
Chapter 2

Literature review

2.1 Map-matching methods

The literature review revealed that a number of studies exist on global positioning system
(GPS) point matching to a digital map but most researchers agree on the two most basic
categorisations of map-matching algorithms, namely local, also called incremental, and
global.

Ying et al. (2014) describe a third approach multi-track map-matching, while Lou
et al. (2009), although sharing research references with Ying et al. (2014), describe it as
statistical methods. Li et al. (2013) also describes a multi-track map-matching algorithm
but argues that all approaches can be categorised as either local or global and that multi-
track map-matching is a global method. Miwa et al. (2012) concurs with this categorical
breakdown but refers to the two methods as o✏ine and online due to the nature of their
processing frame.

Local methods are also known as online map-matching since they can be used to
generate vehicle paths as new samples become available, typically at a rate of 1–30 s per
sample. Due to the online nature of these algorithms, they are often used in applications,
such as navigation, where a trade-o↵ has to be made between accuracy, robustness and
the speed of computation (Lou et al., 2009). While local methods assign portions of
a trajectory onto a path based on the local geometry, global algorithms determine the
globally optimal path after reading in complete trajectories, i.e. after the object has
completed its entire trajectory and therefore is also referred to as o✏ine map-matching.

Global methods focus on map-matching accuracy and robustness rather than on speed
of execution (Li et al., 2013). Based on the definitions by Li et al. (2013) multi-track
map-matching should then be categorised as a subcategory of global methods. Although
the definitions of multi-track map-matching of both Ying et al. (2014) and Li et al. (2013),
and the statistical method described by Lou et al. (2009), align, perhaps the data-driven
nature of the approach might be enough reason for a unique categorisation. Multi-track
map-matching is a statistical approach where one matches a large number of possibly
sparse trajectories simultaneously to the map by trying to recover regularity among input
trajectories Li et al. (2013); (Ying et al., 2014). Based on the more statistical approach of
this method reference will be made to multi-track map-matching as a separate category
in this dissertation.
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2.1.1 Local methods

Local methods try to find a local match of geometries, and try to combine all partial
matches into one (Lou et al., 2009). These methods work well on high-sampling rate GPS
trajectories and are often used for analysis in a range of intelligent transport systems (ITS)
and can provide services such as route guidance, fleet management, road user charging, ac-
cident and emergency response, bus arrival information, and other location-based services
that require near real-time location information (Quddus et al., 2006). Local methods
involves the processing of small amounts of data to identify vehicle route and current
position on the road. Although GPS errors may a↵ect the accuracy of the map-matching
results, the procedure is concise because the process is repeated each time new data is
collected (Miwa et al., 2012).

Quddus et al. (2006) state that these local map-matching algorithms, that utilise road
segment connectivity, are generally appropriate for high-frequency positioning data from
GPS at least 1 Hz or higher. They state that the use of these algorithms on low-frequency
data, such as the data available for this study, especially in urban and sub-urban road
networks are not suitable for local methods (Qudus & Washington, 2015). For this reason,
this research considered local methods only briefly. Only those that might have similarities
to global methods are discussed, while the global methods that were utilised in the study
are discussed in detail.

The local method in Transportation Research Board (2002) uses two similarity mea-
sures to evaluate the possibility of matching the candidate edges to a GPS point, where
a candidate edge is a potential road segment a GPS point can be matched with. They
do one similarity measurement for geographic distance and the other for orientation. The
sum of the individual measures for a specific edge indicates the possibility of matching the
GPS point to the specific road segment the candidate edge represents. Wenk et al. (2006)
uses the Dijkstra algorithm to determine the shortest path on a local free space graph
constructed of the candidate routes between two partial matching results. The algorithm
runs in O(mn log(mn)) time, where m and n are the number of edges in the road network
and the number of GPS points respectively.

Chawathe (2007) proposes a segment-based matching method, and assigns confidence
values for di↵erent sampling points. The algorithm matched high-confidence segments
first, and then matches low-confidence segments using previously matched edges. Because
multiple sampling points are evaluated at the same time, there are some elements of this
method that are found in other global methods. However, local methods only consider
a small portion of the trajectory that is close to the current position being matched
instead of the entire trajectory as in global methods. When the sampling frequency is
very high local methods run fast and perform well. However as the sampling rate decrease
these methods have a considerable decrease in accuracy due to arc-skipping ; when a point
cannot be matched to either the last identified link or a link connected to the last identified
link and the intermediate links are skipped (Lou et al., 2009). Local methods can deal
with simple road network structures if the polling frequency is low; however, due to the
increase in complexity in road network structures in urban areas, the candidate road
segments identified might be crowded, leading to a higher possibility of incorrect links
being identified and causing a significant decrease in accuracy (Ying et al., 2014). Qudus
& Washington (2015) claims that the use of local methods on sparse GPS data points
might lead to a significant decrease in accuracy, in some examples as low as 70% correct
link identification compared to the high 90% some methods achieve for high frequency
data sets.

It appears that local methods might yield some interesting algorithm principles that

8



can be applied in sparse GPS data sets, such as the one used in this study, but that it
will not be as e↵ective as some of the other methods available. The suggested way to
improve the accuracy is to not analyse the points continuously, as per the local methods,
but rather evaluate all the points of the complete trace at the end of travel using a global
method.

It is worth noting that other researchers, such as (Ghiani et al., 2015), who has very
specifically researched the use of GPS data from waste collection vehicles has not made
reference to any of the afore-mentioned methods or classifications. They also refer to their
method as reverse geocoding algorithm. The principle of their algorithm matches more a
local method, since it continuously matches the next data point based on previous points
and not the whole set of points at once. Their data polling was also at a much higher
frequency, 2 s, which makes their method less applicable to this study, even though their
area of application is the same.

2.1.2 Global methods

The global methods aim to match the entire trajectory with the road network. Previous
studies tried to either search for possible matches between the trajectory and the road
segments using the minimum Fréchet distance, a measure of similarity, or to formulate
map-matching problems as optimisation problems, trying to find the shortest travel dis-
tance between two points matched in the network (Lou et al., 2009). However, as the
complexity of the road network structure increases in urban areas, and the low-sampling
rate of GPS data points becomes more of an issue, a significant decrease in accuracy oc-
curs (Ying et al., 2014). These shortcomings are addressed through the development of
more intricate and complex methods.

Alt et al. (2003) and Brakatsoulas et al. (2005) present methods based on Fréchet
distance or its variants and are suitable for comparing whole trajectories as they take the
continuity of curves into account. In Alt et al. (2003) the minimum Fréchet distance is
determined by finding a monotone path in the free space created by two GPS points, from
the lower left corner to the upper right corner. The algorithm runs in O(mn log2mn)
time, where m and n are the number of edges and number of nodes in the road network
respectively. Brakatsoulas et al. (2005) continued on the work by Alt et al. (2003) by
proposing the use of the average Fréchet distance to reduce the e↵ect of outliers. They also
propose the use of the weak Fréchet distance as it reduces the runtime to O(mn logmn).

Yin & Wolfson (2004) introduce a weight-based map-matching method that can get
up to 94% correctness depending on the GPS sampling rate. They make use of the edit
distance to measure the similarity between trajectory and matched road segments, where
the edit distance is the smallest number of insertions, deletions, and substitutions required
to change inferred path (IP) to true path (TP). The accuracy of their method decreases
to below 60% when the sampling rates of GPS data points increased above 120 s. They
consequently proposed that their method be used as an online method with high-frequency
sampling data (Yin & Wolfson, 2004).

Since the data for this study was at various sampling rates, regularly up to 5min apart,
depending on the vehicle behaviour, the above-mentioned algorithms were not suitable for
this study. It was decided to investigate other global methods that specialise in low-
sampling GPS trajectories.

Lou et al. (2009) proposed a novel method called spatial-temporal (ST) map-matching
for low sampling rate trajectories. ST matching not only considers the spatial geometric
and topological structures of the road network but also the speed constraint of the road
network. They managed to achieve 70% accuracies up to 5 min interval sampling GPS
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data, which is unattainable for local methods at such low data polling frequencies. Based
on Lou et al. (2009)'s work, Yuan et al. (2010) proposed an interactive voting-based map-
matching algorithm to improve accuracy of the results. They were able to improve the
matching accuracy using the same data as Lou et al. (2009) with an average of 10% for
the same dataset and road network over di↵erent data polling frequencies. Even when
sampling at 10min intervals they were able to achieve 67% accuracy.

Yuan et al. (2010) and Ying et al. (2014), further developed the ST algorithm of Lou
et al. (2009) breaking the model down into two modules; an o✏ine mining model and an
online matching module. The second model is called an online model due to the nature of
the analysis being done on the data and not pre-analysing the trajectories compared to the
mining model. This should not be confused with the local methods, which matches points
continuously as they become available, and is also referred to as an online map-matching
method. The mining module contains three submodules:

• The first is a Spatial-Temporal centrality estimation, which measures ST
betweenness of each road segment based on both the road network structure and
the crawled GPS trajectories.

• The second model, called marginal velocity estimation model, extracts the possible
velocities of each road segment from Google Maps. This is a novel approach
compared to the work by Lou et al. (2009) and others, which used the speed
restriction of the road segments. They argue that most drivers do not achieve the
speed restriction and that this is only useful when the road segments being
evaluated have a considerable di↵erence in speed restriction, e.g. highway versus a
service road.

• The third model, called road network decomposition model, groups the road
segments based on their characteristics.

In the online module, Ying et al. (2014) propose a two-phase method to evaluate
matching a trajectory onto a path in a road network. The process is broken down into
three steps:

• Firstly, calculate the ST score and derive several candidate paths.

• Secondly, the association score of each candidate path is evaluated.

• Finally, a weighted average of geographic score and semantic score for each
candidate path is calculated to select the most probable path for matching the
trajectory over the road network.

Ying et al. (2014)'s experimentation results show that their method is 100 times faster
than Lou et al. (2009)'s ST method and also shows significant improvement in accuracy,
from 47% to 52% based on their specific comparative dataset. Figure 2.1 presents a
diagram of their setup.

Global methods appear to be a suitable method for this project given their accuracy
on sparse GPS trajectories and the e↵ectiveness on big datasets.

2.1.3 Multi-track methods

Multi-track methods are also commonly used for matching GPS observations especially
when there is significant uncertainty in the data. Statistical methods can be considered
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Figure 2.1: Urban map-matching framework (Ying et al., 2014)

a subset of the general max-weight algorithms (Li et al., 2013). In general, a candidate
set is determined for each point in the data set, and each candidate path is assigned a
weight based on its distance from the observation and topological similarity with candi-
date routes of neighbouring samples. The focus of multi-track map-matching is to try to
match a large number of possibly sparse trajectories simultaneously to the map. Usually,
multi-track map-matching adopts data-driven techniques to improve the matching result
using historical trajectories. Li et al. (2013) further state that the the advantage of this
approach comes from the observation that human generated trajectories, either from hu-
man operated vehicles or humans themselves, show a high degree of temporal and spatial
regularity.

Javanmard & Zangh (2012) used a data set of sparse trajectories to try to group them
based on the same starting and ending positions. These multiple sparse trajectories are
used to produce an accurate path on the map by extracting a global order from the partial
order of the sample points, then using a single-track map-matching algorithm to produce
the matched path. This work focussed on matching di↵erent trips on the same route, each
with very sparse samples. Although this method is realistic and might even have been
applicable to the study dataset, it was unknown at the time of this study whether the
trips recorded in the available data set can be grouped by travels on the same route. For
example, if the waste collection vehicle data provided for this study was grouped based on
areas serviced by the vehicle we could use multiple trajectories to map the routes taken
by waste vehicles to service an area.

Pink & Hummel (2008) used a map-matching method based on the Bayesian Classifier
and incorporated a hidden Markov model to recover accurate paths from relatively sparse
trajectories. Their method showed an increased robustness compared to other methods by
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exploiting vehicular motion constraints in an extended Kalman filter and by interpolating
the given road network using cubic splines. Since their work focussed on the inclusion of
vehicle orientation in the map-matching algorithm, it could not be applied in this study
because only the position of the vehicle was available. Pink & Hummel (2008)’s tests
were also only conducted on 1 Hz GPS trajectories, and the available data set has GPS
trajectories of varying frequencies.

Wenk et al. (2006) proposed a simplification of the more complex hidden Markov model
based method that maintains its capabilities to cope with the noises and sparsity of the
raw GPS data. An interesting addition to their algorithm is called adaptive clipping, and
uses track metadata in the form of error estimates to reduce the road network graph.
This is because, in their test data, the road network did not include roads that actually
existed and which the vehicle traversed. This method provided them the ability to break
trajectories into sub-trajectories and enabled them to produce higher accuracy matches
on their dataset. Since the adaptive clipping method was not required for the dataset of
the current study, this method was not considered.

Figure 2.2 indicates the di↵erence between single-track map-matching results (Red)
and multi-track map-matching results (Blue) and the original trajectory (dotted black)
and true path (Green). In most cases single track map-matching prefers cutting the
corner while data-driven map-matching tends to follow larger, popular roads, although
the distances travelled along the two paths are very similar and thus even the speed
analysis would show little deviation from the segment free speed.

Figure 2.2: Di↵erences between single- and multi-track map-matching (Li et al., 2013)

Multi-track map-matching methods might provide more accurate results in sparse GPS
datasets, but because most methods use historical trajectories to find the most likely path
for a trajectory, they were not suitable for the dataset available for the current project
due to the trajectories not grouped based on service area. In conclusion, the best option
for this study was to implement a global method similar to Lou et al. (2009)’s ST method.
Future work on this study can further enhance the algorithm based on the work of Yuan
et al. (2010) and Ying et al. (2014).

2.2 Evaluation criteria

The two main measures for success of any map-matching algorithm are in terms of ef-
ficiency and accuracy, or in other words, run time and inference quality. Many of the
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aforementioned research papers and articles list the actual run time of the algorithm, as
a function of the number of points and network segments, as the main criteria for the
success of an algorithm. The runtime of an algorithm is calculated by means of parameter
variation and by fitting a linear model on the output, thus getting the relationship between
runtime and network complexity or GPS points to match.

To determine the accuracy of an algorithm there needs to be a true path, i.e. the
correct path of the object, to compare the output of the algorithm to (Lou et al., 2009).
But often the true path is only available when an experimental high-frequency data set is
available from which the sparse data set is created, or if the actual route has been logged
through manual recording.

Miwa et al. (2012) used two high-frequency data sets with intervals of 5 s and 50 m
respectively. They created test data sets from these data sets by increasing the polling
intervals to 20 s, 45 s and 90 s for the time-based data set and 100m, 200 m and 450 m
for the distance-based data set. This also allowed them to test the robustness of their
algorithm on the sampling frequency, based on time as well as distance. Miwa et al.
(2012) still had to determine the correct route by hand, but this is believed to contain
very few to no errors due to the high-frequency of the GPS data. This enabled them to
use the following formulas to calculate the accuracy of their algorithm.

ARR =
Length of correctly matched route

Total length of correct route
(2.1)

IARR =
Length of incorrectly matched route

Total length of matched route
(2.2)

If the matched route includes all of the links of the correct route accuracy ratio of route
by length, total matched route (ARR) will be 1.0 even if incorrect links are included. On
the other hand, inaccuracy ratio of route by length (IARR) will indicate how much of
the matched route was incorrectly identified. Therefore, if the correct route is perfectly
matched, ARR is 1.0 and IARR is 0.0. Miwa et al. (2012) states that this provides better
insight into the performance of the algorithm as opposed to the commonly used accuracy
ratio of plot matched to correct links (ARP) index, as used by Lou et al. (2009).

that 95% of plots fall within 30 m of the route. This means that if the distance between two consecutive plots is greater than
30 m, there is a 95% probability that the vehicle has moved. Therefore, we set the movement threshold value to 30 m. It
should be noted that, since we do not consider road width and the error distribution is calculated from the orthogonal dis-
tance from a plot to the route, the data in Fig. 2 and the movement threshold value are not strictly identical to the GPS error.

3.3. Indices of map matching accuracy

The most commonly used index for expressing map matching accuracy is the ratio of plots correctly matched to links. This
is the ARP index (accuracy ratio of plot matched). Note that with low frequency probe vehicle data, when the route between
two consecutive plots is incorrect, the derived traffic information is also incorrect, even if the plots are matched to the correct
links. Therefore, the two accuracy indexes, ARR (accuracy ratio of length of route identified) and IARR (inaccuracy ratio of
length of route identified), are defined as follows:

ARR ¼ length of correctly matched route=total length of correct route ð1Þ

IARR ¼ length of incorrectly matched route=total length of matched route ð2 Þ

Note that ARR is 1.0 if the matched route includes all of the links of the correct route, even if incorrect links are included in
the matched route. On the other hand, IARR is the ratio of the length of incorrect links to the matched route. Therefore, if the
correct route is perfectly matched, ARR is 1.0 and IARR is 0.0. Fig. 3 shows an example of the relationship between ARR and
IARR. If DD closes to 0 in the figure, ARR closes to 1.0 (perfect). However, IARR does not close to 0 (perfect) on the condition
that D0 exists.

4. Development of on-line map matching algorithm

This section describes the base algorithm. The problems encountered when applying the base algorithm to low frequency
and little information probe vehicle data are also highlighted. Finally, improved algorithms with better map matching accu-
racy are described.
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Fig. 2. Cumulative distribution of orthogonal distance from plot to link.

Fig. 3. Illustration of map matching accuracy indices.
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Figure 2.3: Example of ARR and IARR

Figure 2.3 shows an example of the relationship between ARR and IARR. If �D

decreases to 0 so will ARR increase to 1.0, which indicates a possible perfect match.
However, the IARR will only approach 0 if D0 reduces to 0.

Lou et al. (2009) used a similar data set as Miwa et al. (2012), and were able to
synthesise experimental data sets from the human-labelled high-frequency data sets. Lou
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et al. (2009) provided very similar metrics to Miwa et al. (2012), but when comparing
the length of the matched route to the actual route, they include the total length of the
matched route and not only the correctly matched sections. There definition is formulated
as

ARR2 =

P
The length matched road segmentsP

The length of identified road segments in correct route
(2.3)

The drawback with this measurement (2.3), is that if the algorithm identifies incorrect
segments of similar length to the correct segments it missed, then the measurement can
still provide a ratio of 1. Lou et al. (2009) created a second measurement Accuracy by
Number (2.4) that would have to be relied on to indicate the number of incorrect segments
identified.

ARRn =
# of correctly matched road segments

# All road segments in correct route
(2.4)

However, (2.4) will still not provide an indication about the length of the incorrectly
matched segments. For this reason this study will not be measuring Accuracy by length,
but rely on ARR and IARR. Lou et al. (2009)’s measurement of Accuracy by Number
(2.4), originally referred to them by the acronym An, is incorporated as it provides a
useful additional insight to indicate how accurately individual segments were identified.
To keep consistency in acronyms this measurement is renamed to accuracy ratio of route
by number of links (ARRn).

Zheng et al. (2012) calculated the inference quality of the algorithm by measuring the
similarity between the inferred path IP and the true path TP using equation (2.5)

Al =
LCR(TP,IP)length

Max(TPlength
, IPlength)

(2.5)

where LCR is the longest common road segment of IP and TP, and length indicates the
overall length of the applicable path noted.

Although Zheng et al. (2012) referred to their inferred route metric as RI, and true path
as Ground Truth or RG this study used the more intuitive acronyms, and appropriate
to previously defined terminologies inferred path, IP and true path, TP respectively. In
conclusion, it was decided for this study to use all of the above measurements, excluding
ARR2, as it is replaced by ARR and IARR.

Lou et al. (2009) argued that many current global methods have not tried using true
paths from real world generated data to evaluate the actual matching accuracy and thus
their true e↵ectiveness is unknown. To some degree the same caveat did exist in this
study, as there was no true path available for the waste collection vehicles’ trajectories.
Fortunately, there was a 5Hz data set available that could be used to determine the
accuracy of the algorithm, albeit by hand. All the experimental data sets, however, were
generated from a true path and could be used to assess the accuracy as part of the
experimentation.

Li et al. (2013) addresses this concern by constructing a benchmark dataset. They
selected 100 random sparse trajectories from their Beijing taxi data set and recruited four
volunteers with more than five years of driving experience in Beijing to manually indicate
the path they believed the taxis travelled. The purpose was to obtain a true path map
for these trajectories based on how a real driver would choose a path that followed these
trajectories based on his or her knowledge of the roads in and around the city.

For this study, the initial experimentation was done by creating experimental data sets
on a simple grid network and then on a real-world road network. The recommendation is
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for future projects to follow an approach similar to that used by Miwa et al. (2012) and
Lou et al. (2009), and to use an experimental data set that can be labeled by humans, and
then synthesised into an experimental data set based on di↵erent observations frequencies.
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Chapter 3

Algorithm development

3.1 Definition

In this section we define the algorithm and problem statement and how it was adjusted
for this specific study. The first set of definitions explicitly define the common terms
used in describing map-matching as used by Lou et al. (2009). The second part stipulates
how these definitions relate to the Multi-Agent Transport Simulation (MATSim)-specific
objects used for this study. MATSim is a collaborative open source project that can be
used as a package in Java. This study use version 0.7.0 of MATSim and Java SE 1.7,
for for more info visit https://github.com/matsim-org and https://www.oracle.com/

technetwork/java/javase/overview/index.html respectively.

global positioning system (GPS) log: A collection of GPS pointsLogLogLog = {p1, p2, . . . , pN}.
Each GPS point pi 2 LogLogLog contains latitude p

lat
i , longitude p

long
i and timestamp p

t
i .

GPS Trajectory: A sequence of GPS points, TTT, where the time interval between any con-
secutive GPS points do not exceed a certain threshold �T⇤, i.e. TTT = {p1, p2, . . . , pn},
where pi 2 LogLogLog , and 0 < p

t
i+1 � p

t
i < �T |81i<n. �T is also referred to as the sam-

pling interval.

The enumerated black dots in Figure 1.1 is an example of a GPS trajectory. For
this sample dataset a GPS point was generated at the end of the true path when the
vehicle was switched o↵, thus generating an additional point that has a �T which
is less than the other points in the GPS log. Table 3.1 reflects the collection of the
GPS points from Figure 1.1. The GPS coordinates use the standard World Geodetic
System 84 (WGS84) as coordinate reference system.

Table 3.1: GPS trajectory from example data

Point Longitude Latitude Time s

p1 -33.962 18.473 0
p2 -33.961 18.472 25
p3 -33.960 18.469 50
p4 -33.959 18.466 100
p5 -33.958 18.465 150

Road network: A road network is a directed graph GGG(VVV ,EEE), where VVV is a set of vertices
representing the intersections and terminal points of the road segments, and EEE is a
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set of edges representing road segments. Figure 3.1 shows a portion of the MATSim
network of the sample data depicted in Figure 1.1, the circles indicate the vertices
and the arrows the edges of the road network. Edges e1 and e2 have also been
annotated with their start and end points.

Road segment: A road segment, e, is a directed edge of a road network such that ei 2 EEE.
The segment e is associated with an id e

id, a typical travel speed e
v, a length value

e
l, a starting point estart, an ending point eend and a list of intermediate points that

describes the road using a polyline. Figure 3.1 shows several road segments from the
example road network with the start and end points of edges e1 and e2 annotated.

4
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e e

e e e
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e

# GPS point
Road 
segment
Vertex1

2 start

end

end

start3

4

5 6

2

1

2

1

Figure 3.1: Edges on a road network

Path: Given two vertices vi , vj in a road network GGG, a path PPP is a set of connected road
segments that start at vi and end at vj , i.e. PPP = {e1, e2, . . . , en}, where e

start
1 = vi ,

e
end
n = vj , estartk = e

end
k+1, 1  k < n.

Problem statement: Given a raw GPS trajectory, TTT , generated by an agent travelling
on a path in a road network GGG(VVV ,EEE), determine the most likely path PPP that the
agent travelled.

All the previous definitions are general terms used to describe the general format of road
networks and GPS trajectories for most map-matching problems. Since the application of
the algorithm developed was in MATSim, some specific terminologies need to be defined
as well as their relationship to the previous definitions.

GPS point: In order to work with meters, the coordinate system used in MATSim is the
SA-Albers projection which is adapted from the Albers equal-area conic projection.
Table 3.2 shows the GPS trajectory after the conversion to the SA-Albers projection.
A trajectory using the SA-Albers projection is defined as TSAATSAATSAA.

Link: Similar to the definitions of a road segment, a link L in MATSim represents an edge
with only one direction of travel. In order to represent bidirectional tra�c between
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Table 3.2: GPS trajectory of example data with SA-Albers projection

Point xxx yyy Time s

p1 -513327.5134 -3716061.097 0
p2 -513486.9662 -3715934.682 25
p3 -513722.076 -3715759.626 50
p4 -514033.4896 -3715661.143 100
p5 -514115.2881 -3715473.827 150

two points, two links need to be defined, one for each direction of travel. A link has,
inter alia, the following fields:

• link identifier, Lid - the name of the link;

• a from and to node L
fn, Ltn, the starting and ending points of a link

respectively;

• free speed L
fs in m/s. This is the speed an object is allowed to travel on the

link, and can vary depending on the time of day; and

• the length of the link L
length in meters.

In comparison to the road segment definition, a MATSim link does not contain in-
termediate points. To represent a curved road segment multiple links and nodes can
be used to accurately represent the road shape in topological format. If the visual
aspect of a link is not important a curved road segment can, for example, be rep-
resented by just one straight link with the correct length defined programmatically
and not graphically. This presents a potential issue in using the spatial and topo-
logical analysis part of the map-matching algorithm as it relies on the network to be
as topologically and spatially accurate as possible, and MATSim network can only
contain straight lines. As can be seen in Figure 3.2, the MATSim network available
for this study has relatively accurate topological structures. This is achieved by
representing curved segments on the road with a number of small, straight links.

Node: A node in MATSim, N , is defined as a topological point where one or more links
can be joined and an agent can move from one link to another. A node has, inter
alia, the following fields that are used during calculations: node ID N

id, list of In
links N inLinks (links that end inside this node), list of Out links NoutLinks (links that
start inside of this node). In Figure 3.2 the nodes are represented by small grey
diamonds that connect the links.

Network: A network is a set of links connected to each other via a set of nodes to form
and represent a transport network where upon agents can travel and interact with
one another. A network is defined as NMATSimNMATSimNMATSim(LLL,NNN), where NNN is a set of nodes
representing the intersections and terminal points of the road segments, and LLL is a
set of links representing road segments.

The MATSim representation of the entire example network is illustrated in Figure 3.2
and includes the true path travelled by the vehicle as well as the GPS trajectory in
the applicable coordinate system.

Path: In MATSim a path is a list of connected links on which agent can travel on from
one node to another, and is defined by the use of PPP l.
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The map-matching problem can now be formulated as follows:

Updated problem statement: Given a raw GPS trajectory TTTSAA generated by an
agent travelling on a path on a road network NMATSimNMATSimNMATSim(LLL,NNN), determine the most
likely path PPP l that the agent has travelled.

3.2 Candidate preparation

For each GPS point in a trajectory, there is a potential list of road segments or links on
which the agent could have travelled on when generating the GPS point. These potential
links are called candidate links. Given trajectory TTT = {p1, p2, . . . , pn}, there exist a number
of candidate links for each point pi 2 TTT .

Lou et al. (2009) made use of a search radius to identify a number of road segments
for each point in the GPS trajectory where the road segment is within the radius from the
GPS point.

There is no native functionality in MATSim to e�ciently collect all the links that
are within a radius of a certain point. However, all the nodes within a radius can be
transposed into a specific data structure referred to as a quadtree (more detail on the
creation of the quadtree refer to section 4.3.2). When all the nodes within a radius have
been identified, one can check whether or not the links to and from the nodes are within
the specified radius from the GPS point by determining the projected distance from the
GPS point to the nearest point on the link. However, there exists an issue with explicitly
defining the radius for collecting all the applicable nodes without taking into consideration
the characteristics of the links within the network. The issue is that some nodes might be
connected to the link right next to the GPS point but the link’s endpoint nodes are outside
of the search radius and thus the link will not be evaluated, leading to an incorrect path
being inferred for the GPS trace. Figure 3.3 illustrates such a possible situation, where
GPS point 2 is connected to the highlighted line to its left, but the distance to the start
and end nodes of this link is 1.7km and 1.5km away respectively. If the search radius
for nodes in the quadtree does not include these outlying nodes, the GPS point will only
have the short residential links to its right evaluated. Thus, the search radius needs to
be a function of the longest link within the network to ensure the algorithm does not
miss potential candidate links that might possibly be the correct links. Since the search
for nodes within a distance is e�ciently done using the quadtree the algorithm uses the
longest link length within the network as the search radius, which is not an input into the
algorithm as per Lou et al. (2009)’s implementation.

Once all the possible nodes have been identified and all the incoming and outgoing
links from the nodes have been stored as potential candidate links for the GPS point being
evaluated, a straight-line distance from the GPS point to each potential candidate link is
calculated and saved. The list of potential candidate links identified is sorted according
to proximity to the GPS point. The next step is to use only a certain number of links
from the sorted list of potential candidate links for further analysis and result matching.
The number of links used greatly a↵ects the e�ciency and e↵ectiveness of the algorithm,
and a number of experiments was run to determine the influence of these parameters on
results.

The next step was to determine a candidate point on each candidate link using segment
projection, and was defined as follows.

Candidate point: This is the projection of a point p to a link l and is defined as point c
on l such that c = arg min

ci2l
dist(ci, p), where dist(ci, p) returns the distance between
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Figure 3.3: Search radius required when searching for candidate links

p and any point ci on l. The jth candidate link and candidate point of pi will then
respectively be denoted as l

j
i and c

j
i . As shown in Figure 3.4, pi’s candidate points

are c
1
i c

2
i and c

3
i . The candidate point represents the most likely point on the specific

link at which the agent was when recording the GPS point being evaluated.

4. SYSTEM OVERVIEW 
The architecture of our proposed map-matching system is shown 
in Figure 5. It is composed of three major components:  Candidate 
Preparation, Spatial and Temporal Analysis, and Result 
Matching.  

 
Figure 5. Overview of system architecture 

Candidate Preparation This component contains a road network 
database with indexed edge and vertex information. It accepts 
given raw GPS trajectory from the user, and then retrieves all the 
possible candidate points for each sampling point on the 
trajectory. This step can be efficiently performed with the built-in 
grid-based spatial index. The output of this component is a set of 
candidate points and the candidate road segments they lie on. 

Spatial and Temporal Analysis This component performs spatial 
analysis followed by temporal analysis on the retrieved candidate 
sets and the trajectory to be matched.  

x Spatial analysis not only considers the distance between a 
single GPS point and the candidate road segments for this 
point, but also takes into account the topological information 
of the road network. To avoid roundabout paths, we employ 
shortest path to measure the similarity between each 
candidate path and the “true” path. 

x Temporal analysis measures the actual average travel speed 
between any neighboring points. It then compares the 
average speed with the typical speed constraints on each 
candidate path. The information can later be used to match 
the trajectory to the candidate path with most similar speed 
conditions during that time interval.  

After spatial and temporal analysis, a candidate graph is 
constructed as the output of this component. The nodes of the 
graph are the set of candidate points for each GPS observation, 
and the edges of the graph are set of shortest paths between any 
two neighboring candidate points. The nodes and edges are all 
assigned weight values based on the results of spatial/temporal 
analysis. 

Result Matching This component evaluates the candidate graph 
using the weight information assigned during spatial/temporal 
analysis. It matches given trajectory to the path with highest score 
in the candidate graph. The results are then visualized on an 
interface that can be tailored towards different end-user devices. 
The results can also be stored in a traffic database to support 
external applications such as traffic management or driving 
directions.  

5. The ST-MATCHING ALGORITHM 
In this section, we describe our ST-Matching algorithm in details.  

5.1 Candidate Preparation 
Given trajectory 𝑇 = 𝑝1 → 𝑝2 → ⋯ → 𝑝𝑛 , we first retrieve a set of 
candidate road segments within radius 𝑟 of each point 𝑝𝑖 , 1 ≤ 𝑖 ≤
𝑛. Then we compute candidate points, which are line segment 
projections of 𝑝𝑖  to these road segments defined as follows. 

Definition 6 (Line Segment Projection): The line segment 
projection of a point 𝑝 to a road segment 𝑒 is the point 𝑐 on 𝑒 such 
that  𝑐 = arg𝑚𝑖𝑛∀ 𝑐𝑖∈𝑒 𝑑𝑖𝑠𝑡(𝑐𝑖 ,𝑝) , where 𝑑𝑖𝑠𝑡(𝑐𝑖 , 𝑝)  returns the 
distance between p and any point ci on 𝑒. 

In the rest of this paper, we use 𝑒𝑖
𝑗  and 𝑐𝑖

𝑗   respectively to denote 
the 𝑗th candidate edge and candidate point of 𝑝𝑖 . As shown in 
Figure 6,  𝑝𝑖‟s candidate points are 𝑐𝑖1,𝑐𝑖2 and 𝑐𝑖3.  

 
Figure 6 Candidate points for a sampling point  𝒑𝒊 

To facilitate the search of candidate points, the road network is 
indexed using a grid. Once the candidate point sets are retrieved 
for all the sampling points on the trajectory  𝑇 , the problem 
becomes how to choose one candidate from each set so that 
𝑃: 𝑐1

𝑗1 → 𝑐2
𝑗2 → ⋯ → 𝑐𝑛

𝑗𝑛  best matches 𝑇: 𝑝1 → 𝑝2 → ⋯ → 𝑝𝑛 .  

5.2 Spatial Analysis 
In spatial analysis, we use both geometric and topological 
information of the road network to evaluate the candidate points 
found in the previous step. The geometric information is 
incorporated using observation probability, and the topological 
information is expressed using transmission probability. 

Definition 7 (Observation Probability): The observation 
probability is defined as the likelihood that a GPS sampling 
point  𝑝𝑖  matches a candidate point   𝑐𝑖

𝑗  computed based on the 
distance between the two points  𝑑𝑖𝑠𝑡(𝑐𝑖

𝑗 ,  𝑝𝑖) . 

Generally speaking, the error in a GPS measurement can be 
reasonably described as a normal distribution 𝑁(𝜇, 𝜎2)  of the 
distance between 𝑝𝑖  and  𝑐𝑖

𝑗 . It indicates how likely a GPS 
observation 𝑝𝑖  can be matched to a candidate point 𝑐𝑖

𝑗on the real 
road without considering its neighboring points. Formally, we 
define observation probability 𝑁 𝑐𝑖

𝑗   of  𝑐𝑖
𝑗  w.r.t.  𝑝𝑖  as: 

𝑁 𝑐𝑖
𝑗  =

1
 2𝜋𝜎

𝑒−
(𝑥𝑖

𝑗−𝜇 )2

2𝜎2                 (1) 

where 𝑥𝑖
𝑗 = 𝑑𝑖𝑠𝑡(𝑐𝑖

𝑗 ,  𝑝𝑖) is the distance between  𝑝𝑖  and 𝑐𝑖
𝑗 . In 

this paper, we use a zero-mean normal distribution with a standard 
deviation of 20 meters based on empirical evaluation. 

Observation probability does not take into account a GPS point‟s 
position context. This sometimes leads to wrong matching results.  
Figure 7 shows such an example. The thick lines represent a 
highway and the thin vertical line represents a local road. 
Although 𝑝𝑖  is closer to 𝑐𝑖1 on the local road, we should 
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Spatial Analysis
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Graph

Best Path Search

Matching 
Result

1. Candidate Preparation 2. Spatio-Temporal Analysis 3. Result Matching

User Interface

 
   𝑒𝑖3 

 𝑒𝑖1 

 𝑒𝑖2 

 𝑐𝑖3 

  𝑝𝑖  
  𝑐𝑖2 

 𝑐𝑖1 

l
l

l

Figure 3.4: Point projection on candidate links

Updated problem statement Once the candidate link sets and their respective can-
didate points are retrieved for all the sampling points on the trajectory TTTSAA ,
the problem statement becomes how to choose one candidate from each set so that
PPP l = {cj1i , c

j2
i , . . . c

jn
n } best matches TTTSAA = {p1, p2, . . . , pn}
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3.3 Spatial analysis

In the spatial analysis both the geometric and topological information of the road net-
work is used to evaluate the candidate points found in the previous step. The geometric
information is used in the observation probability, and the topological information in the
transmission probability.

Observation probability: The observation probability is defined as the likelihood that
a GPS sampling point pi matches a candidate point cji and is computed based on the

distance between the two points, defined as dist(cji , pi). The inherent error in a GPS

measurement causes pi to be a certain distance from c
j
i and can be approximated

using a normal distribution N(µ,�2). This distribution can be used to indicate how
likely a GPS observation pi can be matched to a candidate point cji on the real road
without considering its neighbouring points. Formally the observation probability is
defined as: N(cji ), of cji with regard to pi as:

N(cji ) =
1p
2⇡�

exp
� (xji � µ)2

2�2
(3.1)

where x
j
i = dist(cji , pi), the distance between pi and c

j
i . Similar to Lou et al. (2009)

this study makes use of a zero-mean normal distribution with a standard deviation of
20 m for GPS error. Using these parameters the observation probability will always
output very low probability values for any GPS point even if the point is within 0 m
of the candidate point. During informal discussions with the original authors they
indicated that the final spatial-temporal (ST) probability value should rather be
viewed as a normalised score instead of a probability, per se, due to the low values.
In this study the output of the ST function was still referred to as a probability.

For the map-matching example used in this section the 8 closest links were used to
identify candidate links. The candidate links identified for GPS point 2 is shown in
Table 3.3 and the candidate link names can be referenced from Figure 3.5.

Table 3.3: GPS point candidate links for GPS point 2

Candidate link Distance to link Observation probability

l
1
2 7.08 0.0187
l
2
2 7.08 0.0187
l
3
2 8.15 0.0184
l
4
2 8.15 0.0184
l
5
2 19.08 0.127
l
6
2 19.08 0.127
l
7
2 19.08 0.127
l
8
2 19.08 0.127

Since the observation probability calculation does not take into account the position
context of a GPS point, it can sometimes lead to wrong matching results. Figure 3.6 shows
such an example. The thick lines represent a highway, and the thin vertical line represents
a local road. Although pi is closer to c

1
i on the local road, it should match pi to c

2
i on

the highway if it is already known that pi’s neighbours pi�1 and pi+1 are on the highway.
This is based on the assumption that a vehicle is unlikely to take a roundabout path Lou
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Figure 3.5: Example of candidate links

et al. (2009). To prevent this potential error the algorithm made use of the transmission
probability.

Transmission probability: Given two candidate points cti�1 and c
s
i for two neighbouring

GPS sampling points pi�1 and pi respectively, the transmission probability from c
t
i�1

to c
s
i is defined as the likelihood that the true path from pi�1 to pi follows the shortest

path from c
t
i�1 and c

s
i .

The transmission probability is defined as

V (cti�1 ! c
s
i ) =

di�1!i

w(i�1,t)!(i,s)
t (3.2)

where di�1!i = dist(pi, pi�1) is the Euclidean distance between pi and pi�1, and
w(i�1,t)!(i,s) is the length of shortest path from c

t
i�1 to c

s
i .

Combining equations (3.1) and (3.2) the spatial analysis function can be defined as:
Fs(cti�1 ! c

s
i ) as the product of observation probability and transmission probability:

Fs(c
t
i�1 ! c

s
i )= N(csi ) ⇤ V (cti�1 ! c

s
i ), 2  i  n (3.3)

where c
t
i�1 and c

s
i are any two candidate points for two neighbouring GPS points pi�1 and

pi respectively.
Equation (3.3) computes the likelihood that an object moves from c

t
i�1 to c

s
i using

the product of two probability functions; thus, geometric and topological information are
both taken into consideration. Note that in practice, it is unlikely for a moving object
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Figure 3.6: Transmission probability example

to always strictly follow the shortest path. Therefore the observation probability N(csi )
cannot be omitted from Equation (3.3).

With spatial analysis, for any two neighbouring GPS points pi�1 and pi, a set of
candidate paths c

t
i�1 ! c

s
i are generated. Each path is assigned a spatial measurement

value computed from Equation (3.3).
There exists a shortcoming inherent to low-sampling rate GPS data, because even

though the map-matching algorithm determines the most likely link for every GPS point,
the assumption is still that for two links found for subsequent GPS points not connected
to each other, the links traversed between the two links is the shortest path. In real life
very similar paths, in terms of distance, might exist between two links or a driver might
take a non-shortest path route and still generate points at similar positions in the network.
The temporal analysis aims to address part of this problem but without higher sampling
rates there is no accurate way of identifying the correct route if many alternatives exist
between two GPS points.

3.4 Temporal analysis

Although the spatial analysis can determine the actual path from the other candidate
paths relatively accurately, there are situations where the spatial analysis might choose an
unlikely path. When two paths that allow very di↵erent travel speeds are situated next to
each other, spatial analysis might determine a path that spatially makes sense but when
considering the speed at which the agent would travel on the chosen path, this is highly
unlikely. The inferred speed might seem unlikely due to either the speed restrictions or
the practical speed at which an agent would have to travel to reach the next candidate
point within the given time between the subsequent samples. See the example shown in
Figure 3.7. The two lines on the left is a highway, and the lines to the right are roads inside
a residential area. The spatial analysis function may produce the same value whether two
points pi�1 and pi are matched to the highway or to the residential road. However, if one
calculates the average speed from pi�1 to pi on a straight line as 100 km/h, the algorithm
would match the points to the highway considering the speed limits of the residential road.

More formally, given two candidate points c
t
i�1 and c

s
i for two neighbouring GPS

sampling points pi�1 and pi respectively, the shortest path from c
t
i�1 to c

s
i is denoted as a

list of road segments [l
0
1, l

0
2, . . . , l

0
k]. The average speed v(i�1,t)!(i,s) of the shortest path is
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Figure 3.7: Temporal analysis example

computed as follows:

v(i�1,t)!(i,s) =

Pk
u=1 `u

�ti�1!i
(3.4)

where `u = l
0length
u , the length of l

0
u, and �ti�1!i = p

t
i � p

t
i�1, the time interval between

two sampling points pi and pi�1.

Note that each road link l
0
u is also associated with a typical speed value l

0fs
u , referred

to as the free speed of a link. One of the benefits of using a MATSim network was that
the free speed can be a function of the time and as such one is able to incorporate more
accurate free speed data based on time of day to evaluate the temporal probability of the
algorithm.

The cosine distance is used to test the similarity between the actual average speed from
c
t
i�1 to c

s
i and the speed constraints of the path between the two points. Consider the vector

that contains k elements of the same value v(i�1,t)!(i,s) and the vector (l
0fs
1 , l

0fs
21 , . . . , l

0fs
k )T

Temporal analysis: The temporal analysis function is defined as follows.

Ft(c
t
i�1 ! c

s
i ) =

Pk
u=1(l

0fs
u ⇥ v(i�1,t)!(i,s))qPk

u=1(l
0fs
u )2 ⇥

qPk
u=1 v

2
(i�1,t)!(i,s))

(3.5)

As in the spatial analysis function, cti�1 and c
s
i are any two candidate points for pi�1

and pi respectively.
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3.5 Result matching

Once the spatial and temporal analyses have been completed, a candidate graph GGG
0
T is

generated with every candidate point for every GPS point representing a node in the
graph and every link in the graph representing the movement between the neighbouring
candidate points.

Formally the candidate graph for trajectory TTT = {p1, p2, . . . , pn} is GGG
0
T (LLL

0
T ,NNN

0
T ), where

NNN
0
T is a set of candidate points for each GPS sampling point, and LLL

0
T is a set of links

representing the possibility of moving from one candidate link to another, as depicted in
Figure 3.8. Each link also contains attributes for the connection between the two nodes,

match  𝑝𝑖  to 𝑐𝑖2 on the highway if we already know that its 
neighbors 𝑝𝑖−1 and 𝑝𝑖+1 are on the highway. This is based on the 
observation that a vehicle is unlikely to take a roundabout path 
(Observation 1). 

 
Figure 7. An example that needs transmission probability 

To characterize the above intuition, we compute shortest path 
between two neighboring candidate points 𝑐𝑖−1

𝑡  and  𝑐𝑖𝑠. Then we 
define transmission probability as follows:  

Definition 8 (Transmission Probability): Given two candidate 
points 𝑐𝑖−1

𝑡  and  𝑐𝑖𝑠 for two neighboring GPS sampling points  𝑝𝑖−1 
and 𝑝𝑖 respectively, the transmission probability from 𝑐𝑖−1

𝑡  to  𝑐𝑖𝑠  is 
defined as the likelihood that the “true” path from 𝑝𝑖−1  to 𝑝𝑖  
follows the shortest path from 𝑐𝑖−1

𝑡  to 𝑐𝑖𝑠 . 

We compute transmission probability as  

𝑉 𝑐𝑖−1
𝑡 → 𝑐𝑖𝑠 =

𝑑𝑖−1→ 𝑖
𝑤 𝑖−1,𝑡 →(𝑖 ,𝑠)

                (2) 

where 𝑑𝑖−1→𝑖 = 𝑑𝑖𝑠𝑡(𝑝𝑖 , 𝑝𝑖−1) is the Euclidean distance between 
𝑝𝑖  and 𝑝𝑖−1, and 𝑤 𝑖−1,𝑡 →(𝑖,𝑠) is the length of shortest path from 
𝑐𝑖−1
𝑡  to 𝑐𝑖𝑠.  

Combining Equation (1) and (2), we define the spatial analysis 
function 𝐹𝑠 𝑐𝑖−1

𝑡 → 𝑐𝑖𝑠   as the product of observation probability 
and transmission probability: 

𝐹𝑠 𝑐𝑖−1
𝑡 → 𝑐𝑖𝑠 = 𝑁 𝑐𝑖𝑠 ∗ 𝑉 𝑐𝑖−1

𝑡 → 𝑐𝑖𝑠 , 2 ≤ 𝑖 ≤ 𝑛          (3)                 

where 𝑐𝑖−1
𝑡  and 𝑐𝑖𝑠  are any two candidate points for two 

neighboring GPS points 𝑝𝑖−1 and 𝑝𝑖  respectively.  

Equation (3) computes the likelihood that an object moves from 
𝑐𝑖−1
𝑡  to  𝑐𝑖𝑠  using the product of two probability functions, thus 

geometric and topological information are both taken into 
consideration. Note that in practice it is unlikely for a moving 
object to always follow the strict shortest path. Therefore the 
observation probability 𝑁 𝑐𝑖𝑠  cannot be omitted from (3). 

With spatial analysis, for any two neighboring GPS points  𝑝𝑖−1 
and  𝑝𝑖 , a set of candidate paths  𝑐𝑖−1

𝑡 → 𝑐𝑖𝑠   are generated. Each 
path is assigned a spatial measurement value computed from 
Equation (3). 

5.3 Temporal Analysis 
Spatial analysis can distinguish the actual path from the other 
candidate paths in most cases. However, there are situations that 
spatial analysis alone could not handle. 

 
Figure 8. An example that needs temporal analysis 

Consider the example shown in Figure 8. The thick line is a 
highway, and the thin lines are service roads close to the highway. 
The spatial analysis function may produce the same value whether 
two points 𝑝𝑖−1 and 𝑝𝑖  are matched to the highway or the service 
road. However, if we calculate the average speed from 𝑝𝑖−1 
to  𝑝𝑖  as  80km/ , we would match them to the highway 
considering the speed limits of the service road (Observation 2).  

More formally, given two candidate points 𝑐𝑖−1
𝑡  and  𝑐𝑖𝑠  for two 

neighboring GPS sampling points   𝑝𝑖−1  and  𝑝𝑖 respectively, the 
shortest path from 𝑐𝑖−1

𝑡   to  𝑐𝑖𝑠  is denoted as a list of road 
segments  [𝑒1

′ , 𝑒2
′ , … , 𝑒𝑘′ ] . The average speed 𝑣  𝑖−1,𝑡 →(𝑖 ,𝑠) of the 

shortest path is computed as follows: 

𝑣  𝑖−1,𝑡 →(𝑖 ,𝑠)  =
 𝑙𝑢  𝑘

𝑢=1
∆𝑡𝑖−1→ 𝑖

               (4) 

. 

where 𝑙𝑢 = 𝑒𝑢′ . 𝑙 is the length of 𝑒𝑢′ , and ∆𝑡𝑖−1→ 𝑖 = 𝑝𝑖 . 𝑡 −
𝑝𝑖−1. 𝑡 is the time interval between two sampling points 𝑝𝑖  and 
𝑝𝑖−1 . Note that each road segment 𝑒𝑢′  is also associated with a 
typical speed value 𝑒𝑢′ .𝑣. We employ cosine distance to measure 
the similarity between the actual average speed from 𝑐𝑖−1

𝑡   to 𝑐𝑖𝑠 
and the speed constraints of the path. Consider the vector that 
contains 𝑘 elements of the same value 𝑣  𝑖−1,𝑡 →(𝑖 ,𝑠) and the 
vector (𝑒1

′ . 𝑣, 𝑒21
′ . 𝑣, … , 𝑒𝑘′ .𝑣)T . The temporal analysis function 

is defined as follows. 

𝐹𝑡 𝑐𝑖−1
𝑡 → 𝑐𝑖𝑠 =

 (𝑒𝑢′ . 𝑣 × 𝑣  𝑖−1,𝑡 →(𝑖,𝑠))𝑘
𝑢=1

  (𝑒𝑢′ . 𝑣)2𝑘
𝑢=1 ×   𝑣  𝑖−1,𝑡 →(𝑖 ,𝑠)

2𝑘
𝑢=1

          (5) 

As in spatial analysis function, 𝑐𝑖−1
𝑡  and 𝑐𝑖𝑠  are any two candidate 

points for 𝑝𝑖−1 and 𝑝𝑖  respectively. 

5.4 Result Matching 
With the spatial and temporal analysis above, we are ready to 
describe our ST-Matching algorithm used in the result matching 
component.  

In general, after spatial and temporal analysis, we are able to 
generate a candidate graph 𝐺𝑇

′ (𝑉𝑇
′ , 𝐸𝑇

′ ) for trajectory  𝑇: 𝑝1 →
𝑝2 → ⋯ → 𝑝𝑛 . 𝑉𝑇

′  is a set of candidate points for each GPS 
sampling point, and 𝐸𝑇

′  is a set of edges representing the shortest 
paths between any two neighboring candidate points, as depicted 
in Figure 9. Each node in 𝐺′   is associated with 𝑁 𝑐𝑖𝑠 . Each edge 
is associated with 𝑉 𝑐𝑖−1

𝑡 → 𝑐𝑖𝑠  and 𝐹𝑡 𝑐𝑖−1
𝑡 → 𝑐𝑖𝑠 .  

 
Figure 9. The candidate graph 𝑮𝑻

′ (𝑽𝑻
′ , 𝑬𝑻

′ ) 

Combining Equation (3) and (5), we define ST function for 
𝑐𝑖−1
𝑡 → 𝑐𝑖𝑠  as:  

𝐹 𝑐𝑖−1
𝑡 → 𝑐𝑖𝑠 = 𝐹𝑠 𝑐𝑖−1

𝑡 → 𝑐𝑖𝑠 ∗ 𝐹𝑡 𝑐𝑖−1
𝑡 → 𝑐𝑖𝑠 , 2 ≤ 𝑖 ≤ 𝑛       (6) 
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namely the value of the ST algorithm’s probability that the object traversed from the one
candidate point to the other, stored as the length of the link. The link also stores some
metadata such as the shortest path on the original road network between the candidate
links if they are not connected by a common node. The shortest path is used to reconstruct
the inferred route once the most probable candidate points have been identified. Each
node in GGG

0
also stores the observation probability N(csi ) and each link the average speed,

V (cti�1 ! c
s
i ) and temporal analysis Ft(cti�1 ! c

s
i ) for detailed analysis afterwards.

A candidate path sequence for the entire trajectory TTT saa is a path in the candidate
graph, denoted as PPP c = {cs11 , c

s2
2 , . . . , c

sn
n }. The overall score for such a candidate sequence

is F (PPP c) =
Pn

i=2 F (c
si�1
i�1 , c

si
1 ). From all the candidate sequences the aim is to find the one

with the highest overall score as the best matching path for the trajectory. More formally,
the best matching path PPP for a trajectory TTT is selected as:

PPP = arg max
PPP c2GGG0

T (LLL
0
T ,NNN

0
T )

F (PPP c) (3.6)

To get the candidate sequence with the highest overall score the entire graph needs
to be traversed for all the possible combination of routes from the start to the end point.
The score of a route is the the sum of the link lengths in a route where the link length
is the ST algorithm’s score for the link being the correct link which the agent traversed
while generating the GPS points. This process can be executed using existing graphing
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algorithms like Dijkstra’s algorithm. But since Dijkstra’s algorithm uses the shortest path
as an objective function, instead of using the length of the links as the travel distance
utility this implementation uses 1�l

length. Since the length of the link is the ST algorithm’s
probability that the object traversed from the one candidate point to the other, i.e. the
probability that it is the right route, Dijkstra’s algorithm was actually calculating the
routes that is least likely to not be the wrong route. Changing Dijkstra’s algorithm to
essentially calculate the longest route is only possible because the graph is a directed
acyclic graph, that is, it is a finite directed graph with no directed cycles, thus no infinite
loops will occur when looking for the longest path.

The Dijkstra method requires a single starting and ending node for the algorithm to
start at and navigate to. Since the graph has multiple starting points, for point p1, and
multiple end points, for point pn, a dummy starting and ending node was created. The
starting dummy node was connected to the first tier of nodes with a length equal to the
observation probability of the node it was connected to. The ending dummy node was
connected to the last tier of nodes with length 1.

Figure 3.9 shows the graphical representation of the map-matching example given in
Chapter 1. Every tier in the graph, excluding the starting and ending node, represents the
eight possible candidate points for each GPS point, P1 ! P5. Once the longest path has
been calculated from the graph, the original links from the road network can be inferred
from the graph link and node data.
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Figure 3.9: Candidate graph for sample data

In Table 3.4, the probability for each chosen link can be seen as well as the average link
probability, which was used to calculate the overall probability of the inferred path (IP).
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Graph link F did not form part of the calculation as it was only used to create an end
point for the Dijkstra algorithm to use and the length of the link is 1.

Table 3.4: Graph link ST probability data

Graph link ST probability

A 0.0159
B 0.0083
C 0.0119
D 0.0153
E 0.0079

Average 0.0119
Min 0.0079
Max 0.0159

Std Dev 0.0033

3.6 Analysing results

Since a true path (TP) is available in this example, one can analyse the results of the
algorithm using the criteria defined in section 2.2 as per the Table 3.5.

Table 3.5: Example results analyses against TP

Measurement Value

ARR 0.997
IARR 0
ARRn 0.977

Al 0.997
Average ST value 0.0119

To analyse the results of the algorithm in the absence of a TP one can review the
inferred speed as well as the ST probability value. The inferred speed can be calculated
from the IP using the time stamps of the GPS points while the probabilities can be
transferred from the graph links to the associated network links. Since subsequent GPS
points can be allocated to candidate links that are not connected, some graph links contain
a list of multiple network links representing the shortest path between the one candidate
link and the subsequent candidate link. An original network link can also be associated
with more than one graph link if the link is a candidate link for more than one GPS
point. In order to assign a probability to the original network links, the probability of
each graph link can be assigned to the candidate link and intermediate links with which it
was associated. If there are shared original network links between graph links, an average
between the probabilities and calculated speed was assigned to these links. The result of
this analysis can be seen in Figure 3.10. From Figure 3.10b, we can infer what the waste
collection vehicle was doing on each by part of its journey by using the speed as a proxy.
It appears from the red lines that the vehicle might have been collecting waste, while
the yellow lines imply it was most likely deadheading, i.e. driving to a new service area
and not collecting any waste. This simple analysis of inferred speed answers the specific
question posed by the use case of this study.
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Figure 3.10: Analyses of example map-matching results
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To gauge the confidence level of the inferred route one can analyse the assigned prob-
abilities from the ST algorithm, as per Figure 3.10a, but without further experimentation
to create a benchmark for probabilities versus accuracy, it is di�cult to conclude a confi-
dence level in the results purely based on the probabilities of di↵erent route sections. It
should be noted that low speeds travelled by the vehicle would lead to lower probabilities
because the temporal part of theSTalgorithm analyses the calculated speed against the
free speed of the network and the more it di↵ers, the lower the value. This poses a po-
tentially significant impact on the analysis of waste collection vehicles since they regularly
travel at very low speeds while servicing an area.
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