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Abstract 

A computationally efficient and robust simulation method is presented in this work, for the cyclic 

modeling of reinforced concrete (RC) structures. The proposed hybrid modeling (HYMOD) approach 

alleviates numerical limitations regarding the excessive computational cost during the cyclic analysis 

and provides a tool for the detailed simulation of the 3D cyclic nonlinear behavior of full-scale RC 

structures. The simplified HYMOD approach is integrated in this work with a computationally 

efficient cyclic concrete material model so as to investigate its numerical performance under extreme 

cyclic loading conditions. The proposed approach adopts a hybrid modeling concept that combines 

hexahedral and beam-column finite elements, where the coupling between them is achieved through 

the implementation of kinematic constraints. A parametric investigation is performed through the use 

of the Del Toro Rivera frame joint and two RC frames with a shear wall. The proposed modeling 

method managed to decrease the computational cost in all numerical tests performed in this work, 

while it induced additional numerical stability during the cyclic analysis, where the required number 

of internal iterations per displacement increment was found to be always smaller compared to the 

unreduced (hexahedral) model. The HYMOD provides for the first time with the required 3D detailed 

finite element solution tools in order to simulate the nonlinear cyclic response of full-scale RC 

structures without hindering the numerical accuracy of the derived model nor the need of developing 

computationally expensive models that practically cannot be solved through the use of standard 

computer systems. 

1.   Introduction 

The cyclic loading simulation of different structural components of reinforced concrete (RC) 

buildings such as beams, columns, monolithic connections, shear walls, slabs and foundation footings, 

has two main challenges; numerical accuracy and computational efficiency. Many simplified models 

have been developed for the simulation of RC structural members under ultimate limit state and cyclic 

loading conditions with moderate success. The accuracy limitations of these numerical models is well 

documented thus researchers turned towards more detailed 3D approaches (Kotsovos and Pavlovic, 

1995; Hartl, 2002; Lykidis and Spiliopoulos, 2008; Červenka and Papanikolaou, 2008; Papanikolaou 

and Kappos, 2009; Markou and Papadrakakis, 2013; Ali et al., 2016, Mourlas et al., 2017) in an attempt 

to develop accurate and robust modeling methods that will be able to predict the mechanical response 

of any RC structural member or structure. These research studies adopt the use of hexahedral elements 

that treat cracks through the use of the smeared crack approach and model rebars as embedded rod or 

beam finite elements. 

As it was concluded by Markou and Papadrakakis (2015), the computational complexity of such 
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detailed models makes their use impractical for simulation of real-scale RC structures. Additionally, 

the use of numerically unstable material models, such as the smeared crack approach in concrete 

(Markou and Papadrakakis, 2013), increases the numerical sensitivity to various user-defined 

parameters. Therefore, there is a need of developing a more robust and numerically efficient finite 

element modeling approach that will alleviate the abovementioned numerical limitations for 

simulating full-scale RC structures under ultimate limit state monotonic and cyclic conditions, without 

loses in-terms of accuracy and at the same time achieving computational efficiency. 

A mixed element formulation was reported in Formaggia et al. (2001), Urquiza et al. (2006) and 

Blanco et al. (2007), in an attempt to deal with the connection of plates and 3D solid elements, which 

was extended to the connection of shells and solid elements by Huang (2004). Nazarov (1996, 1999) 

and Kozlov and Maz’ya (2001) presented an asymptotic analysis for the coupling between a 3D elastic 

body and a dimensionally reduced structure. The coupling of models of different dimensionality, from 

a purely kinematical point of view, were explored in Formaggia et al. (2001), Urquiza et al. (2006) 

and Blanco et al. (2007). Blanco et al. (2008) presented a generalized approach on the kinematic 

coupling of incompatible elements. Mata et al. (2008) used two different FE models (3D solid and 1D 

beam elements), where the structure was initially discretized with beam elements and when predefined 

regions entered the nonlinear state, they were assumed prismatic and were discretized with 3D solid 

elements. Bournival et al. (2010a, 2010b) used mixed-dimensional FEA models for the simulation of 

steel structures, combining beam, shell and 3D solid finite elements. According to their research work, 

it was reported that they managed to reduce the computational effort at the expense of losing the 

accuracy across the interface of the incompatible finite elements. 

When dealing with the cyclic loading of RC structural members, the computational demand 

increases significantly, while there were no research publications in the international literature that 

attempt to implement any type of hybrid model for the prediction of the cyclic response of RC 

structures.  

The proposed HYMOD approach for modeling RC structures under ultimate limit cyclic loading 

requires minimal transformations for the coupling demands of line and 3D elements, maximizes the 

computational efficiency during the analysis, while maintaining an adequate accuracy in calculating 

the internal forces at the critical regions of the structure. In addition to that, the adopted concrete 

material model (Mourlas et al. 2017) requires the definition of a minimum number of material 

parameters so as to describe and simulate the nonlinear mechanical behavior of concrete under cyclic 

loading conditions, which significantly simplifies the procedure of material model definition. 

2.   Concrete Material Modeling 

Given that the HYMOD approach (Markou and Papadrakakis, 2015) considers two different types 

of FE simulations that their formulation is based on one- and three-dimensional models, two different 

material models are adopted herein. For the case of the 1D natural beam column flexibility-based 

(NBCFB) fiber element, the model foresees the discretization of each beam-column section through 

the use of fibers that have the ability to account for nonlinearities through the use of the bilinear model 

(see Fig. 1), while for all analyses performed in this research work the hardening modulus was set to 

zero.  

For the 3D simulation, the Kotsovos and Pavlovic (1995) material model is incorporated into the 

8-noded hexahedral elements for the nonlinear cyclic analysis of concrete structures (Mourlas et al. 

2017). Furthermore, a flexible crack closure criterion was integrated that induces numerical stability 

during the analysis. According to the cyclic concrete material model presented in (Mourlas et al. 2017), 

the smeared crack approach described in (Markou and Papadrakakis, 2013) is used to simulate the 

crack openings in the case of the 3D detailed model. This approach was first presented by Rashid 

(1968) and then implemented by Gonzalez-Vidosa et al. (1991). Smeared crack models take into 

consideration crack openings by modifying the stiffness matrices and stresses at the corresponding 

integration points (Fig. 2). This approach proceeds with the simulation of individual cracks without 

the need for remeshing, as it is required for the case of the discrete-crack approach, where a physical 
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gap is introduced in the FE mesh at the location of the crack. 

 
Figure 1. Bilinear model for cyclic analysis. 

 
Figure 2. Local axes for the case of two cracks at a specific Gauss point. (Markou and Papadrakakis, 2013) 

The Kotsovos and Pavlovic (1995) material model is described by the use of the bulk modulus, the 

shear modulus and an equivalent external stress σid. The bulk and the shear modulus describe the 

volume and the distortional changes in the material, while the stress σid takes into account the coupling 

effect between deviatoric stress and volumetric variation. For the mathematical description of the 

constitutive model, each state of stress and strain is decomposed into hydrostatic and deviatoric 

components. The hydrostatic and deviatoric octahedral expressions of stresses (σ0, τ0) and strains (ε0(h), 

ε0(d), γ0) are used in the constitutive relations (h and d stand for hydrostatic and deviatoric components, 

respectively). According to the above, the σid describes the coupling effect of τ0-ε0(d). The constitutive 

relations are presented below:  

0 0( ) 0( ) 0( ) / (3 )h d id sK         (1) 

0 0( ) 0 / (2 )d sG     (2) 

where, Ks and Gs are the secant forms of bulk and shear moduli, respectively. Analytical expressions 

of the secant modulus, shear modulus and σid are derived by regression analysis of the experimental 

data in Kotsovos and Pavlovic (1995). These material properties are expressed as functions of current 

state of stress (σ0, τ0, fc). 

By using the generalized form of Hooke’s law in the expression (Markou and Papadrakakis, 2015), 

the following formula derives (in order to define the strains in global coordinate directions):  

0( ) / (2 ) (3 / )( )ij ij id ij s s s id ijG v E            (3) 
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where, Es (σo, τo, fc) and νs (σo, τo, fc) are the secant Young’s modulus and Poisson’s ratio, respectively, 

derived from Ks and Gs by the following standard formulae of linear elasticity: 

(9 ) / (3 )s s s s sE K G K G   , (3 2 ) / (6 2 )s s s s sv K G K G    (4) 

The stress and strain increments are determined by using the tangent expressions of modulus Kt, 

Gt, Et, vt during the nonlinear iterative procedure and the hydrostatic correction σid.  

In the present work the unified total crack approach (UTCA) proposed by Lykidis and Spiliopoulos 

(2008) is adopted. The UTCA approach that was also implemented in Markou and Papadrakakis 

(2013, 2015), foresees that the state of crack formation or closure is treated in a unified way within 

every Newton-Raphson internal iteration.  

The numerical procedure is based on the brittle nature of concrete. Therefore, when the criterion of 

failure is satisfied, there is an abrupt loss of strength capacity of the concrete material point. The 

strength envelope of concrete is expressed by the value of the ultimate deviatoric stress by using the 

expressions of Willam and Warkne (1974): 

( )cos ( ) ( )cos

( )cos ( )

     


  

2 2 2 2 2 2 2 2

0c 0c 0e 0c 0e 0c 0c 0e 0e 0c 0e

0u 2 2 2 2

0c 0e 0e 0c

2 2 4 5 4

4 2

            


    
  (5) 

where, the rotational variable θ defines the deviatoric stress orientation on the octahedral plane. The 

τ0e (θ=0°) and τ0c (θ=60°) correspond to the state of σ1=σ2>σ3 (triaxial extension) and σ1>σ2=σ3 

(triaxial compression), respectively. The analytical expressions of τ0e and τ0c are derived from 

experimental data. It must be noted at this stage that, the tensile strength and the shear retention factor 

are variables of the material model that can be directly defined within the model, as described in 

Mourlas et al. (2017). 

The smeared crack approach treats cracking by redistributing the cracked stresses to the uncracked 

areas. Therefore, the model prevents the eccentric concentration of stress in the cracked areas, which 

may lead to numerical instabilities. Thus, when a crack is formed, the stresses are calculated through 

the following expression:  

1

2

31

0

0

0

0



 
 
 
 

  
 
 
 
 

Cr






    (6) 

where, T-1 is the inverse transformation matrix that is used to transform the principal stress axes to the 

initial x, y and z axes.  

Additionally, the proposed procedure uses a flexible crack closing criterion introduced in Mourlas 

et al. (2017), which is crucial in cyclic loading conditions. A numerical investigation presented in 

Mourlas et al. (2017), shows that during unloading conditions the strains, which are directed 

orthogonal to the crack plane, are getting much smaller than the value of strains that cause the crack 

formation. From a numerical point of view, this phenomenon is explained by the values of strains 

normal to the crack that are getting much lower than the values of strains causing the formation of 

cracking. Therefore, the proposed criterion for the closure of cracks (Mourlas et al. 2017) is expressed 

as follows: 

1 
  
 

cr
i cr

tot

n
b

n
   (7) 

where, εi is the current strain in the i-direction, which is normal to the crack plane and εcr is the strain 



 

5 

 

that caused the crack formation. Parameter b is the number of the imposed displacement branch of the 

load history (i.e. Fig. 3 shows 2 imposed displacement branches; equal to a half loading cycle), ncr and 

ntot are the numbers of increment that the crack is formed and the total number of increments that an 

imposed displacement branch is divided into, respectively. A schematic representation of the variables 

that are shown in Eq. 7, is illustrated through Fig. 3, which is an example of a half loading cycle. Each 

branch is divided into 40 displacement increments. The y-axis consists of the number of increments 

(where the dext. is the total external imposed displacement and the Δdincr is the imposed displacement 

of each incremental iteration), while the x-axis represents the number of loading cycles. 

Hence, when a crack is closed at the i-Newton-Raphson iteration, the elastic constitutive matrix Del 

is used to calculate the stresses of the previously cracked Gauss point by using the following 

expression: 
1 i i i

el
D    (8) 

The adopted constitutive behavior of the concrete material at a Gauss point for both cracked and 

uncracked states are described in the Mourlas et al. (2017). 

 

Figure 3. Schematic representation of b and ntot variables of Eq. 7, for a half loading cycle.  

3.   Modeling of Rebar Elements 

Reinforcement steel bars are modeled as embedded rod or beam elements within the 8-noded 

isoparametric hexahedral elements, as implemented by Markou and Papadrakakis (2015). The material 

of steel-reinforcement is modeled through the use of the Menegotto-Pinto (1973) model that takes into 

account the Bauschinger effect. The stress-strain relation takes the form: 

*
* *

* 1/

(1 )

(1 )


 

 R R

b
b


 


  (9) 

where, 
*

r 0 r( ) / ( ),        
*

r 0 r( ) / ( )        and 0 1 2R R a / ( )     . 

The parameter b is the strain hardening ratio between E0 and Εt, while ε0 and σ0 are the coordinates 

of the point where the asymptotes of the branch intersect and (εr, σr) are the coordinates of the point, 

where the last strain reversal with stress increment of equal sign takes place. The parameter R is a 

decreasing function of ξ, which is the strain difference between the current asymptote intersection 

point and the previous load reversal point with maximum or minimum strain, depending on whether 

the corresponding steel stress at reversal is positive or negative. Parameters R0, a1 and a2 are 

experimentally determined and assumed in this study to be 20, 18.5 and 0.15, respectively.  

4.   Hybrid Modeling Formulation - Kinematical Coupling of 1D and 3D Finite Elements 

According to the proposed HYMOD approach that was presented in Markou and Papadrakakis 

(2015), the method combines hexahedral and beam-column finite elements, where the coupling 

between them is achieved through kinematic constraints. The coupling between the two types of 
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elements (natural beam-column flexibility-based “NBCFB” and hexahedral “HEXA” finite elements) 

is performed with kinematic constraints, which are enforced at each hexahedral node, located at the 

interface between the beam and the solid elements, as follows: 

     3 1     3 6 6 1      

HEXA NBCFB

i im m
x x x

 u T u , 
(10) 

with  

 3 6

1 0 0 0

0 1 0 0

0 0 1 0

i m m i

im m i i m
x

i m m i

z z y y

z z x x

y y x x

  
 

  
 
   

T  (11) 

Therefore, Eq. 10 takes the following form; 

[

𝑢𝑖

𝑣𝑖

𝑤𝑖
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 (12) 

where NBCFB

mu  and HEXA

iu  are the displacement vectors of the NBCFB node corresponding to 6 dof and 

the hexahedral nodes (3 dof per node) at the interface, respectively. The subscript i of the global 

coordinates (x, y, z), refers to the hexahedral node ID located at the interface section 
1

i
 , while 

subscript m refers to the NBCFB elemental node ID that controls the displacements (master node) of 

the interface section 
1

i
  (see Fig. 4). The connection matrix imT is computed from the compatibility 

conditions of NBCFB and hexahedral nodal coordinates.  

 
Figure 4. Kinematic constraints imposed by the 1D structural member on the interface section 1

i
 . (Markou 

and Papadrakakis, 2015) 

If we assume that a hexahedral node is located at the interface of a NBCFB and hexahedral 

elements, it should follow the body movements of section
1

i
 , which are enforced by the NBCFB 

element nodal translational and rotational displacements (as shown in Fig. 4). Therefore, the 

computation of the new position for any point on the interface section 
1

i
  is obtained through a linear 
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transformation as follows: 

     

HEXA

24 1 24 18 18 1

hybrid

H
x x x

 U T U  (13) 

For computing the transformation matrix 
HT , the coordinates of the slave nodes that are controlled 

by the kinematic constraints and the xm, ym, zm coordinates of the corresponding master node are 

required. The transformation matrix 
HT  is used for the purpose of obtaining the 18x18 transformed 

stiffness matrix of any hybrid hexahedron, according to Eq. 14, while the nodal displacements of the 

slave nodes are computed according to Eq. 13.  

       

HEXA HEXA

18 18 18 24 24 24 24 18

T

H H H
x x x x

 K T K T  
(14) 

The calculation of the internal forces of the transformed hexahedral elements is performed as 

follows:  

     

HEXA

18 1 18 24 24 1

T

H H
x x x

 F T F  
(15) 

where 
HF  is the internal force vector of the transformed hexahedral element. More details on the 

kinematic constraints can be found in Markou and Papadrakakis (2015). 

5   Numerical Investigation and Discussion 

The numerical analysis results will be presented in this section for the case of three models that 

were selected for the purpose of this research work. The first is the Del Toro Rivera (1988) frame joint 

that is used herein to demonstrate the ability of the proposed HYMOD algorithm to capture accurately 

experimental results and how its accuracy is being affected when different HYMOD reduction levels 

are used. The other two models (1- and 2-storey RC frames) are used to demonstrate the computational 

efficiency of the proposed modeling approach in solving numerically demanding problems with 

significant shear nonlinearities and excessive cracking. It must be noted at this point that the nonlinear 

solution strategy used to perform the analyses discussed in this section, was the Newton-Raphson 

displacement control algorithm in connection to a work-based convergence criterion (Eq. 16). The 

general convergence tolerance that was used for all the numerical nonlinear analyses (where it is not 

stated) was 10-4 in order to achieve a high accuracy and induce additional stability during the cyclic 

nonlinear analysis. The CPU used to perform all the analyses presented in this work had a 3.7 GHz 

computing power. 

4

1
10

 






 



j t t t t

s s s

err t t t

s s s

u F R
e

u F R

 






 

(16) 

5.1   Del Toro Rivera RC Frame Joint 

Fig. 5 illustrates the schematic representation of the under study RC frame joint that was tested by 

Del Toro Rivera (1988). According to the experiment’s design, the uniaxial compressive concrete 

strength of the joint was fc = 40 MPa and the corresponding yielding stresses of the steel reinforcement 

were 570, 490, 440 and 554 MPa for the 10, 12, 14 and 20 mm diameter bars, respectively. The Young 

modulus of elasticity of the reinforcement steel was ES = 200 GPa, which was also the material 

parameter used in this numerical investigation. The strength under tension was set to 5% of the uniaxial 

compressive strength, while the shear retaining factor β was set equal to 0.05 in all numerical models. 

The under study interior frame joint was subjected to different cyclic loading conditions according 

to the experimental setup (Del Toro Rivera, 1988). The loading history is presented in the form of 

imposed displacements in Fig. 6. It is important to note here that the joint was also loaded with a 
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vertical load of 200 kN at the point of the applied displacement (see Fig. 5) so as to simulate the effect 

of the superstructure’s loads. Therefore, the stress state conditions that were developed within the joint 

region were highly complex given that a combination of normal and extreme shear strains were 

developed during the experimental test. This is also one of the main reasons why this experimental 

setup was selected in order to demonstrate the numerical and computational capabilities of the 

proposed algorithm in capturing experimental results under extreme cyclic loading conditions. 

 

 

Figure 5. Geometry and reinforcement details of the Del Toro Rivera (1988) beam column joint. All 

dimensions are in mm. 

 
Figure 6. Load history presented in the form of imposed displacements for Del Toro Rivera beam column 

joint. 

For the development of the numerical model, the concrete domain was discretized with 8-noded 

hexahedral finite elements and the steel reinforcement was discretized with the NBCFB and rod finite 

elements. The steel bars that had 12, 14 and 20 mm diameter were modeled through the use of beam 

elements and the steel bars that had 10 mm diameter were modeled through the use of rod finite 

elements. The frame joint was initially discretized with a total number of 76 concrete hexahedral finite 

elements (20cm x 20cm x 16cm) and 446 embedded steel elements were used so as to discretize the 

steel reinforcement, as shown in Fig. 7. After the development of the initial model that consisted of 

only hexahedral elements, the three HYMOD meshes were constructed accordingly (see Fig. 8).  

As it can be seen in Fig. 8, the HYMOD 1 mesh corresponds to the modeling of two thirds of the 

horizontal beams of the joint with the NBCFB element and the remaining joint is discretized with 
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HEXA elements (one NBCFB element was used for each structural beam member). The model was 

additionally reduced in HYMOD 2 so as to further study the performance and numerical stability of 

the proposed algorithm, in which half of the upper column is modeled by hexahedral elements and the 

other half by one NBCFB element. In the last mesh (model HYMOD 3), the same discretization 

concept that was implemented in HYMOD 2 was considered, where both vertical structural members 

of the specimen were reduced thus one NBCFB element was used to model the half of each column 

(upper and lower). Table 1 shows the FE mesh details as they resulted from the reduction of the initial 

hexahedral model. 

 

 

Figure 7. 2D and 3D views of the FE mesh of concrete elements and steel reinforcement embedded rebars. 

 
HYMOD 1. 

120cm 60cm 
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HYMOD 2. 

 

HYMOD 3. 

Figure 8. 2D and 3D views of the FE meshes of the three HYMOD models. 

According to the parametric investigation performed in Markou and Papadrakakis (2015), a length 

between h-2h, where h refers to the height of the section, was found to be adequate in order to 

determine the optimum plastic hinge length that has to be modeled with the hexahedral finite element. 

This rule was also applied herein for the case of the mesh of HYMOD 1, while for the other two 

meshes this rule is not valid, given that the two vertical structural elements foresee a plastic hinge 

length of 38 cm, which is equal to a 0.95h. Even though the minimum hinge length is not satisfied, the 

models were not modified in an attempt to further test the computational robustness and the numerical 

accuracy of the proposed algorithm. 

Table 1 FE mesh details of the frame joint model. 

a/a Model 
Hexahedral 

Elements 

Embedded 

Rebar Elements 

RC NBCFB 

Elements 

Total Number of 

Dof 

Dof Reduction 

(%) 

1 Full Hexa 76 446 - 686 - 

2 HYMOD 1 40 330 2 362 47 

3 HYMOD 2 36 296 3 305 56 

4 HYMOD 3 32 262 4 245 64 

Fig. 9 illustrates the comparison between the experimental and numerical results for the case of the 

Full Hexa model. The diagram shows the complete force-displacement history as it was computed 

from the nonlinear solution of 310 displacement increments. As it can be seen in Fig. 9 and Table 2, 

the numerical results match very well with the experimental ones, while the average magnitude of the 

difference between the numerical and experimental load data per cycle was found to be equal to 11%, 

for both negative and positive maximum displacements. Given that the derived curves are rather 

complicated and difficult to graphically compare, the numerically predicted curve (Full Hexa) will be 

used herein as the base of comparison with the corresponding HYMOD numerical results in order to 

graphically present the numerical performance of the proposed algorithm.  
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Figure 9. Frame Joint. Comparison between numerical and experimental results. Complete force-displacement 

history. 

 

Figure 4. Frame Joint. Comparison between Full Hexa and HYMOD 1 numerical results. Complete force-

displacement history. 
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Figure 5. Frame Joint. Comparison between Full Hexa and HYMOD 2 numerical results. Complete force-

displacement history. 

 

Figure 6. Frame Joint. Comparison between Full Hexa and HYMOD 3 numerical results. Complete force-

displacement history. 
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Figs. 10-12, depict the complete force-displacement history of the three hybrid models, where the 

numerical results are compared with the response predicted by the Full Hexa model. As it can be seen 

from the three diagrams, the HYMOD models manage to capture the cyclic response with an adequate 

accuracy with regards to the full model. HYMOD 2 was found to be the model that had the closest 

numerical response with almost similar hysteretic loops with the ones obtained from the full model 

(see Fig. 11), while the HYMOD 3 managed to attain the closest maximum load (169.9 kN) to the one 

obtained from the Full Hexa model (177.75 kN). According to Tables 3 and 4, the horizontal load of 

each cycle of the numerical model HYMOD 2 was found to derive almost identical response with the 

one that was obtained from the Full Hexa model (Table 2).  

Table 2 Full Hexa numerical results. Comparison of the horizontal load for each cycle. 

Loading 

Cycle 

Horizontal Load 

Experimental (kN) 

Horizontal Load Predicted 

Full Hexa (kN) 

Difference from experimental 

Full Hexa 

Positive Negative Positive Negative Positive (%) Negative (%) 

1st  158 -142 177 -165 12.03 16.20 

2nd 146 -126 125 -146 14.38 15.87 

3rd 130 -124 118 -139 9.23 12.10 

4th 164 -154 144 -178 12.20 15.58 

5th 164 -154 141 -155 14.02 0.65 

6th 149 -137 143 -139 4.03 1.46 

    Average 10.98 10.31 

Table 3 HYMOD 1 and 2 numerical results. Comparison of the horizontal load for each cycle. 

Loadin

g Cycle 

Horizontal Load 

HYMOD 1 (kN) 

Horizontal Load 

HYMOD 2 (kN) 

Difference from Full Hexa-

HYMOD 1 

Difference from Full Hexa-

HYMOD 2 

Positive Negative Positive Negative Positive (%) Negative (%) Positive (%) Negative (%) 

1st  167.93 -171.22 190.93 -164.09 5.12 3.77 7.87 0.55 

2nd  132.85 -134.55 124.30 -142.39 6.28 7.84 0.56 2.47 

3rd  105.82 -133.46 119.00 -128.00 10.32 3.98 0.85 7.91 

4th  134.00 -166.69 156.82 -180.18 6.94 6.36 8.90 1.23 

5th  111.50 -165.08 137.46 -141.65 20.92 6.51 2.51 8.61 

6th  120.73 -141.71 148.11 -134.69 15.58 1.95 3.57 3.10 

    Average 10.86 5.07 4.05 3.98 

Table 4 HYMOD 3 numerical results. Comparison of the horizontal load for each cycle. 

Loading 

Cycle 

Horizontal Load Predicted 

HYMOD 3 (kN) 

Difference from 

Full Hexa-HYMOD 3 

Positive Negative Positive (%) Negative (%) 

1st 169.90 -152.62 4.01 7.50 

2nd 119.71 -132.87 4.23 9.00 

3rd 115.94 -145.57 1.75 4.72 

4th 137.63 -147.94 4.42 16.89 

5th 126.84 -142.82 10.04 7.86 

6th 116.15 -157.40 18.78 13.24 

  Average 7.21 9.87 

In order to further compare the numerically obtained results, Figs. 13 and 14 are shown herein, 

where the von Mises strain contours for the displacement increment in the first and sixth loading cycles 

can be depicted, respectively. Fig. 13 illustrates the von Mises strain contours for the case of load 

increments 10 and 30. It must be stated here that, each displacement cycle was divided into 10 
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displacement increments, therefore, for each imposed loading cycle the algorithm had to solve 40 

displacement increments. The imposed maximum displacements at the tip of the column for the 1st 

cycle were +13 mm and -13 mm, respectively, along the x-axis. The von Mises contours illustrate the 

ability of the three HYMODs to capture the strain state within the solid joint without any numerical 

problems. It is also notable that the HYMODs developed a higher strain concentration within the 

hexahedral domain when compared to the contour obtained from the full Hexa model. As explained 

by Markou and Papadrakakis (2015), this numerical phenomenon is attributed to the stiffness 

difference between the NBCFB and hexahedral elements, where the beam FE is stiffer in this case 

forcing the more flexible domain that is discretized with hexahedrons, to develop higher strains. 

Nevertheless, the proposed algorithm manages to capture the overall behavior in a robust and accurate 

manner. In addition to that, the three HYMODs gave an almost identical von Mises strain contours. 

 
Figure 7. Frame Joint. von Mises strain contour at displacement increment 10 and 30 (1st cycle of loading). 

Maximum x-axis displacement: ±13 mm. 

. 
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Figure 8. Frame Joint. Von Mises strain contour at displacement increments 210 and 230 (6th cycle of 

loading). Maximum x-axis displacement: ±39 mm. 

Fig. 14 illustrates the von Mises strain contours that were obtained from the four models, for the 

displacement increments 210 and 230. In this case, it is easy to observe that the deformation shape of 

the four models is the same, while the von Mises strain contours are more disturbed when it comes to 

this extreme deformation stage. At this point, the specimen has undergone 6 complete cycles, where 

it has already developed significant cracking. Therefore, the nonlinear analysis algorithm has updated 

the stiffness matrix several times at this stage, while the crack opening and closing was performed 

hundreds of times within the joint area at the Gauss points located within this domain. The numerical 

differences that were observed in the obtained results that derived from the HYMOD meshes are 

mainly attributed to the use of the NBCFB element within the HYMOD mesh that induces additional 

stiffness in the numerical models that force the domains that are discretized with hexahedral FEs to 



 

16 

 

develop larger deformations. Nevertheless, this numerical phenomenon does not affect significantly 

the overall accuracy of the under study modeling method. 

Table 5 Computational performance of the four frame joint models. 

a/a Model 

Num. of 

Displ. 

Incr. 

Total 

Internal 

Iter. 

Average 

Numerical 

Error 

CPU Time 

Nonlinear 

Solution 

(sec) 

Reduction in 

CPU 

Nonlinear 

Solution  

(%) 

Reduction 

of Overall 

CPU Time  

(%) 

1 Full Hexa 310 1052 1.94x10-5 11.5 - - 

2 HYMOD 1 310 856 6.77x10-6 5.9 48.7 35.22 

3 HYMOD 2 310 827 8.00x10-6 5.3 53.91 41.09 

4 HYMOD 3 310 787 7.51x10-6 5.2 54.78 48.67 

Table 5 shows the CPU times required to solve the nonlinear numerical problems of the four 

numerical models. It is evident that the HYMODs exhibit a numerical stability that decreases the 

required internal iterations per displacement increment. HYMOD 3 required a total of 787 internal 

iterations to achieve convergence during the 310 displacement increments, while the Full Hexa model 

required 1,052 internal iterations. The HYMODs 1 and 2 required 856 and 827 internal iterations, 

respectively. The reduction regarding the CPU time required to solve the nonlinear problem, was 

found to be proportional to the reduction of the dofs in each model. This underlines the numerical 

advantage in terms of computational stability, when the HYMOD is deployed, even in the case of 

extreme cyclic loading conditions where the stress-strain fields are highly complex thus derive 

increased numerical stability demands. 

In order to investigate the mesh sensitivity of the proposed algorithm, two denser meshes were used 

for the discretization of the frame joint. Fig. 15 shows the meshes that were constructed and their 

corresponding HYMODs that were used so as to study the numerical response in terms of mesh 

sensitivity of the HYMOD algorithm. As it can be seen in this figure, only the first level (Markou and 

Papadrakakis, 2015) of reduction (HYMOD 1) was performed in order to reduce the required number 

of analyses that will be presented herein without losing the objectivity of the performed parametric 

investigation. Table 6 shows the FE mesh details of the four refined models that were constructed for 

the mesh sensitivity analysis. As it can be seen, the overall dof reduction that derived, after the level 

1 reduction scheme implementation, was approximately 48% in both refined models. 

Table 6 FE mesh details of the frame joint model used for the mesh sensitivity analysis. 

a/a Model 
Hexahedral 

Elements 

Embedded 

Rebar 

Elements 

RC 

NBCFB 

Elements 

Total 

Number of 

Dof 

Dof Reduction 

(%) 

1 Full Hexa 1 152 710 - 1,298 - 

2 HYMOD 1.1 80 454 2 674 48.07 

3 Full Hexa 2 304 910 - 1,955 - 

4 HYMOD 2.1 160 598 2 1,001 48.80 

 

 

Full Hexa 1. 
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HYMOD 1.1. 

 

Full Hexa 2. 

 

HYMOD 1.2. 

Figure 9. 2D and 3D views of the FE mesh of the concrete elements used during the mesh sensitivity analysis. 

Figs. 16-19 show the comparison between the experimental results and the four refined models 

presented in Fig. 15 and Table 6. It can be seen that all models managed to capture the experimental 

results thus the accuracy of the proposed algorithm is not affected by the mesh refinement in this case. 

Tables 7 and 8 show that the Full Hexa1, Full Hexa2 and HYMOD 1.2 managed to obtain almost 

similar response in terms of the horizontal load with very good agreement with the experimental ones 

(<10% deviation from the experimental values). The horizontal loads derived from HYMOD 1.1 

present the biggest discrepancy of all the models (20%) compared to the experimental results. The 

numerical curves in Fig. 17 show that during the cycles 4, 5 and 6 (in which the imposed displacement 

has the biggest value during the experiment) the structural member of HYMOD 1.1 derives a more 

flexible response than the experimental one, where the derived prediction was in favor of safety. 

Furthermore, this discrepancy is not noted when using a denser mesh (see HYMOD 1.2), where the 

proposed algorithm manages to maintain its ability in predicting the overall mechanical behavior of 

the understudy experiment. From the above overall results, it is evident that the proposed modeling 

approach manages to capture the experimental results through the use of 8 different meshes, when 

dealing with a highly nonlinear cyclic loading problem. This numerical finding demonstrates the 
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numerical robustness of the proposed modeling approach. 

 
Figure 10. Frame Joint. Comparison between experiment and Full Hexa 1. Complete force-displacement 

history. 

 
Figure 17. Frame Joint. Comparison between experiment and HYMOD 1.1. Complete force-displacement 

history. 
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Figure 18. Frame Joint. Comparison between experiment and Full Hexa 2. Complete force-displacement 

history. 

 
Figure 19. Frame Joint. Comparison between experiment and HYMOD 1.2. Complete force-displacement 

history. 
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Figure 20. Frame Joint. Von Mises strain contour at load step 10 and 30 (1st cycle of loading) for the 

refined meshes. Maximum x-axis displacement: ±13 mm. 

Table 7 Full Hexa 1 and HYMOD 1.1 numerical results. Comparison of the horizontal load for each cycle. 

Loading 

Cycle 

Horizontal Load 

Full Hexa1 (kN) 

Horizontal Load 

HYMOD 1.1 (kN) 

Difference from 

experimental-Full Hexa 1 

Difference from experimental-

HYMOD 1.1 

Positive Negative Positive Negative Positive (%) Negative (%) Positive (%) Negative (%) 

1st  161.04 -141.20 168.24 -110.95 1.93 0.56 6.48 21.87 

2nd  134.86 -115.62 104.43 -97.18 7.63 8.24 28.47 22.88 

3rd  119.01 -108.37 101.88 -98.12 8.45 12.61 21.63 20.87 

4th  155.09 -145.31 132.94 -122.95 5.43 5.64 18.94 20.16 

5th  154.88 -127.37 124.70 -111.39 5.56 17.29 23.97 27.67 

6th  148.66 -126.97 125.91 -111.02 0.23 7.32 15.50 18.96 

    Average 4.87 8.61 19.16 22.07 
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Table 8 Full Hexa 2 and HYMOD 1.2 numerical results. Comparison of the horizontal load for each cycle. 

Loading 

Cycle 

Horizontal Load 

Full Hexa 2 (kN) 

Horizontal Load 

HYMOD 1.2 (kN) 

Difference from 

experimental-Full Hexa 2 

Difference from 

experimental-HYMOD 1.2 

Positive Negative Positive Negative Positive (%) 
Negative 

(%) 

Positive 

(%) 

Negative 

(%) 

1st  166.04 -144.75 172.62 -143.48 5.09 1.94 9.25 1.04 

2nd  138.76 -132.54 135.11 -137.54 4.96 5.19 7.46 9.16 

3rd  131.36 -130.68 131.76 -133.42 1.04 5.38 1.35 7.60 

4th  160.39 -159.12 159.07 -165.03 2.20 3.33 3.00 7.16 

5th  154.20 -157.33 152.84 -160.80 5.98 2.16 6.80 4.41 

6th  151.70 -155.10 152.19 -158.91 1.81 13.21 2.14 15.99 

    Average 3.51 5.20 5.00 7.56 

For the case of the von Mises strain contours, Fig. 20 illustrates the numerically derived results for 

the case of the first cycle, when the four refined models are used to analyze the mechanical behavior 

of the joint. As it can be observed, the same pattern has resulted, as it was discussed for the case of the 

initial model meshes, thus the numerically predicted strains are not significantly affected by the mesh 

refinement. The displacement increment used for the solution of the two first models was 40 per 

loading cycle, while for the case of the models 3 and 4 an 80 displacement increments per cycle was 

implemented so as to avoid any numerical instabilities due to the finer meshes and the increased 

number of cracks within the joint domain. It must be noted at this point that using very small in size 

elements will lead to very dense meshes that will require larger computational times, while lose their 

practicality in modeling full-scale RC structures due to excessive computational demands. For this 

reason, a further mesh refinement was deemed unnecessary to be performed and further investigated 

herein. 

5.2   One-Storey RC Frame with a Shear Wall 

In this section, the numerical results of a parametric investigation related to the numerical efficiency 

of the proposed simulation method will be presented for an one-storey RC frame based on the 

experimental setup of the SERFIN project (Martin et al., 2013). This project deals with the 

construction of a full-scale four-storey RC building with 25x40cm columns and the retrofit of the 

middle openings through the use of infill shear walls. Fig. 21 shows the south face of the four-storey 

RC building that was tested for cyclic loading during the SERFIN project, while the part of the 

structure that was used to be modeled herein is shown within the framed region of Fig. 21 (see 

rectangle with dashed line). 

Table 9 One-storey frame. Material details. 

Material 
Young Modulus 

(GPa) 

Hardening 

Modulus (GPa) 

Yielding 

Stress (MPa) 

Compressive 

Strength (MPa) 

Poisson 

Ratio 

Concrete 30 - - 20 0.2 

Steel 200 2.0 400 - 0.3 

The main objective in this section is to study the numerical behavior of the proposed modeling 

approach, whereas the full cyclic modeling of the building will not be presented at this stage. This is 

a research work that will be presented in a future publication. Therefore, the material properties that 

are shown in Table 9, are based on the properties reported in (Martin et al., 2013), while the geometry 

of the RC frame shown in Fig. 22 is according to the specimen’s geometrical details found in the 

project’s report. The reinforcement details of the sections used to construct the model shown in Fig. 

23, can be depicted in Fig. 22. It must be also noted at this point that, the foundation of the frame was 

reinforced with 16 mm in diameter bars every 25 cm (bottom and top of the foundation in both 

directions), while 12 mm stirrups were used to further increase the strength of the foundation. A 3D 
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representation of the reinforcement grid of the foundation and the rest of the structural members used 

in the considered model can be seen in Fig. 24. In regards to the concrete cover, all structural members 

foresaw the use of 20 mm nominal concrete cover. 

 
Figure 11. South face of the SERFIN four-storey RC building. (Martin et al., 2013) 

 

 
 

Figure 12. One-storey frame. Geometric (cm) and reinforcement details (Ømm/cm). 



 

23 

 

 
Figure 13. One-storey frame. 3D HYMOD FE mesh. 

 
Figure 14. One-storey frame. 3D HYMOD FE mesh of the reinforcement rebar elements. 

 
Figure 15. Load history presented in the form of imposed displacements for the one-storey RC frame. 
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Table 10 FE mesh details of the one-storey RC frame model. 

a/a Model 
Hexahedral 

Elements 

Embedded Rebar 

Elements 

RC NBCFB 

Elements 

Total Number 

of Dofs 

1 HYMOD 750 2,594 2 3,474 

Figs. 23 and 24 show the FE mesh that was developed for the needs of this numerical investigation. 

The HYMOD modeling consists of a detailed mesh (hexahedral elements) for the shear dominated 

structural members (shear wall and structural joints), while the flexural dominated structural members 

(beams and columns) are simulated by beam elements (reduction level 1, see Markou and 

Papadrakakis, 2015). The hinge lengths that were used in this model were 50 and 60 cm for the column 

and beam, respectively. As it can be seen in Figs. 22-24, three points were selected along the beam as 

the points through which the displacement history was imposed simultaneously, in order to simulate 

the cyclic loading conditions. The embedded rebar elements were all modeled as beam elements so as 

to incorporate maximum computational demand. Table 10 shows the details of the developed 

HYMOD model. 

The displacement history that was selected for the needs of this numerical investigation is presented 

in Fig. 25, where it can be noted that the cyclic displacement history foresees 7 complete cycles, while 

at the end of the analysis the frame is pushed until a total horizontal displacement of 100 mm. The 

displacement history diagram in Fig. 25, was developed by using 120 displacement increments per 

cycle. The displacement increment is also going to be investigated numerically and the corresponding 

findings will be presented below. 

 

Figure 16. One-storey RC frame. Comparison between different displacement increments with a convergence 

tolerance 10-3. Complete force-displacement history. 

In the first set of analysis the number of displacement increments per loading cycle were 40, 80 and 

120, where the convergence tolerance was set to 10-3. As it derived, the two first models with 40 and 

80 displacement increments per cycle did not manage to capture the complete displacement history 

thus failed to converge near the maximum positive displacement magnitude of 24 mm. This is 

attributed to the loose convergence tolerance at each nonlinear iteration, which was not sufficient to 

ensure a stable solution, thus the nonlinear analysis reaches to a point where it diverges. On the other 

hand, when a smaller displacement increment is used, the algorithm manages with the same 
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convergence tolerance, to converge for all 870 displacement increments, as it is shown in Fig. 26. A 

stricter convergence tolerance of 10-4 led to an improved performance of the 80 displacement 

increments model, but not of the 40 increments one as is shown in Fig. 27. This numerical finding is 

attributed to the fact that when using a larger displacement increment, the crack openings within a 

single step increase significantly, hence can lead to numerical instabilities during the cyclic solution 

procedure. 

 
Figure 27. One-storey RC frame. Comparison between different displacement increments with a convergence 

tolerance 10-4. Complete force-displacement history. 

Fig. 28 illustrates the crack patterns for different displacement increments, where the opening and 

closing of cracks can be seen. It can be observed that the shear wall develops tensile cracks due to the 

bending moment at the base (output set 1), while diagonal cracks appear at output set 10 (δ = 6 mm) 

due to shear deformations at the middle of the shear wall. Thereafter, the frame is forced to return to 

its initial position (output set 20), while cracks start to close from output sets 18 and 19. When the 

frame is forced to deform along the positive x-axis, cracks develop due to the inverse bending moment 

and shear deformation that force the structure in developing horizontal and diagonal cracking in a 

mirrored pattern (see output set 27 in Fig. 28). It must be noted here that the tensile rebars of the beam 

and shear wall yield when the horizontal displacement during the 2nd loading cycle is larger than 10 

mm, a deformation stage where excessive material nonlinearities occur. This numerical response 

causes the frame to develop large hysteretic loops for the remaining loading cycles, as depicted in 

Figs. 26 and 27. 

Table 11 shows the computational time as it resulted from each analysis, where it can be seen that 

even in the case of analysis 5, for which a total of 2,285 internal iterations were performed, the total 

nonlinear analysis time was just 271 seconds with an average error of 7.05x10-5.  

Table 11 One-storey RC frame. Computational performance of the five analyses. 

a/a Model 

Num. of 

Displ. Incr. 

per cycle 

Conv. 

Toler. 

Total 

Displ Incr. 

Solved 

Total 

Internal 

Iter. 

Average 

Numerical 

Error 

CPU Time 

Nonlinear Solution 

(sec) 

1 HYMOD 40 10-3 50 283 9.46x10-4 33 

2 HYMOD 80 10-3 92 489 1.04x10-3 58 

3 HYMOD 120 10-3 870 2,160 5.31x10-4 259 

4 HYMOD 40 10-4 50 414 2.00 x10-4 46 

5 HYMOD 80 10-4 575 2,285 7.05x10-5 271 
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Figure 28. One-storey RC frame. Opening and closing of cracks during the first loading cycle for the first 

model (40 displacement increments per loading cycle). 

5.3   Two-storey RC Frame with Shear Wall 

The third model, which is shown in Fig. 29, is a two-storey RC frame which was constructed by 

adding an extra floor on the model studied in the previous section. The reinforcement details were kept 

the same for all structural members, as well as the displacement history that was applied to the top 

beam (Figs. 29 and 30). The main goal of this numerical investigation is to illustrate the ability of the 

algorithm to solve larger nonlinear numerical problems with the same efficiency and numerical 

robustness. Furthermore, the HYMOD’s limitations in terms of maintaining its accuracy are also 

investigated herein. 

Table 12 shows the FE mesh details of the new models constructed so as to study the proposed 

numerical model through the simulation of the two-storey RC frame (Fig. 30). The three models 

investigated were thr: Full Hexa FE mesh with 1,506 hexahedral elements, HYMOD 1 with 1,350 

hexahedral elements and the HYMOD 2, with 1,160 hexahedral elements. The corresponding number 

of the embedded rebar elements that were used to model the reinforcement were 4,544, 5,134 and 

3,348 for the Full Hexa, HYMOD 1 and HYMOD 2 models, respectively (see Table 12). The reduction 

of the total number of dofs for HYMOD 1 and 2 were 13.96% and 26.54%, respectively. In order to 
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intensify the computational demand of this numerical problem, the convergence tolerance was set to 

10-5, where nine analyses were performed for the needs of this numerical investigation. 

 

Figure 29. Two-storey RC frame. Geometric details. 

 
a. 

 
b. 

 
c. 

Figure 30. Two-storey RC frame. FE meshes of a. Full Hexa, b. HYMOD 1 and c. HYMOD 2 models. 

Table 12 FE mesh details of the 1-storey RC frame model. 

a/a Model 
Hexahedral 

Elements 

Embedded Rebar 

Elements 

RC NBCFB 

Elements 

Total Number 

of Dofs 

Dof Reduction 

(%) 

1 Full Hexa 1,506 4,544 - 7,392 - 

2 HYMOD 1 1,350 4,134 4 6,360 13.96 

3 HYMOD 2 1,160 3,348 4 5,430 26.54 

Fig. 31 shows the force-displacement history as it resulted from the six analyses (Full Hexa and 

HYMOD 1 meshes) that were performed by using a constant convergence tolerance of 10-5 and three 

different displacement increments (40, 80 and 120 displacement increments per loading cycle). It is 

interesting to note here that for the case of the two-storey RC frame, all three cases (contrary to the 

obtained results in the one-storey test example), managed to provide with the complete solution. This 

finding is attributed to the fact that the structure in the case of the two-storey RC frame is taller, 

therefore, the shear deformation is smaller, while at the same time the crack openings that were 

computed were less (given that the same displacement history was applied in both models, one- and 

two-storey RC frames; therefore, the shortest structure is expected to develop a larger shear 

deformation and higher crack openings). The comparison between the resulted force-displacement 

hysteretic loops of HYMOD 1 and the Full Hexa models, as it is shown in Fig. 31, revealed that the 

two models derived almost identical curves, illustrating once more the robustness of the proposed 

modeling approach. 
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Figure 17. Two-storey RC frame. Comparison between HYMOD 1 and Full Hexa for different displacement 

increments with a convergence tolerance 10-5. Complete force-displacement history. 

 

Figure 18. Two-storey RC frame. Comparison between HYMOD 2 and Full Hexa for different displacement 

increments with a convergence tolerance 10-5. Complete force-displacement history. 
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strength is observed as a result of the deterioration of the concrete material that can lead to the decrease 

of the overall strength. Furthermore, it can also be seen here that the HYMOD 1 mesh provides the 

required numerical accuracy and robustness in overcoming this numerical phenomenon, whereas all 

three HYMOD 1 analyses presented in Fig. 31 are almost identical to the Full Hexa model that uses 

the two displacement increments of 80 and 120 displacement increments per loading cycle. 

Fig. 32 depicts the force-displacement curves that resulted from the Full Hexa and the HYMOD 2 

models. It is evident that the HYMOD 2 mesh derives a stiffer behavior at the initial cycles of the 

loading history, obtaining a maximum base shear of 761 kN, which is 19% larger than the 

corresponding value that was computed by the Full Hexa and HYMOD 1 models. This numerical 

finding is attributed to the stiffer NBCFB FEs that do not take into account the full magnitude of 

nonlinearities that occur at the beam-column joint and at the base of the column. After the first 4 

loading cycles are solved (where the HYMOD 2 demonstrates a stiffer behavior) the curve manages 

to capture the Full Hexa curve with a 9.7% accuracy highlighting the ability of the method to maintain 

an acceptable accuracy, even in the case of high mesh reduction levels.  

 
Figure 19. 2-storey RC frame. Opening and closing of cracks during the 1st loading cycle for the first model 

(40 displacement increments per loading cycle). 
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Furthermore, for the case of this numerical investigation, it was found that the crack opening and 

closing algorithm managed once more to successfully capture this numerically demanding and 

unstable process providing the additional numerical stability that is required to solve this highly 

nonlinear numerical problem. Fig. 33 shows the opening and closing of cracks for the 1st loading cycle 

of the two-storey RC frame as it resulted from the analysis. It is evident that in the case of the two-

storey RC frame the number of crack openings is significantly lower than that predicted in the one-

storey RC frame by HYMOD 1, especially in the case of displacement increment 1 (Fig. 28). This 

justifies the previous conclusion in regards to the main reason why HYMOD 1 for the one-storey RC 

frame did not manage to attain the complete displacement history when the displacement increments 

per loading cycle was set to 40. 

Table 13 Two-storey RC frame. Computational performance of the three analyses. 

a/a Model 

Num. of 

Displ. 

Incr. per 

cycle 

Total Displ 

Incr. 

Solved 

Total 

Internal 

Iter. 

Average 

Num. 

Error 

CPU Time 

Nonlinear 

Solution 

(minutes) 

Reduction in 

CPU Nonlinear 

Solution  

(%) 

1 Full Hexa 40 290 2,313 2.07x10-5 9.6 - 

2 Full Hexa 80 580 3,975 1.11x10-5 16.1 - 

3 Full Hexa 120 870 5,451 9.45x10-6 22.75 - 

4 HYMOD 1 40 286 2,118 1.546x10-5 7.3 23.63 

5 HYMOD 1 80 580 3,821 9.39x10-6 14.3 11.18 

6 HYMOD 1 120 870 5,136 7.31x10-6 19.5 14.29 

7 HYMOD 2 40 290 2,092 1.32 x10-5 5.47 43.03 

8 HYMOD 2 80 580 3,733 9.51 x10-6 9.6 40.37 

9 HYMOD 2 120 870 4,990 7.98x10-6 13.1 42.42 

Table 13 shows the computational performance data obtained from the nine analyses. The 

computed average numerical error per internal iteration, for the case of the Full Hexa model, was 

found to be lower than 2.1x10-5, while the HYMOD 1 managed to result an average numerical error 

per iteration that was less than 1.6x10-5. The same trend resulted for the case of the HYMOD 2 model, 

which was the most computationally efficient model. This is also evident from the computed average 

number of internal iterations per displacement increment, which was always smaller in the case of the 

HYMOD 1 and 2, in comparison to the full Hexa model. The proposed HYMOD model managed to 

maintain a low internal iteration per displacement increment (average: 7.4, 6.6 and 5.9 for the 

HYMOD 1 mesh with 40, 80 and 120 displacement increments, respectively), while the maximum 

required computational time for HYMOD 1 was 19.5 minutes for the solution of 5,136 internal 

iterations. The corresponding performance for the case of HYMOD 2 model was 7.2, 6.4 and 5.7 

average internal iterations per displacement increment and a 0.156 seconds overall average required 

computational solution time per internal iteration. The overall average for the case of the HYMOD 1 

model was 0.223 seconds per internal iteration. On the other hand, the Full Hexa models had an 

average internal iteration per displacement increment equal to 7.96, 6.85 and 6.27 for the case of 40, 

80 and 120 displacement increments per loading cycle, respectively. The corresponding average 

computational time per internal iteration was 0.248 seconds, which is 10% slower compared to the 

HYMOD 1 and 37.1% slower than the HYMOD 2.  

The above numerical finding is attributed to the decreased number of hexahedral elements, the 

decrease of the required internal iterations per displacement increment and the lower number of 

embedded rebars, when the proposed HYMOD approach is implemented. In general, the overall 

decrease in the computational time is equal or larger than the decrease of the dof achieved according 

to the reduction of the full hexahedral mesh. Furthermore, the numerical model HYMOD 2 manages 

to reduce the nonlinear solution time by 42%, which corresponds to a 158% increase in the expected 

computational gain by just applying a corresponding dof decrease of a mere 26.54%. This 

demonstrates the computational efficiency boost that the nonlinear cyclic solution procedure can 

develop when the HYMOD approach is applied. 
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6.   Conclusions  

The hybrid finite element modeling approach presented in this work for the nonlinear simulation 

of RC structures under cyclic loading conditions, is a compromise between a detailed finite element 

model and the simplified beam-type model (Markou and Papadrakakis, 2015). In order to decrease the 

computational demand during a cyclic nonlinear analysis of a RC structure, without decreasing the 

level of numerical accuracy, the use of the HYMOD approach is adopted herein that foresees the use 

of the detailed modeling with hexahedral elements for discretizing the concrete domain and embedded 

rebar elements for the reinforcement, which is used to discretize the parts of the structure that undergo 

shear dominated deformations, while the rest of the structural members are discretized through the use 

of beam-column finite elements. The HYMOD approach was integrated for the needs of this research 

work with the cyclic material model proposed by Mourlas et al. 2017. 

The numerical investigation performed in a number of FE models revealed the ability of the 

proposed HYMOD approach to accurately predict the nonlinear response of RC structural members 

under cyclic loading conditions, with a reduced computational effort. The proposed formulation was 

found to be computationally robust since it does not require any special algorithmic procedure for its 

implementation. The integration of the HYMOD algorithm with the cyclic concrete material model 

further fortified the numerical method with additional numerical stability, which is essential when the 

cracks begin to open and close (Mourlas et al., 2017). The numerical results revealed that the proposed 

simulation manages to retain a low ratio of internal iterations per displacement increment thus further 

reducing the computational demand of the nonlinear analysis. Furthermore, the mesh sensitivity 

investigation presented in section 5.1 revealed that the proposed modeling approach manages to 

maintain its accuracy and ability in capturing the mechanical behavior of RC structural members that 

are tested under cyclic loading conditions for cases where the mesh size is modified within a 

recommended margin of 10 to 25 cm. Additionally, it was concluded that the proposed method’s 

numerical ability to capture the experimental data, is not significantly affected when different 

reduction levels are implemented.  

By accounting the numerical findings obtained in sections 5.2 and 5.3 of this research work, it is 

safe to conclude that the proposed numerical simulation method can provide with the ability to study 

the cyclic nonlinear simulation of full-scale RC structures, thus this cumbersome numerical modeling 

problem is now feasible. Therefore, this simulation task can now be achieved at an affordable 

computational effort without the need of powerful computational resources, while maintaining at the 

same time the desired accuracy during the cyclic nonlinear analysis.  
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