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Abstract Most existing multivariate models in finance are based on diffusion models. These mod-

els typically lead to the need of solving systems of Riccati differential equations. In this paper, we

introduce an efficient method for solving systems of stiff Riccati differential equations. In this tech-

nique, a combination of Laplace transform and homotopy perturbation methods is considered as

an algorithm to the exact solution of the nonlinear Riccati equations. The resulting technique is

applied to solving stiff diffusion model problems that include interest rates models as well as two

and three-factor stochastic volatility models. We show that the present approach is relatively easy,

efficient and highly accurate.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Stochastic processes have taken over the world of financial
modelling. Starting with simple Geometric Brownian Motion
well described by Bachelier (1900), to more sophisticated pro-
cesses for better fitness and calibration of market fluctuations.

A huge range of papers have considered Lévy processes as
their driving force, they usually take the umbrella of jump dif-
fusion process. Basically the state process Xt follows a Brown-
ian motion with drift for which a pure jump process, usually of

Poisson type, is added on in order to accommodate abrupt
changes in the market. In this work we restrict ourselves to
pure diffusion processes for which the drift, the variance as

well as the interest rate processes are all affine functions of
Xt; we refer the reader to Eq. (2.4) in the next section for the
explicit form. Duffie et al. (2000) present a general framework

of diffusion processes under affine coefficients (also termed as
affine models) then apply it to a two dimensional option pric-
ing problem. These diffusion models have the advantage of
providing tractability of closed form formula for a wide range

of asset price such as fixed income securities: bonds, options
and swaps. Technically, in dealing with these diffusion models
we apply transforms that will result later in a system of ordi-

nary differential equations of Riccati type that can be solved
analytically or numerically in order to compute the asset price.
In most cases, numerical methods using Fourier transform or

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksus.2016.09.004&domain=pdf


2 C.R. Bambe Moutsinga et al.
inverse Laplace transform are needed to solve the integro-
differential equation that arise thereof.

Various types of diffusion models have been introduced in

the literature and used in different sectors. They differ in the
model parameter while preserving some properties that are
essential in asset price dynamics such as mean reversion.

In one-factor models the volatility process is a deterministic
function of t, this includes the class of affine term structures
that is encountered in interest rates and option pricing con-

texts, see Duffie (2005), Björk (2004), Black and Scholes
(1973) and Merton (1974).

Heston (1993) introduces a two-factor model where the
volatility is now stochastic, to accommodate the implied

volatility smile encountered in the financial markets as shown
by Kotzé et al. (2015). Bates (1996) extends the Heston model
in adding a up jumps into the diffusion process to model a

huge flux of information that can occur in the market.
Fang (2000) brings a three-factor model with jump diffu-

sion process that looks quite stable. The model takes its roots

from the Bates model to which an extra parameter is added:
the long-term volatility, which is important for instruments
like bonds that have long term maturity. Banks are often inter-

ested in this parameter. Christoffersen et al. (2009) consider a
three-factor model with no jumps, but the state process is dri-
ven by a deterministic drift, plus two Brownian motions. How-
ever, as the number of factors increases one must expect the

model to become more robust, but less realistic. In this paper
we present a detailed framework of a class of asset prices
whose pay-off at a future time (the maturity time) T is of the

form euXT where Xt is of a pure diffusion type with affine coef-
ficients. This class includes fixed income security prices. A

quick overview of the pure diffusion with affine coefficients
is provided together with an application on bond price in the
context of single, two and three-factor models based on the
Heston type. In other words, the volatility is considered to

be stochastic. This Gives them a wider range of application.
Bravo (2008) uses an affine process for pricing longevity
bonds; Jang (2007) applies a two-factor affine process in insur-

ance; Crosby (2008) uses it in pricing a class of exotic com-
modities and options in a multi-factor model.

In addition we introduce a modified form of homotopy per-

turbation and Laplace transform methods to value financial
models of diffusion type with affine coefficients. These models
lead to the need of solving systems of Riccati differential equa-
tions. Laplace transform method (LTM) alone is incapable of

handling such equations, instead some variants of the LTM
prove to better handle nonlinear differential equations. Among
those variants we cite the Laplace decomposition algorithm

(Khuri, 2001; Khan, 2009) and the H2LTM, (Fatoorehchi
and Abolghasemi, 2016) which are obtained with the help of
the Adomian decomposition and Adomian polynomials

respectively. Another successful variant of LTM is obtained
in coupling it with variation iteration methods. Alawad et al.
(2013) used it to solve space–time fractional telegraphic equa-

tion as it allowed them to overcome the difficulty arising from
finding Lagrange multipliers. LTM has also known great suc-
cess when combined with differential transform methods on
solving non–homogenous equations, see Alquran et al.

(2012). On the other hand, the homotopy perturbation method
is a combination of the classical perturbation technique and
the homotopy technique whose origin is in topology , more
on homotopy can be found in Hilton (1953), but not restricted
to small parameters as it occurs with traditional perturbation
methods. For example, the HPM requires neither small param-

eters nor linearisation, but only few iterations to obtain highly
accurate solutions. The standard homotopy perturbation
method was proposed by He (1999) as a powerful tool to

approach various kinds of nonlinear problems. It can also be
viewed as a special case of Homotopy Analysis Method
(HAM) proposed by Liao (1992, 1997). For the past decade,

many improvements on HAM have been introduced, one of
it being the Homotopy Analysis Transform Method (HATM)
which is basically a HAM coupled with a Laplace transform.
The method is very powerful, fast converging and accurate.

Recently, it has been applied in many different areas of science
including fluid dynamics, wave theory (Kumar et al., 2014a,
2015b, 2016b), quantum physics, see Kumar (2014), and many

more, with extension to fractional cases. Kumar et al. (2014c)
applied this method on Volterra integral equation to obtain
good quality results. Another improvement of HAM is

obtained by coupling it with the Samudu transform which
gives rise to the Homotopy Analysis Samudu Transform
Method (HASTM), see Kumar and Sharma (2016); Kumar

et al., 2016a for more details. Likewise, the Samudu transform
has also been introduced in HPM to generate the Homotopy
Perturbation Samudu Transform Method (HPSTM), see
Singh et al. (2013); Singh et al., 2014b. Singh et al. (2014a) used

the method successfully to get analytical and numerical solu-
tions of nonlinear fractional equations found in the area of
biological population model. Also, Kamdem (2014) proposed

a generalised integral transform based on the homotopy per-
turbation method where various integral transforms were used.
In this paper we are interested in the combination of the HPM

with Laplace transform giving rise to the Homotopy Perturba-
tion Transform Method (HPTM). The method has shown suc-
cess already in obtaining solutions of the Navier–Stokes

equations (Kumar et al., 2015a), gas dynamics equations com-
ing from fluid dynamics in the case of fractional differential
equation as explored by Kumar et al. (2012). The method
has also shown success in solving KdV equations arising in

wave theory (Goswami et al., 2016) as well as Fokker-Planck
equations commonly found in solid-state physics (Kumar,
2013). Another useful application of the technique is found

in Kumar et al. (2014b) in which the authors derive the price
of a plain vanilla call option of European type under Black–Sc-
holes model in the financial market.

This paper is structured as follows: Section 2 reviews the
formalism of diffusion models with emphasis on the case with
affine coefficients. In Section 3, we introduce the basic concept
of homotopy perturbation transform method (HPTM). In Sec-

tion 4, we describe the solution procedure of the HPTM for
interest rate models, especially the two and three-factor
stochastic volatility models. Finally, the conclusions are pre-

sented in Section 5.

2. Mathematical description of affine models

Consider the financial market model M ¼ X;F ;P;ð
F tð ÞtP0; Stð ÞtP0Þ where X is the set of all possible outcomes

of the experiment known as the sample space, F is the set of
all events, i.e. permissible combinations of outcomes, P is a

map F�!½0; 1� which assigns a probability to each event,
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ðF tÞtP0 is a natural filtration and St a risky underlying asset

price process. The triplet ðX;F ;PÞ is defined as a probability
space. Let ðWtÞtP0 denote a P-Wiener process, r > 0 the

volatility of the underlying asset, lðt;XtÞ the drift parameter.

Suppose Xt satisfies the following stochastic differential
equation

dXt ¼ lðt;XtÞdtþ rðt;XtÞdWt: ð2:1Þ
Under an equivalent martingale measure Q, the price

wðt; xÞ at time t of a contingent claim that pays off UT at matu-
rity time T P t is given by

wðt; xÞ ¼ EQ e
�
R T

t
rðs;XsÞdsUTjF t

� �

¼ e

R t

0
rðs;XsÞdsEQ e

�
R T

0
rðs;XsÞdsUTjF t

� �
: ð2:2Þ

Let us consider an auxiliary process Wðt;XtÞ ¼
EQ e

�
R T

0
rðs;XsÞdsUTjF t

� �
. For simplicity of notation, we may

from time to time write Wt to denote Wðt;XtÞ. Same for
other variables as well. Applying the Ito’s differentiation we
get

wðt; xÞ � wð0; xÞ ¼
Z t

0

@Ws

@s
dsþ

Z t

0

@Ws

@Xs

dXs

þ 1

2

Z t

0
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@X2
s
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Z t

0
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ds

þ ls

@Ws

@Xs

þ 1

2
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>
s
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s

dsþ
Z t

0
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@Xs
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¼
Z t

0

@Ws
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dsþ ls

@Ws

@Xs

þ 1

2
rsr

>
s

@2Ws

@X2
s

ds

þ
Z t

0

rs

@Ws

@Xs

dWs ¼
Z t

0

@Ws

@s
dsþ ls

@Ws

@Xs

þ 1

2
rsr

>
s ðs;XtÞ @

2Ws

@X2
s

dsþ
Z t

0

rs

@Ws

@Xs

dWs

Under no-arbitrage conditions, the discounted pay-off Wt,

must be martingale, meaning the drift part must be zero. That
is,

@Wt

@t
þ lt

@Wt

@Xt

þ 1

2
rtr

>
t

@2Wt

@X2
t

¼ 0 ð2:3Þ

In Affine framework as described by Cont and Tankov

(2004), we consider l; r; and r to be Affine in X. That is,

lt ¼ K0 þ K1 � Xt; K0 2 Rd; K1 2 Rd�d

rtr
>
t ¼ H0 þH1 � Xt; H0 2 Rd�d; H1 2 Rd�d�d

rt ¼ q0 þ q1 � Xt; q0 2 Rd; q1 2 Rd�d:

ð2:4Þ
Theorem 2.1 (see Duffie et al., 2000). Under technical condi-

tions, if the pay-off function is chosen such that

UT ¼ euXT ;

then w is of the form

wðt; xÞ ¼ eaðtÞþbðtÞx

with a and b verifying the following Riccati equation
@a
@t
ðtÞ ¼ q0 � K0bðtÞ � 1

2
bðtÞ>H0bðtÞ

@b
@t
ðtÞ ¼ q1 � K>

1 bðtÞ � 1
2
bðtÞ>H1bðtÞ

(
; ð2:5Þ

with terminal conditions aðTÞ ¼ 0 and bðTÞ ¼ u.

Proof. Given the pay-off UT ¼ euXT a good candidate for the

auxiliary process is

Wðt;XtÞ ¼ e
�
R t

0
rðsÞds

eaðtÞþbðtÞXt ;

where Wt is the discounted pay-off. Under no arbitrage and
the equivalent martingale measure Q;Wt martingale and
WðT;XTÞ ¼ UT. For any 0 6 t 6 T, we have the following

Wt ¼ E WTjF tð Þ;
Wte

R t

0
RðXsÞds ¼ e

R t

0
RðXsÞdsE WTjF tð Þ;

e

R t

0
RðXsÞdse�

R t

0
RðXsÞdseaðtÞþbðtÞ�x ¼ E e

R t

0
RðXsÞdsWTjF t

� �
;

eaðtÞþbðtÞx ¼ Wðt;XtÞ ¼ wðt; xÞ:
We can apply the above result on the auxiliary process to

obtain

@Wt

@t
þ lt

@Wt

@Xt

þ 1

2
rtr

>
t

@2Wt

@X2
t

¼ 0:

Using the Affine framework coupled with the fact that

@W
@t
ðXt; tÞ ¼ ½�RðXtÞ þ _aðtÞ þ _bðtÞXt�WðXt; tÞ;

@W
@X

ðXt; tÞ ¼ bðtÞWðXt; tÞ;
@W
@X2 ðXt; tÞ ¼ bðtÞWðXt; tÞbðtÞ>;
we get

�RðXtÞ þ _aðtÞ þ _bðtÞXt

h i
WðXt; tÞ

þ lðXtÞbðtÞWðXt; tÞþbðtÞrðtÞrðtÞ> WðXt; tÞ
2

bðtÞ> ¼ 0: ð2:6Þ

Implying,

�RðtÞ þ _aðtÞ þ _bðtÞXðtÞ þ lðXtÞbðtÞ þ 1
2
bðtÞrðtÞrðtÞ>bðtÞ> ¼ 0

� q0 þ q1XðtÞð Þ þ _aðtÞ þ _bðtÞXðtÞ
þ K0 þ K1XðtÞð ÞbðtÞ þ 1

2
bðtÞ H0 þH1XðtÞ½ �bðtÞ> ¼ 0

8><
>: ;

Finally we have,

�q0 þ _aðtÞ þ K0bðtÞ þ 1
2
bðtÞ�H0bðtÞ ¼ 0

�q1 þ _bðtÞ þ K>
1 bðtÞ þ 1

2
bðtÞ>H1bðtÞ ¼ 0

(
; ð2:7Þ

with terminal conditions

aðTÞ ¼ 0; bðTÞ ¼ u: � ð2:8Þ
Eq. (2.7) together with initial condition (2.8) is a nonlinear

system of ODE of Riccati type. In general, Riccati equations
do not have analytical solutions, hence numerical methods
have to be used. In addition, these equations have been

reported to be stiff. Hence the use of explicit methods will
require a high mesh refinement to produce acceptable solu-
tions. This will result in an increase in the computational cost.

In this article we propose a Laplace Transform Homotopy
Perturbation method to circumvent the stiffness problem.
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3. Basic idea of homotopy perturbation transform method

We first define the Laplace transform (LT) and its inverse
transform, and list useful properties employed in this paper.

Definition 3.1. Laplace transform of FðtÞ is denoted by LffðtÞg
and is defined by the integral

LffðtÞg ¼ FðsÞ ¼
Z 1

0

e�stfðtÞdt: ð3:1Þ

The inverse Laplace transform is evaluated on a contour C,
known as the Bromwich contour, as

L�1fFðsÞg ¼ fðtÞ ¼
Z
C
estFðsÞds: ð3:2Þ

The contour C is chosen such that it encloses all the singu-
larities of FðsÞ.

One useful property of LT for this paper is:

LffðnÞðtÞg ¼ snFðsÞ � sn�1Fð0Þ � sn�2F0ð0Þ � . . .� Fðn�1Þð0Þ;
ð3:3Þ

where FðnÞðtÞ denotes the n-th derivatives of FðtÞ and
LffðtÞg ¼ FðsÞ.

To illustrate the basic ideas of this method, let us consider
the following system of nonlinear partial differential equations

AðUÞ � fðrÞ ¼ 0; r 2 X � Rn ð3:4Þ
with the following initial conditions

Uð0Þ ¼ a0; U
0ð0Þ ¼ a1; . . . ;U

ðn�1Þð0Þ ¼ an�1; ð3:5Þ
where A is a general differential operator and fðrÞ is a known
analytical function. The operator A can be divided into two
parts, L and N, where L is a linear and N is a nonlinear oper-
ator. Therefore Eq. (3.4) can be rewritten as

LðUÞ þNðUÞ � fðrÞ ¼ 0; r 2 X � Rn ð3:6Þ
In order to solve the system of differential Eq. (3.4) by

means of the homotopy perturbation transform method, we
construct the homotopy Vðr; pÞ : X� ½0; 1� ! Rn, which satis-

fies the following

HðV; pÞ ¼ ð1� pÞ½LðVÞ � m0� þ p½AðVÞ � fðrÞ� ¼ 0;

p 2 ½0; 1�; r 2 X ð3:7Þ
or equivalently,

HðV; pÞ ¼ LðVÞ � m0 þ pm0 þ p½NðVÞ � fðrÞ� ¼ 0;

p 2 ½0; 1�; r 2 X ð3:8Þ
where p 2 ½0; 1� is embedding parameter, m0 the initial approx-
imation of the solution of Eq. (3.4). From Eq. (3.6) and Eq.
(3.8) we have

HðV; 0Þ ¼LðVÞ � m0 ¼ 0; ð3:9Þ
HðV; 1Þ ¼AðVÞ � fðrÞ ¼ 0 ð3:10Þ

We apply the Laplace transform on both sides of the homo-

topy Eq. (3.8) to obtain
LfLðVÞ � m0 þ pm0 þ p½NðVÞ � fðrÞ�g ¼ 0; p 2 ½0; 1�; r 2 X:

ð3:11Þ
Using the differential property of the Laplace transform we

have

snLfVg � sn�1Vð0Þ � sn�2V0ð0Þ � � � � � Vðn�1Þð0Þ
¼ L m0 � pm0 þ p½NðVÞ � fðrÞ�f g; ð3:12Þ

or

LfVg ¼ 1

sn
sn�1Vð0Þ þ sn�2V0ð0Þ þ � � � þ Vðn�1Þð0Þ�

þL m0 � pm0 þ p½NðVÞ � fðrÞ�f gg: ð3:13Þ
By applying the inverse Laplace transform on both sides of

(3.13), we have

V ¼ L�1 1

sn
sn�1Vð0Þ þ sn�2V0ð0Þ þ � � � þ Vðn�1Þð0Þ��

þL m0 � pm0 þ p½NðVÞ � fðrÞ�f ggg: ð3:14Þ
Assuming that the solutions of Eq. (3.7) can be expressed as

a power series of p

VðxÞ ¼
X1
n¼0

pnVn: ð3:15Þ

Then substituting Eq. (3.15) into Eq. (3.14), we get

X1
n¼0

pnVn ¼ L�1 1

sn
sn�1Vð0Þ þ sn�2V0ð0Þ þ � � � þ Vðn�1Þð0Þ��

þL m0 � pm0 þ p N
X1
n¼0

pnVn

 !
� fðrÞ

" #( )))
:

ð3:16Þ
Comparing coefficients of p with the same power leads to

p0 : V0 ¼ L�1 1

sn
sn�1Vð0Þ þ sn�2V0ð0Þ þ . . .þ Vðn�1Þ þ Lfm0g
� 	� 


;

p1 : V1 ¼ L�1 1

sn
LfN V0ð Þ � m0 � fðrÞgð Þ

� 


p2 : V2 ¼ L�1 1

sn
LfN V0;V1ð Þgð Þ

� 


p3 : V3 ¼ L�1 1

sn
LfN V0;V1;V2ð Þgð Þ

� 


..

.

p j : Vj ¼ L�1 1

sn
LfN V0;V1;V2; . . . ;Vj�1

� 	g� 	� 


..

.

Assuming that the initial approximation has the form

Uð0Þ ¼ m0 ¼ a0; U0ð0Þ ¼ a1; . . . ;U
ðn�1Þð0Þ ¼ an�1; ð3:17Þ

therefore the exact solution may be obtained as following

U ¼ lim
p!1

V ¼ V0 þ V1 þ V2 þ � � � ð3:18Þ

The utility of HPTM is shown by its applications on Affine
diffusion problems.
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4. Numerical experiments

4.1. Interest rate models

We first look at affine term structure models that are found in
interest rate models (see Björk, 2004). Here the state process is

the interest rate itself r following the dynamics:

drðtÞ ¼ lðt; rðtÞÞdtþ rðt; rðtÞÞdWt

where lðt; rðtÞÞ ¼ aðtÞrðtÞ þ bðtÞ; r2ðt; rðtÞÞ ¼ cðtÞrðtÞ þ dðtÞ
and aðtÞ; bðtÞ; cðtÞ; dðtÞ are deterministic functions of t. This
suggests that the state process Xt corresponds exactly to the
interest rate rðtÞ. It is one dimensional, and as a result we have

the following matching

K0 ¼ bðtÞ; H0 ¼ dðtÞ; q0 ¼ 0;

K1 ¼ aðtÞ; H1 ¼ cðtÞ; q1 ¼ 1:

For a zero coupon bond that pays 1 at maturity T, we see
that its price at any time s prior to maturity is given by

pðs; rÞ ¼ eaðsÞþbðsÞrðsÞ;

with a and b satisfying the system of stiff ODEs of the form

@a
@s ðsÞ ¼ bðsÞbðsÞ þ 1

2
dðsÞb2ðsÞ

@b
@s ðsÞ ¼ �1þ aðsÞbðsÞ þ 1

2
cðsÞb2ðsÞ

(
; ð4:1Þ

where s ¼ T� t and the initial conditions are given by

að0Þ ¼ 0 and bð0Þ ¼ u:

We investigate numerical solutions of the system (4.1) by
means of the HPTM. To this end we construct the following
homotopy

A0ðsÞ � a0ðsÞ þ p a0ðsÞ � bðsÞBðsÞ � 1
2
dðsÞB2ðsÞ� � ¼ 0

B0ðsÞ � b0ðsÞ þ p b0ðsÞ þ 1� aðsÞBðsÞ � 1
2
cðsÞB2ðsÞ� � ¼ 0

(
:

ð4:2Þ
Applying the Laplace transform on both sides of (4.2), we

have

L A0ðsÞ � a0ðsÞ þ p a0ðsÞ � bðsÞBðsÞ � 1
2
dðsÞB2ðsÞ� ��  ¼ 0

L B0ðsÞ � b0ðsÞ þ p b0ðsÞ þ 1� aðsÞBðsÞ � 1
2
cðsÞB2ðsÞ� ��  ¼ 0

(
:

ð4:3Þ
Using the differential property of the Laplace transform we

have

sLfAðsÞg � Að0Þ ¼ L a0ðsÞ � p a0ðsÞ � bðsÞBðsÞ � 1
2
dðsÞB2ðsÞ� �� 

sLfBðsÞg � Bð0Þ ¼ L b0ðtÞ � p b0ðsÞ þ 1� aðsÞBðsÞ � 1
2
cðsÞB2ðsÞ� �� 

(
:

ð4:4Þ
By applying inverse the Laplace transform on both sides of

Eq. (4.4) and after algebraic simplification we get

AðsÞ ¼ L�1 1
s
Að0Þ þ L a0ðsÞ � p a0ðsÞ � bðsÞBðsÞ � 1

2
dðsÞB2ðsÞ� �� � 	� 

BðsÞ ¼ L�1 1
s
Bð0Þ þ L b0ðtÞ � p b0ðsÞ þ 1� aðsÞBðsÞ � 1

2
cðsÞB2ðsÞ� �� � 	� 

(
:

ð4:5Þ

Suppose the solution of Eq. (4.2) to have the following
form

AðsÞ ¼ A0ðsÞ þ pA1ðsÞ þ p2A2ðsÞ þ � � �
BðsÞ ¼ B0ðtÞ þ pB1ðsÞ þ p2B2ðsÞ þ � � �

�
; ð4:6Þ
where AjðsÞ; BjðsÞ; j ¼ 1; 2; . . . are unknown functions which

should be determined. Substituting Eq. (4.6) into Eq. (4.5), col-
lecting the same powers of p and equating each coefficient of p

to zero, results in

p0 :
A0ðsÞ ¼ L�1 1

s
Að0Þ þL a0ðsÞf gð Þ� 

B0ðsÞ ¼ L�1 1
s
Bð0Þ þL b0ðsÞf gð Þ� 

(
ð4:7Þ

p1 :
A1ðsÞ ¼ L�1 � 1

s
L a0ðsÞ � bðsÞB0ðsÞ � 1

2
dðsÞB2

0ðsÞ
� � 

B1ðsÞ ¼ L�1 � 1
s
L b0ðsÞ þ 1� aðsÞB0ðsÞ � 1

2
cðsÞB2

0ðsÞ
� � 

(
ð4:8Þ

..

.

pj :

AjðsÞ ¼ L�1 � 1
s
L �bðsÞBj�1ðsÞ � 1

2
dðsÞ

Xj�1

k¼0

BkðsÞBj�k�1ðsÞ
( )( )

BjðsÞ ¼ L�1 � 1
s
L �aðsÞBj�1ðsÞ � 1

2
cðsÞ

Xj�1

k¼0

BkðsÞBj�k�1ðsÞ
( )( )

8>>>>><
>>>>>:

: ð4:9Þ

Example 4.1. We consider a particular case of the Vasicek

model (see Björk, 2004). This model is obtained from Eq. (4.1)

when the parameters are bðtÞ ¼ b; dðtÞ ¼ r2; aðtÞ ¼ �a;
cðtÞ ¼ 0 and u ¼ 0. The exact solution of the Vasicek model
was found to be of the form

bðsÞ ¼ 1

a
e�as � 1ð Þ and aðsÞ ¼ ðbðtÞ � sÞ ab� 1

2
r2

� 	
a2

� r2bðsÞ
4a

:

ð4:10Þ
The Taylor expansions of both a and b at about zero at

order 6 is

aðsÞ ¼ � b

2
s2 þ ab

6
þ d

6

� �
s3 � a2b

24
þ ad

8

� �
s4 þ a3b

120
þ 7a2

120

� �
s5

� a4b

720
þ a3d

48

� �
s6 þO½s�7;

and

bðsÞ ¼ �sþ 1

2
as2 � a2

6
s3 þ a3

24
s4 � a4

120
s5 þ a5

720
s6 þO½s�7:

To obtain the numerical solution of the (4.1) for the

Vasicek model, we assume a0ðsÞ ¼ Að0Þ ¼ að0Þ ¼ 0 and
b0ðsÞ ¼ Bð0Þ ¼ bð0Þ ¼ 0. Solving Eqs. (4.7)–(4.9) for
AjðsÞ;BjðsÞ; j ¼ 0; 1; . . . ; 6 leads to the following result

AðsÞ ¼ � b

2
s2 þ ab

6
s3 þ d

6
s3 � a2b

24
þ ad

8

� �
s4

þ a3bþ 7a2d

120

� �
s5 � a4b

720
þ a3d

48

� �
s6 ð4:11Þ

and

BðsÞ ¼ �sþ a

2
s2 � a2

6
s3 þ a3

24
s4 � a4

120
s5 þ a5

720
s6: ð4:12Þ

The polynomials AðsÞ and BðsÞ are the same as the Taylor
expansion obtained above for aðsÞ and bðsÞ, respectively. This
means the limit of infinitely many terms (4.11) and (4.12) yields

the exact solution (4.10). The accuracy of the scheme is mea-
sured using the following relative error

E ¼ jaðsÞ � AðsÞj
jaðsÞj ð4:13Þ

where aðsÞ and AðsÞ represent the exact and approximate solu-
tions, respectively.
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Table 1 illustrates the convergence of the HPTM. At s ¼ 1
and as j increases from 4 to 10 the error in a decreases from

order 10�4 to 10�8 and from 10�2 to 10�11 for b. At s ¼ 0:1
and as j increases from 4 to 10 the error in a decreases from

order 10�5 to 10�14 and from 10�8 to 10�16 for b.
Fig. 1 (a) shows that the exact and numerical solutions of

Eq. (4.1) are in good agreement. The bond price behaviour

as a function of s and rðsÞ is captured in Fig. 1(b).

Example 4.2. In this experiment, we consider the
Cox-Ingerson-Ross (CIR) model (see Björk, 2004). This model
is obtained from Eq. (4.1) when the parameters are aðsÞ ¼
�a; bðsÞ ¼ ab; cðsÞ ¼ r2 and dðsÞ ¼ 0. The exact solution of
this model is

aðsÞ ¼ 2ab

r2
ln

2ceðcþaÞs2

2cþ 1� ecsð Þ cþ að Þ
� �

; ð4:14Þ

bðsÞ ¼ � 2 ecs � 1ð Þ
2cþ 1� ecsð Þ cþ að Þ ; ð4:15Þ

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ar2 þ b2

p
. The corresponding Taylor expansion is
Table 1 Convergence of HPTM of the Vasicek model for a ¼ 0:5;

s ¼ 0:1 s ¼ 0:2

j ¼ 4 AðsÞ 1.19416E�5 9.66072E�5

BðsÞ 5.29545E�8 8.61305E�7

j ¼ 6 AðsÞ 2.72792E�9 8.86011E�8

BðsÞ 3.1584E�12 2.05922E�10

j ¼ 8 AðsÞ 3.84661E�13 4.88715E�11

BðsÞ 8.13539E�17 2.92069E�14

j ¼ 10 AðsÞ 1.11102E�14 1.99155E�15

BðsÞ 1.91192E�16 5.38435E�16
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0.5

0.6

0.7

0.8

t
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 B

, α
,β

A(t)
α(t)
B(t)
β(t)

(a)

Fig. 1 (a) Exact and numerical solutions of 4.1 and (b) Bond price p

j ¼ 8.
aðsÞ ¼ � ab
2
s2 þ a2b

6
s3 þ abr2

24
� a3b

24

� �
s4 þ a4b

120
� 4a2br2

120

� �
s5 þO s6½ �;

bðsÞ ¼ � a
2
s2 þ a2

6
� r2

6

� �
s3 þ 4ar2

24
� a3

24

� �
s4 þ a4

120
� 11a2r2

120
þ r4

30

� �
s5 þO s6½ �:

Using the initial conditions a0ðsÞ ¼ Að0Þ ¼ að0Þ ¼ 0 and
b0ðsÞ ¼ Bð0Þ ¼ bð0Þ ¼ u, we solve Eq. (4.1) for AjðsÞ;
BjðsÞ; j ¼ 0; 1; . . .. Considering the bond that pay-off 1 at

maturity implies u ¼ 0. The solution computed using the

HPTM at order j ¼ 6 is given by

aðsÞ ¼ � ab
2
s2 þ a2b

6
s3 þ abr2

24
� a3b

24

� �
s4 þ a4b

120
� 4a2br2

120

� �
s5;

bðsÞ ¼ � a
2
s2 þ a2

6
� r2

6

� �
s3 þ 4ar2

24
� a3

24

� �
s4 þ a4

120
� 11a2r2

120
þ r4

30

� �
s5:

Again we observe that the Taylor expansion and the solu-

tion of the CIR model computed by the HPTM are in good
agreement. Table 2 records the error for different values of j
and different values of s taken randomly. The same conclusion

applies as to the Vasicek model, that the error decreases
rapidly as s gets closer to 0. The bond price in terms of time
to maturity s and the interest rate r is given by

pðs; rÞ ¼ eaðsÞ�bðsÞ rðsÞ: ð4:16Þ
b ¼ 0:3 and d ¼ 0:1.

s ¼ 0:5 s ¼ 0:7 s ¼ 1

1.55847E�3 4.36287E-3 1.30838E-2

3.53106E�5 1.39979E�4 6.10400E�4

9.02825E�6 4.98717E�5 3.08174E�4

5.30832E�8 4.14078E�7 3.70637E�6

3.13493E�8 3.40916E�7 4.32664E�6

4.63624E�11 7.1053E�10 1.30249E�8

7.16094E�11 1.53097E�9 3.98281E�8

2.64043E�14 7.95826E�13 2.98415E�11

0

0.1

0.2

0.3

0.4

0
0.2

0.4
0.6

0.8
1

0.7

0.8

0.9

1

r

Bond price

t

p(
t,r

)

(b)

rocess for the Vasicek model when a ¼ 0:5; b ¼ 0:3 and d ¼ 0:1 at
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Fig. 2 (a) Parameters aðsÞ and bðsÞ exact and approximate and (b) bond price behaviour for 0 6 r 6 0:5; a ¼ 0:5; b ¼ 0:3; r ¼ 0:1.

Table 2 Convergence of the CIR model for a ¼ 0:5; b ¼ 0:3; r ¼ 0:1.

s ¼ 0:2 s ¼ 0:4 s ¼ 0:6 s ¼ 0:8 s ¼ 1

n ¼ 4 AðsÞ 1.43085E�5 1.16921E�4 4.02833E�4 9.74221E�4 1.9403E�3

BðsÞ 4.95614E�7 8.31425E�6 4.40686E�5 1.45623E�4 3.71224E�4

n ¼ 6 AðsÞ 1.07357E�10 5.13301E�9 5.16706E�8 2.71528E�7 9.93647E�7

BðsÞ 2.00642E�10 1.30547E�8 1.51097E�7 8.62187E�7 3.33847E�6

n ¼ 8 AðsÞ 2.68126E�12 1.90102E�10 3.28522E�9 2.49695E�8 1.20746E�7

BðsÞ 1.28341E�13 3.43621E�11 9.14227E�10 9.47091E�9 5.84918E�8

n ¼ 10 AðsÞ 1.22378E�12 7.96574E�13 5.11847E�12 7.03396E�11 5.42104E�10

BðsÞ 7.29208 E�16 1.16398E�14 6.42225E�13 1.09941E�11 9.83115E�11
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Fig. 2 shows the behaviour of the parameters a and
b as well as the corresponding bond price (4.16) for

a ¼ 0:5; b ¼ 0:3; r ¼ 0:1. Clearly, exact and numerical solu-
tions are in good agreement.

4.2. Two-factor stochastic volatility model

One of the most well-known stochastic volatility models is the
Heston model described by Duffie et al. (2000). Under con-

stant interest rate r, the stock price has dynamics driven by

dSt ¼ r Stdtþ
ffiffiffiffiffi
Vt

p
StdWt ð4:17Þ

where rt ¼
ffiffiffiffiffi
Vt

p
is the stock price stochastic volatility driven by

the process

dVt ¼ jðh� VtÞdtþ rv

ffiffiffiffiffi
Vt

p
dWv

t ð4:18Þ
where j is the rate of mean reversion, h is the long-run variance
and rv is the volatility of the variance. The correlation between

the two processes Wt and Wv
t is defined by

dWtdW
v
t ¼ qdt: ð4:19Þ
The stochastic differential Eq. (4.18) can be written as

dVt ¼ jðh� VtÞdtþ rv

ffiffiffiffiffi
Vt

p
ðqdW1

t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
dW2

t Þ;

where W1
t and W2

t are independent processes. We consider

Xt ¼ ðlnSt;VtÞ in order to force the process to become Affine.

Let Yt ¼ lnSt then dYt ¼ ðr� Vt

2
Þdtþ ffiffiffiffiffi

Vt

p
dW1

t . The state

vector Xt ¼ ðYt;VtÞ has linear dynamics and it is written as

dXt ¼ d
Yt

Vt

� �
¼ r� 1

2
Vt

jðh� VtÞ

� �
dtþ

ffiffiffiffiffi
Vt

p 1 0

qrv

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
rv

� �
dWQ

t þ dZt:

Under the risk free equivalent martingale measure Q the
process Xt is governed by

dXt ¼ ltdtþ rtdW
Q
t

where

lt ¼
r

jvh

� �
þ 0 � 1

2

0 �j

� �
Xt; rtr

>
t ¼ 1 qrv

qrv r2
v

� �
Vt;
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i.e.

rtr
>
t ¼ 0 0

0 0

� �
þ 0 0 j 1 qrv

0 0 j qrv r2
v

� �
Xt:

Referring to Affine settings, we see that

K0 ¼
r

jh

� �
; K1 ¼

0 � 1
2

0 �j

� �
; H0

0 0

0 0

� �
;

H1 ¼
0 0 j 1 qrv

0 0 j qrv r2
v

� �
;

ð4:20Þ

and

q0 ¼ r; q1 ¼ ð0; 0Þ: ð4:21Þ
Eq. (2.3) is now two-dimensional and referred to as a two-

factor model. By choosing the pay-off function in the form

WT ¼ eu�XT ð4:22Þ
where u ¼ ðu1; u2Þ 2 R2 is constant, the Riccati Eq. (2.5)
becomes

@a
@t
ðtÞ ¼ r� r jhð Þ b1

b2

� �
þ 1

2
b1 b2ð Þ 0 0

0 0

� �
b1

b2

� �

� @
@t

b1

b2

� �
¼ 0

0

� �
� 0 �0

� 1
2

�j

� �
b1

b2

� �

� 1
2

b1 b2ð Þ 0 0 j 1 qrv

0 0 j qrv r2
v

� �
b1

b2

� �

Resulting in

@a
@s ðsÞ ¼ �rþ rb1ðsÞ þ jhb2ðsÞ
@b1
@s ðsÞ ¼ 0
@b2
@s ðsÞ ¼ � 1

2
b1 � jb2 þ 1

2
b2
1ðsÞ þ qrvb1ðsÞb2ðsÞ þ 1

2
r2
vb

2
2ðsÞ

8><
>: ;

ð4:23Þ
where s ¼ T� t and the initial conditions are given by

að0Þ ¼ 0 and b1ð0Þ; b2ð0Þð Þ ¼ ðu; 0Þ:
The exact solution is given by

aðsÞ ¼rsðu� 1Þ � hj
sðbþ cÞ

r2
v

þ
2 log 1� ðbþcÞ 1�e�csð Þ

2c

� �
r2
v

2
4

3
5

b1ðsÞ ¼u

b2ðsÞ ¼ � a 1� e�csð Þ
2c� ðbþ cÞ 1� e�csð Þ

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ar2 þ b2

p
. To solve Eq. (4.23) by the use of the

HPTM, we construct the following homotopy

A0ðsÞ � a0ðsÞ þ p a0ðsÞ � rþ rBðsÞ � jhCðsÞ½ � ¼ 0

B0ðsÞ � b1;0ðsÞ þ pb1;0ðsÞ ¼ 0

C0ðtsÞ � b2;0ðsÞ þ p b2;0ðsÞ þ 1
2
B2ðsÞ þ qrvBðsÞCðsÞ þ 1

2
r2
vC

2ðsÞ� �
8><
>: :

ð4:24Þ
Applying the Laplace transform on both sides of (4.24), we

have

L A0ðsÞ � a0ðsÞ þ p a0ðsÞ � rþ rBðsÞ � jhCðsÞ½ �f g ¼ 0

L B0ðsÞ � b1;0ðsÞ þ pb1;0ðsÞ
�  ¼ 0

L C0ðsÞ � b2;0ðsÞ þ p b2;0ðsÞ þ 1
2
B2ðsÞ þ qrvBðsÞCðsÞ þ 1

2
r2
vC

2ðsÞ� ��  ¼ 0

8><
>: :

ð4:25Þ
Using the differential property of the Laplace transform we
have

sLfAðsÞg�Að0Þ ¼ L a0ðsÞ� p a0ðsÞ� rþ rBðsÞ�jhCðsÞ½ �f g
sLfBðsÞg�Bð0Þ ¼ L b1;0ðtÞ� pb1;0ðsÞ

� 
sLfCðsÞg�Cð0Þ ¼ L b2;0ðtÞ� p b2;0ðsÞþ 1

2
B2ðsÞþqrvBðsÞCðsÞþ 1

2
r2
vC

2ðsÞ� �� 
8><
>: :

ð4:26Þ

By applying the inverse Laplace transform on both sides
of (4.26) and after algebraic simplification, we have

(see Fig. 4)

AðsÞ ¼ L�1 1
s
Að0Þ þ L a0ðsÞ � p a0ðsÞ � rþ rBðsÞ � jhBðsÞ½ �f gð Þ� 

BðsÞ ¼ L�1 1
s
Bð0Þ þ L b1;0ðtÞ � pb1;0ðsÞ

� � 	� 
CðsÞ ¼ L�1 1

s
Cð0Þ þ L b2;0ðtÞ � p b2;0ðsÞ þ 1

2
B2ðsÞ����

þqrvBðsÞCðsÞ þ 1
2
r2
vC

2ðsÞ�	

8>>>><
>>>>:

:

ð4:27Þ
Suppose the solution of Eq. (4.27) to have the following

form

AðsÞ ¼ A0ðsÞ þ pA1ðsÞ þ p2A2ðsÞ þ � � �
BðsÞ ¼ B0ðtÞ þ pB1ðsÞ þ p2B2ðsÞ þ � � �
CðsÞ ¼ C0ðtÞ þ pC1ðsÞ þ p2C2ðsÞ þ � � �

8><
>: ; ð4:28Þ

where AjðsÞ; BjðsÞ; CjðsÞ; j ¼ 1; 2; . . . are unknown functions

which should be determined. Substituting Eq. (4.28) into Eq.
(4.27), collecting the same powers of p and equating each coef-
ficient of p to zero, results in

p0 :

A0ðsÞ ¼ L�1 1
s
Að0Þ þ L a0ðsÞf gð Þ� 

B0ðsÞ ¼ L�1 1
s
Bð0Þ þ L b1;0ðsÞ

� � 	� 
C0ðsÞ ¼ L�1 1

s
Cð0Þ þ L b2;0ðsÞ

� � 	� 
8><
>: ð4:29Þ

p1 :

A1ðsÞ ¼ L�1 � 1
s
L a0ðsÞ � rþ rB0ðsÞ � jhC0ðsÞf g� 

;

B1ðsÞ ¼ L�1 � 1
s
L b1;0ðsÞ
� � 

C1ðsÞ ¼ L�1 � 1
s
L b2;0ðsÞ þ 1

2
B2

0ðsÞ þ qrvB0ðsÞC0ðsÞ þ 1
2
r2
vC

2
0ðsÞ

� � 
8><
>: ð4:30Þ

..

.

p j :

AjðsÞ ¼ L�1 � 1
s
L rBj�1ðsÞ � jhCj�1ðsÞ
� � 

;

BjðsÞ ¼ 0

CjðsÞ ¼ L�1 � 1
s
L 1

2

Xj�1

k¼0

BkðsÞBj�k�ðsÞ þ qrv

Xj�1

k¼0

BkðsÞCj�k�1ðsÞ
((

þ 1
2
r2
v

Xj�1

k¼0

CkðsÞCj�k�1ðsÞ
))

ð4:31Þ

8>>>>>>>>>><
>>>>>>>>>>:
Assuming a0ðsÞ ¼ Að0Þ ¼ að0Þ ¼ 0 and b0ðsÞ ¼ Bð0Þ ¼

bð0Þ ¼ u and solving the above equation for AjðsÞ;BjðsÞ;
j ¼ 0; 1; . . ., we get the following graphs for a and b2 as b1 is

just constant and equal to u.
Here the parameters are chosen randomly as r ¼ 0:02; j ¼

0:3; rv ¼ 0:6; h ¼ 0:05; q ¼ �0:3; u ¼ 1:1. One can clearly see

in Fig. 3 the quick convergence of the HPTM as s is small
enough, but for s > 1 it is essential to increase the number j.

The price at time s of the security that pays off UT ¼ euXT is

given by

/ðs; y; vÞ ¼ eaðsÞþuyðsÞþbðsÞvðsÞ ¼ eu lnSt eaðsÞþb2ðsÞvðsÞ:

If we consider Ss ¼ S0e
rs with r ¼ 0:02, we get the asset

price behaviour /s sketched in Fig. 4(a). We can also view
the asset price /s as a function of y and s. For the sake of com-

putation we consider v to be a polynomial of order 2 in s, that
is, we arbitrarily take vðsÞ ¼ 0:01þ 0:5s� 0:002s2. The result-
ing asset price behaviour is recorded in Fig. 4(b).
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Fig. 3 (a) aðsÞ exact and approximate A for j ¼ 8 and (b) b2ðsÞ exact and its approximate C obtained for j ¼ 8 .
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4.3. Three-factor stochastic volatility model

We consider the three-factors Heston model also considered by

Duffie et al. (2000) where the state process Xt is the triplet

ðYt;Vt;VtÞ where Vt is the long-term volatility trend of the
stock St. The state process dynamics under the equivalent

martingale Q is given by

d

Yt

Vt

Vt

0
B@

1
CA ¼

l� Vt

2

jðVt � VtÞ
j0ð�v� VtÞ

0
B@

1
CAdt

þ

ffiffiffiffiffi
Vt

p
0 0

qr
ffiffiffiffiffi
Vt

p
r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p ffiffiffiffiffi
Vt

p
0

0 0 r0

ffiffiffiffiffi
Vt

p

0
B@

1
CAdWQ

t ; ð4:32Þ

lt ¼
l� Vt

2

jðVt � VtÞ
jð�v� VtÞ

0
B@

1
CA ¼

l

0

j0�v

0
B@

1
CAþ

0 � 1
2

0

0 �j j

0 0 �j0

0
B@

1
CA

Yt

Vt

�Vt

0
B@

1
CA;

rt ¼

ffiffiffiffiffi
Vt

p
0 0

qr
ffiffiffiffiffi
Vt

p
r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p ffiffiffiffiffi
Vt

p
0

0 0 r0

ffiffiffiffiffi
Vt

p

0
B@

1
CA)

rtr
>
t ¼

Vt qrVt 0

qrVt r2Vt 0

0 0 r2 �Vt

0
B@

1
CA;

where l is the stock’s drift, r is the volatility of the variance
Vt; q is the correlation between Yt and Vt, the long-term

volatility �Vt is stochastic with volatility r0. Referring to the
affine settings we get

K0 ¼
l

0

j0�v

0
B@

1
CA; K1 ¼

0 � 1
2

0

0 �j j

0 0 �j0

0
B@

1
CA;

H0 ¼
0 0 0

0 0 0

0 0 0

0
B@

1
CA;
H1 ¼
0 0 0j 1 qr 0 j 0 0 0

0 0 0j qr r2 0 j 0 0 0

0 0 0j 0 0 0 j 0 0 r2
0

0
B@

1
CA;

q0 ¼ r; q1 ¼ ð0; 0; 0Þ:
We know the solution is given by Eq. (4.1) ie. with a and b

satisfying

@a
@t

ðtÞ ¼ r� l 0 j0�vð Þ
b1

b2

b3

0
B@

1
CA

and

@

@t

b1

b2

b3

0
B@

1
CA ¼

0

0

0

0
B@

1
CAþ

0 0 0

� 1
2

�j 0

0 j �j0

0
B@

1
CA

b1

b2

b3

0
B@

1
CA

þ 1

2
b1 b2 b3ð Þ �H1 �

b1

b2

b3

0
B@

1
CA:

After algebraic simplifications, we end up with the
following system of ordinary differential equations of Riccati

type

@a
@s ðsÞ¼�rþlb1ðsÞþj0�vb3ðsÞ
@b1
@s ðsÞ¼ 0

@b2
@s ðsÞ¼� 1

2
b1ðsÞ�jb2ðsÞþ 1

2
b2
1ðsÞþqrb1ðsÞb2ðsÞþ 1

2
r2b2

2ðsÞ
@b3
@s ðsÞ¼ jb2ðsÞ�j0b3ðsÞþ 1

2
r2
0b

2
3ðsÞ

8>>>>><
>>>>>:

;

ð4:33Þ
where s ¼ T� t and the initial conditions are given by

að0Þ ¼ 0 and b1ð0Þ; b2ð0Þ; b3ð0Þð Þ ¼ ðu1; u2; u3Þ:
To solve Eq. (4.33) by the HPTM, we construct the follow-

ing homotopy



A0ðsÞ � a0ðsÞ þ p a0ðsÞ þ r� lBðsÞ � j0�vDðsÞ½ � ¼ 0

B0ðsÞ � b1;0ðsÞ þ p b1;0ðsÞ
� � ¼ 0

C0ðsÞ � b2;0ðsÞ þ p b2;0ðsÞ þ 1
2
BðsÞ þ jCðsÞ � 1

2
B2ðsÞ � qrBðsÞCðsÞ � 1

2
r2C2ðsÞ� � ¼ 0

D0ðsÞ � b3;0ðsÞ þ p b3;0ðsÞ � jCðsÞ þ j0DðsÞ � 1
2
r2
0D

2ðsÞ� � ¼ 0

8>>>><
>>>>:

: ð4:34Þ

Applying the Laplace transform on both sides of (4.34), we have

L A0ðsÞ � a0ðsÞ þ p a0ðsÞ þ r� lBðsÞ � j0�vDðsÞ½ �f g ¼ 0

L B0ðsÞ � b1;0ðsÞ þ p b1;0ðsÞ
� ��  ¼ 0

L C0ðsÞ � b2;0ðsÞ þ p b2;0ðsÞ þ 1
2
BðsÞ þ jCðsÞ � 1

2
B2ðsÞ � qrBðsÞCðsÞ � 1

2
r2C2ðsÞ� ��  ¼ 0

L D0ðsÞ � b3;0ðsÞ þ p b3;0ðsÞ � jCðsÞ þ j0DðsÞ � 1
2
r2
0D

2ðsÞ� ��  ¼ 0

8>>>><
>>>>:

: ð4:35Þ
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Using the differential property of the Laplace transform we
have

sLfAðsÞg�Að0Þ ¼ L a0ðsÞ� p a0ðsÞþ r�lBðsÞ�j0�vDðsÞ½ �f g
sLfBðsÞg�Bð0Þ ¼ L b1;0ðsÞ� p b1;0ðsÞ

� �� 
sLfCðsÞg�Cð0Þ ¼ L b2;0ðsÞ� p b2;0ðsÞþ 1

2
BðsÞþjCðsÞ��

þ1
2
B2ðsÞþqrBðsÞCðsÞþ 1

2
r2C2ðsÞ�

sLfDðsÞg�Cð0Þ ¼ L b3;0ðsÞ� p b3;0ðsÞ�jCðsÞ�j0DðsÞ��
þ1

2
r2
0D

2ðsÞ�

8>>>>>>>>><
>>>>>>>>>:

:

ð4:36Þ
By applying the inverse Laplace transform on both sides of

(4.36) and after algebraic simplification we have
0
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Fig. 4 (a) Asset price behaviour with respect to ðs; vðsÞ

AðsÞ ¼ L�1 1
s
Að0Þ þ L a0ðsÞ � p a0ðsÞ þ r� lBðsÞ � j0�vDðsÞ½ �f gð�

BðsÞ ¼ L�1 1
s
Bð0Þ þ L b1;0ðsÞ � p b1;0ðsÞ

� �� � 	� 
CðsÞ ¼ L�1 1

s
Cð0Þ þ L b2;0ðsÞ � p b2;0ðsÞ þ 1

2
BðsÞ þ jCðsÞ � 1

2

����
DðsÞ ¼ L�1 1

s
Dð0Þ þ L b3;0ðsÞ � p b3;0ðsÞ � jCðsÞ þ j0DðsÞ �����

8>>>><
>>>>:
Suppose the solution of Eq. (4.36) to have the following
form

AðsÞ ¼ A0ðsÞ þ pA1ðsÞ þ p2A2ðsÞ þ � � �
BðsÞ ¼ B0ðtÞ þ pB1ðsÞ þ p2B2ðsÞ þ � � �
CðsÞ ¼ C0ðtÞ þ pC1ðsÞ þ p2C2ðsÞ þ � � �
DðsÞ ¼ D0ðtÞ þ pD1ðsÞ þ p2D2ðsÞ þ � � �

8>>><
>>>:

; ð4:38Þ

where AjðsÞ; BjðsÞ; CjðsÞ; j ¼ 1; 2; . . . are unknown functions

which should be determined. Substituting Eq. (4.38) into Eq.

(4.37), collecting the same powers of p and equating each coef-
ficient of p to zero, results in
0

0.5

1

01234
0

20

40

60

80

t

Bond price

y

(b)

Þ. (b) Asset price behaviour with respect to ðs; yðsÞÞ.

Þ

B2ðsÞ � qrBðsÞCðsÞ þ 1
2
r2C2ðsÞ�	

1
2
r2
0D

2ðsÞ�	
: ð4:37Þ



p0 :

A0ðsÞ ¼ L�1 1
s
Að0Þ þ L a0ðsÞf gð Þ� 

B0ðsÞ ¼ L�1 1
s
Bð0Þ þ L b1;0ðsÞ

� � 	� 
C0ðsÞ ¼ L�1 1

s
Cð0Þ þ L b2;0ðsÞ

� � 	� 
D0ðsÞ ¼ L�1 1

s
Dð0Þ þ L b3;0ðsÞ

� � 	� 

8>>>>><
>>>>>:

ð4:39Þ

p1 :

A1ðsÞ ¼ L�1 � 1
s
L a0ðsÞ þ r� lBðsÞ � j0�vDðsÞf g� 

;

B1ðsÞ ¼ L�1 � 1
s
L b1;0ðsÞ þ 1

2
BðsÞCðsÞ þ 1

2
qrC2ðsÞ� � 

C1ðsÞ ¼ L�1 � 1
s
L b2;0ðsÞ þ jCðsÞ þ 1

2
B2ðsÞ þ qrBðsÞCðsÞ þ 1

2
r2C2ðsÞ� � g

D1ðsÞ ¼ L�1 � 1
s
L b3;0ðsÞ � jCðsÞ � j0DðsÞ þ 1

2
r2
0D

2ðsÞ� � 

8>>>>><
>>>>>:

ð4:40Þ

..

.

p j :

AjðsÞ ¼ L�1 � 1
s
L �lBj�1ðsÞ � j0�vDj�1ðsÞ
� � 

;

BjðsÞ ¼ 0:

CjðsÞ ¼ L�1 � 1
s
L 1

2
Bj�1 þ jCj�1ðsÞ � 1

2

Xj�1

k¼0

BkðsÞBj�k�1ðsÞ � qr
Xj�1

k¼0

BkðsÞCj�k�1ðsÞ � 1
2
r2
Xj�1

k¼0

CkðsÞCj�k�1ðsÞ
( )( )

DjðsÞ ¼ L�1 � 1
s
L �jCðsÞ þ j0DðsÞ � 1

2
r2
0D

2ðsÞ� � 

8>>>>>>><
>>>>>>>:

ð4:41Þ
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Assuming a0ðsÞ ¼ Að0Þ ¼ að0Þ ¼ 0; b1 0ðsÞ ¼ Bð0Þ ¼
b1ð0Þ ¼ u; b2 0ðsÞ ¼ Cð0Þ ¼ b2ð0Þ ¼ 0 and b3 0ðsÞ ¼ Dð0Þ ¼
b3ð0Þ ¼ 0, we solve the above equation for
AjðsÞ;BjðsÞ; CjðsÞ; DjðsÞ j ¼ 0; 1; ::; 12. For computational

purpose we consider the following set of parameters:
r ¼ 0:02; l ¼ 0:03; j ¼ 2; j0 ¼ 1:2; �v ¼ 0:05; r0 ¼ 0:01; h ¼
0:05; q ¼ 0:4 and u ¼ 0:9. We run the HPTM for

j ¼ 10; j ¼ 11; and j ¼ 12. The results in Fig. 5 and
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Fig. 5 (a) aðsÞ, (b) b2ðsÞ and (c) b3ðsÞcomputed for j ¼ 10; 11 an

0:01; h ¼ 0:05; q ¼ 0:4 and u ¼ 0:9.

Table 3 Convergence of the three-factor model for r ¼ 0:0

0:4 and u ¼ 0:9.

t ¼ 0:2 t ¼ 0:4

aðsÞ 9.44787E�10 2.88458E�7

b2ðsÞ 2.92738E�8 1.00574E�5

b3ðsÞ 5.24351E�10 3.73261E�7
Table 3 show that numerical solutions converge rapidly as j
increases.

Defining the error function at order j to be

E ¼ AjðsÞ � Aj�1ðsÞ
Aj�1ðsÞ

����
����

Table 3 records the errors in a; b2; and b3 at order 9. Note

that b1ðsÞ ¼ u is constant since its derivative is 0.
0.6 0.8 1

ta2

j=10
j=11
j=12

)

0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

β 3

Beta3

j=10
j=11
j=12

(c)

d j ¼ 12 for r ¼ 0:02; l ¼ 0:03; j ¼ 2; j0 ¼ 1:2; �v ¼ 0:05; r0 ¼

2; l ¼ 0:03; j ¼ 2; j0 ¼ 1:2; �v ¼ 0:05; r0 ¼ 0:01; h ¼ 0:05; q ¼

t ¼ 0:6 t ¼ 0:8 t ¼ 1

8.75677E�6 1.02925E�4 7.17550E�4

3.40898E�4 4.44356E�3 3.42980E�2

2.00047E�5 3.72887E�4 3.91183E�3
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5. Conclusion

In the present work, we proposed a combination of the
Laplace transform method and the homotopy perturbation

method to solve nonlinear systems of stiff Riccati differential
equations arising in finance. We have discussed the methodol-
ogy for the construction of these schemes and studied their

performance on one, two and three-factor diffusion models
with affine coefficients. The solution of these Riccati systems
of equations by means of the homotopy perturbation trans-
form method converges rapidly to the exact solution as the

number of truncated term increases. The HPTM is an effective
mathematical tool which can play a very important role in the
field of finance.
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