first move in the list, the heuristic checks if the move is feasible. If so, the move is implemented.
The heuristic then moves to the next improving move in MMM and checks if it is independent of all previous moves that
have been implemented in the current LS iteration. This is done by adding all cost-links involved in moves, given
in Table 2, to an initially empty set CCC as the moves are made. When evaluating a move, the cost links that will be
broken by the move, as given in Table 2, are checked against the links of previous moves in CCC. If it is independent,
the heuristic further checks if the move is feasible. If the move passes both checks, it is implemented. This process
repeats until all improving moves in MMM have been evaluated for implementation.

Sorting MMM in each iteration adds to the time-complexity of LS. Other non-sort based options can be used to scan
MMM, such as scanning MMM in a random sequence or simply scanning it in the sequence in which the moves were added,
similar to a first-move strategy. The savings list can also be implemented as a priority-queue whereby it is already
sorted when it is scanned. We leave these implementations and their evaluation for future work.

5.3. Static move descriptors

The most computationally expensive component of LS is scanning the move neighbourhood for improving moves.
Nearest-Neighbour-Lists accelerate LS by reducing the size of the move neighbourhood, whereas Greedy-Compound-
Independent-Moves attempt to better exploit the information gained from scanning the neighbourhood by implement-
ing multiple improving moves at once. The last acceleration mechanism that we adapt for the MCARPTIF builds
on the latter by using Static-Move-Descriptors, proposed by Zachariadis and Kiranoudis [28] for the VRP. Static-
Move-Descriptors are solution independent, and in their full application they describe every possible move and its
costs towards a new solution. This allows LS to appropriately record and reuse information gained from scanning
the neighbourhood. When a move is implemented, only those moves that are affected by it are rescanned and their
descriptors updated.

With our Nearest-Neighbour-Lists implementation, essential move information contained in π ∈ MMM are ∆Z, a
unique identifier for the move-type, movei, and tasks u and v involved in the move. Information used for the feasibility
checks can also be added, such as pre- and post-tasks of u and v, the change in load to the tasks’ subtrip, and the
change in cost to the tasks’ routes. The move information contained in π, therefore, meets all the requirements of a
static descriptor. The only modification needed is then to update MMM after each LS iteration, instead of repopulating it
from scratch. In the first LS iteration, MMM will be populated with the descriptors of all the improving moves, thereafter
it only needs to be updated.

To describe how MMM can be updated at each iteration, consider an LS implementation that only uses the relocate
operator. In the first LS iteration the savings list, MMM, of all improving moves can be found and returned using Algo-
rithm 1. The list is then ordered and its first, thus best, feasible improving move will be implemented. After the move
is implemented, the next step is to determine which of the descriptors have to be updated. Returning to our Greedy-
Compound-Independent-Moves implementation, recall that each move has cost-links as defined in Table 2, and each
move will break other cost-links. To update MMM after a move is implemented, all other moves whose cost-links have
been broken by the move, as defined in Table 3, have to be rescanned and their descriptors updated. Importantly, only
these moves have to be updated.

A relocate move between u and v has three cost links, (pre(u), u), (u, post(u)) and (pre(v), v). If the first im-
plemented move in MMM between u∗ and v∗ broke any of these links, the move between u and v has to be rescanned
to update its move descriptor. Based on Table 3, a cost-link of the move between u and v would have been bro-
ken if u∗ ∈ {pre(u), u, post(u), pre(v), v} or if v∗ ∈ {u, post(u), v}. To update the descriptors, all moves which in-
volve relocating task pre(u∗), u∗, post(u∗), pre(v∗) or v∗ have to be rescanned, so too all moves in which a task
is inserted before u∗, post(u∗) or v∗. To update the move descriptors, MMM is scanned and any descriptor with u or
inv(u) ∈ {pre(u∗), u∗, post(u∗), pre(v∗), v∗} or v ∈ {u∗, post(u∗), v∗} is removed. Thereafter the descriptors are updated
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and inserted back into MMM using the following equations:

RRRu = {pre(u∗), u∗, post(u∗), pre(v∗), v∗}, (18)

RRR(inv)
u = {inv(u′) : u′ ∈ RRRu and inv(u′) , 0}, (19)
RRRv = {u∗, post(u∗), post(v∗)}, (20)

and by calling Algorithm 1 as follows:

MMM′ = Find-Relocate-Moves(∆Z,RRRu ∪RRR(inv)
u ,RRRT ,MMM), (21)

MMM′′ = Find-Relocate-Moves(∆Z,RRR/RRRu ∪RRR(inv)
u ,RRRv,MMM′), (22)

MMM = MMM′′. (23)

Algorithm 1 is called twice to find improving relocate moves, first between the subset RRRu and RRRT , and then between
RRR/RRRu and RRRv. Nearest-Neighbour-Lists can also be activated by setting f < 1 to further accelerate the search. The first
time LS searches for improving relocate moves, the full neighbourhood is scanned and MMM is returned using

MMM = Find-Relocate-Moves(∆Z,RRR,RRRT ,MMM), (24)

which takes O(|RRR| × |RRRT |). Thereafter, the neighbourhood is scanned using Equations (21) and (22) in O(|RRR| + |RRRT |).
Since both Static-Move-Descriptors and Greedy-Compound-Independent-Moves rely on move independence, we

use the set CCC, to store the tasks of cost-links of implemented moves. When a move is implemented, its cost-link
tasks are added to CCC. The set is used to determine if candidate moves are independent of all the moves already
implemented in the current LS iteration, and are also used to update the savings list. By continuously updating the
set, all independent moves can be implemented using Greedy-Compound-Independent-Moves, after which all tasks
affected by the implemented ones are updated. This allows for Static-Move-Descriptors and Greedy-Compound-
Independent-Moves to be combined. Lastly, when updating affected moves, the NNL algorithms can be used to
further limit the moves that are updated and added to MMM. A technical description of the acceleration mechanisms and
their combined usage can be found in Algorithm 1 in Section 6.5 and in Algorithms 2 to 7 in Appendix A.

6. Computational results

The aim of the paper is to develop efficient LS heuristics for the MCARPTIF that can be extended to or used
in metaheuristics applications for the problem. In the previous sections we presented basic and more advanced LS
mechanisms and different neighbourhood structures that can be combined to form different LS setups. In this section
we present results of computational tests on the different setups.

A total of 20 different LS setups, summarised in Table 4, were implemented and tested. The first four setups used
the basic LS setup, without any of the acceleration mechanisms, and either the full or reduced move operators, in
conjunction with either the best-move or first-move strategy. The full move operators consisted of relocate, cross, ex-
change, flip and two-opt-1 moves. The reduced move operators consisted of relocate, cross and exchange. The remain-
ing sixteen accelerated setups employed the advanced acceleration mechanisms with two options for available move
operators and two options for move-strategies. The two move operator options were the reduced move operators, con-
sisting of relocate, cross and exchange, and extended move operators in which double-cross and infeasible-compound
were also applied. The two move strategy options were the best-move strategy and the Greedily-Compounding-
Independent-Moves heuristic. The four combinations of the accelerated setups were further linked with four different
nearest neighbourhood levels of f ∈ {0.25, 0.5, 0.75, 1}, thus resulting in a total of sixteen unique setups.

Tests were predominantly performed on the Cen-IF, Act-IF and Lpr-IF benchmark sets that cover a range of
realistic waste collection instances. The three Cen-IF instances, with 1012, 2519 and 2755 required tasks and edges,
respectively, represent some of the largest CARP type instances currently available. Tests were also performed on
the mval-IF-3L benchmark set to make a comparison between the performance of the LS setups on waste instances
and the smaller randomly generated mval-IF-3L instances. All benchmark sets are discussed in detail in [24, 25] and
are available in [26]. Additional tests were also performed on the classical Lpr and mval instances for the MCARP,
available from https://www.uv.es/belengue/mcarp/. These tests allow our implementations to be compared
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Table 4: Different Local Search setups tested for the MCARPTIF, and where their components and evaluation are featured in the paper.

Paper section reference

Setup Fraction, f , scanned Move operators Move strategy Setup name Acronym Components Evaluation

Basic (B) f = 1
Full (F) Best move (B) Basic-Full-Best BFB

4.1 6.2, 6.7First move (F) Best-Full-First BFF

Reduced (R) Best move (B) Basic-Reduced-Best BRB
First move (F) Best-Reduced-First BRF

Accelerated
with SMD (A) f = {0.25, 0.5, 0.75, 1}

Reduced (R) Best move (B) Accelerated-Reduced-Best ARB- f 4.1, 5.1, 5.3 6.3, 6.7
GCIM (G) Accelerated-Reduced-Greedy ARG- f 4.1, 5.1–5.3 6.4, 6.5, 6.7

Extended (E) Best move (B) Accelerated-Extended-Best AEB- f 4.1, 4.2, 5.1, 5.3 6.7
GCIM (G) Accelerated-Extended-Greedy AEG- f 4.1, 4.2, 5.1–5.3 6.6, 6.7

Note: Accelerated setups are linked with Static-Move-Descriptors (SMD), Nearest-Neighbour-Lists with f nearest neighbours, and can be linked
with Greedily-Compounding-Independent-Moves (GCIM); for setups where f is not specified the level f = 1 was used. For the reduced move
operators, relocate, cross and exchange are applied. For the extended move operators, double-cross and infeasible-compound are also applied. For
the full move operators, in addition to the reduced move operators, flip and two-opt-1 are also applied.

against future LS implementation. A direct comparison on MCARP instances between our accelerated LS setups and
the existing standard LS implementations is not currently possible, since researchers limit tests to the final LS based
metaheuristics without reporting directly on the performance of their LS implementations. As discussed in Section 1,
we consider a full study focussing on accelerated LS setups as well as their performance in metaheuristics to be
beyond the scope of this paper. For preliminary results for the full study, including tests on the MCARP, we refer the
reader to [23].

To test the LS setups, three different starting solutions were generated per instance using the Path-Scanning,
Improved-Merge and Efficient-Route-Cluster deterministic constructive heuristics that we developed in [25]. The effi-
ciencies of the LS setups were evaluated by measuring the CPU time, in seconds, required to reach local optima on the
different initial solutions, and the improvement capabilities evaluated by calculating the fractional cost improvement
made by LS to the initial solution. This measurement is given by ∆Z f

LS, and calculated as

∆Z f
LS =

Z
(
TTT (0)) − Z

(
TTT (t))

Z
(
TTT (0)) , (25)

where Z(TTT (0)) is the cost of the initial solution and Z(TTT (t)) is the cost of the local optimum solution returned by the LS
setup.

The tests were conducted in four phases. In the first phase, the move operators were individually analysed and
compared to identify redundant operators and find a move-operator search sequence for the first-move strategy. In
the second phase, the four basic LS setups were compared to analyse their computational efficiency on large problem
instances. In the third phase, we tested the effect of the acceleration mechanisms on LS, which showed that in most
cases there is a trade-off between the solution quality and computational efficiency of the setups. Therefore, in the
fourth and last phase, all the setups were directly compared to identify dominated setups that are both slower and
produce worse solutions than other setups, and are therefore dominated by other setups. The results were then used
to choose a non-dominated setup that can be extended to or incorporated into metaheuristics solution methods for the
MCARPTIF in future work.

All LS algorithms and procedures were programmed in Python version 2.7, with critical procedures optimised
using Cython version 0.17.1. Experiments were run on a Dell PowerEdge R910 4U Rack Server with 128GB RAM
with four Intel Xeon E7540 processors. Experiments were run without using programmatic multi-threading or multi-
ple processors. A full results table, with the execution time and final cost of each LS setup per problem instance and
initial solution, is available as online supplementary material (see Appendix B).

6.1. Move operator analysis
To individually evaluate and compare the move operators we calculated the fractional cost improvement made

by Basic-Full-Best to the initial solution. Basic-Full-Best uses a move neighbourhood consisting of flip, relocate,
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exchange, cross and two-opt-1 and the best-move strategy. For each move type we measured the savings that resulted
from its moves over the course of an LS run. Next, we calculated the contribution of the moves to ∆Z f . For example,
if Basic-Full-Best improved a solution from Z(TTT (0)) = 10 000 to Z(TTT (t)) = 9000 and only relocate and exchange moves
were made, its fractional cost improvement would be ∆Z f = 0.1. If during the search, twelve relocate moves were
made which resulted in a combined savings of 200, the contribution of relocate to ∆Z f is calculated and reported as

200
10 000 = 0.02. The contribution of exchange is then 0.08.

The contributions of the move-operators to LS over the three initial solutions per instance are shown in Figure 5.
On all instances relocate made the biggest contribution. The contributions of the other operators depended on the
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Figure 5: Cost saving contributions on waste collection benchmark sets of Relocate (Rel), Cross (cro), Exchange (Exc), Two-Opt-1 (2Opt1) and
Flip (Flp) move operators within the Basic-Full-Best Local Search implementation.

instance set. Cross made the second biggest contribution on Cen-IF but made little impact on Act-IF where exchange
and two-opt-1 made much larger contributions. This may be due to the number of required vehicles for the different
instances. The Act-IF instances require between one and three vehicles, which limits the number of possible cross
moves to evaluate. The instances are also undirected resulting in the route segment reversals of two-opt having smaller
cost-changes compared to reversals on mixed road instances. Flip contributed little to total LS savings, which may be
due to relocate and exchange automatically inverting tasks if the inversion produces a better move.

To analyse move-operator efficiency, we measured the average time required to scan each move-operator’s neigh-
bourhood in a Basic-Full-Best iteration. The average times, per iteration, for the different operators to scan their
respective neighbourhoods and return the best move are shown in Figure 6. The three main move operators, relocate,
exchange and cross exhibit quadratic growth. This is due to their moves being applied between all tasks in TTT (t). Ex-
change had the longest execution time per iteration, yet its savings contribution was low in comparison to relocate.
Although not considered in this paper, it should be interesting to determine what impact its elimination will have on
the efficiency of LS. The execution time of two-opt-1 increased linearly since it only focusses on one route at a time.
Flip is also very efficient, but as shown in Figure 5, it contributes little to total LS savings.

The aim of the move-operator analysis was to rank the operators for their application within first-move and to
identify elimination candidates. Since the focus of the paper is on large waste collection instances, we prioritised the
results on Cen-IF and Lpr-IF over those on Act-IF and ranked the move-operators in the order shown in Figure 5.
The highest ranking operator is thus relocate, and the lowest is flip. To identify operators for elimination, their ease of
implementation was also considered, particularly for the advanced LS acceleration mechanisms. Here we identified
two-opt-1, due to its route segment reversal, and flip, because of its limited impact, as elimination candidates, and
adapted relocate, exchange and cross for the accelerated LS setups. Their elimination was also used to improve the
efficiency of the basic LS setups by allowing the best-move and first-move setups to scan a reduced neighbourhood.
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Figure 6: Average time required per iteration by Relocate (Rel), Cross (cro), Exchange (Exc), Two-Opt-1 (2Opt1) and Flip (Flp) to find and return
its best improving move within the Basic-Full-Best Local Search implementation on waste collection benchmark sets.

6.2. Best-move and first-move local search analysis

To compare the basic best-move and first-move implementations, tests were performed on the Basic-Full-First (BFF),
Basic-Full-Best (BFB), and Basic-Reduced-First (BRF) and Basic-Reduced-Best (BRB) setups, defined in Table 4.
Recall that BRF and BRB use only the relocate, exchange and cross operators, whereas BFF and BFB use the same
operators as well as flip and two-opt-1. The sequence in which the move operators was applied by BRF was relocate,
cross and exchange, with the addition of two-opt-1 and flip, in that order, for BFF. The aim of the tests was to evaluate
the computational efficiency of the basic setups on large problem instances and to test the impact of using the reduced
move neighbourhood.

The cost savings and computational times of all four setups on the three starting solutions per waste collection
instance are shown in Figure 7. As shown in Figure 7a, on the Cen-IF and Lpr-IF instances, the cost savings obtained
through the two first-move setups were less than the best-move setups, with BRF performing the worst. On Act-IF,
BFF performed better than BRB since it evaluates two-opt-1 moves, which, as discussed earlier, is a major contributor
to savings on these instances. The best-move strategy produced better local optima than first-move, as did the setups
using the full versus reduced neighbourhoods.

The computational times of each setup to reach local optima are shown in Figure 7b. On large problem instances,
the first-move setups are significantly faster than the best-move setups, with BRF being the most efficient. On the
largest Cen-IF instances, BFF and Basic-Reduced-First took at most thirty-minutes to reach local optima, whereas
BFB and BRB took more than 45 minutes and up to three hours. The first-move setups are thus more efficient, but
their increased speed comes at a trade-off in solution quality. Despite its better efficiency, BRF took between five and
thirty-minutes on the largest instances to improve an initial solution to its local optimum. In situations where LS has
to be called numerous times, or when short time-limits are imposed, the setup may still be too slow. The test results
are therefore consistent with the findings of Belenguer et al. [1] on the MCARP and support their recommendation
that more advanced accelerated LS setups be developed and used on large instances.

6.3. Static-Move-Descriptors analysis

The aim of the second round of tests was to evaluate the impact of the more advanced acceleration mechanisms
on LS as well as using a slightly extended move neighbourhood. Unlike first-move over best-move, an advantage of
Static-Move-Descriptors is that it should not affect solution quality. It may produce slightly different results if there
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(b) CPU times, in seconds, and trend-lines of the LS setups versus prob-
lem instance size τ = |RRR|.

Figure 7: Comparison of Basic-Full-Best (BFB), Basic-Reduced-Best (BRB), Basic-Full-First (BFF) and Basic-Reduced-First (BRF) setups on
waste collection benchmark sets.

are tied best-moves, with different tied moves leading to different optima. To evaluate Static-Move-Descriptors, the
Accelerated-Reduced-Best (ARB) setup was tested against BFB, BRB and BRF, the latter being the most efficient
setup from the previous rounds of tests. Results for the setups on the waste collection instances are shown in Figure 8.
The execution times of the setups are shown in Figure 8a which confirms that ARB is quicker than BRB and BFB,
particularly on the large Cen-IF instances. On the large instances, the execution time of ARB was about half-that of
BRB. BRB had better cost-savings than ARB. Since both use the same move operators, this is attributed to the setups
deciding on different tied-best moves to implement, and we consider the cost-savings differences to be incidental. The
acceleration effect of the Static-Move-Descriptors was not as significant as those observed by Zachariadis and Kira-
noudis [28] on similarly sized VRP instances, indicating that there is room for improvement. One such improvement,
which Zachariadis and Kiranoudis [28] found to be critical for their application, is in the use of priority-queues to
avoid having to sort the savings list at the start of each LS iteration. All our accelerated LS setups would benefit from
this improvement, which we leave for future work.

Despite its better efficiency compared to BRB, ARB was still slower than BRF, which indicates that our Static-
Move-Descriptors implementation, on its own, is insufficient when dealing with large instances. As such, it was linked
and tested with Greedy-Compound-Independent-Moves and Nearest-Neighbour-Lists.

6.4. Greedy-Compound-Independent-Moves analysis

The second acceleration mechanism that we evaluated was Greedy-Compound-Independent-Moves. The mech-
anism was combined with Static-Move-Descriptors, with the combined setup referred to as Accelerate-Reduced-
Greedy (ARG), and compared against Basic-Reduced-First (BRF), Accelerate-Reduced-Best (ARB) and Basic-Full-
Best (BFB) on the waste collection instances. Results of the tests are shown in Figure 9. As shown in Figure 9a, the
computational time of ARG is much lower than the times of the other setups, especially on large instances where it
took close to three minutes to reach local optima on all but one of the largest Cen-IF instances. The difference in
computational times between ARG and the other three LS setups increases with problem size, indicating that ARG
has better run-time scalability with instance size.
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(a) CPU times, in seconds, and trend-lines of the LS setups versus prob-
lem instance size τ = |RRR|.
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Figure 8: Comparison of Basic-Reduced-First (BRF), Accelerated-Reduced-Best (ARB), Basic-Reduced-Best (BRB) and Basic-Full-Best (BFB)
setups on waste collection benchmark sets.
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Figure 9: Comparison of Accelerated-Reduced-Greedy (ARG), Basic-Reduced-First (BRF), Accelerated-Reduced-Best (ARB) and Basic-Full-
Best (BFB) setups on the waste collection benchmark sets.
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As shown in Figure 9b, the improvement of ARG is very similar to that of ARB, outperforming the setup on Cen-
IF and Act-IF. ARB had slightly better improvements on Cen-IF, saving it from being completely dominated. ARG
was also close to dominating Basic-Reduced-First, being quicker on instances with more than 150 required tasks and
edges and producing slightly better solutions.

The solution quality and efficiency of ARG on large instances are promising, but a 3-minute execution time may
still be too long for certain applications. It was therefore combined with the last acceleration mechanism from this
paper, Nearest-Neighbour-Lists.

6.5. Nearest-Neighbour-Lists analysis
Nearest-Neighbour-Lists reduce the move neighbourhood by limiting moves between tasks to a fraction f of

the closest neighbours. For the computational tests ARG was tested at three levels, namely f ∈ {0.25, 0.5, 0.75},
and compared against the previously tested setups with a full move neighbourhood, i.e. f = 1. Results for the
setups are shown in Figure 10. As shown in Figure 10a, reducing the move neighbourhood significantly reduced the
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Figure 10: Comparison of the Accelerated-Reduced-Greedy setup at four Nearest-Neighbour-Lists f -levels on waste collection benchmark sets

computational times of the setup. At f = 0.25, the setup took at most 80 seconds on the large Cen-IF instances,
and in one case less than 10 seconds, to reach local optima. However, as shown in Figure 10b, the reduction in
computational times comes at a price, with the coinciding savings of the setups being inversely correlated to f .
Linking Nearest-Neighbour-Lists with Static-Move-Descriptors and Greedy-Compound-Independent-Moves allows
LS to be used under short execution time-limits, but it also reduces solution quality.

6.6. Extended move operator analysis
The last improvement that we tested was to allow the accelerated setups to use extended move operators searching

for improving moves. In addition to the relocate, exchange and cross moves, the extended setups also evaluated
double-cross and infeasible-compound moves. The extended-moves combine an improving move, which cannot be
implemented on its own, with an independent complimentary move. The complimentary move does not have to be
an improving move, as long as the combined moves result in an improvement on the current solution. Before testing
the extended operators, an appropriate cost-threshold had to be determined. Recall that the savings list is sorted and
scanned in each iteration to identify complimentary moves to link with infeasible improving moves. To keep these
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operations efficient, only moves with savings below a user-set threshold can be included in the savings list. The
challenge is then to determine good cost-thresholds for the setups, keeping in mind that they may be benchmark and
even instance specific.

To establish a move-cost threshold, we analysed the move-cost landscape of LS with a reduced neighbourhood of
relocate, exchange and cross at the first LS iteration. For each initial solution, LS was called but terminated before
an improving move was made. Instead, the number of improving and worsening moves were recorded, as well as
the number of neutral moves with zero cost. Figure 11 shows the results of the tests on the waste collection sets.
The number of available moves increases quadratically with problem size, with worsening moves being the most
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Figure 11: Move landscape analysis at the first iteration of LS with a reduced neighbourhood on waste collection benchmark sets.

prevalent. Of interest is that the number of worsening moves increases at a higher rate than improving and neutral
moves as the problem size increases. Through informal tests we found that this holds for the individual move operators
as well. Using more move operators on large instances may, therefore, introduce a disproportionate amount of non-
improving moves, which will make LS slower without improving solution quality. For future work, we recommend
systematically testing this phenomenon by comparing the impact of additional move operators on small versus large
problem instances.

Of relevance to setting the cost-thresholds is the high number of available neutral moves, which in most cases
outnumber the improving moves. This may be a key feature of waste collection instances and worth exploiting. In an
MCARPTIF solution, required tasks are often dead-headed in routes. When a move results in the task being serviced
instead of dead-headed in a particular route, the cost of the move is zero. For the extended move neighbourhoods,
we chose to exploit this characteristic by setting the move-cost threshold ∆Z = 1, thereby allowing LS only to
return improving and neutral moves. An advantage of this approach is that it keeps the savings-list relatively short by
eliminating the large portion of non-improving moves. Importantly, a unique threshold does not have to be determined
for each problem instance. Regardless of whether the move costs are between [−10, 10] or [−10000, 10000], neutral
moves always have zero cost, and as shown in Figure 11 there are usually a significant number of neutral moves
available.

To evaluate the impact of the extended move operators, the accelerated LS setup with the extended operators
and using the greedy-compound moves, referred to as Accelerated-Extended-Greedy (AEG), was tested on the three
starting solutions for the waste collection sets. The results for the setups in comparison to ARG and BFB are shown
in Figure 12. The extended move operators increased the computational time of both setups, more so on the mid-sized
Lpr-IF instances where 75 < |RRR| < 500 (Figure 12a). On the large Cen-IF instances the computational times required

23



●

●

●●
●
●

●●

●
●●●

●

●

●
●
●

●

●

●

●
●
●
●

●
●

●

●●
●●

●

●
●●
●

●
●

●

●

●

●

●●●

●

●

●

●●●

●●
●

●
●

●

●●●

●●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●
●●

●
●
●

●
●
●

●
●

●
●
●
●

●●

●●●●

●●
●

●
●

●

●
●

●
●

●
●

●●
●
●
●●

●
●●
●●●

0.01 sec

0.1 sec

1 sec

10 sec

3 min

30 min

1 h

3 h

50 100 200 500 1000 2000 5000

Instance size (τ) on a log10  scale

E
x

ec
u

ti
o

n
 t

im
e 

o
n

 a
 l

o
g

10
  s

ca
le

● ●ARG AEG BFB

(a) CPU times, in seconds, and trend-lines of the LS setups versus prob-
lem instance size τ = |RRR|.
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Figure 12: Comparison of Accelerated-Reduced-Greedy (ARG), Accelerated-Extended-Greedy (AEG) and Accelerated-Extended-Best (AEB)
local search setups on waste collection benchmark sets.

to find local optima were relatively close. Better cost savings were obtained through the extended operators, especially
on the Cen-IF instances (Figure 12b). True to its purpose, the extended operators allowed the LS setups to reach better
local optima, and as expected, it increased the computational times of the setups in doing so, although not by much.

6.7. Domination analysis

The second phase of tests on the acceleration mechanisms showed that they have the desired impact of improving
the efficiency of LS and that their solutions can be improved through the extended move operators at a slight increase
in computational time. The other setups tested resulted in a similar trade-off, by either being quicker than other setups,
but producing lower quality solutions, or vice-versa. In the last phase of our tests, we formally compared the trade-off

of all twenty-setups with the aim to identify and eliminate setups that are both slower and produce worse solutions
than other setups, and are therefore dominated by other setups. To identify dominating and dominated setups, we
calculated the average savings per benchmark set obtained by the setups over all the initial solutions as well as their
average execution times. Tests were also performed on the smaller mval-IF-3L instances. A setup was then flagged
as dominated on a benchmark set if another setup produced the same or better quality local optima, but required less
computational time to do so.

The domination of the setups in terms of average cost savings and computational time is shown in Figure 13.
We again refer the reader to Table 4 for a full description of the setups. The Accelerated-Extended-Greedy (AEG- f )
setups at the four different f levels performed well and were part of the dominating setups on all four benchmark sets.
Accelerated-Reduced-Greedy-0.25 (ARG-0.25) was the quickest setup and was therefore also part of the dominating
setups, but its average improvement was low, being close to or less than 1% on the waste collection sets and close
to 2.5% on mval-IF-3L. The ARG- f and Accelerated-Extended-Greedy- f (AEG- f ) setups produced low improve-
ments over the initial solutions at low f values. The savings increased with higher f levels, and without significantly
increasing computational times. This shows that the Static-Move-Descriptors and Greedy-Compound-Independent-
Moves mechanisms, on their own, are effective, particularly when linked with the extended move operators. On the
larger Cen-IF and Lpr-IF sets, the Basic-Full-Best (BFB) and Basic-Reduced-Best (BRB) setups had the highest
average cost savings, but their execution times were very long. Extending the setups to or using them within meta-
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Figure 13: Dominated and non-dominated local search setups in terms of fractional cost savings and execution time of the setups on four MCARP-
TIF benchmark sets. A full list of acronyms used in the setup can be found in Table 4.
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heuristics will only prolong total execution times, and we, therefore, recommend against using them when dealing
with realistically sized instances.

The performance of the setups was different on the mval-IF-3L instances compared to the waste collection sets.
Significant cost savings were obtained, in excess of 7.5%, for some of the setups, and the time to do so was quite
modest, being at most 0.12 seconds for even the slowest setup. It is also the only set on which the BRF and BFF
setups were part of the dominating setups. With its low computational time, BRF and BFF would be good candidates
to use for metaheuristics, if the tests were limited to mval-IF-3L instance. On the waste collection sets, both were
always dominated by AEG. Tests on the waste collection instances show that BRF and BFF cannot be used for waste
collection planning. This confirms the need for computational tests to be performed on realistic waste collection
instances, as the performance of heuristics on small instances cannot be used to predict their performance in more
practical settings.

Modified versions of the sixteen LS setups were further tested on the classical Lpr and mval MCARP instances.
All these setups, which we refer to as MCARP setups, were modified so as to not consider changes in IF positions
and to ignore the route duration limit, L, since they are not applicable to the MCARP. Other than that, the MCARP
setups were identical to the ones tested on the MCARPTIF. This automatically improves the efficiency of the setups
compared to the MCARPTIF versions. Results for the modified MCARP setups are shown shown in Figure 14.
Compared to results on the Lpr-IF and mval-IF-3L instances, the improvement on the MCARP instances fell within

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

AEB−0.25

AEB−0.5

AEB−0.75

AEB

AEG−0.75

ARB−0.25

ARB−0.5

ARB−0.75

ARB

ARG−0.75

ARG

BFB

BFF

BRBBRF

ARG−0.25

ARG−0.5

AEG−0.25

AEG−0.5

AEG

●

● ●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●

●

AEB−0.25

AEB−0.75 AEB

ARB−0.5

ARB−0.75 ARB

ARG−0.5

ARG−0.75

ARG

BFB

BFF

BRBBRF

ARG−0.25

ARB−0.25

AEG−0.25

AEG−0.5

AEB−0.5

AEG−0.75 AEG

Lpr mval

4 8 12 16 0.10 0.15 0.20 0.25

0.060

0.065

0.070

0.075

0.011

0.012

0.013

0.014

Average execution time (seconds)

A
v

er
a

g
e 

fr
a

ct
io

n
a

l 
sa

v
in

g
s 

o
v

er
 i

n
it

ia
l 

so
lu

ti
o

n
s 

(∆
Z

L
S

f
)

● ●Dominated Non−dominated

Figure 14: Dominated and non-dominated local search setups in terms of fractional cost savings and execution time of the setups on two MCARP
benchmark sets. A full list of acronyms used in the setup can be found in Table 4.

a much smaller range of between 0.011 and 0.014 on Lpr and between 0.055 and 0.075 on mval. The best achievable
savings were also less on the MCARP instances. This may be attributed to the initial solutions on the MCARPTIF
being worse than the MCARP, thus leaving more room for improvement. As expected, the setups were generally
quicker on Lpr compared to Lpr-IF since moves involving IFs do not have to be considered, and the route duration
limit is never checked. The setups were actually slower on the mval instances, compared to mval-IF-3L, but still had
average execution times of below 0.25 seconds. On both sets, the AEG- f setups were part of the dominating setups,
except for AEG-0.75 on Lpr where it was dominated by AEG-0.5. ARG-0.25 was always the quickest but produced
low improvements. On the MCARP instances, the other accelerated setups featured less prominently, and the classical
setups did not feature in the dominating setups at all. This demonstrates the robustness of AEG- f in that it performed
consistently well on the MCARP and MCARPTIF.
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AEG- f , which combines Static-Move-Descriptors, the extended move operators, and the Greedily-Compounding-
Independent-Moves strategy, but without Nearest-Neighbour-Lists performed the best. Based on the results, we rec-
ommend that AEG be used either directly or within metaheuristic algorithms when dealing with large waste collection
instances. It can also be used as a starting point to develop better LS versions for the MCAR and MCARPTIF by im-
plementing additional move operators within the acceleration mechanisms. Lastly, if required, the execution time of
AEG can be decreased by activating the Nearest-Neighbour-Lists and by decreasing f . It is therefore not required to
switch to a different setup, such as ARG-0.25, if the available execution time is limited.

7. Conclusion

Efficient LS setups is an important area of research for CARPs, given their use within metaheuristic applications
which currently struggle to deal with realistically sized instances. In this paper, we extend our previous work on
greedy constructive heuristics for the MCARPTIF by developing efficient Local Search improvement heuristics for
the problem. Three acceleration mechanisms were developed and linked with LS, of which the setup with Static-
Move-Descriptors and Greedy-Compound-Independent-Moves performed the best. The third acceleration mechanism,
Nearest-Neighbour-Lists, had the desired effect of improving the efficiency of LS, but its resulting reduction in solution
quality limited its application. The long execution times of LS linked only with Static-Mode-Descriptors also limited
its application on realistically sized instances.

On instances with more than 1000 required arcs and edges, the basic LS setups took between fifteen minutes
and three hours to improve a single solution. The accelerated setups took at most four minutes to improve the same
solutions, with the most efficient version taking less than 60 seconds. Our accelerated LS implementations were
thus effective in improving the initial solutions of constructive heuristics, and efficient enough to do so within short
execution time-limits. The significance of our research contribution on LS heuristics extends beyond the MCARPTIF.
Our acceleration mechanisms can be applied as-is to LS for the CARP and MCARP, thereby improving the efficiency
of metaheuristics that rely on LS and allowing them to more effectively deal with large instances.

In addition to our proposed future research on metaheuristics, there exist much scope to improve the methods
presented in this paper. To conclude the paper, we briefly discuss some of these opportunities. The implementations
of Static-Move-Descriptors and Greedy-Compound-Independent-Moves can be improved by using priority-queues in-
stead of sorting the move list at each iteration. More intelligent applications of Nearest-Neighbour-Lists may also
improve its performance, for example, by applying the mechanism only to specific move operators. The number of
nearest neighbours can also be parameterised for each move operator. The move neighbourhood can be extended
by considering consecutive task relocations and exchanges, and by using more advanced versions of two-opt. The
sequential search techniques, developed in Irnich et al. [14] for the VRP, can then be adapted to MCARPTIF LS
heuristics to scan the extended neighbourhood efficiently. It may also be worth directly incorporating the accelera-
tion mechanisms tested in this paper to further enhance sequential search. Recently, Vidal [22] introduced a single
neighbourhood extension through structural neighbourhood decomposition whereby the unique subproblem of deter-
mining the optimal service orientation of edge-tasks can be efficiently determined for each LS move. Together with
Nearest-Neighbour-Lists, the author successfully applied partial move-cost lower-bounds to limit the number of LS
moves to evaluate, thereby improving its efficiency. Here too, an opportunity exists to combine the structural neigh-
bourhood decomposition and partial move-cost lower-bounds with our acceleration mechanisms to further improve
the performance of LS.
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Appendix A. Algorithm descriptions

Algorithms 2 and 3 give the Nearest-Neighbour-List implementations for exchange and cross move operators. The
implementation for relocate can be found in Algorithm 1 in Section 5.1. For Greedy-Compound-Independent-Moves,
Algorithm 4 is used to make all independent moves whose move independence is checked via Algorithm 5. For Static-
Move-Descriptors, the savings list can be updated using Algorithm 6 that incorporates the Nearest-Neighbour-Lists
algorithms. All three acceleration mechanisms are then be combined as shown in Algorithm 7.
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Algorithm 2: Find-Exchange-Moves

Input : Current solution TTT ; savings threshold, ∆Z; tasks RRR to be considered for exchange; savings list MMM consisting of information
needed to implement moves.

Output: Updated savings list MMM, with information of moves with savings less (better) than ∆Z added to MMM.

1 for u ∈ RRR do
2 (i, j, k) = T−1(u);
3 upre = Ti, j,k−1;
4 s = d f × |RRR|e;
5 RRR′ = RRR ∩ {Nupre ,1, . . . ,Nupre ,s};
6 for v ∈ RRR′ do
7 (l,m, n) = T−1(v);
8 if u < v then
9 // an exchange between v and u is the same as an exchange between u and v, so only one has to be evaluated //;

10 Using TTT and i, j, k of u, and l, m, n of v, calculate ∆Z for the exchange move;
11 if ∆Z < ∆Z then
12 MMM = MMM ∪ {(∆Z,movei = 2, u, v)} ;

13 return (MMM)

Algorithm 3: Find-Cross-Moves

Input : Current solution TTT ; savings threshold, ∆Z; tasks RRRT to be considered for the cross move; savings list MMM consisting of
information needed to implement moves.

Output: Updated savings list MMM, with information of moves with savings less (better) than ∆Z added to MMM.

1 for u ∈ RRRT do
2 (i, j, k) = T−1(u);
3 upre = Ti, j,k−1;
4 s = d f × |RRR|e;
5 RRR′v = RRRv ∩ {Nupre ,1, . . . ,Nupre ,s};
6 for v ∈ RRR′v do
7 (l,m, n) = T−1(v);
8 if u < v then
9 Using TTT and i, j, k of u, and l, m, n of v, calculate ∆Z for the cross move;

10 if ∆Z < ∆Z then
11 MMM = MMM ∪ {(∆Z,movei = 3, u, v)} ;

12 return (MMM)

Algorithm 4: Greedy-Compound-Moves

Input : Current solution, TTT ; savings threshold, ∆Z = 0; savings-list, MMM.
Output: Neighbouring solution, TTT ′, with independent moves implemented on TTT ; total savings, ∆Ztotal, resulting from the compounded

moves; dependent task set CCC for cost-link changes.

1 CCC = ∅;
2 TTT ′ = TTT ;
3 Order MMM from the best to worst improving move;

4 for π ∈ MMM do
5 (∆Z,movei, u, v) = π;
6 if ∆Z < ∆Z then
7 if u, inv(u), v, inv(v) < CCC and the move is feasible then
8 CCC =Update-Move-Dependence-Task-Sets(π,CCC) // Algorithm 5 //;
9 Implement the move on TTT ′;

10 ∆Ztotal = ∆Ztotal + ∆Z;
11 // for a pure find-best implementation the heuristic would stop here and immediately return TTT and ∆Ztotal //;

12 return (TTT ’, ∆Ztotal, UUUa, UUUb)
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Algorithm 5: Update-Move-Dependence-Task-Sets

Input : Move information, π; dependent task set, CCC.
Output: Updated set, CCC′ with tasks from cost-links of move π added to the sets.

1 (∆Z,movei, u, v, ) = π;

2 if movei = 1 then // if it’s a relocate move //

3 RRR = {pre(u), u, post(u), pre(v), v};

4 if movei = 2 then // if it’s an exchange move //

5 RRR = {pre(u), u, post(u), pre(v), v, post(v)};

6 if movei = 3 then // if it’s a cross move //

7 RRR = {pre(u), u, post(u), pre(v), v, post(v)};

8 RRR′ ∪ {inv(u′) : u′ ∈ RRR and inv(u′) , 0};
9 CCC′ = CCC ∪RRR′;

10 return (CCC′)

Algorithm 6: Update-Savings-List

Input : Dependent task set, CCC, cost-link task changes; move savings list, MMM; move-cost threshold, ∆Z = 0.
Output: Updated move savings list, MMM′

1 MMM′ = ∅;
2 for π ∈ MMM do
3 (∆Z,movei, u, v) = π if u, inv(u), v, inv(v) ∈ CCC then
4 MMM′ = MMM′ ∪ {π}

5 MMM′ = Find-Relocate-Moves(∆Z,CCC,RRRT ,MMM′) // Algorithm 1 //;
6 MMM′ = Find-Relocate-Moves(∆Z,RRR/CCC,UUUb,MMM′);

7 MMM′ = Find-Exchange-Moves(∆Z,CCC,RRR) // Algorithm 2 //;
8 MMM′ = Find-Exchange-Moves(∆Z,RRR/CCC,CCC,MMM′);

9 MMM′ = Find-Cross-Moves(∆Z,CCC,RRRT ) // Algorithm 3 //;
10 MMM′ = Find-Cross-Moves(∆Z,RRRT /CCC,CCC,MMM′);
11 return (MMM′)

Algorithm 7: Accelerated-Local-Search

Input : Initial solution, TTT (0) ∈ XXX, savings threshold ∆Z = 0.
Output: Local optimum solution, TTT (t)

1 t = 0;
2 MMM = ∅;
3 MMM = Find-Relocate-Moves(TTT (0),∆Z,RRR,RRRT ,MMM) // Algorithm 1 //;
4 MMM = Find-Exchange-Moves(TTT (0),∆Z,RRR,RRR,MMM) // Algorithm 2 //;
5 MMM = Find-Cross-Moves(TTT (0),∆Z,RRRT ,RRRT ,MMM) // Algorithm 3 //;
6 repeat
7 if MMM , ∅ then
8 (TTT ′,∆Ztotal,CCC) = Greedy-Compound-Moves(TTT (t),∆Z,MMM) // Algorithm 4 //;
9 if ∆Ztotal < ∆Z then

10 Set TTT (t+1) = TTT ′;
11 MMM′′ = Update-Savings-List(CCC,MMM,∆Z) // Algorithm 6 //;
12 MMM = MMM′′;
13 t = t + 1;

14 else a feasible move could not be found;

15 else an improving move could not be found;
16 until a feasible improving move could not be found;
17 return (TTT (t))
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Appendix B. Detailed results tables 

Table B.1 shows the performance of our best LS setup, 

Accelerated-Extended-Greedy (AEG) without Nearest-Neighbour- 

Lists on the four MCARPTIF benchmark sets. The total reported ex- 

ecution time, t includes the time to construct the initial solution and 

for AEG to improve it to a local optimum. AEG was paired 

with three different constructive heuristics from Willemse and Jou- 

bert (2016b).  Efficient-Route-Cluster (ERC) and Path-Scanning (PS) 

generates five different solutions, of which only the best is re- 

turned and improved using AEG. Improved-Merge (IM) returns a 

single solution that is improved with AEG. 

Tables B.2 and B.3 show the performance AEG against the 

Memetic-Algorithm of Belenguer et al. (2006) on the Lpr and 

mval MCARP benchmark sets. Lower-bounds for the instances 

were taken from Belenguer et al. (2006) and Gouveia et al. 

(2010).  The lower-bound gaps were calculated as: 

Gap = 

Z − LB

Z 
. (B.1) 

Full results tables on all the MCARP and MCARPTIF instances, with 

the execution time and final cost of each LS setup per problem in- 

stance and initial solution, can be found in the online supplemen- 

tary material. 

Table B1

Solution cost and execution time, in seconds, of Accelerated-Extended-Greedy (AEG) linked

with three different constructive heuristics on the MCARPTIF benchmark sets.

Solution cost ( Z ) Execution time (s)

Instance ERC-AEG IM-AEG PS-AEG ERC-AEG IM-AEG PS-AEG

Act-IF-a 22353 22519 22277 1.57 1.7 2.77

Act-IF-b 72015 73238 72002 4.21 6.66 6.14

Act-IF-c 49984 50297 49754 3.18 3.96 2.91

Cen-IF-a 234111 232868 240313 1.85 2.25 1.53

Cen-IF-b 584514 592205 586983 3.72 3.64 3.51

Cen-IF-c 521143 514852 527537 3.37 3.03 3.51

Lpr-IF-a-01 13609 13686 13589 1.01 0.58 1.31

Lpr-IF-a-02 28377 28346 28635 0.42 0.66 0.64

Lpr-IF-a-03 77988 78159 78154 1.46 2.12 1.61

Lpr-IF-a-04 131818 133109 131185 1.33 1.88 3.4

Lpr-IF-a-05 208950 210057 208111 3.17 3.54 2.46

Lpr-IF-b-01 14876 14870 14875 0.6 0.76 0.38

Lpr-IF-b-02 28937 28840 29309 2.97 1.61 0.66

Lpr-IF-b-03 79511 79438 79433 1.32 1.04 2.01

Lpr-IF-b-04 131254 133147 130976 1.4 1.35 0.58

Lpr-IF-b-05 217547 220831 217626 1.53 2.23 1.86

Lpr-IF-c-01 18773 18866 18803 1.41 0.61 1.08

Lpr-IF-c-02 36644 36727 36510 0.77 0.74 0.5

Lpr-IF-c-03 113532 113583 112847 0.76 2.71 0.8

Lpr-IF-c-04 172185 172905 173729 2.12 2.77 2.83

Lpr-IF-c-05 271529 271048 270376 2.77 2.58 2.57

mval-IF-3L-1A 250 278 277 1.63 1.15 0.42

mval-IF-3L-1B 325 321 328 0.9 0.39 1.09

mval-IF-3L-1C 380 401 387 1.39 0.67 1.12

mval-IF-3L-2A 501 413 423 0.45 0.52 1.32

mval-IF-3L-2B 435 485 437 0.29 1 0.39

mval-IF-3L-2C 535 565 488 0.98 2.19 1.44

mval-IF-3L-3A 141 143 142 0.63 0.49 0.67

mval-IF-3L-3B 158 169 172 1.68 0.69 0.57

mval-IF-3L-3C 138 142 133 0.29 0.55 0.46

mval-IF-3L-4A 653 682 672 0.8 0.26 0.57

mval-IF-3L-4B 758 792 761 1.36 0.93 1.17

mval-IF-3L-4C 798 786 782 1.07 0.57 1.2

mval-IF-3L-4D 852 864 789 1.48 0.49 1.1

mval-IF-3L-5A 799 779 811 0.39 0.24 0.61

mval-IF-3L-5B 737 741 775 0.48 0.56 0.64

mval-IF-3L-5C 821 890 849 0.92 1.45 1.06

mval-IF-3L-5D 894 888 841 1.13 1.73 1.69

mval-IF-3L-6A 360 365 372 0.71 0.8 0.68

mval-IF-3L-6B 359 412 371 1.09 0.7 0.77

mval-IF-3L-6C 477 453 493 1.2 2.07 1.14

mval-IF-3L-7A 396 408 430 0.78 0.6 0.49

mval-IF-3L-7B 462 491 485 1.13 1.27 1

mval-IF-3L-7C 517 532 541 0.47 0.65 1.06

mval-IF-3L-8A 684 670 650 1.26 0.35 1.47

mval-IF-3L-8B 661 635 600 0.51 1.17 0.79

mval-IF-3L-8C 689 684 690 2.19 1.23 1.26

mval-IF-3L-9A 611 583 580 1.17 0.75 0.86

mval-IF-3L-9B 532 551 541 0.84 0.78 0.92

mval-IF-3L-9C 562 562 564 0.83 0.76 0.78

mval-IF-3L-9D 647 659 677 0.41 1.02 0.26

mval-IF-3L-10A 841 844 837 0.49 1.04 0.42

mval-IF-3L-10B 820 835 815 0.8 0.41 1.18

mval-IF-3L-10C 761 770 776 1.24 1.24 0.52

mval-IF-3L-10D 810 829 813 0.51 1.05 0.58
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Table B2

Comparison between the Memetic Algorithm (MA) in Belenguer et al. (2006) and the Accelerated-Extended-Greedy local search setup with three different 
constructive heuristics on the Lpr MCARP benchmark set.

MA ERC-AEG IM-AEG PS-AEG

Instance LB Z Gap (%) t (s) Z Gap (%) t (s) Z Gap (%) t (s) Z Gap (%) t (s)

a-01 13484 13484 0 1.27 13512 0.21 0.05 13609 0.93 0.04 13484 0.00 0.04

a-02 28052 28052 0 1.48 28232 0.64 0.26 28237 0.66 0.21 28236 0.66 0.29

a-03 76115 76155 0.05 1824.25 77321 1.58 1.49 76986 1.14 3.17 77576 1.92 1.92

a-04 126946 127930 0.78 3600 130053 2.45 7.12 128330 1.09 7.33 129610 2.10 5.26

a-05 202736 206086 1.65 3600 209322 3.25 17.54 207550 2.37 16.18 207865 2.53 25.88

b-01 14835 14835 0 0.06 14908 0.49 0.03 14918 0.56 0.06 14876 0.28 0.04

b-02 28654 28654 0 1.14 28758 0.36 0.14 29054 1.40 0.20 28733 0.28 0.14

b-03 77859 77878 0.02 1654.17 79222 1.75 1.01 79498 2.11 2.20 79204 1.73 0.88

b-04 126932 127454 0.41 3600 130576 2.87 3.34 128856 1.52 6.09 129437 1.97 4.14

b-05 209791 212279 1.19 3600 215170 2.56 11.81 213974 1.99 21.16 214311 2.15 15.08

c-01 18639 18639 0 0.31 18736 0.52 0.04 18780 0.76 0.09 18779 0.75 0.06

c-02 36339 36339 0 10.05 36646 0.84 0.17 36624 0.78 0.40 36777 1.21 0.09

c-03 111117 111632 0.46 3600 113870 2.48 3.55 112483 1.23 5.36 113062 1.75 2.82

c-04 168441 169487 0.62 3600 172389 2.34 7.07 171169 1.62 20.50 171660 1.91 7.67

c-05 257890 260538 1.03 3600 263643 2.23 20.11 260977 1.20 48.26 262955 1.96 20.83

Mean 0.41 1912.85 1.64 4.92 1.29 8.75 1.41 5.68

Notes: Lower-bound (LB); solution cost ( Z ); percentage gap from LB (Gap); total execution time, in seconds, of the solution technique ( t ).

Table B3

Comparison between the Memetic Algorithm (MA) in Belenguer et al. (2006) and the Accelerated-Extended-Greedy local search 
setup with three different constructive heuristics on the mval MCARP benchmark set.

MA ERC-AEG IM-AEG PS-AEG

Instance LB Z Gap (%) t (s) Z Gap (%) t (s) Z Gap (%) t (s) Z Gap (%) t (s)

1A 230 230 0 0.1 254 10.43 0.05 247 7.39 0.14 239 3.91 0.05

1B 261 261 0 0.27 306 17.24 0.06 299 14.56 0.16 296 13.41 0.15

1C 309 315 1.94 34.08 337 9.06 0.11 347 12.30 0.14 386 24.92 0.19

2A 324 324 0 0.2 397 22.53 0.04 341 5.25 0.05 348 7.41 0.09

2B 395 395 0 0.31 413 4.56 0.05 407 3.04 0.06 413 4.56 0.06

2C 521 526 0.96 31.57 581 11.52 0.15 560 7.49 0.07 578 10.94 0.21

3A 115 115 0 0.45 126 9.57 0.08 127 10.43 0.07 134 16.52 0.06

3B 142 142 0 53.36 146 2.82 0.07 149 4.93 0.08 148 4.23 0.05

3C 166 166 0 6.65 187 12.65 0.11 170 2.41 0.07 182 9.64 0.05

4A 580 580 0 17.82 678 16.90 0.15 618 6.55 0.24 645 11.21 0.17

4B 650 650 0 2.23 695 6.92 0.23 702 8.00 0.22 701 7.85 0.26

4C 630 631 0.16 147.3 754 19.68 0.20 663 5.24 0.36 707 12.22 0.42

4D 746 776 4.02 134.25 852 14.21 0.40 815 9.25 0.32 823 10.32 0.52

5A 597 597 0 19.4 657 10.05 0.17 647 8.38 0.32 644 7.87 0.19

5B 613 615 0.33 141.14 737 20.23 0.02 657 7.18 0.20 651 6.20 0.22

5C 697 697 0 81.07 775 11.19 0.21 723 3.73 0.27 736 5.60 0.19

5D 719 757 5.29 113.3 849 18.08 0.17 808 12.38 0.46 961 33.66 0.02

6A 326 326 0 11.65 347 6.44 0.09 353 8.28 0.19 356 9.20 0.11

6B 317 317 0 15.95 378 19.24 0.07 327 3.15 0.13 353 11.36 0.17

6C 365 375 2.74 58.18 434 18.90 0.15 404 10.68 0.17 528 44.66 0.02

7A 364 364 0 0.75 407 11.81 0.13 382 4.95 0.34 395 8.52 0.08

7B 412 412 0 7.47 465 12.86 0.19 469 13.83 0.20 475 15.29 0.25

7C 424 428 0.94 113.4 526 24.06 0.28 468 10.38 0.19 486 14.62 0.29

8A 581 581 0 76.78 644 10.84 0.16 628 8.09 0.34 630 8.43 0.23

8B 531 531 0 6.02 595 12.05 0.28 556 4.71 0.18 603 13.56 0.12

8C 617 638 3.4 77.84 749 21.39 0.25 681 10.37 0.19 726 17.67 0.58

9A 458 458 0 24 510 11.35 0.31 492 7.42 0.48 520 13.54 0.24

9B 453 453 0 17.95 496 9.49 0.37 495 9.27 0.57 496 9.49 0.28

9C 428 434 1.4 246.28 488 14.02 0.26 486 13.55 0.49 484 13.08 0.29

9D 514 520 1.17 253.22 623 21.21 0.51 567 10.31 0.52 568 10.51 0.53

10A 634 634 0 128.6 708 11.67 0.27 689 8.68 0.52 675 6.47 0.40

10B 661 662 0.15 313.7 714 8.02 0.43 735 11.20 0.58 703 6.35 0.32

10C 623 624 0.16 314.05 764 22.63 0.04 654 4.98 0.49 681 9.31 0.44

10D 643 650 1.09 267.05 729 13.37 0.56 714 11.04 0.26 715 11.20 0.49

Mean 0.70 79.89 13.74 0.19 8.22 0.27 12.17 0.23

Notes: Lower-Bound (LB); Solution cost ( Z ); Percentage gap from LB (Gap); total execution time, in seconds, of the solution technique

( t ).
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