Supplementary table 2. Variation in host susceptibility to black root rot infection with [the former] *Thielaviopsis basicola*

Reference	Findings
Rosenbaun	Thielaviopsis basicola isolated from tobacco, cotton and ginseng could cause disease
(1912)	on tobacco and ginseng plants.
Rawlings (1940)	Thielaviopsis basicola isolated from cow-pea, violet, parsnip, tobacco and sweet-pea
referencing	could cause disease on sweet-pea plants.
Taubenhaus	
(1914)	
Johnson (1916)	A single isolate of <i>Th. basicola</i> was used to induce black root rot symptoms on more
	than 100 different plant species. He concluded that no specialized races of the fungus
	exist and its ability to parasitize a host is dependent on the resistance or susceptibility
	of the plant.
Johnson &	Found Th. basicola to be relatively constant in its pathogenicity, no matter the culture
Hartman (1919)	age or strain.
Rawlings (1940)	Thielaviopsis basicola inoculated soil caused disease on Viola odorata, V. tricolor,
referencing	Trifolium pratense and Lupinus luteus. The ability of the fungus to cause disease on
Kletschetoff	many different hosts led the authors to conclude that no physiological races exist.
(1926)	
Tiddens 1933	Thielaviopsis basicola isolates from tobacco, poinsettia, and primula were tested in
	their virulence against primula, tobacco and bean plants. Primula plants were more
	susceptible to infection from the isolate from primula than the other isolates, tobacco
	plants were more susceptible to the isolate from tobacco, and bean plants were more
	susceptible to the isolate from poinsettia.
Tiddens (1934)	A Th. basicola isolate from Primula obconica caused more severe infection on P.
	obconica than P. malacoides. Authors concluded that different pathological races of
	Th. basicola exist. Isolates from Primula, tobacco and poinsettia were most pathogenic
	on the host from which they occur.
Sattler (1936)	Tobacco plants were susceptible to American Th. basicola isolates from tobacco and
	not susceptible to Th. basicola isolates from Germany and Holland isolated from
	Phaseolus multiflorus, Cyclamen and Primula obconica. Bean and lupin plants were
	susceptible to the European isolates and not to the American isolates.
Allison (1938)	Separated Th. basicola into four different physiological races each having a different
	level of pathogenicity to different lines of tobacco.
Rawlings (1940)	Found that Th. basicola isolates from Tennessee grown tobacco, Texan grown cotton
	and Dutch grown Primula differed in their ability to cause infection in cotton, tobacco,

Reference	Findings
	primula, peanut and watermelon plants. The tobacco isolate was most virulent causing
	infection on all hosts tested. The cotton isolate was moderately virulent causing
	infection on watermelon and Primula and some symptoms on cotton and peanuts in the
	first experiment. When repeated, the isolate could cause infection on all four these
	hosts. The isolate was never able to infect tobacco. The Primula isolate was least
	virulent causing some symptoms on cotton and peanuts in the first experiment and on
	cotton and watermelon when the experiment was repeated.
Stover (1950)	Brown wild-type isolates were more pathogenic than grey wild-type isolates.
Keller & Shanks	Poinsettia Th. basicola isolates could cause disease on poinsettia plants but not tobacco
(1955)	plants and tobacco Th. basicola isolates could cause disease on tobacco plants but not
	poinsettia plants. Found that isolates maintained for long periods in culture became less
	virulent with time.
King & Presley	Both cotton and tobacco isolates of <i>Th. basicola</i> could cause disease on both cotton
(1942)	and tobacco plants.
Maier & Staffeldt	Authors could group 11 cotton isolates of <i>Th. basicola</i> into four different pathogenicity
(1960)	groups based on their ability to infect Pima 32 Cotton.
Lloyd &	Poinsettia, orange and pea <i>T.basicola</i> isolates were moderate to severely pathogenic on
Lockwood (1963)	bean and pea and not on tobacco plants. Tobacco isolates were pathogenic toward
	tobacco and not bean plants. One tobacco isolate was moderately pathogenic to pea
	plants but the others were not. Concluded that Th. basicola has a large host range but
	host specificity exists for each individual isolate.
Thomas &	Sesame Th. basicola isolates could cause disease symptoms on Baker 296, Hale, and
Papavizas (1965)	Nebraska 145-4 castorbean but not Mississippi Wild-a castorbean.
Linderman &	Thielaviopsis basicola exists as clones that vary in their virulence and reaction toward
Toussoun (1968)	different hosts. The more virulent clones have chlamydospores that germinate more
	readily in the response to host exudates than those of non-virulent clones.
Gayed (1969)	Leaf disks of different species and varieties of tobacco show varying degrees of
	resistance and susceptibility when inoculated with Th. basicola.
Gayed (1972)	Thielaviopsis basicola mixed in with soil resulted in more severe infection on cowpea
	and bean plants than on tobacco plants. The author concluded that cowpea and bean
	are more susceptible to Th. basicola infection.
Lambe & Wills	Thielaviopsis basicola from tobacco, sesame and holly were all moderate pathogens of
(1978)	holly. One isolate from holly was only mildly pathogenic to holly and bean and soil
	isolates were only weak pathogens.

Reference	Findings
Wills & Lambe	A single Th. basicola isolate showed varying degrees of pathogenicity toward
(1978)	legumous and woody ornamental plants, as well as tobacco, tomato, pansy, and
	eggplant.
Blume & Harman	Fourteen isolates of <i>Th. basicola</i> isolated from various fields of infected pea plant were
(1979)	all able to cause disease when inoculated onto pea plants.
Cilliers (2001)	South African <i>Th. basicola</i> isolates from groundnuts have been found to be much more
referencing	virulent than isolates from the USA.
Labuschagne	
(1984)	
Bowden et al.	Thielaviopsis basicola isolates from pea and chickpea could cause disease in chickpea
(1985)	and pea plants, but only caused minor symptoms on lentil roots.
O'Brien & Davis	Thielaviopsis basicola isolates from lettuce caused severe infection on different lettuce
(1994)	cultivars and bean plants. Disease was less severe on watermelon, cucumber and
	rockmelon plants and no disease was caused on capsicum, celery, cotton, eggplant,
	parsley, radish, tomato and watercress.
Punja & Sun	Molecular analyses suggested that genetically distinct strains of <i>Th. basicola</i> exist that
(2000)	may be adapted to their specific host.
Cilliers (2001)	Various groundnut cultivars were found to be susceptible to Th. basicola infection in
	varying degrees. The cultivars Sellie and Anel were found to most susceptible and the
	cultivars Billy and Makatini were found to be least susceptible.
Punja (2004)	Morphological groups of <i>Th. basicola</i> show variation in their virulence toward bean
	leaves. Kentucky Wonder leaves were most susceptible to Th. basicola and Royal
	Burgundy and Kentucky blue leaves appeared much more resistant.
Coumans et al.	Proteome data separate isolates of <i>Th. basicola</i> into distinct groups based on the host
(2011)	from which they were isolated suggesting host specialization on a protein level.

References

- 1. Allison CC, 1938. Physiologic specialization of *Thielaviopsis basicola* on tobacco. *Phytopathology* **,28**.
- 2. Blume MC, Harman GE, 1979. *Thielaviopsis basicola*: A component of the pea root rot complex in New York State. *Phytopathology*, **69**, 785-788.
- 3. Bowden RL, Wiese MV, Crock JE, Auld DL, 1985. Root rot of chickpeas and lentils caused by *Thielaviopsis basicola*. *Plant disease*, **69**, 1089-1091.
- 4. Cilliers AJ, 2001. Resistance in new groundnut breeding lines to black pod rot caused by *Chalara elegans. South African Journal of Plant and Soil*, **18**, 174-175.
- **5.** Coumans J, Harvey J, Backhouse D, *et al.* 2011. Proteomic assessment of host-associated microevolution in the fungus *Thielaviopsis basicola*. *Environmental microbiology*, **13**, 576-588.

- 6. Gayed SK, 1969. Relation between tobacco leaf and root necrosis induced by *Thielaviopsis basicola* and its bearing on the nature of tobacco resistance to black root rot. *Phytopathology*, **59**, 1596-1600.
- 7. Gayed SK, 1972. Host range and persistence of *Thielaviopsis basicola* in tobacco soil. *Canadian Journal of Plant Science*, **52**, 869-873.
- 8. Johnson J, 1916. Host plants of *Thielavia basicola*. *Journal of Agricultural Research*, **7**, 289-300.
- 9. Johnson J, Hartman RE, 1919. Influence of soil environment on the root-rot of tobacco. *Journal of Agricultural Research*, **17**, 41-86.
- 10. Keller JR, Shanks JB, 1955. Poinsettia root rot. Phytopathology, 45, 552-558.
- 11. King CJ, Presley JT, 1942. A root rot of cotton caused by *Thielaviopsis basicola*. *Phytopathology*, **32**, 752-761.
- 12. Kletschetoff AN, 1926. Injury to flax caused by *Thielavia basicola* Zopf whne the crop is grown uninterruptedly on the same soil. *Journal of Science and Agronomy*, **12**, 823-934.
- 13. Labuschagne CLE, 1984. 'n Studie van die patogene specialisasie van *Chalara elegans* Nag Raj & Kendrick, die swartpeulvrotpatogeen van grondbone. Thesis, Potchefstroom Universiteit.
- 14. Lambe RC, Wills WH, 1978. Pathogenicity of *Thielaviopsis basicola* to Japanese holly. *Plant Disease Reporter*, **62**, 859-863.
- 15. Linderman RG, Toussoun TA, 1968. Pathogenesis of *Thielaviopsis basicola* in nonsterile soil. *Phytopathology*, **58**, 1578-1583.
- 16. Lloyd AB, Lockwood JL, 1963. Effect of soil temperature, host variety & fungus strain on *Thielaviopsis* root rot of peas. *Phytopathology*, **53**, 329-331.
- 17. Maier CR, Staffeldt EE, 1960. Cultural variability of selected isolates of *Rhizoctonia solani* and *Thielaviopsis basicola*, and the variability in their pathogenicity to Acala and Pima cotton, repectively. *Plant Disease Reporter*, **44**, 956-961.
- 18. O'Brien RG, Davis RD, 1994. Lettuce black root rot—a disease caused by *Chalara elegans*. *Australasian Plant Pathology*, **23**, 106-111.
- 19. Punja ZK, 2004. Virulence of *Chalara elegans* on bean leaves, and host-tissue responses to infection. *Canadian Journal of Plant Pathology*, **26**, 52-62.
- 20. Punja ZK, Sun L-J, 2000. Morphological and molecular characterization of *Chalara elegans* (*Thielaviopsis basicola*), cause of black root rot on diverse plant species. *Canadian Journal of Botany*, 77, 1801-1812.
- 21. Rawlings RE, 1940. Observations on the cultural and pathogenic habits of *Thielaviopsis basicola* (Berk. & Br.) Ferraris. *Annals of the Missouri Botanical Garden*, **27**, 561-598.
- 22. Rosenbaun J, 1912. Infection experiments with *Thielavia basicola* on ginseng. *Phypathology*, **2**, 191-199.
- 23. Sattler F, 1936. Zur biologie van *Thielavia basicola* (B. et Br.) Zopf. *Phytopathologische Zeitschrift (Journal of Phytopathology,)* **9**, 1-51.
- 24. Stover RH, 1950. The black rootrot disease of tobacco: I. Studies on the causal organism *Thielaviopsis basicola. Canadian Journal of Research*, **28**, 445-470.
- 25. Taubenhaus JJ, 1914. *The diseases of the sweet pea*. Delaware College Agricultural Experiment Station.
- 26. Thomas CA, Papavizas GC, 1965. Susceptibility of sesame and castorbean to *Thielaviopsis basicola*. *Plant Disease Reporter*, **49**, 256-257.
- 27. Tiddens BA, 1934. Ueber die wurzelfaule der *Primula obconica*, veruscht durch *Thielaviopsis basicola* Ferraris. *Phytopathologische Zeitschrift (Journal of Phytopathology)*, **7**, 223-230.
- 28. Wills WH, Lambe RC, 1978. Pathogenicity of *Thielaviopsis basicola* from Japanese holly (*Ilex crenata*) to some other host plants. *Plant Disease Reporter*, **61**, 1102-1106.