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Abstract

Roads need to be continuously monitored and maintained to ensure that they offer a driving surface that effectively address the safety and 
comfort needs of road users. Well maintained roads are also vital for freight transport companies, assisting with minimising vehicle and goods 
damage that can occur during transportation. Vehicle telematics is technology that is advancing in terms of complexity, diversity and data 
volume. Hundreds of thousands of these devices are installed in vehicles throughout South Africa and worldwide. The technology is 
predominantly used for the recovery of hijacked or stolen vehicles, driver behavioural insurance and monitoring and management of vehicle 
fleets. This paper demonstrates that vehicle telematics provides additional potential in terms of estimating road roughness (similar to a Class 3 
level). This is demonstrated by utilising the global positioning system (time, latitude, longitude and speed) and vertical (z) acceleration data 
harvested from telematics device sensors. Road roughness data obtained from telematics technology can be used as ‘screening’ devices to 
measure road roughness on a real-time basis. It can also help close the gap between Class 1, Class 2 and Class 4 road roughness measurements.

Keywords: Class 3 road roughness; telematics technology; global positioning system (GPS); accelerometer; International Roughness Index (IRI); Half-car 
Roughness Index (HRI); Response Type Road Roughness Measuring System (RTRRMS)

Introduction

Research has shown that surface roughness is one of the pri-
mary variables that drivers use to measure the quality of service
provided by a pavement surface (Hudson 1981). The need to
measure road roughness has led to the advent of numerous
instruments. These systems range from simple devices to
more complex systems (Sayers et al. 1986b). Today, road
roughness is generally measured with high-speed profilometers.
These instruments are relatively expensive and unlike response
type devices, only a few network agencies and service providers
can afford to purchase and maintain their own profiler (COTO
2007). These limitations circumvent the opportunity to
measure a wider footprint of the road network on a continuous,
real-time basis. Some of these limitations instigated the pro-
spect of exploring other low-cost alternatives for this purpose.
Hundreds and thousands of telematics devices are installed in
vehicles throughout South Africa and the world and the
majority of them are securely fitted to the body of the vehicles,
thus making them an attractive option for obtaining relatively
accurate information regarding the response of vehicles to road
conditions. The cost-effectiveness of utilising data harvested
from telematics device sensors also plays a governing role in
the growing economy and can assist with bridging the gap
between urgent needs that need to be addressed on roads,
and the future evolution of transportation.

Related research
This section includes literature on road roughness, Inter-
national Roughness Index (IRI) versus Half-car Roughness

Index (HRI), IRI ranges, roughness measurement classes, cali-
bration techniques for response type devices and existing low-
cost solutions to assess road roughness.

Road roughness

According to the American Society of Testing and Materials
(ASTM), the definition (E867) for road roughness is (ASTM
International 2012):

The deviations of a pavement surface from a true planar surface
with characteristic dimensions that effect vehicle dynamic, ride
quality, dynamic loads, and drainage, for example, longitudinal
profile, transverse profile, and cross slope.

Roughness is not a point, but rather a summary of devi-
ations that occur over an interval between two points (Sayers
and Karamihas 1998).

IRI versus HRI

IRI is defined as a roughness index for a single wheel track
profile, obtained by using a Quarter-Car model (Figure 1)
with specific Golden Car vehicle parameter values. An associ-
ated roughness measure, known as the HRI can be obtained
using both wheel track profiles as input to the same computer
algorithm as for the IRI. This analysis is mathematically
equivalent to a Half-Car model (Figure 2). IRI more closely
indicates the vehicle response at the wheels, whereas HRI
more closely indicates the response of the vehicle at its centre
(Sayers 1989).



IRI ranges

Typical IRI ranges for different road classes are shown in Figure
3, where the IRI scale ranges from 0 to 20 m/km. Rec-
ommended operating speeds that correspond to specific IRI
ranges are also provided (Sayers and Karamihas 1998).

Roughness measurement classes

Roughness measurement methods were divided into four broad
classifications based on how directly their measures pertain to
the IRI, which in turn affects their calibration procedures as
well as the accuracy of their associated use (Table 1) (Sayers
et al. 1986b).

Calibration for response type device

The response behaviour of a Response Type Road Roughness
Measuring System (RTRRMS) is unique and variable with
time. The system should be calibrated when it is initially put
into service and periodically throughout its use when its
response falls outside the control limits. One method to cali-
brate a RTRRMS is to use control sections to perform cali-
bration by correlation. Calibration is generally performed by

running the RTRRMS over a number of control road sections
of known roughness, obtained through concurrent measure-
ment using a reference method. Measures obtained from the
RTRRMS, in combination with the reference roughness
numeric, are used to determine a regression equation that
can be used to convert future RTRRMS measures to estimates
of what the reference measure would have been (Sayers et al.
1986a). Tables 2 and 3 offer some guidelines that can be used
to accept or reject a specific calibration by the correlation
method followed.

Low-cost solutions to assess road conditions

Several low-cost solutions have been developed that utilises
dedicated standalone sensors (Gregg and Foy 1955, Rizenbergs
1965, González et al. 2008, Chen et al. 2011, Lakušić et al. 2011,
Tomiyama et al. 2012) or smartphone sensors (Pertunnen et al.
2011, Douangphachanh and Oneyama 2013, Hoffmann et al.
2013, Alessandroni et al. 2014, Belzowski and Cook 2014,
Jones and Forslof 2014, Schlotjes et al. 2014, Bridgelall and
Daleiden 2015) to monitor road conditions. In each of these
solutions, different algorithms/approaches have been devel-
oped and evaluated for their appropriateness. Although smart-
phones have several advantages when it comes to measuring
road conditions, some disadvantages, however, exist. Some of
these disadvantages include virtual reorientation of the acceler-
ometers, limited battery life of smartphones and the need for
human, manual intervention to record the measurements. Tele-
matics technology, therefore, seems to be a more attractive
alternative to some of the current systems used. These advan-
tages include the fact that telematics devices are already
securely fastened to the body of vehicles, accelerometers of tele-
matics devices are automatically aligned after installation (i.e.
no need for manual alignment), telematics devices are powered
by the vehicle and no human or manual intervention is

Figure 1. Quarter-car model (Sayers 1989).

Figure 3. IRI ranges for different road classes (Sayers and Karamihas 1998).Figure 2. Half-car model (Sayers 1989).
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required to record the measurements (i.e. data are automati-
cally recorded when a vehicle’s ignition is switched on and off).

Methodology

The broad methodology that was followed to obtain the
response-based road roughness measurements utilising data
harvested from the telematics device sensors is discussed.

The typical telematics device used in this study is shown in
Figure 4. These devices comprise of global positioning system
(GPS), accelerometer and gyroscope sensors that make them
suitable for measuring road condition. In this specific study
only, the GPS and accelerometer sensors will be used.

The telematics device’s spatial frame of reference is defined
with respect to the vehicle’s frame of reference as shown in
Figure 5.

Benchmark road roughness measurements were obtained
using Class 1 profilometers. A Mark III Road Surface Profiler
(RSP) that is capable of offering data at a range of speeds as
well as real-time linear chainage, survey speed, sub-meter

GPS coordinates, longitudinal profiles IRI, Ride Number
(RN), transverse profiles, rut depths, macro textures and road
geometry (cross fall, curvature and gradient) was used (SRT
2017).

Schematic diagram of approach

The broad procedures that were followed to obtain the
response-based road roughness estimates are shown in Figure
6. It should be noted that the data underwent four steps that
include data acquisition, data transformation, data analysis
and approach validation.

Data analysis

The data analysis phase contained the following methods that
were used to obtain the response-based road roughness (HRI
and Average IRI) measurements.

Coefficient of variation of vertical (Z) acceleration
Coefficient of Variation (CoV) is a dimensionless measure of
dispersion and is typically defined as the ratio of the standard
deviation to the mean of a distribution and is often represented
as a percentage (Van As 2008). The advantages of it being
dimensionless are that data from different datasets can be com-
pared with each other more readily. The equation that was used
to calculate the CoV of the vertical (z) acceleration can be

Table 1. Classification of measurement classes and devices (Sayers et al. 1986b, 
ASTM E950-98 2004, COTO 2007).
Classes Definition

Class 1: Precision profiles Highest standard of accuracy and
precision for measurement of the IRI
Maximum longitudinal sampling
interval: ≤ 25 mm
Vertical resolution:≤ 0.1 mm

Class 2: Other profilometric methods
(non-precision profiles)

Not the same accuracy and precision
required as for Class 1
Maximum longitudinal sampling
interval: 25 mm < and ≤ 150 mm
Vertical resolution: 0.1 mm < and ≤
0.2 mm

Class 3: IRI estimates from correlation
equations (Response Type Road
Roughness Measurement Systems
(RTRRMS))

Estimate the IRI through regression
equations if appropriate correlation
experiments are performed
Maximum longitudinal sampling
interval: 150 mm ≤ and ≤ 300 mm
Vertical resolution: 0.2 mm < and ≤
0.5 mm

Class 4: Subjective ratings and
uncalibrated measures

Roughness measurements have no
verifiable link to the IRI scale (i.e.
subjective evaluation)
Maximum longitudinal sampling
interval: > 300 mm
Vertical resolution: > 0.5 mm

Table 2. Guidelines for calibration acceptance criteria (COTO 2007).
Recommended criteria for

application type

Parameter
Lower
reliability

Higher
reliability

Scatter plot showing IRI (Y-axis) versus
measured parameter

Examine scatter plot and ensure
that the relationship is linear
and that the data range covers
the range of expected IRI values
on the network

Coefficient of determination (R2) for
regression (Note 1)

Greater than
0.950

Greater than
0.975

Standard Error (SE) for regression 0.45 0.35

Note 1: Regression refers to simple regression analysis. For this regression, the
dependent (Y ) parameter is the reference IRI over each 100 m of the calibration
section. The independent (X ) parameter is the measured parameter over each
100 m segment, and for each repeat.

Table 3. Calibration requirements for response type devices (COTO 2007).
Recommended requirements
for application type (Note 1)

Parameter
Lower

reliability
Higher
reliability

Number of sites for each relevant roughness
range (Note 2)

2 3

Minimum site length 200 m 200 m
Repeat runs per site 4 4

Note 1: Use requirements for a lower reliability assessment if the objectives of the
survey is a once-off estimation of roughness to prioritise maintenance and reha-
bilitation work. Use the higher reliability requirements if the objective of the sur-
vey is to determine a relative indication of network deterioration over a time
period.

Note 2: The ranges to be covered include only those ranges which may be encoun-
tered on the network to be surveyed.

Figure 4. SkyTrax telematics device used in this study (Tracker Connect Pty Ltd 
2017b).
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observed from Equation (1) (Van As 2008). In this paper, road
roughness was estimated in 100-m segments to correspond
with the general recommended distance to measure road
roughness as stated in Table 2.

CoV of vertical (z) acceleration (Van As 2008):

CoVaz =
������������������������
1/N

∑N
i=1 (azi − mazi)

2
√

1/N
∑N

i=1 azi
∗100, (1)

for the 100-m road segment, where CoVaz is the CoV of the
vertical (z) acceleration (in %), N is the number of acceleration
points in a specific 100-m segment, azi is the specific vertical (z)
acceleration point in a specific 100-m segment (in millig), g is
the gravitational acceleration and mazi is the mean of the vertical

(z) acceleration calculated for a specific 100-m segment (in
millig).

Second-degree polynomial equations

Problems frequently arise in engineering and science where
the dependent variable is a function of two or more inde-
pendent variables (Blais 2010). In this study, it was
confirmed that road roughness (i.e. HRI and Average IRI)
is a function of the CoV of the vertical (z) acceleration
and the average speed at which the vehicle travelled. It
was determined that a second-degree polynomial equation
achieved the best results compared to a third or higher
degree polynomial equations which appeared to overfit the
data. Additional research and the sampling of more road
sections, however, would be performed to validate this. To
generalise the data from a straight line to a second-degree
polynomial equation, it can be explained by Equations (2)
and (3) (Wolfram MathWorld 2017). Two separate
second-degree polynomial equations were developed, one
to estimate the HRI (Equation (2)) and one to estimate
the Average IRI (Equation (3)).

Second-degree polynomial equation to estimate the HRI:

yHRI =f (xCoV, xSpeed) = a0 + a1 · xCoV
+ a2 · xSpeed + a3 · xCoV · xSpeed
+ a4 · (xCoV)2 + a5 · (xSpeed)2,

(2)

where yHRI is the estimate HRI for a specific 100-m segment (in
m/km), xCoV is the CoV value calculated over a specific 100-m
segment (in %), xSpeed is the average speed calculated over a
specific 100-m segment (in km/h) and a0, a1, a2, a3, a4 and
a5 are the scaling factors (coefficients) to estimate the HRI.

Figure 5. Accelerometer axes orientation of telematics devices (Tracker Connect 
Pty Ltd 2017a).

Figure 6. Schematic diagram of the response-based road roughness approach.
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Second-degree polynomial equation to estimate the Average
IRI:

yAverageIRI = f (xCoV, xSpeed)

= b0 + b1 · xCoV + b2 · xSpeed + b3 · xCoV
· xSpeed + b4 · (xCoV)2 + b5 · (xSpeed)2,

(3)

where YAverageIRI is the estimate average IRI for a specific 100-m
segment (in m/km), xCoV is the CoV value calculated over a
specific 100-m segment (in %), xSpeed is the average speed cal-
culated over a specific 100-m segment (in km/h) and b0, b1, b2,
b3, b4 and b5 are the scaling factors (coefficients) to estimate the
Average IRI.

Second-degree polynomial equations need to be developed
for each vehicle type. To solve for the unknown scaling factors
(coefficients) in Equations (2) and (3), Equations (4) and (5)
were used (Wolfram MathWorld 2017).

Matrix equation for calculating the scaling factors (coeffi-
cients) of the second-degree polynomial used to estimate the
HRI:

â = (MT
HRI ·MHRI)

−1 ·MT
HRI · ŷHRI. (4)

Matrix equation for calculating the scaling factors (coeffi-
cients) of the second-degree polynomial used to estimate the
Average IRI:

b̂ = (MT
AverageIRI ·MAverageIRI)

−1 ·MT
AverageIRI · ŷAverageIRI. (5)

Data collection

Data from five different road sections, of varying lengths and
roughness’ (as indicated in the cumulative distributions and
box-and-whisker diagrams in Figures 7 and 8), and three
different vehicle types (i.e. small hatchback, light delivery
vehicle (LDV) and multi-purpose vehicle (MPV)) were col-
lected. As response type devices are vehicle-dependent,
these representative (of typical South African) vehicles were
used. Each of the three different vehicle types travelled at
seven different speeds (i.e. 30, 40, 50, 60, 70, 80 and 90 km/
h) over each of the five road sections. A range of different
speeds was selected due to the fact that it was evident that
accelerometer data are sensitive to changes in speed and
models should, therefore, be developed in order to remove
bias towards varying speeds. The constant speeds were
achieved by using the vehicles’ cruise control functions. In
order to demonstrate the feasibility of the specific approach
followed and used, the five different road sections were split
into a ‘training’ and ‘test’ set. This meaning that four of the
road sections were used to obtain the second-degree poly-
nomial equations for the three different vehicle types whereas
one road section was used to test the accuracy of the particu-
lar estimation approach. From Figures 7 and 8, the condition
of each of the 'training' road sections should be evident. It
should be observed from the cumulative frequency distri-
butions and box-and-whisker diagrams (Figures 7 and 8)
that Road Section 2 has the best condition whereas Road Sec-
tion 1 and Road Section 3 has the poorest condition.

Data analysis and results

In this section, the specific approach followed and adopted is
critically analysed based on its reliability to estimate road
roughness. This is done through linear regression analysis
(LRA) between benchmark Class 1 road roughness data and
the average measured response-based (similar to Class 3)
road roughness data of an independent 'test' road section. It
should be noted that this paper forms part of continuous
research and that results (statistical indices discussed in this
section) can be improved as more data are collected and
more vehicle types are used to measure road roughness. This
research forms part of a proof of concept and thus should be
considered as such.

Linear regression analysis

In order to validate the practicality and accuracy of the par-
ticular approach, LRA was performed between the benchmark
Class 1 HRI and Average IRI (Y dependent variables) and the
average measured response-based (similar to Class 3) HRI
and Average IRI (X independent variables) for the 'test'
road section (Figures 9 and 10). These relationships were
obtained by utilising the second LSPEs as developed from
the 'training' road sections and applying it to the 'test' road
section for each of the different vehicle types that travelled
at the different speeds. The average result of the measured
road roughness was compared with the benchmark road
roughness.

Correlation coefficient
The correlation coefficient (R) is a single summary number
that indicates how closely one variable is related to another,
the direction of the relationship and how strong it is. A
large R-value indicates linearity of the relationship (−1.00
< R < 1.00). An R-value of −1.00 indicates a perfect negative
relationship between the two variables while an R-value of +
1.00 indicates a perfect positive relationship between the
variables. An R of 0.00 means that no relationship exists
between the two variables (Ryan 2007, Van As 2008, Hig-
gens 2010). The R calculated from LRA of the benchmark
Class 1 HRI and average measured response-based HRI
(Figure 9) is 0.87. The R calculated from LRA of the bench-
mark Class 1 Average IRI and the average measured
response-based Average IRI (Figure 10) is 0.94. This indi-
cates that a strong, positive linear relationship exists
between the two variables.

Coefficient of determination
Coefficient of determination (R2) represents the variability in
Y that is explained by using X to predict Y. It is bounded by
0.00≤ R2 ≤ 1.00. An R2 value near 1.00 indicates a good fit
while a value near 0.00 indicates a poor fit (Montgomery and
Runger 2006, Ryan 2007, Van As 2008, Ross 2009, Higgens
2010). The adjusted R2 calculated from LRA of the bench-
mark Class 1 HRI and average measured response-based
HRI (Figure 9) is 0.75, while the R2 calculated from LRA
of the benchmark Class 1 Average IRI and average measured

5



response-based Average IRI (Figure 10) is 0.88. This indicates
that both lie closer to 1.00, indicating a good fit between the
two variables.

Standard error of the estimate
The Standard Error (SE) of the estimate is the standard devi-
ation of a distribution. The SE is a single summary number
that indicates how accurate the predictions are when linear

Figure 7. Cumulative frequency distributions and box-and-whisker diagrams of the HRI for the four ‘training’ road sections.

Figure 8. Cumulative frequency distributions and box-and-whisker diagrams of the Average IRI for the four ‘training’ road sections.

Figure 9. LRA between the benchmark HRI and the average measured HRI for the 
'test' road section.

Figure 10. LRA between the benchmark Average IRI and the average measured 
Average IRI for the 'test' road section.
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regression is performed, with smaller SE-values indicating
higher accuracy (Higgens 2010). SE calculated from LRA of
the benchmark Class 1 HRI and average measured response-
based HRI (Figure 9) is 0.29. SE calculated from the LRA of
the benchmark Class 1 Average IRI and average measured
response-based Average IRI (Figure 10) is 0.22. After compar-
ing these SEs with the acceptable SEs for high reliability listed in
Table 2, it should be noted that they both fall within the range
to be accepted with high reliability.

Residuals analysis
Residuals are helpful in examining the assumption that errors
are approximately normally distributed with a constant var-
iance. They also help to determine whether additional terms
are required in the model. If errors are normally distributed,
approximately 95% of the standardised residuals should fall
in the interval (−2, +2). Residuals that fall far outside this inter-
val may indicate the presence of outliers (Montgomery and
Runger 2006). Comparing the standardised residual value
limits (Figures 11 and 12) with the limits stated above, it should
be evident that 95% of the standardised residual values lie
within the range of (−2, 2), and thus the stated procedure
used to obtain the measured response-based road roughness
(HRI and Average IRI) can be accepted with confidence.

Figure 12. Standardised residual values for the Average IRI.

Figure 11. Standardised residual values for the HRI.

Figure 14. Benchmark Average IRI and the average measured Average IRI for the ‘test’ road section.

Figure 13. Benchmark HRI and the average measured HRI for the ‘test’ road section.
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Benchmark road roughness versus average measured 
road roughness

The benchmark (Class 1) road roughness (HRI and Average
IRI) and average measured response-based (similar to Class
3) road roughness (HRI and Average IRI) values, calculated
for the 'test' road section, were plotted on the same set of

Figure 15. Measured response-based HRI (ArcGIS Pro 2017).

Figure 16. Measured response-based Average IRI (ArcGIS Pro 2017).

Table 4. Condition ranges used for visualisation of road roughness data.
Condition HRI (m/km) Average IRI (m/km)

Very good 0.00–1.50 0.00–1.50
Good 1.50–2.60 1.50–2.60
Fair 2.60–3.50 2.60–3.50
Poor 3.50–4.20 3.50–4.20
Very poor 4.20–20.00 4.20–20.00
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axes (Figures 13 and 14) in order to indicate the close relation-
ship that exist between them. From Figures 13 and 14, it should
be evident that the trends for the road roughness profile remain
more or less similar and that little deviation exists between
them.

Visualisation of the Class 3 road roughness

Road condition was visualised using a mapping application that
shows the road condition using five primary colours, primarily
for a road in a very good, good, fair, poor and very poor con-
dition (Figures 15 and 16). The condition ranges used, were
selected based on those as shown in Figure 3, with the ranges
and their corresponding condition and colour shown in Table 4.

Conclusions

In this paper, it should be evident that relatively accurate
response-based (similar to Class 3) road roughness indices
can be obtained by utilising the data harvested from telematics
device sensors in the field. This can be achieved by combining
both statistics and matrix algebra and by performing appropri-
ate 'calibration by correlation' procedures. Although this
research shows major potential and can possibly disrupt
some of the traditional methods being used, there still exist
some room for improvement of which some include measuring
the road roughness of more road sections as well as performing
cross-correlation between repeat measurements. Road rough-
ness data obtained from telematics devices can be utilised as
‘screening’ devices and assist with successfully closing the gap
between Class 1, Class 2 and Class 4 measurement devices.

Future developments

Some of the future developments of this project include:

. Develop road deterioration rate models for different road
sections by monitoring the continuous response-based
(similar to Class 3) road roughness measurements over a
period of time;

. Develop route optimisation models by categorising routes
based on their distance and riding quality;

. Develop fuel consumption models (Rands/km) by incorpor-
ating the estimated road roughness data measured, and

. Develop agricultural goods loss models (Rands/km) when
the conditions of roads are in a poor condition.
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