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Abstract 

We apply different techniques and uncover the quantile conditional dependence between the 

global financial stress index and Bitcoin returns from March 18, 2011, to October 7, 2016. The 

results from the copula-based dependence show evidence of right-tail dependence between the 

global financial stress index and Bitcoin returns. We focus on the conditional quantile 

dependence and indicate that the global financial stress index strongly Granger-causes Bitcoin 

returns at the left and middle tail of the distribution of the Bitcoin returns, conditional on the 

global financial stress index. Finally, we use a bivariate cross-quantilogram approach and show 

only limited directional predictability from the global financial stress index to Bitcoin returns in 

the medium term, for which Bitcoin can act as a safe haven against global financial stress. 
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2 Research background 

Bitcoin is an innovative peer-to-peer electronic payment network that uses a cryptography 

protocol to secure transactions. The building block of the network relies on an underlying 

blockchain technology that records and secures all Bitcoin transactions. Blockchain is a 

distributed ledger made of an unchangeable chain of data blocks spread across multiple sites but 

chained together cryptographically. Accordingly, trust in Bitcoin is distributed to a large network 

and established through mass collaboration without a powerful third party. This crucial feature 

means that unlike conventional fiat currencies, for which the power of authentication and 

transaction settlement rests with a powerful and centralized government or institution, Bitcoin 

operates in the absence of a central authority, and its production is neither centralized nor subject 

to inflation (Ciaian and Rajcaniova, 2016). Instead, Bitcoin production is dictated by the protocol 

that limits the number of Bitcoin in circulation to 21 million. Although Bitcoin can be produced 

as a reward for approving Bitcoin transactions in a process called “mining”, Bitcoin can also be 

bought and sold against conventional currencies on trading platforms or exchanges. Although 

Bitcoin was first designed to allow users to send and receive payments on a peer-to-peer basis, 

its popularity as an investment asset has considerably increased as speculators and investors store 

Bitcoin with the objective of increasing its scarcity and potentially driving increases in its value, 

which has quickly increased from less than one USD in April 2011 to more than one thousand 

US dollars in March 2017. At the end of March 2017, Bitcoin’s market value reached 16.914 

billion US dollars, based on a closing price of 1041.06 US dollars1. 

In addition to its exponential price appreciation, Bitcoin has shown strong resilience 

during periods of stress, suggesting its potential hedging ability against global stress. Weber 

(2014) and Bouri et al. (2017a) argue that the global uncertainty that accompanied and followed 

the 2008 global financial crisis facilitated the rapid emergence of Bitcoin as both a financial asset 

and an alternative currency to conventional economies. Importantly, later stress periods such as 

the European sovereign debt crisis of 2010-2013 and the Cypriot banking crisis of 2012-2013 

have further driven the use of Bitcoin as a shelter from sovereign and systematic risk (Bouri et al., 

2017a). Luther and Salter (2017) show that interest in Bitcoin substantially increased following 

the March 16, 2013, announcement that Cyprus would accept a bailout. Increasing interest in 

                                                           
1 https://coinmarketcap.com/currencies/bitcoin/. 

https://coinmarketcap.com/currencies/bitcoin/
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Bitcoin has also been reported in countries such as Greece and Spain, whose banks are troubled. 

Bitcoin is an alternative to sovereign currencies and is often considered part of an alternative 

economy. In an environment of high uncertainty and low trust, investors move away from main-

state economies and often resort to Bitcoin (Bouri et al., 2017b). Bitcoin has been referred to as 

digital gold (Popper, 2015), and Dyhrberg (2016a) situates its hedging capability somewhere 

between gold and the US dollar. Several empirical studies have noted the valuable role of Bitcoin 

as an investment and have highlighted the diversification benefits of adding Bitcoin to an equity 

portfolio. Brière et al. (2015) use weekly data from 2010 to 2013 and highlight the low 

correlation of Bitcoin with both traditional assets (worldwide stocks, bonds, and hard currencies) 

and alternative investments (commodities, hedge funds, and real estate). The authors note 

Bitcoin’s significant diversification benefits despite its extremely high average return and 

volatility. Dyhrberg (2016b) shows that Bitcoin is useful as a hedge for UK currency and equities. 

Bouri et al. (2017b) indicate that Bitcoin can serve as an effective diversifier for major world 

stock indices, bonds, oil, gold, the general commodity index and the US dollar index. Those 

authors also reveal that Bitcoin has hedging and safe-haven properties against Asian Pacific and 

Chinese stocks. Ji et al. (2017) show that Bitcoin is isolated from the conventional global 

financial system. Bouri et al. (2017c) note the safe-haven property of Bitcoin against equities and 

reveal that Bitcoin is negatively related to the US VIX. However, the relation between Bitcoin 

and global financial stress has been ignored. To the best of our knowledge, the only work closely 

related to this study was conducted by Bouri et al. (2017a), who examine Bitcoin’s hedging 

ability against global uncertainty, as measured by the VIXs of developed and emerging markets. 

After decomposing Bitcoin returns into different frequencies and applying quantile-on-quantile 

regressions, the authors show that Bitcoin does act as a hedge against global uncertainty at both 

the lower and the upper ends of Bitcoin returns and global uncertainty, particularly on shorter 

investment horizons. Although Bouri et al. (2017a) differentiate between short and long 

investment horizons and between upper and lower quantiles, they ignore the dependence 

structure, as captured by copula, along with Granger-causality in both distributions and quantiles. 

Furthermore, Bank of America Merrill Lynch recently introduced an index for global financial 

distress that better captures global stress than the VIX2. Released in November 2010, the so-

                                                           
2 http://uk.reuters.com/article/markets-stressindex-idUSN2920764420101129. 

http://uk.reuters.com/article/markets-stressindex-idUSN2920764420101129
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called global financial stress index (GFSI) aggregates 23 measures of stress covering three types 

of financial market stress (risk, hedging demand, and investor (flows in the financial system) 

appetite for risk) across five asset classes (credit, equity, interest rates, forex and commodity 

markets) and various geographies. Bank of America Merrill Lynch argues that the breadth and 

depth of the GFSI make it a more accurate gauge of global stress than the VIX, which is based 

on option data. More specifically, the GFSI helps detect significant market turning points, as 

indicated by the back-testing that has shown the high degree of the GFSI’s accuracy in 

forecasting market sell-offs since 2000. Based on the above, it appears that the GFSI is an 

essential tool for market participants to make better investment and risk management decisions. 

Importantly, the increased knowledge of which risks are essential and against which to hedge 

them in the different quantiles whilst explaining the copula dependence structure are two crucial 

aspects of successful investing. It follows that the safe-haven property of Bitcoin against this 

global measure of market stress requires a thorough examination using newly developed 

techniques. Therefore, in this study, we examine the dependence between Bitcoin returns and the 

GFSI using the copula function and the Granger causality in both distribution and quantiles from 

a predictive perspective. Our sample period spans from March 18, 2011, to October 7, 2016. 

Whereas some recent studies on the economics of Bitcoin have applied the Granger 

causality test in the conditional mean or in conditional variance (e.g., Blacilar et al., 2017), this 

study applies a copula-based approach to uncover the conditional dependence and causality in 

the quantiles between Bitcoin and global financial stress. Instead of considering the 

contemporaneous causality relationships, we adopt two predictive approaches in the Granger 

causality rationale. The first is the out-of-sample approach of Hong and Li (2005), which 

captures the Granger causality in distributions in each conditional quantile. The second is the 

cross-quantilogram approach by Han et al. (2016), which allows the measure of directional 

predictability in quantiles from the GFSI to Bitcoin returns. 

The contributions of this study are three-fold. First, in contrast to Bouri et al. (2017a), we 

use a broader measure of global financial stress that captures, in addition to the VIX, a variety of 

market stresses (risk, hedging demand, and investor appetite for risk) across five asset classes 

(credit, equity, interest rates, forex and commodity markets) and various geographies. Second, 

for the first time, we uncover the dependence between the GFSI and Bitcoin returns across the 

entire range of quantiles using the copula function and Granger causality tests in each conditional 
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quantile3. These combinations between copula and quantile causality enable us to uncover the 

Granger causality in both distributions and quantiles. Third, instead of examining the 

contemporaneous causality relationships, we adopt a predictive approach in the Granger 

causality rationale (Han et al., 2016). 

A quantile dependence analysis enriches our understanding of the ability of Bitcoin to act 

as a safe haven against global financial stress. We first use a copula function and report evidence 

of right-tail dependence between the GFSI and Bitcoin returns. We also derive the conditional 

quantile from the inverse function of a conditional distribution function and show that the GSFI 

strongly Granger-causes Bitcoin returns at the left tail (i.e., during very deficient performance) 

and the middle (i.e., during average performance) but not at the right tail (i.e., during very robust 

performance) of the distribution of the Bitcoin returns conditional on the GSFI. Importantly, we 

consider a quantile-to-quantile analysis from a predictive perspective and find that when global 

financial stress is very high (above the upper 90th quantile), there is a very large positive gain in 

the price of Bitcoin for approximately 60 days. Specifically, the GFSI has a very large positive 

gain for the next 60 days. This significant directional predictability from the GFSI to Bitcoin 

return indicates that Bitcoin can act as a safe haven against global financial stress from a 

medium-term perspective. Our findings are important to practitioners, scholars and policy-

makers. 

 

2 Data 

The data used in this study are daily (5 days per week) and cover the period from March 

18, 2011, to October 7, 2016. The data consist of Bitcoin prices and the GFSI. The prices are 

collected from CoinDesk (www.coindesk.com/price) and represent the average price of Bitcoin 

across leading exchanges (Bouri et al., 2017a). The GFSI, which is collected from the 

Bloomberg Terminal, captures global financial stress. Levels greater than zero indicate more 

financial market stress than normal, and vice-versa. Table 1 shows the summary statistics of the 

GFSI and the return on Bitcoin (RBC) (calculated as the difference in logarithm between two 

consecutive prices). There are several noteworthy observations. The GFSI and RBC both have 

positive means. The GFSI has a larger standard deviation than does the RBC return. The GFSI 

                                                           
3 Balcilar et al. (2017) apply a quantiles-based approach but only consider the Granger causality in the quantiles 

between trading and Bitcoin returns/volatility. 
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and RBC both are positively skewed. RBC has significant excess kurtosis, whereas the GFSI has 

minimal kurtosis. The JB test shows that the GFSI and RBC are not following a normal 

distribution. The GFSI and RBC are negative correlated (-0.048). 

Table 1. Summary statistics. 

Series GFSI RBC 

Mean 0.115 0.005 

Max 1.310 0.500 

Min -0.530 -0.444 

SD 0.385 0.064 

Skew 0.772 0.106 

Kurtosis 3.257 13.668 

JB_test 148.134 6883.549 

Correlation -0.048 

 

3 Methods and results 

There are three advantages of using copulas in analyzing the dependence. First, the 

copula method is designed to capture the complex and non-linear dependence structure of a 

multivariate distribution, whilst the traditional Pearson correlation assumes a linear dependence 

relationship and is not capable of measuring the asymmetric dependence. Copulas enable us to 

find both the tail dependence and the asymmetric dependence. Importantly, the tail dependence 

can measure the probability of simultaneous extreme losses for investors. Second, the marginal 

behaviour and the dependence structure are separated by the framework of copulas. This 

separation facilitates both the model specification and the model estimation. Compared with 

univariate models, the flexibility of the multivariate models is limited. Copulas can jointly 

combine different univariate models through their copula functions. The estimation can be 

performed in separate steps for the marginal models and the copula functions. Finally, copulas 

are invariant to increasing and continuous transformations (Ning, 2010), such as the scaling of 

logarithm returns, which is commonly used in economic and finance studies. 

Nevertheless, the above copula dependence model does not provide a conclusion about 

the causality between variables. Thus, once we identify the appropriateness of adopting copula 

models, we proceed further to uncover the causality dynamic between the GFSI and RBC by 

computing the quantile forecasts that rely on the inversion of the parametric conditional copula 

distribution. We use the model by Lee and Yang (2014) to examine the dependence between the 

GFSI and RBC using a parametric copula because the linear Granger causality test cannot model 
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the asymmetric dependence between the GFSI and RBC, possibly because of the existence of 

nonlinearity and structural breaks. From the modelling perspective, it is more informative to 

explore the causal relationship between the GFSI and RBC using the Granger causality in 

distribution (GCD) test, which can model the causal relation at the extremes of the return 

distributions rather than only at the centre. For market practitioners, it is more realistic to 

imagine that causality is only anticipated at high quantiles of the GFSI and RBC, because RBC 

may act as a safe haven when the global financial market panics. Indeed, this hypothesis is 

supported by the empirical evidence we provide later. 

Finally, we employ the recent directional predictability test of Han et al. (2016) to 

complement the GCD test because investors may want to use the GFSI to predict the movement 

of RBC; this follows the need to access the forecasting performance of RBC using the GFSI as a 

predictor. The null hypothesis is that the GFSI has no directional predictability for another time 

series. The added advantage of the cross-quantilogram of Han et al. (2016) over GCD is its 

ability to detect the magnitude, duration, and direction of the relationship between the GFSI and 

RBC spontaneously, whilst GCD failed to do so. Another advantage is that the model allows us 

to select arbitrary quantiles for both the GFSI and RBC, rather than pre-set quantiles for GCD; 

furthermore, the use of the bootstrap technique allows for the use of large lags in the directional 

predictability test. 

 

3.1 Copula dependence model 

A copula is a multivariate cumulative distribution function, and its marginal distributions 

are uniform on the interval [0, 1]. Nelsen (1999) review the rigorous mathematical foundation of 

copulas. Sklar’s theorem plays the central role in the theory of copulas. “Sklar’s theorem 

elucidates the role that copulas play in the relationship between multivariate distribution 

functions and their univariate margin” (Nelsen, 1999). 

Sklar’s Theorem. Let  be a joint distribution function.  has two marginal distributions 

 and . There exists a copula  such that all ,  in , 

 

The copula  is unique if marginal distributions  and are continuous; otherwise, 

 is uniquely determined on . Sklar’s theorem enables us to model the 

XYF XYF

XF YF C x y R

( ( ), ( ))XY X YF C F x F y

C XF YF

C ( ) ( )X YRan F Ran F
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marginal distributions and the dependence structure separately. Within our context, a bivariate 

joint cumulative distribution function of returns of Bitcoin and the GFSI can be decomposed into 

two marginal cumulative distribution functions and a copula cumulative distribution function. 

Assuming  and are differentiable, the bivariate joint density is defined as 

 

where  and  are the “probability integral transforms” of  and based on  and , 

respectively.  and  are marginal densities of  and , respectively, and 

 is the copula density. Therefore, the bivariate joint density is expressed 

as the product of the two marginal densities and the copula density. 

One particularly important dependence measure that copula can capture is the tail 

dependence, which measures the probability that two variables are jointly in their lower or upper 

tails. Tail dependence can be viewed as a pronounced spike in the data points in the plot of the 

lower-left or upper-right corner of a copula probability density. Intuitively, lower or upper-tail 

dependence is a relatively high probability density in the lower or upper quantile of the joint 

distribution. In Nelsen (1999), the left and right-tail dependence coefficients of a copula are 

defined as 

 

 

where  is a copula function.  (1) 

 

3.1.1 Marginal models 

Specifying the correct marginal models is a key step. With incorrect marginal models, the 

estimated copula model is unable to capture the correct dependence structure of two series. The 

-statistic and the -statistic are applied to examine the hypothesis of no serial correlation in 

the estimated standardized residuals. The ARCH-LM statistic is employed to ensure that no 

heteroscedasticity is in the estimated standardized residuals. 
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3.1.2 Estimation methods 

The quasi-maximum likelihood method (Bollerslev and Wooldridge, 1992) is applied to 

estimate the marginal models. The variance-covariance matrix of the estimated coefficients is 

adjusted accordingly. We use the Canonical Maximum Likelihood method to transform the 

standardized residuals, which are based on a cumulative distribution function (CDF)4 , into 

uniform distribution. We present the parametric copulas used in the paper and their tail-

dependence properties. 

Normal Copula 

 (2) 

where  is the inverse of the distribution function of a standard normal random variable, 

and denotes the distribution function of a bivariate normal random vector with zero means 

and correlation . A normal copula has zero tail dependence. 

Clayton Copula 

, where  (3) 

The Clayton copula has zero upper-tail dependence but positive lower-tail dependence. 

Rotated Clayton Copula 

, where   (4) 

The rotated Clayton copula has zero lower-tail dependence but positive upper-tail dependence. 

Plackett Copula 

, where  (5) 

The Plackett copula has zero tail dependence. 

Frank Copula 

, where  (6) 

The Frank copula has zero tail dependence. 

Gumbel Copula 

                                                           

4 The empirical marginal cumulative distribution function is computed by  ,
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, where  (7) 

The Gumbel copula has zero lower-tail dependence but positive upper-tail dependence. 

Rotated Gumbel Copula 

, where  (8) 

The rotated Gumbel copula has zero upper-tail dependence but positive lower-tail dependence. 

Student’s t Copula 

    (9) 

where is the distribution function of a bivariate Student’s t distribution with correlation  

and degree of freedom parameter , and  is the inverse of the distribution function for the 

univariate Student’s t distribution with zero means and degree of freedom . The Student’s t 

copula has symmetric tail dependence. 

Symmetrised Joe-Clayton Copula 

  (10) 

where 

 

 

 

and   (11) 

Table 2 shows the probability density of the empirical copula with the number of 

observations at 1451 (trading days) from March 18, 2011, to October 7, 2016. We rank the pair 

of series in ascending order and then divide each series evenly into 10 bins. Bin 10 includes the 

observations with the highest values, and bin 1 includes observations with the lowest values. The 

ranks for the GFSI (i) are on the vertical axis, whilst the ranks for RBC (j) are on the horizontal 

axis. For the vertical axis, observations increase from the bottom to the top. For the horizontal 

axis, observations increase from left to right. Cell (1,1) is located on the lower-left corner, cell 

(10,1) is located on the lower-right corner, cell (10,10) is located on the upper-right corner, and 

cell (1,10) is located on the upper-left corner. The number of observations in cell (1,1) reveals 

information about a positive left-tail dependence, the number of observations in cell (1,10) 
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reveals information about a negative right-tail dependence, the number of observations in cell 

(10,10) reveals information about a positive right-tail dependence, and the number of 

observations in cell (10,1) reveals information about a negative left-tail dependence between the 

two states. There are several noteworthy observations: cell (1, 1) has a low number, and there is 

no positive left-tail dependence (see lower-left corner, Table 2). When the global financial 

markets are generally healthy, it is unlikely that we will observe an extreme decrease in the 

Bitcoin market. Cell (10,1) has a high number, and there is strong negative left-tail dependence 

(lower-right corner, Table 2). This finding indicates that the Bitcoin market is prosperous when 

the GFSI is very low. Cell (1, 10) has a high number, and there is strong negative right-tail 

dependence (upper-left corner, Table 2). Investors must rationally manage risks under this 

scenario, in which an extremely stressed financial market and a substantial decrease in the 

Bitcoin market occur simultaneously. An extreme joint loss is likely to be higher than a normal 

value-at-risk (VAR). Cell (10, 10) has a high number, and there is strong positive right-tail 

dependence (upper-right corner, Table 2). It is interesting to observe that the Bitcoin market can 

perform well when the global financial markets are in depression. This evidence justifies that 

Bitcoin provides a channel against global financial stress. 

 

Table 2. Empirical copula for the GFSI and Bitcoin return. 

 

Bitcoin-lowest 

       

Bitcoin-highest 

GFSI-highest 26 20 11 8 10 5 12 13 15 25 

 

 

11 17 18 20 19 21 13 12 11 7 

 

 

9 8 13 13 24 23 23 12 10 12 

 

 

17 13 19 10 13 12 18 11 15 16 

 

 

16 13 12 17 15 9 15 18 21 17 

 

 

10 14 18 15 18 16 12 13 14 4 

 

 

13 15 21 13 12 22 19 15 18 11 

 

 

12 15 16 17 9 13 7 17 7 19 

 

 

26 14 8 19 14 12 16 15 18 10 

 GFSI-lowest 5 16 9 13 11 13 10 19 16 24   
Notes: We rank the pair of returns in ascending order and then divide each series evenly into 10 bins. Bin 10 

includes the observations with the highest values, and bin 1 includes observations with the lowest values. The ranks 

for the return of Bitcoin (i) in the pair are on the vertical axis, whilst the ranks for the GFSI (j) in the pair are on the 

horizontal axis. For the vertical axis, returns increase from the bottom to the top. For the horizontal axis, returns 

increase from left to right. 
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The ARMA(1,1)-tGARCH(1,1) model has been chosen for the marginal model as shown 

in Table 3. There are three motivations to use this model. First, our data contain a serial 

correlation. The level equation is chosen to be ARMA (1,1). Second, our data have 

heteroscedasticity. The volatility equation is chosen to be GARCH (1,1). Third, there are many 

outliers in the data. The standardized residuals follow the Student-t distribution. The order of 

ARMA is (1,1) and the order of GARCH is (1,1), which is sufficient for our data with evidence 

from the autocorrelation and heteroscedasticity tests. This model is parsimonious, which can 

capture both autocorrelation and heteroskedasticity5. The model is shown as follows: 

       

 

      (12) 

where  is the standardized residuals, which follows the Student-t distribution with degrees 

of freedom. The ARMA(1,1)-tGARCH(1,1) model is estimated by the quasi-maximum 

likelihood method. 

 

Table 3. Estimation of marginal models. 

  
GFSI RBC 

    Est Coef t Stat Est Coef t Stat 

ARMA(1,1) 

Constant -0.002 -2.098 0.000 1.516 

AR{1}  0.991 363.997 0.944 30.330 

MA{1} 0.175 6.505 -0.918 -24.659 

GARCH(1,1) 

Constant 0.000068 2.944 0.000075 4.082 

GARCH{1} 0.846 26.445 0.770 33.477 

 ARCH{1}  0.110 4.597 0.230 5.492 

Residual DoF 5.087 6.815 2.977 13.404 

    Test Stat P-Value Test Stat P-Value 

Diagnostics 

Q(5) 4.935 0.424 13.041 0.023 

Q(10) 5.593 0.848 27.605 0.002 

Q2(5) 5.043 0.411 2.078 0.838 

Q2(10) 8.998 0.532 4.732 0.908 

Arch(5) 5.076 0.407 2.135 0.830 

                                                           
5 When k = 1, that is the model for the GFSI; when k = 2, that is the model for the RBC. 

, ,0 ,1 , 1 ,2 , 1 ,k t k k k t k k t k tR R         1,2k 

2

, ,0 ,1 , 1 ,2 , 1k t k k k t k k th h      

,
,

,

k t
k t

k th


 

, 1| ~ ( )k t t kt 

,k t
k
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Arch(10) 8.579 0.572 4.860 0.900 
Notes: The order of ARMA is (1,1), and the order of GARCH is (1,1), which is sufficient for our data with evidence 

from the autocorrelation and heteroscedasticity tests. This model is parsimonious; it can capture both autocorrelation 

and heteroskedasticity. 

As we can observe from the diagnostics section in Table 3, Q(P) and Q2(P) are Q-

statistics for testing the hypothesis of no serial correlation in the standardized residuals and 

squared standardized residuals, respectively. ARCH (P) is the LM test for the hypothesis of no 

autoregressive conditional heteroscedasticity in the standardized residuals. These statistics each 

have a chi-square distribution with P degrees of freedom. Based on the estimation results, the t 

stat is significant for all coefficients in the model for both the GFSI and RBC. The Q-statistics 

suggest no serial correlation in the standardized residuals of GSFI. However, there is serial 

correlation in the standardized residuals of RBS, as indicated by the p-value of the Q-statistics. 

The LM test suggests no heteroscedasticity in the standardized residuals of the GSFI and RBC. 

Table 4 reports the estimated results for our data by applying nine candidate copulas, 

including normal, Clayton, Rotated Clayton, Plackett, Frank, Gumbel, Rotated Gumbel, 

Student’s t and Symmetrised Joe-Clayton. In accordance with Patton (2006), we calculate the 

copula likelihood for each candidate copula. Based on the copula likelihood, we further calculate 

two information criteria: Akaike information criterion (AIC) and Bayesian information criterion 

(BIC). Additionally, we compute the tail dependence for each fitted copula. According to the 

copula log likelihood, the Gumbel copula provides the best fit for our data. According to AIC 

and BIC, the Gumbel copula is the best model for our data. Only through the Gumbel copula can 

we find tail dependence in the right tail. All other copulas indicate no tail dependence. The 

normal copula has zero tail dependence. The Clayton copula has zero upper-tail dependence. The 

rotated Clayton copula has zero lower-tail dependence. The Plackett copula has zero tail 

dependence. The Frank copula has zero tail dependence. The Gumbel copula has zero lower-tail 

dependence. The rotated Gumbel copula has zero upper-tail dependence. The Student's t copula 

has symmetric tail dependence. The SJC copula parameters are the tail-dependence coefficients, 

but in reverse order. Overall, the dependence structure of our data would be best captured by the 

Gumbel copula6. 

 

                                                           
6 We also considered the possibility of the regime- dependent copula of Wang et al. (2013).  However, the results are 

insignificant (for details, please see the appendix).  
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Table 4. Copulas model estimation. 

Copula Type Estimated Parameter Copula Log Likelihood AIC BIC Left-tail Dependence Right-tail Dependence 

Normal    0.003 0.007 -0.012 -0.008 0.000 0.000 

Clayton    0.000 -0.002 0.005 0.009 0.000 0.000 

Rotated Clayton   0.020 0.281 -0.560 -0.557 0.000 0.000 

Plackett   1.021 0.034 -0.067 -0.063 0.000 0.000 

Frank   0.041 0.034 -0.066 -0.062 0.000 0.000 

Gumbel   1.014 0.697 -1.392 -1.388 0.000 0.019 

Rotated Gumbel   1.000 -0.003 0.007 0.011 0.000 0.000 

Student's t 
  0.004 

0.267 -0.531 -0.524 0.000 0.000 
   49.101 

Symmetrised  

Joe-Clayton 

upper 

tail  0.000 
-0.769 1.542 1.549 0.000 0.000 

lower 

tail  0.000 
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3.2 Granger causality in quantile 

From subsection 3.1, we find evidence that tail dependence is in the right tail by the 

Gumbel copula, whilst all other copulas indicate no tail dependence. Although we identify the 

Gumbel copula as the appropriate copula for our data, the analysis provides no information about 

the causality between the GFSI and RBC. Therefore, this section seeks to provide a more 

informative test to examine the GCD as a tool to explore a causal relationship between the GSFI 

and the return of Bitcoin (RBC). We apply the proposed out-of-sample test for GCD in 

accordance with Hong and Li (2005) with the null hypothesis that Xt does not Granger cause Yt 

in distribution: H0: c(u, v) = 1, where c(u, v) is the conditional copula density function, with u 

and v as the conditional probability integral transforms of Xt (i.e., GSFIt) and Yt (i.e., RBCt), 

respectively. The forecasted conditional variance for { Xt } and { Yt }, ℎ̂𝑥,𝑡+1 and ℎ̂𝑦,𝑡+1, are 

computed by 

ℎ̂𝑥,𝑡+1 = 𝛽̂𝑥0 + 𝛽̂𝑥1𝑥𝑡
2 +   𝛽̂𝑥2ℎ̂𝑡,𝑥 

ℎ̂𝑦,𝑡+1 = 𝛽̂𝑦0 + 𝛽̂𝑦1𝑦𝑡
2 +   𝛽̂𝑦2ℎ̂𝑡,𝑥                                                      (13) 

The CDF values of 𝑢̂𝑡+1  and 𝑣𝑡+1  for xt+1 and yt+1 are calculated by the empirical 

distribution function (EDF), and a nonparametric copula function is estimated with pared EDF 

values {𝑢̂𝑡+1, 𝑣𝑡+1}𝑡=𝑅
𝑇−1 using a quartic kernel function specified as follows: 

𝑘(𝑢) =
15

16
(1 − 𝑢2)2𝐼(|𝑢| ≤ 1) (14) 

The GCD results using the Hong and Li (2005) test statistic for {𝑥𝑡+1, 𝑦𝑡+1}𝑡=𝑅
𝑇−1 is 40.843, 

which is significant at the 1% level, indicating that there is significant GCD between the GSFI 

and RBC. However, evidence of the GCD test does not imply Granger causality in each 

conditional quantile. In our empirical study, we focus on three regions of the distribution: the left 

tail (1% quantile, 5% quantile and 10% quantile), the central region (40% quantile, median and 

60% quantile) and the right tail (90% quantile, 95% quantile and 99% quantile); this is the same 

as Lee and Yang (2014). The objective is to forecast the conditional quantile, 𝑞𝛼(𝑌𝑡|ℱ𝑡), where α 

is the left tail probability. The conditional quantile 𝑞𝛼(𝑌𝑡|ℱ𝑡) is derived from the inverse function 

of a conditional distribution function: 

𝑞𝛼(𝑌𝑡|ℱ𝑡) = 𝐹𝑌
−1(𝛼|ℱ𝑡) (15) 

where 𝐹𝑌(𝑌𝑡|ℱ𝑡)  is the predicted conditional distribution function of Yt . The inverse is to 

compute 𝑞𝛼(𝑌𝑡|ℱ𝑡) from 
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∫ 𝑓𝛾(𝑦|
𝑞𝛼(𝑌𝑡|ℱ𝑡) 

−∞
ℱ𝑡)𝑑𝑦 = 𝛼  (16) 

where 𝑓𝛾(𝑦|ℱ𝑡)  is the predicted conditional distribution function. The quantile forecasting 

models 𝑞𝛼(𝑌𝑡|ℱ𝑡) are computed by solving the equation 

𝐶𝑢(𝐹𝑋(𝑥𝑡+1), 𝐹𝑌(𝑞𝛼(𝑌𝑡|ℱ𝑡)) = 𝛼  (17) 

To evaluate the predictive ability of those quantile forecasting models 𝑞𝛼(𝑌𝑡|ℱ𝑡) obtained 

from the seven (I = 7) copula functions for C(u; v), we use the “check" loss function of Koenker 

and Bassett (1978)7. The expected check loss for a quantile forecast 𝑞𝛼(𝑌𝑡|ℱ𝑡) at a given 𝛼 is 

𝑄(𝛼) = 𝐸[𝛼 − 𝐼(𝑌𝑡 − 𝑞𝛼(𝑌𝑡|ℱ𝑡) < 0)](𝑌𝑡 − 𝑞𝛼(𝑌𝑡|ℱ𝑡))  (18) 

We denote the k’th type of copula function as Ck(u; v) (k = 1,…,l = 7). For each copula 

distribution function Ck(u; v), we also denote the corresponding quantile forecast as 𝑞𝛼,𝑘(𝑌𝑡|ℱ𝑡) 

and its expected check loss as Qk(α). To compare copula model 1 (benchmark) and model k (= 

2,…,l), we consider the corresponding check loss-differential 

𝐷𝑘 = 𝑄1(𝛼) − 𝑄𝑘(𝛼)  (19) 

We can estimate 𝐷𝑘 by 

𝐷̂𝑘,𝑝 = 𝑄̂1,𝑝(𝛼) − 𝑄̂𝑘,𝑝(𝛼)  (20) 

where 

𝑄̂𝑘,𝑝(𝛼) =
1

𝑝
∑[𝛼 − 𝐼(𝑌𝑡 − 𝑞𝛼(𝑌𝑡|ℱ𝑡) < 0)](𝑌𝑡 − 𝑞𝛼(𝑌𝑡|ℱ𝑡)), 𝑘 = 1, … , 𝑙

𝑇−1

𝑡=𝑅

 

The conditional quantile forecasts from using the copula distribution function Ck (k = 

2,…) with the largest value 𝐷̂𝑘,𝑝 will be preferred. The results of testing GCQ in p-values are 

reported in Table 5. The small p-values of the reality check in Table 5 signal the rejection of the 

null hypothesis, indicating that there is a copula function to model GCQ and produce a better 

quantile forecast of the RBC by conditioning on the GSFI. We can observe that a quantile 

forecasting model with no Granger causality in the quantile is rejected in many quantiles, except 

for the quantile at 60%, 70%, 90%, and 95%, indicating that the GSFI strongly Granger-causes 

the RBC at the left tail (poor performance) and centre (usual performance) but not at the right tail 

(superior performance) of the distribution of the RBC conditional on the GSFI. 

 

                                                           
7 For detailed information, please refer to Lee and Yang (2014).  
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Table 5. Testing for GCQ. 

1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99% 

0 0 0 0 0 0 0 0.346574 0.277259 0.034657 0.207944 0.138629 0.069315 

Notes: We compute the quantile forecasts by inverting the parametric conditional copula distribution. We use six 

copulas (Gaussian, Frank, Clayton, Clayton Survival, Gumbel and Gumbel Survival copulas). The check loss 

functions are compared to evaluate the predictive ability of different quantile forecasting using different copula 

models. The benchmark quantile forecasts are computed using the independent copula such that there is no GCQ. 

Reported are the bootstrap p-values for testing the null hypothesis that none of these six copula models (which 

model GCQ) produces a better quantile forecast than the independent copula (which gives no GCQ). The small p-

values of the reality check indicate the rejection of the null hypothesis, indicating that there is a copula function to 

model GCQ and produce a better quantile forecast. 

 

3.3 Cross-quantilogram 

In section 3.3, we examined the relationships between the GFSI and RBC at the extremes 

of the return distributions rather than only at the centre and confirmed the hypothesis that 

causality between the GFSI and RBC is only anticipated at high quantiles of the GFSI and RBC 

because RBC may act as a safe haven when the global financial market is in panic. However, we 

need a complementary analysis to investigate directional predictability because investors may 

want to use the GFSI to predict the movement of the RBC. As indicated in the previous section, 

the added advantage of the predictability test over the GCD test is its ability to detect the 

magnitude, duration, and direction of the relationship between the GFSI and RBC spontaneously 

such that investors can use this information to inform their trading strategies. Another advantage 

is that this test allows researchers to select arbitrary quantiles for the GFSI and RBC rather than 

pre-set quantiles, as in the case of GCD. Furthermore, the use of the bootstrap technique allows 

for the use of large lags in the directional predictability test. The directional predictability test of 

Han et al. (2016) was used by Jiang et al. (2016) to investigate the daily, overnight, intraday, and 

rolling return spillovers of four key agricultural commodities—soybeans, wheat, corn, and 

sugar—between the U.S. and Chinese futures markets. The authors found the empirical model 

very useful in capturing the extreme quantiles dependence between markets. Therefore, in this 

section, we use the cross-quantilogram proposed by Han et al. (2016) to measure the quantile 

dependence between the GSFI and RBC and to test the null hypothesis that GSFI has no 
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directional predictability to RBC. The cross-quantilogram can provide a quantile-to-quantile 

relationship from the GSFI to RBC. The linear quantile regression can be specified as 

𝑞𝛼(𝜏𝑡+1|ℱ𝑡) = 𝛽0,𝛼 + 𝛽1,𝛼𝑥𝑡 + 𝛽2,𝛼𝑥𝑡𝑞𝛼(𝜏𝑡|ℱ𝑡−1) + 𝛽3,𝛼|𝜏𝑡|        (21) 

where 𝜏𝑡 and 𝑥𝑡 are the RBC and GSFI, respectively, and 𝑞𝛼(𝜏𝑡+1|ℱ𝑡) is the conditional quantile of 

the RBC given the information ℱ𝑡 at time t. The cross-quantilogram 𝑝̂𝛼(𝑘) and the portmanteau 

tests 𝑄̂𝛼
(𝑝)

 of the Box-Ljung versions are provided in the figures to detect the directional 

predictability from the RBC to GSFI. For the quantiles of RBC q1 (α1), we consider a wide range 

for α1 = 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9 and 0.95. For the quantiles of GSFI q2 (α2), we 

consider a wide range for α2 = 0.1, 0.5, and 0.9. In each graph, we show the 95% bootstrap 

confidence intervals for no predictability based on 1000 bootstrapped replicates. The maximum 

lag we consider is 2 months (i.e., k = 60). To estimate the critical values from the limiting 

distribution, we could use the nonparametric estimation using the stationary bootstrap (SB) of 

Politis and Romano (1994) . The SB is a block bootstrap method with blocks of random lengths. 

The SB resample is strictly stationary, conditional on the original sample. Alternatively, we can 

apply the self-normalized approach proposed in Lobato (2001) to test the absence of 

autocorrelation of a time series that is not necessarily independent. A key ingredient of the self-

normalized statistic is an estimate of cross-correlation based on subsamples. 

Figs. 1(a) and 1(b) are for the case when the stock variance is in the lower quantile, i.e., 

q2 (α2) for α2 = 0.1. The cross-quantilogram 𝑝̂𝛼(𝑘) for α1 = 0.2 is positive and significant after 

the second week. This finding means that when GSFI is very low, there is less likely to be a very 

large negative loss for Bitcoin. The cross-quantilogram p ̂_α (k) for α1 = 0.7 and 0.9 is negative 

and significant for most lags, indicating that when GSFI is very low, it is less likely to have a 

very large positive gain for Bitcoin. Fig. 1(b) shows that the Box-Ljung test statistics are 

significant for quantiles α1 =0.1, 0.2, 0.3, 0.7 and 0.9. 
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Fig. 1(a). The sample cross quantilogram 𝑝̂𝛼(𝑘) for α2 = 0.1 to detect directional predictability 

from the GSFI to RBC. Bar graphs describe sample cross quantilograms, and lines are the 95% 

bootstrap confidence intervals. 
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Fig. 1(b). Box-Ljung test statistic 𝑄̂𝛼
(𝑝)

 for each lag p and quantile using 𝑝̂𝛼(𝑘), with α2 = 0.1. 

The dashed lines are the 95% bootstrap confidence intervals. 

 

Figs. 2(a) and 2(b) are for the case in which the stock variance is in the median, i.e., q2 

(α2) for α2=0.5. If the distributions of stock returns and the predictor are symmetric, the median 

return forecast will be equal to the mean return forecast. For α1 = 0.5 and α2 = 0.5, the cross 

quantilograms are insignificant for nearly all lags. The cross-quantilogram 𝑝̂𝛼(𝑘) for α1 = 0.2 and 
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0.3 is positive and significant for all lags. This finding means that when the GSFI is lower than 

the median, it is less likely to result in a very large negative loss for Bitcoin. The cross-

quantilogram 𝑝̂𝛼(𝑘) for α1 = 0.2 and 0.3 is positive and significant for all lags. This finding 

means that when the GSFI is lower than the median, it is less likely to have a very large negative 

loss for Bitcoin. Fig. 2(b) shows the Box-Ljung test statistics for α2 = 0.5. 

 

 
Fig. 2(a). The sample cross quantilogram 𝑝̂𝛼(𝑘) for α2=0.5 to detect directional predictability 

from the GSFI to RBC. Bar graphs describe sample cross quantilograms, and lines are the 95% 

bootstrap confidence intervals. 
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Fig. 2(b). Box-Ljung test statistic 𝑄̂𝛼
(𝑝)

, for each lag p and quantile using 𝑝̂𝛼(𝑘) with α2=0.5. The 

dashed lines are the 95% bootstrap confidence intervals. 

 

Figs. 3(a) and 3(b) are for the case in which stock variance is in the higher quantile, i.e., 

q2 (α2) for α2 = 0.9. Compared to the previous case of α2 = 0.5, the cross quantilograms have 

very different trends in addition to much larger absolute values. For α1 < 0.5, the cross 

quantilograms are negative and significant for approximately 40 days. This finding implies that 

when financial stress is higher than the 0.9 quantile, there is an increased likelihood of having 

very large negative losses to Bitcoin for a maximum of 40 days. For α1 = 0.9, the cross 

quantilograms are positive and significant for more than 60 days. This finding implies that when 

risk is very high (higher than the 0.9 quantile), there is an increased likelihood of having a very 
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large positive gain for the next 60 days. Fig. 3(b) shows that the Box-Ljung test statistics are 

significant for certain lags in most quantiles of Bitcoin returns, except for α1 = 0.5 and α1= 0.95. 

 
Fig. 3(a). The sample cross quantilogram 𝑝̂𝛼(𝑘) for α2 = 0.9 to detect directional predictability 

from the GSFI to RBC. Bar graphs describe sample cross quantilograms, and lines are the 95% 

bootstrap confidence intervals. 
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Fig. 3(b). Box-Ljung test statistic 𝑄̂𝛼
(𝑝)

 for each lag p and quantile using 𝑝̂𝛼(𝑘), with α2 = 0.9. 

The dashed lines are the 95% bootstrap confidence intervals. 

 

In summary, when global financial stress is in a higher quantile, in general, the absolute 

value of the cross-quantilogram is higher, and the cross-quantilogram is significantly different 

from zero for larger lags. Our results exhibit a more complete quantile-to-quantile relationship 

between financial stress and Bitcoin return and show how the relationship changes for different 

lags. 
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This evidence on Bitcoin’s safe-haven property against global financial stress in certain 

quantiles from a predictive perspective adds to that reported by Bouri et al. (2017b) in general 

and Bouri et al. (2017a) in particular. The evidence can be explained by the well-documented 

view that Bitcoin is part of an alternative economy (Bouri et al., 2017), and its price formation 

depends on certain non-economic and non-financial factors and Bitcoin attractiveness indicators 

(Ciaian and Rajcaniova, 2016) such as the anonymity of payment transactions (EBA, 2014), use 

in illegal activities (Böhme et al., 2015), and computer-programming enthusiasts (Yelowitz and 

Wilson, 2015). 

 

4 Conclusion 

Initially introduced as an electronic payment system equivalent to cash that could be used 

nearly anonymously in e-commerce, Bitcoin has quickly gained ground as an investment asset. 

Although a great deal of attention has been devoted to the technological, cryptographic, and legal 

aspects of Bitcoin, empirical evidence of its economic and financial aspects, particularly its role 

as a safe haven against global financial stress, is relatively scarce. This paper addressed this void 

by examining the quantile dependence between Bitcoin and global financial stress, which is 

measured by the GFSI, from March 18, 2011, to October 7, 2016. Interestingly, the GFSI 

captures global stress better than the VIX because it aggregates 23 measures of stress covering 

factors that reflect deteriorating economic fundamentals and poorly functioning financial systems. 

Methodologically, we considered the quantile dependence using copula functions, given the 

inability of conventional methods to appropriately capture the dependence between Bitcoin 

returns and the GFSI, as the bivariate joint distribution is not normally distributed. This paper not 

only found evidence of right-tail dependence but also computed the inverse of the conditional 

copula distribution function as a necessary step to obtain the conditional quantile functions and 

examine the Granger causality in different quantiles; in addition, it showed that global financial 

stress strongly Granger-causes Bitcoin returns at the left tail (deficient performance) and the 

middle (average performance) but not at the right tail (superior performance) of the joint 

distribution. Furthermore, we focused on the quantile-to-quantile relation from a predictive 

perspective and revealed evidence of directional predictability from the GFSI to Bitcoin returns, 

suggesting Bitcoin’s ability to act as a safe haven against global financial stress for 

approximately 60 days. 
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Overall, our findings support the literature on the valuable role of Bitcoin returns (Bouri 

et al., 2017a, 2017c; Brière et al., 2015; Dyhrberg, 2016a, 2016b; Ji et al., 2017) and extended it 

by showing the directional quantile dependence. This extension is important and useful to 

practitioners and policy-makers in an era of potentially high global financial stress. However, 

Bitcoin’s possible benefits as a financial asset must be considered along with its associated 

volatility, which is documented in numerous studies (Pieters and Vivanco, 2017). It would also 

be premature to ensure that Bitcoin’s role as a valuable investment will not be interrupted by a 

technological glitch. Future research can use the quantile dependence approach to more 

thoroughly examine Bitcoin’s safe-haven property against conventional assets and commodities. 
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Appendix 

Regime-dependent Copula 

We further assume that the copula function is time-varying, depending on an 

unobservable state variable . 

     (A1) 

where  and  are the “probability integral transforms” of the GFSI and RBC. is the 

parameter for the Gumbel copula, and  is the parameter for the rotated Gumbel copula. 

The unobservable state variable  follows a two-state Markov chain.  transits between 

two states according to the transition probabilities. 

 

where  for .  (A2) 

The bivariate density function of the above model is defined as 

 (A3) 

where  is the copula under regime , i.e.,  and 

. Notice that we assume the copula functions are different under 

different regimes; however, the two marginal densities are the same across different regimes. 

The model with dependence switching enables us to discuss the asymmetric tail dependence and 

the transition between the left-tail dependence regime and the right-tail dependence regime. The 

log likelihood of the model of a parameter set  with a given data  is 

 

where is the log likelihood of the copula density;  and are the log 

likelihood of the two marginal densities. 
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where , and are the parameter set for the two marginal models, 

respectively. Because of the structure of the log likelihood function, its three components can be 

optimized independently. Table A1 reports the results for the regime-dependent copula model; 

the result shows that the regime-switching effect is absent for our dataset (see Table A1), as P11 

is exactly 1.000 with SD 0.000. Hence, the regime-switching is not suitable in our study. The 

Gumbel will always be chosen, and the rotated Gumbel will never be chosen. This finding can 

also be confirmed by smooth probability. This result is not surprising because Table 4 shows that 

there is no left-tail dependence for whatever copula is used, and there is very weak right-tail 

dependence only when the Gumbel copula is used. 

 

Table A1. Estimation of the dependence-switching copula model. 

    Value SD 

Gumbel 1   1.014 0.013 

Rotated Gumbel 2  4.708 4.195 

Regime 

 Switching 

11P   1.000 0.000 

22P   0.500 0.449 

Copula LV -1.346 

 AIC 2.716 

 BIC 2.782   

Notes:  is the shape parameter of the dependence-switching copula. “Copula LV” denotes the estimated log 

likelihood value for the copula function. 11P  and 22P  are two transition probabilities. SD denotes the standard 

deviation.   
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