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We consider the fraction of nodes that default in large, stochastic, inhomogeneous finan-
cial networks following an initial shock to the system. Results for deterministic sequences

of networks are generalized to stochastic networks to account for interbank lending rela-

tionships that change frequently. A general class of inhomogeneous stochastic networks
is proposed for use in systemic risk research, and we illustrate how results that hold

for Erdős-Rényi networks can be generalized to the proposed network class. The net-

work structure of a system is determined by interbank lending behavior which may vary
according to the relative sizes of the banks. We then use the results of the paper to

illustrate how network structure influences the systemic risk inherent in large banking

systems.
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1. Introduction

The research considers the fraction of a financial system that defaults following a

shock to a small proportion of institutions. When dealing with financial systems,

network theory can be a useful tool for explicitly modeling contractual relationships

between financial entities [2, 35]. This allows a clear distinction between individual
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firms and the network [11]. The early works of [20, 12] support this, as it was shown

that financial systems can naturally be represented as a network of interconnected

financial institutions such as insurance companies, banks and shadow banking in-

stitutions. The focus of this research is on banks, although the concepts intuitively

carry over to other types of financial institution.

The banks are represented by nodes in the network, and the exposures between

them form the edges. As the direction of lending and exposure amounts are impor-

tant, the resulting graphs are weighted and directed. Network models of systemic

risk are typically balance sheet driven, where capital levels are used to monitor

the financial health of institutions. Once an institution’s capital is depleted, it is

deemed unable to fulfill its loan obligations and its counterparties consequently suf-

fer losses. This is a commonly used mechanism through which losses are assumed

spread within the system.

It is important to note that this is not the only mechanism by which losses can

be transmitted throughout the system. Contagion is usually amplified by liquid-

ity losses through fire-sale haircuts, market-to-market losses and increased funding

costs resulting from a deterioration of confidence within the financial system. Con-

tagion within the system would necessarily be underestimated without including

all channels of contagion [17], and may lead to low probabilities of default within

the system [28]. For the purpose of this study, other contagion mechanisms are not

included as the focus here is on demonstrating the application of a general class of

networks that can be used to generate a wide range of different interbank network

structures. While other contagion mechanisms should not be disregarded in prac-

tice and interbank exposures alone have not led to defaults in the past, this may

be because government intervention has prevented such failures [42, 31]. The fear

of direct contagion may cause losses through other channels of contagion and it is

therefore important to understand the direct mechanism for losses between banks

before exploring indirect losses [31]. However, it is also important to emphasize that

losses due to direct exposures underestimate contagion and hence is important to

bear in mind when interpreting the results.

The topology of banking networks is an important consideration when inves-

tigating how losses spread following initial bank failures in the system [25, 26,

33]. The authors in [32] and [22], among others, have found that hierarchical or

core-peripheral structures are prevalent in real-world interbank networks [31, 29].

Additionally, [19] formally define a tiered network structure and show that the

German banking system follow this structure. Hierarchical structures been consid-

ered by [36, 5, 6, 41, 30] for example. The core of the network consists of a few,

highly interconnected banks and the peripheral part of smaller, less interconnected

banks. However, the distinction between the two types of bank is not always clear

in practice [29]. For this reason it may be beneficial to use more than one group of

interacting banks, which is attainable in our setting.

Empirical investigations have further shown that many banking systems exhibit
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a power law distribution of degrees [12, 23, 18]. However, it is also of interest to look

at structures that imply degree distributions other than a power law distribution.

This is because, as [29] points out, there is not a definite consensus on whether

real life systems necessarily exhibit this behavior. Instead it is agreed that degree

distributions are highly skewed and that the distributions of in- and out-degrees are

not the same. This study therefore proposes a broad class of stochastic networks

that can naturally take account of an arbitrary number of bank groups as well as

differences between their in- and out-degree distributions.

We further recognize that financial systems can become very large, consisting

of hundreds or thousands of entities [18, 43], and therefore focus on analytical

methods as opposed to simulation methods. The paper shows how the asymptotic

results derived in [3] can be applied to the above mentioned class of networks that

can be used to extend results pertaining to Erdős-Rényi graphs. The results concern

the fraction of the total network that defaults after an initial shock to the system.

These results are then used to compare three different network structures that form

part of the family of networks that are formally defined in section 3.2.

For the purpose of this study the ‘structure’ of the network not only refers

to the degree distribution of nodes, but the way in which the degree distribution

is influenced by the relative asset values of banks. Previous studies considering

the structural effect of networks on systemic risk interpret the structure/topology

as the level of interconnectedness in the system, or the degree distribution as seen

independently of the relative asset values between individual banks (see for example

[25, 26, 37, 1]). While the way in which financial institutions are connected to one

another plays an important role in the propagation of shocks [38], we argue that it

must not be investigated in isolation, but in conjunction with lending preferencesa

and other network characteristics such as capital levels, average interconnectedness

etc.

Empirical evidence of the role of lending preferences in network structure differ.

For example, [34] find that asset size is not always clearly associated with lending

preferences. On the other hand, [19] find that the German core-peripheral network’s

highly connected core consists of money centre banks which act as intermediaries

between other banks and are identified by their size, specialization and balance

sheet ratios. Similarly, [15] find evidence that factors such as bank size, sector and

type are indicative of a bank’s in- and out-degrees.

The class of stochastic networks defined in this study is based on the concept

of multiple interacting networks [13]. The difference between this study and studies

that make use of such networks (for example [8]) is that we do not consider different

types of network connections (such as different types of loan), but rather consider

banks being grouped together according to some criteria, such as their asset size.

We therefore assume the existence of multiple groups of banks (that can each be

aThe work in [33] takes account of lending preferences between banks, but in a different way than
in this study.
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seen as a network on its own) that interact with one another via interbank links.

Banks within any one group are assumed to have similar characteristics and exhibit

similar lending behavior towards one another and towards banks belonging to other

groups. Since banks within a group exhibit homogeneous behavior and heteroge-

neous lending preferences between groups are allowed, graphs belonging to this class

are called semi-heterogeneous Erdős-Rényi graphs for the purpose of this study.

The class of networks proposed by this study accounts for the empirical evidence

noted above as follows:

• Banks can explicitly be grouped into core and non-core banks.

• In cases where the distinction between the core and the periphery banks is

not clear, more than two groups of banks can be considered.

• An explicit distinction can be made between money centre banks (which

are both lenders and borrowers) and banks that only act as either lenders

or borrower.

• Banks can be grouped according to any relevant characteristics that are

indicative of lending preferences. In the illustrative application considered

in section 4, banks within any one group are assumed to be similar in size,

although a combination of other characteristics can be used as well.

The class of graphs considered here bears similarities to [4], who consider groups

of graphs. That study also extends the results of [3] to a more general setting. How-

ever, the randomness of that model originates from the probability of a contagious

link existing between any two nodes, whereas the randomness considered in this

study originates from the probability of one bank lending to another which leads

to random degree sequences. This is motivated by empirical evidence from [21] who

show that interbank relationships are formed randomly on a daily basis, based on

the true underlying structure [40].

To this end, the research makes the following contributions:

(i) A class of networks are formally defined and we illustrate how this can be

used to generalize results for Erdős-Rényi (i.e. homogeneous) networks to in-

homogeneous networks. This creates the opportunity for existing research on

Erdős-Rényi graphs to be applied to a much richer collection of networks. This

is illustrated in section 3.2, where the results from section 3.1 (which apply to

Erdős-Rényi networks) are shown to also hold for semi-heterogeneous Erdős-

Rényi graphs with any finite number of interacting groups.

(ii) We build upon the results by [3] to show that it can be applicable to sequences

of networks with random degree distributions and not only to deterministic

degree distributions. This is of practical interest as the interbank connections

between banks change continuously over time.

(iii) We illustrate how semi-heterogeneous Erdős-Rényi networks can be used to

model and compare different types of core-peripheral financial networks. These

networks can explicitly take account of the lending preferences of banks based
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on asset sizes or any other network characteristic.

The structure of this paper is as follows: Section 2 describes the interbank net-

work model, defines the relevant notation and introduces the required concepts.

The preliminary results on which the main theorem is based are shown to hold for

Erdős-Rényi graphs in section 3.1. This is then extended to the semi-heterogeneous

Erdős-Rényi case in section 3.2. Section 4 illustrates the main theorem of this paper

and uses it to compare the systemic risk inherent in different network structures.

Thereafter section 5 concludes the study.

2. Notation and Banking Network Model

2.1. Network description

Suppose there are n banks in the system, and that the links between the banks are

represented by their interbank exposures. In other words, whenever a bank i has

lent money to a bank j, there exists a directed edge from node i to node j. Note

that the results presented here require the use of results from [3] and a number of

notational conventions and definitions introduced in this section are based on that

paper.

For this study we will first consider an Erdős-Rényi graph of size n, where the

average number of connections is given by λ ∈ (0,∞) and the resulting connection

probability is then qn = λ
n−1 . Note that the Erdős-Rényi graph definition adopted

by this study does not assume a fixed number of edges in the network. For each

n, the connection probability qn = λ
n−1 is fixed but the number of edges in the

systems is a random variable. Such an Erdős-Rényi graph will be denoted by Kλ,n.

Accordingly we let κλ,n denote a realization of the random network Kλ,n, chosen

uniformly over all the possible networks that Kλ,n can result in. The initial results of

the study are applicable to standard Erdős-Rényi graphs. These are then extended

to an arbitrary number of connected groups of Erdős-Rényi networks.

A node’s out-degree is the number of outgoing edges originating from it (in other

words the number of banks that it has lent money to). The out-degree of a node i

in a network consisting of n nodes is the random variable given by D+
n (i). Similarly,

the in-degree of a node i in a network of size n is the number of incoming edges

connected to it and represents the number of banks that it has borrowed money

from. It is denoted by the random variable D−n (i). For notational convenience we

will say that node i has degree (j, k) if D+
n (i) = j and D−n (i) = k, where j, k ∈ N0.

Now let h+
n and h−n be the probability mass functions of D+

n (i) and D−n (i)

respectively. Note that D+
n and D−n are independent of i, but may depend on n.

This is because the edges of nodes in an Erdős-Rényi graph all have the same

probability of being present, and this probability is a function of n. Now if hn is the

two-dimensional probability mass function whose marginals are h+
n and h−n , then

hn(j, k) is the probability that a node i has degree (j, k) (i.e. that D+
n (i) = j and
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D−n (i) = k.). For the random network Kλ,n we will have that

hn(j, k) =

(
n− 1

j

)
qjn (1− qn)

n−1−j
(
n− 1

k

)
qkn (1− qn)

n−1−k
, (1)

since each node has n − 1 other nodes to which it can be connected via incoming

and/or outgoing edges.

Since qn = λ
n−1 for λ ∈ (0,∞) and limn→∞ nqn = λ, the Poisson limit theorem

implies that for each j, k ∈ N0,

hn(j, k)→ e−λ
λj

j!
e−λ

λk

k!
= e−2λλ

j+k

j!k!
:= h(j, k) . (2)

Furthermore for each j, k ∈ N0, let µ̃(j, k) represent the proportion of nodes that

have degree (j, k). This will be called the degree distribution, keeping in mind that

for any fixed j, k, this proportion will be a random variable.

Each bank in the network has a simplified balance sheet structure which deter-

mines the bank’s initial financial position (i.e. before any defaults have occurred).

An illustration of this balance sheet is given in table 2.1. For the purpose of this

study, only the capital and the interbank assets are of interest. It is assumed that a

bank’s capital is used to absorb losses and that a bank defaults whenever its capital

is depleted. Due to the seniority of interbank liabilities banks will generally not

default on their obligations to one another. However, if one bank defaults, funding

requirements are imposed on them. This funding requirement is approximated by

the exposure that a bank had to the failing bank.

Table 1. Illustration of a simplified bank

balance sheet.

Assets Liabilities

Capital/Net worth

Interbank Assets
Interbank liabilities

Other assets
Other liabilities

For a network with given edges, let en(i, j) be the amount that bank i has lent to

bank j in a network of size n (i.e. bank i’s exposure to j). Bank i’s total interbank

assets is therefore given by
∑n
k=1 en(i, k), where en(i, j) = 0 when there does not

exist a directed edge from node i to j.

All n banks’ exposures can be represented by a matrix en where the (i, j)
th

entry

is the exposure of i to j. This matrix contains all the information about the links

between the banks, as well as the weights of those links. This is because the non-zero

entries in en indicate the exposures between banks in the system, whereas the zero

entries in the matrix indicate which banks are not exposed each other. The system
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can therefore be represented by a weighted directed graph with n vertices, whose

edges are given by en. This matrix indicates the presence, direction and weight of

all edges in the network. Note that for any exposure matrix, the diagonal entries

en(i, i) must be zero, whereas the rest of the entries must be non-negative.

Let γn(i) be bank i’s ratio of capital to interbank assets, so that bank i’s total

capital is given by γn(i)
∑n
j=1 en(i, j). The vector containing the capital ratios of

the banks is given by ~γn. Even though capital ratios normally refer to the ratio

of capital to total assets, it refers here to the ratio of capital to interbank assets.

This avoids the need to specify the amount of external assets of banks. A network

of banks with known edges is then characterized by its exposure matrix en and

its vector of capital ratios ~γn. In other words, two networks are considered to be

identical if and only if they have the same exposure matrix and capital ratio vector.

We can therefore define a financial network to be the pair (en, ~γn) [3].

Once the network κλ,n has been determined, the out- and in-degrees of the

nodes are known and are no longer treated as random variables. In this case we

denote the out-degree of a node i by d+
n (i) and the in-degree of node i by d−n (i).

We define ~d+
n = (d+

n (1) , d+
n (2) , . . . , d+

n (n)) and ~d−n = (d−n (1) , d−n (2) , . . . , d−n (n)) to

be the vectors containing the out-degrees and in-degrees of the nodes in the system

respectively.

Note that a financial network’s exposure matrix en can only be known once

the edges in the network are known and the exposure amounts decided on. The

fixed network κλ,n will determine the edges, and thereafter exposure amounts can

be assigned to each existing edge. Restrictions regarding determining the exposure

amounts will be dealt with in section 3.

Definition 1 below is essentially from [3], and emphasizes that the degree vectors

are obtained from en and remain fixed for a random financial network.

Definition 1. (Random financial network) Suppose (en, ~γn) is a financial net-

work of size n with fixed degree vectors ~d+
n and ~d−n as determined by en.

The set of exposures for a fixed bank i in this financial network is given by

{en(i, j) | en(i, j) > 0, j ∈ {1, . . . , n}}.
Let G(en) be the set of all possible exposure matrices of size n that

(i) have the same associated degree vectors ~d+
n and ~d−n as en and

(ii) for each node i, have the same set of exposure amounts as en (each of which need

not be assigned to the same counterparty as in the original financial network,

as long as the node i which lent the money remains the same as in the original

financial network).

Define En : Ω(en, ~γn) → G(en) to be a random exposure matrix, uniformly dis-

tributed on G(en). The nodes of En are endowed with the capital ratios ~γn, and the

resulting financial network (En, ~γn) is called a random financial network.

Every node in a random financial network retains its original number of debtors

and creditors, as well as the monetary amounts of the interbank loans that it
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granted. The element of randomness in a network should reflect the daily change in

interbank relationship because of the high frequency of this change. The definition

of a random financial network does not completely capture this daily change in

interbank relationships since degree vectors and the exposure amounts are assumed

to remain the same.

It is for this reason that we do not assume a fixed exposure matrix en to begin

with, but rather let en be determined via a random Erdős-Rényi graph Kλ,n. A sec-

ond reason for using a random graph is that the results for the default Erdős-Rényi

case can be extended to the case where there are multiple Erdős-Rényi networks

that interact with one another. This allows us to apply the results to a very flexible

network and thus examine a range of different network structures in section 4 based

on bank lending behavior.

2.2. Shock propagation and the final fraction of defaults

Let the fixed network κλ,n, the corresponding exposure matrix en and the capital

ratio vector ~γn be given. The set D0(en, ~γn) is defined to be the set of initial defaults

in the financial system (en, ~γn). As mentioned in section 2.1, an institution defaults

whenever its capital is depleted. In order to assess the effect of a shock to the

financial system, there needs to be one or more initial defaults. Banks whose capital

ratios are zero therefore constitute the set of initial defaults so that

D0(en, ~γn) = {i ∈ {1, . . . , n} | ~γ(i) = 0} . (3)

These are then the institutions that may cause a default cascade in the system.

Once the initial defaults have occurred, losses are spread through the defaulted

nodes’ incoming edges. This is because the direction of edges imply the direction of

lending in the system. A bank i ∈ D0(en, ~γn) will cause a loss of (1−R(i)) en(j, i)

to each of lenders j, where R(i) is the recovery rate associated with the defaulted

node i.

The losses caused by the nodes in D0(en, ~γn) might lead to additional defaults

in the system. The set of nodes that have defaulted up to this point is given by

D1(en, ~γn) =

i ∈ {1, . . . , n} | γn(i)

n∑
j=1

en(i, j) ≤
∑

j∈D0(en,~γn)

(1−R(j)) en(i, j)

 . (4)

These losses form the first ‘round’ of defaults, as these are the first nodes to

have defaulted as a result of the initial set of defaults. For subsequent rounds of

default we have that

Dk(en, ~γn) =

i ∈ {1, . . . , n} | γn(i)

n∑
j=1

en(i, j) ≤
∑

j∈Dk−1(en,~γn)

(1−R(j)) en(i, j)

 (5)

for k ≥ 1.

The sequence D0(en, ~γn) ⊆ D1(en, ~γn) ⊆ · · · ⊆ Dn−1(en, ~γn) is nested. Here

Dn−1(en, ~γn) ⊆ {1, . . . , n}, since the set D0(en, ~γn) must be nonempty and hence
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there can be at most n − 1 rounds of default. If the default cascade stops when

there have only been k0 < n− 1 rounds of default, then Dk(en, ~γn) = Dk+1(en, ~γn)

for all k = k0, . . . , n− 2.

From the defaults Dn−1(en, ~γn) caused by nodes in the set D0(en, ~γn), we can

find the final/total fraction αn(en, ~γn) of defaults in a financial network (en, ~γn)

given by

αn(en, ~γn) :=
|Dn−1(en, ~γn)|

n
. (6)

3. Results for Stochastic Networks

In this section we consider assumptions that are required for the results in [3].

In that work, the assumptions apply to a sequence of networks with deterministic

numbers of degrees, while the goal of this section is to show that similar assumptions

hold for certain sequences of networks with random numbers of degrees. Section 3.1

deals with the Erdős-Rényi case, while section 3.2 generalizes the results of section

3.1 by showing similar results for a more general, inhomogeneous class of networks

3.1. The Erdős-Rényi case

Suppose λ ∈ (0,∞) is fixed and consider the Erdős-Rényi graph Kλ,n. The following

proposition follows from the fact that the in- and out-degrees of any two nodes are

asymptotically uncorrelated:

Proposition 1. Let Kλ,n be an Erdős-Rényi network with n nodes, each with av-

erage degree λ ∈ (0,∞), and fix the integers j, k ∈ N0. If µ̃n(j, k) is the sam-

ple proportion of nodes with degree (j, k) after a realization of the network and

h(j, k) = e−2λ λj+k

j!k! , then for any ε > 0

P (|µ̃n(j, k)− h(j, k)| > ε)
n→
∞

0. (7)

Proof. Let ε > 0 be given and fix the integers j, k ∈ N0. Further let hn(j, k) be

defined as in Eq. (1). From (2) we know that |hn(j, k)− h(j, k)| n→
∞

0. Hence we can

choose N ∈ N large enough so that |hn(j, k)− h(j, k)| < ε
2 for all n ≥ N . By using

the fact that

|µ̃n(j, k)− h(j, k)| ≤ |µ̃n(j, k)− hn(j, k)|+ |hn(j, k)− h(j, k)| , (8)

we have that for all n ≥ N

P (|µ̃n(j, k)− h(j, k)| > ε)

≤P
(
|µ̃n(j, k)− hn(j, k)|+ ε

2
> ε
)

=P
(
|µ̃n(j, k)− hn(j, k)| > ε

2

)
, (9)

since |hn(j, k)− h(j, k)| n→
∞

0.
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We know that µ̃n(j, k) is the sample proportion of nodes with degree (j, k),

where there are n nodes in total. Therefore it can be seen as the average of n

Bernoulli trial outcomes. The probability of success is equal to hn(j, k) since this is

the probability that a node will be of degree (j, k) when there are n nodes in the

system. It then also follows that E[µ̃n(j, k)] = hn(j, k).

For fixed j, k ∈ N0, define the random variables X
(n,j,k)
i , i = 1, 2, . . . , n to

indicate whether a node i is of type (j, k) or not. Then X
(n,j,k)
i ∼ Bern(hn(j, k))

for each n ∈ N and each i ∈ {1, 2, . . . , n}.
The X

(n,j,k)
i ’s are not independent of each other, since the degrees of one node

affect the degrees of the nodes connected to it. They are however, asymptotically

mutually uncorrelated. This is because if we let b(n, q, j) =
(
n
j

)
qj (1− q)n−j denote

the binomial probability mass function, then for i 6= l we have that

E
[
X

(n,j,k)
i X

(n,j,k)
l

]
=q2

n [b(n− 2, qn, j − 1) b(n− 2, qn, k − 1)]
2

+ 2qn (1− qn) b(n− 2, qn, j − 1) b(n− 2, qn, k) b(n− 2, qn, j) b(n− 2, qn, k − 1)

+ (1− qn)
2

[b(n− 2, qn, j) b(n− 2, qn, k)]
2

n→
∞

[h(j, k)]
2
, (10)

and therefore cov
(
X

(n,j,k)
i , X

(n,j,k)
l

)
n→
∞

0. Now since

var[µ̃n(j, k)] =
1

n

(
hn(j, k)− (hn(j, k))

2
+ (n− 1) cov

(
X

(n,j,k)
i , X

(n,j,k)
l

))
, (11)

Chebyshev’s inequality implies that

P
(
|µ̃n(j, k)− hn(j, k)| > ε

2

)
≤ 4

ε2n

(
hn(j, k)− (hn(j, k))

2
)

+
(n− 1)

n

4 cov
(
X

(n,j,k)
i , X

(n,j,k)
l

)
ε2

n→
∞

0. (12)

Since ε > 0 was arbitrary, this concludes the proof.

This serves as a building block for similar results for a variant of the Erdős-Rényi

graph where there are groups of connected Erdős-Rényi graphs. This will allow us to

apply the results considered in this paper to a very versatile type of network. This

can be used to compare the risk implied by different types of network structure.

The type of network that this study is focused on is discussed below.

3.2. Semi-heterogeneous Erdős-Rényi graphs

Suppose that there are d groups of Erdős-Rényi networks that all interact with one

another to form a new network of size n. Each group α comprises nα nodes, so

that
∑d
α=1 nα = n. The probabilities of edges existing between any two nodes are
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predetermined based on the groups to which the nodes belong. Suppose a node i is

in group α and a node j is in group β. The probability that the edge from i to j

exists is denoted by q
(n)
αβ . The n in the superscript is included to indicate that the

value of this probability will be dependent on the size of the network.

For each group α, let wα = nα
n and assume that these remain constant when

n → ∞. Let λαβ be the expected number of edges from any node in group α to

nodes in group β. If α = β then a node in group α can connect to nα − 1 other

nodes in the same group, this means that q
(n)
αα = λαα

nα−1 . If α 6= β then a node in

group α can connect to nβ nodes in group β and therefore q
(n)
αβ =

λαβ
nβ

.

For the purpose of this research we will call this a semi-heterogeneous Erdős-

Rényi graph. To formalize this, we have the following definitions:

Definition 2. (Average connection matrix) For a group of d ≥ 1 Erdős-Rényi

graphs Kλ1,n1 ,Kλ2,n2 , . . . ,Kλd,nd where there exists edges linking nodes between dif-

ferent graphs, the average connection matrix λ is defined to be the d×d matrix whose

elements λαβ, α, β = 1, 2, . . . , d represent the expected number of edges from any

node in graph α to nodes in graph β. The diagonal entries are given by λαα = λα,

α = 1, 2, . . . , d. An average connection matrix is said to be positive if λαβ > 0 for

all α, β.

Definition 3. (Semi-heterogeneous Erdős-Rényi graph) Let d ∈ N and con-

sider the set {Kλ11,n1
, . . . ,Kλdd,nd} of d Erdős-Rényi graphs with positive average

connection matrix λ. If ~n = (n1, . . . , nd) and the nodes from these graphs may

be connected to one another such that λαβ is the expected number of edges from

any node in group α to nodes in group β, then we call the resulting graph a semi-

heterogeneous Erdős-Rényi graph. This graph will be denoted by Kd
λ,~n.

Recall that D+
n (i) and D−n (i) are the random variables representing the num-

ber of out- and in-degrees of a randomly chosen node i in the network. Now let

D+,α
n (i) and D−,αn (i) be the random variables representing the number of out- and

in-degrees of any node i in group α. Similar to h+
n and h−n which denote the respec-

tive probability mass functions of D+
n (i) and D−n (i), we let h+,α

n and h−,αn denote

the probability mass functions of D+,α
n (i) and D−,αn (i) respectively.

Now let hαn be the joint probability mass function of h+,α
n and h−,αn . Then hαn(j, k)

is the probability that a randomly chosen node in group α (where the total network

size is n) has j and k outgoing and incoming edges connected to it respectively.

Then hn(j, k), the probability that any node i has degree (j, k), is given by

hn(j, k) =

d∑
α=1

nα
n
hαn(j, k)

=

d∑
α=1

nα
n
h+,α
n (j)h−,αn (k) . (13)

First consider a semi-heterogeneous Erdős-Rényi graph Kd
λ,~n where d = 2. For
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a preliminary discussion we will consider the expressions for hn(j, k) and its limit.

When d = 2 we have four connection probabilities, namely q
(n)
11 , q

(n)
12 , q

(n)
21 and q

(n)
22 .

For notational convenience, let the binomial probability mass function be denoted

by

b(n, p, l) =

(
n

l

)
pl (1− p)n−l . (14)

Then for d = 2 groups, we have that

hn(j, k) =
n1

n
h+,1
n (j)h−,1n (k) +

n2

n
h+,2
n (j)h−,2n (k)

=
n1

n

(
j∑
l=0

b
(
n1 − 1, q

(n)
11 , l

)
b
(
n2, q

(n)
12 , j − 1

))

·

(
k∑
l=0

b
(
n1 − 1, q

(n)
11 , l

)
b
(
n2, q

(n)
21 , k − l

))

+
n2

n

(
j∑
l=0

b
(
n2 − 1, q

(n)
22 , l

)
b
(
n1, q

(n)
21 , j − l

))

·

(
k∑
l=0

b
(
n2 − 1, q

(n)
22 , l

)
b
(
n1, q

(n)
12 , k − l

))
. (15)

For the expressions to make sense it is assumed, without loss of generality, that

j, k < n1 and j, k < n2.

Note that since w1 and w2 remain constant as n→∞, then n1 and n2 tend to

infinity at the same rate as n. This means that all of the q
(n)
αβ probabilities converge

to 0 as n → ∞ and hence all of the binomial factors above converge to Poisson

probability mass functions. Therefore the limit of hn(j, k) is given by

lim
n→∞

hn(j, k)

=h(j, k)

=w1

(
e−λ11−λ12

j∑
l1=0

λl111λ
j−l1
12

l1! (j − l1)!

)e−λ11−w2
w1
λ21

k∑
l2=0

λl211

(
w2

w1
λ21

)k−l2
l2! (k − l2)!


+ w2

(
e−λ22−λ21

j∑
l3=0

λl322λ
j−l3
21

l3! (j − l3)!

)e−λ22−w1
w2
λ12

k∑
l4=0

λl422

(
w1

w2
λ12

)k−l4
l4! (k − l4)!


=w1e

−2λ11−λ12−w2
w1
λ21

(
j∑

l1=0

λl111λ
j−l1
12

l1! (j − l1)!

) k∑
l2=0

λl211

(
w2

w1
λ21

)k−l2
l2! (k − l2)!


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+ w2e
−2λ22−λ21−w1

w2
λ12

(
j∑

l3=0

λl322λ
j−l3
21

l3! (j − l3)!

) k∑
l4=0

λl422

(
w1

w2
λ12

)k−l4
l4! (k − l4)!

 . (16)

This probability mass function has a finite mean where the average number of

outgoing edges connected to a randomly chosen node in the system is given by

w1 (λ11 + λ12) + w2 (λ21 + λ22).

We can now consider the expression for hn(j, k) when d > 2. In this case we have

d2 connection probabilities q
(n)
αβ , where α, β = 1, 2, . . . , d. Recall that for d groups,

hn(j, k) can be expressed as follows:

hn(j, k) =

d∑
α=1

wαh
+,α
n (j)h−,αn (k) . (17)

In order to find general expressions for h+,α
n (j) and h−,αn (k), we look at the

different ways in which a node in group α can have j out-degrees and k in-degrees.

Without loss of generality we assume that nβ > j, k for β = 1, 2, . . . , d, since for

β = 1, 2, . . . , d we have that nβ →∞ at the same rate as n. Then we have that for

d > 2 and α < d

h+,α
n (j)

=

j∑
m1=0

j−m1∑
m2=0

· · ·
j−m1−···−mα−1∑

mα=0

· · ·
j−m1−···−md−1∑

md−1=0

b
(
n1, q

(n)
α1 ,m1

)
b
(
n2, q

(n)
α2 ,m2

)
· · · b

(
nα−1, q

(n)
α,α−1,mα−1

)
b
(
nα − 1, q(n)

αα ,mα

)
b
(
nα+1, q

(n)
α,α+1,mα+1

)
· · · b

(
nd−1, q

(n)
α,d−1,md−1

)
b
(
nd, q

(n)
αd , j −m1 − · · · −md−1

)
, (18)

with a similar expression for h−,αn (k) and for the case α = d.

Each of the factors above is a binomial probability mass function and will

converge to a Poisson probability mass function as n → ∞. Therefore h+,α
n (j)

and h−,αn (k) will converge for all groups α. Hence there exists an h such that

hn(j, k)
n→
∞
h(j, k) for all j, k ∈ N.

Similar to Proposition 1 we have the following result:

Proposition 2. Let Kd
λ,~n be a semi-heterogeneous Erdős-Rényi graph. Let n = ‖~n‖1

and for α, β = 1, 2, . . . , d, let q
(n)
αβ , wα, hαn, hα and h be defined as before. If µ̃(j, k)

is the sample proportion of nodes with degree (j, k), then for every j, k ∈ N0 and

any ε > 0

P (|µ̃n(j, k)− h(j, k)| < ε)
n→
∞

0 . (19)

Proof. Let j, k and d be given. Recall that hαn(j, k) is the probability that a node

in group α is of type (j, k), where the system is of size n. Analogous to this we let

hαn(j, k, β) be the probability that a node in group α is of type (j, k), where one



December 2, 2018 13:21 WSPC/INSTRUCTION FILE Manuscript

14 N. Walters, G. van Zyl, C. Beyers

node in group β is disregarded, and the system is treated as if it has n − 1 nodes.

For any given j, k ∈ N0, let X
(n,j,k)
i , i = 1, 2, . . . , n be the indicator random variable

which is equal to one when node i is of type (j, k). Then for any two nodes i 6= l we

have that

E
[
X

(n,j,k)
i X

(n,j,k)
l

]
=

d∑
α=1

d∑
β=1

wαwβ

· P
(
X

(n,j,k)
i = 1, X

(n,j,k)
l = 1 | {node i is in group α} ∩ {node l is in group β}

)
=

d∑
α=1

d∑
β=1

wαwβ

[
q

(n)
αβ q

(n)
βα h

α
n(j − 1, k − 1, β)hβn(j − 1, k − 1, α)

+q
(n)
αβ

(
1− q(n)

βα

)
hαn(j − 1, k, β)hβn(j, k − 1, α)

+
(

1− q(n)
αβ

)
q

(n)
βα h

α
n(j, k − 1, β)hβn(j − 1, k, α)

+
(

1− q(n)
αβ

)(
1− q(n)

βα

)
hαn(j, k, β)hβn(j, k, α)

]
. (20)

If n→∞ then for all α, β = 1, 2, . . . , d we have that q
(n)
αβ → 0 and that wα remains

constant. Therefore

E
[
X

(n,j,k)
i X

(n,j,k)
l

]
→

d∑
α=1

d∑
β=1

wαwβh
α(j, k)hβ(j, k)

= [h(j, k)]
2

= E
[
X

(n,j,k)
i

]
E
[
X

(n,j,k)
l

]
, (21)

and hence cov
(
X

(n,j,k)
i , X

(n,j,k)
l

)
→ 0 for i 6= l when n→∞.

In order to show that µ̃n(j, k)
n→
∞
h(j, k) for all j, k ∈ N, the same steps as for

Proposition 1 can be followed.

Assume now that after the links for any graph κdλ,~ni have been determined,

the exposure amounts of any node in group α are i.i.d. random variables with

distribution function Fα and that the non-zero exposure amounts of any two nodes

are independent. Suppose that the fraction of initial defaults is π0 (chosen uniformly

over all the nodes), that these nodes have capital ratios equal to zero and that all

other nodes have capital ratios equal to c > 0.

Let p(j, k, θ) be the expected fraction of nodes of degree (j, k) that default after

θ of its counterparties have defaulted. Similarly for α = 1, 2, . . . , d, let pα(j, k, θ)

denote the expected fraction of nodes in group α with degree (j, k) that default after

θ counterparties have defaulted. Note that p(j, k, 0) = pα(j, k, 0) = π0. Suppose

therefore that θ > 0. The fact that the order of default has not yet been determined

can be ignored, as the exposures of nodes are i.i.d. within each group.
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For a fixed j ∈ N, let Xα
1 , X

α
2 , . . . , X

α
j , α = 1, 2, . . . , d be d sequences of i.i.d.

random variables, where Fα is the distribution function of the αth sequence’s random

variables. Let LGD = 1−R denote the loss given default for any counterparty. Note

that a node i can only have a default threshold greater than zero if γ(i) = c < LGD.

Therefore since the capital ratios are independent of the exposures, and the

capital ratios satisfy

γ(i) = γ =

{
c with probability 1− π0

0 with probability π0,

then

pαn(j, k, θ) =P

(
LGDXα

θ > γ

j∑
l=1

Xα
l − LGD

θ−1∑
m=1

Xα
m > 0

)

= (1− π0)P

(
LGDXα

θ > c

j∑
l=1

Xα
l − LGD

θ−1∑
m=1

Xα
m > 0

)
, (22)

with the appropriate adjustments whenever θ = 1 and/or j = 1. Eq. (22) depends

on j and through the joint distribution of Xα
1 , X

α
2 , . . . , X

α
j , but does not depend on

n and therefore pα(j, k, θ) = pαn(j, k, θ). By using Bayes’ theorem we then have that

p(j, k, θ) =

d∑
α=1

pα(j, k, θ)
hα(j, k)wα
h(j, k)

. (23)

For a network of size n and fixed j, k, let the random variable µ̃n(j, k) be defined

on the probability space (Ωn,Fn,Pn) and assume that the capital ratios ~γn are given

for each n. Define the mapping Hn : Ωn →Mn, where Mn is the set of all exposure

matrices of size n and Hn(ωn) = en.

Let π∗ be the smallest fixed point of the function I : [0, 1]→ [0, 1], where

I(π) =
∑
j,k

h(j, k) k

λ̄

j∑
θ=0

p(j, k, θ) B̄(j, π, θ) , (24)

and where B̄(j, π, θ) = P (X ≥ θ) =
∑j
l≥θ
(
j
l

)
πl (1− π)

j−l
denotes the survival

function of a binomial random variable. Since I is non-decreasing, Kleene’s fixed

point theorem (see [7]) can be used to show that π∗ = limk→∞ Ik(0), where I(0) is

the fraction of initially defaulted nodes.

Theorem 1 below, which constructs a measure on the product space and is

a special case of a theorem in [39], is used together with Theorem 3.8 in [3] in

order to prove Theorem 2. Theorem 2 makes the results in [3] (which are based

on deterministic in- and out-degree sequences) applicable to semi-heterogeneous

Erdős-Rényi graphs where the in- and out-degree sequences are random. It shows

that it is possible to find a subsequence of semi-heterogeneous Erdős-Rényi graphs

for which the results in [3] hold almost surely.
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Theorem 1. (Special case of Theorem 2.4.4 in [39]) For each n ∈ N, let

(Xn,An, Pn) be a probability space where Xn is a locally compact, σ-compact met-

ric space with Borel σ-algebra An. Then there exists a unique probability measure

P =
∏∞
i=1 Pn on (X,A) := (

∏∞
n=1Xn,

∏∞
n=1An) with the property that

P

( ∞∏
n=1

Un

)
=

∞∏
n=1

Pn(Un) (25)

whenever Un ∈ An for each n ∈ N and one has Un = Xn for all but finitely many

of the n.

Theorem 2. For each n ∈ N and j, k ∈ N0, let µ̃n(j, k) denote the fraction of

nodes with degree (j, k) in the semi-heterogeneous Erdős-Rényi graph Kd
λ,~n, where

λ = (λil), λ̄ =
∑
i,l wiλil and n =

∑d
i=1 ni. Then there exists a sequence (nm)m≥1

in N such that for any ω = (ωnm)m≥1 in the product space
∏∞
m=1 Ωnm , the corre-

sponding sequence of exposure matrices (Hnm(ωnm))m≥1 = (enm)m≥1 will satisfy

the following with probability one:

(1) If π∗ = 1, i.e. if I(π) > π for all π ∈ [0, 1), then

αnm(Enm , ~γnm)→ 1 (26)

weakly as m→∞. In other words, almost all nodes default as the network size

goes to infinity.

(2) If π∗ < 1, and π∗ is a stable fixed point of I (i.e. I ′(π∗) < 1), then

αnm(Enm , ~γnm)→
∑
j,k

h(j, k)

j∑
θ=0

p(j, k, θ) B̄(j, π∗, θ) (27)

weakly as m → ∞. This is then the asymptotic fraction of defaults as the

network size tends to infinity.

Proof. Fix j, k ∈ N and let (Ω,F) = (
∏∞
i=1 Ωi,

∏∞
i=1Ai). Then for each i ∈ N, de-

fine the projection Πi : Ω→ Ωi by (x1, x2, . . . ) 7→ xi. From Theorem 1, there exists

a unique probability measure P on Ω such that if µ̃(j, k) = (µ̃1(j, k) , µ̃2(j, k) , . . . )

is a random variable on (Ω,F), then for all ε > 0

P(|Πnµ̃(j, k)− h(j, k)| > ε) = Pn(|µ̃n(j, k)− h(j, k)| > ε)→ 0. (28)

The left-hand side of Eq. (28) follows from Theorem 1, and the convergence from

Proposition 2. This shows that Πnµ̃(j, k) → h(j, k) in probability. Therefore there

exists a subsequence n1, n2, . . . such that Πnk µ̃(j, k)→ h(j, k) almost surely.

Now let χC denote the indicator function of the set C. In a system of size n, the

number of nodes with degree (j, k) can be expressed as∑n
i=1

[
(D+

n (i))
2

+ (D−n (i))
2
]
χ{D+

n (i)=j}χ{D−
n(i)=k}

j2 + k2
, (29)
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and hence

µ̃n(j, k) =
1

n

∑n
i=1

[
(D+

n (i))
2

+ (D−n (i))
2
]
χ{D+

n(i)=j}χ{D−
n(i)=k}

j2 + k2
. (30)

Therefore

1

nm

nm∑
i=1

[(
D+
nm(i)

)2
+
(
D−nm(i)

)2]
=
∑
j,k

µ̃nm(j, k)
(
j2 + k2

)
→
∑
j,k

h(j, k)
(
j2 + k2

)
<∞ (31)

almost surely, since h is the joint probability mass function of two random variables

with finite second moments. Now we have that
nm∑
i=1

[(
D+
nm(i)

)2
+
(
D−nm(i)

)2]
= O(nm) (32)

almost surely. By Theorem 3.8 in [3] we now have that for any (ωn1
, ωn2

, . . . ) ∈∏∞
m=1 Ωnm the corresponding sequence of exposure matrices (Hnm(ωnm))m≥1 =

(enm)m≥1 satisfies Eq. (26) and (27).

Section 4 now deals with illustrating Theorem 2 and shows how semi-

heterogeneous Erdős-Rényi graphs can be used to compare different types of network

structures

4. Application to Stochastic Financial Networks

4.1. Illustration of theoretical results

A simple Erdős-Rényi structure is used for this section as the computational inef-

ficiencies of evaluating large networks are exasperated when dealing with multiple

Erdős-Rényi networks that interact with one another. Two cases are considered

regarding the non-zero exposures of each bank. The first case is where all expo-

sures are assumed to be equal, and the second is where the positive exposures are

assumed to be exponentially distributed with parameter η. This keeps the func-

tion p(j, k, θ) mathematically tractable while ensuring that counterparty exposures

remain positive.

Theorem 2 is now illustrated by means of the following:

P (|αn(En, ~γn)− α0| < ε) (33)

where ε > 0 and α0 =
∑
j,k h(j, k)

∑j
θ=0 p(j, k, θ) B̄(j, π∗, θ). The value of

αn(En, ~γn) is determined via simulation for increasing values of n, and α0 is deter-

mined analytically. Table 4.1 contains the parameters used for the purpose of this

illustration.

Fig. 1 shows how Eq. (33) moves closer to one for increasing values of N , which

supports the conclusion of Theorem 2. For equal exposures (Fig. 1a), convergence is
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achieved much faster than for random exposure amounts (Fig. 1b). This is expected,

since there is less variation between nodes in the network. Similarly, convergence is

expected to be slower when groups of interacting Erdős-Rényi graphs are considered.

0 1000 2000 3000 4000 5000 6000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Equal exposures

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

(b) Exponentially distributed i.i.d. exposures

Fig. 1. Illustrating the convergence as given by Theorem 2.

Note that the fraction of defaults based on simulation results only start to con-

verge to the theoretical quantity α0 for very large values of n, which may not be

attained in a practical setting. For example, the German banking system had ap-

proximately 1,800 banks as at 2014 [9]. In this case Fig. 1 implies that the theoretical

results would be close to the observed fraction of defaults approximately 80% of the

time for equal exposures, and approximately 40% of the time for exponential i.i.d.

exposures. However, computationally it is still much more efficient than simulation

methods to assess sensitivities resulting from changes to combinations of network

and bank characteristics. Furthermore, analytical results are often useful tools for

understanding complex systems as these can assist in understanding the underlying

components before carrying out simulations. Results for large financial networks are

also of interest in cases where multiple countries and/or multiple types of financial

institutions are considered. In these cases the number of nodes in the network can

increase significantly, making an asymptotic approach appropriate.

4.2. Applying the results to different network structures

For this section we consider a semi-heterogeneous Erdős-Rényi graph Kd
λ,~n with

d = 2 groups of connected Erdős-Rényi graphs, even though the theory presented

in this paper can deal with any finite number of interacting graphs. This will be

used to compare different network structures based on the matrix λ. In the setting
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discussed in section 3.2, the groups can be determined in any way as long as the

exposure amounts satisfy requirements lined out in [3]. In our case we assume that

banks are grouped according to size in order to relate this section to banking systems

commonly found in practice. Hence we let group one consist of a small fraction w1

of large banks and group two of a larger fraction w2 of small banks.

We will assume that the non-zero exposure amounts follow an exponential distri-

bution with means η1 and η2 for groups one and two respectively. The exponential

distribution is used because of its analytical tractability. However in practice it

would make sense to use a truncated distribution for the exposures since a bounded

support is more realistic for balance sheet figures.

Recall now that the total asset value of each bank does not feature in any

of the results that this study considers. Therefore in this stylized setting we will

assume that banks that generally have large counterparty exposures have high asset

values and vice versa for banks with lower exposure amounts. This is equivalent to

assuming that loans granted by large banks are generally larger than any loans

granted by small banks, which is a reasonable assumption to make. Therefore we

must have that η1 > η2 and these parameters will be used to differentiate between

banks of different size.

The matrix λ will in turn be used to differentiate between different network

structures by varying the level of interconnectedness between the different groups

and within each group. In order to make the structures comparable it is assumed

that the average out-degree (or equivalently the in-degree) of a randomly chosen

node in each type of network is a fixed quantity λ̄. Three network structures will

be compared to one another. These structures together with their connection prob-

abilities in the case of a finite network of size n are as follows:

(i) Standard Erdős-Rényi graph, with q
(n)
11 = q

(n)
12 = q

(n)
21 = q

(n)
22 = λ̄

n−1 .

(ii) Tiered type I - Large banks are the most likely to be exposed to one another

and small banks less likely to be exposed to one another. The probability of a

small bank and a large bank being exposed to one another is in between the

former two probabilities. The probabilities are given by q
(n)
ij =

ηi+ηj
2η1

L
(n)
2 .

(iii) Tiered type II - Large banks have a relatively high probability of lending to any

other bank, small banks have a smaller probability of lending to large banks

and the probability of small banks lending to one another is the least. Here we

have that q
(n)
ij =

ηi+ηj+max{ηi−ηj ,0}
3η1

L
(n)
3 .

The L
(n)
m quantities in the formulae above are adjustment factors that ensure

that the structures exhibit the required average out-degree λ̄ and that the con-

nection probabilities are functions of n that tend to zero as n → ∞. It is noted

that the structures and formulae chosen are used for illustrative purposes and for

investigating how network structure may affect systemic risk. Hence they are not

necessarily the most realistic structures for banking systems. However, the second

and third structures are representative of core-peripheral networks which explicitly
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place larger banks in the tightly connected core, and therefore contain elements of

structures found in practice.

It now remains to determine the matrix λ = (λij) for each network structure

based on the above probabilities so that Theorem 2 can be applied. Note that in

the case of a finite network of size n, the average out-degree (or in-degree) of a node

in the network would be given by

λ̄ = w1 (n1 − 1) q
(n)
11 + w1w2nq

(n)
12 + w1w2nq

(n)
21 + w2 (n2 − 1) q

(n)
22 . (34)

This equation will be used to determine the functional form of L
(n)
m , m = 1, 2, 3, so

that we can find λii = limn→∞ (ni − 1) q
(n)
ii , i = 1, 2 and λij = limn→∞ wjnq

(n)
ij ,

i 6= j.

1. Erdős-Rényi This structure is straightforward, since λij = λ̄wj for i, j = 1, 2.

2. Tiered Type I For this structure we have that q
(n)
11 = L

(n)
2 , q

(n)
12 = q

(n)
21 =

η1+η2
2η1

L
(n)
2 and q

(n)
22 = η2

η1
L

(n)
2 . Using Eq. (34) it can be seen that

λ̄ = w1 (n1 − 1) q
(n)
11 + 2w1w2nq

(n)
12 + w2 (n2 − 1) q

(n)
22

= L
(n)
2

[
w1 (n1 − 1) + w1w2n

η1 + η2

η1
+ w2 (n2 − 1)

η2

η1

]
(35)

so that

L
(n)
2 = λ̄

η1

η1w1 (w1n− 1) + w1w2n (η1 + η2) + w2η2 (w2n− 1)
. (36)

Hence

λ11 = lim
n→∞

(n1 − 1)L
(n)
2

= λ̄
η1w1

η1w2
1 + w1w2 (η1 + η2) + η2w2

2

, (37)

and in general λij = λ̄
(ηi+ηj)wj

2η1w2
1+2w1w2(η1+η2)+2η2w2

2
.

3. Tiered Type II In this case q
(n)
11 = q

(n)
12 = 2

3L
(n)
3 , q

(n)
21 = η1+η2

3η1
L

(n)
3 and q

(n)
22 =

2η2
3η1

L
(n)
3 . Based on Eq. (34) we now have

λ̄ = w1 (n− 1) q
(n)
11 + w1w2nq

(n)
21 + w2 (n2 − 1) q

(n)
22

=
L

(n)
3

3

(
2w1 (n− 1) + w1w2n

η1 + η2

η1
+ w2 (n2 − 1)

2η2

η1

)
, (38)

L
(n)
3 = λ̄

3η1

2η1w1 (n− 1) + w1w2n (η1 + η2) + 2η2w2 (w2n− 1)
(39)
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and

λ11 = lim
n→∞

λ̄
2η1w1 (w1n− 1)

2η1w1 (n− 1) + w1w2n (η1 + η2) + 2η2w2 (w2n− 1)

= λ̄
2η1w1

2η1w1 + w1w2 (η1 + η2) + 2η2w2
2

. (40)

Furthermore λij =
(ηk+ηi)wj

2η1w1+w1w2(η1+η2)+2η2w2
2
, where k = min {i, j}.

For all of the structures above, the expressions for λij then satisfies the identity

λ̄ = w1 (λ11 + λ12) + w2 (λ21 + λ22). Table 3 now shows the parameter values that

were chosen for this analysis. Parameters either have the default value as indicated

by the table or are varied within the range given in the final column.

Consider first the variation in the final fraction of defaults as the relative sizes

of the two groups are changed. The mean exposure amount of group one is varied

from one to 11, whereas the mean exposure amount of group two is kept fixed at

one. Therefore when η1 = 1, we have a completely homogeneous network where all

banks are of the same size. The three structures should therefore yield precisely

the same fraction of final defaults in this case, since the discriminatory factor is

eliminated when η1 = η2. This is illustrated in Fig. 2a, where the graph starts out

with all three lines on top of one another. As the heterogeneity between the banks

is increased along with η1, the structures begin to discriminate between banks of

different size.

It is interesting to see that both Tiered structures immediately start to deviate

from the standard Erdős-Rényi case. These two structures exhibit decreasing risk for

increasing heterogeneity between the groups of banks. This suggests that systems

may benefit from having a core-peripheral structure, with lending preferences that

depend thereon.

Consider now the effect of varying the capital ratio from 0.4 to 0.6. Since this is

a ratio of capital to interbank assets, then if interbank exposures consist of roughly

20% [3] of total capital, it corresponds to a range of 0.08 to 0.12 of capital to total

assets. The results are given by Fig. 2b. As expected, the final fraction of defaults

declines for all structures, though the final fraction of default declines more steeply

for the Erdős-Rényi structure compared to the Tiered type I and Tiered Type II

structures in Fig. 2b.

The average degree of the system is considered in Fig. 2c. This parameter is

varied from one (an extremely sparse network) to seven. It can be seen that for a

very sparse network, the different structures do not result in significantly different

levels of default fractions. When the average out-degree is increased, the additional

links in the system facilitate the spread of contagion for all structures. When the

average out-degrees is just over 2.5, the default fractions start do decline when the

additional links in the system serve as a safety mechanism. The peak at λ̄ ≈ 2.5 and

subsequent decline is more pronounced for the Erdős-Rényi case than for the other

structures. This indicates a higher sensitivity to the level of interconnectedness in

the system for our base parameters. It shows that conclusions regarding the optimal



December 2, 2018 13:21 WSPC/INSTRUCTION FILE Manuscript

22 N. Walters, G. van Zyl, C. Beyers

2 4 6 8 10
0.11

0.12

0.13

0.14

0.15

(a) Varying the mean asset value of group 1
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(b) Varying the capital ratio
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(c) Varying the average degree per node

Fig. 2. Illustrating parameter sensitivities of different semi-heterogeneous Erdős-Rényi graphs,
where α0 =

∑
j,k h(j, k)

∑j
θ=0 p(j, k, θ) B̄(j, π∗, θ).

network structure can be highly dependent on network characteristics.

5. Conclusion

This study firstly shows how the fraction of defaults in a financial system can

be approximated for large, random networks. A sequence of financial networks of

increasing size with random in- and out- degree sequences that satisfies certain

limiting conditions is considered. It is shown that there will be a subsequence for

which the fraction of defaults following an initial shock can be determined.
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A class of inhomogeneous graphs is defined and it is illustrated how results that

apply to Erdős-Rényi networks may be generalized to apply to this class. This is

done by considering the theoretical results developed in this paper, which can be

applied to Erdős-Rényi networks. It is then showed how these results hold for mul-

tiple networks that are connected to one another, leading to results that hold for

inhomogeneous networks. This brings existing theoretical results closer to the com-

plexities found in real-world financial network structures. Potential uses of such a

class of networks include modeling the interaction between different types of finan-

cial entities (e.g. between banks, investment companies and insurance companies)

or between the financial systems of different countries.

As a simple illustration of the versatility of the proposed class of networks, three

different structures that comply with the definition are compared to one another.

The first is the standard Erdős-Rényi graph, where lending behavior is independent

of relative asset sizes. The remaining structures assume different kinds of lend-

ing behavior for banks based on their relative asset sizes. In other words, banks’

preferred creditors and debtors are determined by their asset sizes, although the

framework allows for other characteristics to infer such preferences instead. While

the illustration may not be based on entirely realistic structures, the second and

third structures do account for a hierarchical formation of edges based on bank size.

The illustration considered here suggests that for large systems, the sensitivity

of systemic risk to network characteristics is dependent on the network structure.

For example, where one structure may show a significant change in systemic risk

when the interconnectedness is varied, another structure may only show a modest

change. It further suggests that while systemic risk can be lower for tiered structures

compared to non-tiered structures (this is supported by e.g. [41]), network charac-

teristics such as heterogeneity between banks, capital ratios and interconnectedness

influence whether this is indeed the case. Therefore, whether or not the level of

tiering in a network serves to strengthen or weaken the system potentially depends

on a combination of network characteristics. It is noted that the realism of these

observations are influenced by the shocks being transmitted via direct exposures,

and that indirect mechanisms such as liquidity risk may well serve to increase the

importance of network structure even further [28].

One possible course of action for managing the contagion risk surrounding too-

big-to-fail institutions is to not discourage core-peripheral banking structures (as

opposed to ‘breaking up the big banks’). Instead, focus can be placed on incen-

tivizing lending preferences (i.e. banks’ preferred creditors and/or debtors based

on characteristics such as bank size, sector, type etc.) that lead to lowered conta-

gion risk. Comparing this possibility with other options where the structure of the

system is taken into account is an important direction for future research. While

there are many other aspects to take into consideration when managing contagion

risk [16], we illustrate why the structure of the network as influenced by lending

preferences should play an important role.

Further important considerations for future research is the inclusion of a central
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bank (e.g. as in [27]), the investigation of targeted shocks [14], different resolution

outcomes for banks in distress [24] and different measures of systemic risk (e.g. as

proposed in [18] and [10]). The inclusion of liquidity/market confidence effects are

also important aspects to include when considering contagion risk. The interplay

between these aspects and the structure of the system would then provide valuable

insights for practitioners.
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Table 2. The parameter values used for illustrating the convergence given by

Theorem 2.

Parameter Description Parameter value

γ Ratio of interbank assets to capital 0.4

π0 Initial fraction of defaults 0.05

λ̄ Average out-degree/in-degree of the system 4
η Mean exposure amount 1

ε Error term used for evaluating Eq. (33) 0.025

Parameter Description Default value Range

γ Ratio of interbank assets to capital 0.4 [0.4, 0.6]

π0 Initial fraction of defaults 0.05

λ̄ Average out-degree as given by eq. (34) 4 [1, 7]

η1, η2 Mean exposure amounts for groups one and two 4, 1 [1, 11]

w1 Weight for group one 0.15

Table 3. The default parameter values and their respective ranges used for comparing network

structures.


