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Abstract

Neural Networks (NNs) play an integral role in modern machine learning development. Recent advances

in NN research have led to a wide array of applications, ranging from medical diagnosis [1] to complex

problems such as facial and object recognition [2] [3]. However, despite the increasingly powerful predictive

capabilities of NNs, some limitations exist which could cause more traditional methods to become the

preferred alternative. Most of these limitations result from the "black box" nature of the NN in which

the estimated model parameters are not interpretable. The output of traditional NNs also contain no

measure of uncertainty in its predictions, causing decision-making to become challenging when NN output

plays an important role such as in automatic medical imaging and autonomous vehicles. To address these

challenges, we investigate a probabilistic approach to NNs through Bayesian inference and discuss di�erent

methods in approximating the posterior distributions of NN parameters. We investigate results when

extending the NN structure to deeper architectures such as Convolutional Neural Networks and discuss

the advantage of extracting additional information from the posterior predictive distribution to measure

prediction uncertainty.
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Chapter 1

Introduction

In recent years, a surge in deep learning interest has taken place and changed the way we see and implement

arti�cial intelligence. Many industries have started to investigate the use of deep learning to harness its

powerful predictive capability for a wide variety of applications. From marketing tools such as product

recommendation to medical diagnosis via computer vision algorithms, deep learning models have secured

their place among the most powerful predictive methods in the modern world.

Deep learning is a term that refers to the use of a Neural Network (NN) designed with an architecture

that contains many hidden layers and nodes. However, many di�erent kinds of NNs exist for di�erent

applications. For example, a Recurrent Neural Network (RNN) has been shown to work well with sequen-

tial data [4] while a Convolutional Neural Network (CNN) was initially designed for image classi�cation

and displayed superior performance in comparison to more traditional approaches [5] [3]. A Feedforward

Neural Network is known as the oldest design for NN architecture and is still widely used to this day for

multiple purposes ranging from simple image classi�cation problems to non-linear regression or classi�ca-

tion. In a Feedforward NN, the nodes between layers are all connected and do not form a cycle such as

in a RNN. As will be illustrated in this dissertation, the �exible design of NNs can be chosen to suit the

complexity of the problem at hand. From the simplicity of a Rosenblatt Perceptron or logistic regression

to a network architecture deep enough to classify handwritten digits, an NN is able to show competitive

performance for a wide array of problems given the appropriate structure [6].

1.1 Motivation

With deep learning models emerging in industries such as medical imaging and autonomous vehicles, it

becomes clear that predictions from such models are important factors that contribute to the decision

1



CHAPTER 1. INTRODUCTION 2

making process in research or business. Since NNs are discriminative models and therefore produce only

point estimates, we are in many cases uncertain whether the output from the model carries high con�dence

or is merely a random guess for an observation close to the decision boundary or far away from the training

data. We need to better understand the data and model predictions in order to produce an uncertainty

estimate which could help stimulate more informed decision making.

This could be achieved by changing our approach from a discriminative model to a generative one.

Bayesian inference allows us to de�ne a generative model via a probabilistic framework and infer a poste-

rior distribution over all the unknown weight parameters. By integrating over these parameters for new

unseen data, we can compute a predictive distribution from the posterior and use it to understand the

uncertainty surrounding each prediction.

Bayesian Neural Networks are a result of applying Bayesian inference to an NN by assigning a prior distri-

bution over the unknown weight parameters and de�ning a likelihood function from the output of the NN.

Since most NN architectures contain a large number of parameters, calculating the posterior distribution

could become computationally intractable, as will be explained in more detail in this dissertation. To

account for this, we investigate two modern approximation methods in detail. With a focus on image

processing, we apply Bayesian inference to a CNN and demonstrate how we achieve state-of-the-art per-

formance on the MNIST handwritten digits dataset through the use of a posterior predictive distribution.

Using this distribution we are then able to extract uncertainty measures for new predictions.

1.2 Outline of dissertation

Chapter 2 - Background A literature review covering a history of NN research such as early imple-

mentations and training algorithms that made them practically possible. A short discussion follows of

how deep learning came to light in earlier years and what caused the sudden surge of interest in these

models in recent years as well as limitations regarding modern implementations of deep NNs. Lastly, early

literature on the Bayesian approach to NNs is discussed with a �nal section on important preliminaries

that would aid the reader in this dissertation.

Chapter 3 - Bayesian Learning This chapter explores fundamental theory on Bayesian statistics.

We re�ect on the e�ect of non-informative vs informative priors and the use of conjugacy, the role of the

likelihood function in Bayesian inference and how the posterior distribution provides us with important

information about the data using the above-mentioned.
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Chapter 4 - Linear Classi�er A review on classical linear models and how they can be trained using a

Bayesian approach. Doing so, we identify the challenge in performing Bayesian inference on more complex

models and the steps needed when extending these models to deeper NN architectures.

Chapter 5 - Approximation Methods This chapter is a comprehensive review of two types of meth-

ods used to approximate a probability distribution: Markov Chain Monte Carlo (MCMC) and Variational

Inference (VI). The advantages and disadvantages of each of these methods will be discussed and how

they can be used to approximate the posterior distribution over the unknown weight parameters in an

NN.

Chapter 6 - Neural Networks The theory behind a Neural Network's training algorithm is formally

introduced with a derivation of Backpropagation. Various methods to provide scalability to large data

and parameter regularisation to prevent over-�tting are discussed with a simple example to illustrate

the e�ectiveness of these methods. With a focus on image classi�cation, Convolutional Neural Networks

(CNNs) and their training/regularisation techniques are discussed. Finally, Bayesian NNs (BNNs) and

Bayesian CNNs are introduced and we employ the techniques derived in earlier chapters to train a simple

model for illustration.

Chapter 7 - Application to Image Classi�cation The predictive power and usefulness of the uncer-

tainty measure from a BNN is demonstrated on the MNIST handwritten character dataset. A Bayesian

Convolutional Neural Network (BCNN) is introduced and the increase in predictive power as well as

uncertainty measurement is investigated.

Chapter 8 - Conclusion To conclude, we discuss the results from chapter 7, how deep learning models

could bene�t from a Bayesian approach and the challenges that could arise from such an implementation.



Chapter 2

Background

The goal of designing an intelligent system that learns from observation stems from a long and disputed

history of scienti�c and philosophical research. Inspired by the brain's ability to process information,

researchers have been simulating NN systems for decades. In this chapter we do not focus on the biological

or philosophical background of the NN, but instead on the mathematical methods that led to the current

NN research and the research being conducted to introduce a more probabilistic approach to NNs as well

as di�erent training methods associated with it.

2.1 A brief history of Neural Networks

2.1.1 The Rosenblatt Perceptron

One of the most important early designs of an NN was the perceptron, introduced by Franck Rosenblatt

in 1958. Developed to imitate a single neuron in a hypothetical nervous system, the perceptron contained

a single node that "�res" when the weighted sum of inputs exceeded a threshold, determined by weight

parameters in the model [7]. This node (shown in Eq. 2.1 below) is called a unit step function, also known

as an "activation function" and is one of the core components in NN architecture.

4



CHAPTER 2. BACKGROUND 5

Figure 2.1: Rosenblatt's Perceptron diagram

Structurally, the perceptron bears resemblance to a logistic regression model. The key di�erence is in the

activation function where logistic regression uses a sigmoid function and predicts a continuous value in

the range [0, 1], and the perceptron uses a step function which returns a binary value for classi�cation

purposes. The step function used in the perceptron is de�ned below:

ŷ = f(wᵀx),

where f =

1 if wᵀx > 0

0 otherwise
(2.1)

The perceptron iteratively learns the value of its weight parameters by observing labelled examples, known

as supervised learning. In the absence of an intercept term, the threshold in the above activation function

changes as the values of the weight parameters change with each iteration.

Algorithm 1 Perceptron learning algorithm

• For a set of training data X = {x1, ..., xn} with corresponding response variables {y1, ..., yn} where

each yi ∈ {0, 1}:

1. Initialise weight and bias parameters as small numbers (usually chosen as 0)

2. For i = 1 to n:

� Calculate ŷi = f(wᵀxi) from (1.1)

� Update wnew = w + (yi − ŷi)xi

3. The error from Step 2 is measured as 1
n

∑n
i=1 |yi − ŷi|. Convergence is met as soon as the error is

less than a user-speci�ed threshold, or until a speci�c number of iterations have been performed.
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The weight updates in Step 2 are immediately applied with each consecutive iteration until convergence.

Convergence of the perceptron algorithm is guaranteed for a linearly-separable training set [8]. In the

case of the training set not being linearly-separable, the algorithm is not guaranteed to converge to an

approximate solution.

Following a decade of hype but lack of academic rigor in Neural Network research, Minsky and Pa-

pert published a book called Perceptrons in 1969 [9] in which they presented limitations of the perceptron

model, speci�cally its inability to solve non-linear classi�cation tasks such as the popular XOR problem.

The XOR problem (short for exclusive-or) shown in Table 2.1 is a non-linearly separable problem that

consists of two binary features that generate an outcome based on a simple rule. An XOR function returns

a true value (or a 1, for convenience) if the two inputs are not equal and a false value (zero) if they are

equal.

x y result

0 0 0

1 0 1

0 1 1

1 1 0

Table 2.1: XOR problem

The publication by Minsky et al. contributed to the so-called "AI Winter" during which NN research had

di�culty being taken seriously for more than a decade. In essence, they have shown that NN architecture

had not yet allowed for any hidden layers or additional nodes, rendering them less capable of learning

more complex functions than traditional methods.

2.1.2 Multilayer perceptrons and backpropagation

In 1986, Rumelhart et al. showed that a simple method called backpropagation [10] could be used

to learn the weights of a perceptron model with more than one hidden layer (also called a multilayer

perceptron), which inspired the well-known NN structure as used in present-day research and application.

The gradient-descent algorithm (shown in Algorithm 2) uses backpropagation to incrementally adjust the

weight parameters in each layer, in the negative direction of the loss function's derivative with respect

to the weight parameters. Backpropagation allows us to utilise a multilayer perceptron's hierarchical

structure to �nd the derivatives of weight parameters throughout di�erent layers within the model.

Through this method, the multilayer perceptron (or NN) was able to learn non-linear functions through
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various di�erentiable activation functions such as the sigmoid activation function σ(x) = 1
1+e−x used in

logistic regression or hyperbolic tangents σ(x) = tanh(x). These alternative activation functions play a

major role when �tting an NN to data generated by a nonlinear function. Rumelhart's �ndings proved to

be a breakthrough for neural network research, as the improved performance greatly reduced scepticism

around the topic.

Algorithm 2 Gradient descent

• Let X be a set of training data X = {x1, ..., xn} with corresponding response variables {y1, ..., yn}

• The error function is de�ned as S = 1
2n

∑N
i=1(yi − ŷi)2 where ŷi is the output from the multilayer

perceptron for training example xi

• The multilayer perceptron contains L hidden layers, each layer containing its own set of weight

parameters W (`)

• Starting values for weight and bias parameters are chosen at random

• The learning rate λ ∈ [0, 1] determines the step size of parameter updates

• The following steps are followed until convergence:

1. The data X passes through the multilayer perceptron with current parameter settings to obtain

ŷ

2. Calculate the partial derivative of S with respect to each weight matrix ∂S
∂W (`)

3. Update each weight matrix as W (`)
new = W

(`)
old − λ

∂S

∂W
(`)
old

• Convergence is met when the decrease in error from each iteration becomes minimal and the error

function reaches a local optimum as shown in Figure 2.2. However, the de�nition of "minimal" is

up to the user and choosing an appropriate value can become challenging.

Following Rumelhart's publication and an increasing amount of research into the multilayer perceptron,

powerful new ideas for NNs emerged such as recurrent neural networks (RNN) which considers the data's

behaviour over time and is used for tasks such as handwriting [11] or speech recognition [12]. Convolutional

Neural Networks (CNNs) [5] imitate the visual cortex of the brain by shifting focus over a receptive �eld

(or small sample of a dataset), and was shown to perform well when applied to tasks such as image

classi�cation and object recognition [3]. However, these methods used in high dimensional models did

not scale well to large sets of data as a result of hardware limitations during the 80s and 90s and were

outperformed by cheaper, more traditional algorithms such as non-linear regression and decision trees.
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Figure 2.2: Gradient descent on neural network weights

2.1.3 Deep Neural Networks

The scalability issue surrounding NNs was alleviated by Geo�rey Hinton in 2006 by training shallow NNs

and stacking them together to create a deep network [13]. Although deep learning in NNs has been

researched for decades prior to Hinton's publication, it was not practically viable since computationally

e�cient solutions were limited. Following Hinton's publication, deep learning saw an increase in attention

from researchers, leading to improved algorithms for complex classi�cation tasks such as optical character

recognition on the well-known MNIST handwritten digits dataset [14] [15].

Figure 2.3: Imagenet competition results

One of the largest contributions to deep learning's more recent popularity was the 2012 ImageNet Large

Scale Visual Recognition Challenge (ILSVRC). The competition evaluates the performance of algorithms
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trained on a large dataset created in 2010 [16]. A team called Supervision employed a deep CNN called

AlexNet [3] designed by Alex Krizhevsky that signi�cantly outperformed image classi�cation methods

used in earlier years, sparking the fascination around deep learning as it is today. As shown in Figure 2.3,

Imagenet results from consecutive years after 2012 has shown signi�cant improvements in performance.

Open-source software such as Python and R have seen to an increasing use of deep learning in industry-

related practice as well as research. The cost-free availability of packages such as Scikit-Learn [17] used

in Python and rpart [18] used in R provide easy-to-use machine-learning algorithms which include a wide

family of NN-based methods. A research team at Google called Google Brain formed in 2010 has also

been on the forefront of open-source NN software. Led by arti�cial intelligence pioneers such as Geo�rey

Hinton and Andrew Ng, Google Brain produced numerous breakthroughs using deep learning applied to

various �elds such as healthcare [19] and robotics [20]. Released early 2015, Google Brain developed an

open-source platform in Python called Tensor�ow [21], which is the primary Python package used for

distributed computing with deep neural networks. This package allows multiple processing units such as

CPU's or GPU's to work in parallel for much faster computing in a deep learning environment.

2.2 Limitations in Neural Networks

Destpite its recent popularity, deep NNs using frequentist estimation techniques such as backpropagation

have been shown to su�er from several disadvantages. Examples of such disadvantages include gradient-

based training being susceptible to coverging on local minima [22] and that frequentist models in general

have di�culty measuring uncertainty when predicting future observations [23]. Deep NNs are also not

immune to over�tting without the use of additional methods such as L1 and L2 regularisation or dropout

in the case of limited training data [24].

The problem of over�tting is inherent to most supervised machine learning algorithms, especially when

the model includes too many parameters and/or the training data is limited. Regularisation methods such

as L1 and L2 exist to encourage values of smaller scale in parameters in favour of the model becoming

less complex and more generalised. This is achieved by adding an extra term to the loss function:

L =

N∑
i=1

(yi − wᵀx)2 + λ

p∑
j=1

|wj | (L1 regularisation)

L =

N∑
i=1

(yi − wᵀx)2 + λ

p∑
j=1

w2
j (L2 regularisation)

In the case of NNs, more advanced methods have been researched to counter over�tting. In addition to

dropout [24], the use of mixed Gaussian priors over weight parameters for feature selection has shown su-
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perior performance to the traditional regularisation methods [25]. These methods, however, do not allow

any uncertainty in the model to be measured. With no consideration of uncertainty in model predictions,

an NN risks making an overly con�dent decision.

Put di�erently, an NN in a classi�cation scenario would classify an input to a class with the highest

corresponding output probability. No additional information (such as standard deviation) regarding the

true distribution of the output or weight parameters is known. In cases where important decisions need to

be made from NN output, (such as autonomous vehicles [26]) uncertainty plays a critical role and could

be used to prevent adverse results.

2.3 Bayesian Neural Networks

The above problem is an important concept in Bayesian learning, which uses a probabilistic framework

to uncover posterior distributions over variables of importance. The demand to introduce a probabilistic

approach to account for the above issues has led to Bayesian Neural Networks (BNNs) gaining more

attention in neural network research [26] [22]. Early research on this topic suggested �tting a prior

distribution over the weight parameters and invoking Bayes' theorem to derive the posterior distribution

[27] [28]. Di�erent prior distributions for the weight parameters have been investigated [29], leading to

interesting results as the number of hidden components approach in�nity. However, due to the hardware

limitations present at the time, the posterior distribution needed to be approximated using sampling

or variational techniques [27] [30]. Modern approximation methods used for Bayesian inference in NNs

include Markov Chain Monte Carlo (MCMC) [29], variational inference [26] and various hybrid methods

often combining both MCMC and variational inference [31].

As part of the MCMC family of algorithms, the Metropolis-Hastings algorithm developed in 1953 by

Metropolis et al. [32] and later generalised by Hastings [33] has created an enormous impact on arti�cial

intelligence by allowing high dimensional distributions to be approximated. The Metropolis-Hastings

algorithm, however, was not widely used by statisticians until the early 90's where Tierney [34] investigated

the use of Markov Chains to explore posterior distributions. As pointed out by Gelman in 1992, the well-

known Gibbs sampler is a special case of the Metropolis-Hastings algorithm [35] as is widely used in

machine learning today, including BNNs.

Although MCMC produces asymptotically exact samples from the posterior distribution [36], it does not

scale well to very large datasets due to the computational intensity inherent in MCMC methods. As an

alternative, variational inference [37] (VI) produces a faster approximation of the posterior distribution.

Since VI produces an approximation through optimization, methods such as stochastic optimization have
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been shown to scale well to large sets of data [38]. Therefore, there exists a trade-o� between MCMC

and VI. For smaller sets of data, MCMC is usually preferable over VI which is best suited for large sets

of data [39].

In his paper [29], Radford Neal points out that using Bayesian learning with NNs not only provides a

measure of uncertainty for parameter settings and predictions, but allows the use of in�nitely many hidden

components regardless of the size of the training set without over�tting the data. He further shows that,

in the limit of an NN containing an in�nitely wide single hidden layer, the outputs can be compared to a

Gaussian Process (GP) prior over functions. This enables the use of exact Bayesian inference for regression

tasks with neural networks [40] [29] by gaining the posterior distribution over di�erent functions by GPs

(as shown in Figure 2.4) while enjoying the scalability and �exibility of an NN. By extending this result,

Lee et al. shows that a deep NN containing in�nitely wide hidden layers shows the same property [41],

allowing BNNs to easily extend to deep NN architectures. BNNs with deep architectures may provide

insight to more complex relationships in the data without penalizing performance on future, unseen data

by over�tting.

(a) GP prior distribution over functions (b) GP posterior distribution over functions

Figure 2.4: Illustration of the prior and posterior of a Gaussian Process

2.4 Review of important concepts

2.4.1 Generative vs. Discriminative models

An important choice in statistical modeling is whether a generative or discriminative model should be

used. It is therefore important to clarify the di�erence between the two classes of models. For this section,

let D = {(x1, y1), ..., (xn, yn)} be a set of pairs of observed data points, each consisting of an independent

variable x with a corresponding dependent variable y.
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Discriminative models (such as linear regression, logistic regression or Support Vector Machines) model

the conditional probability distribution of the response variable on the input variable, i.e. P (y|x). For

example, in a linear regression model our hypothesis is E[Y |X] = β0 + β1X, i.e. the predicted values ŷ

are obtained by calculating the mean of the conditional distribution.

In a classi�cation environment such as logistic regression, the discriminative model focusses on the bound-

ary between classes (i.e. discriminating between the classes of x) and not on the distribution of each class

as generative models do. As opposed to generative models, the data D cannot be generated from a dis-

criminative model - only the output y can be generated for a given example x. It is generally known that

discriminative models tend to learn more complex relationships as the dataset increases [42]. However,

for smaller or missing data, generative models are more capable of generalising to prevent over-�tting of

data where discriminative models may learn irregular patterns which aren't representative of the data.

Generative models (such as Naïve Bayes or Gaussian mixture models) describe the way in which the

data was generated through the use of a joint probability distribution P (X, y). These models typically

require stronger assumptions than discriminative models do. For example, Naïve Bayes assumes that all

the variables contained in X are conditionally independent on y, i.e. P (x1, .., xp|y) =
∏p
i=1 P (xi|y). This

is a strong assumption which is seldom satis�ed in practice. Generative models become the better choice

when the objective isn't only to predict future data, but to draw information from underlying distribution

of the data and be able to generate additional data from said underlying distributions.

The estimated parameters θ̂ of an NN are usually obtained through maximum likelihood estimation,

satisfying the following expression:

θ̂MLE = argmaxθ

N∑
i=1

logp(yi|xi, θ).

Therefore, NN's are mostly considered discriminative models. However, this dissertation will focus on

NNs from a generative perspective through means of Bayesian inference.

2.4.2 Linear vs non-linear

When a model is said to be "linear", the linearity occurs within the parameters of the model. It is then

assumed that the dependent variable is linearly related to the independent variables. This distinction

becomes important when considering polynomial regression such as

y = β0 + β1x1 + β2x
2
2.

Even though a non-linearity occurs in the independent variable, the dependent variable remains a linear

combination between the data and the parameters. Using a linear model is a good option when the data
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exhibit suitable patterns, usually found through visual inspection of the variables. Training linear models

is faster and computationally cheaper than non-linear models (usually done by ordinary least squares).

When data exhibits more complex patterns not suitable for linear models, a non-linear model is pre-

ferred. Non-linear models are capable of explaining complex relationships between the dependent and

independent variables. However, the optimization of non-linear models are generally harder and usually

requires numerical approximation when the problem cannot be transformed to a linear domain. When

optimizing the objective function of a non-linear model though iteration, appropriate initial values of the

parameters become a critical factor. Furthermore, for non-linear models containing a large number of

parameters, the training algorithm becomes computationally expensive.

NNs with non-linear activation functions are considered a class of non-linear models and are capable

of learning highly complex patterns in some datasets, especially in a deep learning architecture.

2.4.3 Parametric vs non-parametric

The number of parameters found in non-parametric methods increase as the amount of data increases,

meaning that we may have a potentially in�nite number of parameters in a non-parametric model. These

models usually require fewer assumptions than parametric methods and are preferred over parametric

methods in unsupervised learning environments such as cluster analysis. Examples of non-parametric

learning algorithms include:

• k-nearest-neighbors

• k-means clustering

• decision trees

When using parametric methods to model data, we decide on the number of parameters included in the

model beforehand. There are often strong assumption we need to make about the distribution of the data

for the model to perform well, for example in a linear regression we assume a linear relationship between

the dependent and independent variables as well as normality of the error terms. Examples of parametric

learning algorithms include:

• linear and logistic regression

• Naïve Bayes classi�cation

• linear support vector machines
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NNs are considered parametric learning algorithms since we decide beforehand on the number of hidden

layers and nodes contained in each layer. However, an advantage of an NN is that there is no need for any

assumptions regarding the distribution of the data. This makes the NN a particularly useful algorithm

when we have a large amount of data but lack information on the behaviour of the data.

2.5 Summary

Although deep learning is often considered a modern �eld of research rapidly advancing as computational

power and data volumes grow, this literature review served as an account of important past research

which contributed to the �eld's recent success.

Arguably the oldest implementation of the feedforward NN is the Rosenblatt perceptron introduced in

Section 2.1.1. Built upon this design but trained di�erently, the multilayer perceptron allows the use of

deeper architectures to solve non-linear problems. Although possible in theory, practical implementation

of a multilayer perceptron containing deep architectures were computationally infeasible during those

years. Section 2.1.2 discussed the origin of the multilayer perceptron and how it became possible to train

models comprised of deeper architectures on computers from previous eras.

Section 2.2 mentioned possible shortcomings of NNs and Section 2.3 discussed previous research done on

the approach we have chosen to address these challenges. Lastly, Section 2.4 provided a brief review of

important concepts discussed in this dissertation and brought this chapter to an end.



Chapter 3

Bayesian Learning

Bayesian inference is a statistical technique where we employ Bayes' theorem to update our belief of a

population, given new evidence obtained from a sample. Using a Bayesian approach to draw inference

from data means that we adopt a probabilistic framework. Our knowledge about an outcome is expressed

as a probability distribution (called a posterior distribution) and is obtained by combining our prior belief

with observed evidence from data in the form of a likelihood function.

A key di�erence between Bayesian and frequentist methods is the way in which probability is inter-

preted [43]. A frequentist relates the probability of an event to the relative frequency of the event's

occurrence in the limit of a large number of repeated experiments under the same conditions. A Bayesian

uses the concept of probability as a re�ection of their uncertainty of an event as it changes with new infor-

mation. This de�nition provides a basis for us to appeal to Bayesian inference as a means to addressing

uncertainty in deep NNs.

For this section, let X = {x1, x2, ..., xn} be a matrix of input variables with a vector of response variables

y = {y1, y2, ..., yn}. We assume that the data was generated from some function y = f(X; θ) with a

collection of unknown parameters θ.

3.1 Likelihood

In a statistical context, likelihood refers to the plausibility of parameter values for a sample of observed

data. This measure of plausibility is the conditional probability of the data given those speci�c parameter

15
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values, i.e.

L(θ|X, y) = P (X, y|θ).

Many frequentist estimation techniques are based on maximum likelihood estimation (MLE), where the

optimal parameter values are those that maximise the likelihood function.

In a Bayesian framework, the likelihood function is used in conjunction with the prior distribution to

obtain a posterior distribution. The mode of the posterior distribution of the parameters produces the

maximum a posteriori (MAP) estimates of the parameters, i.e. the parameter values that satisfy the Eq.

θ̂MAP = argmaxθP (θ|X, y).

When using Bayesian inference speci�cally to estimate parameters from a set of data, the MAP values are

a popular choice. However, in the limit of in�nite data, the MAP estimate can be shown to converge to

the MLE since the evidence of the data contained in the likelihood overwhelms the prior distribution [43].

The speci�c structure of the likelihood function also has an important role to play in Bayesian inference,

as will be shown in Section 3.2.2 where we discuss conjugacy.

3.2 Prior

The prior distribution represents our prior knowledge of an unknown quantity in Bayesian inference before

we take the evidence from a set of data into account. Depending on the problem, the unknown quantity

of interest may be a latent variable that can only be inferred instead of observed, or a parameter used

in a statistical model. The choice of prior is of critical importance in Bayesian inference, especially in

cases where we have limited data. An inappropriate choice of prior can lead to misleading results when

performing inference. In addition to the speci�c probability distribution chosen, di�erent types of priors

exist which allows Bayesian inference to be performed on a wide variety of problems, depending on the

prior information the analyst has at hand.

3.2.1 Informative vs uninformative priors

Informative priors are prior distributions which incorporate speci�c information gathered on the data be-

fore calculating the posterior. Examples of such information could be expert opinions or literature on the

data being analysed, or the results of previous surveys. Although it sounds useful to apply such informa-

tion when analysing data, it could lead to problematic results if not applied carefully. The prior opinions

of experts may be biased and not adequately represent the population. Conversely, the appropriate use of

an informative prior could lead to sensible restrictions placed on parameter values and improve estimation
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especially in cases where data is limited. In cases of a conjugate prior (discussed in the next section),

the posterior distribution obtained from a sample could be used as an informative prior for inference on

future data sampled from a similar population.

Uninformative priors express a general shape of the unknown quantity of interest without incorporat-

ing as much bias into the posterior as an informative prior would. These prior distributions often allow

for a wider range of possible values with close to equal probabilities. The estimations resulting from a

posterior distribution using an uninformative prior are usually close to the estimations resulting from

frequentist techniques since the likelihood of the data provides more information than the uninformed

prior. This is especially true when using large samples of data.

For example, consider a coin-tossing experiment, where we make the assumption that the coin is bal-

anced. The outcome of each coin-�ip experiment has a Bernoulli(p) distribution where p denotes the

probability of observing heads (H) and X is the number of heads observed in a certain number of tosses.

We can assume an uninformative prior for the proportion p by using a Uniform(0,1) prior distribution.

This prior can be considered an uninformative prior since we only express a general shape of the distri-

bution of p, i.e. p ∈ [0.1] where each value of p in that interval has equal probability. As we observe more

coin-tosses, the likelihood of the observed data would overwhelm the prior, causing the MAP estimate

from the posterior distribution to converge to the MLE estimate.

Figure 3.1: Posterior distributions of p from coin-tossing experiments. Each subplot indicates the observed

heads (H) or tails (T) from a certain number of coin tosses (N).

As shown in Figure 3.1, the uninformative uniform posterior in the top left is shown before any coin �ips

have been observed. As we observe results, the shape of the posterior becomes more centered around the

true value of p.
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3.2.2 Conjugacy

We de�ne a prior distribution as a conjugate prior when the resulting posterior distribution possesses a

similar structure as the prior. For example, suppose that we have a sample of i.i.d data x = {x1, x2, ..., xn}

which follows a Bernoulli distribution with parameter θ ∈ [0, 1]. If we are interested in deriving the

posterior distribution for θ, we would use the likelihood function of the observed data

p(x|θ) =

n∏
i=1

θxi(1− θ)1−xi , (3.1)

together with some prior distribution P (θ). By inspecting Eq. 3.1, it follows that the Beta distribution has

a similar structure up to a constant with respect to the parameter θ. Therefore, we choose the Beta(α, β)

distribution as a prior with hyper-parameters (parameters of the prior distribution) α and β:

p(θ) =
1

B(α, β)
θα−1(1− θ)β−1

∝ θα−1(1− θ)β−1

where B(α, β) is a ratio of gamma functions Γ(α)Γ(β)
Γ(α+β) which stays constant with respect to θ.

Next, using Bayes' theorem we multiply the likelihood function and prior to derive an expression of

the posterior distribution:

p(θ|x) =
p(x|θ)p(θ)
p(x)

(3.2)

∝ p(x|θ)p(θ)

∝
( n∏
i=1

θxi(1− θ)1−xi

)(
θα−1(1− θ)β−1

)
= θ

∑n
i=1 xi+α−1(1− θn−

∑n
i=1 xi+β−1)

∼ Beta(

n∑
i=1

xi + α, n−
n∑
i=1

xi + β). (3.3)

It follows from Eq. 3.3 above that the posterior p(θ|x) also follows a Beta distribution, meaning that the

Beta distribution is a conjugate prior for the Bernoulli likelihood function.

The term p(x) in Eq. 3.2 is known as evidence of the data (also called the normalisation factor) and

is constant with respect to θ. In this example, it follows that

p(x) = B(α, β).

Using a conjugate prior is a mathematical convenience because it allows us to use the posterior as a prior

when we receive new data and wish to update our belief of the value of θ. It also provides us with an

analytical expression of the evidence p(x), which otherwise can become very challenging to compute for
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complex models.

Consider again the coin-tossing experiment from the previous section. By using a Beta(6,6) prior distri-

bution (an informative prior), we restrict the value of p to the interval [0.1] and place higher probability

on the value p = 0.5. Put di�erently, we use our prior knowledge of coins in general and assume that the

coin is balanced.

Figure 3.2: Posterior distributions of p from coin-tossing experiments. Each subplot indicates the observed

heads (H) or tails (T) from a certain number of coin tosses (N).

From Figure 3.2 we see that the prior distribution (top left) has the same general shape as the posterior.

By observing data and incorporating the likelihood we only change the width and central location of the

distribution. These posterior distributions can then conveniently be used as a prior distribution for future

coin-tossing experiments under the same circumstances (using the same coin, for example).

3.3 Posterior distribution

If the data was generated by some function y = f(X; θ) with a collection of unknown parameters θ,

the Bayesian approach would be to express our knowledge of θ by deriving a posterior distribution for

θ. Before observing any data, our initial belief about the possible values of θ is captured in a prior

distribution that we specify. Accordingly, we use Bayes' theorem to combine the prior with the likelihood

function of observed data:

P (θ|X, y) =
P (y,X|θ)P (θ)∫
P (y,X|θ)P (θ)dθ

. (3.4)

Eq. 3.4 produces an updated probability distribution over all the possible values of θ, conditional on the

observed data. It can be acquired by combining the likelihood function P (y,X|θ), the prior distribution

and normalisation constant
∫
P (y,X|θ)P (θ)dθ also referred to as the "evidence" of the data. The purpose

of the normalizer is to allow the posterior distribution to integrate to 1, which is a requirement for a valid
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probability distribution. When using a conjugate prior, the entire posterior distribution becomes available

without having to calculate the evidence separately. However, as convenient as conjugate priors are, they

are rarely available or suitable to the problem. For higher dimensional problems where a conjugate prior

is not available, the calculation of the evidence may become problematic. This is because the expression∫
P (y,X|θ)P (θ)dθ requires us to integrate over all possible parameter settings in the prior and likelihood.

In the case of deep learning, for example, extremely complex models are often used containing hundreds

of thousands of parameters. Calculating the evidence therefore becomes computationally intractable

and requires us to approximate the posterior instead. Approximation methods for the posterior will be

discussed in Chapter 5.

3.4 Posterior predictive distribution

A posterior predictive distribution can be derived using the posterior to produce a probability distribution

over new/unseen data. For a new observation x′, we derive the posterior predictive distribution of its

corresponding response variable y′ given the observed data X and x′ by integrating the likelihood of the

new data with respect to the posterior distribution:

P (y′|x′, X) =

∫
P (y′|x′, X, θ)P (θ|X)dθ. (3.5)

The posterior predictive distribution is not only useful for making single point predictions. The posterior

predictive variance of each new data point can be used as a measure of uncertainty in new predictions as

illustrated in Figure 3.3 using a simple example of Bayesian linear regression. We can also generate new

data from the posterior predictive and see whether the generated data displays the same behaviour as the

observed data (known as a Posterior Predictive Check), which indicates to us how well we have chosen

our prior.
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Figure 3.3: Example of posterior predictive standard deviation used as uncertainty measure.

Note, however, that the calculation of Eq. 3.5 looks similar to the evidence of the data. The only

di�erence is instead of using the prior in the integral, we use the posterior. This once again could lead to

computational di�culties and may require us to approximate the posterior predictive distribution as well.

Although approximation may seem like a compromise, it has become common practice among Bayesian

analysts to employ powerful algorithms such as Markov Chain Monte Carlo (MCMC) or variational

inference capable of producing accurate approximations of these posterior distributions.

3.5 Summary

Bayesian inference is a time-tested method which allows us to extract additional information from the

data's distribution, provide robust regularisation from the prior (usually through a non-informative prior)

which prevents over-�tting to data and allow us to measure the uncertainty around a prediction. It also

allows us to integrate any available expert knowledge we have on the unknown parameters through the use

of an informative prior. For model evaluation, the posterior distribution allows us to perform a posterior

predictive check (ppc) where we generate additional data from the posterior and evaluate its behaviour

in comparison to the training data. To illustrate these advantages, the next chapter introduces classical

linear methods and we discuss how to approach the model from a Bayesian perspective.



Chapter 4

Linear classi�er

Before introducing Neural Networks (NNs) it would be useful to �rst review some of the linear model

structures present in NN architecture. This dissertation focuses on models used for classi�cation tasks

and therefore logistic regression would be an appropriate starting point.

4.1 Logistic regression

Unlike linear regression which is used to model a continuous output variable Y for a given continuous

input X, we use logistic regression to learn the probabilities of a categorical output Y for a given con-

tinuous input X. Although linear regression can be used in an environment where the response variable

is de�ned in the unit interval [0, 1] for binary classi�cation, it is not advised since the linear model will

produce values outside of this interval when extrapolating.

To account for this, logistic regression applies a sigmoid function Φ : IR → [0, 1] shown in Eq. 4.2

on the dot product between the model parameters and input data (also known as the link function). Lo-

gistic regression is considered a general linear model (GLM) since the output of the model is not directly

related to the link function. Instead, the link function is �rst passed through a non-linear function, similar

to an NN with one hidden layer containing a single node. However, despite the non-linearity present in

the design of a logistic regression, the model only works well on linearly-separable data since the model

produces a linear decision boundary from the estimated probabilities. The importance of this assumption

will be highlighted in the example to follow. For ease of illustration we will continue the chapter in a

binary-classi�cation environment.

Consider an input matrix X = {x1, x2, ..., xN}, where each xi ∈ Rp and vector of response variables

22
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y ∈ {0, 1}, indicating which class each observation belongs to. We create a linear model of the log-odds

of observing the event (Y = 1) for any input from X as follows:

log

(
P (Y = 1|X = x)

1− P (Y = 1|X = x)

)
= wᵀx, (4.1)

where w is a vector of weight parameters (also called regression coe�cients) with dimension p.

The probability P (Y = 1|X = x) can easily be derived algebraically:

P (Y = 1|X = x)

1− P (Y = 1|X = x)
= ew

ᵀx

by adding 1 to each side of the equation we get

P (Y = 1|X = x)

1− P (Y = 1|X = x)
+ 1 = ew

ᵀx + 1

1

1− P (Y = 1|X = x)
= ew

ᵀx + 1

P (Y = 1|X = x) = 1− 1

ewᵀx + 1

=
ew

ᵀx

ewᵀx + 1

by multiplying both sides of the equation with e−wᵀx

e−wᵀx , we are left with

P (Y = 1|X = x) =
1

1 + e−wᵀx
. (4.2)

Eq. 4.2 shows that the class probabilities are expressed in terms of a linear function of the input data X,

passed through a sigmoid function.

Fitting a logistic regression model to data is usually achieved through maximum likelihood estimation.

Since we are in a binary classi�cation environment, the distribution of response variable Y can be assumed

to be Bernoulli with parameter p = P (Y = 1|X = x). For notational simplicity and to emphasise

dependence on the parameters w, let:

P (Y = 1|X = x) = p(x;w), and (4.3)

P (Y = 0|X = x) = 1− p(x;w).

Using the Bernoulli probability function f(x) = px(1− p)1−x, the log-likelihood for weight parameters w



CHAPTER 4. LINEAR CLASSIFIER 24

can be expressed as follows:

`(w) = log

[ N∏
i=1

p(xi;w)yi(1− p(xi;w))1−yi
]

=

N∑
i=1

[
yilog(p(xi;w)) + (1− yi)log(1− p(xi;w))

]

=

N∑
i=1

[
yiw

ᵀxi − log(ew
ᵀxi + 1)

]
(4.4)

We maximize the log-likelihood function by setting its �rst derivative equal to zero:

∂`(w)

∂w
=

N∑
i=1

xi
(
yi − p(xi;w)

)
= 0 (4.5)

Since a closed form expression for w which maximizes Eq. 4.5 cannot be found analytically, we need to

use numerical approximation. In the case of logistic regression, the log-likelihood function is known to

be concave. Therefore, the optimal point can be approximated through an iterative method called the

Newton-Raphson algorithm [44]. To that end, we need to calculate the second-derivative (known as the

Hessian matrix):

∂2`(w)

∂w∂wᵀ
= −

N∑
i=1

xix
ᵀ
i p(xi;w)(1− p(xi;w)).

Algorithm 3 Newton-Raphson algorithm

1. Choose initial values for weight parameters w (zero is usually a good choice [44])

2. Using current weight parameters w, calculate p(xi;w) for each xi ∈ X

3. Update current weights w to wnew = w −
(
∂`(w)
∂w∂wᵀ

)−1
∂`(w)
∂w

4. Steps 2 and 3 are repeated until convergence. Convergence is met when the di�erence between w

and wnew becomes smaller than a user-speci�ed threshold.

Algorithm 3 summarises the steps taken when using the Newton-Raphson method. For concave log-

likelihood functions such as in logistic regression, convergence is almost always guaranteed. In cases

where the optimal point estimates are erroneously passed over, a suitable �x would be to decrease the

update increment in Step 3 [44].

4.1.1 Example

As a simple classi�cation example, let D = {x, y} = {(x1, y1), (x2, y2), ..., (x200, y200)} be a collection of

observed pairs where each xi ∈ R is an explanatory variable (i.i.d.) with corresponding binary response
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variable yi ∼ Bernoulli(pi). Using a set of parameters w = [w0, w1] = [1, 2], the corresponding Bernoulli

parameter pi was generated using the sigmoid function pi = 1
1+exp{w0+w1xi} . A random sample of 150

observations were used as a training set, leaving the remaining 50 observations as a test set.

Figure 4.1: Training data with theoretical probabilities using the true parameter values.

The model was trained in Python using the Newton Raphson algorithm shown in Algorithm 3. With initial

values set to zero, the log-likelihood shown in Eq. 4.4 converged after 500 iterations using Algorithm 3

with a convergence criteria of 5× 10−4 and produced estimates ŵ = [0.84, 2.47].

Figure 4.2: Convergence of log-likelihood.
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For each observation in the test set, the model yielded a predicted class probability p̂i = 1
1+exp{ŵ0+ŵ1xi} .

To produce a categorical output for classi�cation, a decision boundary at 0.5 was chosen, i.e.

ŷi =

1 if p̂ ≥ 0.5

0 if p̂ < 0.5

The model scored a classi�cation accuracy of 94% on the small test set containing 50 observations. Despite

the high accuracy score, Figure 4.3 shows that the model did not generalise well to the outliers from both

classes. For a logistic regression, any point that violates the assumption of linear separability may cause

the model to over-�t to data or perform poorly on future data.

Figure 4.3: Predicted class probabilities and class assignments on test data.

If we inspect the predicted probabilities in Figure 4.3, it becomes clear that observations close to the

decision boundary, i.e. where p(xi|ŵ) is close to 0.5 are assigned to a class with high uncertainty. In

many practical scenarios such as medical diagnosis [1] or autonomous driving [45], important decisions

rely on output from more complex regression or classi�cation models. In such cases, understanding the

uncertainty around the output of a model could prove useful. Moreover, instead of a single point-estimate

for parameter or output values, addressing an entire probability distribution of such values could provide

important insight. In the next section we consider the logistic regression model approached from a

probabilistic perspective in order to capture uncertainty in a simple classi�cation problem.
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4.2 Bayesian logistic regression

The Bayesian approach to logistic regression allows us to compute the full posterior distribution over the

model parameters and gain insight into how uncertain we are about making predictions given the posterior

predictive distribution.

In Bayesian logistic regression, we derive the posterior distribution of the weight parameters w. Following

the example from the previous section, we choose our prior distribution over the weight parameters as

i.i.d P (w) = N (0,Σ0) for some covariance matrix Σ0. For an uninformative prior, the covariance matrix

can be chosen such that P (w) allows for a wide range of values. The assumption of independence between

weight parameters simpli�es the calculation of the posterior distribution at the cost of capturing covariance

between weights within the model. By selecting a Gaussian prior with zero mean, we may be more immune

to over-�tting since we enforce our initial belief that the weight parameters are centred around zero before

updating the posterior distribution with the likelihood. The same result is achieved through L1 or L2

regularisation in a non-Bayesian context. However, the disadvantage of choosing a Gaussian prior is that

we force the distribution of the weight parameters to a symmetric bell-shape in the absence of more

adequate prior knowledge.

The likelihood function P (y|X,w) constitutes the probability of observing the outcome of the data given

the current parameter setting. Since the response variable Y only takes two possible values in this context,

we assume that Y follows a Bernoulli distribution with parameter P (Y = 1|X = x) as de�ned in Eq. 4.3.

Using the the result from Eq. 4.2 and the notation introduced by Eq. 4.3, the likelihood function takes

the following form:

P (y|X,w) =

N∏
i=1

p(xi)

=

N∏
i=1

p(xi)
yi(1− p(xi))1−yi

=

N∏
i=1

[
1

1 + e−w
ᵀxi

]yi[ e−w
ᵀxi

1 + e−w
ᵀxi

]1−yi
.

The posterior distribution over the weights can therefore be expressed as:

P (w|X, y) =
P (y|X,w)P (w)∫

...
∫
P (y|X,w)P (w)dw

∝
N∏
i=1

[
1

1 + e−w
ᵀxi

]yi[ e−w
ᵀxi

1 + e−w
ᵀxi

]1−yi
×

p∏
j=1

1√
2πσj

exp

{
− 1

2

(wj
σj

)2
}
. (4.6)
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To calculate the complete posterior distribution we require the normalisation term
∫
...
∫
P (y|X,w)P (w)dw.

For models where the weight vector is de�ned in higher dimensions, the integral becomes too complex to

calculate analytically since we marginalize over all the possible parameter settings. This can be solved

by using approximation methods such as Markov Chain Monte Carlo discussed in Section 5.1. However,

since we use a simple model with only 2 parameters (w0 and w1) in this example, we are able to express

the normalisation term with a double integral:∫ ∞
−∞

∫ ∞
−∞

(
N∏
i=1

[
1

1 + e−w
ᵀxi

]yi[ e−w
ᵀxi

1 + e−w
ᵀxi

]1−yi
×

p∏
j=1

1√
2πσj

exp

{
− 1

2

(wj
σj

)2
})

dw, (4.7)

where p is de�ned as the number of weight parameters used by the model. The double integral in Eq. 4.7

can be approximated using the SciPy package in Python [46] and using this result we are able to derive

the full posterior of the weight parameters w = {w0, w1} used in the logistic regression example. The

joint posterior distribution of w is shown in Figure 4.4.

Figure 4.4: Joint posterior distribution of weight parameters for logistic regression.

Using the joint posterior we derive the marginal posterior distribution of each parameter as illustrated in

Figure 4.5.
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(a) w0 (b) w1

Figure 4.5: Marginal posterior distributions of weight parameters.

4.2.1 Monte Carlo Integration

The posterior predictive distribution allows us not only to make single predictions for new data using

the mean or median of the posterior, but to create con�dence intervals and express our uncertainty for

predicted response values. For a new input x′, the posterior predictive distribution can be expressed as

follows:

p(y′|x′, X, y) =

∫
p(y′|x′, w)p(w|X, y)dw (4.8)

Similar to the normalisation term, we marginalize over all the weight parameters when calculating the

posterior predictive distribution. However, since we already have the posterior distribution available we

are able to sample parameter values directly from the posterior in order to approximate the posterior

predictive and generate predictions for new data using Monte Carlo integration.

To prove that Monte Carlo integration can approximate the integral in Eq. 4.8, de�ne the weight param-

eters as our random variable of interest W governed by the probability distribution p(W ) = p(w|X, y),

i.e. the posterior distribution. Our function of interest is the product inside the integral

f(W ) = p(y′|x′, w)p(w|X, y).
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We de�ne the Monte Carlo estimator as

FN =
1

N

N∑
i=1

f(Wi)

p(Wi)

=
1

N

N∑
i=1

p(y′|x′, wi)p(wi|X, y)

p(wi|X, y)

=
1

N

N∑
i=1

p(y′|x′, wi)

Monte Carlo integration states that by the law of large numbers, the expected value of the estimator FN

approaches the integral under consideration for a sample size N as follows:

E[FN ] = E
[ 1

N

N∑
i=1

f(Wi)

p(Wi)

]
=

1

N
E
[ N∑
i=1

p(y′|x′, wi)p(wi|X, y)

p(wi|X, y)

]
=

1

N

N∑
i=1

E
[
p(y′|x′, wi)

]
=

1

N

N∑
i=1

∫
p(y′|x′, w)p(w|X, y)dw

=
1

N

N∑
i=1

p(y′|x′, X, y) (using Eq. 4.8)

= p(y′|x′, X, y) (4.9)

Given a new observation x′, the following steps are taken to produce an estimate of p(y′|x′, X, y):

1. Generate a large sample W s = {ws1, ws2, ..., ws10000} from p(w|x, y)

2. Calculate p(y′|x′, wsj) = 1

1+e
−xws

j
for every wsj ∈W s

3. Calculate 1
N

∑N
j=1 p(y

′|x′, wsj)

To illustrate the algorithm, Figure 4.6 shows a distribution of predicted class probabilities for a single

input value x′ = −0.5. This value was chosen to be close to the linear decision boundary such that its

class prediction contains more uncertainty, as observed in spread of the histogram.
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Figure 4.6: Histogram of posterior predictive probabilities for a single input value

This produces approximate samples from the posterior predictive distribution and allows us to capture

important characteristics of model predictions such as the mean and standard deviation.

Figure 4.7: Model predictions obtained from posterior predictive samples.

As discussed in the previous section, we are interested in the measure of uncertainty when making class

predictions from the model output. This is achievable by using the standard deviation of each prediction

obtained from the posterior predictive distribution as shown in Figure 4.7. As we observe data closer to
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the decision boundary, the standard deviation increases rapidly since the linear boundary isn't capable of

separating the data perfectly.

Compared to the frequentist approach in the previous section, the model shows similar performance.

However, by using a Bayesian approach we have gained additional information about the problem such as

the distribution of the model parameters and the uncertainty of prediction. For a simple example such as

this, we were able to easily calculate the posterior distribution and use Monte Carlo integration to predict

class labels of new data. For more complex models, more advanced methods are required to approximate

the posterior distribution. In the next section we will expand the concept of Monte Carlo sampling to

Markov Chain Monte Carlo (MCMC) and introduce an alternative method called Variational Inference

(VI).



Chapter 5

Approximation Methods

Given the complex structure of deep learning models, performing Bayesian inference on such models would

require us to use powerful algorithms to approximate the posterior distribution of the unknown parameter

values. As shown in the previous chapters, the posterior distribution contains an analytically intractable

integral for most complex models where conjugate priors are few and far between. The goal of this chapter

is to introduce two di�erent families of approximation algorithms. Their approximation of the posterior

as well as scalability to large sets of data or model complexity will be discussed with a simple Bayesian

logistic regression example at the end of each section. These methods will also be used for more complex

problems in the next chapter when we formally introduce Neural Networks.

5.1 Markov Chain Monte Carlo

Monte Carlo simulation is the method of using random sampling in order to infer characteristics about

a population or probability distribution. Based on Monte Carlo simulation as shown in Section 4.2.1,

Markov Chain Monte Carlo (MCMC) is a large class of sampling algorithms which can be used to solve

integration and optimization problems de�ned in spaces of high dimensions. It has been shown that

MCMC methods produce exact samples from the target density/posterior distribution [36] after enough

samples have been drawn from the Markov Chain to reach its stationary distribution. This result has made

MCMC a popular tool and area of research among statisticians when using methods such as Bayesian

inference for complex problems. One caveat of MCMC is that computational performance may su�er

when using massive sets of data or extremely complex models. A more scalable solution called variational

inference may be preferable in such circumstances and will be discussed in Section 5.2. In this section

we investigate a widely used MCMC algorithm called Metropolis-Hastings, show how it specialises to

33
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Gibbs-sampling under certain conditions and illustrate the sampling method with an example.

5.1.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm, which was named one of the top 10 most important algorithms of the

20th century by the journal Computing in Science and Engineering [47] belongs to the family of MCMC

algorithms. Suppose that our goal is to sample from some probability distribution p∗ called the target

distribution, but doing so is not computationally or analytically feasible. For example, when calculating

the posterior distribution over parameters in a Bayesian setting, the normalisation term requires us to

integrate over all the possible parameter values. Such an integral is analytically intractable in high

dimensions and needs to be approximated.

The Metropolis-Hastings algorithm allows us to approximate p∗ through some form of a random walk,

where each point is chosen in proportion to the probability associated with it.

Let {X(t) : t ≥ 0} be a Markov chain de�ned on a state space S with the following properties:

• For every state there is a positive probability of moving to any other state de�ned in S, i.e. the

chain is irreducible.

• The Markov Chain is aperiodic, meaning that the chain does not become trapped in cycles.

Given the above properties, the Markov Chain is called ergodic. Another important property of the above

mentioned Markov Chain is that it is stationary with respect to some distribution π. This means that for

large t, if X(t) ∼ π(x) then X(t+ 1) ∼ π(x) and so the chain converges in distribution to the distribution

π.

The Metropolis-Hastings algorithm shown in Algorithm 4 generates the states of this Markov chain and

upon convergence to its stationary distribution allows us to sample from the target distribution p∗. The

number of iterations needed for the Markov Chain to reach this stationary distribution is called the burn-in

and varies depending on the initial values chosen for the algorithm.

For each stateX(t), the algorithm uses a conditional distribution q(X(t+1)|X(t)) called a proposal density

to generate a new candidate state X(t+1). For this we use a Gaussian distribution, i.e. q(X(t+1)|X(t)) ∼

N (X(t+1)|X(t) = x,Σ) although alternative probability distributions can be selected to suit the problem

at hand.
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Algorithm 4 Metropolis - Hastings

1. Pick an initial "guess" value, x0.

2. For i = 0,1,2,...

� Sample x′ ∼ q(x′|xi)

� Compute A(xi, x
′) = p∗(x′)q(xi|x′)

p∗(xi)q(x′|xi)

� Let r = min(1,A(xi, x
′))

� Sample u ∼ U(0, 1)

� Set new sample to

xi+1 =

x
′ if u < r

xi if u ≥ r

Since we are using the algorithm in this dissertation for Bayesian inference, the target density p∗ refers

to the posterior distribution over the parameters. However, the normalisation term used for the posterior

distribution is not needed for this approximation since the fraction found in A(xi, x
′) cancels it out.

Therefore, all we need in order to compute p∗ is the product of the likelihood and the prior. For example,

in a Bayesian logistic regression problem such as in the previous section we only need the expression

p∗ =

N∏
i=1

[
1

1 + e−w
ᵀxi

]yi[ e−w
ᵀxi

1 + e−w
ᵀxi

]1−yi
×

K∏
j=1

1√
2πσj

exp

{
− 1

2

(wj
σj

)2
}
,

where K is de�ned as the number of unknown parameters used in the model.

5.1.2 Example

To illustrate the Metropolis-Hastings algorithm, we consider again Bayesian logistic regression. In this

example, however, we include an additional parameter in the model such that the evidence in the posterior,

i.e. ∫
...

∫
P (y|X,w)P (w)dw

becomes impractical to compute directly. Using notation introduced by Eq. 4.3, the model is de�ned as

follows:

p(x|w) =
1

1 + e−wᵀx
,

where w = {w0, w1, w2}, w0 serving as an intercept paramer. We generate a set of classi�cation data

D = {X, y} such that X = {x1, x2} from the Scikit-Learn Python package [17] with a binary response

variable y separating 2 clusters within the data as shown in Figure 5.1.
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Figure 5.1: Binary classi�cation training data.

To approximate the posterior distribution, we use the Metropolis-Hastings algorithm with a proposal

density q(X(t + 1)|X(t)) ∼ N (X(t + 1)|X(t) = x,Σ) and all initial values set to zero. The �rst 500

iterations of the algorithm were discarded as burn-in and the Markov Chain was set to generate 10000 steps

following the initial discarded values. A trace-plot of the Markov Chain after burn-in and corresponding

distribution of the weight parameters is shown in Figure 5.3

By visual inspection, the trace plot in Figure 5.3 indicates that the Markov Chain has approached a

stationary distribution which will be used as an approximate posterior distribution of w to sample from.

Using the estimated posterior, we generate samples from the posterior predictive distribution for a test

dataset. The predicted class labels and a heat map of the posterior predictive mean value is shown in

Figure 5.2
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Figure 5.2: Class label prediction and posterior predictive distribution.
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Figure 5.3: Posterior distributions of weight parameters estimated by Markov Chains.
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The above predictions and parameter estimates are easily obtainable by logistic regression using maximum

likelihood estimation. Since we are interested in obtaining a measure of uncertainty in prediction, we use

the standard deviation in the posterior predictive distribution to give us additional insight into the model.

Figure 5.4 illustrates the uncertainty in prediction of classes given newly observed data. As expected, in

addition to low class probabilities of observations close to the linear coundary, the uncertainty of these

probabilities are considerably higher than observations further away from the line.

The output probability such as shown in Figure 5.2 is often erroneously interpreted as model con�dence.

For a data point with predicted class probability P (Y = 1|X = x) = 0.49, a user would assume that the

predicted class label should be 0. However, for slightly di�erent parameter values (caused by variation

in the data) the predicted class probability of the observations close to the linear boundary may change

and produce a di�erent predicted class label. Therefore, in cases where we have limited training data, the

logistic model may not generalise well to irregular patterns in the data and incorrectly predict the classes

of future data points in areas of high uncertainty.

Figure 5.4: Posterior predictive standard deviation as uncertainty measure.
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5.1.3 Gibbs sampling

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm in that the values sampled

from the proposal density are always accepted, i.e. r = 1 using the notation from the previous section.

Furthermore, the random variables are sampled from univariate conditional distributions, conditional upon

all but one of the variables at a time. Therefore, the proposal distribution introduced in the previous

section is the posterior probability of the variable.

Suppose that we have a vector of model parameters w = {w1, w2, ..., wp} for which we would like to �nd

the joint posterior distribution p(w|D) where D is our observed data. If we are able to draw samples from

each parameter's conditional distribution

p(w1|w2, w3, ..., wp,D)

p(w2|w1, w3, ..., wp,D)

· · ·

p(wp|w1, w3, ..., wp−1,D),

then Gibbs sampling lets us construct a Markov Chain from the above distributions with a stationary

distribution equal to the posterior distribution, similar to Metropolis-Hastings. Once each variable has

been sampled from its conditional distribution, we have completed one cycle of the Gibbs sampler.

The advantage of Gibbs sampling is that we are able to simplify a higher-dimensional problem into a

univariate one by drawing a single variable at a time. This is advantageous since sampling from high

dimensional joint distribution functions is often harder than univariate conditional distributions.

The disadvantage of Gibbs sampling is that expressions for the above conditional distributions are not

always available. In addition, if the expressions are available, Gibbs sampling is only useful if it is

computationally e�cient to draw samples from these distributions. It is also possible for consecutive

samples to be strongly correlated, causing convergence to the stationary distribution to take a large

number of steps. The Gibbs sampler is therefore preferable over the Metropolis-Hastings algorithm in

cases where it is necessary (and also relatively easy) to reduce the dimensionality of the target distribution

into univariate conditional probabilities.



CHAPTER 5. APPROXIMATION METHODS 41

5.2 Variational Inference

Variational Inference (VI) and MCMC are two very di�erent techniques that are widely used to solve

the same problem. In this case, we are interested in approximating a posterior distribution over some

unknown parameters in the data when the evidence of the data, p(D), is computationally intractable.

Unlike MCMC, VI approximates the target distribution through means of optimization. In addition to

VI's scalability to massive sets of data and complex models, another advantage is that convergence is easily

measured, as opposed to MCMC where the required number of samples before convergence is often not

known beforehand. This makes VI a better choice in some circumstances. However, despite its usefulness,

VI is not as widely used and understood by statisticians as its counterpart MCMC. This section will serve

as a short introduction to the theory behind VI and provide a practical illustration in a Bayesian setting.

5.2.1 Shannon Entropy

In variational inference we specify a family of probability distributions Q over a random variable X,

where our aim is to approximate the "true" distribution p(X) also called the target distribution. Each

distribution q(X) ∈ Q is a candidate approximation to p(X) (usually with a simpler structure), where we

select the candidate that minimizes a distance measure called the Kullback-Leibler (KL) divergence [48],

also known as the Relative Entropy. The KL divergence uses entropy to measure how "close" our candidate

distribution is to the target probability distribution, based on the distribution we choose for q as well as

its parameters settings. Before further investigating KL divergence, we brie�y review Information Theory

and the role of entropy in VI.

Suppose that the probability distribution p(X) over a set of events D = {X1, X2, ..., Xn} is known. In

information theory, we can measure the amount of information of observing an event Xi ∈ D as

I(Xi) = −log(p(xi)).

From the above expression it is clear that observing events with high probability holds less information (or

is less "surprising") than observing an event with low probability. Using the above information measure,

the average information found in D is simply the expected value of I(Xi) with respect to the probability

distribution p(X):

Hp(X) = E
p(X)

[I(Xi)]

=− E
p(X)

[log(p(xi))] (5.1)

The average information expressed in Eq. 5.1 is also known as Shannon Entropy (also called Entropy)

and is used as a measure of uncertainty found in a probability distribution.
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5.2.2 Kullback-Leibler Divergence

We now return to the problem of approximating the posterior distribution over latent variables w, i.e.

p(w|D). If we wanted to measure the distance or similarity between a candidate distribution q(w) and the

posterior p(w|D), we could use the concept of entropy to acquire a measure called the Relative Entropy,

or the KL divergence. The notation used for the the KL divergence with respect to q against p is shown

below:

KL(q(w)||p(w|D)) = E
q(w)

[log(q(w))]− E
q(w)

[log(p(w|D))]

= E
q(w)

[log(q(w))]− E
q(w)

[log(p(w,D))] + log(p(D)). (5.2)

Note that KL divergence is not symmetric, that is

KL(q||p) 6= KL(p||q).

Eq. 5.2 shows dependence on the evidence p(D), causing the KL divergence to become computationally

intractable, which contradicts the reason we appeal to VI in the �rst place. Instead, we re-arrange Eq.

5.2 to obtain an alternative objective function called the Evidence Lower Bound (ELBO):

E
q(w)

[log(p(w,D))]− E
q(w)

[log(q(w))] =−KL(q(w)||p(w|D)) + log(p(D))

E
q(w)

[log(p(w,D))]− E
q(w)

[log(q(w))] = ELBO(q)

The ELBO can be interpreted as the sum of the negative KL divergence and the log of the evidence, i.e.

log(p(D)), which remains constant when optimizing with respect to q(w). This means that instead of

minimizing the KL divergence, we can maximize the ELBO instead to achieve the same result without

having to compute the evidence.

To prove that the ELBO is the lower bound of the evidence p(D), recall from Section 3.3 that the evidence

can be expressed as

p(D) =

∫
p(w,D)dw.
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It follows that

log(p(D)) = log

∫
p(w,D)dw

= log

∫
p(w,D)

q(w)

q(w)
dw

= log
(

E
q(w)

[p(w,D)

q(w)

])
≥ E
q(w)

log
(p(w,D)

q(w)

)
(through Jensen's inequality [39])

= E
q(w)

[log(p(w,D))]− E
q(w)

[log(q(w))]

= ELBO(q)

In the case where q(w) matches p(w,D) exactly, the KL divergence between q and p becomes zero and so

ELBO(q) = p(D). The objective is therefore to �nd a setting of parameters for the variational distribution

q(w) that gives as tight a bound as possible on the evidence.

To summarize, VI approximates the target distribution by selecting a variational distribution which min-

imises the KL divergence. This optimisation problem is achieved by minimising the ELBO instead of

the KL divergence, so that we needn't calculate the intractable normalisation term. Optimisation of the

ELBO is satis�ed by �nding the parameters of the variational distribution q(w), denoted θ, such that

θ∗ = argmax
θ

ELBO(q(w; θ))

The next section explores a practical method used to �nd the variational distribution through simplifying

assumptions.

5.2.3 Mean Field Variational Inference

Selecting a variational distribution to approximate the posterior plays a critical role in VI. The complexity

of the variational distribution determines the complexity of the optimization. Therefore, the goal is to

restrict the family Q of candidate distributions such that each distribution q is computationally tractable

but �exible enough to provide a good approximation to the true posterior p.

In mean �eld variational inference we assume that the latent variables w are mutually independent. This

allows us to express the variational distribution as seperate factors, i.e.

q(w) =

K∏
k=1

qk(wk). (5.3)

This assumption results in the true posterior p not being in the family of variational distributions since

the latent variables in p are dependent on each other. Therefore, mean �eld variational inference produces

a more simple distribution which may be close in KL divergence to the true posterior.
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The distribution of each variational factor qk(wk) is chosen to suit the single latent variable that it governs

and the parameter settings of every factor is chosen to maximize the ELBO. For example, a Gaussian

distribution can be chosen for a continuous latent variable where a multinomial distribution would suit

a categorical latent variable. More formally, after choosing the distribution for each factor qk(wk), we

iteratively optimize the ELBO with respect to each factor in turn. Optimization can be performed via

a gradient-based method called Coordinate Ascent Variational Inference which we will introduce in the

next section.

5.2.4 Coordinate Ascent Variational Inference

A commonly used algorithm for maximizing the ELBO is called Coordinate Ascent Variational Inference

(CAVI). With this, we iteratively optimize the ELBO for each variational factor qk(wk) while keeping the

rest of the factors �xed. To achieve this, we need to deconstruct the ELBO so that we can express it in

terms of any single latent variable, while treating the remaining latent variables as constants.

First, by using the chain rule of probability we decompose the joint distribution:

p(w,D) = p(D)

K∏
k=1

p(wk|w1:k−1,D). (5.4)

Note that since the latent variables are assumed independent, the ordering of w1:k−1 is not of importance.

Next, we decompose the entropy of the variational distribution as follows:

E
q(w)

[log(q(w))] =

K∑
k=1

E
qk(wk)

[log(qk(wk))]. (5.5)

By using Eq. 5.4 and 5.5, we can now express the ELBO as a function of the kth variational factor qk(wk)

and compress the terms excluding it into a constant:

ELBO(q) = E
q(w)

[log(p(w,D))]− E
q(w)

[log(q(w))]

= E
q(w)

[log(p(D)

K∏
k=1

p(wk|w1:k−1,D))]−
K∑
k=1

E
qk(wk)

[log(qk(wk))]

=

K∑
k=1

E
q(w)

[log(p(wk|w1:k−1,D))]− E
qk(wk)

[log(qk(wk))] + C (5.6)

Since the order of the latent variables is arbitrary, we can treat any speci�c latent variable wk as the last

variable in the list. As a result we can simplify eq 5.6 even further:

ELBO(qk) = E
q(w)

[log(p(wk|w−k,D))]− E
qk(wk)

[log(qk(wk))] + C,
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where w−k = {w1, w2, w3, ..., wk−1, wk+1, ..., wK}.

Finally, we are able to �nd a value for qk(wk) which optimizes the ELBO(qk) through the following

derivation:

ELBO(qk) = E
k
[ E
−k

[log(p(wk|w−k,D))]]− E
qk(wk)

[log(qk(wk))] + C

=

∫
qk(wk) E

−k
[log(p(wk|w−k,D))]dwk −

∫
qk(wk)log(qk(wk))dwk + C (5.7)

Taking the derivative of Eq. 5.7 with respect to qk(wk) and setting equal to zero results in

d

dqk(wk)
ELBO(qk) = E

−k
[log(p(wk|w−k,D))]− log(qk(wk)) + 1 = 0.

Therefore, the optimal value of qk(wk) is obtained as follows:

log(q∗k(wk)) ∝ E
−k

[log(p(wk|w−k,D))]

q∗k(wk) ∝ exp{ E
−k

[log(p(wk|w−k,D))]}

∝ exp{ E
−k

[log(p(wk, w−k,D))]}. (5.8)

Expression 5.8 is a result of the evidence p(D) being independent of wk, causing the posterior p(wk|w−k,D)

to absorb the constant p(D) with respect to wk and be proportional to the joint distribution p(wk, w−k,D).

Using result 5.8, we are now able to compute the CAVI algorithm shown in Algorithm 5.

Algorithm 5 Coordinate Ascent Variational Inference

1. Select a variational distribution q(w) =
∏K
k=1 qk(wk)

2. Choose initial parameter values for each variational factor qk(wk)

3. Repeat until ELBO converges:

• For k = 1 to K:

� Calculate q∗k(wk) ∝ exp{E−k[log(p(wk, w−k,D))]}

• Calculate ELBO(q) = Eq(w)[log(p(w,D))]− Eq(w)[log(q(w))]

4. Return q(w)

5.2.5 Automatic Di�erentiation Variational Inference

The CAVI algorithm as derived in the previous section is a useful tool and easy to implement, but only in

the case where we have a familiar form of the joint distribution available. This is a statistical convenience
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not always encountered in practice. Therefore, we require a more robust method to implement VI to a

wider family of posterior distributions.

Automatic Di�erentiation Variational Inference (ADVI) is an algorithm developed by Kucukelbir et al. [49]

which uses a software-driven technique called Automatic Di�erentiation [50] to optimize the ELBO and

approximate the posterior of di�erentiable probability models. In short, the algorithm applies two trans-

formations to the unknown parameters and approximates their distribution with a variation mean-�eld

Gaussian distribution, which allows the algorithm to iteratively maximise the ELBO using stochastic

gradient ascent. The gradients of these models are valid within the support of the prior distribution

supp(p(w)) = {w|w ∈ IRK and p(w) > 0},

where K is the dimension of w and p(w) is the prior distribution of w. Again, we are interested in �nding

a variational distribution q(w; θ) where θ constitutes the parameters used by q, such that we maximize

the ELBO:

ELBO(q) = E
q(w)

[log(p(w,D))]− E
q(w)

[log(q(w))] (5.9)

for a certain setting of q(w; θ).

Let T be a di�erentiable function such that

T : supp(p(w)) 7→ IRK .

We now de�ne the transformed parameters δ = T (w). With the newly transformed variables, the support

of δ lies in IRK and the joint posterior density is expressed as

p(δ,D) = p(T−1(δ),D)|JT−1(δ)|,

where |JT−1(δ)| is the determinant of the Jacobian of the inverse of T , i.e.

|JT−1(δ)| = det

∣∣∣∣∣∣∣∣∣
∂T−1

1

∂δ1
· · · ∂T−1

1

∂δK
...

. . .
...

∂T−1
K

∂δ1
· · · ∂T−1

K

∂δK

∣∣∣∣∣∣∣∣∣ .

For a variational posterior approximation of the transformed parameters δ we consider a mean-�eld

Gaussian , q(δ; θ) ∼ N (δ|µ, diag(σ2)) such that

q(δ; θ)

K∏
k=1

q(δk; θk)

where θ encapsulates the Gaussian parameters µ and σ2. Note that since σ2 is used as the variance

parameter, its support is constrained to IRK
>0. To remove the constraint, we apply a logarithm element-

wise to the standard deviations σ and de�ne γ = log(σ). The variational distribution simply becomes

q(δ; θ) = N (δ|µ, diag(eγ)),
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where we de�ne θ as {µ, γ} (concatenating µ and γ) such that the support of θ lies in IR2K .

Now that we have a choice of variational distribution with parameters θ de�ned on unconstrained support,

we can return to the problem of �nding the optimal value of θ for expression 5.9 using gradient ascent.

We re-write the expression as follows:

ELBO(q) = E
q(δ;θ)

[log p(T−1(δ),D) + log |JT−1(δ)|]− E
q(δ;θ)

[log q(δ; θ)]. (5.10)

Since the calculation of the ELBO includes an intractable integral over q(δ; θ), we cannot use automatic

di�erentiation directly. Instead, we aim to calculate derivatives of the terms inside the expectation, where

the terms are suitable for automatic di�erentiation [50]. Once we have calculated the derivatives inside

the expectation, we are able to approximate the integral using Monte Carlo integration as discussed in

Section 4.2.1.

In order to achieve this, we need to move the derivative operation inside the expectation. This can be

achieved by "absorbing" the variational parameters θ. In the context of a Gaussian variational distribution,

this means transforming the variational parameters such that q(δ; θ) becomes a standard Gaussian.

To that end, we de�ne the standardizing transformation for the mean-�eld Gaussian as

Sθ(δ) = diag(eγ)−1(δ − µ).

This transformation is known as elliptical standardization. For notational simplicity, de�ne the trans-

formed variational parameters Sθ(δ) = ν. Our variational distribution can now be expressed as

q(ν) = N (ν|0, I)

=

K∏
k=1

N (νk|0, 1),

and allows the expectation in the ELBO to absorb the variational parameters by de�ning it with respect

to ν:

L = ELBO(q) = E
N (ν|0,I)

[log p(T−1(S−1
θ (ν)),D) + log |JT−1(S−1

θ (ν))|]− E
q(δ;θ)

[log q(δ; θ)]. (5.11)

Note that the entropy term in expression 5.11, Eq(δ;θ)[log q(δ; θ)], does not change with the later transfor-

mations. This is because an analytic form is available for the entropy of a Gaussian distribution, which

makes it easy for us to calculate its value and gradient. Using the de�nition of the ELBO in Eq. 5.11,

we are now able to move the derivative operator inside the expectation (since the expectation no longer

depends on θ). Taking the derivatives with respect to µ and γ and applying the chain rule yields the
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following formulae:

∂L
∂µ

= E
N (ν|0,I)

[
∂

∂w
log p(w,D)

∂

∂δ
T−1(δ) +

∂

∂δ
log |JT−1(δ)|

]
(5.12)

∂L
∂γ

= E
N (ν|0,I)

[( ∂

∂w
log p(w,D)

∂

∂δ
T−1(δ) +

∂

∂δ
log |JT−1(δ)|

)
νᵀdiag(eγ)

]
+ 1 (5.13)

Each of the above derivatives are obtainable through automatic di�erentiation and the intractable integral

from the expectation is easy to approximate through Monte Carlo integration. Before we formally de�ne

the ADVI algorithm, we need a step-size to update the variational parameters for each iteration. The

step-size used by Kucukelbir et al. is called an adaptive step-size ρ(i) for iteration i, where each element

k in ρ(i) is de�ned as:

ρ
(i)
k = η × i− 1

2 +ε ×

(
τ +

√
s

(i)
k

)−1

, where (5.14)

s
(i)
k = αg

2(i)
k + (1− α)s

(i−1)
k .

The value of η as used above is chosen through a grid-search over the interval {0.01, 0.1, 1, 10, 100} [51].

The scalar α is chosen in the interval (0, 1) and determines the importance of information from the previ-

ous iterations. The value of ε is selected as ε = 10−16 and τ chosen as 1 by Kucukelbir et al. The vector

g(i) = {g2(i)
1 , ..., g

2(i)
k } is de�ned as a collection of the gradients calculated at iteration i.

We can now de�ne an algorithm that iteratively optimizes the ELBO:
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Algorithm 6 Automatic Di�erentiation Variational Inference (ADVI)

• Initialise all variational parameters in θ(0) as 0

• Initialise iteration counter i = 0

• Repeat until change in ELBO becomes smaller than user-de�ned threshold:

� Increase i by 1

� Draw a sample of size s for νs ∼ N (0, I)

� Calculate ∂L
∂µ and ∂L

∂γ using automatic di�erentiation, Monte Carlo integration and the sample

νs.

� Calculate the step size ρi

� Update µ(i+1) = µ(i) + diag(ρ(i))∂L∂µ

� Update γ(i+1) = γ(i) + diag(ρ(i))∂L∂γ

• Return updated µ(i) = µ∗ and γ(i) = γ∗

• Let θ∗ = {µ∗, γ∗}

• We end up with θ∗ = argmax
θ

ELBO(q(w; θ))

Note that the ELBO used in Algorithm 6 implicitly maps all transformed parameters back to its original

support that we started with, as de�ned in expression 5.11. Therefore, the output from the algorithm

above can be used as an approximation to the posterior distribution of the unknown weight parameters,

p(w|D). We can also introduce scalability to large sets of data for ADVI by using stochastic optimization.

This is achieved by sampling a smaller subset of size M < N of the data with each iteration and scaling

the likelihood of the model by N
M when calculating the gradients [52]. This scalability to large sets of data

proves to be an advantage over MCMC methods in cases where we have highly complex models which

require massive sets of data for training.

5.2.6 Example

To illustrate VI, we use the same set of data from Section 5.1.2 and compare the results to that obtained by

MCMC. To recap, we are interested in approximating the posterior distribution over the weight parameters

w = {w0, w1, w2} with the form
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P (w|X, y) ∝
N∏
i=1

[
1

1 + e−w
ᵀxi

]yi[ e−w
ᵀxi

1 + e−w
ᵀxi

]1−yi
×

3∏
j=1

1√
2πσj

exp

{
− 1

2

(wj
σj

)2
}

(5.15)

for Bayesian logistic regression. As proven in Section 5.2.2, we don't need an exact expression of the

evidence ∫
...

∫
P (y|X,w)P (w)dw

to approximate the posterior using VI. Instead, we maximize the lower bound of the evidence to achieve

the same result. To that end, we use expression 5.15 as the target density and let ADVI automati-

cally transform the weight parameters w so that we may use a mean-�eld Gaussian as the variational

distribution.

Figure 5.5: ADVI algorithm convergence.

Instead of sampling a predetermined number of samples from a Markov Chain as done in MCMC, we only

need to de�ne a threshold for the value of the ELBO which indicates that we have found a local minimum

for the KL-divergence. This is fundamentally how VI di�ers from MCMC since we are optimizing an

objective function instead of converging to a stationary distribution. Figure 5.5 illustrates how the ADVI

algorithm converges shortly after reaching 15000 iterations, where the �uctuations shown in the value of

the ELBO is due to sampling variation in the algorithm as it approaches the optimum. Having obtained the

local maximum of the ELBO for a certain setting of the variational parameters θ, our posterior distribution
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can be approximated through a variational distribution that uses the above mentioned parameters, q(w; θ).

Figure 5.6: Class label prediction and posterior predictive distribution.

The predicted class labels and posterior predictive distribution is shown in Figure 5.6. Similar to the

results obtained from MCMC in Section 5.1.2, the data points closest to the linear decision boundary

show the highest uncertainty as seen in Figure 5.7.
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Figure 5.7: Posterior predictive standard deviation as uncertainty measure.

Given the simplicity of the model, the results obtained from VI and MCMC do not di�er much other than

calculation time, where VI performed slightly faster. In the next section we derive both frequentist and

Bayesian approaches to Neural Networks and apply these models to more complex problems.



Chapter 6

Neural Networks

A Neural Network (NN) is a supervised learning algorithm which has recently become a popular solution

to complex problems in areas such as Natural Language Processing (NLP) [12], healthcare [19] and image

processing [3]. As suggested by its name, an NN is inspired by the way in which the human brain pro-

cesses information through a large number of connected neurons, providing the ability to identify complex

relationships in data.

Figure 6.1: Structure of a simple Neural Network

The structure of the model consists of an input layer, output layer and a pre-de�ned number of hidden

layers each containing a certain number of neurons (also called nodes). Each node consists of a weighted

sum of values passed through an activation function on the previous layer and the weights are assumed

to be unknown parameter values which are estimated during the learning phase. A simple NN diagram is

shown in Figure 6.1 where the model's architecture consists of an input layer containing 3 nodes, a single

hidden layer containing a single node and an output node. If we chose the activation function of this NN

to be a sigmoid function f(x) = 1
1+e−x , this particular design would be identical to a logistic regression.

53



CHAPTER 6. NEURAL NETWORKS 54

For a unit step function (as described in Section 2.1.1), the NN would become a perceptron as introduced

in Chapter ??. This makes the NN a �exible model, allowing the user to design an architecture with a

complexity that suits the problem and available resources.

In this chapter we start by deriving a learning method of a classical NN called backpropagation. We then

introduce stochastic gradient descent, a learning algorithm which aids in scalability to larger sets of data

and model complexity. To capture uncertainty in model predictions, we derive a probabilistic approach

to NNs called Bayesian Neural Networks (BNNs) and show how we estimate the posterior distribution

with techniques derived in Chapter 5.

6.1 Backpropagation in Neural Networks

The learning process of a classical NN discussed in this dissertation is called Backpropagation and con-

stitutes two stages, viz. the Forward Pass and Backward Pass. With each iteration, the gradient descent

algorithm calculates the gradients of the appointed cost function with respect to the weight parameters

embedded in each layer (using backpropagation) and incrementally descends the cost function in the

opposite direction of the gradients.

There are various alternative optimization techniques used with gradient descent such as Adam [53] which

uses adaptive estimates of lower-order moments of the cost function, or Adagrad [54] which adapts the

learning rate of the learning algorithm to the values of the model parameters. In addition to the choice

of cost function, an activation function (in most cases a non-linear transformation) for each layer should

also be decided on beforehand. More information regarding the activation function will be discussed in

conjunction with the forward pass.

6.1.1 Forward Pass

Each iteration of the training process starts with a forward pass, where data from the input layer passes

through each hidden layer and activation function and produces an output with a corresponding cost, as

determined by the cost function. For ease of illustration, we mathematically derive the backpropagation

algorithm for an NN with one hidden layer containing 3 components as shown in Figure 6.2, where

we wish to output a single value between 0 and 1 for each row in our data matrix. For deeper NN

architectures, the algebra remains similar in structure and can extend to an in�nite number of hidden

layers in theory. Similar to logistic regression, this model will be used for binary classi�cation. However,

since we have introduced additional nodes in our hidden layer, the model is capable of learning more

interesting relationships in the data.
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Figure 6.2: Simple Neural Network design

Let X be an N × 2 data matrix with corresponding binary response variable y such that each element of

y belongs to the set {0, 1}. At each layer an extra component equal to a constant called a bias (usually

chosen as 1) is added. There are two weight matrices used in this model, W (1) and W (2) with dimensions

2× 3 and 3× 1 respectively. Intuitively, the dimension of each weight matrix corresponds to the number

of nodes contained in the layers on either side of it. The initial values for the weights are randomized

(preferably with a standard Gaussian) and each bias component is initialised as the value 1.

Initially, each row in input layer X is multiplied by the �rst weight matrix to produce the �rst hidden

layer's components:

Z(1) = XW (1) + b(1), with dimension 1× 3.

The hidden layer components are then passed through the activation function φ(Z(1)) and multiplied by

the second weight matrix which results in

Z(2) = φ(Z(1))W (2) + b(2), a scalar value.

As previously stated, we desire an output value between 0 and 1 for binary classi�cation. To that end,

our choice of activation function is the sigmoid function:

φ(z`i ) =
1

1 + e−z
(`)
i

.

It should be noted that passing a matrix through this activation function means performing the trans-

formation element-wise on the matrix. Finally, for an input value xi, the output value ŷi is obtained by
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passing Z(2) through the last activation function φ:

ŷ = φ(Z(2)).

6.1.2 Backward Pass

The goal during the learning phase is to minimize some cost function decided upon beforehand. We

would now like to calculate the value of the cost function from the output ŷ and attempt to minimize it

by changing the values of the weights in each of the layers. This is achieved through backpropagation.

Before we perform backpropagation, we need a cost function and optimization technique. Continuing the

example from the previous section, we use a squared error cost function and performm gradient descent

to �nd optimal parameter values.

Gradient-descent is a simple method which allows us to incrementally lower the value of the cost function

by changing the weight matrices of each layer. The changes in the weight matrices are determined by

taking the partial derivative of the cost function with respect to each weight matrix. Backpropagation

allows us to use the hierarchical structure of the NN to calculate each weight parameter's derivative.

We de�ne the cost function as

S =
1

2

N∑
i=1

(yi − ŷi)2,

where

ŷ = φ(Z(2)) = φ(φ(Z(1))W (2) + b(2)). (6.1)

Starting with the weight matrix closest to the output, W (2), we want to determine the partial derivative

∂S

∂W (2)
=

∂

∂W (2)

1

2

N∑
i=1

(yi − ŷi)2 = −
N∑
i=1

(yi − ŷi)
∂ŷ

∂W (2)
. (6.2)

We focus on the term

∂ŷ

∂W (2)
=
∂φ(Z(2))

∂W (2)
, (6.3)

and by using the chain rule we can express Eq. 6.3 as
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∂φ(Z(2))

∂W (2)
=
∂φ(Z(2))

∂Z(2)

∂Z(2)

∂W (2)
. (6.4)

As de�ned above, Z(2) = φ(Z(1))W (2) + b(2) and therefore

∂Z(2)

∂W (2)
=

∂

∂W (2)
(φ(Z(1))W (2) + b(2)) = φ(Z(1)). (6.5)

Since we have decided that our activation function is the sigmoid function

φ(z) =
1

1− e−z
,

the derivative of the sigmoid φ(Z(2)) with respect to Z(2) is expressed as

∂φ(Z(2))

∂Z(2)
=

e−Z
(2)

(1 + e−Z(2))2
. (6.6)

By using Eq 6.5 and 6.6, we can now express Eq. 6.2 as a product of matrices:

∂S

∂W (2)
= −

N∑
i=1

(yi − ŷi)
e−Z

(2)

(1 + e−Z(2))2
φ(Z(1)) = −φᵀ(Z(1))δ(2), (6.7)

where φᵀ(Z(1)) is the transpose of the N × 3 activation matrix on the �rst layer's components, and

δ(2) = (y − ŷ)
e−Z

(2)

(1 + e−Z(2))2

is an element-wise multiplication between the vectors (y − ŷ) and e−Z(2)

(1+e−Z(2)
)2
.

We now determine the partial derivative of S with respect to the �rst weight-matrix, i.e.

∂S

∂W (1)
= −

N∑
i=1

(yi − ŷi)
∂ŷ

∂W (1)
= −

N∑
i=1

(yi − ŷi)
∂φ(Z(2))

∂Z(2)

∂Z(2)

∂W (1)
. (6.8)

Since we already have the result of ∂φ(Z(2))
∂Z(2) shown in eq 6.6, we only need to focus on ∂Z(2)

∂W (1) .

To show the dependence of Z(2) on W (1), we expand eq 6.1 as follows:

ŷi = φ(Z(2)) = φ(φ(Z(1))W (2) + b(2)) = φ(φ(XW (1) + b(1))W (2) + b(2)). (6.9)

We can now express ∂Z(2)

∂W (1) as
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∂Z(2)

∂W (1)
=

∂Z(2)

∂φ(Z(1))

∂φ(Z(1))

∂W (1)
, (6.10)

and by the de�nition of Z(2), we have that ∂Z(2)

∂φ(Z(1))
= W (2).

Furthermore, by using a similar result as seen in eq 6.6 we can express ∂φ(Z(1))
∂W (1) as

∂φ(Z(1))

∂W (1)
=
∂φ(Z(1))

∂Z(1)

∂Z(1)

∂W (1)
=

e−Z
(1)

(1 + e−Z(1))2
X. (6.11)

By using Eq. 6.11, 6.10 and 6.7 we can express Eq. 6.8 with matrix notation as

∂S

∂W (1)
= −Xᵀ

[
δ(2)W ᵀ(2) e−Z

(1)

(1 + e−Z(1))2

]
, (6.12)

= −Xᵀδ(1) (6.13)

where δ(1) = δ(2)W ᵀ(2) e−Z(1)

(1+e−Z(1)
)2

and the terms δ(2)W ᵀ(2) and e−Z(1)

(1+e−Z(1)
)2

are multiplied element-wise.

We can now update the weight and bias matrices by using Eq. 6.7 and 6.13 and a learning rate δ ∈ [0, 1]:

W (1)
new = W

(1)
old − λ

∂S

∂W (1)

= W
(1)
old + λXᵀδ(1) (6.14)

W (2)
new = W

(2)
old − λ

∂S

∂W (2)

= W
(2)
old + λφᵀ(Z(1))δ(2) (6.15)

b(1)
new = b

(1)
old + λδ(1) (6.16)

b(2)
new = b

(2)
old + λδ(2) (6.17)

Similarly, for a Neural Network with any number of hidden layers, the weight and bias updates can be

expressed as

W (`)
new = W

(`)
old − λ

∂S

∂W (`)

= W
(`)
old + λφᵀ(Z(`−1))δ(`) (6.18)

b(`)new = b
(`)
old + λδ(`) (6.19)

where the calculation of δ(`) depends on the cost and activation functions decided upon beforehand.
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By using the derivations in expressions 6.18 and 6.19, we can now formally de�ne the backpropagation

algorithm.

Algorithm 7 Backpropagation algorithm

• Generate random initial values for weight parameters in all layers

• Set initial values of bias parameters to 1

• Repeat while change in cost function exceeds a user de�ned threshold:

� Using input matrix X, perform a forward pass and calculate the cost

� Update the weights and biases with gradients derived in expressions 6.18 and 6.19

• For each layer `, return weight matrix W (`)
new and b(`)new

6.1.3 Stochastic Gradient Descent

Gradient descent was a powerful and widely used tool when training earlier versions of the multilayer

perceptron [55]. However, since the entire set of data is required to compute the gradients in each

iteration, such a traditional method has started to su�er in modern applications. This is due to the lack

of computational resources for complex models (such as deep NNs) sometimes requiring massive sets of

data, or in on-line learning environments where observations are acquired sequentially instead of a single

batch. In the latter case, computing the gradient of the cost function would be impossible without the

entire set of data available.

Stochastic Gradient Descent (SGD) is a method used to allow gradient descent algorithms to scale to large

sets of data without overwhelming the memory of a computer. Instead of using the entire set of data to

calculate the gradient of the cost function for each iteration, we compute the gradient of the cost function

for only one randomly selected observation (or a small random sample) at a time. It can be shown that

the gradient calculated on a single observation is an unbiased estimator of the gradient over the mean

squared error cost function using the full dataset.
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E
xm

[∂Sm
∂W

]
=

∂

∂W
E
xm

[Sm]

=
∂

∂W

N∑
i=1

P (Xm = xi)Si

=
1

N

N∑
i=1

Si

=
1

N
S

Algorithm 7 would therefore be changed as follows:

Algorithm 8 SGD Backpropagation algorithm

• Generate random initial values for weight parameters in all layers

• Set initial values of bias parameters to 1

• Repeat while change in cost function exceeds a user de�ned threshold:

� Select a uniformly random sample X(m) ⊆ X of size m, with replacement.

� Using the sampled X(m), perform a forward pass and calculate the cost

� Update the weights and biases with gradients derived in expressions 6.18 and 6.19

• For each layer `, return weight matrix W (`)
new and b(`)new

Typically we would choose a smaller step size for the update in each iteration since the random sampling

within the algorithm introduces higher variance in our estimate of the weight parameters. Compared

to traditional gradient descent, SGD would follow a more noisy path toward the optimum. Despite this

additional variance, gradients obtained by SGD are estimators of the full gradient and would converge to

the same optimum given the appropriate step size.

6.1.4 Dropout

Deep neural networks often contain thousands of weight parameters, which in turn may require large sets

of data to train on. These deep architectures are highly capable of learning complex patterns in a set of

data, however, some obstacles persist when using these models in practice. Aside from the computational

challenges caused by model complexity, another common challenge when training NNs is the possibility

of learning patterns caused by variation inherent to only the speci�c training set, i.e. over-�tting the

data. Therefore, ensuring that an NN generalises well to unseen data is an important step and is achieved
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through parameter regularisation methods. A classic regularisation approach used in NN training is a

technique called dropout [24].

Intuitively, dropout is applied to a training algorithm by "ignoring" a random selection of hidden and

visible (input) nodes with each training observation or epoch (a single pass through the entire training

set). This causes the nodes within the model to be less co-dependent and in turn learn a simpler pattern

over the training data, at the cost of training error. Even though we are interested in minimizing the

cost function over the training set, by sacri�cing predictive performance on the training set through

regularisation we improve the chance of providing a better �t over future, unseen data.

Figure 6.3: Illustration of dropout in a neural network

For each layer `, the corresponding weight matrix W (`) is multiplied by a random vector β(`) where each

element of β(`) is randomly generated from a Bernoulli distribution with parameter p (called the keep-

probability). Therefore, when we perform a forward pass for training example xi, every node in a hidden

layer multiplied by the random vector has a probability p of remaining in the NN. When applying the NN

to a test set, we use the entire NN without dropping any nodes. To ensure that the expected outcome

of the full NN on the test set remains the same as with the training set where dropout was used, we use

a technique called Inverted Dropout where the resulting activation function from each node that has not

been dropped is scaled by 1
1−p during training. Dropout NNs can be trained using the backpropagation

algorithm and optimized using gradient descent or SGD. Following a forward pass with dropout, only

the weight gradients for nodes that weren't dropped are updated. Implementation of the above steps in

the backpropagation algorithm (Algorithm 8) will regularize the weights of the NN, providing additional

robustness to the over-�tting problem inherent to NNs.
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6.1.5 Example

The NN's ability to �t a model over non-linear data will be illustrated in this section. We design the

NN to consist of two hidden layers, each containing 5 nodes. A ReLU activation function is used on each

hidden layer. The ReLU function is widely used and has been shown to improve convergence rates on

SGD algorithms due to its computational simplicity and non-saturation of its gradient [3]. We de�ne the

ReLU activation function as φ(z) = max(0, z).

Figure 6.4: Neural network with two hidden layers, each containing 5 nodes.

The generated data D = {X, y} contains pairs of observations where each observation xi ∈ X is de�ned

as xi = {xi1, xi2} for i = 1, ..., n and every yi ∈ y is a binary response variable indicating the class of

every observation. Since the observations contained in X are 2-dimensional, our input layer contains 2

nodes. The output layer contains only 1 node with a sigmoid activation function σ(
∑5
i=1 φ(z

(2)
i )) which

produces a value in the range [0, 1] (for notational clarity, we denote each node in hidden layer 2 as z(2)
i

for i = 1, ..., 5). Classi�cation is done by passing the value produced by the sigmoid activation function σ

through a �nal step-function de�ned as:

ŷ = f(σ),

where f =

1 if σ > α

0 otherwise
,

where α is a pre-de�ned threshold, usually chosen as 0.5.
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Figure 6.5: Training data

From Figure 6.5 we see that a linear classi�cation model such as logistic regression would not perform

well on the available data, since the classes represented by the colours are not linearly separable. We train

the NN on the above-mentioned data using backpropagation and optimized with SGD. As the algorithm

iterates, the predictive accuracy of the model is evaluated on a training and a test set. The comparison

between the training and test accuracy as the model learns is shown in Figure 6.6.



CHAPTER 6. NEURAL NETWORKS 64

Figure 6.6: Training and test loss during backpropagation with SGD

The di�erence between training and test loss shown in Figure 6.6 hints at the possibility that our model

has been over-�tted to the training data. To prevent this, we train an additional NN by using the dropout

regularisation method. Figure 6.7 illustrates how using dropout a�ects the shape and width of the decision

curve learned from the data. Although both models achieved similar prediction accuracy on a simulated

evaluation set, the decision curve produced by the dropout NN in Figure 6.15a shows a wider curve and a

more general shape to account for variation in the training set, which is preferable when predicting classes

on future, unseen data.
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(a) Without dropout (b) With dropout

Figure 6.7: Model predictions and decision curve produced by NN.

The di�erence between the training and test loss while training the dropout NN is shown in Figure 6.8.

It is clear that the model is less prone to over-�tting to the training data since the di�erence in loss is

smaller than the case shown in Figure 6.6.

Figure 6.8: Training and test loss during backpropagation with SGD using dropout regularisation

It would be tempting to interpret the width of the decision boundary in Figure 6.7 as a measure of
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uncertainty of class predictions that lie close to it. However, the class prediction probability for each

observation remains a single point estimate from the NN. In fact, we have no measure of how certain we

are about the probabilities assigned to observations that lie close to the decision boundary before applying

the step-function and assigning a predicted class.

In Section 6.3.1 we introduce a probabilistic approach to NNs in order to derive a posterior probability

distribution over all weight parameters and model predictions. Certain characteristics from these posterior

distributions would provide insight into how certain we are when predicting classes on unseen data.

6.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a class of NNs with a deep architecture designed for image

processing tasks [56]. The superior performance shown by Krizhevsky et al. in the 2012 ImageNet

competition that sparked widespread interest in deep learning was achieved with a CNN. Similar to

traditional feed-forward NNs (as described earlier in this chapter), the CNN contains an input layer,

output layer and associated di�erentiable cost function with which we update unknown weight parameters

during training. What makes a CNN unique is the shape of the input data as well as the hidden layers,

called convolutions. Instead of each new training/test observation being a vector of inputs, the CNN

receives an image with three dimensions, i.e. the image's width and height (represented by the number

of pixels) and the depth (represented by the colour value of each pixel such as RGB values). Since the

input data for a CNN is assumed to be image data, the nodes between hidden layers are not always

fully-connected as in traditional NNs. Instead, we apply �lters (also called feature maps) on layers that

shifts over di�erent sections of the layer. In NN literature, this operation is known as a convolution. The

design is inspired by the way the visual cortex creates a small receptive �eld in which we process visual

information [57] [56]. The advantage to using this design is in its scalability to large images containing

more pixels as well as its invariance to the speci�c location of objects in an image.
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Figure 6.9: Illustration of CNN �lters stacked in a layer

(Image source: www.indoml.com)

In a CNN, each layer has 3 dimensions as opposed to 2 layers in a traditional NN. For example, if an input

color image (RBG) contained 32× 32 pixels, the input layer would have dimension 32× 32× 3 to account

for the RGB (red, green blue) values represented by each pixel. In subsequent hidden layers, multiple

�lters could be applied over the previous layer. The resulting convolutional layers from each �lter are

stacked and create one three-dimensional layer on its own. The third dimension (called depth) of a layer

indicates the number of �lters applied to the previous layer. Intuitively, �lters search for speci�c observed

patterns or features in pixel values inside the image, hence the alternative name "feature maps". The

elements in each �lters act as network weights where each weight passes through a nonlinear activation

function and is estimated during the learning phase.

Figure 6.10: Illustration of CNN architecture
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As a means to prevent over-�tting as well as reduce the complexity of the model, many CNN architectures

include a tool called pooling layers. Though many pooling techniques exist, the most commonly used

pooling layer is called max pooling. Max pooling is achieved by moving a window over a layer and

selecting only the maximum value in the window with each move, where the stride of the pooling layer is

the size of each jump when the window moves. Generally, the resulting layer has a smaller width×height

dimension and depends on the stride and dimensions of the pooling layer.

Figure 6.11: Illustration of max pooling technique

In a classi�cation context, we need to output a �nal softmax layer indicating each observation's class

probability prediction. To achieve this, we "�atten" the �nal convolutional layer by stacking each value

from every 2-dimensional feature map into a 1-dimensional vector as shown in the �nal layer of Figure

6.10. We treat this vector as the input to a standard NN where the nodes in each layer are fully connected.

Standard CNNs can be trained using the backpropagation algorithm and optimized with gradient-based

methods such as SGD.

6.3 Probabilistic Framework

The objective of gaining additional insight to the output from an NN can be achieved through the use of

a probabilistic framework. Instead of producing a single point estimate for a given observation, we are

interested in inferring an entire probability distribution over possible model predictions for a given input.

This is made possible through the use of Bayesian inference where we de�ne a prior distribution over all

the weight parameters and derive posterior distributions for all variables of interest de�ned in the model.

In this section we describe the process of de�ning and training a Bayesian Neural Network (BNN).
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6.3.1 Bayesian Neural Networks

Suppose we are interested in �nding a posterior predictive distribution over the output of some NN with

L hidden layers. At the `th layer, we de�ne the matrix of weight parameters as W ` and its corresponding

bias term as b`. Since our approach is from a Bayesian perspective, we �rst need to de�ne an appropriate

prior distribution over every weight parameter w(`)
ij ∈ W ` and bias term b`, for every layer ` = 1, ...,L.

A widely used approach is to start with a standard Gaussian distribution and tune the hyper-parameters

using either a grid-search or a hierarchical model. Therefore, we select P (W ) as

P (W ) =

J∏
j=1

p(wj) =

J∏
j=1

1√
2π
exp{−1

2
w2
j},

where each wj ∈ W is a single weight parameter out of a total of J. By using independent standard

Gaussian priors for each weight parameter in every layer, we naturally impose regularisation to the trained

model parameters. The zero-mean of the standard Gaussian shrinks the values of the weights and can be

shown to be equivalent to L2 regularisation 1.

The preferred likelihood function depends on the task being performed by the model. Since deep learning is

a popular choice in multi-class classi�cation such as object recognition in images, we will use an appropriate

likelihood function for multi-class classi�cation. In this case, the softmax likelihood (as described in Section

6.3.1) is a valid choice and is de�ned as follows:

P (y = k|x,W ) =
exp(fWk (x))∑K
k=1 exp(f

W
k (x))

= σ(x)

where fWk (x) indicates the output for class k from the NN using the set of weights W for input x.

Now that we have speci�ed the prior distributions over the weight parameters as well as the likelihood

function prodiced by the NN's output, we de�ne the posterior distribution of the weights as

P (W |X, y) =
P (y|X,W )P (W )∫
P (y|X,W )P (W )dW

=
1

Z

exp(fWk (x))∑K
k=1 exp(f

W
k (x))

J∏
j=1

1√
2π
exp{−1

2
w2
j}. (6.20)

The term Z in Eq. 6.20 is the normalizing constant which is computationally intractable in most cases due

to the large number of weight parameters which we need to integrate over. Instead, we use the methods

discussed in Chapter 5 to calculate an approximation to the posterior distribution over the NN weights.
1See: "A Probabilistic Interpretation of Regularisation" http://bjlkeng.github.io/posts/probabilistic-interpretation-of-

regularisation/
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6.3.2 Example

We continue the example from Section 6.1.5 where we �t an NN with 2 hidden layers using ReLU acti-

vation functions, each containing 5 nodes. The output layer uses a sigmoid activation function to output

values between 0 and 1. This requires us to estimate a total of 40 weight parameters, which causes the

normalisation factor in the posterior distribution as shown in Eq. 6.20 to be computationally intractable.

We shall use the ADVI algorithm to approximate the posterior distribution.

6.3.2.1 BNN with ADVI

The ADVI algorithm as described in Section 5.2.5 uses mean-�eld Gaussians as a variational distribution

with which we approximate the posterior. The KL-divergence between the posterior and variational

distributions is minimized by maximizing the expected lower bound (ELBO). Figure 6.12 shows the

convergence of the ELBO as the ADVI algorithm �nds optimal variational parameters.

Figure 6.12: Convergence of ADVI algorithm

Having obtained a variational distribution which we use to approximate to the posterior distribution, we

generate weight samples from it before deriving a posterior predictive distribution which we use to predict

class probabilities on new data. Figure 6.13 shows the distribution of the sampled weights from each layer

within the NN. The trace of the sampled values is illustrated on the right hand side which we obtained

from the approximated posterior distribution. From this visualization we see that the standard Gaussian

prior plays an important role in parameter regularisation since the estimated parameter values remain
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small and centered around zero. This can prevent the model from over-�tting to the test data.
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Figure 6.13: Weight parameters sampled from variational approximation to posterior
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Using the sampled weight parameters, we derive a posterior predictive distribution over a set of test data

and evaluate the performance of the BNN. The mean of each predictive distribution over a new observation

can be used as a point estimate of its class probability and the standard deviation gives us a measure of

uncertainty regarding the prediction.

Figure 6.14: Posterior predictive mean values as class probabilities

As expected, the regularisation induced by the Gaussian priors caused the BNN to �t a more general

curve over the data shown in Figure 6.14 than the curve shown in Figure 6.7. Although both the NN

and BNN scored a classi�cation accuracy of 92%, we have gained some advantages in approximating a

posterior distribution over the parameters. We are able to perform a posterior predictive check (PPC), in

which we generate data based on parameters sampled from the posterior.
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(a) Training data (b) Generated data from posterior

Figure 6.15: Comparison of training data and data generated from posterior predictive distribution.

By visually inspecting Figure 6.15, we see that the BNN has �t the data well since the classes generated

from the posterior predictive distribution show similar behaviour to the training data. We are also able to

measure our uncertainty around model prediction by using the posterior predictive distribution's standard

deviation. Figure 6.16 shows a heat map of the uncertainty when predicting class labels for the test set.

Observations that lie close to the decision boundary as well as the center of each cluster carry higher

uncertainty and given the non-linear nature of the data, higher uncertainty is found at the decision

boundary further away from the data.

Figure 6.16: Posterior predictive standard deviation as uncertainty measure over predicted class labels for

test set.
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In conclusion, the BNN applied easier regularisation with standard Gaussian priors on the weights and �t

a smooth curve over the data that generalises well to future observations. The posterior predictive check

shows that the variation of the data has been captured well since we are able to generate class labels

similar to those observed in the training set. Furthermore, we have gained an understanding of which

observations we are more uncertain about when predicting class labels for new data.

Up until now we have only used simple, low dimensional examples for ease of illustration and to visually

demonstrate the decision curves that each model produces after training. In the next chapter, we compare

traditional NNs with BNNs on a more complex problem of image processing, where the dimensionality of

the data and number of weight parameters are signi�cantly higher.



Chapter 7

Application to image classi�cation

Image classi�cation is a pattern recognition task which belongs to the computer vision domain and is widely

used in machine learning research as well as industry applications. Many machine learning models are

evaluated on image classi�cation problems such as the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) for object recognitinon [16] or the MNIST dataset for handwritten character recognition [14].

In this chapter we evaluate the Bayesian Neural Network (BNN) and Bayesian Convolutional Neural

Network (BCNN) on the MNIST dataset. As shown in Figure 7.1, each observation contains a 28 × 28

greyscale image and a corresponding target variable indicating the observation's class label.

Figure 7.1: MNIST data examples.

76
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7.1 Technical details

In this dissertation, all experiments and examples with a Bayesian approach were performed using the

Python package PyMC3 [58]. The package has built-in functionality to perform approximation techniques

such as MCMC or ADVI and utilizes the Theano [59] backend to declare and train NNs, allowing for fast

computation using a Graphics Processing Unit (GPU).

For this experiment we used a training set of 50000 MNIST images and reserved a set of 10000 images to

evaluate the model once training completed. For scalability, we trained the models using mini-batches of

1000 images each on the ADVI algorithm. The GPU used for experimentation was an Nvidia GTX 1080ti

and we used Nvidia's CUDA v9 software [60] together with the Theano/PyMC3 backend to facilitate

GPU training in Python.

7.2 BNN implementation

To illustrate the �exibility of the NN, we �rst approach the problem with a fully connected feedforward

NN with 2 hidden layers, each containing 600 hidden nodes. A standard Gaussian prior distribution was

declared over the weight parameters and a softmax likelihood is used from the model output to ensure class

probability values that sum to 1. The posterior distribution was approximated by the ADVI algorithm

and convergence was achieved within 1 hour and 15 minutes (illustrated in Figure 7.2). The BNN scored

a classi�cation accuracy of 95.14% on a test set containing 10000 handwritten images.

Figure 7.2: ADVI convergence for BNN.
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7.2.1 Uncertainty

Using the posterior predictive distribution, we are able to extract information regarding the variability

around predictions. Here we explore di�erent methods of measuring prediction uncertainty.

These methods will be evaluated using a ratio which we will now de�ne:

• Let Ucorrect be the collection of all uncertainty measurements from test observations which were

correctly classi�ed.

• Let Umisclassified be the collection of all uncertainty measurements from test observations which

were misclassi�ed.

• Let α ∈ (0, 1) be a scalar which we call the evaluation strictness.

• Let K be a value such that the proportion of values in Umisclassified < K is α, which we call the

cut-o� value.

• Let γ be the proportion of elements in Ucorrect with values smaller than K, which will be the metric

we use to evaluate the performance of an uncertainty measurement tool.

Intuitively, γ indicates how well the uncertainty measure separates misclassi�ed observations from correctly

classi�ed ones.

For example, if we chose the strictness α = 0.1, then 90% of all misclassi�ed observations had uncertainty

larger than K and γ ∗ 100% of correctly classi�ed observations produced uncertainty smaller than K.

7.2.1.1 Posterior predictive standard deviation

Upon convergence of the ADVI algorithm, we are able to sample from the variational approximation of

the posterior predictive distribution. For every new observation from the test set, we draw 1000 samples

of class probabilities from the posterior predictive. This yields a K × 10 matrix where K is the number

of samples drawn from the posterior predictive and each column represents a predicted class probability

for a single class. For a single observation, every class's uncertainty can be captured by calculating the

standard deviation of the class prediction probabilities over the K samples.

For example, the posterior predictive standard deviation for observation i with respect to class j is

calculated as follows

Spij =
1

K − 1

K∑
k=1

pk(yi = j|X,w), (7.1)
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where pk(yi = j|X,w) indicates a sampled probability of observation i belonging to class j, out of a total

of K samples.

(a) Uncertainty from correctly classi�ed observations (b) Uncertainty from misclassi�ed observations

Figure 7.3: Comparison of uncertainty from correctly classi�ed vs missclassi�ed observations.

Figure 7.3 illustrates the relationship between the predicted label probabilities from observations and

their corresponding standard deviations obtained from the posterior predictive distribution. From this

uncertainty metric we see that class-probabilities in the interval [0.4, 0.6] carry higher uncertainty and

that the majority of misclassi�ed observations produced an uncertainty measurement near the maximum

of the curve.

Figure 7.4: γ metric with varying evaluation strictness α
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Figure 7.4 illustrates how the evaluation rating γ increases with α. For an uncertainty measure that

doesn't separate correctly classi�ed observations from misclassi�cations, we expect γ to increase linearly

with α. The posterior predictive standard deviation uncertainty measure provides satisfying insight into

observations that are more likely to be incorrectly classi�ed. If we choose α = 0.1, we get a γ-ratio of 0.866.

This means that the uncertainty metric is able to create a boundary that separates (1−α)100% = 90% of

the misclassi�cations from 86% of the correctly classi�ed observations. As we increase the value of α, our

γ-ratio would increase but would separate fewer misclassi�cations from correct predictions. Therefore, an

α-value of 0.1 is a reasonable choice.

7.2.1.2 Model consistency using sampled class counts

A measure of model consistency can be obtained through a discrete count of sampled categorical outcomes.

Instead of calculating the posterior predictive standard deviation for each class, the counts of sampled

class assignments for a given observation can be used. This allows us to calculate a single measure of

uncertainty for an observation as opposed to measuring each class's uncertainty.

The counts-based consistency uncertainty measure is calculated as follows:

• Draw K samples from the posterior predictive distribution, where each sample is a collection of 10

class-probabilities.

• For each sample, assign a predicted class (choose the class with the highest corresponding probabil-

ity).

• We end up with a collection of K outcomes, each voting for a speci�c class-assignment for the given

observation.

We then de�ne C as the largest group of "voters" in the sample that produced identical class-predictions.

Model consistency is then de�ned as the ratio CK .
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(a) Consistency from correctly classi�ed observations (b) Consistency from misclassi�ed observations

Figure 7.5: Comparison of uncertainty from correctly classi�ed vs missclassi�ed observations.

In order to express model consistency as a form of uncertainty, we instead calculated inconsistency as

1 − C
K . As expected, the counts-based inconsistency shows a negative linear relationship between class-

probability and model inconsistency. In other words, observations that produce a high probability for

a certain class will show an equally low inconsistency measure since most sampled class-predictions will

produce similar results.

The model inconsistency measure produced a γ-value close to the posterior predictive standard deviation.

For α = 0.1, the uncertainty measure scored 0.865.

Figure 7.6: γ metric with varying evaluation strictness α
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7.2.1.3 Gaussian Approximation (GA) uncertainty

In this section we use the counts-based random variable and model its behaviour by �tting a Binomial

distribution to it. Using this distribution and large enough samples from the posterior predictive distribu-

tion, we derive a new uncertainty measure for categorical outcomes called Gaussian Approximation (GA)

uncertainty.

Consider a random variable G = C − 1, where C is de�ned as in Section 7.2.1.2. We then have that

G ∈ {0, 1, 2, ...,K − 1}.

Since all our posterior samples are mutually independent, it follows that G ∼ Bin(K − 1, p) where p can

be estimated as the proportion p̂ = G
K−1 = C−1

K−1 .

If we assume that p /∈ {0, 1}, then for a large enough sample K, it follows that the distribution of G can

be approximated as

G ∼̇ N ((K − 1)p̂, (K − 1)p̂(1− p̂))

Recall that, for small values of C, the model is less consistent since it implies that many sampled predictions

produce di�erent results. We can therefore use the approximated Gaussian distribution of G to �nd a

value in the lower-tail of G's distribution that separates 90% of misclassi�cations from correctly classi�ed

observations, as illustrated in Figure 7.7.

Figure 7.7: 90% of misclassi�cations cut-o� point for G

The uncertainty of an observation X (denoted as UGA(X)) can therefore be de�ned as the probability of
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its associated G-value falling in the above-mentioned lower tail area:

UGA(X) = P (GX < ε),

where ε is the 90% cut-o� value on the lower-tail of the distribution of GX .

(a) GA uncertainty from correctly classi�ed observations (b) GA uncertainty from misclassi�ed observations

Figure 7.8: Comparison of GA uncertainty from correctly classi�ed vs missclassi�ed observations.

The GA uncertainty measure scored a γ-value of 0.978, which (according to our γ metric) is the best

performance between the three uncertainty measurements discussed in this section.

Figure 7.9: γ metric with varying evaluation strictness α
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7.3 BCNN implementation

The CNN architecture used for this task is shown in Figure 7.10. The model includes two convolutional

layers, each containing 32 �lters with size 5 × 5 and stride 1 using ReLU activation functions. After

each convolutional layer, a maxpooling layer is declared with a size and stride of 2. Following the second

maxpool layer, the model is �attened into 288 nodes and passed to a fully connected (dense) hidden layer

containing 256 nodes. A �nal softmax output layer is declared containing 10 nodes, each corresponding

to the probability of a speci�c class label.

Figure 7.10: CNN architecture used for MNIST experiment.

Similar to the BNN, a standard Gaussian prior distribution was chosen over all the weight parameters

and softmax likelihood from the output layer. Using the above design, the posterior distribution of the

BCNN was approximated with ADVI algorithm using mean-�eld Gaussian approximation.
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Figure 7.11: CNN architecture used for MNIST experiment.

The ADVI algorithm converged at 100000 iterations for a duration of 1 hours and 34 minutes and achieved

a classi�cation accuracy of 98.18

7.3.1 Uncertainty

Similar to the BNN implementation, we explore the uncertainty measures from the output of the BCNN

in this section.

7.3.1.1 Posterior predictive standard deviation

The posterior predictive standard deviation from the BCNN output in Figure 7.12 indicates that the

class-probabilities in the interval [0.4, 0.6] carry higher uncertainty.
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(a) Uncertainty from correctly classi�ed observations (b) Uncertainty from misclassi�ed observations

Figure 7.12: Comparison of uncertainty from correctly classi�ed vs missclassi�ed observations.

The posterior predictive standard deviation scored a γ-ratio value of 0.934, higher than the ratio found in

the BNN model. This might indicate that higher model complexity may provide additional insight which

we extract from the posterior distribution.

Figure 7.13: γ metric with varying evaluation strictness α
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7.3.1.2 Model consistency using sampled class counts

(a) Consistency from correctly classi�ed observations (b) Consistency from misclassi�ed observations

Figure 7.14: Comparison of uncertainty from correctly classi�ed vs missclassi�ed observations.

The model inconsistency from the BCNN measure produced a γ-value close to the posterior predictive

standard deviation, similar to the result found for the BNN. For α = 0.1, the uncertainty measure scored

0.931.

Figure 7.15: γ metric with varying evaluation strictness α
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7.3.1.3 Gaussian Approximation (GA) uncertainty

(a) GA uncertainty from correctly classi�ed observations (b) GA uncertainty from misclassi�ed observations

Figure 7.16: Comparison of GA uncertainty from correctly classi�ed vs missclassi�ed observations.

The GA uncertainty measure scored a γ-value of 0.99, which is again the best performance between the

three uncertainty measurements for the BCNN.

Figure 7.17: γ metric with varying evaluation strictness α

The GA uncertainty measure proved to be the most capable of separating correctly classi�ed observations

from misclassi�ed observations. This information could prove useful in many di�erent ways. For example,

we could extract from the test set the most uncertain images and compare them to the images we were
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most certain of, as shown in Figure 7.18.

(a) Most certain images (b) Most uncertain images

Figure 7.18: Comparison of most certain vs most uncertain images using the GA uncertainty measure as

indicated above each image.

Badly drawn digits clearly show a higher GA uncertainty value as excepted. The uncertainty measure

displays an ability to highlight observations which may lie further away from the training data or closer

to a decision boundary (in high dimensions) and are more likely to be misclassi�ed by the model.



Chapter 8

Conclusion

The ultimate goal of this dissertation was to change the approach to deep learning from discriminative

to generative. Put di�erently, the main focus was shifted from achieving the highest possible prediction

accuracy to extracting valuable information from model output via Bayesian inference.

Following the literature review in Chapter ?? in which we discussed the history of NN research, we estab-

lished the fundamental theory necessary to perform Bayesian inference in Chapter 3. It highlighted that

caution should be exercised when selecting a prior for a speci�c problem since the additional information

gained from Bayesian inference could be subjective when an informative prior is used. In Bayesian mod-

elling, the main objective is to derive a posterior distribution over the unknown variables of interest, such

as parameter values in a model. Using the posterior distribution, a posterior predictive distribution can

be derived to better understand the behaviour of model predictions on new observations.

In Section 4.2 we discussed how to apply the theory from Chapter 3 to a discriminative linear classi�er

such as logistic regression. Doing so, we speci�ed a non-informative prior distribution over the unknown

parameter values, i.e. a standard Gaussian distribution, and used the sigmoid function as the likelihood

of the data. For only an intercept parameter and a single coe�cient used in the model, we were able

to compute the exact posterior by calculating the integral over the two parameters directly. In this

chapter it became clear that for simple models, calculating the exact posterior distribution can easily

be done using Bayes' rule. However, for more complex models using many parameters, the formula for

calculating the posterior becomes computationally intractable because of the multiple integrals required

in the denominator (normalisation term). In order to proceed, we needed to �nd a method to obtain the

posterior distribution without having to directly calculate the integrals.

In response, Chapter 5 discussed approximation methods used to avoid the above-mentioned computa-

tional challenge and derive the posterior distribution. Markov Chain Monte Carlo (MCMC) was intro-

90
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duced �rst as the more popular technique among statisticians because of its ability to �nd the exact

posterior distribution in the stationary distribution of the markov chain. However, MCMC does not scale

well to very complex models on large sets of data as we often see in deep learning environments, even

when using simpli�ed methods such as Gibbs sampling. Furthermore, it is di�cult to measure conver-

gence of MCMC methods since we are not optimizing an objective function - we are only following the

trace of a Markov Chain until it reaches a stationary distribution. The alternative method introduced was

Variational Inference (VI) which is designed as an optimisation problem rather than a sampling method.

Although VI does not guarantee the exact posterior as MCMC does, it o�ers some advantages. VI is

scalable to complex models when using mean-�eld VI because of it's independence assumptions and is

able to optimise the objective function using mini-batch training to overcome large sets of data.

Neural Networks were formally introduced in Chapter 6 with a graphical representation of a small network

and a mathematical derivation of the backpropagation algorithm used to train it with. NNs gain most of

their scalability from the optimisation methods we use in order to perform backpropagation. The time-

tested Gradient Descent algorithm faces computational problems in modern applications due to the large

volume of data deep learning models are trained on. Stochastic Gradient Descent (SGD) was developed

as a scalable solution to data-intensive training algorithms in which we train the model in smaller batches

observations instead of all the data at once. To prevent over-�tting the data with a traditional feedforward

NN, we introduced the Dropout technique and applied it to a simple non-linear classi�cation example. The

Convolutional Neural Network (CNN) was the �nal frequentist model we introduced in this dissertation

and was implemented in Chapter 7 on the MNIST dataset.

We followed with a probabilistic approach to the NN model in Section 6.3.1 and de�ned the Bayesian

Neural Network (BNN). Similar to logistic regression, we de�ned a standard Gaussian prior distribution

over all unknown weight parameters in the NN. The output of the simple NN used in Section 6.1.5 was

a class-probability for a binary outcome. To that end, a sigmoid activation function was su�cient. The

BNN showed similar prediction accuracy to the dropout NN and provided useful information relating to

uncertainty which we extracted from the posterior predictive distribution. We saw that observations near

the decision boundary and further from the training data carried high uncertainty as well as areas where

classes couldn't be separated by the decision boundary without having to over-�t to the training data.

In Chapter 7 we de�ned a deep Bayesian feedforward NN and a Convolutional Bayesian Neural Network

(CBNN) and tested them using the MNIST handwritten digits dataset. The likelihood from the output

of the Bayesian models were chosen as the softmax function to account for multiple class-probabilities

and allow them to sum to 1. The posterior distributions for both Bayesian models were approximated

using Automatic Di�erentiation Variational Inference (ADVI). The BCNN scored an accuracy of over 98%

which is similar to state-of-the-art traditional CNNs trained with gradient-based methods. However, the

ADVI algorithm required more time to converge in comparison to a traditional CNN trained with SGD
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with the same batch-size. This is most likely due to the fact that the update-size with ADVI is more

di�cult to con�gure than with SGD, which causes to ADVI to require a large number of iterations before

convergence.

For each test observation, we drew 1000 samples from the posterior predictive distribution. Using these

samples we proposed three di�erent uncertainty measurements, namely:

• posterior predictive standard deviation for class-speci�c uncertainty with each observation

• counts-based model consistency using the categorical outcomes from posterior predictive samples.

• Gaussian Approximation (GA) uncertainty: using the Gaussian approximation of the Binomial

distribution from each sample of categorical outcomes for a test observation.

The GA uncertainty measure scored the highest performance in its ability to separate the correctly

classi�ed test observations from the misclassi�ed ones. However, for di�erent problems to MNIST, we

may need to de�ne new uncertainty measures which �t the task at hand.

In conclusion, Bayesian Neural Networks are a powerful tool to use in deep learning environments when

accurate predictions are not the only important factor. With NN implementations surfacing in the medi-

cal and autonomous vehicles industries, we are in need of deep learning methods which could supplement

more informed decision-making in addition to accurate forecasting. As proved in this dissertation, pow-

erful methods exist which we could use to approximate the posterior of deep BCNNs and extract useful

information to better understand the uncertainty within deep learning.

8.1 Contribution

In this dissertation we compared existing methods designed to approximate probability distributions in

the context of BNNs. We extended the use of the ADVI algorithm to a CNN architecture for handwritten

digit recognition and extracted uncertainty information from the posterior predictive distribution. Using

this uncertainty information we demonstrated the additional inference that a BCNN provides above that

of a traditional BNN.

The metric which we used to evaluate uncertainty measurements as well as the GA uncertainty for

classi�cation models are methods that are unique to this dissertation. For a classi�cation problem, the

GA uncertainty measure allows the isolation of observations deemed uncertain by the classi�cation model

and can be used to �ag future data in need of more attention.
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8.2 Limitations and future work

The variational method which we used to approximate the posterior distribution of a BNN has demon-

strated satisfying results when applied to complex models such as the BCNN. However, current software

that allows the ADVI algorithm to approximate a posterior distribution using a GPU with mini-batch

iterations remains computationally expensive despite being more e�cient than popular MCMC sampling

methods. Training a CNN from a frequentist approach reaches convergence signi�cantly faster than from a

Bayesian perspective. In addition to computational challenges, there is limited research currently available

around uncertainty measures from the output of a Bayesian multi-class classi�cation model.

There is an opportunity for future research endeavours to investigate the scalability to more complex

models when implementing ADVI on a GPU. In particular, more sophisticated learning rate calibration

when updating variational parameter values as well as utilizing multiple GPU's to reach convergence faster

would prove bene�cial to BNN research. Further research into the GA uncertainty measure could provide

interesting results, such as a Kolmogorov-Smirnov goodness-of-�t test for distributions over posterior

predictive samples in a classi�cation environment.
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