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Abstract 

Large-scale genome-wide association studies (GWAS) have identified approximately 35 loci 
associated with epithelial ovarian cancer (EOC) risk. The majority of GWAS-identified disease 
susceptibility variants are located in noncoding regions, and causal genes underlying these 
associations remain largely unknown. Here, we performed a transcriptome-wide association 
study to search for novel genetic loci and plausible causal genes at known GWAS loci. We 
used RNA sequencing data (68 normal ovarian tissue samples from 68 individuals and 6,124 
cross-tissue samples from 369 individuals) and high-density genotyping data from European 
descendants of the Genotype-Tissue Expression (GTEx V6) project to build ovarian and 
cross-tissue models of genetically regulated expression using elastic net methods. We 
evaluated 17,121 genes for their cis-predicted gene expression in relation to EOC risk using 
summary statistics data from GWAS of 97,898 women, including 29,396 EOC cases. With a 
Bonferroni-corrected significance level of P < 2.2 × 10−6, we identified 35 genes, including 
FZD4 at 11q14.2 (Z = 5.08, P = 3.83 × 10−7, the cross-tissue model; 1 Mb away from any 
GWAS-identified EOC risk variant), a potential novel locus for EOC risk. All other 34 
significantly associated genes were located within 1 Mb of known GWAS-identified loci, 
including 23 genes at 6 loci not previously linked to EOC risk. Upon conditioning on nearby 
known EOC GWAS-identified variants, the associations for 31 genes disappeared and three 
genes remained (P < 1.47 × 10−3). These data identify one novel locus (FZD4) and 34 genes at 
13 known EOC risk loci associated with EOC risk, providing new insights into EOC 
carcinogenesis. 

Significance: Transcriptomic analysis of a large cohort confirms earlier GWAS loci and 
reveals FZD4 as a novel locus associated with EOC risk.  

Introduction 

Epithelial ovarian cancer (EOC) has a substantial heritable component with a heritability 
estimated to be 22% (1). Genome-wide association studies (GWAS) have identified 
approximately 35 loci associated with EOC risk (2–12). Most reported associations are 
specific to the most common histologic subtype, serous EOC (2–7, 9–12). Together, known 
GWAS-identified variants account for approximately 6.4% of EOC risk in the general 
population (12), indicating that additional susceptibility variants remain to be identified. In 
addition, genes that underlie the large majority of GWAS-identified risk loci remain 
unknown; most GWAS-identified variants are located in noncoding genomic regions that 
may be involved in regulation of gene expression. Recent mechanistic studies have 
demonstrated that GWAS-identified variants are more frequently located in active 
chromatin regions, and highly-enriched with expression quantitative trait loci (eQTL; refs. 
13, 14). This evidence underscores the importance of transcriptional regulation in 
influencing human traits and disease susceptibility. 

Prior studies on genetically regulated gene expression were largely limited to easily 
accessible sources, such as adipose tissue and peripheral blood cells (15). Although the 
sample size in eQTL studies of peripheral blood cells recently reached the thousands, a 
relatively small number of genes are expressed in blood cells compared with other tissue 
types (14). Conclusions from eQTL studies in tumor tissue (e.g., TCGA) should also be 
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interpreted with caution due to the inherent complexity of transcriptional regulation caused 
by acquired somatic alterations (16). The Genotype-Tissue Expression (GTEx) project 
provides high-density genotype data and RNA sequencing (RNA-seq) transcriptome data 
from 53 tissues (14). We used these data to build models of genetically regulated expression 
for 17,121 genes. We investigated the association between these genetically predicted gene 
expressions and EOC risk using data from 97,898 women including 29,396 EOC cases. We 
identified 35 genes at 14 loci associated with EOC risk, and provide additional evidence of a 
potential role for dysregulated ovarian function and imbalanced ovarian hormone 
production in ovarian carcinogenesis. 

 

Materials and Methods 

Genomic and transcriptomic data 

The GTEx preliminary cleaned genome-wide genotype data and RNA-seq transcriptome data 
across 53 unique tissues (released on 2015-01-12) were downloaded from dbGaP (accession 
phs000424.GTEx.v6.p1). It included 183 GTEx donors genotyped on Illumina's Omni 5M and 
267 GTEx donors genotyped on Omni 2.5M. Genomic and transcriptomic data were 
processed according to the GTEx protocol 
(http://www.gtexportal.org/home/documentationPage). The Omni 2.5M portion of hard-
called genotypes from the Omni 2.5M or Omni 5M across all 450 donors were extracted and 
merged for analysis. We excluded variants with a genotyping call rate < 98%, with 
differential missingness between Omni 2.5M and Omni 5M arrays, with Hardy–Weinberg 
equilibrium P < 10−6 (for subjects of European ancestry), or with batch effects. Genotype 
data were imputed to the Haplotype Reference Consortium reference panel using minimac3 
for imputation and SHAPEIT for prephasing (17). Variants with high imputation quality (R2 ≥ 
0.8), minor allele frequency (MAF) ≥ 0.05, and inclusion in the HapMap Phase 2 project were 
used to build predicted expression models. 

We used gene level expression in Reads Per Kilobase of transcript per Million mapped reads 
(RPKM) from RNA-SeQC for gene expression data. For ovarian transcriptomic data, genes 
were required to have expression in ≥10 individuals with >0.1 RPKM and raw counts >6. For 
our analysis of cross-tissue derived transcriptomic data (below), genes were filtered on 
mean expression levels with >0.1 RPKM and RPKM >0 required in at least 3 individuals (18). 
We performed quantile normalization to transform the expression profile of each sample to 
the same scale, and performed inverse quantile normalization for each gene to map each 
set of expression values to a normal distribution. Residual expression was calculated by 
regressing transformed expression data against three top principal components (PC) derived 
from common genetic variants (MAF ≥0.05), top 15 or 35 probabilistic estimation of 
expression residuals (PEER) factors, respectively, for ovarian tissue and cross-tissue derived 
models (below; ref. 19), sex (for cross-tissue only) to correct for batch effects and other 
potential experimental confounders. 
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European ancestry analysis of GTEx subjects 

The ancestral analysis was conducted with 2,836 ancestry informative markers for 450 GTEx 
individuals and 1,092 individuals included in the 1000 Genome project (Phase 1; ref. 20). Of 
the individuals with both genotype and transcriptome data available, 369 were clustered 
together with EUR populations (CEU, FIN, GBR, IBS, and TSI) on the multidimensional scaling 
plot of the pairwise Identity-By-State distance and were included in the analysis, 68 of 
whom had transcriptome data available for ovarian tissue. 

Orthogonal tissue decomposition–derived cross tissue estimation 

Mixed effect models were used to decompose gene expression levels into subject-specific 
and subject-by-tissue–specific components (18). GTEx data consisted of expression 
measurements from multiple tissues for each subject. The expression level of a gene at a 
given tissue for individual i was considered to be composed of a cross-tissue component 
represented as Yi

CT and a tissue-specific component that was estimated as the difference 
between the expression levels and cross-tissue components given the lack of replicated 
measurement for a specific tissue/subject pair (18). Z′i represents a vector of covariates that 
have effects of β on the expression levels of the gene, such as PEER factors, ancestry 
information derived from the principal component analysis, and sex. The expression of a 
gene for individual i in tissue t, Yi,t, is modeled as  

The mixed effect model parameters were estimated using the lme4 package in R. Posterior 
modes of the subject level random intercepts were used as estimates of the cross-tissue 
components (18). Cross-tissue model included gene expression from 6,124 GTEx tissue 
samples from 369 unique European individuals who had genome-wide genotype data 
available. 

Ovarian-specific and cross-tissue genetically regulated expression model 
building 

We built an expression prediction model for each gene using the elastic net method as 
implemented in the glmnet R package, with a ridge-lasso mixing parameter of α = 0.5 and a 
penalty parameter lambda chosen through 10-fold cross-validation (18, 21, 22). The elastic 
net method with α = 0.5 is a compromise between the ridge-regression penalty (α = 0) for 
solutions with many parameters (each of small effects) and the lasso penalty (α = 1) for 
solutions with fewer parameters (each of large effects; ref. 18). The genetically regulated 
expression for each gene was estimated by including SNPs within 1 Mb of the gene start or 
end, as defined by GENCODE V19 gene annotations. Expression prediction models were 
built for protein-coding genes, long noncoding RNAs (lncRNA), miRNAs, processed 
transcripts, immunoglobulin genes, and T-cell receptor genes, according to categories 
described in the GENCODE V19 gene annotation file. Pseudogenes were not included in this 
study because of potential concerns of inaccurate calling (23). Prediction r2 values (the 
square of the correlation between predicted and observed expression) were generated to 
estimate the prediction performance for each gene in our prediction models. 
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With genome-wide genomic data and RNAseq-based tissue transcriptome data, we built an 
ovarian tissue cis genetically regulated expression model for 8,580 genes that had predicted 
performance of r2 > 0.01 and a cross-tissue cis genetically regulated expression model for 
14,085 genes that had predicted performance of r2 > 0.01. 

Association analysis of predicted gene expression with EOC risk 

Associations between predicted gene expression levels and EOC risk were evaluated using 

MetaXcan (22). Briefly, the formula: 

was used to estimate the Z-score of the association between predicted gene expression and 

ovarian cancer risk. Here is the weight of SNP for predicting the expression of gene , , 

and are the association regression coefficient and its standard error for SNP in GWAS, 
and and  are the estimated variances of SNP and the predicted expression of gene , 
respectively. The input variables for the MetaXcan analyses include the weights for gene 
expression predicting SNPs, GWAS summary statistics results, and correlations between 
predictor SNPs. We integrated prediction models of gene expression levels with summary 
statistics from GWAS of EOC risk for 97,898 European women with 29,396 EOC cases from 
the Ovarian Cancer Association Consortium (OCAC) and Consortium of Investigators of 
Modifiers of BRCA1/2 (CIMBA; ref. 12) based on the variance and covariance matrix of 
genetic variants derived from 1000 Genome phase 3 EUR population (N = 503). The 
performance of MetaXcan has been shown to be similar to PrediXcan that uses individual-
level genetic data for the identification of genes with expression that is associated with 
disease risk (21, 22). 

Details of individual contributing studies were previously reported (12). Briefly, the OCAC 
summary statistics were based on analysis of 40,941 controls and 25,509 population-based 
EOC cases (22,406 invasive cases and 3,103 borderline cases). OCAC cases included 1,954 
serous borderline ovarian cancers, 1,149 mucinous borderline ovarian cancers, 1,417 
mucinous invasive ovarian cancer, 1,012 low-grade serous ovarian cancers, 13,037 high-
grade serous ovarian cancers, 2,810 endometrioid ovarian cancers, 1,366 clear-cell ovarian 
cancer and 2,764 other EOC cases. The CIMBA summary statistics were based on the 
analysis of 19,036 BRCA1 and 12,412 BRCA2 mutation carriers, of whom 2,933 and 954, 
respectively, were diagnosed with EOC. Details of the genotyping procedure and QC have 
been described elsewhere (12). In brief, samples were excluded if they had a genotyping call 
rate < 95%, excessively low or high heterozygosity, if they were not female or had 
ambiguous sex, or were duplicates (cryptic or intended) (12). SNPs were excluded for a call 
rate <95%, deviating from Hardy–Weinberg equilibrium (P < 10−7 in controls or unrelated 
samples in CIMBA and P <10−12 in cases) and concordance <98% among 5,280 duplicate pairs 
(12). All participants provided written informed consent and each contributing study was 
approved by the appropriate local institutional ethical review board. The studies were 
conducted in accordance with Declaration of Helsinki. 

We used a Bonferroni-corrected P value threshold of 2.21 × 10−6 (adjusting for 22,665 gene–
tissue pairs) to determine a statistically significant association in our analysis. This threshold 
was conservative as 5,544 genes appeared in both ovarian and cross-tissue models. We did 
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the primary analysis for high-grade serous EOC, as this had the largest sample size. In our 
secondary analyses, we also evaluated other histotypes or the combined histotypes, even 
though power to discover novel gene associations was relatively low for some (i.e., clear-
cell, endometrioid, or low-grade serous). To determine whether associations identified 
between genetically predicted gene expression and EOC risk were influenced by variants 
previously identified by GWAS, we conducted conditional analyses adjusting for index SNPs. 
Briefly, we performed conditional analyses developed by Yang and colleagues (24) (GCTA-
COJO) to calculate association betas and standard errors of SNPs with ovarian cancer risk 
after adjusting for index SNPs of interest. This was followed by reperforming MetaXcan 
analyses using updated summary statistics. 

Results 

Gene expression prediction model building 

We constructed genetically regulated expression models based on genome-wide genotype 
data and RNA-seq transcriptome data from the GTEx project (Supplementary Fig. S1; ref. 
14). Ovarian transcriptome data were available for 68 European individuals, and 8,580 genes 
achieved a prediction performance of r2 ≥ 0.01 in the ovarian model (Supplementary Table 
S1). Because a large portion of cis expression regulation is shared across multiple tissues 
(14, 18), we also used transcriptome data for 6,124 tissue samples from 369 European 
individuals to build cross-tissue models for 14,085 genes with a prediction performance of r2 
≥ 0.01 (Supplementary Table S1). 

Association analyses between predicted gene expression and EOC risk 

We evaluated associations between predicted gene expression levels and EOC risk using 
MetaXcan (22) with summary statistics for individual GWAS SNPs from 97,898 European 
women including 29,396 EOC cases from OCAC and CIMBA (Supplementary Fig. S1; ref. 12). 
Our primary analysis focused on high-grade serous EOC; secondary analyses included other 
EOC histotypes (Supplementary Fig. S1). 

In total, we identified 35 genes with genetically predicted expression that were associated 
with EOC risk at a Bonferroni-corrected threshold of P < 2.21 × 10−6 (Fig. 1; Supplementary 
Figs. S2 and S3; Tables 1 and 2; Supplementary Table S2). One gene at 11q14.2 (FZD4), was 
more than 1 Mb away from any GWAS-identified EOC susceptibility variant (Fig. 1), 
suggesting a potential novel risk locus for this disease. High predicted FZD4 expression was 
associated with increased risk of high-grade serous EOC (Z = 5.08, P = 3.83 × 10−7; Fig. 1). The 
remaining 34 genes were located within 1 Mb of previously identified EOC susceptibility 
variants (Tables 1 and 2; Supplementary Tables S2 and S3), including 11 genes (at 8 loci) that 
were previously implicated in EOC risk using functional annotation, bioinformatic prediction, 
in vitro cellular models or known gene biology. Our study provides additional evidence to 
support these previous findings (Table 2; Supplementary Table S3). However, 23 genes (at 6 
known risk loci) had not been reported to be associated with EOC risk in prior studies (Table 
1; Supplementary Table S3). For 31 of these 34 genes, the associations were no longer 
statistically significant at P < 1.47 × 10−3 (multiple comparisons correction of 0.05/34) after 
adjustment for the nearest SNP identified by EOC GWAS (Supplementary Table S4), 
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indicating that the previously identified GWAS SNPs for EOC at these 31 regions might 
regulate the expression of these associated gene to affect EOC risk. Associations for three 
genes (Z = 6.84 vs. 3.27 for DNALI1, Z = 5.16 vs. 3.81 for HOXD3 and Z = −8.60 vs. −4.18 for 
CCDC171; Tables 1 and 2; Supplementary Table S4) remained statistically significant at P < 
1.47 × 10−3 after adjusting for the nearest EOC risk SNP, although the strength of the 
association was attenuated. Four loci (2q31.1, 9p22.3, 17q21.31, and 17q21.32) had 
multiple nearby genes associated with EOC risk (Tables 1 and 2). This may be partially due to 
coregulated gene expression in these chromosomal regions (Supplementary Table S5 and 
Supplementary Material). 

Figure 1. Regional plot of OCAC and CIMBA GWAS summary statistics around the FZD4 gene associated with 
high-grade serous EOC risk (Z = 5.08; P = 3.83 × 10−7 based on the cross-tissue model of r2 = 0.07; see 
Supplementary Table S2 for details). Each symbol represents the significance (P value on a log10 scale) of a SNP 
with invasive EOC risk as a function of the SNP's genomic position (NCBI Build 37). The most significantly 
associated SNP is represented in purple. The color of all other SNPs indicates LD with this SNP (estimated by 
EUR r2 from the 1000 Genome Project data). Recombination rates were also estimated from 1000 Genome 
Project data, and gene annotations were obtained from the UCSC Genome Browser. The circle denotes the 
SNPs included in the model construction of genetically regulated FZD4 expression and the square denotes the 
SNPs not included in the model construction. The gene model was constructed including SNPs within 1 Mb of 
the gene start or end, and one SNP included in the model construction was located outside the 1 Mb window 
size of the locus zoom plot (rs7944482 at chr11:86091532, P = 0.52 for association with high-grade serous EOC 
risk). 
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Table 1. Association results for genes in known loci not previously reported in association with epithelial 
ovarian cancer risk 

Region Genea 
Z-
score 

P r2b Histotype Model 
GWAS Index 
SNPc 

Distance to the 
index SNP (kb)d 

1p34.3 DNALI1 6.84 
7.84E-
12 

0.29 High-grade serouse 
Cross-
tissue 

rs58722170 64 

9p22.3 CCDC171 −8.60 
8.08E-
18 

0.02 High-grade serouse Ovary rs10962692 854 

9p22.3 C9orf92 −5.16 
2.45E-
07 

0.15 High-grade serouse Ovary rs10962692 640 

17q21.31 ADAM11 −4.86 
1.19E-
06 

0.05 High-grade serouse Ovary rs1879586 708 

17q21.31 AC091132.1 −7.18 
7.02E-
13 

0.03 High-grade serouse 
Cross-
tissue 

rs1879586 26 

17q21.31 
RP11–
798G7.8 

6.58 
4.77E-
11 

0.05 High-grade serouse Ovary rs1879586 42 

17q21.31 CRHR1 8.61 
7.23E-
18 

0.60 High-grade serouse 
Cross-
tissue 

rs1879586 132 

17q21.31 
RP11–
105N13.4 

6.77 
1.33E-
11 

0.05 High-grade serouse Ovary rs1879586 132 

17q21.31 MAPT-AS1 7.74 
9.60E-
15 

0.10 High-grade serouse 
Cross-
tissue 

rs1879586 354 

17q21.31 
RP11–
669E14.6 

−8.35 
6.64E-
17 

0.30 High-grade serouse 
Cross-
tissue 

rs1879586 545 

17q21.31 KANSL1-AS1 8.26 
1.48E-
16 

0.85 High-grade serouse 
Cross-
tissue 

rs1879586 704 

17q21.31 LRRC37A 8.38 
5.08E-
17 

0.54 High-grade serouse Ovary rs1879586 803 

17q21.31 LRRC37A2 8.26 
1.44E-
16 

0.55 High-grade serouse Ovary rs1879586 1,022 

17q21.31 NSF −5.55 
2.78E-
08 

0.02 High-grade serouse Ovary rs1879586 1,101 

17q21.32 
RP11–
138C9.1 

5.54 
3.04E-
08 

0.02 High-grade serouse 
Cross-
tissue 

rs7207826 741 

17q21.32 
RP11–
6N17.6 

5.93 
3.00E-
09 

0.19 High-grade serouse 
Cross-
tissue 

rs7207826 475 

17q21.32 PNPO 5.34 
9.38E-
08 

0.30 High-grade serouse 
Cross-
tissue 

rs7207826 475 

17q21.32 PRR15L −4.91 
9.18E-
07 

0.04 High-grade serouse 
Cross-
tissue 

rs7207826 465 

17q21.32 HOXB2 −5.48 
4.28E-
08 

0.40 High-grade serouse 
Cross-
tissue 

rs7207826 118 

17q21.32 HOXB-AS1 −5.15 
2.59E-
07 

0.29 High-grade serouse 
Cross-
tissue 

rs7207826 120 

17q21.32 HOXB3 −5.59 
2.30E-
08 

0.12 High-grade serouse 
cross-
tissue 

rs7207826 126 

18q11.2 
RP11–
403A21.1 

−5.53 
3.13E-
08 

0.11 
Low grade/borderline 
serousf 

cross-
tissue 

rs8098244 132 

19q13.2 ZNF546 7.14 
9.07E-
13 

0.01 
Invasive/borderline 
mucinousf 

Ovary rs688187 757 
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aARHGAP27 and PLEKHM1 were previously considered as potential EOC candidate susceptibility 

genes by Permuth-Wey and colleagues (10) with an integrated molecular analysis of multiple genes 

at 17q21.31 locus (see Table 2 and Supplementary Table S3). 
br2 of tissue model's correlation to gene's measured transcriptome (prediction performance). 
cSee Supplementary Table S4 for detailed information in selecting the GWAS index SNPs. 
dIf the GWAS index SNP is located upstream of the gene, the gene start position is used; otherwise, 
the gene end position was used; LRRC37A2 and NSF are within 1M of reported GWAS SNPs 
considering the association of all variants with EOC risk at P < 5 × 10−8 at this locus (See text 
and Supplementary Table S4 for details). 
eThe analyses were based on summary statistics for high-grade serous ovarian cancers from Ovarian 

Cancer Association Consortium (OCAC) and Consortium of Investigators of Modifiers of BRCA1/2 

(CIMBA). 
fThe analyses were based on summary statistics from OCAC. 

Table 2. Association results for genes in known loci previously reported in association with ovarian cancer risk 

Region Gene 
Z-
score 

P r2a Histotype Model 
GWAS Index 
SNPb 

Distance to the index 
SNP (kb)c 

2q31.1 HOXD3 5.16 
2.42E-
07 

0.04 
Borderline 
mucinouse 

Cross-
tissue 

rs711830 0 

2q31.1 HOXD1 6.07 
1.31E-
09 

0.04 
High-grade 
serousf 

Cross-
tissue 

rs711830 16 

3q25.31 LEKR1 −5.81 
6.24E-
09 

0.46 
High-grade 
serousf 

Cross-
tissue 

rs62274041 108 

8q21.13 CHMP4C −6.69 
2.24E-
11 

0.47 
High-grade 
serouse 

Cross-
tissue 

rs11782652 0 

9q34.2 ABO 5.44 
5.37E-
08 

0.49 
High-grade 
serousf 

Ovary rs635634 4 

10q24.33 OBFC1 −5.09 
3.66E-
07 

0.01 
Borderline 
serouse 

Cross-
tissue 

rs7902587 16 

15q26.1 RCCD1 −5.46 
4.64E-
08 

0.59 
High-grade 
serouse 

Cross-
tissue 

rs8037137 0 

17q21.31d PLEKHM1 4.80 
1.59E-
06 

0.01 
High-grade 
serousf 

Cross-
tissue 

rs1879586 0 

17q21.31d KANSL1 4.74 
2.15E-
06 

0.18 
High-grade 
serousf 

Ovary rs1879586 540 

17q21.31d WNT3 6.81 
9.82E-
12 

0.40 
High-grade 
serousf 

Cross-
tissue 

rs1879586 1,273 

19p13.11 ABHD8 4.79 
1.69E-
06 

0.23 
High-grade 
serousf 

Cross-
tissue 

rs4808075 13 

ar2 of tissue model's correlation to gene's measured transcriptome (prediction performance). 
bSee Supplementary Table S4 for detailed information in selecting the GWAS index SNPs. 
cIf the GWAS index SNP is located upstream of the gene, the gene start position is used; otherwise, 
the gene end position was used; WNT3 is within 1M of reported GWAS SNPs considering the 
association of all variants with EOC risk at P < 5 × 10−8 at this locus (See text and Supplementary 
Table S4 for details). 
dEleven novel genes associated with EOC risk at this locus were presented in Table 1. 
eThe analyses were based on summary statistics from OCAC. 
fThe analyses were based on summary statistics for high-grade serous ovarian cancers from Ovarian 

Cancer Association Consortium (OCAC) and Consortium of Investigators of Modifiers of BRCA1/2 
(CIMBA). 
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Consistent with the etiologic heterogeneity of EOC (25), GWAS-identified risk variants 
differed across histologic subtypes (12). Therefore, we investigated associations between 
genes with P < 2.21 × 10−6 across all major histotypes of EOC (Supplementary Table S6). The 
majority of identified genes were associated with high-grade serous EOC risk, likely due to 
the large number of cases in our primary analysis. A few additional histotype specific 
associations were identified from secondary analyses. HOXD3 at 2q31.1 was associated with 
borderline mucinous EOC risk (Table 2; Supplementary Table S6: Z = 5.16, P = 2.42 × 10−7). 
RP11-403A21.1 at 18q11.2 was associated with low-grade or borderline serous EOC risk 
(Table 1; Supplementary Table S6: Z = −5.53, P = 3.13 × 10−8). ZNF546 at 19q13.2 was 
associated with mucinous EOC risk (Table 1; Supplementary Table S6: Z = 7.14, P = 9.07 × 
10−13 for invasive/borderline mucinous EOC combined; Z = 5.99 and P = 2.14 × 10−9 for 
borderline mucinous EOC only). HOXD1 at 2q31.1 was associated with both invasive serous 
(Supplementary Table S6: Z = 4.92, P = 8.55 × 10−7) and borderline mucinous 
(Supplementary Table S6: Z = 5.24, P = 1.59 × 10−7) EOC risk. 

Evidence from previous eQTL analyses of identified EOC susceptibility risk variants supports 
several currently identified gene associations (Table 2; Supplementary Table S3). Reduced 
OBFC1 expression was associated with risk allele of GWAS identified EOC SNP at 10q24.33 
(12), and we found that higher predicted OBFC1 expression was associated with lower EOC 
risk. Similarly, reduced RCCD1 expression was associated with risk allele of GWAS identified 
EOC SNP (11), and we found that higher predicted RCCD1 expression was associated with 
reduced EOC risk at 15q26.1. In addition, multiple lines of evidence support our finding 
between higher predicted ABHD8 and increased EOC risk at 19p13.11. Increased ABHD8 
expression was associated with risk allele of GWAS identified EOC SNP (26). Copy number 
variant analysis indicated that 46% of high-grade serous EOC had amplification at 19p13.11 
that contains ABHD8 (3). 

Discussion 

In this large transcriptome-wide association study (TWAS) among 97,898 women of 
European ancestry, we identified 35 genes with genetically predicted expression levels 
associated with EOC risk. One of these genes (FZD4) is located more than 1 Mb away from 
any previously identified GWAS EOC variant (25 Mb away from the nearest reported EOC 
risk variant; ref. 11), suggesting it is a potential novel risk locus. All other 34 genes identified 
were located within 1 Mb of known GWAS loci, including 23 genes at 6 loci that had not 
previously been associated with EOC risk. After adjustment for nearby known EOC GWAS-
identified variants, the associations for 3 of the 34 genes retained. 

FZD4 is a member of the frizzled gene family that encodes seven-transmembrane domain 
proteins (Fz) as the receptors for the secreted Wnts signaling ligands. Several Wnts and Fzs 
(including Fzd4 and Wnt4), as well as downstream targets of the canonical WNT signaling 
pathway, are expressed at different stages of ovarian follicular development, ovulation, and 
luteinization, suggesting specific functions for these signaling molecules in the mature ovary 
(27). Recent studies using transgenic mouse models demonstrated that Wnt4, Fzd4, and 
Ctnnb1 are required for normal folliculogenesis, luteogenesis and steroidogenesis, and that 
dysregulated WNT signaling leads to granulosa cell tumor development (27, 28). FZD4-null 
female mice are infertile and exhibit reduced progesterone production, reduced 
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luteinization-associated gene expression, impaired corpora lutea formation and function, 
and impaired vascular development (28). Interestingly, WNT4 (1p36.12) encodes a potential 
Fzd4-binding ligand, which was also recently identified as a potentially causal gene 
underlying EOC risk by GWAS (Supplementary Table S3; ref. 7). Aberrant activation of WNT 
signaling in adult tissues has been implicated in the pathogenesis of several types of cancer, 
including colorectal cancer (29). The positive association between FZD4 expression and 
invasive serous EOC risk suggests that dysregulated corpus luteum function and/or 
progesterone production may contribute to EOC pathogenesis. 

A locus 17q21.31 was previously identified by GWAS as associated with EOC risk (10, 30). 
This region contains a 900-kb inversion in Europeans that has extensive linkage 
disequilibrium likely due to restriction from crossovers in individuals who are heterozygous 
with respect to inversion (31). The H2 haplotype is less frequent (20% in Europeans) and is 
associated with higher number of children born to women (31). Interestingly, minor alleles 
of genetic variants in this region were almost universally associated with reduced breast 
cancer risk but increased EOC risk at genome-wide significance levels (Supplementary Table 
S7; Supplementary Material; refs. 10, 30). Permuth-Wey and colleagues (10) investigated 
several of these genes, including KIF18B, C1QL1, DCAKD, NMT1, PLCD3, ACBD4, HEXIM1, 
HEXIM2, FMNL1, C17orf46, MAP3K14, ARHGAP27, PLEKHM1, CRHR1, IMP5, and MAPT; 
extensive functional analysis suggested that ARHGAP27 and PLEKHM1 may be EOC 
susceptibility genes (10). One of the other candidate genes at this region, CRHR1, is involved 
in regulating ovarian function; it is expressed in ovarian thecal cells, granulosa cells and 
luteal cells (32), and upregulated in EOC (10). High CRHR1 expression was almost universally 
associated with minor alleles of multiple genetic variants in this chromosome 17 region 
(Supplementary Table S8; Supplementary Material; ref. 33). Enhanced CRHR1 activation in 
the ovary leads to reduced production of testosterone (32) and estrogen (32, 34–36), but 
increased progesterone accumulation and production (32). This may explain the lower 
breast cancer risk associated with variants in this region from lower estrogen exposure and 
higher progesterone exposure associated with multiparity (31, 37). Similarly, this also 
suggests that imbalanced estrogen and/or progesterone production contributes to EOC 
pathogenesis. 

Two of the candidate genes at the 17q21.32 locus, HOXB2 and HOXB3, belong to the 
homeobox gene family, which is important for normal vertebrate limb and organ 
development. This gene family was also recently shown to be enriched for genes underlying 
serous EOC risk by GWAS (38). Inconsistent tumorigenic effects of HOXB2 and HOXB3 were 
reported across several types of cancers (breast, pancreatic, lung, cervical cancer, and acute 
myeloid leukemia; refs. 39–43). This may be due to context-dependent effects from specific 
tumor microenvironments (39, 43). With regard to ovarian cancer, increased HOXB2 and 
HOXB3 expression were associated with reduced EOC risk; potential molecular mechanisms 
underlying HOXB suppressive effect on EOC warrant further investigation. 

Several additional findings from this study are noteworthy. The precise function of DNALI1 
at 1p34.3 is not known. It is a potential candidate gene for primary cilia syndrome or 
Kartagener syndrome, in which the action of cilia lining the respiratory tract and fallopian 
tube is compromised (44). A marked reduction in fertility was observed in female patients 
with Kartagener syndrome due to dysfunction of the oviductal cilia (45). The predicted 
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expression of CCDC171 at 9p22.3 was associated with reduced EOC risk. CCDC171 was 
shown to interact with KRAS by a stringent screening for Ras synthetic lethal genes (46). 
Several lncRNAs were associated with EOC risk, including RP11-403A21.1 at 18q11.2 (Table 
1). Little is known about their particular function in either tumor initiation or tumor 
development, but lncRNAs have been increasingly implicated in many classic cancer biology 
pathways (47). In addition to HOXD3 and HOXD1 at 2q31.1 (Table 2; Supplementary Table 
S3; refs. 4, 8), ZNF546 at 19q13.2 was identified as a novel candidate gene for mucinous 
EOC. Enrichment for expression in gonadal tissues (14) supports a potential role in EOC 
pathogenesis. Because of the complexity of mucinous EOC, and undetermined cell/tissue of 
origin, identification of associated genetic variants and/or genes is particularly important (8, 
25). 

The tissue samples used in building gene expression models in GTEx (V6) came most from 
the people who recently died of traumatic injury (for these young donors) or cardio-
cerebrovascular diseases (for the old donors). There were no overlaps between the tissues 
used in building gene expression models and the samples used in EOC GWAS in OCAC or 
CIMBA. Our ability to detect genes significantly associated with EOC risk is affected by tissue 
specificity and the sample size of the dataset used to build genetic prediction models for 
gene expression. Four genes were identified from both ovarian and cross-tissue models; 8 
genes were only identified on the basis of ovarian models, and 23 genes were only identified 
from cross-tissue models (Supplementary Table S2). The ovarian tissue transcriptome that 
we used to model gene expression was potentially derived from multiple ovarian cell types, 
including surface epithelial cells, oocytes, granulosa cells, Theca cells, luteal cells, and other 
interstitial cells. Because of the importance of tissue or cell-specific regulators (i.e., 
transcription factors or epigenomic features) in governing development and function, the 
ovarian-specific model should best capture transcriptional regulatory mechanisms of the 
ovary. However, in light of abundant shared cis regulation of expression across multiple 
tissues (14, 18), we also pooled constitutive variant-dependent regulatory information 
across tissues and built cross-tissue gene expression models. We would expect this model to 
yield greater power as the number of tissues in which a variant is functional increases. By 
coupling both tissue-specific and cross-tissue models, we aimed to robustly capture 
genetically regulated genes expression using a large sample size. Because of insufficient 
samples in the GTEx project, we did not build Fallopian tube–specific models. 

In summary, we identified one novel locus (FZD4) and 34 genes at 13 known EOC risk loci 
associated with EOC risk, and these findings may help improve our mechanistic 
understanding of EOC pathogenesis. In line with tentative observations of increased 
borderline EOC risk from ovarian hormone dysregulation for women who received fertility 
drug treatment with in vitro fertilization (48–50), the known biology of FZD4 and CRHR1 in 
the ovary implicates the potential of long-term dysregulated ovarian function or imbalanced 
ovarian hormone production as a possible mechanism underlying EOC pathogenesis. 
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