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Abstract

Malaria is endemic in South Sudan and it is one of the most severe diseases in the
war-torn nation. There has been much concern about whether the severity of its trans-
mission might depend upon climatic conditions that are related to the reproduction
of the single-cell parasite attaching to female mosquitoes, especially in high altitude
areas. The country experiences two different climatic conditions; namely one tropical
and the other hot and semi-arid. In this study, we aim to assess the potential impact
of climatic conditions on malaria prevalence in these two climatically distinct regions
of South Sudan. We develop and analyze a host-mosquito disease-based model that in-
cludes temperature and rainfall. The model has also been parameterized in a Bayesian
framework using Bayesian Markov Chain Monte Carlo (MCMC). The mathematical
analysis for this study has included equilibria, stability and a sensitivity index on the
basic reproduction number R0. The threshold R0 is also used to provide a numeri-
cal basis for further refinement and prediction of the impact of climate variability on
malaria transmission intensity over the study region. The study highlights the impact
of various temperature values on the population dynamics of the mosquito.
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1 Introduction

Malaria is the most prevalent human mosquito-borne disease caused by a single-cell parasite
that infects female Anopheles mosquitoes [4, 13]. This disease remains one of the biggest
health threats facing humanity and is transmitted more robustly and incessantly in Sub-
Saharan Africa than it is elsewhere. The Republic of South Sudan (RSS), the youngest
country with civil unrest is one of the countries in Sub-Saharan Africa that is severely
confronted by malaria. There have been approximately 1.54 million malaria episodes and
almost 718 deaths reported in 2014, with 65% of those being children [34]. Moreover, malaria
is endemic within the country [34]. However, little is known about local environmental
conditions that may contribute to the severity of the disease during wet seasons. Improving
our perception of host-parasite interactions in the war-torn nation is a priority in which
mathematics can bring insight, especially regarding conjectures that attribute this gravity
to climatic factors.

The malaria parasite depends upon the Anopheles mosquito to supplement its life cy-
cle through a human intermediary. This relationship means that a climatic influence on
mosquitoes’ bionomics will trigger the trend towards malaria that is most likely to follow the
climatic pattern, especially in the endemic zone. For this reason, an increase in mosquito
density leads to a higher risk of malaria prevalence. For instance, Abiodun and Ewing [2, 11]
have recently revealed that climate fluctuations not only have a reproducible effect on the
mosquito lifespan, but also impact positively on the development of sporogonic stages of
the malarial parasite within the mosquito’s body. Warmer temperature increases mosquito
activity and more rainfall can lead to an abundance of mosquito larvae [4, 5, 17, 28]. Thus,
the use of mean temperatures might be appropriate under certain conditions, which are
generally found to have significant implications in determining the risk of malaria [6, 33].

Similar research [29, 36] has shown that mosquitoes are particularly active at dusk and
dawn, while prolonged sun exposure can lead to their dehydration. Little is known about
the survival of mosquito-borne diseases and malaria transmission during the winter, however,
it is often noted that mosquitoes tend to disappear in winter or when temperatures drop
below 10◦C. Nonetheless, the vertebrate host is the immediate source of winter infection in
mosquitos, since the virus simply survives in the cold weather, waiting for warmer weather
to reproduce. According to a study by [36] female mosquitoes spawn tumblers, which ul-
timately freeze in winter (or at temperatures below 10◦C). The frozen eggs are saved until
the temperature warms, when mosquito proliferation begins again, with disastrous effects
on humans. These findings point to the effect of changes in ambient temperatures and pre-
cipitation levels on mosquito populations and thus stimulates interest in understanding the
impact of these factors on mosquito-borne disease transmission.

In South Sudan malaria transmission is alleged to be perennial across the country, with
peaks towards the end of the rainy season from September to November [14, 23], as freshwater
pools become mosquito breeding sites. The country has two different climatic conditions,
a hot semi-arid climate and a tropical climate. It is observed that malaria prevalence is
significantly higher in the southern region (a tropical region, i.e., Central Equatorial State
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(CES)) than it is in northern region (a hot semi-arid region, i.e., Western Baher El Ghazal
State (WBZ)) as is illustrated in Figure 1. The disease prevalence could be as high as 75% to
100% in some counties in the South. It is still uncertain, and a matter of discussion, whether
and how the changes in transmission might occur. Understanding the dynamics of mosquito
population is crucial for gaining insight into the abundance of mosquitoes, and thus design
operational strategies for control. With this backdrop, we endeavor to understand the exact
role that climate plays on the transmission of malaria in two different climatic zones of South
Sudan through mathematical modelling. The CES and WBZ States are chosen (one from
each climatic zone) due to the severity of malaria within their region. This is the first study
designed for this purpose in CES and WBZ since the call for the implementation of the
malaria control program.
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Figure 1: Weekly malaria reported cases of 2015 for (A) Western Baher el Ghazal State (in
region 2) and (B) Centeral equatorial State (in region 1)

A number of studies using mathematical models have established the direct role that
climate variables, such as temperature and rainfall, play in the transmission dynamics of
vector-borne diseases [1, 4, 10, 11, 16, 20, 22, 28, 33, 40]. Yang [40] presented a malaria trans-
mission model by taking into account different levels of acquired immunity among humans
and, most importantly, temperature-dependent parameters related to vector mosquitoes. A
model analysis was carried out by means of the basic reproduction number R0. Additionally,
an expression was derived for an endemic equilibrium that is biologically relevant only when
R0 > 1. Hoshen and Morse [16] formulated a dynamic malaria model comprising both the
weather-dependent within-vector stages and the weather-independent within-host stages.
Martens et al. [22] used rules-based modelling approach to examine how climate change
might affect global malaria transmission. Their model consists of several linked systems:
the climate system, the malaria system (divided into a human subsystem and a mosquito
subsystem), and the impact system. Birley [20] presented a simple mathematical model to
investigate the effects of temperature on the ability of Anopheles maculipennis to transmit
Plasmodium vivax malaria.
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In recent decades also several contributions have been made in Africa concerning the
distribution of mosquitoes affected by various environmental (climatic) factors such as tem-
perature, humidity, rainfall and wind [2, 3, 12, 17, 18, 21, 30, 38, 39]. For instance, Parham et
al. [30] developed an integrated modeling framework for assessing and predicting the simul-
taneous effects of rainfall and temperature on malaria dynamics. They illustrated the role
that large-scale climate simulations and infectious disease systems may provide in predicting
changes in the basic reproduction number across Tanzania. This offers powerful tools for
understanding geographic shifts in incidence as climate changes. Yamana et al. [38] assessed
the influence of climate change on malaria transmission in West Africa. Their simulation
results stated that the changes in the pattern of rainfall play a significant role on malaria
transmission compared to the potential impact of rising temperatures. They suggest that it
will be necessary to integrate the changes in rainfall pattern in order to accurately project
the environmental suitability for malaria transmission in future climates. Lunde et al. [21]
formulated a realistic representation of Anopheles Gambiae s.s. and Anopheles Arabiensis
in order to ameliorate the understanding of the dynamics of these vectors. Their study high-
light how parameters can influence the success of these two species, as temperature, relative
humidity and mosquito size are essential aspects in malaria transmission.

In spite of these studies, most modellers often ignore to validate their climate-based mod-
els with field data in order to carry out a quantitative assessment of the human component
of the model. The aim of this study is to assess the impact of temperature and rainfall on
the dynamics of mosquito population of a certain region of South Sudan and taking into
consideration the climate-driven dynamics model. In addition, we further consider the im-
portance of evaluating the numerical values of the model paramters with real data in order
to allow for a computational simulation of dynamics that provides accurate prediction of the
reaction.

Without accurate predictions, calculations of the basic reproduction number which ex-
plains the capability of a disease to persist in a population, will be subject to a significant
error. This may help in a better understanding of the regulations of the biological system
of the disease that can help decision-makers in developing efficient intervention strategies
to tackle the disease. Therefore, the model framework is designed to accommodate human-
mosquito population dynamics and to estimate its parameters using the Bayesian approach.
Bayesian approaches, in particular Markov Chain Monte Carlo (MCMC) turn out to be a
powerful inference tool for complex systems raised in behavioral science and computational
biology [15, 41]. The input data required to validate our model are malaria incidence cases
at state level in each region for a given period of time. The climate data are obtained from
[35] and Regional Meteorological Service [7].

2 Spatial trends

According to Köppen and Geiger, South Sudan has two different climates [32]:
(i) A tropical savanna climate which is characterized by a rainy season of high humidity
followed by a dry season with mild temperatures ranging from an average minimum of 20◦C
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to a maximum of 38◦C [32], (ii) A hot semi-arid climate characterized by a more moderate
summer temperature regime, with daily mean temperatures of around 19◦C. The study is
conducted in two climatically distinct regions: Equatorial region and Baher El Ghazal region.
A map of the study area is provided in Figure 2. The seasonal changes in these environments
drive a strong vectorial capacity that sustains high levels of transmission. Our study domain
is determined by longitude and latitude, which is interpolated to the spatial resolution data.
These two distinct regions are described as:

Region (1): The Southern Part of the country is characterized by an equatorial (tropical)
climate, forested, with comparatively lower refugee migration flows, but with some seasonal
migration related to agricultural work. This region is divided into 241 counties and mostly
comprised of greenbelt, hills and mountains. Average rainfall is between 901 and 1800 mm
annually, with the longest rainy season lasting from 7–8 months, as can be seen in Figure 2(
right). Humid conditions and a relatively warm climate make this region conducive to the
reproduction of mosquitos. Our study focuses on the Central Equatorial State (CES) as a
representative of this region.

Region (2): The northern part of the country is divided into 128 counties and has a
climate that is classified as hot and semi-arid. The landscape features western and eastern
flood plains that slope gently towards the rivers. Annual average rainfall ranges from between
400 to 600 mm and the duration of the rainy season is from 5–6 months (see Figure 2( right)).
Our study focuses on the Western Baher El-Ghazal State (WBGZ) as a representative of
this region.
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3 Method

We begin with the formulation of a classical epidemiological model that considers human
and mosquito populations. The model structure is similar to that of [26] that includes a
realistic, climate-based model for capturing the simultaneous effects of rainfall and temper-
ature on malaria transmission. The human component is utilized to fit the model to the
actual observed data via a Bayesian approach. Both components of the model are used
simultaneously to estimate mosquito bite rate that is assumed to be influenced by LLINs
intervention coverage and not climate-dependent. We hence end this section by applying a
Bayesian approach to estimate the posterior distribution of parameters given actual-settings
data.

3.1 Model formulation

Based on the foregoing and established studies, we presume the heterogeneity of malaria in
South Sudan can be explained by the varied agro-climatic conditions that exist between the
regions. Consequently, we slightly extend the model in [26] by using a deterministic com-
partmental structure for the endemic malaria disease incorporating the climate factor that
leads to understanding the impact of temperature and rainfall. This compartmental model
captures the situations including intervention coverage and allows to calibrate parameters
against the real observed data. The human components of the model is presented to capture
the relationship between effective treatment and parasitic prevalence. The total mosquito
population NM is divided into aquatic mosquitoes (egg, larva and pupa) stage denoted by M
and adult mosquitoes NV . The adult mosquitoes is sub-divided into susceptible mosquitoes
Sv, mosquitoes exposed to malaria parasite Ev and infectious mosquitoes IV . In model
formulation, we assume all variables represented in each compartments are differentiable
with respect to time and all parameters are non-negative. As illustrated in the flow digarm
(Figure 3.1) the total population of humans and mosquitoes at time t will be:

NH(t) = SH(t) + EH(t) + IH(t) + RH(t);

and
NM(t) = M(t) + NV (t)

respectively.
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Figure 3: Flow diagram for Human and Mosquito infection model

The susceptible compartment is recruited by birth into the community at a rate Γ and
increased with recovery rate κ when individuals loose their immunity. We presume suscepti-
ble individuals (S) acquire malaria and become infected at a rate ΛH when they are bitten
by infectious mosquitoes (entomological inoculation rate; EIR). After bites from infectious
mosquitoes, individuals move to the exposed humans compartment. The exposed human
population remains exposed for a fixed number of days as the parasites still in the asexual
stages in their bodies before moving to infected humans with probability σH . On infection,
they develop clinical infection in which they have gametocytes in their bloodstream. Those
that are developing disease either die (naturally or due to the disease with probability δ) or
successfully recovered (naturally or with treatment) with rate ρ and subsequently enter a pe-
riod of prophylaxis (recovery state R). Upon treatment intervention, the rate ρ is determined
by the proportion of treatment access π, duration of drug recovery period ν and treatment
seeking period τ , hence is given by ρ = (1 − π)/γ + π/(ν + τ), where γ is natural recovery
period. Those who are recovered either lose their immunity and return to susceptible class
or naturally die. The deterministic model for the human dynamics is as follows































































dSH

dt
= κ RH − ΛH SH − SHµH + Γ,

dEH

dt
= ΛH SH − (µH + σH) EH ,

dIH

dt
= σHEH − (µH + δ + ρ) IH ,

dRH

dt
= ρ IH − (µH + κ) RH ,

(3.1)
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where t represents time and the force of infection ΛH is assumed to vary by degree of exposure
to mosquito due to geographic variation, governed by the function

ΛH =
ǫβHV IV

NH

,

where ǫ = (1 − V χ)ǫ is mosquito biting rate that is assumed to be influenced by LLINs
intervention coverage, βHV is the probability of infection if bitten by an infectious mosquito.

We consider Anopheles Gambiae mosquitoes which is the main anopheles species that
transmits Plasmodium Falciparum in South Sudan to be included in the model. We model a
life cycle of mosquito in a compartmental formulation [19], starting with aquatic mosquitoes
stages, eggs, larvae and pupae grouped into a single compartment M and further subdivide
adult mosquito into three compartments. When Adult mosquitoes lay eggs at rate βV T which
is temperature dependent, the aquatic (immature) mosquitoes population is then produced
at the temperature and rainfall-dependent rate βV T (1 − M/K) [31, 26], by the usage of
the carrying capacity parameter K for limitation of the immature mosquito population
that depend on habitat availability. The immature mosquito population develop into adult
mosquitoes at the birth rate η(T, R) which is dependent on temperature- and rainfall and
also decreases by natural death rate µi(T ). Figure 9 illustrates the effect of climate on these
parameters of immature mosquitoes.

Thereafter, adult mosquito population is subdivided into three compartments: suscep-
tible SV , latent infected EV and infectious IV . Susceptible female mosquitoes emerge from
the last immature stage at the birth rate adapted from [31, 26] as

η(T, R) =
̟(T )pi(R)p2(T )

τEA(T )
,

where ̟(T ) is the total number of eggs laid per adult per oviposition which is temperature
dependent, and pi(R) is the daily survival probability of immature in stage i given rainfall
R (where i = 1, 2, and 3 corresponds to eggs, larvae, and pupae respectively). It is as-
sumed that survival probability of eggs and pupae are independent of temperature [12, 31]
and p2(T ) = exp (−(0.00554T − 0.06737)) is daily survival probability of the temperature
dependent larvae. The total development time of immature mosquito, denoted by τEA(T ) is
given by 1/(−0.00094 T 2 + 0.049 T − 0.552).

In addition, the extreme levels of rainfall may decrease the immature mosquitoes by
flushing out larvae and breeding sites [4]. Thus, assumed that a quadratic relationship
between Rainfall R and the daily survival probabilities of immature mosquitoes pi(R) is

defined by [31] as pi(R) =
4∗P ∗

i

R2

L

R(RL − R), where RL is the rainfall limit beyond which

breeding site get flushed out and no immature mosquitoes survive and P ∗

i is the maximum
daily survival probability of each stage i.

Adult mosquitoes seeking host for meal might die at a temperature-dependent rate µV T .
Survivors seeking meal acquire malaria at a rate ΛV which depends on the infectiousness of
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the human population, since study mainly performed on human host.

ΛV =
ǫ(βV HIH + RHξ)

NH

where βV H and ξ are probability of infection from infectious and recovery humans to sus-
ceptible mosquitoes respectively.

When the mosquito bites an infectious human, the parasite (in the form of gametocytes)
enters the survivors mosquito, and subsequently process to the infectious compartment IV

through a latent period EV . The mosquitoes become infectious at rate σV T to humans and
remain infectious for life (until they die). The population dynamics and infection process
of anopheles Gambiae mosquitoes are given by the following set of ordinary differential
equations.



























































dM

dt
= βVT

(

1 −
M

K

)

(NV ) − µiM − η(T, R) M,

dSV

dt
= η(T, R) M − ΛV SV − SV µVT ,

dEV

dt
= ΛV SV − (µVT + σVT ) EV ,

dIV

dt
= σVTEV − IV µVT ,

(3.2)

Table 1: Parameters for Anopheles Gambiae Model
Description Estimate and function form Ref
Per capita egg deposition rate, βV T −0.153 T 2 + 8.61 T − 97.7 [27]
Immature mosquito death rate, µi(T ) 1.0257 − 0.094 T − 0.0025 T 2 [26]
Adult mosquito death rate , µV T − ln(0.522 − 0.000828 T 2 + 0.0367 T ) [25]

Adult mosquito birth rate, η(T, R) ̟(T )p1(R)p2(R)p2(T )p3(R)
τEA(T )

[25]

The lifetime number of eggs laid, ̟(T ) βV T /µV T ) [25]
Daily survival probabilities of eggs, p1(R) 4∗.93

R2

L

R(RL − R) [31]

Daily survival probabilities of larva, p2(R) 4∗0.25
R2

L

R(RL − R) [31]

Daily survival probabilities of pupae, p3(R) 4∗0.75
R2

L

R(RL − R) [31]

Daily survival probabilities of larva, p2(T ) e−(0.00554 T −0.06737) [31]
Rainfall beyond which no immature stages survive, RL 50 [26]
Duration of immature development, τEA(T ) 1/(−0.00094 T 2 + 0.049 T − 0.552) [25]

Progression rate of mosquitoes, σV T e˘1/(−4.41+1.31 T −0.03 T 2) [12]
Carrying capacity of larvae K 1000000 [26]

We note that the model describes a population and therefore it is very important to prove
that all the state variables (SH(t); EH(t); IH(t); RH(t); M(t); SV (t); EV (t) and IV (t)) are non-
negative at all times. For the biological benefit System (3.1) and (3.2) will be analyzed in a
suitable feasible region ℜ defined by.
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ℜ =







(SH ; EH ; IH ; RH) ∈ R
4
+|0 ≤ NH(t) ≤

Γ

µH

, (M ; SV ; EV ; IV ) ∈ R
4
+|0 ≤ NV (t) ≤

ηM

µV T







If the system has non-negative initial data, then the solution will remain inside ℜ for all
time t > 0. Thus we state the following lemma.

Lemma 3.1.
Given the model (3.1), suppose that SH(0) ≥ 0, EH(0) ≥ 0, IH(0) ≥ 0, RH(0) ≥ 0, M(0) ≥
0, SH ≥ 0, EH(0) ≥ 0, IH(0) ≥ 0 for all t. Then the solution SH(t); EH(t); IH(t); RH(t);
M(t); SV (t); EV (t); IV (t) of the model remain positive for all time t > 0. Moreover,

lim
t7→∞

NH(t) ≤
Γ

µH

Furthermore, if

NH(0) ≤
Γ

µH

then

NH(t) ≤
Γ

µH

In particular, the region is positively invariant.
Proof. We argue by contradiction. Let us assume that the set X below is bounded.

X = {T ≥ 0 : SH > 0, EH > 0, IH > 0, RH > 0; M > 0; SV > 0; EV > 0; IV > 0, ∀ 0 ≤ t ≤ T}.

Then X has a supremum T . Since (SH(t), EH(t), IH(t), RH(t), M(t), SV (t), EV (t) and IV (t))
are continuous, we have T > 0. From the first equation of the model (3.1) we have

dSH

dt
= Γ − ΛHSH + κRH − µHSH .

Let B(t) = exp{µHt +
∫ t

0 ΛH(s)ds}, and note that B(0) = 1.
Then we have

d

dt
[SH(t).B(t)] = ṠH(t).B(t) + SH(t).Ḃ(t)

= ṠH(t).B(t) + SH(t).B(t)(µh + ΛH(t))

= B(t)[ṠH(t) + SH(t).(µH + ΛH(t))]

= (Γ + κRH(t))B(t).

(3.3)

Hence

SH(T ).B(T ) − SH(0).B(0) =
∫ T

0
(Γ + κRH(t))B(t)dt,
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so that

SH(T ) = B(T )−1
[

SH(0) +
∫ T

0
(Γ + κRH(t))B(t)

]

.

Note that RH(t) > 0, B(t) > 0 for all t, and so SH(0) ≥ 0. Therefore SH(T ) > 0.
A similar reasoning on the remaining equations shows that EH , IH , RH , M , SV EV , and IV

are always positive for t > 0. This contradicts T being the supremum of X
Further by adding the equations of the system (3.1) we obtain

dNH

dt
= Γ − µHNH(t).

Using a standard comparison

NH(t) =
Γ

µH

+
(

NH(0) −
Γ

µH

)

e−µH t

Therefore,

lim
t7→∞

supNH(t) =
Γ

µH

.

This establishes the invariance of X as claimed. �

3.2 Model fitting

In this subsection, we fit our model to data in a Bayesian framework using Markov Chain
Monte Carlo (MCMC) methods. The Bayesian method combines the likelihood of the data
as well as the prior distribution of the parameters of the model to obtain the posterior
distribution of the parameters of the model, expressed by

p(θ|Data) =
p(Data|θ)p(θ)

p(Data)
,

where p(θ|Data) is the posterior, p(Data|θ) is the likelihood, p(θ) is the prior, p(Data) is
a normalisation constant. This allows one to make inference based on the posterior mean/
median of the parameters. The parameters driving the human model were jointly estimated
by utilizing MCMC in fitR (version 0.1 [8] ) package to clinical incidence data, weighted by
a demographic change.

The process of parameter estimation will guide to more accurate and informative model
predictions of malaria disease on these specific locations. A compartmental equation was
added into the human model to account for malaria incidence cases during model fitting
process. The model fitting was undertaken by using weekly malaria data of 2015 for each
region under investigation (for CES and WBGZ shown in Figure 4 and 5 respectively) using
MCMC. The model is run from the year 2000 to reach a steady state before being fitted to
data from the year 2011, then validated with data from 2011 to 2015.

We assume that weekly malaria data were reported according to a Poisson process with
reporting rate ζ. Since the reporting rate is unknown we assume it to be no larger than
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Figure 4: Illustration of the model fitting and the trajectory simulation, the model assessment
(line) run against data (dots) of CES for 2015 attached with the parameters estimated during
fitting process in Table 2.

85%. We assume that xij(i = 1, . . . , n; j = 1, . . . , m) are the observed weekly malaria
incidence cases for state j during week i. We used uniform distributions to model the
prior belief regarding the parameters. During this fitting process the model parameters
βHV , ǫj, γ, τ , ν, and κ were estimated and presented in table 2. These parameters were
assumed to be constant and were jointly estimated by utilizing fitR (version 0.1 [8]) to
obtain posterior samples 10000 iterations and a burn-in of 1000 iterations used for three
chains. The confidence intervals produced in Figure 4 and 5 was a 95% confidence intervals
with accepting rate of 0.22 and 0.178 for CES and WBGZ respectively.

Table 2: Parameters for the human transmission model
Description Est for CES Est for WBZ

Human natural death rate, µH 0.00006166 0.00006166
Population size, N 882846 266745
Mosquito biting rate, ǫ 26.065 18.895
Probability of infection from infected mosquito , βHV 0.6458 0.7458
lost of immunity, κ 1/25 1/36
Rate of progression of humans from E to I, σH 1/16 1/13
Proportion of infected population receving treatment π 0.84978 0.92258
All elimination half-life, ν 7 5
Treatment seeking period, τ 4 3
Natural recovery period, γ 166 152
Clinical death rate of humans due to malaria, δ 0.0027 0.0011
Probability of infection from Infected human , βV H 0.48 0.48
probability of infection from recovery human, ξ 0.06 0.0028
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Figure 5: Illustration of the model fitting and the trajectory simulation, the model assessment
(line) run against data (dots) of WBGZ for 2015 attached with the parameters estimated
during fitting process in Table 2.

4 Model analysis

The existence of a trivial equilibrium of the model (3.1) and (3.2) will be explored by setting
the equations equal to zero. Consider the following disease free model:

dSH

dt
= Γ − µHSH

dM

dt
= βV T

(

1 − M
K

)

SV − µi (T ) M − η (T, R) M

dSV

dt
= η (T, R) M − µV T SV

(4.4)

This system has two equilibrium points:

i. The vector free equilibrium point E00 =

(

Γ

µH

, 0, 0

)

and

ii. The vector endemic (disease free) equilibrium point

E0 =

(

Γ

µH

,
KµV T (η (T, R) + µi (T )) (Θ − 1)

η (T, R) βV T

,
KµV T (η (T, R) + µi (T )) (Θ − 1)

βV T µV T

)

where Θ :=
η (T, R) βV T

µV T (µi (T ) + η (T, R))
.

Note that the vector endemic equilibrium is positive if and only if Θ > 1.
Next, we show that Θ is the basic offspring number.
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Consider the submodel of (4.4) formed by the equations of the vector only, that is

dM

dt
= βV T

(

1 − M
K

)

SV − µi (T ) M − η (T, R) M

dSV

dt
= η (T, R) M − µV T SV

(4.5)

Let G =

(

βV T SV

0

)

denote the vectors of new offsprings in the disease free model (4.5) and

let W =

(

βV T
M
K

SV + µi (T ) M + η (T, R) M
−η (T, R) M + µV T SV

)

be the vector formed by the other

transfers.
The next generation matrix is given by GW −1 where G and W are the Jacobian matrices

evaluated at (0, 0) of G and W respectively.
Such that :

GW −1 =







−
η (T, R) βV T

(µi (T ) + η (T, R)) µV T

βV T

µV T

0 0






.

The basic offspring number, Θ, is given by the spectral radius of GW −1.
We obtain

Θ = ρ (GW −1) = max

(

0,

∣

∣

∣

∣

∣

−
η (T, R) βV T

(µi (T ) + η (T, R)) µV T

∣

∣

∣

∣

∣

)

=
η (T, R) βV T

(µi (T ) + η (T, R)) µV T

.

Evaluating the Jacobian matrix at the vector free equilibrium, we obtain:

J0 =







−µH 0 0
0 −µi (T ) − η (T, R) βV T

0 η (T, R) −µV T







The characteristic polynomial of the Jacobian matrix evaluated at E00, is

(µH + z)
(

z2 + (η (T, R) + µi (T ) + µT V ) z + µT V (η (T, R) + µi (T )) (1 − Θ)
)

Hence, E00 is locally assumptotically stable if and only if Θ < 1.

Similarily, the Jacobian matrix at the vector endemic equilibrium

J1 =









−µH 0 0

0 −βV T SV 0

K
− µi (T ) − η (T, R) βV T

(

1 − M0

K

)

0 η (T, R) −µV T









The characteristic polynomial of the Jacobian matrix evaluated at E0, is

(µH + z)

[

Kz2 + (η (T, R) K + µi (T ) K + KµV T + βV T SV 0) z
+βV T η (T, R) M0 + SV 0βV T µV T + K (η (T, R) µV T + µi (T ) µV T ) (1 − Θ)

]
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Hence, E0 is locally assumptotically stable if Θ > 1.
Next, we calculate the basic reproduction number. The basic reproduction number, de-

noted by R0, plays a vital role in the propagation of the relevant epidemic. It gives condtions
on when a disease free equilibrium exists or is unstable. The threshold quantity, R0, is de-
fined (see [37] for instance) as the average number of new infections that occur when one
infective individual is introduced into a completely susceptible human population. Here, the
R0 of the model (3.1) and (3.2) is establish in Lemma 3.2 using the next generation matrix
concomitant with disease free equilibrium.
Lemma 3.2. The basic reproduction number of the system (3.1) and (3.2) is

R0 =

√

√

√

√

ǫ2σV T σHµHβV HβHV K (ξ ρ + κ + µH) (µi (T ) + η (T, R)) (Θ − 1)

ΓβV T (ρ + δ + µH) (σH + µH) (κ + µH) (σV T + µV T ) µV T

.

Proof.
Let F denote the vectors of new infection in the full model and let F and V be the vector

formed by the other transfers. We have

F =

















ǫ βHV IV SH

SH+EH+IH+RH

0
0

ǫ(ξ RH+βV H IH)SV

SH+EH+IH+RH

0

















, V =

















(σH + µH) EH

−σHEH + (ρ + δ + µH) IH

−ρ IH + (κ + µH) RH

(σV T + µV T ) EV

µV T IV − EV σV T

















The next generation matrix is given by FV −1 where F = ∂FE0
and V = ∂VE0

denote the
jacobian matrices of F and V evaluated at E0. We obtain:

FV −1 =

















0 0 0 ǫ βHV σV T

(σV T +µV T )µV T

ǫ βHV

µV T

0 0 0 0 0
0 0 0 0 0
A B C 0 0
0 0 0 0 0

















where

A =
βHV KǫσHµH (η (T, R) + µi (T )) (κ + µH + ξρ) (Θ − 1)

ΓβT V (σH + µH) (δ + ρ + µH) (κ + µH)

B =
βHV KǫµH (η (T, R) + µi (T )) (κ + µH + ξρ) (Θ − 1)

ΓβT V (δ + ρ + µH) (κ + µH)

C =
ǫ βV Hξ µHK (µi (T ) + η (T, R)) (Θ − 1)

Γ βV T (κ + µH)

The eigenvalues of FV −1 are 0, −

√

ǫβHV σT V A

µT V (σT V + µT V )
and

√

ǫβHV σT V A

µT V (σT V + µT V )
.

Therefore the basic reproduction number for the system is as claimed. �
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According to a general result established in [37], we conclule that the disease-free equilib-
rium E0 of the model (3.1) and (3.2) is locally asymptotically stable if R0 < 1, and unstable
if R0 > 1.

We will now analyse the sensitivity index of R0 with respect to the parameters V , χ, T
and R according to the definition below.
Definition 1. The sensitivity index of R0 with respect to a parameter p is given by

Γp
R0

=
∂R0

∂p

p

R0

.

The sensitivity index of R0 with respect to χ and V are illusrated in Figure 6 and given by

SV :=
∂R0

∂V

V

R0

=
χV

χV − 1
=

∂R0

∂χ

χ

R0

With regard to the sensitivity index of R0 to T and R, we observe from Figure 7 that
when the rainfall is averaging 50 mm, temperatures below 33.7◦C have a negative impact
on R0 with the proportional decrease in R0 declining with increasing temperatures to reach
zero when the temperature reaches 33.7◦C. Beyond this value, the temperature starts hav-
ing a positive impact on R0. We also observe that when the rainfall is equal to 70 or 80
mm, temperatures below 28.8 ◦C have a positive impact on R0. Moreover, as temperature
increases, the proportional increase in R0 declines to become equal to zero when the tem-
perature reaches 28.80C. Above 28.8◦C, any increase in temperature leads to a decline in R0

with the proportional decline in R0 increasing as temperature increases.

Figure 6: Sensitivity index of R0 with respect to χ and V .

5 Result and Discussion

In this paper, we presented and analyzed a mathematical model in order to explore the
impact of climatic conditions on malaria infections in two distinct regions of South Sudan.
Model fitting via MCMC and the trajectory simulation of human dynamics were carried out.
We derived the basic reproduction number R0 and examined the model for the existence
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Figure 7: Sensitivity index of R0 with respect to R and T .

of vector free and disease-free equilibrium points. We have discussed the stability of the
diseases–free equilibrium of the model. We then performed a sensitivity analysis of R0 with
respect to temperature and precipitation was performed. Temperature and rainfall define
the mosquito life cycle and control mosquito activity, including egg diapause. Mosquitoes
have been described as cold-blooded insects which are unable to regulate temperature on
their own [10, 27]. This means that their body temperature is dependent on the atmosphere
in which they live.

Yet, temperature’s role in exacerbating malaria and the impact of weather and rainfall
has been a controversial topic in recent years. Here Figure 9 (D) illustrates, the occurrence
of Mosquito abundance when the mean monthly temperature and rainfall values lie in the
ranges of 25 -30◦C and 20 -30 mm respectively. The results demonstrate that mosquitoes are
active once temperatures are consistently above 10◦C, and are sedentary when temperatures
reach 35◦C. The results also indicate that the survivor probability of immature mosquitoes
(eggs, larvae, pupae) could be reduced by low or excessive levels of rainfall (see Figure 9
(C)). Furthermore, the results suggest that daily rainfall in the range of 17–20 mm and
temperatures in the range of 20◦C to 35◦C are ideal for progression of mosquitoes, and
hence, for the spread of malaria. Our results also highlight the significant role of warmer
temperatures in the aggravation of the disease, acting in the same direction of [2].

It can also be observed that the immature mosquitoes are more sensitive to temperatures
at 25◦C than the mature mosquitoes. These patterns were incorporated into a deterministic
model of Anopheles gambiae population dynamics, in order to gain insight into the abun-
dance of mosquitoes, thus providing an effective tool for control strategies in combating the
spread of malaria. Temperatures in the range of 25◦C to 30◦C are more suitable for the
progression of mosquitoes at all stages in their life-cycle (shown in Figure 8). This indicate
that, mosquito dynamics are strongly shaped by warm weather ecology which appears to be
consistent with other studies [5, 28, 31, 26, 33]. Accordingly, understanding the effect of cli-
mate change on malaria transmission dynamics is crucial in designing effective anti-malaria
measures.

A model with a seasonal averaged climate in two study region is analyzed regarding
malaria transmission. For example, nvestigated the sensitivity of R0 to average monthly
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Table 3: Estimate of basic reproduction number R0 against Mean Rainfall (MR) and Average
Temerature (AT) using parameter values from Table 2

CES WBGZ

Month AT(C) MR(mm) R0 AT(C) MR(mm) R0

Jan 38 6.1 1.11414 26.8 0 0.971627
Feb 38 27.9 3.89315 28.5 0 0.747225
Mar 38 31.4 3.58896 30.7 6 6.315132
Apr 37 72.2 4.62567 31.1 21 20.506707
May 34 132 8.62933 29.5 87 19.370367
Jun 32 146 14.27812 27.4 107 20.816907
Jul 30 304.5 20.89713 26.1 152 13.340053
Aug 31 91 17.32905 26.2 169 10.366855
Sep 32 93.1 14.27812 26.6 131 12.509831
Oct 33 111 11.70291 27.5 78 30.831914
Nov 35 28.3 7.73881 27.3 6 11.329622
Dec 36 15 5.09080 26.5 0 1.011970

temperature and rainfall data that are presented in Table 3. In numerical calculation of R0,
we assume 50 mm of rain will flushed out mosquitoes from their breeding site, therefore the
precipitation is considered during the peak period to be less than 50 mm in R0 approxima-
tion. From April R0 is overestimated due to rainfall that increase above the average of 50
mm, we instead used a fix value of 40 mm. Our results indicate that R0 varies monotonically
with the influence of rainfall and temperature. We note in the results that the reproduction
number value increases during the peak period of the rainy season starting from March to
October in CES. The onset of increased transmission intensity between July and September
can be explained by the seasonal increase in A. Gambiaes and a weakening of the clinical
immunity of individuals. A similar pattern in transmission applied to WBGZ but with low
disease intensity compared to CES which is most likely owing to the climate differences.
Findings of this study are in agreement with other studies [2, 29] that demonstrate disease
behavior changes with changes of local climate. These findings also suggest that the factor of
climate can be a decisive determinant of malaria spatial distribution throughout the country.

Furthermore, in the case of WBGZ, the mosquito birth rate tends towards zero when
the rainfall is minimal from November to February, hence, the reproduction number tends
to zero. After February it begins to increase, reaching a peak in the months from June to
October. This pattern, along with mean local rainfall and temperature shown in Figure 7,
confirms our hypothesis that malaria transmission is influenced by weather and rainfall, since
the disease is more prevalent in the favourable climate of CES than it is in WBGZ. This
study, therefore, highlights the difference between the high transmission rate in tropical
climates (CES) and the low transmission in hot semi-arid climates (WBGZ), a difference
which further coincides with the two distinct but adjacent cohorts of mesoendemic seasonal

18



0 50 100 150 200 250 300 350 400 450
−500

0

500

1000

1500

2000

2500

3000

3500

4000

Time (days)

A
qu

at
ic

 m
os

qu
ito

es
 p

op
ul

at
io

n

A

 

 
T=15
T=20
T=25
T=30
T=35
T=40

0 50 100 150 200 250 300 350 400 450
5

10

15

20

25

30

35

40

45

50

Time (days)

S
us

ce
pt

ib
le

 m
os

qu
ito

es
 p

op
ul

at
io

n 

B

 

 
T=15
T=20
T=25
T=30
T=35
T=40

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (days)

E
xp

os
ed

 m
os

qu
ito

es
 p

op
ul

at
io

n

C

 

 
T=15
T=20
T=25
T=30
T=35
T=40

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (days)

In
fe

ct
io

us
 m

os
qu

ito
es

 p
op

ul
at

io
n

D

 

 
T=15
T=20
T=25
T=30
T=35
T=40

Figure 8: Simulation of the model, using parameter values in Table 1, assess the impact of
various temperature values on the population dynamics of the mosquito

and holoendemic perennial malaria transmission [29].
These results point to the importance of incorporating detailed mosquito bionomics with

climate-dependence into models for predicting the risk for malaria. These models can also
be used to understand the possible changes in malaria prevalence in regions experiencing
climate change: in the case of South Sudan, changes to regional climates, including changes
in rainfall and temperature patterns, will alter the variability of malaria cases.

Using a realistic representation of the coupled mosquito–human model will aid to un-
derstand the dynamics of malaria over the study region. Noting that parameters such as
mosquito size and mosquito bite assumption rate can influence the realization of disease be-
havior [21]. Hence, it was stimulating to validate our model with field data and implement
parameter estimation to increase realism. Therefore, the mosquito model that provides a de-
tailed mosquito bionomics with climate-dependence in line with several studies [5, 12, 11, 39]
for predicting the risk for malaria is carried out. Moreover, our research sought to filter out
the climatic factors affecting the force of infection which consist of infectious bites, and hence
altered it with the effect of intervention coverage, unlike the studies [4, 18, 26, 38]. As the
measurement of entomological inoculation rate (EIRs, measuring the number of infectious
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bites per person per year) is related to the measure of infection intensity, therefore it should
be estimated during the model fitting process with the effect of intervention coverage given
the disease incidence cases.

The availability of mosquito climate-based models and realistic parameter values de-
termined through data fitting process allows researchers to predict more reliably disease
transmission dynamics. We hope that this study improves understanding of the climate role
as the first step in providing information that may lead to significant changes in the way
that the disease is transmitted in these regions to incorporate the effective interventions.

6 Conclusion

We propose a host-mosquito model for malaria transmission in two climatic regions in South
Sudan. We used MCMC to fit the model to malaria data from these two regions. The
validated model is further used to calculate the basic reproductive number and assess its
sensitivity to climate factors. The basic reproductive number is used to provide a numerical
basis R0 is used to provide a numerical basis for further refinement and prediction of the
impact of climate variability on malaria transmission intensity in two regions (i.e. CES and
WBGZ).

The results in these both regions indicate that malaria trend follows the climate pattern
with its epidemiological peak between February-December and between March-November
when temperature and rainfall progressively increase in the CES and WBGZ respectively.
The findings also demonstrated that disease is more effective and severe in tropical (CES)
region than in a hot semi-arid (WBZ) region due to climate conditions. Hence, we concluded
that this study which analyses observed phenomena also seeks ways of informing decision
making together with ideas for the continuation of malaria control in South Sudan. A model
calibration was one of the main contributions that this study has achieved, complemented
with the realistic representation of Anopheles Gambiae population dynamics to gain insight
into the abundance of mosquitoes and hence the course of the epidemic.

However, malaria is a complex disease that can reemerge from other factors such as so-
cioeconomic situation and population movement which need to be incorporated in studying
malaria transmission. These aspects are worthy of attention in future studies.
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7 Supporting information

Mosquitoes cycle development against climate factor
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Figure 9: Simulation of model parameter function, showing mosquitoes cycle development
against various values of mean monthly temperature in the range of 15- 40◦C and rainfall
in the range of 0-50 mm, using parameter fuctions in Table 1, (A) dependence of eggs
deposition rate process on temperature (B) dependence of the daily survival probability of
mosquito during aquatic stages on temperature (C) the per-capita death rate of mosquito
during aquatic stages depend on temperature (D) the per-capita maturation rate of pupae
(into adult mosquitoes) as a function of rainfall and temperature.
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