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SUMMARY 

 

There is documented evidence of high genetic diversity amongst African populations, 

but there is limited data on human leukocyte antigen (HLA) diversity in these 

populations. HLA genes are highly polymorphic, and encode for proteins that are 

part of the host defence mechanism mediated through antigen presentation to 

immune system effector cells. The highly polymorphic nature of HLA genes 

facilitates the presentation of a wide range of antigenic peptides to the immune 

system leading to an immune response. With the high disease burden in Africa, it is 

important to fully understand HLA diversity in these populations, to establish HLA-

disease associations, and potentially use this data for the informed design of 

population-specific vaccines against the many diseases, and to improve on donor-

recipient matching. The aim of this thesis is to understand HLA diversity in South 

African populations to support transplantation programs, add knowledge on human 

diversity and build a potential future resource for disease association and population 

studies. 

There is generally limited HLA data from southern African populations (Chapter 2) to 

support disease association studies, provide guidance in vaccine design and donor 

recruitment for transplantation programs. Despite being the only active bone marrow 

donor registry in Africa supporting transplantation programs, HLA diversity in 

volunteer bone marrow donors registered at the South African Bone Marrow Registry 

(SABMR) is largely undocumented. This study documents HLA -A, -B, -C, -DRB1 

and -DQB1 allele and haplotype frequencies from a subset of 237 SABMR registered 

donors with the objective of highlighting HLA diversity in South Africans (Chapter 3). 

Additionally, mixed resolution HLA data from the National Health Laboratory 

Services (NHLS) and the South African National Blood Transfusion Service (SANBS) 

are reported (Chapter 4). A comparison of South African HLA data (NHLS and 

SANBS) with other global populations including sub Saharan Africans confirm the 

genetic diversity of South Africans. To counter the paucity of HLA data, in silico HLA 

imputation tools may be used to determine HLA alleles from existing whole genome 

sequencing (WGS) data. HLA imputation is an economically feasible typing option 

for resource limited settings. To support the feasibility of HLA imputation, this study 

describes high resolution (up to 8 digit typing) HLA alleles determined by in silico 
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HLA imputation tools from 24 WGS of South African individuals (chapter 5). 

Generally, HLA diversity of South African populations is described in detail through 

literature meta-analysis, documentation of previously typed individuals (SANBS, 

NHLS and SABMR) and HLA imputation from existing next generation sequencing 

(NGS) data. Although results reported here are from a small subset of 237 SABMR 

registered donors (chapter 3), 24 WGS (chapter 5) and mixed resolution typing 

NHLS and SANBS data (chapter 4), allele and haplotype frequencies generated 

could be a useful resource for future anthropological and population genetics 

studies. Furthermore, these findings may better inform donor recruitment strategies 

for the SABMR, and disease association studies. Future study recommendations 

include development of an HLA diversity resource for African populations, a 

comparison of large SABMR dataset with other global registries, and using more 

robust assembly based computational tools to fully understand the HLA diversity in 

South Africans. 

 

Key words: HLA, diversity, imputation, mixed resolution, disease burden, population 

genetics, transplantation  
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CHAPTER 1  

LITERATURE REVIEW 

 

1.1 General Introduction  

 

The African population is genetically diverse1 with several pointers indicating that the 

continent is the cradle of humankind2,3. Despite this genetic diversity, there is scarce 

or no information on human leukocyte antigen (HLA) diversity in most African 

nations, thereby limiting our understanding of human health and susceptibility to 

disease. In general, genetic diversity of African populations is poorly understood4. 

South Africa has an admixed population giving rise to high genetic diversity5,6, hence 

the need for further analysis/evaluation of the national diversity to map disease 

association and theraupetic gene targets and facilitate vaccine development. Despite 

the general similarities in culture and shared geographical location, genetic 

differences exist among populations at every 1000 base pairs7. The South Africa 

human population is predominantly of Bantu ethnicities; additionally, there are 

populations of mixed ancestry characterised by high diversity in cultural and ethno-

linguistic structures (https://en.wikipedia.org/wiki/Bantu_peoples). 

 

The highly polymorphic human leucocyte antigen (HLA) gene region on the short 

arm of chromosome 6 is divided into class I, II and III gene loci. Classes I and II form 

the classical (major) HLA molecules while class III are HLA related molecules critical 

to the human immune system. Figure 1.2 summarizes the genetic structure of 

classical HLA class I and II. HLA class I molecules, expressed on all nucleated cells, 

encode membrane bound glycoproteins that bind to endogenous antigenic epitopes 

and present them to CD8+ T lymphocytes. On the other hand, class II molecules are 

expressed on all antigen presenting cells, and present antigenic peptides to CD4+ T 

lymphocytes. The polymorphic nature of HLA genes allows the presentation of a 

wide range of peptides to the immune system. Each individual has unique HLA 

alleles inherited from both parents, hence the gene loci can be used in vaccine 

https://en.wikipedia.org/wiki/Bantu_peoples
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development, transplantation and understanding susceptibility, resistance and 

progression of human diseases.  

 

South Africa has a heterogeneous population, whose HLA genetic diversity has not 

been well described, despite the immunological significance of HLA. Paximadis and 

colleagues8 showed a broad spectrum of distribution of HLA alleles among black 

South Africans compared to their white counterparts8. HLA diversity in South African 

populations is still not conclusively known, mainly due to the expense in HLA typing 

methods, a few studies have reported HLA data. There is generally limited high 

resolution HLA typing from South African individuals which impacts on our 

understanding of HLA disease association dynamics, and support of transplantation 

programs through donor-patient HLA matching. Owing to the unknown HLA genetic 

diversity of South African populations, it is currently difficult to find an HLA match for 

individuals needing hematopoietic stem cell transplantation. This study seeks to 

quantify HLA genetic diversity amongst South African populations. The overall study 

aim is to describe the HLA alleles present and to quantify classical HLA diversity in 

South Africa with the view to providing a resource for understanding disease 

pathogenesis, vaccine development and for easier matching of donor-recipient 

haplomatches, and also as a baseline towards establishment of biobanks for future 

medical research.  

 

1.2 Problem statement 

 

There is a wide information gap on HLA genetic diversity in South Africans, which 

this study intended to address. Previous studies are mostly based on disease 

association datasets9-14, limited sample size15, targeted sampling16,17 and a few high 

resolution HLA typing studies8,18-22. Within South Africa, there is documented 

evidence of an old human lineage which might be ancestors to modern humans. 

These founder populations are known to be genetically diverse. Additionally, there is 

a high infection and disease burden in South Africa, coupled with limited knowledge 

on genetic diversity in genes coding for the immune system. HLA diversity data from 

these populations might add to our knowledge on HLA disease association and 

guide in population specific vaccine design strategies and better inform donor 
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recruitment strategies into bone marrow registries. It is generally not easy to pinpoint 

a specific allele (or allele combination) association to a disease especially when data 

from healthy individuals is not available for inference. There is a need for vaccines 

for the many diseases/infections in the South African population. Furthermore, 

population HLA diversity data will help understand immune escape mutants which 

drive drug resistance infections, and support population genetic studies highlighting 

evolutionary selection pressures like disease epidemics. 

 

1.3 Literature review 

 

1.3.1 Basic Immunology 

 

The human immune system’s ability to recognize ‘self’ and ‘non self’ forms a key 

concept in clinical immunology and host defense against pathogens. Host immune 

defense can be divided into three broad categories namely mucosal and epithelial 

barriers, the innate immune and the adaptive immune systems. Mucosal and 

epithelial barriers offer physical protection through an impermeable layer of cells 

coupled with antimicrobial secretions and maintain tolerance to commensal 

microbiome. If a pathogen crosses a physical barrier, the innate immune system is 

the next line of defense against invading pathogens. The innate system is 

characterized by a variety of cells circulating in blood (macrophages, neutrophils, 

mast cells), non-specific killing of pathogens and lack of immunological memory. The 

adaptive immune system on the other hand is pathogen specific, and has 

immunological memory. A second encounter with the same pathogen activates the 

memory cells of the adaptive immune system to elicit an immune response. Both the 

innate and adaptive immune systems have an antigen recognition phase by antigen 

presenting cells followed by an effector phase. T-cell based adaptive immune 

responses are based on antigen presentation to the T cell receptor complex (TCR) 

by the major histocompatibility complex (MHC), leading to an antigen specific 

immune response23. 
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The MHC genes, also known as the human leukocyte antigen (HLA) loci in humans, 

are found on chromosome 6, and encode cell surface glycoproteins broadly 

classified into three classes: HLA class I, II and III. Class III molecules include 

inflammatory proteins, complement proteins, regulatory receptors and other gene 

products not directly involved in antigen presentation. Class I and II molecules’ 

primary role is antigen presentation to effector T cells. There are a high number of 

genetic polymorphisms in class I and II molecules, with multiple alleles at each locus. 

There are currently 20 088 HLA alleles listed in the IMGT/HLA database 

(https://www.ebi.ac.uk/ipd/imgt/hla/stats.html release 3.34.0 October 2018), of which 

14 800 are class I and 5 288 are class II alleles (summarized in Figure 1.1)20. The 

high diversity facilitates presentation of many antigens but is a challenge in matching 

donors and recipients in transplantation23. There is generally an increase in the 

number of known HLA alleles with time (Figure 1.1) owing to advancement in 

molecular methods. 

 

1.3.2 HLA class I and II structure  

 

HLA class I consists of glycosylated 1, 2 and 3 chains (encoded on chromosome 

6) and non-covalently bound to 2 microglobulin (encoded on chromosome 15) 

which assemble to form a functional receptor on most nucleated cells. The hyper 

variable 1 and 2 domains form the antigen binding groove of the HLA class I 

molecules, which present processed antigens to effector CD8 T lymphocytes. Some 

HLA class I molecules interact and regulate natural killer (NK) cell function through 

the killer-cell immunoglobulin-like receptors (KIR)24. There are 3 major HLA class I 

genes (classical HLA class I): HLA-A, HLA-B and HLA-C; minor genes include HLA-

E, HLA-F and HLA-G. Figure 1.2 shows the structures of class I and II molecules, 

including the linear genetic structure showing the number of coding regions (exons). 

HLA class II molecules are heterodimers of  and  (1, 2 and 1, 2) chains 

anchored in the cytoplasm by transmembrane domains in the 2 and 2 chains. The 

hyper variable 1 and 1 chains of class II molecules form the antigen binding 

groove of class II molecules (Figure 1.2). HLA Class II α and β heterodimers have 

the alpha subunit encoded by the "A" or "A1" loci and the beta subunit is encoded by 

"B" or "B1", resulting in HLA DPA1 and HLA DPB1 for HLA DP and HLA DQA1 and 

https://www.ebi.ac.uk/ipd/imgt/hla/stats.html
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HLA DQB1 for HLA DQ gene loci. On the other hand, the HLA-DR gene locus is 

more complex; the alpha chain is encoded by a single HLA-DRA gene (with few 

minor variants), while the beta subunit is encoded by the HLA-DRB1 locus and other 

minor loci which are variable amongst individuals (HLA-DRB3, -DRB4, -DRB5). 

Class II restricted antigens are presented to effector CD4 lymphocytes23,25. HLA 

polymorphisms are highest in the antigen binding grooves of both class I and II 

molecules26 (Figure 1.2). MHC restricted antigen presentation was first demonstrated 

by Zinkernagel and Dougherty in 197427, with antigen binding specificities based on 

amino acid sequences at the antigen binding groove of the HLA molecules. 

 

 

 

 
 

Figure 1.1 The number of known class I and II alleles overtime 

The number of HLA alleles has been increasing since 1987 due to advancement in 

typing methods. There are currently more than 14 000 and 5000 class I (green bars) 

and II (black bars) alleles respectively in the IMGT HLA database (Figure from20). 
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Figure 1.2 HLA class I and class II structures 

HLA class I molecules have 8 exons, whilst class II molecules have 5 exons (α 

chain) and 6 exons (β chains). The general structure includes leader peptide (Lp), α 

chain, β chains, transmembrane domain(TM), cytoplasmic domain (CYT) and 3’ 

untransalated region (3UTR). Figure was adapted from26. 

 

1.3.3 HLA nomenclature  

 

The HLA nomenclature uses a unique set of numbers to identify each allele in the 

IMGT/HLA database20,21 (Figure 1.3). The naming shows the specific gene locus 

name (for example HLA A in Figure 1.3), with the first set of digits (Field 1) 

corresponding to an allotype (antigen level). Field 2 (Figure 1.2) corresponds to the 

subtype (allele level); the numbers are assigned in order of the DNA sequence 

discovery within a group. Different allele level numbers correspond to differences in 

one or more single nucleotide polymorphisms (SNPs) leading to amino acid 

sequence differences between two related alleles (Field 3). Alleles differing in the 
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non coding regions including introns, 3 and 5 untranslated regions (UTR) have an 

additional set of numbers (Field 4)20,21. Additionally, expression status and level of a 

protein of a particular allele may be indicated as shown in Figure 1.3. 

 

 

 

Figure 1.3 HLA nomenclature 

HLA prefix (identifies HLA gene region), Gene (specifies the HLA gene locus), Field 

1 (antigen group), Field 2 (specific HLA protein/specific HLA allele), Field 3 

(Synonymous DNA substitution in coding region), Field 4 (DNA changes in non 

coding region), Suffix (denotes changes in expression, possible suffices include 

N=Null, L=Low, S=secreted, A=Aberrant and Q=Questionable). (Adapted from S.G.E 

Marsh, HLA Informatics Group20,28. 

 

1.3.4 HLA typing methods 

 

HLA typing methods have evolved from phenotypic identification using serology 

methods to high resolution DNA sequencing based technologies. Serology based 

methods identified HLA molecules at the antigen level (Figure 1.3), with DNA 

methods being able to identify to the protein level as summarized in Figure 1.3. 

Serology typing methods are based on the detection of expressed HLA molecules on 

cell surfaces (T cells for HLA class I, and B cells for HLA class II) through use of 

antisera panels (usually sourced from multiparous women) in a complement-
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dependant cytotoxixity test. The compliment-mediated microlymphocytotoxicity 

method has commonly been used as a serology gold standard in HLA typing29. 

Limitations of serology based HLA typing include i) low resolution results which are 

applicable for renal but not adequate for bone marrow transplantation, ii) live 

lymphocytes are needed for the assay, but cell numbers might be very low in some 

patients, iii) sera cross reactivity, and iv) limited availability of sera.  

 

DNA based HLA typing are polymerase chain reaction (PCR) based molecular 

methods developed to overcome the low resolution typing of serology methods. 

There are several DNA based molecular typing methods, with the following being the 

most common broad categories i) sequence-specific primer (SSP) ii) sequence-

specific oligonucleotide probe (SSOP) and iii) sequence-based typing (SBT). The 

principle of SSP is based on a complete primer matched to a specific HLA allele(s), 

leading to the amplification of the allele sequence which can be detected by gel 

electrophoresis. This method is labor intensive and expensive for high throughput 

HLA typing. Additionally, with the ever increasing number of HLA alleles there is a 

need to constantly update HLA typing primers. SSOP, more suited for high 

throughput HLA typing, is based on allele specific panels of synthetic oligonucleotide 

probes which hybridize HLA allele PCR products. Despite the potential in high 

throughput HLA typing, SSOP still needs to cope with the ever increasing allele 

numbers in designing probes. SBT using Sanger sequencing has been a long time 

gold standard molecular HLA typing method following the discovery of locus and 

antigen specific polymorphisms in non-coding introns flanking the polymorphic HLA 

exons (reviewed in30). Despite the ability of SBT methods to give high resolution 

results, limitations include typing certain exons within the HLA loci, thereby giving 

partial sequences of about 10% of the reported alleles31. Clinical HLA typing 

laboratories rarely sequence exons/introns outside the peptide binding groove for 

transplantation matching, with the assumption that they are not directly involved in T 

cell allo-recognition. This assumption is supported by modeling HLA/peptide/T-cell 

receptor (TCR) interactions32, and studying allele specific peptide repertoires33 and 

other allo-recognition studies34-37. Routinely typed exons include exons 2 and 3 for 

HLA class I and exon 2 for HLA class II (Figure 1.2). Additionally, there is 

heterogeneity from SBT HLA analysis yielding limited resolution data, making it 

difficult to correctly assign HLA types. It is possible though to sequence the whole 
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HLA gene region (coding exons and introns as summarised in Figure 1.2) using 

current SBT methods, but at a very high cost and requiring expert analysis. 

Furthermore, as SBT focuses primarily on the selected exons, together with the 

phasing problem (common in whole-genome assembly), the individual base 

differences are assigned unambiguously to one of the chromosome (cis/trans 

assignment of DNA bases) in a heterogeneous sample38.  

 

Advances in next generation sequencing (NGS) HLA typing allow high throughput, 

with high resolution HLA results in a relatively shorter time frame compared to SBT 

typing31,39,40. NGS HLA typing addresses the inherent phasing ambiguities in SBT 

Sanger sequencing. With NGS, two chromosomes produce separate reads, and 

when supported by a strong bioinformatics workflow can separate these reads and 

assemble them into phased consensuses. The highly polymorphic nature of the HLA 

gene region together with the high number of pseudogenes and indels contribute to 

NGS HLA typing challenges. Additionally, the short sequencing reads generated by 

NGS platforms are difficult to align to reference HLA alleles in the IMGT/HLA 

database20,21. The complex nature of some HLA loci impacts negatively on NGS 

read alignment to the reference alleles, hence accuracy of typing results becomes 

less reliable41. Most reference HLA allele sequences in the IMGT/HLA database20,21 

have partial sequences42 making it difficult to accurately call HLA alleles. Quantifying 

HLA diversity in genetically diverse populations like Africans might contribute to full 

length reference HLA sequences39,43. 

 

Despite the advances in HLA typing methods, it is possible to obtain ambiguous 

results (combinations of several alleles as a result instead of a desired single pair) 

and inaccurate typing results which impact on HLA clinical applications. PCR forms 

an integral part of HLA typing including NGS library preparation and the actual 

sequencing step. Possible PCR sources of HLA genotyping ambiguities are usually 

the results of i) signal loss due to amplification imbalance or dropout and ii) mixed 

signals caused by PCR crossover artifacts or PCR stutter that create a mix of 

artificial alleles in vitro that makes allele selection difficult. Allele dropout can be 

grouped into three main types: a) complete allele drop out (locus dropout), b) only 

one allele amplified, with PCR signal for the other allele missing completely (allele 

dropout) and c) one or both alleles being partially amplified and sequenced (partial 
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dropout) as reviewed in44. PCR primers can unequally amplify HLA alleles leading to 

an imbalance between the two chromosomes, hence affecting HLA genotyping 

result. SBT Sanger sequencing methods use a threshold of about 5–20% for the 

minor signal while NGS-based HLA-typing methods can detect as low as 2% of the 

minor signal45. The high polymorphic nature of the HLA region makes the design of 

primers difficult; novel variants around the primer binding sites might affect the 

amplification process. Allele dropout can be due to a technical error, and in some 

cases due to disease state, for example, false homozygous HLA typing results are 

common in some cancers due to chromosome 6 loss in cancer affected cells46. 

Additionally, the amplification of short tandem repeats (STRs) in the HLA region 

results in PCR stutter47 which might contribute to ambiguity between two alleles that 

only differ in this STR region. 

 

Generally, SBT Sanger sequencing can produce 1000 base-pair long reads, but the 

signals from the two chromosomes are mixed leading to an inherent phase 

ambiguity. On the other hand, most NGS platforms separate reads from different 

chromosomes to overcome the phasing problem, but with shorter reads than SBT 

(reviewed in44). False homozygous typing is common if an allele pair has a 

homozygous sequence stretch which is longer than the average NGS read length 

and the insert between the pairs, leading to unresolved chromosome phasing. 

Although still under clinical application evaluation, Pacific Biosciences SMRT 

technology produces longer NGS reads that can cover the whole HLA locus with a 

single read48 Based on the codominant expression of HLA alleles, and the Mendelian 

fashion of HLA haplotype inheritance, family studies can be used to confirm/discard 

homozygous typing results. Two siblings have a 25% chance of HLA genotype 

identity, 50% chance of being haploidentical (share one haplotype), and a 25% 

chance of not sharing a common haplotype25. Standardized high quality HLA typing 

methods form an integral part of the clinical use of HLA results. 

 

1.3.5 HLA imputation 

 

Based on high linkage disequilibrium (LD) within the MHC region, HLA alleles can be 

determined using in silico computational tools by inferring them from surrounding 
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HLA allele associated SNPs49. Additionally NGS generated whole genome 

sequences (WGS) and whole exome sequences (WES) as well as RNA sequence 

data (RNAseq) are increasingly used for HLA imputation50-54. HLA imputation is a 

potentially cheaper method for understanding population HLA diversity through the 

use of existing datasets (SNPs, WES, WGS, RNAseq). Several projects aimed at 

understanding genetic diversity of African populations [for example Southern African 

Human Genome Program (SAHGP)55,56, H3 Africa (https://h3africa.org/), 1000 

Genomes project (http://www.internationalgenome.org/)57, African Genome Variation 

Project58] are potential data sources for HLA imputation. Despite the high imputation 

accuracy reported by several methods, these tools are good to augment, but not 

replace routine HLA typing methods in understanding HLA diversity. 

 

1.4 Applications of HLA genetic data 

 

1.4.1 Transplantation and transfusion 

 

Transplantation as a therapeutic intervention requires a match between donor and 

recipient HLA molecules so as to decrease the chance of rejection23. The chance of 

two individuals having identical HLA molecules on all loci is very low. Siblings have a 

25% chance of being HLA-identical due to HLA being codominantly expressed and 

inherited as haplotypes from both parents. The degree of HLA matching is a 

predictor of clinical outcome. Acute graft versus host disease (GVHD) is an 

immunocompetent donor T-cell mediated response against the recipient’s immune 

system which is common in unmatched donor recipient pairs. Acute GVHD can be 

reduced by donor T-cell depletion, but this increases the risk of rejection, malignant 

disease relapse and impaired immune recovery59,60. In addition to HLA matching, 

other genes like the killer inhibitory receptors (KIRs) have been documented to affect 

the clinical outcome of allogeneic transplantation61-64. In severely 

immunocompromised individuals, allogeneic transfusion with immune competent T-

cells containing blood products might lead to transfusion associated GVHD (TA 

GVHD). Transfusion related lung injury (TRALI) is an anti-HLA (mostly class I65,66) 

antibody related complication which might be fatal. Anti-HLA class II antibodies 

induce TRALI through monocyte and subsequent neutrophil activation65,67. Anti-HLA 

http://www.internationalgenome.org/
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class I antibodies have been reported to be a cause of neonatal alloimmune 

thrombocytopenia together with platelet derived specific antigens68. Generally, it is 

critical to know the population HLA diversity to improve donor recipient matching in 

both transplantation and transfusion, while recruitment of donors from minority 

populations also helps improve HLA diversity in registries25 

 

1.4.2 Disease association 

 

The World Health Organization (WHO) reports a high burden of disease in southern 

African populations, with human immunodeficiency virus (HIV), tuberculosis (TB) and 

malaria being the priority problems69. Southern African (including South African) 

populations are documented to be highly genetically diverse70. There is however 

limited information on the genetic diversity in genes coding for immune system 

including HLA genes71. Several autoimmune conditions have been directly 

associated with specific class I and II HLA alleles, including rheumatoid arthritis, 

multiple sclerosis, ankylosing spondylitis, Grave’s Disease and many more as 

reviewed by Trowsdale and Knight72. HLA association with infectious disease 

including HIV has been documented, in which several alleles have been associated 

with varying rates of HIV disease progression73-76. HLA in susceptibility, transmission 

and treatment outcomes in HIV has also been reviewed77. The presence or absence 

of some HLA alleles and their frequencies has been associated with malaria burden 

in different populations78. High HLA -B*53:01:01 and -B*78:01 allele frequencies are 

reported to be associated with Plasmodium falciparum parasitemia, a human malaria 

causing parasite79. Several HLA alleles (mostly class II), have been reviewed to 

contribute to TB susceptibility and protection in various populations80, highlighting the 

role of HLA in TB immunity. Despite the unclear link between HLA alleles and 

different infectious disease, it is imperative to understand HLA diversity in the highly 

disease burdened South African populations, particularly to support vaccine 

development. Identification of HLA restricted epitopes with protective immune 

correlates is critical in designing T-cell based vaccines against the many pathogens, 

especially for the South African populations. Furthermore, these epitopes can be 

analysed as potential vaccine candidates. To refine the identification of HLA 

restricted cytotoxic T lymphocyte (CTL) escape mutants, knowledge of HLA diversity 
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of large datasets is needed to statistically increase the power of the currently 

available CTL escape prediction maps81. It is important to map the immune escape 

pathways of several human pathogens to improve vaccine development strategies.  

 

1.4.3 Population studies 

 

There is a marked difference in HLA diversity distribution globally, with 

geographically separated regions showing varying amounts of diversity. Most HLA 

loci, except for HLA-DPB1, show high allele numbers across populations18,82. The 

global distribution of HLA diversity provides insight into human migration patterns, 

and could help understand past pathogen exposures83 and other selection 

pressures. HLA genetic diversity studies have been used to trace the spread of 

modern humans from East Africa, and model co-evolution of genes and languages in 

African populations84. Interpretation of HLA in population studies can be improved by 

extensive knowledge of HLA diversity in different populations. Although there have 

been several efforts to understand global human genetic diversity including the Hap 

Map Project85, 1000 Genomes Project57 and the African Genome Variation Project58, 

there is limited information on South African populations. Additionally, previous 

South African studies targeted populations like hunter gathers17, some studies with 

small sample sizes15. Diverse and novel HLA alleles have been reported in sub 

Saharan populations (reviewed in86), including some novel HLA alleles from South 

African populations8,87, which further supports the presence of high genetic diversity 

in Africans, and intra African diversity.  

 

1.5 Aims and Objectives 

 

1.5.1 Aim 

 

Despite the documented evidence on genetic diversity of South African populations, 

there is limited information on HLA diversity. Lack of HLA diversity information 

impacts on donor-patient HLA matching for transplantation programs, disease 
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association and general genetic diversity. This study aimed to quantify HLA genetic 

diversity amongst South African populations. 

 

1.5.2 Objectives 

 

1. To determine the extent of lack of HLA diversity data for South African 

populations in the public domain. Chapter 2 addresses this objective. 

2. To document HLA diversity in previously typed individuals in public healthcare 

delivery systems in South Africa. Chapters 3 and 4 address this objective. 

3. To use in silico computational methods to determine high resolution HLA 

alleles from NGS WGS generated from South African individuals. Chapter 5 

addresses this objective. 
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2.1 Abstract 

 

Despite the increasingly well-documented evidence of high genetic, ethnic and 

linguistic diversity amongst African populations, there is limited data on human 

leukocyte antigen (HLA) diversity in these populations. HLA is part of the host 

defense mechanism mediated through antigen presentation to effector cells of the 

immune system. With the high disease burden in southern Africa, HLA diversity data 

is increasingly important in the design of population specific vaccines and the 

improvement of transplantation therapeutic interventions. This review highlights the 

paucity of HLA diversity data amongst southern African populations and defines a 

need for information of this kind. This information will support disease association 

studies, provide guidance in vaccine design and improve transplantation outcomes. 
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2.1 Introduction  

 

The human leukocyte antigen (HLA) complex on chromosome 6, also known as the 

major histocompatibility complex (MHC) in all mammals, consists of highly 

polymorphic genes whose protein products present antigens to T cells as part of an 

immune response to infections1,2. HLA molecules also impact on the development 

and effectiveness of vaccines, and play a determining role in the outcomes of 

transplantation3-10. 

 

The World Health Organization (WHO) indicates that there is a high burden of 

disease in southern Africa, especially communicable diseases such as HIV/AIDS, TB 

and malaria11. Despite the increasingly well-documented high genetic diversity 

observed amongst human populations in southern Africa12, there is limited 

information on HLA diversity8. Understanding HLA diversity in these populations will 

provide insight into HLA disease associations, and may help in vaccine 

development. Transplantation as a therapeutic intervention requires strict HLA allele 

matching between donors and recipients to reduce rejection and the incidence of 

graft versus host disease (GVHD). Good clinical outcomes in transplant recipients 

are observed in cases of high resolution HLA matching13,14, with the number of 

mismatches correlating with the risk of rejection and/or GVHD15-17. It is currently very 

difficult to match donor-recipient pairs in bone marrow registries in southern Africa, 

partly because of the great genetic diversity in this population. A recent study 

identified Black and Caucasian South African population-specific alleles18, 

highlighting the need to investigate HLA diversity amongst southern Africans to 

improve global representation in the International ImMunoGeneTics® information 

system IMGT/HLA database1,2. HLA typing methods use the IMGT/HLA database as 

a reference; it is thus difficult to match individuals who have alleles which are not 

captured in the database. 

 

HLA typing methods have evolved from low resolution serology typing to high 

resolution DNA sequencing based technologies (SBT). Despite high resolution, SBT 

has limitations of mostly typing certain exons within the HLA loci19. The antigen-

binding groove encoded by exons 2 and 3 (class I) and exon 2 (class II) are routinely 

sequenced in most laboratories, thereby giving partial sequences of about 10% of 
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the reported alleles19. Another potential source of ambiguity in SBT HLA typing is the 

cis/trans assignment of DNA bases in a heterogeneous sample20, yielding limited 

resolution data and thereby making it difficult to assign HLA allele types. It is 

possible to sequence the entire HLA region with current methods, but at a very high 

cost and a need for expert analysis. There have been advances in the use of next 

generation sequencing (NGS) in HLA typing to improve coverage of the HLA gene 

loci by high throughput, while at the same time reducing ambiguity associated with 

SBT typing19,21,22. To fully appreciate the NGS HLA typing tool, there is need for a 

complete HLA allele database21 highlighting the need to quantify HLA diversity in the 

genetically diverse southern African populations23. 

 

African populations have been shown to be genetically diverse24 , and are believed 

to be the cradle of humankind25,26. In general, genetic diversity of African populations 

is poorly understood27 thereby limiting our understanding of human health and 

susceptibility to diseases, hence the need for further analysis/evaluation to map 

disease association and theraupetic gene targets. Despite the general similarities in 

culture and shared geographical location, genetic differences exist among 

populations at every 1000 base pairs28,29. In this review, we examine available HLA 

diversity data in southern Africa with a view to understanding disease burden, 

planning registry recruitment and donor-recipient matching, and to providing insights 

into the evolution of the ethnic and linguistic diversity in this region. This review 

specifically focuses on classical HLA diversity in southern African countries 

(characterized by genetically, culturally and linguistically diverse Bantu ethnicities 

and admixed populations30-33) herein defined as Zambia, Malawi, Zimbabwe, 

Mozambique, Angola, Namibia, Botswana, South Africa, Lesotho and Swaziland. 

 

2.2 HLA diversity  

 

There is an ever increasing number of HLA alleles, reflecting the rate of discovery of 

the diversity of the gene loci1,2. There are currently 13412HLA alleles described by 

the HLA nomenclature and included in the IMGT/HLA Database (based on 

IMTG/HLA 3.21.0 release, 06 July 2015), with HLA-B having the highest number of 

alleles (3977)34. HLA genetic variation does not vary in an individual’s lifetime, but 
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high diversity is observed at the population level1,2,35-40. High HLA allelic diversity in 

humans is reflected by the high number of pseudogenes, and can be explained by 

natural selection and co-evolution with pathogens. There is an advantage of HLA 

diversity related to pathogen-derived peptide presentation to effector T cells: 

heterozygous individuals can potentially present more antigens than homozygotes 

for the different HLA alleles (heterozygosity advantage)35,41. In non-human species, 

low MHC diversity has been observed in several species (Tasmanian devils, 

cheetah, panda) and has been associated with disease susceptibility in some 

Tasmania devils42, highlighting the advantage of HLA diversity in presenting many 

different antigens to effector cells of the immune system.  

 

Prugnolle et al suggested that up to 39% of observed HLA class I diversity was due 

to geographical distance (and consequently human migration history) from the 

source of modern humans (assumed to be Ethiopia in this study), with the 

unaccounted source of diversity most likely being from pathogen driven selection43. 

Generally, populations exposed to a high pathogen burden show high HLA diversity, 

and there is a decreasing HLA diversity away from Africa (geographically measured 

by landmasses away from Africa)43. In related studies, microsatellite data has 

suggested that geographic distance from East Africa (probable source of modern 

humans) explains about 85% of a decreasing genetic diversity within human 

populations from the source (reviewed in44). Interestingly, HLA C is less expressed 

on cell surfaces; hence its diversity is least likely to be driven by viral pathogens 

(reviewed in43). It is historically accepted that TB was a major selective pressure in 

the evolution of Western European populations45, with malaria acting on African 

populations46. These pathogens exerted a high selective pressure mostly on genes 

of the immune system (particularly those involved in protective immunity). 

 

There is growing evidence for positive selection being responsible for maintaining 

HLA polymorphisms, most likely due to over dominant selection (heterozygote 

advantage) which maintains allelic lineages for much longer periods of time than 

neutral polymorphisms40,47-49. Globally, HLA diversity seems to be highest within 

populations than between populations (evidenced by major differences amongst 

continents)1,2,37,50. Several studies have highlighted alternative splicing of HLA class I 

genes giving rise to diverse isoforms51 which might contribute to this diversity. For 
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example, alternative splicing to exclude exon 5 has been reported to give rise to 

several isoforms of HLA-A and -B52. Alternative splicing in other HLA class I exons 

has also been reported53 including the non-classical HLA-G gene54. 

Other mechanisms of HLA diversity generation include point mutations (substitution, 

deletion, insertion): gene conversion (unidirectional gene transfer) and gene cross 

over (bidirectional gene transfer). Gene cross over, which is a form of recombination 

that can be intra/inter HLA loci during meiosis, enables exchange of genetic material 

linked to the generation of novel alleles in offspring as described by Carrington55. 

Other recombination events include gene conversion, a bidirectional donation of 

DNA between two homologous chromosomes. A recent study reports novel HLA 

alleles resulting from (a) non-synonymous amino acid change (HLA B*41:21, HLA 

DQB1*02:10, HLA QA1*01:12); (b) deletion leading to frame shift (HLA A*01:123N); 

(c) intralocus gene conversion (HLA B*35:231, HLA B*53:31); and (d) interlocus 

gene conversion (HLA C*07:294)56. It is important to note the low frequency of 

interlocus generated alleles as reported by several other studies as reviewed by 

Adamek et al56. 

 

2.3 HLA diversity in transplantation and transfusion 
 

The human immune system uses HLA’s uniqueness in every individual to recognize 

self from non-self; hence the body only mounts an immune response against foreign 

cells/molecules under normal conditions. Transplantation as a therapeutic 

intervention matches donor and recipient HLA molecules to decrease the likelihood 

of rejection35. The likelihood of two individuals having identical HLA molecules on all 

loci is very low, except for siblings, who have a 25% chance of being HLA-identical 

as a result of HLA molecules being codominantly expressed and inherited as 

haplotypes from both parents. The degree of HLA matching is a predictor of clinical 

outcome. 

GVHD is an immunocompetent donor T cell mediated response against the 

recipient’s immune system which is common in unmatched donor-recipient pairs. 

Acute GVHD can be reduced by donor T cell depletion, but this increases the risk of 

rejection, malignant disease relapse and impaired immune recovery57,58. In addition 

to HLA matching, killer-cell immunoglobulin-like receptors (KIRs) have been 
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documented to affect the clinical outcome of allogeneic transplantation59-62. In severe 

immunocompromised individuals, allogeneic transfusion with immune competent T 

cell-containing blood products might lead to transfusion associated GVHD. 

Transfusion related lung injury (TRALI) is an anti-HLA (mostly class I63,64) antibody 

related complication which may be fatal. Anti-HLA class II antibodies induce TRALI 

through monocyte and subsequent neutrophil activation63,65. Anti-HLA class I 

antibodies have been reported to be a cause of neonatal alloimmune 

thrombocytopenia together with platelet-derived specific antigens66. It is critical to 

know the population HLA diversity in order to improve donor-recipient matching in 

both transplantation and transfusion therapeutic interventions. Diversity data informs 

decision making in transplantation and transfusion aimed at reducing rejection while 

at the same time improving the outcome of the intended therapeutic intervention. 

Recruitment of donors from minority or under-represented populations might help to 

improve HLA diversity in registries36 which improves the chances of donor-recipient 

matching. 

 

2.4 HLA diversity in human disease associations 

 

The high disease burden in southern Africa11 offers a unique opportunity to study 

HLA disease association8. Several autoimmune conditions have been directly 

associated with specific class I and II HLA alleles, including rheumatoid arthritis, 

multiple sclerosis, ankylosing spondylitis, Grave’s disease and many more, as 

reviewed by Trowsdale and Knight67. Several alleles have been associated with 

varying rates of HIV disease progression4,41,68-70, susceptibility, transmission and 

treatment outcomes (reviewed in70). HLA has likewise been associated with malaria6, 

TB susceptibility and protection71 in various populations. In another example, 

although not directly related to southern Africa, the HLA-B locus has been linked to 

fatal and non-fatal Sudanese Ebola strains. Thus, HLA-B*67 and -B*15 have been 

associated with fatal outcomes and B*07 and B*14 have been associated with non-

fatal Ebola infections72.  

 

Haplotype analysis gives information on disease/condition associated alleles, which 

are assumed to be inherited as blocks due to strong linkage disequilibrium73. HLA 
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alleles can be imputed from analyzing identity by descent (IBD) patterns within the 

HLA region of specific populations. This approach leverages on the observation that 

chromosomes with high IBD within MHC most likely share the same alleles. 

Haplotype analysis or SNP-based HLA allele imputation is important for disease 

association studies, but will not replace classical HLA typing for transplantation 

applications where a high degree of haplomatching is required for a good clinical 

outcome74. Currently several imputation methods are available to type HLA genes in 

silico and to fine-map associations within classical HLA genes74. Unfortunately, 

limited HLA diversity data from populations such as those in southern Africa make 

this difficult74. 

 

2.5 HLA diversity in population studies 

 

There is documented evidence of geographical distribution of human genetic 

variation, which helps to understand human evolution, migration and adaptation to 

different environments and pathogens75. Several efforts aimed at understanding 

global human genetic diversity including the Hap Map Project76, 1000 Genomes 

Project77 and recently the African Genome Variation Project33; however, all of these 

have limited information on southern African populations. Some African genetic 

diversity studies have focused on targeted populations like hunter gatherers78,79 or 

have had very limited sample size80, and are therefore not representative of southern 

Africa. The low representation of southern African genetic data in global efforts 

makes it difficult to use the currently available reference panels for these 

populations, especially in disease association studies33. This suggests that targeted 

HLA sequencing of these diverse populations is necessary to improve their 

representation in reference panels.  

 

There are marked differences in HLA diversity distribution globally, with 

geographically separated regions showing varying degrees of diversity37,43,44,50. Most 

HLA loci show high allele numbers across populations37,81. HLA DPA1 has the least 

number of alleles (40 as of July 2015)82 compared to other classical HLA loci (for 

example HLA DQB1 which has 807 alleles). This is generally due to the fact that 

DPB1 loci are not routinely sequenced for transplantation purposes as are other HLA 
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genes. The global distribution of HLA diversity provides insight into human migration 

patterns, and could help understand past pathogen exposures40. As an example, 

HLA studies have been used to trace the spread of modern humans from East 

Africa, and model for co-evolution of genes and languages in Africa83. Interpretation 

of HLA in population studies can be improved by extensive knowledge of HLA 

diversity in these populations.  

 

2.6 Contemporary studies on HLA diversity in southern Africa 

 

To highlight the paucity of HLA diversity data in southern Africa, this review used a 

comprehensive literature search for previously published work on HLA diversity 

together with the Allele Frequency Net Database (AFND) to determine the 

information in the public domain. The key search terms for articles were “HLA AND 

genetic diversity AND southern Africa”. Allele frequency data from AFND was 

extracted for sub-Saharan African countries, from which southern African data was 

compiled (Supplementary Table S2). Table 2.1 summarizes allele frequency data 

from the AFND web search (http://www.allelefrequencies.net/)50 used in this review. 

The AFND is a public global database of alleles, genotypes and haplotype 

frequencies of HLA and KIRs from different studies, reports and proceedings of 

international workshops in immunogenetics and histocompatibility. HLA data is 

generated by different typing methods, but is curated in the database in accordance 

with the updated IMGT/HLA guidelines (this review used the 3.15.0 release - 17 

January 2014)1,2,37,50. For this review, only positive allele frequencies from all ethnic 

groups within sub-Saharan Africa were extracted from the database 

(http://www.allelefrequencies.net/)37,50. The number of alleles reported in 

Mozambicans, Black South Africans, Caucasian South Africans, Tamil South 

Africans, Zulu South Africans, Tswana South Africans, Zambians and Shona 

Zimbabweans respectively was 18, 33, 25, 16, 37, 15, 20 and 32 alleles for HLA-A, 

and 25, 30, 41, 23, 45, 14, 29 and 46 alleles for HLA-B. HLA-C alleles were only 

reported for Black South Africans (28 alleles), Caucasian South Africans (29 alleles), 

Tamil South Africans (21 alleles), Zambians (12 alleles) and Shona Zimbabweans 

(24 alleles). All HLA class II alleles in the AFND were only reported for Shona 

Zimbabweans and South African Vendas as summarized in Supplementary Table 

http://www.allelefrequencies.net/
http://www.allelefrequencies.net/
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S2. Tables 2.1 and 2.2 summarize the selected allele frequencies from southern 

African populations and the total number of classical HLA alleles reported across 

different global regions as defined in the AFND37,50, respectively. 

 

South African had the highest number of HLA data sets from the AFND compared to 

other southern African countries (Table 2.1A). Some southern African countries 

(Angola, Lesotho, Malawi, Namibia and Swaziland) have no HLA data available 

(Table 2.1A). As summarized in Table 1(B and C), HLA-A*30 and its derivatives 

(A*30:01, A*30:02) are common in black populations (Mozambicans, Black South 

Africans, Zulus, Tswanas, Zambians and Zimbabwean Shonas). Caucasians and 

Tamils had a completely different HLA A allele frequency distribution compared to 

the other populations. HLA-A*02:01:01 was most frequent (0.26) in South African 

Caucasians, as has been reported by Solberg et al (HLA-A*02:01) in European 

(27%) and white American (20%) populations84. This suggests that South African 

Caucasians have a common ancestry with the Europeans and Americans, with the 

A*02:01 allele and its derivatives being restricted mostly to white populations. For the 

HLA-B locus, B*58 (B*58:02, B*58:01) was most common in Mozambicans, Black 

South Africans (including Zulus and Tswanas) as highlighted in Table 2.1(B and C). 

All HLA-B allele frequencies were less than 0.1 in Black South Africans and Shonas. 

All HLA-C frequencies were less than 0.2, with C*06:02 being commonly high in 

Black South Africans and Tamils. Although more than ten years old (2004), the study 

by Cao et al identified A*02:02, A*34:02, A*36:01, A*74:01, B*15:03, B*42:01, 

B*53:01, B*57:03 and B*58:02 as unique African alleles. Recently, diverse and novel 

HLA alleles have been reported in sub Saharan populations, for example HLA class 

II as reviewed in Ayele et al85 and HLA class I as described by Paximadis et al18 to 

further support high genetic diversity in Africans, and intra African diversity. 

Interestingly five new class I alleles ((A*30:01:02, A*30:02:02, A*68:27, B*42:06, and 

B*45:07) were reported in a recent South African study18. Additionally, Shepherd et 

al recently reported an overrepresentation of HLA-A*02:01, -A*34:02, and -B*58:02 

in HIV negative controls in Zimbabwe86 compared to the HIV positive group, which 

supports the earlier notion of African specific alleles. 

 

The AFND reports very few HLA class II alleles amongst southern African 

populations; only Zimbabwean Shonas and Black South Africans18 had HLA-DP 
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data. The reported allele frequencies (Table 2.1B and 2.1C) for the DP locus were: 

most frequent DPB1*01:01:01 (0.355) in Shona Zimbabweans and DPB1*13:01 

(0.148) in Black South Africans; and least frequent DPB1*01:01:02, DPB1*02:02, 

DPB1*62:01, DPB1*65:01 and DPB1*80:01 (0.002) in Shona Zimbabweans. No 

alleles were reported for the DPA1 and DQA1 loci. The DQB1 locus was reported 

only in Botswana, Black South Africans, Shona Zimbabweans and Venda South 

Africans. DQB1*06 in Black South Africans was the most frequent (0.555) with 

DQB1*06:15 in Shona Zimbabweans being least frequent (0.002). DRB1 alleles 

were reported in all the studied populations except in some South Africans (Tswana, 

Tamil and Zulu). The most frequent allele was DRB1*11 (0.366) in Black South 

Africans, while the least frequent were DRB1*16 (0.002) in Mozambicans, and 

DRB1*03, DRB1*04:04, DRB1*12:04, DRB1*13 and DRB1*15:01 (all at 0.002) in 

Shona Zimbabweans. 

 

The number of classical HLA alleles (Table 2.2) varies greatly in each geographical 

region, with North Africa having the highest number of AFND reported alleles 

globally, and sub-Saharan Africa (including southern Africa) in the top 5. In terms of 

HLA class II alleles, sub-Saharan Africa falls in the bottom 5 regions (with the least 

number of alleles - Table 2.2) for most of the HLA loci (DQA1, DQB1, DRB1). The 

DP locus generally has fewer numbers of reported alleles globally 

(http://www.allelefrequencies.net/)37,50. Interestingly, more than 50% of HLA class I 

alleles reported for sub-Saharan Africa are in southern Africa (Table 2.2), further 

highlighting diversity in this region. No HLA-DPA1 alleles were reported by the AFND 

in southern Africa, with less than 50% of the other class II alleles reported in sub-

Saharan Africa coming from southern Africa.  

 

The number of southern African HLA studies in the AFND is relatively low, reflecting 

the underrepresentation of this region. The data currently available is mostly low 

resolution with low sample numbers, and is not a true reflection of HLA diversity in 

the southern African context. This highlights the need for continual submission of 

southern African HLA diversity data to centralized databases like the AFND. The few 

studies from southern Africa also highlight the knowledge gap on HLA diversity in 

this region in this era of high resolution typing. Several HLA disease association 

studies with allele frequency data have been reported in the region7,87-90; these 

http://www.allelefrequencies.net/
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frequencies might not be a true reflection of the general population owing to the 

confounding effect of the diseases. Allele frequency is highly dependent on sample 

size, and hence might not give a clear picture of HLA diversity. 
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Table 2.1 Contemporary studies which provide insight into HLA diversity in southern Africa 

 

HLA allele frequency from the studies cited was extracted from the AFND37,50 to assess HLA diversity in southern Africa. The AFND 

curated allele frequency data was generated from Mozambique, South Africa, Zambia and Zimbabwe as shown in (A) with the most 

and least frequent classical HLA alleles in these populations as shown in (B and C). 

 
A. General description of studies used in this review 

 
Country Year Population n Typing 

method 
Loci typed Comments 

Bots 2005  55 SSP DRB, DQB1 55 HIV negative compared to 74 HIV positive7 

Moza 2010 Mostly Black 202 SSOP A, B, DRB1 91.8% Black, rest admixture. Assane et al37,50,108 

RSA 2012 Black 200 SBT,SSP A, B, C, DRB1 Blacks from different ethno linguistic groups in 
RSA. Paximadis et al18,37,50 

RSA 2012 Caucasians 102 SBT,SSP A, B, C, DRB1 English and Afrikaner ancestry. Paximadis et a 
18,37,50 

RSA 2002 Tamil/Natal 51 SSOP A, B, C Hammond37,50,109 

RSA 2000 Black 
Zulu/Natal 

100 SSOP A, B Could not distinguish A*0301 from A*0303N, 
and B*0705 from B*070637,39,50,110 

RSA 2006 Black/Tswana 41  A,B Coetzee et al37,50,111 

RSA 2004 Black 112 SSP DRB1, DQB1, DPB1 112 Sclerosis controls compared to cases90 

Zam 2002 Black/Lusaka 44 SSOP A,B, C Alleles similar at exons 2 and 3 could not be 
distinguished37,50,107,112 

Zim 2002 Shona/Harare 230 SSOP A,B,C,DPB1, 
DQA1,DQB1,DRB1 

Louie37,50,113 
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B. Most frequent alleles in different southern African populations37,50 
 

  

 Loci 

Population A B C DP DQ DRB1 

Black RSA A*30:01 (0.101) B*42:01 
(0.089), 
B*58:02 
(0.094) 

C*06:02 
(0.149) 

DPB1*1
3:01 
(0.148)9

0 

DQB1*06 (0.555)90 DRB1*11 (0.366)90, DRB1*13:01 
(0.124)  

Bots     DQB1*16 (0.509)7 DRB1*11 (0.364)7 

Caucasian 
RSA 

A*01:01:01 
(0.2), 
A*02:01:01 
(0.26) 

B*07:02:01 
(0.149) 

C*07:01 
(0.172), 
C*07:02:0
1 (0.137) 

  DRB1*03:01 (0.122) 

Moza A*30 (0.239) B*15 (0.156)    DRB1*11 (0.196), DRB1*13 
(0.198) 

Shona Zim A*30:02 (0.147) B*45:01 and 
B*53:01 
(0.093) 

C*04:01 
(0.148) 

DPB1*0
1:01:01 
(0.355) 

DQA1*01:02 
(0.343), 
DQB1*05:01 
(0.227), 
DQB1*06:02 
(0.247)  

DRB1*11:01 (0.144), DRB1*15:03 
(0.153) 

Tamil RSA A*01:01 (0.17), 
A*11:01 (0.18) 

B*40:06 
(0.143) 

C*06:02 
(0.177) 

   

Tswana RSA A*02 (0.146), 
A*30 (0.159) 

B*58 (0.22)     

Venda RSA     DQB1*06 (0.437) DRB1*11 (0.184) 

Zam A*30:02 (0.233) B*42:01 
(0.148) 

C*17:01 
(0.156) 

   

Zulu RSA A*30 (0.195) B*15 (0.15), 
B*58 (0.145) 
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C. Least frequent alleles in different southern African populations37,50 
 

 Loci 

Population A B C DP DQ DRB1 

Bots     DQB1*02 
(0.127)7 

DRB1*10 and DRB1*12 
(0.074)7 

Caucasian 
RSA 

A*02:05, 
A*02:17, 
A*11:12, 
A*24:07, 
A*25:01:01 
A*33:03:01 and 
A*69:01 (0.005) 

B*07:06, B*14:01, 
B*15:02, B*15:03, 
B*15:10, B*15:13, 
B*15:16, B*15:24, 
B*27:02, B*35:05, 
B*40:06:01 
B*41:01, B*44:04, 
B*44:27 B*45:01, 
B*49:01, B*50:01 
and B*58:02 
(0.005) 

C*02:05, 
C*03:16, 
C*04:08, 
C*04:09N, 
C*06:11, 
C*07:22 
C*08:01, 
C*14:04 
and 
C*17:01 
(0.005) 

  DRB1*03:02, DRB1*04:08, 
DRB1*12:02, DRB1*14:04 
and DRB1*15:07 (0.005) 

Moza A*32 (0.002) B*27, B*37, B*73 
and B*82 (0.002) 

   DRB1*16 (0.002) 

Shona Zim A*02:17, 
A*32:02, 
A*34:01 
A*80:01, 
A*66:02, 
A*66:03 and 
A*74 (0.002) 

B*07:12, B*13:04, 
B*14:04, B*15:17, 
B*15:18, B*35:02, 
B*39:10, B*40:01, , 
B*40:16, B*50:02 
and B*73:01 
(0.002) 

C*03:04:01, 
C*07:08 
C*12:04:02 
and 
C*15:05 
(0.02) 

DPB1*01:
01:02, 
DPB1*02:
02, 
DPB1*62:
01, 
DPB1*65:
01 and 
DPB1*80:
01 (0.002) 

DQA1*05:02 
(0.004), 
DQB1*06:08 
and 
DQB1*06:15 
(0.002) 

DRB1*03, DRB1*04:04, 
DRB1*12:04, DRB1*13 
and DRB1*15:01 (0.002)  

Tamil RSA A*02:01, 
A*02:03 A*03:02 
A*24:07, 

B*15:25, B*27:05, 
B*44:07 B*50:01 
and B*56:01 (0.01) 

C*02:02:01, 
C*12:03, 
C*15:02 
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A*30:01 and 
A*32:01 (0.001) 

and 
C*16:01 
(0.01) 

Tswana RSA A*01, A*31, 
A*32, A*36 and 
A*80 (0.012),  

B*35, B*40, B*50 
and B*53 (0.012) 

    

Venda RSA     DQB1*04 
(0.094) 

DRB1*10:01 (0.004) 

Zam A*02:06, 
A*02:14 
A*26:01, 
A*33:01, 
A*34:02, 
A*43:01 and 
A*66:01 (0.012) 

B*07:05, B*13:02, 
B*15:18, B*18:03 
B*41:01, B*44:05, 
B*47:01 B*49:01 
and B*57:01 
(0.011) 

C*03:03 
and 
C*07:04 
(0.022) 

   

Zulu RSA A*31, 
A*31:01:02, 
A*33 and 
A*33:03 (0.005) 

B*15:01, B*15:16, 
B*41:01, B*41:02, 
B*67, B*67:01 B*82 
and B*82:01 
(0.005) 

    

 

n=sample size, Bots=Botswana, Moza=Mozambique, RSA=Republic of South Africa, Zam=Zambia, Zim=Zimbabwe, 

SSP=sequence specific primers, SBT=sequence based typing, SSOP=sequence specific oligonucleotide primers, (number) is 

allele frequency in the population stated. Blanks indicate no alleles reported in the population or ethnicity not defined or typing 

method not specified 
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Table 2.2 Number of classical HLA alleles reported in each geographical region 

Sub-Saharan Africa (including southern Africa) generally has a high number of class I alleles (ranked in the top 5 regions) with a 

low number of class II alleles (ranked in the bottom 5 regions). More than half of the reported class I alleles in sub-Saharan Africa 

come from southern Africa, with less than half of the reported class II alleles in the sub-Saharan region coming from southern 

Africa, data from AFND37,50.  

 

 HLA loci 

Region A B C DPA1 DPB1 DQA1 DPB1 DRB1 

Australia 49 95 33 * 20 12 17 40 

Europe 714 1121 387 16 137 47 89 602 

N. Africa 982 1559 600 * 32 30 89 269 

N. America 721 1166 390 7 74 29 93 574 

N.E. Asia 262 477 131 12 78 47 57 318 

S.Central America 121 288 59 12 78 28 60 549 

S./S.E. Asia 407 731 227 10 99 21 64 280 

SubSahara Africa 154 313 94 12 87 23 48 220 

W. Asia 215 366 167 * 29 21 57 138 

Ocenia 163 256 85 16 84 10 48 93 

Southern Africa 131 291 54 * 21a 8 a 20 58 

N. Africa=North Africa, N. America=North America, N.E. Asia =North East Asia, S.Central America=South and Central America, 

S/S.E. Asia=South and South East Asia, W. Asia=West Asia * No loci specific alleles were reported in this region in the AFND. 

aAlleles only reported in Zimbabwean black Shona population in the AFND 
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2.7 Concluding remarks 

 

There is limited data on HLA diversity in southern Africa, with most having been 

generated from disease association studies and which is therefore not a true 

reflection of the general population. It is often difficult to assign causality of a specific 

HLA allele to an infection/condition, because of linkage disequilibrium and other 

factors such as selection pressure, which are dependent on the condition/infection 

and the other arms of the immune system which are HLA independent91. As 

evidenced by the HIV example, several HLA B alleles have been associated with 

control of viremia4,92,93 yet some individuals with these protective alleles develop 

AIDS (fail to control the virus)94. Recently Chen et al showed that HLA B*27 

restricted CD8 T cells had variable viral replication inhibition capabilities in HIV 

controllers versus progressors due to a modulation by specific T cell receptor 

clonotypes5. There are few high resolution HLA datasets from southern African 

populations1,2,37,50 despite growing advancement in NGS HLA typing.  

 

HLA diversity data forms the cornerstone of population-specific vaccine 

development, and taking into consideration the high disease burden in southern 

Africa, information of this nature is particularly important in this region11. This review 

highlights the paucity of information on HLA genotypic data and documents the 

extent of HLA diversity data from the southern African perspective based on the 

limited data available. This underpins an urgent need for HLA data from the general 

populations in this region and for studies which elucidate the extent of this diversity. 

There is a need to build an HLA diversity resource for southern Africa (or Africa as a 

whole) such as for example the HLA-net (a European network)95 which focuses on 

HLA diversity and its applications in histocompatibility, transplantation, epidemiology 

and population genetics. This network has developed analysis pipelines and 

guidelines for HLA diversity data for mostly European populations95,96. It is thus 

possible to build such a resource for the genetically diverse and disease burdened 

African continent to be used as a guideline for future studies including donor 

recruitment strategies36, population studies40,83,96 and disease association 

studies6,8,71,72. Furthermore, advancement in HLA typing methods such as NGS will 

help to finely investigate HLA diversity, as previous strategies have targeted a few 
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exons per locus thereby missing some of medically important variants outside the 

typed regions.  

 

An understanding of HLA diversity will provide insight into allele frequency 

dependent selection fitness which varies between populations. This might help 

understand the high disease burden (especially with regard to HIV), and form the 

basis of vaccine development for the many infectious diseases as well as in the 

planning of vaccine clinical trials in the region. The paucity of HLA data from this 

region is a major hurdle in vaccine design7. Brumme et al highlight for example the 

need to elucidate HLA-restricted CTL responses in HIV vaccine design97. HLA class 

II antigens presented to CD4+ T cells induce B cells leading to an antigen specific 

humoral immune response98. HLA class II alleles have been associated with humoral 

immune response inducing vaccines for malaria99, active anticancer 

immunotherapy100 and HIV101. The combined use of HLA class II T helper (Th) 

epitopes with CD8+ CTL epitopes theoretically generates a high efficacy vaccine as 

reviewed by Minzhen et al100. HLA diversity data might be useful in predicting the 

relative population coverage of a specific vaccine, add knowledge on epitope targets 

for vaccines102, mechanisms of immune evasion103,104, and evaluation of drug 

efficacy105. Posteraro et al reviewed the significance of HLA diversity in efficacy of 

vaccination, highlighting the need to further understand the link between genetic 

variation and immune responses106.  

 

It is generally easier to match donor-recipient pairs from populations with known HLA 

genotypes than in areas with information gaps3, highlighting the need to understand 

population HLA diversity in order to improve on donor-recipient matching. It is 

generally difficult to find a donor HLA match for patients of African descent owing to 

the paucity of Africans in global registries together with the occurrence of African 

specific alleles and or haplotypes, and the high genetic diversity in these 

populations107.  

 

It is thus important to fully understand HLA diversity in the southern African context, 

to establish HLA-disease associations, to use this data for the informed design of 

population-specific vaccines against the many diseases, and to improve on donor-

recipient matching. 
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2.8 Supplementary Data 

 

Table S2: A Microsoft Excel spreadsheet listing all classical HLA alleles, their 

frequencies as reported by the AFND and a limited number of disease association 

studies in southern African populations has been made available online as 

supplementary Material (S2) http://dx.doi.org/10.1155/2015/746151. Additionally, as 

supplementary data to this thesis, supplementary data is available in Addendum 1. 
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3.1 Abstract 

 

Human leukocyte antigen (HLA) -A, -B, -C, -DRB1 and -DQB1 allele and haplotype 

frequencies were studied in a subset of 237 volunteer bone marrow donors 

registered at the South African Bone Marrow Registry (SABMR). Hapl-o-Mat 

software was used to compute allele and haplotype frequencies from individuals 

typed at various resolutions, with some alleles in multiple allele code (MAC) format. 

Four hundred and thirty eight HLA -A, 235 HLA -B, 234 HLA -DRB1, 41 HLA -DQB1 

and 29 HLA -C alleles are reported. The most frequent alleles were A*02:02g 

(0.096), B*07:02g (0.082), C*07:02g (0.180), DQB1*06:02 (0.157) and DRB1*15:01 

(0.072). The most common haplotype was 

A*03:01g~B*07:02g~C*07:02g~DQB1*06:02~DRB1*15:01 (0.067), which has also 

been reported in other populations. Deviations from Hardy-Weinberg equilibrium 

were observed in A, B and DRB1 loci, with C~DQB1 being the only locus pair in 

linkage disequilibrium. This study describes allele and haplotype frequencies from a 

subset of donors registered at SABMR, the only active bone marrow donor registry in 

Africa. Although sample size was small, our results form a key resource for future 

population studies, disease association studies and donor recruitment strategies. 

 

Keywords: HLA alleles, HLA haplotypes, South African Bone Marrow Registry 
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3.2 Introduction 

 

The ~4Mb human leukocyte antigen (HLA) complex on chromosome 6 in humans is 

amongst the most polymorphic gene regions in the genome1. Seventeen thousand 

eight hundred and seventy-four (17 874) HLA alleles have been described in the 

IMTG/HLA database to date2. HLA gene products drive antigen presentation to T 

cells, and form the basis of host defense mechanisms against pathogens3. HLA also 

plays a role in vaccine development, and has a determining role in transplantation 

outcome4-11. In hematopoietic stem cell transplantation (HSCT), good clinical 

outcomes are associated with high resolution HLA matching12,13, with the number of 

mismatches correlating with the risk of rejection and/or graft versus host disease 

(GVHD)14-16.  

 

Bone Marrow Donors Worldwide (BMDW) is a centralized databank of HLA 

phenotypes and other relevant data of unrelated stem cell donors which aims to 

support HSCT programmes17. The South African Bone Marrow Registry (SABMR), a 

nonprofit initiative based in Cape Town, was started in 1991 with the objective of 

providing HLA matched unrelated donors for South African patients and the world at 

large. The registry, listed in the BMDW, has more than 73 000 HLA typed volunteer 

donors from South Africa18. Unrelated donor registries globally, including the 

SABMR, increase chances of HLA matches for many patients in need of 

transplantation. Despite the high donor numbers globally, it is still difficult to find HLA 

matches for patients of black African origin, partly because of (a) the great genetic 

diversity in these populations19 and (b) limited information on HLA diversity9. Most 

transplants facilitated by the SABMR are from foreign donors, mainly due to the 

limited number of donors in the registry, particularly those of black African and 

Asiatic/Indian origin20. There is thus a need to improve recruitment from these under 

represented populations into the SABMR, which, since 1997, has been the only 

registry on the African continent supporting an HLA matched unrelated donor stem 

cell transplantation programme20,21. 

 

Donor registries continuously try to improve their recruitment strategies through 

increasing donor numbers22, recruiting young males23, minority recruitment24-26, 

recruiting donors with rare HLA phenotypes27 or alternatively, using currently 
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available HLA allele and haplotype frequencies25,28. Although there is limited HLA 

diversity data for southern Africans (reviewed in29), Africans are considered to be 

genetically diverse19 as has been determined using multiple markers30-32, including 

HLA33. Most HLA families that exist globally are found in African populations34, 

further confirming genetic diversity in these populations.   

 

In this study, we describe HLA allele and haplotype frequency data from 237 donors 

registered with the SABMR, which serves as the source of unrelated marrow donors 

in South Africa. Frequencies of HLA- A, -B, -C, -DRB1 and -DQB1 alleles and 

haplotypes were analysed with the aim of developing a resource for disease 

association, anthropology and evolutionary studies. Furthermore, these data will 

support models for population specific vaccine development35, and will improve 

donor recruitment strategies in South African populations 

 

3.3 Methods 

 

3.3.1 Study population, data access and ethics 

 

Two hundred and thirty seven (237) SABMR registered consenting volunteer bone 

marrow donors HLA typed at varying resolutions were included in this study. This 

subset was accessed following an extensive re-consenting procedure of donors in 

the SAMBR. The self-reported ethnic grouping of the study population was Asian, 

Black, Chinese, Coloured, White and some unknown. High resolution typing has 

recently been adopted by SABMR, with most donors having low resolution typing 

(two digit)20,21 which did not meet the current study criteria. For ethical compliance, 

the current study had to re consent donors to participate in the study. As a result only 

237 of the potential 400 participants provided consent. Ethical clearance for this 

study was granted by the University of Pretoria, Faculty of Health Sciences 

Research Ethics Committee (220/2015) and the SABMR Board. Participants’ data 

accessed included HLA -A, -B, -C, -DRB1 and -DQB1 loci molecular typing and self-

reported ethnicity. Some typings in this data set were represented by multiple allele 

codes (MAC, formerly NMDP allele codes) as described in 

https://hml.nmdp.org/MacUI/.  

https://hml.nmdp.org/MacUI/
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3.3.2 HLA allele and haplotype frequency analysis 

 

Allele and haplotype (two, three, four and five loci) frequencies were estimated by 

resolving phase and allelic ambiguities using the expectation-maximization (EM) 

algorithm36,37 in Hapl-o-Mat open source software38. This software allows for allele 

verification using the IMTG/HLA database (http://www.ebi.ac.uk/ipd/imgt/hla/)2,3 and 

recognizes ambiguities including MACs. Deviations from Hardy Weinberg equilibrium 

(HWE) were assessed at locus level using a chi-squared test39. Global linkage 

disequilibrium (LD) and HWE were implemented in Arlequin v3.5.240. MAC coded 

alleles were dropped to two digit level resolution for HWE and LD analysis.  

 

3.4 Results 

 

3.4.1 Demographics and allele diversity 

 

Self-reported ethnicity was not considered for analysis in this study owing to 

redundancy and simplicity of this classification as previously discussed41,42. One 

hundred and thirty-one (131) Black, 69 Caucasian, 19 Mixed-ancestry (Coloured), 15 

Asian, 2 unknown and 1 Chinese individuals were included in this study. Nine 

hundred and seventy-seven (977) different possible alleles are reported in this study 

(Table S1). There were 438 HLA -A, 235 HLA -B, 29 HLA -C, 234 HLA -DRB1and 41 

HLA -DQB1 alleles (Table S3.1), with the HLA-C locus having the lowest allelic 

diversity.  

 

3.4.2 Hardy-Weinberg equilibrium and global LD analysis 

 

In this donor subset, HLA-A, -B and -DRB1 genotypes deviated from the expected 

HWE proportions (p<0.05), with HLA-C and -DQB1 having insignificant (p>0.05) 

differences between expected and observed heterozygosity (Table 3.1). No 

significant global LD was detected between A~B, A~C, B~C, A~DRB1, B~DRB1, 

C~DRB1, A~DQB1, B~DQB1, DRB1~DQB1 locus pairs (Table 3.2). In addition, the 

C~DQB1 locus pair showed significant LD (p<0.001), as summarized in Table 3.2. 

http://www.ebi.ac.uk/ipd/imgt/hla/
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3.4.3 HLA allele frequency 

 

The full list of alleles including those derived from MACs, and their frequencies, are 

listed in Table S3.1. The top 20 most frequent alleles across the five loci are 

summarized in Table 3.3 with the top three alleles per locus being A*02:01g (0.096), 

A*03:01g (0.093), A*01:01g (0.057); B*07:02g (0.082), B*08:01g (0.049), B*58:02 

(0.048); C*07:02g (0.180), C*07:01g (0.104), C*04:01g (0.091); DRB1*15:01 (0.072), 

DRB1*15:03 (0.065), DRB1*07:01 (0.057) and DQB1*06:02 (0.157), DQB1*03:01 

(0.139), DQB1*05:01 (0.118). 

 

3.4.4 HLA haplotype frequency 

 

All two, three, four and five (extended) haplotype frequencies are detailed in 

Supplementary Table 2 (Table S3.2), with the 20 most frequent haplotypes 

summarized in Tables 3.4 and 3.5 (extended haplotypes). The most common 

computed two, three and four loci haplotypes were B*07:02g~C*07:02g (0.145); 

C*07:02g~DRB1*15:01~DQB1*06:02 (0.107) and 

B*07:02g~C*07:02g~DRB1*15:01~DQB1*06:02 (0.108) respectively. We report a 

possible 7498 two locus, 6446 three locus and 773 four locus haplotypes in the 

SABMR subset of donors (Table S2). A*33:95~B*07:231N (1.08725E-06), 

A*03:01g~C*07:02g~DQB1*03:02 (1.03519E-06) and 

A*11:01g~C*01:02g~DRB1*01:01~DQB1*05:01 (2.8507E-06) were less frequent 

two, three and four locus haplotypes respectively (Table S2). The twenty most 

frequent extended haplotypes (five loci) are summarized in Table 3.5, with 

A*03:01g~B*07:02g~C*07:02g~DRB1*15:01~DQB1*06:02 being the most frequent 

(0.067). 
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Table 3.1 Hardy-Weinberg Equilibrium (HWE) parameters for the 237 donors 

studied 

Locus Obs 
Het 

Exp Het SD Steps done 
 

P value 

HLA -A 1.0000
0       

0.96196     0.00000      1001000 <0.001*   

HLA -B 0.9955
4       

0.97382     0.00001      1001000 0.00074*   

HLA -C 1.0000
0       

0.93582     0.00020      1001000 0.07316   

HLA -DRB1 0.9895
8       

0.95618     0.00000      1001000 <0.001*   

HLA -DQB1 1.0000
0       

0.91336     0.00027      1001000 0.15049   

      

SD standard deviation; * statistically significant (p<0.005) 

 

 

 

Table 3.2 Pair-wise global LD estimates across the five loci 

* Statistically significant (p<0.005) 

 

 

 

haplotype Chi-square test value Degrees of freedom P value 

A~B 1672.062 3696 1.000 

A~C 845.290 1488 1.000 

B~C 1220.641 2387 1.000 

A~DRB1 1288.195 2256 1.000 

B~DRB1 1713.476 3619 1.000 

C~DRB1 847.773 1457 1.000 

A~DQB1 596.485 816 1.000 

B~DQB1 777.193 1309 1.000 

C~DQB1 732.281 527 <0.001* 

DRB1~DQB1 802.780 799 0.456 
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Table 3.3 The twenty most frequent HLA -A, -B, -C, -DRB1 and -DQB1 alleles from the 237 donor subset (Full list in Table 

S1) 

A frequency B frequency C frequency DRB1 frequency DQB1 frequency 

A*02:01g 0.096 B*07:02g 0.082 C*07:02g 0.180 DRB1*15:01 0.072 DQB1*06:02 0.157 

A*03:01g 0.093 B*08:01g 0.049 C*07:01g 0.104 DRB1*15:03 0.065 DQB1*03:01 0.139 

A*01:01g 0.057 B*58:02 0.048 C*04:01g 0.091 DRB1*07:01 0.057 DQB1*05:01 0.118 

A*24:02g 0.051 B*42:01 0.039 C*06:02g 0.074 DRB1*13:01 0.053 DQB1*02:01 0.090 

A*30:02g 0.050 B*44:03 0.033 C*08:02g 0.057 DRB1*11:01 0.053 DQB1*03:02 0.083 

A*68:02g 0.048 B*15:10 0.032 C*02:02g 0.051 DRB1*03:01 0.046 DQB1*06:03 0.068 

A*11:01g 0.044 B*15:01g 0.031 C*15:02g 0.045 DRB1*04:01 0.038 DQB1*04:02 0.066 

A*30:01g 0.043 B*15:03g 0.031 C*05:01g 0.045 DRB1*03:02 0.034 DQB1*02:02 0.063 

A*29:02g 0.035 B*35:01g 0.031 C*03:04g 0.045 DRB1*13:02 0.033 DQB1*05:03 0.049 

A*23:01g 0.034 B*14:02 0.028 C*12:03g 0.040 DRB1*01:02 0.029 DQB1*03:03 0.045 

A*68:01g 0.025 B*58:01g 0.028 C*03:03g 0.034 DRB1*01:01 0.029 DQB1*06:01 0.042 

A*43:01 0.024 B*18:01g 0.026 C*01:02g 0.034 DRB1*15:02 0.026 DQB1*03:19 0.021 

A*66:01g 0.023 B*51:01g 0.025 C*17:01g 0.028 DRB1*11:02 0.021 DQB1*06:04 0.021 

A*33:03g 0.023 B*15:16 0.021 C*12:02g 0.028 DRB1*13:03 0.020 DQB1*06:09 0.021 

A*34:02 0.022 B*13:02g 0.021 C*16:01g 0.023 DRB1*11:04 0.018 DQB1*04:04 0.003 

A*74:01g 0.020 B*58:60 0.019 C*14:02g 0.023 DRB1*12:01 0.016 DQB1*03:30 0.003 

A*31:01g 0.020 B*53:01g 0.018 C*18:01g 0.017 DRB1*12:02 0.015 DQB1*06:40 0.003 

A*24:07 0.017 B*45:01g 0.018 C*08:04 0.017 DRB1*08:04 0.014 DQB1*06:11 0.003 

A*02:05g 0.016 B*81:01g 0.018 C*07:04g 0.017 DRB1*14:04 0.013 DQB1*06:218 0.000 

A*33:01g 0.015 B*27:05g 0.017 C*03:02g 0.017 DRB1*03:102 0.013 DQB1*06:185 0.000 

  
        

“g” groups are expressed and null alleles with identical amino acid sequences across class I exons 2 and 3 and class II exon 2
43
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Table 3.4 The twenty most frequent two, three and four locus haplotype frequencies in the 237 donor subset (Full list in 

Table S2) 

Two loci freq Three loci freq Four loci freq 

B*07:02g~C*07:02g 0.145 C*07:02g~DRB1*15:01~DQB1*06:02 0.107 
B*07:02g~C*07:02~DRB1*15:01g~DQ
B1*06:02 0.108 

DRB1*15:01~DQB1*06:02 0.125 B*07:02g~DRB1*15:01~DQB1*06:02 0.106 
B*08:01g~C*07:01g~DRB1*03:01~DQ
B1*02:01 0.067 

C*07:02g~DQB1*06:02 0.105 B*07:02g~C*07:02g~DQB1*06:02 0.101 
A*03:01g~B*07:02g~C*07:02g~DQB1
*06:02 0.063 

B*07:02g~DQB1*06:02 0.099 B*07:02g~C*07:02g~DRB1*15:01 0.084 
A*03:01g~B*07:02g~DRB1*15:01~DQ
B1*06:02 0.061 

DRB1*03:01~DQB1*02:01 0.096 A*03:01g~B*07:02g~C*07:02g 0.081 
A*03:01g~C*07:02g~DRB1*15:01~DQ
B1*06:02 0.057 

C*07:02g~DRB1*15:01 0.091 B*08:01g~DRB1*03:01~DQB1*02:01 0.076 
A*03:01g~B*07:02g~C*07:02g~DRB1
*15:01 0.051 

A*03:01g~C*07:02g 0.079 C*07:01g~DRB1*03:01~DQB1*02:01 0.066 
A*01:01g~C*07:01g~DRB1*03:01~DQ
B1*02:01 0.049 

B*08:01g~DQB1*02:01 0.071 B*08:01g~C*07:01g~DQB1*02:01 0.063 
A*01:01g~B*08:01g~C*07:01g~DQB1
*02:01 0.047 

DRB1*13:01~DQB1*06:03 0.071 A*03:01g~C*07:02g~DQB1*06:02 0.062 
A*01:01g~B*08:01g~DRB1*03:01~DQ
B1*02:01 0.045 

A*03:01g~DQB1*06:02 0.061 A*03:01g~B*07:02g~DQB1*06:02 0.057 
A*01:01g~B*08:01g~C*07:01g~DRB1
*03:01 0.037 

B*08:01g~C*07:01g 0.058 B*08:01g~C*07:01g~DRB1*03:01 0.052 
B*15:01g~C*03:03g~DRB1*13:01~DQ
B1*06:03 0.029 

C*07:01g~DQB1*02:01 0.053 A*03:01g~DRB1*15:01~DQB1*06:02 0.051 
B*44:02g~C*05:01g~DRB1*01:01~DQ
B1*05:01 0.025 

DRB1*01:01~DQB1*05:01 0.051 A*01:01g~B*08:01g~C*07:01g 0.047 
A*11:01g~C*01:02g~DRB1*15:01~DQ
B1*06:02 0.025 

DRB1*11:01~DQB1*03:01 0.051 A*01:01g~C*07:01g~DQB1*02:01 0.046 A*03:01g~C*07:02g~DRB1*01:01~DQ 0.025 
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B1*05:01 

C*07:01g~DRB1*03:01 0.049 A*03:01g~C*07:02g~DRB1*15:01 0.044 
A*03:01g~B*07:02g~C*07:02g~DQB1
*03:01 0.023 

C*04:01g~DQB1*05:01 0.045 A*01:01g~B*08:01g~DQB1*02:01 0.043 
A*11:01g~B*51:01g~DRB1*15:01~DQ
B1*06:02 0.023 

DRB1*07:01~DQB1*02:02 0.044 A*01:01g~DRB1*03:01~DQB1*02:01 0.042 
A*02:01g~B*07:02g~DRB1*15:01~DQ
B1*06:02 0.023 

B*07:02g~DRB1*15:01 0.043 A*01:01g~C*07:01g~DRB1*03:01 0.037 
B*42:01~C*17:01g~DRB1*03:02~DQ
B1*04:02 0.021 

A*01:01g~DQB1*02:01 0.042 A*11:01g~DRB1*13:01~DQB1*06:03 0.037 
B*57:01g~C*06:02g~DRB1*07:01~DQ
B1*03:03 0.021 

B*14:02~C*08:02g 0.041 A*24:02g~B*07:02g~C*07:02g 0.035 
A*01:01g~C*06:02g~DRB1*07:01~DQ
B1*03:03 0.020 

 
 

    

freq” frequency; “g” groups are expressed and null alleles with identical amino acid sequences across class I exons 2 and 3 and class II exon 2
43 
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Table 3.5 The twenty most frequent extended (five loci) haplotype frequencies 

from the 237 donor subset in the SABMR (full list in Table S2) 

A~B~C~DQB1~DRB1 haplotype frequency 

A*03:01g~B*07:02g~C*07:02g~DRB1*15:01~DQB1*06:02 0.067 

A*01:01g~B*08:01g~C*07:01g~DRB1*03:01~DQB1*02:01 0.050 

A*01:01g~B*57:01g~C*06:02g~DRB1*07:01~DQB1*03:03 0.021 

A*03:01g~B*07:02g~C*07:02g~DRB1*01:01~DQB1*05:01 0.017 

A*11:01g~B*15:01g~C*03:03g~DRB1*13:01~DQB1*06:03 0.017 

A*24:02g~B*07:02g~C*07:02g~DRB1*15:01~DQB1*06:02 0.017 

A*02:11g~B*40:06~C*15:02g~DRB1*15:01~DQB1*06:01 0.017 

A*33:01g~B*14:02~C*08:02g~DRB1*13:01~DQB1*06:03 0.017 

A*68:02g~B*14:01~C*08:02g~DRB1*07:01~DQB1*02:02 0.017 

A*11:01g~B*51:01g~C*01:02g~DRB1*04:01~DQB1*03:02 0.017 

A*31:01g~B*27:05g~C*02:02g~DRB1*15:01~DQB1*06:02 0.017 

A*03:01g~B*07:02g~C*07:02g~DRB1*11:01~DQB1*03:01 0.017 

A*68:02g~B*14:02~C*08:02g~DRB1*13:03~DQB1*03:01 0.017 

A*69:01~B*15:17~C*07:01g~DRB1*11:01~DQB1*03:01 0.017 

A*02:01g~B*07:02g~C*07:02g~DRB1*15:01~DQB1*06:02 0.017 

A*30:01g~B*42:01~C*17:01g~DRB1*03:02~DQB1*04:02 0.013 

A*24:02g~B*15:32~C*12:03g~DRB1*12:02~DQB1*03:01 0.008 

A*23:01g~B*49:01g~C*07:01g~DRB1*15:02~DQB1*05:03 0.008 

A*25:01g~B*08:01g~C*07:01g~DRB1*03:01~DQB1*02:01 0.008 

A*26:01g~B*58:01g~C*05:01g~DRB1*15:03~DQB1*06:02 0.008 

  “g” groups are expressed and null alleles with identical amino acid sequences across class I exons 2 and 3 and class II exon 

2
43
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3.5 Discussion 

 

Although this study had a limited sample size of 237, we provide an in-depth analysis 

of HLA diversity in a subset of donors in the SABMR. Mixed resolution HLA typing 

data with multiple allele codes (https://hml.nmdp.org/MacUI) were analyzed using a 

robust Hapl-o-Mat38 package to compute allele and haplotype frequencies through 

the EM algorithm. In addition, the package supports typing ambiguities in NMDP 

codes (MAC), G group and GL string formats. Since Hapl-o-Mat does not compute 

LD and HWE, we reduced all MAC encoded typing in our data set to two digit 

resolution to estimate these parameters in Arlequin v3.5.240. Although there was the 

possibility of underestimation due to loss of some allele information, global LD and 

HWE deviation is important in genetic studies. 

 

Strong LD of C~DQB1 locus pairs (p<0.001 in Table 3.2) in our study suggests 

limited chances of recombination between alleles from these loci in our population, 

hence a greater chance of being inherited together. LD patterns of HLA or other 

genes may be used to infer evolutionary relatedness of populations44. Generally, 

individuals with haplotypes in LD are more likely to find haplomatches and strong LD 

is indicative of evolutionary relatedness of those alleles/loci. Carvallo and 

colleagues45 report HLA -A, -B and -DRB1 in HWE (p>0.05), which contrasts to the 

significant deviation (p<0.05) observed in the current study (Table 3.1). Sample size 

and mixed typing resolution in the current study may have affected HWE proportions. 

When there is no deviation from HWE, HLA data may be used to infer human 

peopling history in anthropological studies46. Furthermore, there is evidence of large 

HWE deviations influencing EM algorithm based allele and haplotype frequency 

estimations47. It is thus important to note the sample size and mixed typing resolution 

limitations of the current study in interpreting HWE and LD analysis.  

 

Taking into account the nature of the HLA data in the current study, we report 977 

possible alleles (Table S3.1). HLA -C had the lowest number (29) of alleles 

compared to HLA -A (438 alleles) which had the highest. There are generally more 

reported HLA-B alleles in the HLA database2,3. We note though that previously, most 

registries routinely typed HLA -A, -B, -DRB1 for new donors with few being typed for 

HLA -C and HLA -DQB148. This might explain the observed allele numbers in our 

https://hml.nmdp.org/MacUI/
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study. There is an ever increasing number of alleles in the database (currently 17 

874 in the IMTG/HLA database release 3.31)2,3, with South Africa contributing some 

unique alleles49,50. 

 

HLA -A*02:01g with a frequency of 9.6% in the current study has been reported in 

North West England Caucasians at a higher frequency of 28.9%51. This English 

study also reported B*07:02g, C*07:02g and DRB1*15:01 at frequencies of 15.3%, 

15.6% and 15.9% respectively51 compared to 8.2%, 18.0% and 7.2% in the current 

study. It is important to note that the fifth most common allele in our study, namely 

A*30:02g (5% frequency in Table 3.3 and Table S3.1), is identical (exon 2 and 3 

amino acid sequence) to a novel A*30:02:01:03 allele previously reported in a 

SABMR donor49. HLA -DQB1*06:02 (15.7%) has been observed at higher 

frequencies in previous studies in West Africans (30.8%), Shona Zimbabweans 

(24.7%) and is lower in Kenyans (14.6%), Colombians (15.0%) and people from 

Papua New Guinea (15.0%)26. HLA -DRB1*15:01 (7.2%) in the current study (Table 

3.3) has been reported previously in South African populations at varying 

frequencies: 11.2% in Caucasians and 2.4% in Black Africans26. Additionally, 

DRB1*15:01 had a 3.8% frequency in Inuit women52, 11.65% in Chinese53 and more 

than 50% in North Africans, Asians, people from Oceania and Europeans54. 

 

The main thrust of our study has been the ability to estimate with high confidence, 

haplotype frequencies from mixed resolution typings including MAC 

(https://hml.nmdp.org/MacUI) encoded alleles38. No record of the most frequent two, 

three and four loci haplotypes reported in this study (Table 3.4 and Table S3.2) is 

found in the allele frequency database2,3,55. The most frequent (6.7%) extended 

haplotype A*03:01g~B*07:02g~C*07:02g~DRB1*15:01~DQB1*06:02 has previously 

been reported amongst Chinese populations at varying frequencies (0.93-5.20 %)53 

compared to our 6.7 %. There is no record of this haplotype in African populations in 

the AFND allele frequency database56. A lower frequency (3.31%) of this haplotype 

has also been reported in a German registry as described by Sauter and 

colleagues57.  

 

Haplotype frequencies from a specific population may be useful for resolving typing 

ambiguities using statistical approaches in typing prospective individuals from the 

https://hml.nmdp.org/MacUI/
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same population58. It is important though to note that sample size affects these 

computations, with a tendency towards haplotype overestimation in small sample 

sized studies35. Other confounders include typing ambiguity as previously 

described59. Additionally, multi-locus haplotype frequency estimation better informs 

disease association studies than allele frequency47. A complete list of donor registry 

HLA haplotype frequencies better informs donor-patient matching tools like 

Easymatch60, NMDP HapLogic61,62 and Optimatch63 especially for patients of 

African origin who might benefit from donors in the SABMR. These tools use 

haplotype frequencies to compute the likelihood of a donor-patient match, and also 

anticipate the most likely mismatches. Haplotype frequency may be used to estimate 

the probability of finding a recipient match, or may give an indication of the likelihood 

of mismatches from initial registry searches35. Additionally, haplotypes are better 

indicators of HLA match estimation compared to allele frequency alone35. Variations 

in allele frequency distribution in populations in general provide insight into peopling 

history64,65. HLA genetic makeup of populations provides insight into history including 

selective pressures by pathogens33, migration, admixture and changes in population 

size54,66-68. 

 

Allele and haplotype frequencies from this study highlight the need for continued 

analysis by the SABMR for a better understanding of HLA diversity in the region. 

There is limited HLA diversity data for South African populations (reviewed in29), 

despite the evident value in transplantation, donor recruitment, disease association 

and population studies. In addition, some registries specifically aim to improve 

recruitment from ethnic minorities25 to increase the HLA diversity, and hence the 

probability of finding an appropriate donor for a given patient. In this context, 

knowledge of the distribution of alleles and haplotypes in many different population 

groups, as determined by high-resolution typing, may allow for modification of 

recruitment strategies. 
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3.6 Conclusions 

 

Although results reported here are from a small subset of SABMR registered donors, 

allele and haplotype frequencies generated by Hapl-o-Mat tool38 could be a useful 

resource for future anthropological and population genetics studies in South 

Africans. Furthermore, these findings may better inform donor recruitment strategies 

for the SABMR. The small sample size limitation of this study also highlights the 

need for larger studies in order to better understand HLA diversity in South African 

populations. It would also be interesting to analyze the whole donor registry and 

compare its HLA diversity data to other registries globally. 

 

3.7 Supplementary Information 

 

Supplementary Table 3.1 (Table S3.1): HLA -A, -B, -C, -DRB1 and -DQB1 allele 

frequencies in 237 volunteer bone marrow donors registered in the South African 

Bone Marrow Registry. The 237 individuals described herein are a subset of all 

SABMR registered donors. Accessible through J Immunol Res. 2018 Apr 23; 

2018:2031571. doi: 10.1155/2018/2031571, additionally available as supplementary 

data to this thesis in Addendum 1.. 

 

Supplementary Table 3.2 (Table S3.2): Two, three, four and five loci Haplo-o-Mat 

38 estimated haplotype frequencies in 237 volunteer bone marrow donors registered 

in the South African Bone Marrow Registry. The 237 individuals described herein are 

a subset of all SABMR registered donors. Accessible through J Immunol Res. 2018 

Apr 23; 2018:2031571. doi: 10.1155/2018/2031571, additionally available as 

supplementary data to this thesis in Addendum 1. 
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4.1 Abstract 

 

Background/Aim: Lack of HLA data in southern African populations hampers disease 

association studies and our understanding of genetic diversity in these populations. 

We aimed to determine HLA diversity in South African populations using 3007 high 

resolution HLA ~A, HLA ~B, HLA ~C, HLA ~DRB1, HLA ~DQA1and HLA ~DQB1 

and 51 891 low resolution previously typed individuals. 

 

Materials and Methods: We determined allele and haplotype frequencies, deviations 

from Hardy-Weinberg equilibrium (HWE), linkage disequilibrium and neutrality test. 

South African HLA class I data was additionally compared to other global 

populations using non-metrical multidimensional scaling (NMDS), genetic distances 

and principal component analysis 

 

Results: All loci strongly (p<0.0001) deviated from HWE, coupled with excessive 

heterozygosity in most loci. Two of the three most frequent alleles HLA 

~DQA1*05:02 (0.370) and HLA ~C*17:01 (0.281) were previously reported in South 

African populations at lower frequencies. NMDS showed genetic distinctness of 

South African populations. Phylogenetic and principal component analysis clustered 

our current dataset with previous South African studies. Additionally, South Africans 

seem to be related to other sub Saharan populations using HLA class I allele 

frequencies.  

 

Conclusion: We uniquely provide a large sample size HLA data from South Africans, 

which might be a useful resource to support anthropological studies, disease 

association studies, population based vaccine development and door recruitment 

programs. We additionally provide simulated high resolution HLA class I data to 

augment the mixed resolution typing results generated from this study. 

 

Key words:  

HLA, Mixed resolution HLA typing, South Africa 
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4.2 Introduction 

 

The human leukocyte antigen (HLA) gene region is considered to be one of the most 

polymorphic regions in the human genome1,2. Currently, there are 18 955 reported 

alleles in the IMGT/HLA database (3.33 release of July 2018)3. HLA genes encode 

proteins involved in antigen presentation4, and play a key determining role in 

transplantation clinical outcomes5-12. Despite the growing documented evidence of 

genetic diversity of Africans13-17, there remains an information gap on HLA diversity 

in these populations (reviewed in Chapter 218). This lack of HLA data hampers 

disease association studies (reviewed in19), population specific vaccine 

development20 and donor recruitment programs into registries 21. Additionally, there 

is high disease burden in these populations22; hence understanding HLA diversity 

will further support efforts to eliminate these health challenges. 

 

In addition to its key role in the human immune system, HLA has been used to 

understand human genetic diversity, population genetics and anthropology. HLA has 

been widely used to understand genetic relatedness of different populations as well 

as demographic events in those populations23. The HLA genetic makeup of 

populations provides insight into their histories including selective pressures by 

pathogens16 migration, admixture and changes in population size24-27. The 

availability of population HLA data is thus critical, in understanding peopling history 

and general evolution of the human immune system28,29 

 

The South African population comprises 55.6 million people (2011 census)30 who are 

burdened by disease and harbor one of the oldest modern human lineages, Homo 

naledi31. Additionally, new HLA alleles have been reported in South African 

populations32,33 supporting the idea of high genetic diversity in these populations34,35. 

In Chapter 3, allele and haplotype frequencies from the South African Bone Marrow 

Registry (SABMR) are described in an effort to understand HLA diversity in South 

Africans36. The current study is aimed at improving our understanding of HLA 

diversity in South Africans using retrospectively typed individuals in the National 

Health laboratory Services (NHLS) and the South African National Blood Transfusion 

Services (SANBS). We additionally sought to compare HLA data from South Africans 

with other global populations using population genetics approaches. 
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4.3 Methods 

 

4.3.1 Study population, HLA data access and ethics 

 

Approval for this study was granted by Research Ethics Committee of the University 

of Pretoria Faculty of Health Sciences (approval no. 220/2015), the SANBS Human 

Research Ethics Committee (SANBS HREC) and NHLS Academic Affairs and 

Research. We analysed a combined total (SANBS and NHLS) of 3007 high 

resolution (four digit typing HLA ~A, HLA ~B, HLA ~C, HLA ~DRB1, HLA ~DQA1and 

HLA ~DQB1) and 51 891 low resolution (two digit HLA ~A, HLA ~B, HLA ~C, HLA 

~DRB1, HLA ~DQA1, HLA ~DQB1 and HLA ~DPB1) results. The mixed resolution 

typing data (a mixture of 2 and 4 digit typing resolution) set has resulted from the 

retrospective nature of the study, with typing methods evolving from low resolution 

serology typing to higher resolution DNA based methods in SANBS and NHLS. All 

available HLA data from SANBS (up to 20 November 2016) plus NHLS data (05 

June 2003 to 12 April 2016) was accessed. The NHLS offers national diagnostic 

pathology services (http://www.nhls.ac.za/) whilst SANBS aims to supply safe blood 

and blood products (https://sanbs.org.za/). Only HLA data was accessed, with no 

additional data accessed due to ethical considerations. Participants’ personal 

identifiers were not accessed to maintain confidentiality following the Helsinki ethical 

guidelines37. All the accessed HLA data was checked for allele validity, and all pre-

2010 nomenclature designations converted using current nomenclature conversion 

tables and conversion tools provided by IMGT/HLA (https://www.ebi.ac.uk). HLA 

data missingness in our dataset was defined by the lack of typing methods to call 

two alleles at a given locus, resulting in one allele for that individual at that particular 

locus. Unfortunately, a distinction between homozygous typing and data missingness 

could not be established due to the retrospective nature of the study. 

 

4.3.2 Statistical analysis 

 

Low (2 digit) and high (4 digit) resolution data were separately analysed to estimate 

LD, HWE proportions, homozygosity test of neutrality, allele and haplotype 

frequencies. Low and high resolution typing allele frequencies were determined by 

http://www.nhls.ac.za/
https://sanbs.org.za/
https://www.ebi.ac.uk/
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direct counting, and haplotype frequencies estimated by resolving phase and allelic 

ambiguities using the expectation-maximization (EM) algorithm38,39 both 

implemented in PyPop ver 0.7.040. Excoffier et al38 allows estimation of random 

haplotypes based on sample allele frequencies. For pair wise linkage disequilibrium 

(LD), we used Hedrick’s D
41 and Cramer’s V Statistic (Wn)

42, all implemented in 

PyPop ver 0.7.040. HLA genotypes were converted to Arlequin v3.5.243 input files 

using CREATEv1.37 software44 to assess deviations from Hardy-Weinberg 

equilibrium (HWE) {modified hidden Markov chain45 with 100 000 dememorization 

steps}. Slatkin’s implementation of Ewens-Watterson homozygosity test of 

neutrality46,47 was done in PyPop ver 0.7.040. 

 

4.3.3 Population comparison 

 

To better understand the HLA diversity in our dataset, we compared our findings to 

other global populations. Our current data was compared with multiple population 

datasets from selected world regions by non-metrical multidimensional scaling 

analysis (NMDS) in gene[RATE] tools48. Due to the HLA mixed resolution typing 

nature and data missingness in our dataset, we performed HLA class I completion of 

our data set to get high resolution (four digit typing) using the PhyloD tool as 

previously described49. The PhyloD HLA completion tool uses statistical in silico 

methods to probabilistically predict four digit HLA -A, -B and -C49. We further 

compared our class I HLA allele frequency data with PhyloD generated allele 

frequency data49, and 28 other publicly available HLA ~A, ~B and ~C allele 

frequency (four digit  resolution) sub Saharan Africa data from the allele frequency 

database (AFND)50 including previous South African studies36,51-53. Specifically, our 

HLA data (RSA) was compared with the following AFND defined populations 

(population codes we used for phylogenetic analysis): Burkina Faso Fulani (BFF)54 

Burkina Faso Mossi (BFM)54, Burkina Faso Rimaibe (BFR)54, Cameroon Baka 

Pygmy (CBP)55, Cameroon Bakola Pygmy (CBkP)56, Cameroon Bamileke (CaB)55, 

Cameroon Beti (CBt)55, Cameroon Sawa (CSw)55, Central African Republic 

Mbenzele Pygmy (CARMP)56, Ghana Ga-Adangbe (GGA)57, Kenya (KEN)58, Kenya 

Luo (KENL)59, Kenya Nandi (KENN)59, Kenya, Nyanza Province, Luo tribe 

(KENNy)60, PhyloD generated data (PSA)49, Rwanda (RWA)61, Senegal Niokholo 



80 
 

Mandenka (SenMAND)62, South Africa Black (SoAB)33, South Africa Caucasians 

(SoAC)33, South Africa Natal Tamil (SANT)63, South Africa Natal Zulu (SANZ)64, 

South Africa Worcester (WOR)51, South African Bone Marrow Registry (SAB) 

described in Chapter 336, South African Indian population (SAI)52, South African 

Mixed ancestry (RMX)53, Uganda Kampala (UgaKam)59, Uganda Kampala pop 2 

(UgaKam2)27, Zambia Lusaka (ZaL)59 and Zimbabwe Harare Shona (ZiHS)65. HLA 

class I allele frequencies from the above 30 populations were used to compute pair 

wise population differentiation (FST) and Neis’ genetic distances66 in POPTREE 

software67,68. An unrooted tree was constructed based on Neighbour-Joining (NJ) 

method69 implemented in POPTREE software67,68 using Nei’s genetic distances. 

Furthermore, the pair wise FST matrix was used for principal component analysis 

(PCA) in ClustVis (a web tool for visualizing clustering of multivariate data using PCA 

and heatmap)70. 

 

4.4 Results  

 

4.4.1 HWE proportions and neutrality test 

 

All loci (both low resolution and high resolution typing) showed a strong significant 

deviation from the expected HWE proportions (p<0.0001) as detailed in Table 4.1. 

Generally, more genotypes were observed in low resolution compared to high 

resolution typing which was characterized by data missingness (Table 4.1). 

Extremely excessive heterozygosity (p<0.0001) in high resolution HLA ~A and 

excessive heterozygosity (p<0.05) in low resolution HLA ~B, ~C, ~DQA1 and ~DPB1 

was observed. Excessive homozygosity (p>0.05) was observed in high resolution 

HLA ~B, ~C, ~DRB1, ~DQA1 and ~DQB1 and low resolution HLA ~A, ~DRB1 and 

~DQB1 (Table 4.2). 

 

4.4.2 Allele frequencies 

 

The full list of alleles is detailed in Supplementary Table 1 (Table S4.1) which 

includes both low and high resolution typing frequencies. The top 20 most frequent 
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alleles across the different loci typed at low or high resolution are summarized in 

Table 4.3. HLA ~ DQB1*06 (0.428), ~DPB1*52 (0.427) and ~DPB1*53 (0.407) were 

the three most common allele groups (low resolution typing). High resolution typed 

HLA ~ DQA1*05:02 (0.370), ~DQA1*04:02 (0.303) and ~C*17:01 (0.281) were the 

three most common alleles in our dataset (Table 3). We additionally include PhyloD 

generated49 HLA ~A, ~B and ~C estimated genotypes (with probabilities) and allele 

frequencies in supplementary Table 4.2 (Table S4.2) for population comparison and 

as a future resource for other researchers. 

 

4.4.3 Haplotype frequencies and LD 

 

For low resolution typing (two digit), all two, three, four, five and six haplotype 

frequencies are detailed in Supplementary Table 4.3 (Table S4.3), with the 20 most 

frequent haplotypes summarized in Table 4.4. DQB1*03~DPB1*53 (0.297), 

B*44~C*07~DPB1*53 (0.333), B*44~C*07~DQB1*03~DPB1*53 (0.333), 

B*44~C*07~DRB1*04~DQB1*03~DPB1*53 (0.333) and 

A*02~B*58~C*07~DRB1*11~DQA1*05~DQB1*03 (0.018) were the most common 

computed two, three, four, five and six loci haplotypes. PyPop ver 0.7.040 could not 

estimate some haplotype frequencies due to an excessive number of rows, or no 

data left after filtering (Table S4.3). No seven loci haplotypes were estimated for low 

resolution typing (Table S4.3). The most common estimated high resolution two, 

three and four loci haplotypes were A*02:05~C*14:02 (0.500), 

A*30:02~B*45:01~DRB1*15:03 (1.00) and 

A*30:02~B*45:01~DRB1*15:03~DQB1*05:01 (0.500) respectively as summarised in 

Table 4.5 and Supplementary Table S4.4. PyPop ver 0.7.040 could not estimate any 

five and six loci haplotypes at high resolution (Table S4.4) due to lack of data after 

filtering. In all low and high resolution typing results, all pair wise linkage 

disequilibrium (LD) measured by Hedrick’s D
41 and Cramer’s V Statistic (Wn)

42 were 

strongly significant (p<0.0001) and significant (p<0.05) except for insignificant low 

resolution A:DPB1, C:DPB1 and high resolution C:DQB1 loci pairs (Table 4.6). 
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4.4.4 Population comparison 

 

NMDS analyses implemented in gene[RATE] tools48 suggest high genetic diversity of 

high resolution HLA ~DRB1 and low resolution HLA ~A and ~DRB1 (Figure 4.1). 

Global populations show less diversity in high resolution HLA ~A loci, with only two 

clusters (our data set and other populations) shown by NMDS (Figure 4.1). 

Additionally, our data set distinctly clustered away from other global populations 

(Supplementary Figures 4.1 and 4.2~Figure S4.1 and Figure S4.2 respectively). 

NMDS analysis suggests high genetic diversity in high resolution HLA ~B, ~DQA1, 

~DRB1, ~DQB1 (Figure S4.1) and low resolution HLA ~A, ~B, ~C, ~DRB1, ~DQA1 

and ~DQB1 (Figure S4.2) with low diversity in low resolution HLA ~C loci (Figure 

S4.2). Global NMSD comparison for HLA ~DPB1 loci was not available in gene[rate] 

tools (both at low and high resolution)48. The NJ generated tree (Figure 4.2) shows 

a close relation of the current data (RSA) with other previously described South 

African studies ~SoAC33, SoAB33 and SANT63, but not with SANZ64, SAB36, SAI52, 

RMX53 and WOR51. Interestingly, although our probability simulated data PSA did 

not cluster with the data it was generated from (RSA), it was closely related to a 

previous South African study SAB36 (Figure 4.2). Pair wise FST based principal 

component analysis showed 69.6% and 11.1% total population variability explained 

by PCA1 and PCA 2 respectively (Figure 4.3). PCA (Figure 4.3) suggests Central 

African Republic Mbenzele Pygmy (CARMP) are completely different from other sub 

Saharan populations. Additional outliers include Cameroon Baka Pygmy (CBP) and 

Cameroon Sawa (CSw). Our data (RSA) seem to cluster together with Cameroon 

Bakola Pygmy (CBkP) and South Africa Natal Tamil (SANT). Probability simulated 

data (PSA) clusters with the other remaining populations, with Ghana Ga-Adangbe 

(GGA), Senegal Niokholo Mandenka (SenMAND and Zambia Lusaka (ZaL) forming 

a small separate cluster (Figure 4.3). 
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Table 4.1 HWE parameters for low and high resolution typing 

 

Exact Test using Markov chain for all loci with 100000 dememorization steps  

 

 Locus #Genotypes Obs Het Exp Het p-HWE 

H
ig

h
 

re
s
o

lu
ti
o
n

 

HLA ~A 111 0.07207  0.96714 <0.0001* 

HLA ~B 345 0.27536 0.95592 <0.0001* 

HLA ~C 128 0.03906 0.86489 <0.0001* 

HLA ~DRB1 1927 0.10223 0.94003 0.0015** 

HLA ~DQA1 104 0.12500 0.71363 <0.0001* 

HLA ~DQB1 325 0.55077 0.93905 <0.0001* 

L
o

w
 

re
s
o

lu
ti
o
n
 

HLA ~A 23048 0.92030  0.90148 <0.0001* 

HLA ~B 25434 0.97067 0.93540 <0.0001* 

HLA ~C 3510 0.74074 0.86568 <0.0001* 

HLA ~DRB1 13605 0.66645 0.88341 <0.0001* 

HLA ~DQA1 221 0.31674 0.76767 <0.0001* 

HLA ~DQB1 8057 0.25977 0.72241 <0.0001* 

 HLA ~DPB1 198 1.00000 0.62638 <0.0001* 

 

#Genotypes (number of genotypes), Obs Het (observed heterozygosity), Exp Het 

(expected Heterozygosity), p-HWE (p value for HWE deviation), **significant (*highly 

significant) at p<0.01 (p<0.0001) difference between observed and expected 

heterozygosity 
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Table 4.2 Slatkin’s implementation of Ewens-Watterson homozygosity test of neutrality 

Observed homozygosity (homozygosity F statistic ~ a sum of squared allele frequencies) compared to expected homozygosity 

(simulated under neutrality/equilibrium expectations for the same sample taking into account unique alleles) 46,47. 

 Locus Observed F Expected F Variance in F Fnd Fp 

H
ig

h
 

re
s
o

lu
ti
o
n
 

HLA ~A 0.0362 0.0657 0.0003 -1.7622 <0.0001** 

HLA ~B 0.0461 0.0367 0.0001 1.2062 0.8965 

HLA ~C 0.1385 0.1496 0.0026 -0.2165 0.5070 

HLA ~DRB1 0.0602 0.0446 0.0001 1.3792 0.9163 

HLA ~DQA1 0.2898 0.4738 0.0262 -1.1368 0.0960 

HLA ~DQB1 0.0626 0.1091 0.0013 -1.3042 0.0133 

L
o

w
 

re
s
o

lu
ti
o
n
 

HLA ~A 0.0985 0.3228 0.0182 -1.6614 <0.0001** 

HLA ~B 0.0646 -0.3230 0.0179 2.8974 0.9999. 

HLA ~C 0.1344 0.3735 0.0227 -1.5871 0.0007 

HLA ~DRB1 0.1166 0.4355 0.0292 -1.8656 <0.0001** 

HLA ~DQA1 0.2341 0.5145 0.0310 -1.5917 0.0071* 

HLA ~DQB1 0.2776 0.6947 0.0428 -2.0154 0.0044* 

 HLA ~DPB1 0.3752 0.7331 0.0367 -1.8675 0.0186* 

       

Observed F: observed homozygosity F statistic, Expected F: expected homozygosity F statistic, Fp: p value F statistic Fnd: 

Normalised deviate of F statistic **highly statistically significant at p<0.0001 *significant at p<0.05 
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Table 4.3 Top 20 HLA alleles by locus and typing resolution (Full list in S4.1) 

 

Low resolution (two digit) High resolution (four digit) 

loci freq count loci freq count 

DQB1*06 0.428 6887 DQA1*05:02 0.370 77 

DPB1*52 0.427 169 DQA1*04:02 0.303 63 

DPB1*53 0.407 161 C*17:01 0.281 72 

DQA1*01 0.342 151 DQA1*02:01 0.240 50 

C*07 0.282 1979 C*16:01 0.141 36 

DQA1*05 0.267 118 DRB1*15:03 0.135 521 

DQB1*03 0.215 3457 B*15:10 0.132 91 

A*02 0.206 9501 DQB1*03:19 0.129 84 

DRB1*15 0.197 5357 DRB1*15:01 0.122 471 

DQB1*05 0.179 2889 C*03:04 0.121 31 

DRB1*13 0.171 4644 C*16:02 0.109 28 

DPB1*51 0.167 66 A*43:01 0.093 21 

DQA1*04 0.143 63 DRB1*13:01 0.090 347 

C*06 0.136 956 B*42:01 0.087 60 

B*07 0.125 6339 B*15:03 0.086 59 

DRB1*11 0.124 3369 C*14:02 0.082 21 

DQA1*02 0.118 52 DQB1*02:01 0.080 52 

A*03 0.116 5363 DQB1*05:01 0.078 51 

A*01 0.113 5207 DQB1*03:01 0.077 50 

DQB1*02 0.110 1767 DQB1*06:02 0.074 48 

      

Allele frequency (freq) number of individuals with allele (count) 

 

 

 

 

 



86 
 

Table 4.4 Top twenty most frequent low resolution two, three, four, five and six loci haplotype frequencies (Full list in 

Table S4.3) 

 

Two loci freq Three loci freq Four loci freq Five loci freq Six loci freq 

DQB1*03~D
PB1*53 0.297 

B*44~C*07~DPB
1*53 0.333 

B*44~C*07~DQB1*0
3~DPB1*53 0.333 

B*44~C*07~DRB1*04~
DQB1*03~DPB1*53 0.333 

A*02~B*58~C*07~DRB1*11
~DQA1*05~DQB1*03 0.018 

DQB1*02~D
PB1*52 0.277 

DRB1*04~DQB1*
03~DPB1*53 0.265 

A*01~B*44~C*07~D
PB1*52 0.167 

A*01~B*44~C*07~DRB
1*04~DPB1*52 0.167 

A*30~B*42~C*17~DRB1*03
~DQA1*04~DQB1*04 0.016 

C*04~DPB1
*52 0.250 

C*04~DRB1*04~
DPB1*52 0.250 

A*02~B*44~C*05~D
PB1*51 0.167 

A*02~B*44~C*05~DRB
1*04~DPB1*51 0.167 

A*01~B*08~C*07~DRB1*03
~DQA1*05~DQB1*02 0.014 

C*07~DPB1
*53 0.250 

C*07~DRB1*04~
DPB1*53 0.250 

A*03~B*07~C*07~D
PB1*53 0.167 

A*03~B*07~C*07~DRB
1*15~DPB1*53 0.167 

A*30~B*42~C*17~DRB1*12
~DQA1*01~DQB1*05 0.012 

DRB1*04~D
PB1*53 0.245 

C*04~DQB1*03~
DPB1*52 0.250 

A*24~B*08~C*05~D
PB1*53 0.167 

A*24~B*08~C*05~DRB
1*03~DPB1*53 0.167 

A*01~B*15~C*03~DRB1*03
~DQA1*05~DQB1*03 0.009 

DQA1*01~D
QB1*06 0.188 

C*07~DQB1*03~
DPB1*53 0.250 

A*68~B*15~C*04~D
PB1*53 0.167 

A*68~B*15~C*03~DRB
1*03~DPB1*53 0.167 

A*02~B*08~C*07~DRB1*04
~DQA1*03~DQB1*03 0.009 

DRB1*07~D
PB1*53 0.174 

DRB1*03~DQB1*
02~DPB1*52 0.236 

A*74~B*35~C*03~D
PB1*52 0.167 

A*74~B*35~C*04~DRB
1*04~DPB1*52 0.167 

A*30~B*42~C*17~DRB1*15
~DQA1*04~DQB1*04 0.009 

DRB1*15~D
QB1*06 0.159 

A*02~DQB1*03~
DPB1*53 0.191 

B*07~C*05~DQB1*0
6~DPB1*51 0.167 

B*07~C*05~DRB1*15~
DQB1*06~DPB1*51 0.167 

A*68~B*15~C*03~DRB1*15
~DQA1*05~DQB1*06 0.009 

A*02~DPB1
*53 0.158 

B*07~C*05~DPB
1*51 0.167 

B*08~C*05~DQB1*0
2~DPB1*52 0.167 

B*08~C*05~DRB1*03~
DQB1*02~DPB1*52 0.167 

A*01~B*44~C*07~DRB1*07
~DQA1*02~DQB1*02 0.007 

DQB1*06~D
PB1*51 0.153 

B*08~C*05~DPB
1*52 0.167 

B*15~C*03~DQB1*0
3~DPB1*52 0.167 

B*15~C*04~DRB1*04~
DQB1*02~DPB1*53 0.167 

A*23~B*07~C*07~DRB1*15
~DQA1*01~DQB1*06 0.007 

DRB1*13~D
QB1*06 0.146 

B*15~C*04~DPB
1*52 0.167 

B*35~C*04~DQB1*0
2~DPB1*53 0.167 

B*35~C*03~DRB1*03~
DQB1*03~DPB1*52 0.167 

A*24~B*58~C*06~DRB1*15
~DQA1*02~DQB1*02 0.007 

DRB1*03~D
PB1*52 0.130 

B*35~C*03~DPB
1*53 0.167 

A*01~B*08~DRB1*0
3~DPB1*52 0.111 

B*42~C*17~DRB1*03~
DQA1*04~DQB1*04 0.027 

A*29~B*07~C*07~DRB1*01
~DQA1*05~DQB1*05 0.007 

DQA1*05~D
QB1*03 0.127 

A*01~C*07~DPB
1*53 0.125 

A*03~B*07~DRB1*1
5~DPB1*51 0.111 

A*02~C*07~DRB1*11~
DQA1*05~DQB1*03 0.026 

A*30~B*18~C*07~DRB1*11
~DQA1*01~DQB1*06 0.007 

C*03~DPB1
*53 0.125 

A*02~C*04~DPB
1*53 0.125 

B*42~C*17~DQA1*0
4~DQB1*04 0.041 

B*08~C*07~DRB1*03~
DQA1*05~DQB1*02 0.023 

A*30~B*42~C*17~DRB1*11
~DQA1*01~DQB1*03 0.007 
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C*05~DPB1
*51 0.125 

A*02~C*07~DPB
1*51 0.125 

A*02~DRB1*11~DQ
A1*05~DQB1*03 0.040 

A*01~B*08~C*07~DRB
1*03~DQB1*02 0.019 

A*30~B*58~C*06~DRB1*12
~DQA1*01~DQB1*05 0.007 

C*05~DPB1
*52 0.125 

A*03~C*05~DPB
1*53 0.125 

B*08~C*07~DRB1*0
3~DQA1*05 0.039 

B*58~C*07~DRB1*11~
DQA1*05~DQB1*03 0.018 

A*33~B*50~C*07~DRB1*15
~DQA1*02~DQB1*06 0.007 

C*12~DPB1
*53 0.125 

A*24~C*05~DPB
1*52 0.125 

C*07~DRB1*11~DQ
A1*05~DQB1*03 0.039 

A*02~B*58~C*07~DRB
1*11~DQA1*05 0.018 

A*68~B*58~C*06~DRB1*13
~DQA1*03~DQB1*03 0.007 

A*01~DPB1
*52 0.122 

A*24~C*12~DPB
1*52 0.125 

A*01~B*41~DRB1*0
7~DPB1*52 0.037 

A*02~B*58~DRB1*11~
DQA1*05~DQB1*03 0.018 

A*30~B*58~C*06~DRB1*12
~DQA1*01~DQB1*05 0.007 

DQA1*01~D
QB1*05 0.115 

A*68~C*03~DPB
1*52 0.125 

A*02~B*27~DRB1*0
4~DPB1*53 0.037 

A*03~B*07~C*07~DRB
1*15~DQB1*06 0.016 

A*33~B*50~C*07~DRB1*15
~DQA1*02~DQB1*02 0.007 

DRB1*15~D
QA1*01 0.112 

A*74~C*04~DPB
1*53 0.125 

A*02~B*44~DRB1*0
4~DPB1*53 0.037 

A*30~B*42~C*17~DRB
1*03~DQA1*04 0.016 

A*68~B*14~C*08~DRB1*13
~DQA1*05~DQB1*03 0.007 

          “freq” frequency 
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Table 4.5 The twenty most frequent high resolution two, three, four, five and six loci haplotype frequencies (Full list in 

Table S4.4) 

 

No data was available after filtering to compute five and six loci haplotype frequencies in Pypop40. Only 13 four loci haplotypes were 

identified. 

Two loci freq Three loci freq Four loci freq 

A*02:05~C*14:02 0.500 A*30:02~B*45:01~DRB1*15:03 1.00 
A*30:02~B*45:01~DRB1*15:03~DQB1
*05:01 0.500 

A*29:02~C*17:01 0.500 
DRB1*11:02~DQA1*05:02~DQB1*
03:19 1.00 

A*30:02~B*45:01~DRB1*15:03~DQB1
*06:02 0.500 

C*17:01~DQA1*04:02 0.579 
C*17:01~DRB1*11:02~DQB1*03:1
9 0.667 

B*42:01~C*17:01~DRB1*15:03~DQA1
*04:02 0.571 

B*42:01~DQA1*04:02 0.556 B*42:01~C*17:01~DQA1*04:02 0.657 
B*42:02~C*17:01~DRB1*11:02~DQB1
*03:19 0.333 

A*23:01~DQA1*02:01 0.500 
A*23:01~DQA1*02:01~DQB1*02:0
1 0.500 

B*15:10~C*17:01~DRB1*11:02~DQB1
*03:19 0.167 

A*80:01~DQA1*02:01 0.500 
A*80:01~DQA1*02:01~DQB1*02:0
1 0.500 

B*52:02~C*03:04~DRB1*11:02~DQB1
*03:19 0.167 

B*42:01~C*17:01 0.406 B*42:01~DRB1*15:03~DQA1*04:02 0.444 
B*41:02~C*17:01~DRB1*11:02~DQB1
*03:19 0.167 

C*17:01~DQB1*03:19 0.313 
C*17:01~DRB1*15:03~DQA1*04:0
2 0.444 

B*41:02~C*17:01~DRB1*15:03~DQB1
*03:19 0.167 

C*17:01~DQB1*04:01 0.313 A*30:02~B*45:01~DQB1*05:01 0.400 
B*42:01~C*17:01~DRB1*11:02~DQA1
*04:02 0.143 

A*30:02~DRB1*15:03 0.267 A*30:02~B*45:01~DQB1*06:02 0.400 
B*42:01~C*17:01~DRB1*03:02~DQA1
*04:02 0.071 

DQA1*02:01~DQB1*0
2:01 0.222 

C*17:01~DQA1*04:02~DQB1*04:0
1 0.313 

B*57:03~C*17:01~DRB1*03:02~DQA1
*04:02 0.071 
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C*03:04~DQA1*05:02 0.218 
C*17:01~DQA1*05:02~DQB1*04:0
1 0.312 

B*15:10~C*17:01~DRB1*15:03~DQA1
*05:02 0.071 

A*30:02~B*45:01 0.211 A*30:02~DRB1*15:03~DQB1*05:01 0.250 
B*42:02~C*03:04~DRB1*15:03~DQA1
*05:02 0.071 

A*30:02~DQB1*06:02 0.208 A*30:02~DRB1*15:03~DQB1*06:02 0.250 
B*42:01~C*17:01~DQA1*04:02~DQB1
*04:01 0.345 

DRB1*15:03~DQA1*0
2:01 0.207 A*68:01~DRB1*03:01~DQB1*02:01 0.250 

B*15:10~C*03:04~DQA1*05:02~DQB1
*04:01 0.220 

B*42:02~C*17:01 0.188 A*68:01~DRB1*11:01~DQB1*03:01 0.250 
B*42:01~C*17:01~DQA1*05:02~DQB1
*04:01 0.155 

C*03:04~DQB1*04:01 0.188 B*42:01~C*17:01~DQB1*04:01 0.250 
B*15:10~C*03:04~DQA1*04:02~DQB1
*04:01 0.155 

C*17:01~DRB1*15:03 0.178 B*42:01~DRB1*11:02~DQA1*04:02 0.222 
B*15:10~C*17:01~DQA1*05:02~DQB1
*04:01 0.125 

A*30:02~DQB1*05:01 0.167 B*42:01~C*17:01~DRB1*15:03 0.211 
  A*68:01~DQB1*02:01 0.167 B*42:02~DRB1*11:02~DQB1*03:19 0.200 
  

      “freq” frequency 
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Table 4.6 Pair wise linkage disequilibrium (LD) 

 

 High resolution (four digit) Low resolution (two digit) 

Locus pair D' Wn p-value D' Wn p-value 

A:B 0.0310 0.9501 <0.0001** # # # 

A:C 1.0000 1.000 <0.0001** 0.2017 0.1465 <0.0001** 

A:DRB1 1.0000 1.000 <0.0001** # # # 

A:DQA1 0.0000 0.9721 <0.0001** 0.2778 0.3049 0.0010* 

A:DQB1 0.9583  0.7958 <0.0001** 0.06878 0.0839 <0.0001** 

A:DPB1 + + + 0.6416 0.6240 0.0290NS 

B:C 0.9842 0.8967 <0.0001** 0.5119 0.4418 <0.0001** 

B:DRB1 0.8110 0.7693 <0.0001** 0.2179 0.1880 <0.0001** 

B:DQA1 0.7458 0.6177 0.0050* 0.3420 0.3556 <0.0001** 

B:DQB1 0.9328 0.8895 <0.0001** 0.1422 0.1851 <0.0001** 

B:DPB1 + + + 0.7630 0.7801 <0.0001** 

C:DRB1 0.7771 0.6520 <0.0001** 0.2213 0.1573 <0.0001** 

C:DQA1 0.5335 0.5335 0.0070* 0.2993 0.2978 <0.0001** 

C:DQB1 0.4583 0.7253 0.1061NS 0.1636 0.2334 <0.0001** 

C:DPB1 + + + 0.9250 0.8165 0.0671NS 

DRB1:DQA1 0.5978 0.6758 0.0130* 0.4850 0.4793 <0.0001** 

DRB1:DQB1 0.8669 0.7042 <0.0001** 0.5676 0.5173 <0.0001** 

DRB1:DPB1 + + + 0.9432 0.9679 <0.0001** 

DQA1:DQB1 0.6288 0.6693 <0.0001** 0.5302 0.4788 <0.0001** 

DQA1:DPB1 + + + # # # 

DQB1:DPB1 + + + 0.7082 0.7347 <0.0001** 

              

D':Hedrick’s statistic41 Wn: Cramer’s V statistic42 for global LD, **highly statistically 

significant at p<0.0001) *significant at p<0.05, NSnot significant p>0.05 +No high 

resolution HLA –DPB1 data.. #No data after filtering in Pypop. 
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Figure 4.1 South African HLA A and DRB1 non metric multidimensional scaling analysis using gene[rate] tools48. Full list 

in Figures S1 and S2 
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The distances between each population correlate to the HLA profile dissimilarity in those populations, for example in HR HLA A, 

South Africans are distinctly different from the other global populations (clumped together in the far right of the HR HLA A graph). 

The orientation of axes in NMDS plots is arbitrary and can be rotated to any direction. South African data = orange arrows. HR HLA 

A (High resolution HLA ~A), LR HLA A (Low resolution HLA ~A), HR DRB1 (high resolution HLA ~DRB1), LR DRB1 (low resolution 

HLA ~DRB1). NMSD for all loci and description of populations compared are detailed in Supplementary Figures 1 and 2 (Figure 

S1and Figure S2). NE-EUR (Northeast Europe), CW-EUR (Central and West Europe), SE-EUR (Southeast Europe), WASI 

(Western Asia), NAFR (Northern Africa), OTH (other European populations of recent origin), USER (South African).
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Figure 4.2 Neighbor-Joining tree based on Neis’s genetic distance for HLA ~A, 

~B and ~C calculated from sub Saharan populations 

High resolution (4 digit typing) HLA ~A, ~B and ~C allele frequencies from the 

following populations were used to determine phylogenetic relatedness. Populations 

include: Burkina Faso Fulani (BFF)54 Burkina Faso Mossi (BFM)54, Burkina Faso 

Rimaibe (BFR)54, Cameroon Baka Pygmy (CBP)55, Cameroon Bakola Pygmy 

(CBkP)56, Cameroon Bamileke (CaB)55, Cameroon Beti (CBt)55, Cameroon Sawa 

(CSw)55, Central African Republic Mbenzele Pygmy (CARMP)56, Ghana Ga-Adangbe 

(GGA)57, Kenya (KEN)58, Kenya Luo (KENL)59, Kenya Nandi (KENN)59, Kenya 
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Nyanza Province, Luo tribe (KENNy)60, PhyloD generated data (PSA)49, RSA 

(current study), Rwanda (RWA)61, Senegal Niokholo Mandenka (SenMAND)62, South 

Africa Black (SoAB)33, South Africa Caucasians (SoAC)33, South Africa Natal Tamil 

(SANT)63, South Africa Natal Zulu (SANZ)64, South Africa Worcester (WOR)51, South 

African Bone Marrow Registry (SAB)36, South African Indian population (SAI)52, 

South African Mixed ancestry (RMX)53, Uganda Kampala (UgaKam)59, Uganda 

Kampala pop 2 (UgaKam2)27, Zambia Lusaka (ZaL)59 and Zimbabwe Harare Shona 

(ZiHS)65. Current NHLS and SANBS data (RSA) showed phylogenetic relatedness to 

some previous South African studies SoAC33, SoAB33 and SANT63, but not with 

SANZ64, SAB36, SAI52, RMX53 and WOR51 using the Neis’ genetic distance66. 
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Figure 4.3 FST based principal component analysis of HLA ~A, ~B and ~C 

calculated from sub Saharan populations 

Burkina Faso Fulani (BFF)54 Burkina Faso Mossi (BFM)54, Burkina Faso Rimaibe 

(BFR)54, Cameroon Baka Pygmy (CBP)55, Cameroon Bakola Pygmy (CBkP)56, 

Cameroon Bamileke (CaB)55, Cameroon Beti (CBt)55, Cameroon Sawa (CSw)55, 

Central African Republic Mbenzele Pygmy (CARMP)56, Ghana Ga-Adangbe 

(GGA)57, Kenya (KEN)58, Kenya Luo (KENL)59, Kenya Nandi (KENN)59, Kenya 

Nyanza Province, Luo tribe (KENNy)60, PhyloD generated data (PSA)49, RSA 

(current study), Rwanda (RWA)61, Senegal Niokholo Mandenka (SenMAND)62, South 

Africa Black (SoAB)33, South Africa Caucasians(SoAC) 33, South Africa Natal Tamil 

(SANT)63, South Africa Natal Zulu (SANZ)64, South Africa Worcester (WOR)51, South 
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African Bone Marrow Registry (SAB)36, South African Indian population (SAI)52, 

South African Mixed ancestry (RMX)53, Uganda Kampala (UgaKam)59, Uganda 

Kampala pop 2 (UgaKam2)27, Zambia Lusaka (ZaL)59 and Zimbabwe Harare Shona 

(ZiHS)65. 

 

4.5 Discussion 

 

Despite the retrospective nature of this study combined with data missingness, we 

provide detailed insight into HLA diversity in South African populations using 3007 

high (four digit) and 51 891 low (two digit) resolution typing results. We attempted to 

address data missingness by using our dataset to simulate high resolution (four digit) 

class I data49. HLA ~A, ~B and ~C low resolution 2 digit and 4 digit typing results 

were combined to simulate a high resolution (4 digit) data set. The combined dataset 

(2 and 4 digit resolution) had some missing alleles for some participants (data 

missingness). High resolution HLA class I was simulated from this dataset to 

address data missingness and the mixed resolution typing nature of the accessed 

SANBS and NHLS HLA data. Additionally, the current data set was compared to 

other global populations accessed through the AFND. We note the limitation of not 

having high resolution data from nations neighboring South Africa for comparison, as 

previously reviewed18. As a result we conveniently selected high resolution class I 

(four digit) allele frequencies from sub Saharan populations from AFND50 to compare 

with our South African data set. Additionally, data generated from this study is 

accessible, and may be a useful future resource for population and anthropology 

studies for South African populations. 

 

Ewens-Watterson neutrality test72 detected excessive heterozygosity (p<0.0001) in 

HLA ~A (high resolution), and HLA ~A and ~DRB1 (low resolution) which is 

suggestive of balancing selection in these loci (Table 4.2). Balancing selection is well 

documented to maintain HLA diversity amongst populations71. The excessive 

heterozygosity in South African HLA data described in this study support this 

previously described source of HLA diversity. Generally, although the Ewens-

Watterson neutrality test72 used to detect neutrality was designed for non 

recombining data, the test has been evaluated to be insensitive to recombination73. 
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This test may be confidently used to detect selection in HLA genes, which are known 

to have a high recombination rate. Deviations from Ewens-Watterson neutrality due 

to recombination is expected to decrease haplotype homozygosity74,75 but not 

influence balancing selection driven allele diversity. The exact mechanism of how 

balancing selection promotes HLA diversity is poorly understood71. HWE 

approximation may give insights into HLA genotyping quality and sampling errors. 

Genotyping errors or failure to detect some alleles (blank allele) increases 

homozygosity, which may result in significant deviation from HWE76. The high data 

missingness in the current study might explain the highly significant deviations from 

HWE proportions at both typing resolutions (Table 4.1). Highly significant deviations 

from HWE might also highlight the presence of family members. Unfortunately we 

did not access demographic information of the study participants.  

 

We describe allele and haplotype frequencies in the South African population from 

mixed resolution HLA typing data. All three most frequent alleles (high resolution) 

were previously reported in different AFND populations at varying frequencies50. 

Interestingly, HLA ~DQA1*05:02 (0.370) was previously reported at lower (0.013) 

frequency in a South African population ~WOR51 and in Harare Zimbabwean Shonas 

(0.004)50. Additionally, our third most common allele, HLA ~C*17:01 (0.281), was 

previously reported at lower frequencies in other South African studies, specifically in 

South Africa Worcester~WOR51 (0.053), black South Africans~SoAB33 (0.111), 

Caucasian South Africans~SoAC33 (0.005) and in South African Bone Marrow 

Registry~SAB36 (0.028). The second most common allele HLA ~DQA1*04:02 (0.303) 

has not been previously reported in other South African studies.  

 

Our top three haplotypes were not reported in any population in the allele frequency 

data base ~AFND50, which does not necessarily mean the haplotypes have not been 

reported in any global population. Publicly available HLA data is key in supporting 

research; hence the need to deposit HLA data into centralised publicly accessible 

resources. Haplotype frequencies from limited sample size are inherently affected by 

genetic drift, with the occurrence of some alleles due to chance. The high sample 

size in the current study might have addressed this problem. We acknowledge 

though the limitation of mixed resolution typing and data missingness. Other reported 

confounders to haplotype estimation include typing ambiguity77 and sample size20. 
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Additionally, the highly significant HWE deviations (as seen in this study) have been 

reported to influence allele and haplotype estimations78. There was a strong global 

LD between loci pairs in our study except for C:DQB1 (p = 0.1061) high resolution, 

and A:DPB1 (p=0.0290), C:DPB1 (p=0.0671) low resolution (Table 4.6). Haplotype 

diversity coupled with highly significant LD might generally give insights into purifying 

selection79 in HLA region. Global LD considers all possible allele combinations from 

two loci studied80, in our case Hedrick’s D
41 weights alleles in each haplotype and 

Cramer’s V Statistic (Wn)
42 is a multi allelic correlation measure between pairs of loci. 

Haplotype frequency is influenced by LD, sample size, completeness of HLA data 

and allele frequency81, especially if gamete phase is unknown (reviewed in76). 

 

Although HLA-net gene[RATE) tools are mostly European populations (Northern 

Africa, Northeast Europe, Southeast Europe, Western Asia, Central and Western 

Europe)48, the tool allows for population comparison in HLA diversity through NMDS. 

Our data was distinctly different from other mostly European population, further 

supporting high genetic diversity in Africans in general13-17. Additionally, our NMDS 

analysis suggests high genetic diversity in some HLA loci than others, (high 

resolution HLA ~B, ~DQA1, ~DRB1, ~DQB1 and low resolution HLA ~A, ~B, ~C, 

~DRB1, ~DQA1 and ~DQB1 with low diversity in low resolution HLA ~C loci. 

Generally, in NMDS plots, closely related populations cluster together compared to 

those that are not related. Tight clusters separated from the rest suggest sub 

population structure in the dataset. We additionally compared our data with some 

global populations downloaded from AFND50 and simulated PhyloD generated 

data~PSA49. Bioinformatics tools have been key in simulating high resolution typing 

from low/intermediate typing to further understand HLA diversity49,82. We 

acknowledge that the reference for this statistical simulation method49 might not be 

ideal for African populations since it is based on African Americans (Table S4.2).  

 

Data from the current study (RSA) was related to other South African data sets 

(South African studies ~SoAC33, SoAB33 and SANT63, but not with SANZ64, SAB36, 

SAI52, RMX53 and WOR51) using the Neis’ genetic distance66 and NJ method69 

unrooted tree (Figure 4.2). We expected these populations to cluster together 

considering they are from the same population. Other South African studies 
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including South Africa Natal Zulu ~SANZ64, South African Bone Marrow Registry 

~SAB36, South African Indian ~SAI52, South African Mixed ancestry ~RMX53 and 

South Africa Worcester ~WOR51 were more related to other sub Saharan 

populations than our current study (RSA). This might be suggestive of high HLA 

diversity in South African populations, and their genetic relatedness to other African 

populations. Despite the use of “African-American” reference in simulating PhyloD 

generated data~PSA49, it showed close relation with a previous South African study 

~SAB36 (Figure 4.2). This might give confidence in the simulated data as a future 

resource for South Africans. Generally, if dendograms generated from HLA data do 

not show the expected relatedness of populations (geographically, ethnically, 

anthropologically and linguistically related), it suggests diversification of the studied 

loci amongst those populations76. Genetic distance computation assumes genetic 

drift drives population differentiation, but there is strong evidence of balancing 

selection driving differentiation in HLA loci83-86. Caution should thus be taken when 

interpreting HLA genetic distance analysis between populations. Additionally, Neis’ 

genetic distance66 assumes new alleles arise from neutral mutation rates across all 

loci. The complex HLA region seems not to follow these assumptions. Other genetic 

distance measures, Cavalli-Sforza87 and Reynold’s88 assume no mutation, 

differences between populations is attributed to genetic drift alone. It seems Neis’ 

genetic distance66 is favored for HLA data considering the high mutation rates in this 

gene region. 

PCA (Figure 4.3) confirms the genetic relatedness of South Africans (current RSA 

study) to other sub Saharan populations. Central African Republic Mbenzele Pygmy 

~CARMP showed a complete separation from other populations as shown by 69.6% 

variability in PCA 1 (Figure 4.3) suggesting a unique HLA class I genetic makeup 

amongst different populations. Additionally, From PCA, there is some degree of 

confidence in our simulated PhyloD generated data~PSA49 despite the use of an 

African –American reference, as it clustered with some South African HLA data and 

other sub Saharan populations (Figure 4.3). 

 

Generally, HLA allele frequencies provide insight into population history and not 

necessarily information on selection89. HLA data has been widely used to understand 

genetic relatedness of different populations, and demographic events in those 

populations23. The large sample size of the current study might shed light on some 
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demographic events in South Africa and how these relate to other sub Saharan 

populations. Population allele frequencies may be used in disease association 

studies and provide insight into genetic relatedness90-92. They may additionally be 

used to track population evolutionary processes including migration, selection and 

admixture93. 

 

4.6 Conclusions 

 

Despite data missingness, mixed resolution typing and the retrospective nature of 

the current study, we provide an insight into HLA diversity in South Africans. Our 

data and simulated PhyloD generated data~PSA49 may be a useful resource in the 

future to support disease association and population genetics studies. This attempt 

to elucidate HLA diversity in South Africans is part of our efforts to fully understand 

HLA diversity in Africans, and to build a resource for future studies. Key limitations 

include lack of ethnic data and disease state of participants; these contribute to HLA 

diversity. Although and individual’s inherited HLA genotype does not change due to 

disease state, continuous exposure to many pathogens in a population result in 

increased HLA diversity over an evolutionary time16. Generally, HLA genetic makeup 

of populations provides insight into their population history including selective 

pressures by pathogens16, migration, admixture and changes in population size24-27. 

Population comparison suggests genetic differences in our population relative to 

other global populations. It would be interesting to compare more high resolution 

data from other populations geographically close to South Africa. Unfortunately HLA 

data from these populations is limited (reviewed in Chapter 218); hence we only 

managed to include data from Zambia Lusaka (ZaL)59 and Zimbabwe Harare Shona 

(ZiHS)65.  

 

4.7 Data Availability 

 

Previously reported [HLA allele frequencies] data used to support this study are 

available http://www.allelefrequencies.net/hla6006a.asp using HLA A, B and C 

search options and sub Sahara region options. These prior studies and other 

http://www.allelefrequencies.net/hla6006a.asp
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additional datasets are cited at relevant places within the text as references27,33,36,50-

65. Data for non-metrical multidimensional scaling (NMDS) analysis is available at 

https://hala-net.eu/tools/regional-analysis/ and cited in text as gene[RATE] tools48. 

Additionally, HLA allele and haplotype frequencies generated by this study, to 

support the findings of this study are included within the supplementary information 

file(s). 

 

4.8 Supplementary Information  

 

Supplementary Tables and Figures are available in Addendum 1 and Addendum 2 

respectively. Additionally, these files were submitted together with this manuscript 

(under review in the BMC Medical Genetics manuscript number MGTC-D-19-00228) 

 

Supplementary Table 4.1 (Table S4.1): Low resolution (two digit) HLA ~A, ~B, ~C, 

~DRB1, ~DQA1, ~DQB1 and ~DPB1 allele frequencies in 51 891 typing results and 

high resolution (four digit) HLA ~A, ~B, ~C, ~DRB1, ~DQA1 and ~DQB1 allele 

frequencies in 3007 typing result. 

 

Supplementary Table 4.2 (Table S4.2): High resolution (four digit) HLA ~A, ~B, ~C 

genotypes and allele frequencies from PhyloD generated data~PSA 49. The data was 

simulated from our dataset which had a lot of missing data and low resolution typing 

(two digit). 

 

Supplementary Table 4.3 (Table S4.3): Low resolution (two digit) estimated 

haplotypes and their frequencies from 51 891 typing results 

 

Supplementary Table 4.4 (Table S4.4): High resolution (four digit) estimated 

haplotypes and their frequencies from 3007 typing result.   

 

Supplementary Figure 4.1 (Figure S4.1): High resolution (four digit) NMDS global 

comparison of South African HLA ~A, ~B, ~C, ~DRB1, ~DQA1, and ~DQB1 non 

metric multidimensional scaling analysis using gene[rate] tools48. 

 

https://hala-net.eu/tools/regional-analysis/
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Supplementary Figure 4.2 (Figure S4.2): Low resolution (two digit) NMDS global 

comparison South African HLA ~A, ~B, ~C, ~DRB1, ~DQA1, and ~DQB1 non metric 

multidimensional scaling analysis using gene[rate] tools48. 
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CHAPTER 5  

 

In silico HLA typing of 24 whole genome sequences generated by the Southern 

African Human Genome Programme (SAHGP) 
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5.1 Abstract 

 

Background: Despite the importance of human leukocyte antigen (HLA) typing 

results in research and clinical applications, HLA typing is still generally inaccessible 

in most resource limited settings. There is however an increasing number of next 

generation sequencing studies generating sequence data that may be used to 

determine HLA alleles in silico. This chapter describes determination of HLA alleles 

from 24 whole genomes from South African individuals using in silico methods to 

augment the paucity of HLA diversity data in these populations. 

 

Methods: Ethical approval was granted by University of Pretoria and the Southern 

African Human Genome Program (SAHGP) ethics committees. Whole genome 

sequence data was used to determine HLA alleles by HLAscan and HLA-HD 

imputation tools. 

 

Results: The two in silico HLA imputation methods predicted high resolution (up to 8 

digits) HLA alleles from the 24 South African genomes. Classical, non-classical and 

non-HLA alleles were predicted by the two methods using the whole genome 

sequences. There was generally high concordance between the two methods in 

predicting classical class I alleles compared to classical class II alleles. 

 

Conclusions/Significance: This chapter demonstrates the feasibility of using whole 

genome sequence data in understanding HLA diversity, especially in populations 

with limited HLA typing data. With the increasing availability of human genomic data 

at the population level through improvements in NGS and reduction of sequencing 

costs, HLA imputation might augment HLA typing. Results from this study 

benchmark the use of sequencing data to support HLA disease association studies, 

population genetics and better inform donor recruitment strategies into registries 

epidemiology 
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5.2 Introduction 

 

Precise HLA typing at high resolution has an impact on clinical outcomes in 

transplantation1,2 highlighting the critical need for accurate high resolution HLA 

typing methods. The polymorphic nature of the HLA gene region makes high 

resolution HLA typing challenging. It is often difficult to accurately determine an 

individual’s HLA genotype at high resolution. The HLA gene region is considered to 

be one of the most polymorphic regions in the human genome3,4, with 20 088 alleles 

described in the IMGT HLA database version 3.34.0 of October 2018 

(https://www.ebi.ac.uk/ipd/imgt/hla/stats.html)5. Additionally, high linkage 

disequilibrium (LD) is a distinctive feature of the HLA region6,7, adding to the 

challenge of HLA typing. Generally, classical HLA typing is commonly performed by 

sequencing exons 2–4 of Class I genes (HLA ~A, ~B and ~C) and exons 2 and/or 3 

of Class II genes (HLA ~DRB1 and ~DQB1)1.. But next generation sequencing 

(NGS) has revolutionized HLA typing with whole class I genes being sequenced and 

more exons being sequenced for class II alleles8. Despite these improvements, NGS 

HLA typing remains relatively expensive and generally inaccessible to most 

developing countries’ public health systems, e.g. South Africa. As a result, few 

individuals (in relation to population size) are HLA typed at high resolution for clinical 

applications. This contributes to the limited availability of high resolution HLA data 

from these populations (reviewed in this thesis Chapter 29). Additionally, short and 

long read sequences generated by NGS HLA typing have challenges including read 

coverage of target HLA gene/gene region, chromosome phasing and reduced ability 

to identify novel alleles.  

 

Despite the key function of HLA in host immunity and association with several 

diseases10, HLA typing is not routinely done in many settings due to high costs and 

expertise needed. With the current global push towards precision medicine, it 

becomes critical to have HLA genotypes at high resolution for better diagnosis and 

management. At least four digit typing (amino acid level) is clinically relevant to 

reduce graft versus host disease (GVHD), and reduce the chance of graft rejection11. 

There are several HLA typing methods, from serology, polymerase chain reaction 

sequence specific primer (PCR-SSP); polymerase chain reaction sequence specific 

oligonucleotide (PCR-SSO) Sanger sequence based typing and NGS HLA 

https://www.ebi.ac.uk/ipd/imgt/hla/stats.html
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typing12,13. HLA imputation provides a low cost broadly available HLA typing method 

owing to advances in NGS and availability of large numbers of whole genome 

sequence (WGS), whole exome sequence (WES) and single nucleotide 

polymorphisms (SNP) data sets across many populations. Single nucleotide 

polymorphisms, WGS and WES data sets may be used to accurately determine high 

resolution HLA alleles of the sequenced individuals14-21. Even discovery of novel 

alleles using in silico methods is possible18 through in silico HLA typing (HLA 

imputation). Several large sequencing projects like 1000 Genomes22-25, African 

Genome Variome Project26, H3 Africa (https://h3africa.org/) and the Southern African 

Human Genome Programme (SAHGP) datasets are valuable resources for HLA 

imputation to better understand HLA diversity in African populations. 

 

The SAHGP is a South African government funded initiative aimed at understanding 

genetic diversity of southern Africans, and was officially launched in January 201127. 

The pilot study describes genetic diversity in 24 South African male individuals (8 

South African colored and 16 black South Africans from the eastern Bantu speaking 

lineage) using WGS. The study highlights high genetic diversity amongst the 24 

whole genomes. Additionally, the study showed genetic variability amongst the 

eastern Bantu speakers suggesting more extensive genetic diversity than previously 

thought28. Generally, African populations are considered genetically diverse29-33 with 

a high disease burden34, and they are believed to be the cradle of modern 

humans35,36. The South African ethnolingistic diversity comprises the following 

groups: 79.6% eastern Bantu speakers, 8/9% Coloured (mixed race), 8.9% whites, 

2.5% Indian and 0.1% unclassified (http://www.statssa.gov.za/). The SAHGP pilot 

project generated a bioresource of unbiased deep sequencing data from the South 

African genomes. The study data analysis was done by South Africans supported by 

government funding as an initiative to build capacity, and demonstrates political will 

in understanding human genetic diversity27,28.  

 

This study aimed at determining HLA alleles from 24 whole genome sequences 

generated in the SAHGP27,28 using in silico methods as a pilot in using HLA 

imputation to understanding HLA diversity in South Africans.  

 

 

https://h3africa.org/
http://www.statssa.gov.za/
http://www.statssa.gov.za/
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5.3 Materials and Methods 

 

5.3.1 Ethics and data Access 

 

Ethical approval and access to the data was granted through the University of 

Pretoria Faculty of Health Sciences Ethics committee (ref: 220/2015) and the 

SAHGP data access committee (ref: SAHGP004) with all participants in the SAHGP 

study having signed written informed consent to participate in the main study28. The 

European Genome-phenome archive (EGA) client tool was used to download 

sequence data of the 24 individuals (accession number EGAD00001003791) in BAM 

file format37 from the EGA (https://ega-archive.org/datasets/EGAD00001003791). 

Briefly, the tool offers a secure download of the data (password protected and 

encrypted data is downloaded after ethical approval). The commands used to 

download sequence data from EGA are summarised in Appendix 7 and detailed in 

(https://www.ebi.ac.uk/ega/about/your_EGA_account/download_streaming_client).   

5.3.2 Description of data and file pre processing 

 

The SAHGP data was sequenced at about 50X coverage (≥ 30X) on Illumina 

HiSeq2000 (~100bp paired end reads, ~314bp insert size)28. Sequence reads were 

aligned to NCBI37 (hg19) human reference genome using Isaac Alignment tool38. 

Quality of alignments was determined by Samtools ver 1.1-2637. For the current 

study, reads covering chromosome 6 (chr6:28866528-33775446) were extracted 

using Samtools ver 1.1-2637. The chr6:28866528-33775446 covers and overlaps the 

HLA region; hence all HLA sequence reads were extracted. SamToFastq tool in 

picard-2.17.11 tools (https://github.com/broadinstitute/picard) was used to convert 

SAM files to paired end fastq files39. The extracted chromosome 6 (chr6:28866528-

33775446) fastq files39 were used as input for HLA imputation. In Appendix 8 is a 

customized python script used to automate chromosome 6 (chr6:28866528-

33775446) read extraction and conversion from BAM file format37 to paired end fastq 

file formats39.  

 

https://ega-archive.org/datasets/EGAD00001003791
https://www.ebi.ac.uk/ega/about/your_EGA_account/download_streaming_client
https://github.com/broadinstitute/picard
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5.3.3 HLA imputation using HLA scan and HLA-HD tools 

 

Two alignment based HLA imputation tools were independently used to determine 

HLA alleles of the 24 whole genomes generated by the SAHGP27,28. HLA scan40 and 

HLA typing from High-quality Dictionary (HLA-HD)41,42 alignment based tools were 

used for HLA imputation. HLAscan40 and HLA-HD41,42 tools were downloaded onto a 

local University of Pretoria Unix server together with dependencies outlined by the 

developers. The environment variables for these imputation tools were set to run in 

the folders with the SAHGP BAM file37 and paired end fastq file39 file formats. 

Figure 5.1 summarises the step by step imputation using these two methods to 

obtain high resolution HLA typing results. For both methods, the IMGT HLA 

database version 3.34.0 of October 2018 

(https://www.ebi.ac.uk/ipd/imgt/hla/stats.html)5 was used as a reference. Briefly, HLA 

scan40 is an alignment-based program that determines HLA alleles taking into 

account sequence read coverage to reduce false allele calling. The software 

performs alignment of reads to HLA sequences from the international 

ImMunoGeneTics project/human leukocyte antigen (IMGT/HLA) database 

(https://www.ebi.ac.uk/ipd/imgt/hla/)5,43. The distribution of the HLA region aligned 

reads is used to calculate a score function and to determine correctly phased alleles 

by progressively removing false-positive alleles. HLAscan can be reliably applied for 

determination of HLA type across the whole-genome, exome, and target sequences. 

HLAscan software is a freely available public tool for academic purposes, and 

requires a license for commercial HLA typing40. Default settings were used to 

determine HLA alleles from the 24 genomes. 

 

On the other hand, HLA-HD41,42 is also a freely available tool for academic use, to 

accurately determine HLA alleles from NGS data (fastq format). Additionally, HLA-

HD41,42 may use RNA-Seq data for HLA imputation. The tool by default ignores any 

reads less than 100 base pairs (bp), and considers HLA exonic and intronic read 

coverage. The tool firstly generates an HLA library of HLA genes in the IMGT/HLA 

database (https://www.ebi.ac.uk/ipd/imgt/hla/docs/release.html) using the latest 

release (3.34.0 of October 2018)5. The number of reads mapped to the HLA 

https://www.ebi.ac.uk/ipd/imgt/hla/stats.html
https://www.ebi.ac.uk/ipd/imgt/hla/
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dictionary determines the weighting score of a potential allele at that locus. Default 

settings were modified in the HLA dictionary to type additional HLA ~DRB5, HLA ~T, 

~W and ~Y as per HLA_gene.split.3.32.0.txt in the version 1.2.0.1 July 11, 2018 

release41,42) 
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Figure 5.1 In silico HLA typing using HLA scan and HLA –HD tools 
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HLAscan imputation. Sections A-D summarise the steps. Briefly: paired end fastq files covering the HLA region are used as input 

for imputation (A). The sequence reads are aligned to the human reference genome sequence (B) and HLA allele sequences in the 

IMGT HLA data base (C). Potential alleles are scored based on read coverage, and resolving phasing issues (D). HLA-HD 

imputation (E-G), briefly: paired end fastq sequence reads (E) are mapped onto exons and introns of all the alleles recorded in the 

HLA dictionary (F). Matched reads are assigned to HLA alleles for the allele pair score calculation, with each read being weighted. 

The score of the weighted sum of reads is calculated for potential allele pairs, and the pair yielding the highest score is selected 

(G). This flow diagram was adapted from HLA scan and HLA-HD methods40-42. 
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5.3.4 Assessing concordance of Imputation tools 

 

We describe concordance as the total number of similar alleles called by the two 

methods per locus   [typing resolution is taken into account, for example 

A*29:02:01by HLA HD and A*29:02:01:02 by HLAscan are considered similar as one 

method gives a higher resolution of the same allele (Table 5.1)]. The   is divided by 

the total number of alleles/loci Y (excluding ambiguous typing the default is 4, which 

is two alleles per imputation method). Therefore concordance is given by: 

 

 
      

 

5.4 Results 

 

The two HLA imputation tools successfully determined classical (HLA class 1 and 

class II) and non classical (HLA class III) HLA alleles from whole genome sequences 

of 24 individuals. Supplementary Tables 5.1 (S5.1) and 5.2 (S5.2) summarize the 

imputed alleles using HLA-HD and HLAscan methods40-42 respectively. Generally, 

HLA-HD41,42 determined HLA alleles in 28 loci (S5.1) while HLAscan40 used 17 HLA 

loci plus 4 non HLA loci (S5.2). The highest HLA typing resolution from HLA-HD41,42 

was 6 digits, for example the genotype of individual 1 (Table 5.1) is HLA ~ 

A*24:02:01/A*25:01:01. On the other hand, HLAscan40 gave up to 8 digit typing 

resolution (for example individual 12 in Table 5.1 is HLA-

A*30:02:01:03/A*68:01:01:01). Tables 5.1 to 5.6 summarise classical HLA typing 

results generated by the two in silico methods40-42.  

 

HLA ~B (Table 5.2) and ~C (Table 5.3) loci had the highest concordance between 

the two HLA imputation methods40-42, with 100% concordance in 21/24 individuals for 

both loci. Additionally, 100% concordance for HLA ~DRB1 in 19/24 individuals (Table 

5.4), for HLA ~A in 15/24 individuals (Table 5.1), for HLA ~DAQ1 in 11/24 individuals 

(Table 5.5) and for HLA ~DQB1 in 10/24 individuals (Table 5.6). Zero (0%) 

concordance between the two methods used40-42 was observed for HLA ~A in 4/24 

individuals (Table 5.1), for HLA ~B in 1/24 individuals (Table 5.2), HLA ~DQA1 in 

5/24 individuals (Table 5.5) and for HLA ~DQB1 in 5/24 individuals (Table 5.6). No 
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concordance (0%) was observed for 4/24 individuals (HLA ~A Table 5.1), 1/24 

individuals (HLA ~B Table 5.2), 4/24 individuals (HLA ~DQA1 Table 5.5) and 5/24 

individuals (HLA ~DQB1 Table 5.6). There was generally higher concordance in 

class I alleles (HLA ~A, ~B and ~C) compared to class II alleles (HLA ~DRB1, 

~DQA1 and ~DQB1). In some cases one method gave a higher resolution of the 

same allele e.g. A*29:02:01 for HLA-HD41,42 and A*29:02:01:02 for HLAscan (Table 

5.1).  

 

HLAscan40 could not determine HLA ~DRB5 alleles in some (18/24) individuals 

(S5.2). On the other hand HLA-HD41,42 gave ambiguous typing results in HLA ~DOB, 

~DRB4, ~H and ~K loci in some individuals (Table 5.7). No ambiguous typing was 

obtained for in silico classical HLA alleles (Tables S5.1 and S5.2), but in some cases 

imputation methods40-42 could not determine HLA alleles (Tables 5.2, 5.4, 5.5 and 

5.6). Unfortunately, the 24 individuals in this study were not HLA typed 

experimentally or for any medical reasons; hence we could not compare the in silico 

determined HLA alleles to HLA typing results. The two HLA imputation tools used 

HLA-HD and HLAscan methods40-42 in this study were evaluated on public datasets 

including the 1000 Genomes22-25 with 100% accuracy. Imputation results described 

in this study highlights the feasibility of leveraging from existing sequence data from 

African populations to better understand HLA diversity in these populations.  
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Table 5.1 In silico HLA –A determination using HLA scan and HLA-HD tools 

Sample 
ID HLA AHLA-HD

41,42 HLA AHLA-SCAN
40 

% 

1 A*24:02:01 A*25:01:01 A*25:01:01 A*24:02:01:03 100 

2 A*23:17:01 A*30:04:01 A*30:04:01 A*23:01:01 50 

3 A*02:05:01 A*02:603 A*02:14 A*02:02:01 0 

4 A*32:01:01 A*30:04:01 A*30:04:01 A*32:01:01 100 

5 A*30:01:01 A*03:01:01 A*30:01:01 A*03:01:01:03 100 

6 A*29:02:01 A*30:02:01 A*29:02:01:01 A*30:02:01:02 100 

7 A*30:02:01 A*02:01:01 A*30:02:01:02 A*02:01:01:02L 100 

8 A*29:02:01 A*23:17:01 A*29:02:01:02 A*23:01:01 50 

9 A*02:01:01 A*30:18 A*02:09 A*30:01:01 0 

10 A*33:03:01 A*34:01:01 A*33:03:01 A*34:01:01 100 

11 A*43:01 A*02:05:01 A*43:01 A*02:05:01 100 

12 A*68:01:01 A*30:02:01 A*30:02:01:03 A*68:01:01:01 100 

13 A*03:01:01 A*74:01:01 A*03:01:01:03 A*74:02:01:02 100 

14 A*23:01:01 A*02:02:01 A*02:02:01 A*23:01:01 100 

15 A*02:01:18 A*01:01:01 A*02:01:15 A*01:01:01:01 50 

16 A*24:02:01 A*25:01:01 A*24:02:01:03 A*25:01:01 100 

17 A*23:17:01 A*02:01:01 A*23:01:01 A*02:01:01:02L 50 

18 A*68:02:01 A*66:01:01 A*66:01:01 A*68:02:01:03 100 

19 A*26:01:01 A*29:01:01 A*26:01:01:01 A*29:01:01:02N 100 

20 A*68:02:02 A*66:03:01 A*68:02:01:03 A*66:02 0 

21 A*29:02:01 A*26:01:01 A*29:02:01:02 A*26:01:07 50 

22 A*01:01:01 A*11:01:01 A*01:04N A*11:01:47 0 

23 A*68:02:01 A*03:01:01 A*68:02:01:02 A*03:01:01:03 100 

24 A*02:05:01 A*30:02:01 A*02:05:01 A*30:02:01:03 100 

 

percentage (%) concordance between the two methods. The difference in typing 

resolution of the same allele is ignored (the two methods are considered concordant 

in predicting that allele) 
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Table 5.2 In silico HLA –B determination using HLA scan and HLA-HD tools 

Sample ID HLA BHLA-HD
41,42 HLA BHLA-SCAN

40 % 

1 B*07:02:01 B*37:01:01 B*07:02:01 B*37:01:01 100 

2 B*58:02:01 B*44:03:01 B*58:02 B*44:03:01 100 

3 B*44:03:01 B*57:03:01 B*44:03:01 B*57:03:01 100 

4 B*15:01:01 - B*15:01:01:03 B*15:01:01:03 50 

5 B*42:02:01 B*44:03:02 B*42:02:01:02 B*44:03:02 100 

6 B*42:01:01 B*15:03:01 B*42:01:01 B*15:03:01 100 

7 B*08:01:01 B*40:01:02 B*40:01:01 B*08:01:01 50 

8 B*44:37:02 B*58:07 B*44:03:02 B*58:02 0 

9 B*81:01:01 B*45:01:01 B*45:01:01 B*81:01 100 

10 B*15:21:01 B*44:03:02 B*44:03:02 B*15:02:01 50 

11 B*15:10:01 B*44:03:01 B*15:10:01 B*44:03:01 100 

12 B*07:02:01 B*14:02:01 B*07:02:01 B*14:02:01 100 

13 B*18:01:01 B*57:03:01 B*18:01:01:02 B*57:03:01 100 

14 B*15:10:01 B*08:01:01 B*15:10:01 B*08:01:01 100 

15 B*81:01:01 B*45:01:01 B*81:01 B*45:01:01 100 

16 B*55:01:01 B*18:01:01 B*55:01:01 B*18:01:01:01 100 

17 B*07:02:01 B*44:03:01 B*44:03:01 B*07:02:01 100 

18 B*15:10:01 B*58:02:01 B*15:10:01 B*58:02 100 

19 B*41:01:01 B*18:01:01 B*18:01:01:01 B*41:01:01 100 

20 B*15:03:01 B*53:01:01 B*53:01:01 B*15:03:01 100 

21 B*44:03:02 B*51:01:01 B*44:03:02 B*51:01:01:02 100 

22 B*35:03:01 B*37:01:01 B*35:03:01 B*37:01:01 100 

23 B*58:02:01 B*18:01:01 B*58:02 B*18:01:01:02 100 

24 B*08:01:01 B*50:01:01 B*50:01:01 B*08:01:01 100 

 

percentage (%) concordance between the two methods. The difference in typing 

resolution of the same allele is ignored (the two methods are considered concordant 

in predicting that allele) ‘-:’ Tool could not determine the HLA allele 
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Table 5.3 In silico HLA –C determination using HLA scan and HLA-HD tools 

Sample ID HLA CHLA-HD
41,42 HLA CHLA-SCAN

40 % 

1 C*07:02:01 C*06:02:01 C*06:02:01:02 C*07:02:01:01 100 

2 C*04:01:01 C*06:02:01 C*04:01:01:06 C*06:02:01:03 100 

3 C*07:01:02 C*04:01:01 C*04:01:01:02 C*07:01:02 100 

4 C*04:01:01 C*03:03:01 C*03:03:01 C*04:01:01:01 100 

5 C*07:06:01 C*17:01:01 C*17:01:01:02 C*07:06 100 

6 C*02:10:01 C*17:01:01 C*17:03 C*02:10 50 

7 C*07:01:01 C*03:04:01 C*03:04:43 C*07:01:01:02 50 

8 C*06:02:01 C*07:06:01 C*07:06 C*06:02:01:02 100 

9 C*04:01:01 C*16:01:01 C*04:01:01:02 C*16:01:01 100 

10 C*04:03:01 C*07:06:01 C*07:06 C*04:03:01 100 

11 C*08:04:01 C*02:10:01 C*08:04:01 C*02:10 100 

12 C*07:02:01 C*08:02:01 C*08:02:01:02 C*07:02:01:03 100 

13 C*18:02 C*07:01:01 C*07:01:01:03 C*18:02 100 

14 C*07:01:01 C*16:01:01 C*07:01:01:03 C*16:01:01 100 

15 C*16:01:01 C*18:01 C*16:01:01 C*18:01 100 

16 C*12:03:01 C*03:03:01 C*12:03:01:01 C*03:03:01 100 

17 C*07:02:01 C*02:10:01 C*02:10 C*07:02:01:03 100 

18 C*03:04:02 C*06:02:01 C*06:02:01:01 C*03:04:02 100 

19 C*07:04:01 C*17:01:01 C*07:04:01 C*17:03 50 

20 C*02:10:01 C*04:01:01 C*04:01:01:04 C*02:10 100 

21 C*07:01:01 C*07:06:01 C*07:01:01:03 C*07:06 100 

22 C*06:02:01 C*04:01:01 C*06:02:01:01 C*04:01:01:06 100 

23 C*06:02:01 C*05:01:01 C*05:01:01:01 C*06:02:01:01 100 

24 C*07:01:01 C*06:02:01 C*06:02:01:03 C*07:01:01:03 100 

 

% percentage concordance between the two methods. The difference in typing 

resolution of the same allele is ignored (the two methods are considered concordant 

in predicting that allele) 

 



125 
 

Table 5.4 In silico HLA –DRB1 determination using HLA scan and HLA-HD tools 

Sample ID 
HLA DRB1HLA-HD

41,42 HLA DRB1HLA-SCAN
40 

% 

1 DRB1*15:01:01 DRB1*10:01:01 DRB1*15:01:01:02 DRB1*10:01:01 100 

2 DRB1*03:01:01 DRB1*04:04:01 DRB1*04:04:01 DRB1*03:01:01:02 100 

3 DRB1*01:02:13 DRB1*03:02:01 DRB1*03:02:01 DRB1*01:02:01 50 

4 DRB1*01:03:01 DRB1*04:01:01 DRB1*04:01:01 DRB1*01:03 100 

5 DRB1*11:01:02 DRB1*13:02:01 DRB1*13:02:01 DRB1*11:01:02 100 

6 DRB1*13:02:01 DRB1*08:04:01 DRB1*13:02:01 DRB1*08:04:01 100 

7 DRB1*03:02:01 DRB1*04:01:01 DRB1*04:01:01 DRB1*03:02:01 100 

8 DRB1*04:04:01 DRB1*11:01:02 DRB1*11:01:02 DRB1*11:01:02 50 

9 DRB1*03:02:01 DRB1*15:03:01 DRB1*03:02:01 DRB1*15:03:01:01 100 

10 DRB1*15:02:01 DRB1*07:01:01 DRB1*15:02:01 DRB1*07:01:01:01 100 

11 DRB1*13:01:01 DRB1*04:01:01 DRB1*13:01:01 DRB1*04:01:01 100 

12 DRB1*15:03:01 DRB1*09:01:02 DRB1*15:03:01:01 DRB1*09:01:02 100 

13 DRB1*13:01:01 DRB1*11:04:01 DRB1*11:04:01 DRB1*13:01:01 100 

14 DRB1*11:01:02 DRB1*03:01:01 DRB1*11:01:02 DRB1*03:01:01:01 100 

15 DRB1*11:01:02 - DRB1*11:01:02 DRB1*11:01:02 50 

16 DRB1*14:54:01 DRB1*07:01:01 DRB1*07:01:01:02 DRB1*14:10 50 

17 DRB1*15:01:01 DRB1*04:01:01 DRB1*15:01:01:02 DRB1*04:01:01 100 

18 DRB1*07:01:01 DRB1*10:01:01 DRB1*10:01:01 DRB1*07:01:01:02 100 

19 DRB1*13:01:01 DRB1*13:02:01 DRB1*13:02:01 DRB1*13:01:01 100 

20 DRB1*07:01:01 DRB1*01:02:13 DRB1*01:02:01 DRB1*07:01:01:01 50 

21 DRB1*11:01:02 DRB1*15:01:01 DRB1*11:01:02 DRB1*15:01:01:04 100 

22 DRB1*13:01:01 DRB1*01:01:01 DRB1*13:01:01 DRB1*01:01:01 100 

23 DRB1*08:04:01 DRB1*11:01:02 DRB1*08:04:01 DRB1*11:01:02 100 
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24 DRB1*03:01:01 DRB1*07:01:01 DRB1*03:01:01:02 DRB1*07:01:01:01 100 

% percentage concordance between the two methods. The difference in typing resolution of the same allele is ignored (the two 

methods are considered concordant in predicting that allele). ‘-:’  Tool could not determine the HLA allele 
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Table 5.5 In silico HLA –DQA1 determination using HLA scan and HLA-HD tools 

Sample ID HLA DQA1HLA-HD
41,42 HLA DQA1HLA-SCAN

40 % 

1 DQA1*01:02:01 DQA1*01:12 DQA1*01:02:01:04 DQA1*01:05:02 50 

2 DQA1*05:05:01 DQA1*03:03:01 DQA1*05:09 DQA1*05:09 0 

3 DQA1*04:01:01 DQA1*01:01:02 DQA1*01:01:02 DQA1*04:01:01 100 

4 DQA1*01:01:01 DQA1*03:03:01 DQA1*01:01:02 DQA1*01:04:01:02 0 

5 DQA1*01:02:01 - DQA1*01:02:01:04 DQA1*01:02:01:04 50 

6 DQA1*01:02:01 DQA1*05:05:01 DQA1*01:02:01:04 DQA1*05:05:01:02 100 

7 DQA1*04:01:01 DQA1*03:03:01 DQA1*04:01:01 DQA1*04:01:01 50 

8 DQA1*03:03:01 DQA1*01:02:01 DQA1*01:02:01:02 DQA1*01:02:04 50 

9 DQA1*04:01:01 DQA1*01:02:01 DQA1*01:02:01:04 DQA1*04:01:01 100 

10 DQA1*02:01:01 DQA1*01:01:01 DQA1*01:01:01 DQA1*02:01 100 

11 DQA1*01:03:01 DQA1*03:03:01 DQA1*01:03:01:02 DQA1*03:03:01 100 

12 DQA1*01:02:01 DQA1*03:03:01 DQA1*01:02:01:02 DQA1*01:02:04 50 

13 DQA1*05:05:01 DQA1*01:02:01 DQA1*01:02:01:04 DQA1*05:05:01:02 100 

14 DQA1*05:02 DQA1*05:05:01 DQA1*05:09 DQA1*05:01:01:01 0 

15 DQA1*05:05:01 - DQA1*05:09 DQA1*05:09 0 

16 DQA1*02:01:01 DQA1*01:04:01 DQA1*01:04:01:01 DQA1*02:01 100 

17 DQA1*01:02:01 DQA1*03:03:01 DQA1*01:02:02 DQA1*01:11 0 

18 DQA1*01:05:01 DQA1*03:03:01 DQA1*01:01:01 DQA1*03:03:01 100 

19 DQA1*01:03:01 DQA1*01:02:01 DQA1*01:03:01:01 DQA1*01:02:01:04 100 

20 DQA1*02:01:01 DQA1*01:01:02 DQA1*01:01:02 DQA1*02:01 100 

21 DQA1*05:05:01 DQA1*01:02:01 DQA1*01:02:01:04 DQA1*05:05:01:01 100 

22 DQA1*01:01:01 DQA1*01:03:01 DQA1*01:03:01:01 DQA1*01:01:02 50 

23 DQA1*04:01:02 DQA1*05:05:01 DQA1*05:02 DQA1*04:01:02:02 50 

24 DQA1*02:01:01 DQA1*05:01:01 DQA1*02:01 DQA1*05:01:01:01 50 
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% percentage concordance between the two methods. The difference in typing resolution of the same allele is ignored (the two 

methods are considered concordant in predicting that allele).  ‘-:’  Tool could not determine the HLA allele 
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Table 5.6 In silico HLA –DQB1 determination using HLA scan and HLA-HD tools 

Sample ID HLA DQB1HLA-HD 41,42 HLA DQB1HLA-SCAN 40 % 

1 DQB1*06:02:01 DQB1*05:01:01 DQB1*06:02:01 DQB1*05:01:01:02 100 

2 DQB1*04:23 DQB1*03:01:01 DQB1*04:02:01 DQB1*03:01:01:03 50 

3 DQB1*05:01:01 DQB1*04:02:01 DQB1*04:02:01 DQB1*04:02:01 50 

4 DQB1*03:02:01 DQB1*05:01:01 DQB1*03:02:01 DQB1*03:02:12 50 

5 DQB1*06:09:01 DQB1*06:02:01 DQB1*06:09:01 DQB1*06:02:01 100 

6 DQB1*06:09:01 DQB1*03:01:04 DQB1*06:09:01 DQB1*03:01:01:01 50 

7 DQB1*04:23 DQB1*03:01:01 DQB1*04:02:01 DQB1*04:02:01 0 

8 DQB1*06:02:01 DQB1*04:02:01 DQB1*06:02:01 DQB1*04:13 50 

9 DQB1*06:02:01 DQB1*04:02:01 DQB1*06:02:01 DQB1*04:02:01 100 

10 DQB1*05:01:24 DQB1*02:02:01 DQB1*05:01:01:03 DQB1*05:01:01:03 0 

11 DQB1*06:03:01 DQB1*03:02:01 DQB1*06:03:01 DQB1*03:02:01 100 

12 DQB1*06:02:01 DQB1*02:02:01 DQB1*06:02:01 DQB1*02:02:01 100 

13 DQB1*03:01:01 DQB1*05:01:01 DQB1*03:01:01:01 DQB1*05:01:01:03 100 

14 DQB1*02:01:01 DQB1*03:19:01 DQB1*02:01:01 DQB1*03:01:01:01 50 

15 DQB1*03:19:01 DQB1*03:22 DQB1*03:01:01:03 DQB1*03:01:01:03 0 

16 DQB1*03:03:02 DQB1*05:03:01 DQB1*03:03:02:01 DQB1*05:03:01:01 100 

17 DQB1*06:02:01 DQB1*03:02:01 DQB1*03:02:01 DQB1*06:02:01 100 

18 DQB1*05:01:01 DQB1*02:02:03 DQB1*02:12 DQB1*05:01:01:03 50 

19 DQB1*06:03:01 DQB1*06:09:01 DQB1*06:09:01 DQB1*06:03:01 100 

20 DQB1*05:01:01 DQB1*02:02:01 DQB1*05:01:01:03 DQB1*02:12 50 

21 DQB1*06:02:01 DQB1*03:19:01 DQB1*06:02:01 DQB1*03:01:01:01 50 

22 DQB1*06:03:01 DQB1*05:01:01 DQB1*06:03:01 DQB1*05:01:01:01 100 

23 DQB1*03:19:01 - DQB1*03:01:01:03 DQB1*03:01:01:03 0 

24 DQB1*02:02:01 DQB1*02:01:08 DQB1*02:12 DQB1*02:12 0 
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% percentage concordance between the two methods. The difference in typing resolution of the same allele is ignored (the two 

methods are considered concordant in predicting that allele).  ‘-:’  Tool could not determine the HLA allele



131 
 

Table 5.7 Ambiguous typing results generated by HLA –HD tool 

Sample ID HLA AHLA-HD
41,42 ambiguous typing results 

3 H*01:01:01 H*02:03 

 H*01:01:01 H*01:02 

4 K*01:01:01 K*01:03 

 K*01:01:01 K*01:01:01 

7 K*01:02 K*01:01:01 

 K*01:02 K*01:03 

9 K*01:02 K*01:01:01 

 K*01:02 K*01:03 

10 K*01:03 K*01:02 

 K*01:01:01 K*01:02 

 K*01:01:01 K*01:03 

 K*01:01:01 K*01:01:01 

12 K*01:01:01 K*01:03 

 K*01:01:01 K*01:01:01 

 K*01:02 K*01:03 

 K*01:02 K*01:01:01 

13 K*01:01:01 K*01:02 

 K*01:01:01 K*01:01:01 

14 H*02:03 H*01:01:01 

 H*01:02 H*01:01:01 

18 K*01:01:01 K*01:02 

 K*01:01:01 K*01:01:01 

19 DOB*01:01:03 DOB*01:01:01 

 DOB*01:01:03 DOB*01:02:01 

 DOB*01:01:03 DOB*01:03 

20 DRB4*01:03:01 DRB4*01:02 

 DRB4*01:03:01 DRB4*01:03:01 

23 K*01:01:01 K*01:02 

 K*01:01:01 K*01:01:01 

24 K*01:02 K*01:01:01 

 K*01:02 K*01:03 
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5.5 Discussion 

 

This chapter highlights the potential of using bioinformatics tools to understand HLA 

diversity in populations with limited HLA data. Despite the small sample size (24 

WGS), HLA-HD and HLAscan40-42 predicted high resolution HLA alleles in the South 

Africans assessed. Accurate high resolution (up to 8 digits) HLA imputation from 

WGS, WES and SNPs has become feasible with improved accuracy. Most 

imputation tools use mostly “non African” populations as references; as a result, 

accurate HLA imputation in African populations might be compromised due to the 

documented genetic diversity in Africans44. We sought to describe HLA genotypes 

from 24 genomes from the SAHGP as a bench mark for a larger project to describe 

HLA diversity in South Africans. HLAscan40 and HLA-HD41,42 tools predicted class I, 

II and non HLA genes from high coverage (50X) whole genome sequences.  

 

South Africa has a unique demographic, ethnic and cultural diversity coupled with a 

high disease burden. The pilot SAHGP study demonstrated higher genetic variability 

amongst the eastern Bantu speakers of South Africa28 than previosuly thought. HLA 

imputation from this dataset provides an essential bioresource for future population 

genetics studies, HLA-disease association studies and general human genetic 

diversity. The ability to use in silico methods to determine high resolution HLA typing 

results in South Africans benchmarks future application of using bionformatic 

approaches to understand HLA diversity. The successful application of HLA 

imputation to the SAHGP sequence data28 provides a motivation to increase sample 

size to augument HLA typing results from these populations. There is generally 

limited HLA diversity data from southern Africans (reviewed in Chapter 29). In silico 

HLA typing methods borrowing from existing data sets like the SAHGP sequence 

data28 might help better understand HLA diversity in these populations. 

 

Clinical HLA typing using sequencing based methods is still considered the gold 

standard, due to its high accuracy and ability to detect genetic differences across the 

HLA genes. However, these methods are still not accessible in most resource limited 

settings, and are generally expensive, hence limit in the number of individuals who 

have been typed (reviewed in45). Additionally, advances in NGS HLA typing enables 

high thoroughput high resolution typing. Generally, NGS generates a vast amount of 
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short read sequences that may be used for in silico HLA allele determination8,46. The 

main challenge in using short read sequences in HLA imputation is the polymorphic 

nature of the HLA gene region47. It is computationally challenging to accurately map 

or align the many short NGS reads to HLA allele reference sequences5,48. Short 

reads generated by most NGS technologies are difficult to use for HLA imputation 

owing to many potential candidate alleles and thereby leading to high sequence 

noise in imputation experiments. Most algorithms (tools) filter out the less common 

alleles before giving the final HLA result; for example, OptiType49 only considers 

alleles reported in the allele frequency database (AFND)50 and HLA-VBSeq only 

considers 100 possible HLA alleles51. This highlights the variability of HLA imputation 

tools. As a result, targeted sequence HLA typing remains the gold standard in clinical 

applications. It is generally difficult to know which allele(s) is represented by short 

sequencing read(s) considering the high similarity amongst different HLA alleles and 

the presence of pseudo-genes. Additionally, most reference alleles in the IMGT/HLA 

database do not have full length sequences48, making it difficult to accurately call 

HLA alleles from short read sequence data. Additionally, the human genome 

reference does not fully cover HLA diversity, thereby confounding alignment of reads 

to the reference (reviewed in52). 

 

HLA-HD and HLAscan40-42 methods used in this chapter are alignment based 

imputation methods. Only reads aligning to human reference and HLA regions are 

used by the alignment based imputation methods like HLAscan40 and HLA-HD41,42. A 

lot of potentially useful data (unmapped reads) is lost or not used, hence it might be 

beneficial to use assembly based methods to impute HLA genotypes from these 

individuals in future. HLA HD41,42 considers sequence reads outside the antigen 

binding domain to determine HLA allele pair, unlike other tools like OptiType49 and 

HLAreporter53, which are restricted to the antigen binding domain. HLAscan40 

addresses the chromosome phasing problem in NGS HLA imputation. From 

previously typed data sets, HLAscan40 outperformed (100% accuracy) PHLAT16 

(95% accuracy) and HLAreporter53 (98% accuracy) in the four digit HLA typing of 

1000 Genomes data set16. The HLAscan tool may be used for clinical purposes, but 

a minimum coverage depth over 90× is recommended40 by the software developers. 

Generally, read depth (coverage) directly impacts the sensitivity and specificity of 

HLA allele calls54,55. The current study used Illumina HiSeq2000 generated whole 
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genome sequences with 50X coverage28. Read coverage and unmapped reads 

might have contributed to failure to predict some alleles and ambiguous typing 

results in this study (Tables S5.1 and S5.2). 

 

WGS HLA imputation gives more information than SNP and WES based imputation; 

even gene regulatory elements and non coding elements like untranslated regions 

(UTR) and introns are covered. Basically, HLA imputation from short NGS reads can 

be classified into assembly based and alignment based methods. Assembly 

approaches assemble the short NGS reads into long contigs, which are then used 

for HLA imputation. Assembly methods are however time and computationally 

challenging as reported by HLAminer56, HLAreporter53 and ATHLATES57 assembly 

tools. Alignment based approaches align the short reads to known HLA allele 

sequences in the IMGT HLA database5,43. SNP imputation needs an apriori 

reference panel with information on SNPs associated with HLA alleles in that 

population. There is currently no reference panel for South Africa, or Africans in 

general (reviewed in58).  

 

5.6 Conclusions 

 

Despite the limited sample size (24 whole genome sequences), this chapter 

highlights the potential of HLA imputation tools in understanding HLA diversity. The 

key highlight is the ability to impute high resolution (up to 8 digit typing resolution) 

from a population with limited HLA diversity data (reviewed in9). This provides a 

future framework to use more sequencing (whole exome, RNAseq, whole genome 

and SNP) datasets to fully understand HLA diversity in South Africans. Although HLA 

imputation results may not be ideally applicable to clinical applications like 

transplantation, they provide an economically feasible opportunity to screen potential 

donors without actually doing the high resolution HLA typing58. Additionally, despite 

the ability to use HLA imputation tools to accurately determine HLA alleles, the 

challenge of limited full length sequences of many alleles in the IMGT/HLA 

database5 cannot be ignored. Despite the high resolution typing results from the in 

silico methods, standard HLA typing remains the gold standard for clinical 

applications. Imputation might benefit disease association, population genetics and 
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anthropological studies59. Unfortunately, the 24 individuals in this study were not 

HLA typed experimentally or for any medical reasons; hence we could not compare 

the in silico determined HLA alleles to HLA typing results. The two HLA imputation 

tools used in this study, namely HLA-HD and HLAscan40-42 were evaluated on public 

datasets including the 1000 Genomes22-25 with 100% accuracy. Imputation results 

described in this study highlights the feasibility of leveraging from existing sequence 

data from African populations to better understand HLA diversity in these 

populations. 

 

5.7 Supplementary Information 

 

Supplementary Tables are available in Addendum 1 as Table S5.1 and Table S5.2 

 

Supplementary Table 5.1 (S5.1)  

HLA alleles for 24 whole genome sequences from individuals enrolled in the SAHGP 

pilot study28 determined by in silico HLA HD41,42 method 

 

Supplementary Table 5.2 (S5.2) 

HLA alleles for 24 whole genome sequences from individuals enrolled in the SAHGP 

pilot study28 determined by in silico HLAscan 40 method. 
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CHAPTER 6  

 

GENERAL DISCUSSION AND CONCLUSION 

 

6.1 General Discussion 

 

The human leukocyte antigen (HLA) region on the short arm of chromosome 6 in 

humans is highly polymorphic, currently with 20 088 alleles being described in the 

IMGT HLA database (3.34.0 release October 2018) 

(https://www.ebi.ac.uk/ipd/imgt/hla/stats.html)1. HLA molecules bind to endogenous 

antigenic epitopes (HLA class I) and present them to CD8+ T lymphocytes while HLA 

class II molecules present antigenic peptides to CD4+ T lymphocytes. The 

polymorphic nature of HLA genes allows the presentation of a wide range of 

peptides to the immune system. In addition to the polymorphic nature of the HLA 

region, each offspring has unique HLA alleles inherited from both parents. HLA 

typing methods have evolved from low resolution serology to high resolution 

sequencing based methods. Individuals’ HLA genotypes can now be determined to 

protein level (digit typing) owing to advancement in sequencing technologies. There 

are additionally an increasing number of studies generating next generation 

sequencing data that may be used for high resolution HLA typing (through HLA 

imputation).  

 

There is generally a marked difference in HLA diversity distribution globally, with 

geographically separated regions showing varying degrees of diversity. Most HLA 

loci, except for HLA-DPB1, show high allele numbers across populations2,3. The 

global distribution of HLA diversity provides insight into human migration patterns, 

and could help understand past pathogen exposures4 and trace human evolution5. 

South Africa has a heterogeneous population, whose HLA genetic diversity has not 

been well described, despite the immunological significance of HLA. Previous 

studies have identified novel alleles in South African populations6,7, suggesting high 

HLA diversity in these populations. HLA diversity in South African populations is 

https://www.ebi.ac.uk/ipd/imgt/hla/stats.html
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generally not conclusively known. Despite global efforts in understanding human 

genetic diversity through projects like Hap Map Project8, 1000 Genomes Project 9, 

the African Genome Variation Project10 and the Southern African Human Genome 

Programme (SAHGP)11, there is limited information available on South African 

populations. Of particular note is the limited data on HLA genetic diversity from 

South African populations. The hypothesis was driven by that poor understanding of 

HLA genetic diversity amongst South Africans and how this might impact clinical 

applications including vaccine development, disease association and transplantation. 

This thesis sought to define the extent of HLA diversity in South African populations. 

The approach was divided into three sections: 

i) An extensive literature search for South African HLA diversity studies to 

highlight the paucity of information; 

ii) Documentation of HLA diversity from the South African Bone Marrow 

Registry (SABMR), the National Health Laboratory Services (NHLS) and 

the South African National Blood Transfusion Services (SANBS). These 

three institutions provide most of public health HLA typing service in South 

Africa; 

iii) The use of computational methods to determine HLA alleles from existing 

whole genome sequencing data.  

 

6.2 Summary of the key findings 

 

Chapter 2: There is limited HLA diversity data in the public domain for South Africans 

and southern Africans in general. Most South African studies have HLA data 

generated from disease association studies, or have low resolution typing results 

despite improvements in typing methods. The paucity of information on HLA 

genotypic data for southern African populations’ impacts on disease association 

studies, population based vaccine design and transplantation outcomes.  

 

Chapter 3: The South African Bone Marrow Registry (SABMR) is the only active 

bone marrow donor registry in Africa supporting transplantation programs. Hapl-o-

Mat software was used to compute allele and haplotype frequencies from 237 

volunteer bone marrow donors typed at various resolutions, with some alleles in 
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multiple allele code (MAC) format. Four hundred and thirty eight (438) HLA ~A, 235 

HLA ~B, 234 HLA ~DRB1, 41 HLA ~DQB1 and 29 HLA ~C alleles are reported. The 

most frequent alleles were A*02:02g (0.096), B*07:02g (0.082), C*07:02g (0.180), 

DQB1*06:02 (0.157) and DRB1*15:01 (0.072). Additionally, the most common 

haplotype A*03:01g~B*07:02g~C*07:02g~DQB1*06:02~DRB1*15:01 (0.067) was 

previously reported in other global populations at varying frequencies. Despite the 

small sample size (237), these results form a key resource for future population 

studies, disease association studies and support donor recruitment strategies into 

the SABMR. 

 

Chapter 4: This chapter describes high resolution typing (HLA ~A, HLA ~B, HLA ~C, 

HLA ~DRB1, HLA ~DQA1and HLA ~DQB1) in 3007 individuals, and low resolution 

typing (HLA ~A, HLA ~B, HLA ~C, HLA ~DRB1, HLA ~DQA1, HLA ~DQB1 and HLA 

~DPB1) in 51 891 individuals. These individuals were previously typed by SANBS or 

NHLS as part of a routine clinical service. The South African HLA data showed 

genetic distinctness compared to other global populations using non metric 

multidimensional scaling. Additionally, principal component analysis showed genetic 

relatedness of South Africans with other sub Sahara African populations. The large 

HLA data sample size from South Africans might be a useful resource to support 

anthropological studies, disease association studies, population based vaccine 

development and donor recruitment programs.  

 

Chapter 5: HLA typing services are generally centralized and inaccessible in most 

resource limited settings. However, with an increase in population based NGS data 

sets, it is increasingly feasible to determine HLA alleles from these datasets using in 

silico methods. This chapter describes high resolution (up to 8 digit) determination of 

HLA alleles from 24 whole genome sequences generated from SAHGP (a 

government funded initiative to understand human genetic diversity) using in silico 

methods. The in silico HLA imputation methods used predicted high resolution HLA 

alleles including HLA genes from the 24 genomes. Despite the small sample size, 

this chapter highlights the potential of HLA imputation tools in understanding HLA 

diversity. Additionally, the chapter highlights the need for full length sequences for 

HLA alleles in the IMGT/HLA database to support accurate HLA imputation tools. 

Although in silico methods successfully predicted high resolution HLA typing results, 
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standard HLA typing remains the gold standard for clinical applications. HLA 

imputation might benefit disease association studies, population genetics and 

anthropological studies.  

 

6.3 Conclusions 

 

It is thus important to fully understand HLA diversity in South African populations, to 

establish HLA-disease associations, and to use this data for the informed design of 

population-specific vaccines against the many diseases, and to improve on donor-

recipient matching. There is generally limited HLA diversity data for South African 

populations which impacts on clinical applications including transplantation. 

Continued documentation and research on HLA diversity in clinical settings like in 

the SABMR, SANBS and NHLS, might provide a future resource to better 

understand HLA diversity in these populations. Additionally, HLA imputation tools 

may be used to better understand HLA diversity in settings where HLA data is 

limited. With improvements in NGS and a reduction in sequencing costs, HLA 

imputation offers an economically viable approach to obtain HLA genotypes from a 

large pool of individuals without additional cost. The lack of HLA data for South 

African populations has limited our understanding of disease association studies, 

population based vaccine development, transplantation clinical outcomes. Generally, 

correlates of protective immunity for many diseases affecting South Africans are 

poorly understood. 

 

6.4 Limitations of the study 

 

 There is limited publicly available HLA diversity data from southern African 

populations for extensive comparison with South African datasets; 

 The study relied heavily on public data sets, which might not be exhaustive 

(representative of the population). Conclusions on HLA diversity data for 

South Africans are thus to be interpreted with caution; 

 Demographic data of participants could not be accessed due to ethical 

considerations. Lack of ethnic data for South Africans was a major limitation in 
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understanding HLA diversity in these populations; considering the genetic 

differences amongst ethnic groups reported in other genetic studies. 

 Additional demographic information that could not be accessed due to ethical 

considerations, that could impact on interpretation of HLA diversity described 

in this thesis include the disease state of participants and familial relatedness 

of some participant(s) 

 The retrospective nature of the study resulted in mixed resolution data with 

ambiguous typing which could not be corrected. Conclusions based on mixed 

resolution typing results should be cautiously interpreted. 

 Only reads mapping to human reference genome and the HLA genes are 

used by alignment based imputation tools like HLAscan and HLA HD12,13. 

Unmapped sequence reads are discarded (a limitation since some of these 

reads might highlight further information of the genetic structure of the HLA 

region). 

 

6.5 Future research directions 

 

 There is a need to build an HLA diversity resource for southern Africa (and 

Africa as a whole) copying from the HLA-net14 example. HLA-net is a 

European network focusing on HLA diversity and its applications include 

histocompatibility, transplantation, epidemiology and population genetics. This 

network has developed analysis pipelines, tools and guidelines for HLA 

diversity data for mostly European populations14,15. An African HLA resource 

might be useful for future studies including donor recruitment strategies16, 

population studies4,5,15 and disease association studies17-20; 

 Analyse a larger SABMR sample size and compare its HLA diversity data to 

other registries globally; 

 In addition to an African reference panel to improve imputation accuracy, the 

fact that Africans are genetically diverse makes it difficult to identify novel 

HLA alleles using alignment based imputation approaches. Computationally 

intensive assembly based imputation is proposed to fully understand the HLA 

diversity in the 24 South African genomes. 
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Appendix 2 University of Pretoria Ethics amendment certificate 
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Appendix 3 University of Pretoria Ethics Extension 
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Appendix 4 SANBS Ethics Approval 
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Appendix 5 NHLS Ethics Approval 
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Appendix 6 SAHGP Data Access Approval 
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Appendix 7 EGA SAHGP Data Access Procedure 

 

a) Requesting the data set 

java -jar EgaDemoClient.jar –p demo@test.org '123pass' -rfd EGAD00001003791 -

re abc -label request_EGAD00010000498  

 

demo@test.org and '123pass' is the email address and password of the individual 

approved to the access the data. “abc” is user defined decryption key. Data is 

downloaded in encrypted format for security reasons. 

 

b) Downloading Request  

java -jar EgaDemoClient.jar –p demo@test.org '123pass' -dr 

request_EGAD00001003791 -nt 7  

 

The optional parameter '-nt' specifies the number of parallel download streams (7 in 

this case), -dr lists the download request 

 

c) Decrypt downloaded data 

java -jar EgaDemoClient.jar –p demo@test.org ‘123pass’ –dc <path to downloaded 

data> -dck <abc> 

The decryption password ‘abc’ is used to decrypt all the downloaded files 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:demo@test.org
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Appendix 8 Customised script for HLA imputation 

 

#!/usr/bin/env python 

 

import sys 

import os 

import re 

 

indir = sys.argv[1] 

 

all_dirs = os.listdir(indir) 

for dir in all_dirs: 

    ind = dir 

    if 'HLA' not in dir: 

        bam_files = os.listdir(indir + '/' + dir + '/Assembly')#location of BAM files 

        for bam_file in bam_files: 

            if bam_file.endswith('bam'): 

                command = 'samtools view -h -b ' + indir + '/' + dir + '/Assembly/' + 

bam_file +  ' "chr6:28866528-33775446" > ' + ind + '_HLA.bam'#extraction of HLA 

region BAM file 

                print command 

                os.system(command) 

 

                command2 = '/apps/jdk-8u162/bin/java -jar /apps/picard-2.17.11/picard.jar 

SamToFastq INPUT=' + ind + '_HLA.bam' + ' FASTQ=' +  ind + '_1.fastq 

SECOND_END_FASTQ=' + ind + '_2.fastq UNPAIRED_FASTQ=' + ind + '_U.fastq 

VALIDATION_STRINGENCY=LENIENT' 

                print command2  

                os.system(command2)#conversion to fastq file formats 

 

#explains the command 
 


