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Abstract: NoSQL databases have gained a lot of popularity over the last few years. They are now
used in many new system implementations that work with vast amounts of data. Such data will
typically also include sensitive information that needs to be secured. NoSQL databases are also
underlying a number of cloud implementations which are increasingly being used to store sensitive
information by various organisations. This has made NoSQL databases a new target for hackers and
other state sponsored actors. Forensic examinations of compromised systems will need to be conducted
to determine what exactly transpired and who was responsible. This paper examines specifically if
NoSQL databases have security features that leave relevant traces so that accurate forensic attribution
can be conducted. The seeming lack of default security measures such as access control and logging
has prompted this examination. A survey into the top ranked NoSQL databases was conducted to
establish what authentication and authorisation features are available. Additionally the provided logging
mechanisms were also examined since access control without any auditing would not aid forensic
attribution tremendously. Some of the surveyed NoSQL databases do not provide adequate access
control mechanisms and logging features that leave relevant traces to allow forensic attribution to be
done using those. The other surveyed NoSQL databases did provide adequate mechanisms and logging
traces for forensic attribution, but they are not enabled or configured by default. This means that in
many cases they might not be available, leading to insufficient information to perform accurate forensic
attribution even on those databases.
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1. INTRODUCTION

In recent years NoSQL databases have gained popularity
both with developers who build new systems, and within
organisations who want to optimise and improve their
businesses [1]. Both of those parties are trying to adapt
their information systems to meet today’s data demands.

Certain NoSQL databases have even moved up from
being niche products to leaders in Gartners Magic
Quadrant for Operational Database Management Systems
[2]. Gartner considers databases in the leaders quadrant to
be of operational quality. According to Gartner, leaders
generally represent the lowest risk for customers in the
areas of performance, scalability, reliability and support.

The forerunners of today’s NoSQL databases were started
by big web companies such as Google, Amazon and
Facebook to help them build and support their businesses
[3]. After they made these new databases public and
open source, other big web companies such as Twitter,
Instagram and Apple started to use them as well [3].
This has lead to the development of a number of NoSQL
databases based on the ideas and models of the original
databases.

The use of NoSQL databases has started to filter down to
ordinary organisations who are now also starting to use
NoSQL databases for various purposes in their business
processes. The consequence of this is that more and more
data is being placed in NoSQL databases. This includes

private and sensitive information which has to be kept
secure and confidential.

Additionally one big area of use for NoSQL is Big Data.
As the name implies, Big Data deals with vast amounts
of data that needs to be stored, analysed and retrieved.
Copious amounts of this data are normally unstructured
and make NoSQL databases such an attractive proposition.
However, this also means that unauthorised access to such
NoSQL databases has the potential to expose very large
amounts of information.

Together with the rise in popularity, the increased storage
of data has made these NoSQL databases attractive targets
for hackers, state actors, extortionists etc. Data security
has thus started to become an important aspect of NoSQL
databases. Some research has already been conducted into
the security features provided by these NoSQL database
and found them to be lacking [4, 5].

In contrast to the previous research, this paper looks at
NoSQL database security from a forensic perspective. The
focus is in particular on forensic attribution. Performing
forensic attribution in digital systems is difficult and
inherently limited [6]. These limitations include attribution
delay, failed attribution, and mis-attribution.

This is because on the one end the actions that need to be
attributed occurred in the digital world, but on the other
end the actors that are ultimately responsible are located
in the physical world. Therefore various researchers have
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proposed different levels, categories or steps of attribution
that can be performed. These different levels, categories
or steps not only have increasing degrees of difficulty and
complexity, but they also extend different distances from
the actions in the digital world to the responsible actors in
the physical world. A more detailed discussion follows in
section 3.

Always performing the full spectrum of attribution from
the actions to the actors might not even be necessary. Clark
and Landau argue that the occasions when attribution to
the level of an individual person is useful are actually very
limited [7]. They note that, although criminal retribution
requires identifying a specific person and assigning blame,
“the evidence that is finally brought into court is unlikely
to be [a] ‘forensic quality’ computer-based identity, but
rather other sorts of physical evidence found during the
investigation” [7].

Keeping the previous statement in mind, a valuable first
step would be to tie the actions in question to a program or
process on a machine inside the digital realm [8]. However,
even tying actions to processes can be difficult without
enough information sets that can be correlated to form
a consistent chain of events [8]. Relational databases
provide one such set of information in the form of traces in
various log files and in system tables [9]. This information
can then be used in conjunction with other information sets
from outside the database to help perform attribution of the
actions that occurred inside the database.

These traces can be left by measures such as access
control and logging/auditing which are normally part of the
security model of all relational databases. Consequently,
this paper scrutinises the security features that are available
in NoSQL databases and how useful their traces can be
for forensic attribution. A survey of these specific security
measures in NoSQL databases was conducted to determine
what information they can provide to aid with forensic
attribution in the case of a forensic examination.

There are more than two hundred NoSQL database
implementations available [10] and to examine the security
measures of all those databases would be prohibitive.
Many of those databases are still experimental or being
used in low volumes. Thus only a few NoSQL database
management systems (DBMSs) were chosen of which the
access control and logging features were studied. The
choice was based on popularity and to be representative of
the main types of data models used by NoSQL databases.
Section 2 provides more details about the main NoSQL
data types.

The NoSQL DBMSs examined were MongoDB, Cassan-
dra, Redis and Neo4j. These selected NoSQL databases
are among the most popular based on the number of web
pages on the Internet according to DB-Engines ranking
method [11]. They are being adopted in various markets in
the industry and their prominence in those markets means
that they would be encountered fairly often by the general
digital forensic investigator.

To study the security features, the official documentation
of the latest version of the selected NoSQL DBMS as
found published on the manufacturer’s website was used
[12–15]. At the time of the examination the latest versions
available were as follows: MongoDB 3.4, Cassandra 3.10,
Redis 3.2 and Neo4j 3.1.3.

Even though each one of the selected NoSQL databases
support scaling and data distribution via multi-node
configurations, these databases were only considered as
single node installations. Thus a discussion on distributed
log files and the added complexities falls outside the scope
of this study.

The remainder of this paper is structured as follows:
Section 2 first gives a general introduction to NoSQL
databases and their characteristics. Then it reviews each
of the chosen NoSQL databases. Section 3 provides
an overview of the field of forensic attribution. Section
4 then surveys the selected NoSQL databases regarding
authentication, authorisation and logging. Section 5
analyses the results of the survey. Section 6 discusses
the implications on digital forensics and specifically
forensic attribution. Section 7 concludes this paper and
contemplates future research.

2. NOSQL DATABASES

This section first provides a general introduction to NoSQL
databases. Then the NoSQL databases chosen for the
survey are examined in more detail.

2.1 NoSQL databases and types

The NoSQL movement was the development of new types
of databases that were not relational and did not use
the structured query language (SQL) as the data access
language. These new database types were being created to
address new demands in data forms and size that seemingly
could no longer be met by existing relational databases and
SQL.

NoSQL databases have more flexible data structures that
can be completely schemaless. This allows for easier
storage of unstructured and heterogeneous data. They also
provide easier horizontal scalability to cater for big sets of
data and data that grows unpredictably.

The “NoSQL” moniker became popular when Eric Evans
chose it as the name for an event that Johan Oskarsson
organised to discuss open source distributed databases
[16]. Eric felt that the whole point of the event was to
seek out alternatives that one needed to solve a problem
that relational databases were a bad fit for. The event
was the beginning of a movement that grouped together
all database projects that were not relational.

Some people have objected to the NoSQL term for these
new databases [17,18], because it sounded like a definition
based on what these databases were not doing rather than
what they were. In recent years it has been suggested that
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the NoSQL term be changed from meaning “No SQL” to
“Not Only SQL”. This is to express that NoSQL no longer
meant anti-SQL and anti-relational, but rather expressed
the notion that other database types besides relational ones
existed that could help address the new data types and
storage demands of today’s information society.

Today, a number of distinct types of NoSQL databases
have established themselves. To make this research
inclusive, databases from all the main types should be
included in the study. The availability and usability
of features such as access control and logging could
also be influenced by how the different databases
function internally. It might not be simply a matter of
implementation to provide these features, but feasibility
and practicality might also play a role.

It is thus worthwhile to take a closer look at the details of
each of those NoSQL database types. The main types of
NoSQL databases are the following four types: Document
databases or stores, Key-value pair databases or stores,
Column family store databases or wide column stores and
Graph databases or stores [19]. A short summary of each
type now follows.

Document Stores:

Document databases, also known as document stores or
document-oriented databases, use a document-oriented
model to store data. They store a record and its associated
data within a single data structure called a document. Each
document contains a number of attributes and associated
values. Documents can be retrieved based on attribute
values using various application programming interfaces
(APIs) or query languages provided by the DBMS [19].

Document stores are characterized by their schema-free
organization of data. That means that records do not need
to have a uniform structure, i.e. different records may have
different attributes. The types of the values of individual
attributes can be different for each record. Records can
also have a nested structure, while attributes can have more
than one value such as an array.

Document stores typically use standard formats such as
JavaScript Object Notation (JSON) or Extensible Markup
Language (XML) to store the records [19]. This then
allows the records to be processed directly in applications.
Individual documents are stored and retrieved by means
of an key. Furthermore, document stores rely on indexes
to facilitate access to documents based on their attributes
[20].

Wide Column Stores:

Wide column stores, also called extensible record stores,
store data in records with an ability to hold very large
numbers of dynamic columns. A column is the basic unit
of storage and consists of a name and a value [19].

Any number of columns can be combined into a super
column, which gives a name to a sorted set of columns.
Columns are stored in rows, and when a row contains
columns only, it is known as a column family. When a
row contains super columns, it is known as a super column
family [20].

As in document stores, column family databases do not
require a predefined fixed schema. Different rows can have
different sets of columns and super columns. Since the
column names as well as the record keys are not fixed, and
a record can have millions of columns, wide column stores
can be seen as two-dimensional key-value stores [19].

Key-Value Stores:

Key-value stores are probably the simplest form of
databases. They can only store pairs of keys and values, as
well as retrieve values when the key or identifier is known.
These systems can hold structured or unstructured data.

A namespace is a collection of identifiers. Keys must
be unique within a namespace. A namespace could
correspond to an entire database, which means all keys
in the database must be unique. Some key-value stores
provide for different namespaces within a database. This
is done by setting up data structures for separate collections
of identifiers within a database [19].

These simple systems are normally not adequate for
complex applications. On the other hand, it is exactly this
simplicity, that makes such systems attractive in certain
circumstances. For example resource-efficient key-value
stores are often applied in embedded systems or as high
performance in-process databases.

One of the earliest such embedded key-value databases is
Berkeley DB which was first released in 1991. It was
developed at the University of California, Berkeley to
replace certain patented components in their Unix release
BSD 4.3. In 1992 BSD 4.4 was released which included
Berkeley DB 1.85 [21].

Graph Stores:

Graph stores also known as graph databases are DBMSs
with Create, Read, Update, and Delete (CRUD) methods
that expose a graph data model. A graph database
represents data in structures called nodes and relationships.
A node is an object that has an identifier and a set of
attributes. A relationship is a link between two nodes that
contain attributes about that relation [19].

Some graph databases use native graph storage, which
is designed to store and manage graphs directly. Other
graph databases serialize the graph data into relational or
object-oriented databases, or use other types of NoSQL
stores [20]. In addition to having a certain approach to
storing and processing graph data, a graph database will
also use a specific graph data model. There are several
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different graph data models commonly used which include
property graphs, hypergraphs, and triples.

Graph databases dont depend so much on indexes because
the graph itself provides a natural index. In a graph
database using native graph storage, the relationships
attached to a node provide a direct connection to other
related nodes. Graph queries use this characteristic to
traverse through the graph [20]. Such operations can be
carried out very efficiently, typically traversing millions of
nodes per second. In contrast, joining data through a global
index can be many orders of magnitude slower.

2.2 Surveyed NoSQL databases

Currently, the top five ranked NoSQL databases according
to DB-Engines DBMS ranking are in order: MongoDB
(document store), Cassandra (wide column store), Redis
(key-value store), HBase (wide column store) and Neo4j
(graph store) [11]. The top five thus represent all four
NoSQL database types introduced above. To eliminate
any possible bias of the survey due to multiple databases
of the same type, the second wide column store HBase
was excluded. More details about each of the other four
databases now follow.

MongoDB:

MongoDB is an open-source document database that
provides high performance, high availability, a rich query
language and automatic scaling. It is published under a
combination of the GNU Affero General Public License
(AGPL) and the Apache License. The name MongoDB is
derived from ”humongous database”, which alludes to the
huge size a MongoDB database can have.

The software company 10gen began developing MongoDB
in 2007 as a component of a planned platform as a
service product. In 2009, the company shifted to an open
source development model, with the company offering
commercial support and other services. In 2013, 10gen
embraced the database it had created and changed its name
to MongoDB Inc. [22].

A record in MongoDB is a document, which is a data
structure composed of a number of field and value pairs.
MongoDB documents are similar to JSON objects. The
values of fields may include other documents, arrays, and
arrays of documents. MongoDB lists the advantages of
using documents as follows: Firstly documents (and by
extension objects) correspond to native data types in many
programming languages. Secondly, embedded documents
and arrays reduce the need for expensive joins. And finally
dynamic schemas support fluent polymorphism [23].

MongoDB provides high performance data persistence
and access through the use of the following features:
Firstly it supports embedded data models which reduce
I/O activity on the database system. Secondly it’s indexes
can include keys from embedded documents and arrays

thereby supporting faster queries. MongoDB uses B-trees
for both data and index persistence. MongoDB has a rich
query language that supports create, read, update and write
(CRUD) operations as well as data aggregation, text search
and geo-spatial queries [23].

MongoDB uses a replication facility called a “replica set”
to provide automatic failover and data redundancy. A
replica set is a group of MongoDB servers that maintain
the same data set. Furthermore, MongoDB provides
horizontal scalability by using sharding, which distributes
data across a cluster of machines. It also supports the
creation of zones of data based on a shard key. In a
balanced cluster, MongoDB will direct reads and writes
covered by a zone only to those shards inside the zone [23].

Prominent users of MongoDB include Metlife, Expedia,
Ebay, SAP, SAGE, KPMG and Forbes [24].

Cassandra:

Cassandra is a free and open-source distributed wide
column store DBMS. It is an Apache project published
under the Apache 2.0 license. Cassandra is designed to
handle large amounts of data across many commodity
servers thereby providing high availability with no single
point of failure. Cassandra offers support for clusters
either in a single datacenter or spanning across multiple
datacenters, with asynchronous masterless replication.

Avinash Lakshman and Prashant Malik initially developed
Cassandra at Facebook to power the Facebook inbox
search feature. They named their database after the Trojan
mythological prophet Cassandra, who was given the power
of prophecy by Apollo in order to seduce her. When she
refused him favours, he cursed her prophecies to be never
believed. The name thus alludes to a cursed oracle.

Facebook released Cassandra as an open-source project on
Google code in July 2008 [25]. In March 2009 it became
an Apache Incubator project and graduated to a top-level
Apache project in February 2010. Cassandra is written in
Java and thus available on any platform that can provide a
Java virtual machine (JVM).

Cassandra’s column family (also called table) resembles
a table in a relational database. Column families contain
rows and columns. Each row is uniquely identified by a
row key. Each row has multiple columns, each of which
has a name, value, and a timestamp. Unlike a table in
a relational database, different rows in the same column
family do not have to share the same set of columns, and a
column can be added to one or multiple rows at any time
without blocking updates or queries.

Cassandra Query Language (CQL) is the primary interface
into the Cassandra DBMS [26]. Using CQL is similar to
using SQL. CQL and SQL share the same abstract idea
of a table constructed of columns and rows. The main
difference from SQL is that Cassandra does not support
joins or sub-queries. Instead, Cassandra emphasizes
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denormalization through CQL features like collections and
clustering specified at the schema level.

Cassandra uses a combination of memory tables (Memta-
bles) and sorted string tables (SSTables) for persistence.
Memtables are in-memory structures where Cassandra
buffers all of its writes. When the Memtables are
full, they are flushed onto disk by sequentially writing
to the SSTables in append mode. Once written, the
SSTables become immutable. Using this approach make
it possible for Cassandra to avoid having to read before
writing. Reading data involves combining the immutable
sequentially-written SSTables to retrieve the correct query
result [26].

In Cassandra, data is automatically replicated to multiple
homogeneous nodes for fault-tolerance. A replication
strategy determines the nodes where the replicas are
placed. Cassandra employs a peer-to-peer distributed
system across the nodes whereby the data is distributed
among all nodes in the cluster [26]. Failed nodes in a
cluster can be replaced with no downtime.

Prominent users of Cassandra include CERN, Netflix,
Reddit and eBay [27].

Redis:

Redis is an open source key-value store that is published
under the Berkeley Software Distribution (BSD) license.
The in-memory data structure store can be used as a
database, a cache or a message broker. The name
Redis stands for REmote DIctionary Server. Redis
was developed by Salvatore Sanfilippo who released the
first version in May 2009. He was hired by VMware
in March 2010 to work full time on Redis [28]. In
2015, Salvatore Sanfilippo joined Redis Labs which now
sponsors development.

Redis maps keys to different types of values. It not only
supports simple data structures such as strings but also
abstract data structures such as hashes, lists, sets and
sorted sets. Geo-spatial data is now supported through the
implementation of the geohash technique.

The type of a value determines what operations (called
commands) are available for the value itself. Redis
supports high-level, atomic, server-side operations like
appending to a string, incrementing the value in a hash,
pushing an element to a list, computing set intersection,
union and difference and sorting of lists, sets and sorted
sets [29].

Redis is written in ANSI C and works in most POSIX
systems like Linux, various BSD operating systems and
OS X without external dependencies. It works with an
in-memory dataset which can be optionally be persisted
by either by dumping the dataset to disk every once in a
while, or by appending each command to a log file.

Redis has built-in replication using a master-slave

configuration which can be performed either via the
dump file or directly from process to process. Redis
also supports memory eviction methods such as Least
Recently Used (LRU) which allows it to be used as
a fixed size cache. Additionally Redis supports the
publish/subscribe messaging paradigm, which allows it to
be used a messaging platform.

Redis has a built-in Lua interpreter which can be used
to write complex functions that run in the Redis server
itself. Lua is a lightweight multi-paradigm programming
language. Add-on Redis products provide additional
features such as high availability via Redis Sentinel and
automatic partitioning with Redis Cluster.

Prominent users of Redis include Twitter, Pinterest and
Flickr [30].

Neo4j:

Neo4j is an open-source graph database management
system that is an ACID-compliant transactional database
with native graph storage and processing [31]. It is
published under dual licence of the GNU Affero General
Public License (AGPL) and the GNU Public License
(GPLv3).

Neo4j is developed by Neo Technology, Inc. which
released the first version in February 2010. It is
implemented in Java and accessible from software written
in other languages using the Cypher Query Language
(CQL) through a transactional HTTP endpoint, or through
the binary “bolt” protocol (Not related to the Cassandra
Query Language).

The main features and capabilities of CQL are as follows:
Firstly it works by matching patterns of nodes and
relationships in the graph, to extract information or modify
the data. Secondly it has the concept of variables which
denote named, bound elements and parameters. Thirdly it
can create, update, and remove nodes, relationships, labels,
and properties. Lastly it is used to manage indexes and
constraints [32].

In Neo4j, everything is stored in the form of either an edge,
a node, or an attribute. Each node and edge can have any
number of attributes. Both the nodes and edges can be
labelled. Labels can be used to narrow searches. Neo4j
uses on-disk linked lists for persistence.

Joining data together in Neo4j is performed as navigation
from one node to another which provides linear
performance degradation compared to relational databases,
where the performance degradation is exponential for an
increasing number of relationships [31].

Prominent users of Neo4j include Walmart, Monsanto and
Ebay [33].
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3. ATTRIBUTION

Having completed the introduction of NoSQL databases
and the presentation of the selected NoSQL databases,
focus is now placed on attribution. First an overview of
the field is given to provide context for the survey. Then
forensic attribution processes and techniques are discussed
and their implications on database forensics explored.

3.1 General attribution

The Oxford English dictionary defines the term attribution
as follows: “The action of regarding something as being
caused by a person or thing”. Attribution is performed in a
number of diverse application areas. These include clinical
psychology attribution, nuclear attribution, authorship
attribution and cyber attack attribution.

In clinical psychology, attribution refers to the process
by which individuals explain the causes of behaviour and
events [34]. In nuclear forensics, nuclear attribution is
the process of tracing the source of nuclear material from
a radiological incident whether accidental (e.g. nuclear
waste spill) or intentional (e.g. nuclear explosion) [35].
Authorship attribution refers to the process of inferring
characteristics of the author from the characteristics of
documents written by that author [36].

Cyber attack attribution has been defined and researched
by various authors. Wheeler and Larson in their paper
for the U.S. Department of Defense (DoD) defined it as
“determining the identity or location of an attacker or
an attackers intermediary” [6]. They define the resulting
identity as a persons name, an account, an alias, or
similar information associated with a person. A location is
interpreted as a physical (geographic) location, or a virtual
location such as an IP address or MAC address.

Boebert breaks the attribution question down into two
attribution problems: technical attribution and human
attribution [37]. According to the author, technical
attribution consists of analysing malicious functionality
and packets, and using the results of the analysis to locate
the node which initiated, or is controlling, the attack.
Human attribution on the other hand, consists of taking
the results of technical attribution and combining it with
other information to identify the person or organization
responsible for the attack.

Clark and Landau in their paper “Untangling attribution”
contend that there are many types of attribution and
different types are useful in different contexts [7]. For
example, attribution on the Internet could mean the
identification of the owner of the machine (e.g. the
company or organisation), the physical location of the
machine (e.g. city or country) or the individual who is
actually responsible for the actions.

Clark and Landau also define three classes of attacks:
bot-net based attacks (e.g. DDoS), identity theft and
data ex-filtration and espionage. Based on these classes

different attribution types and techniques are more suitable
or applicable than others. The timing of when attribution
is performed also plays an important role.

For example during a DDoS attack, mitigation might be
the most immediate concern. Attribution is then needed to
identify the machines launching the attack so that they can
be blocked. However, after the DDos attack is over, focus
may shift towards retribution as deterrence. Attribution is
then needed to identify the actors responsible so that they
can be prosecuted [7].

3.2 Forensic attribution

When attribution is done as part of an investigation
using scientific methods, the term forensic attribution is
used. Forensic attribution is performed during the digital
evidence interpretation step in a forensic examination [38].
This step is part of the investigative processes as defined
in the ISO/IEC 27043 standard that describes incident
investigation principles and processes [38].

Forensic attribution processes:

As already touched on in the introduction, a number of
researchers have proposed different forensic attribution
processes. These diverse processes define different levels,
categories or steps of attribution that can be performed.

Cohen for example sees end-to-end attribution made up of
four different levels of attribution [39]. The first two levels
are performed in the digital world. Level 1 attempts to
identify the closest computer involved while level 2 tries
to pinpoint the source computer that initiated the actions.
However, the next two levels of attribution are performed
in the physical world. Level 3 attempts to identify the
individual that caused source computer to act as it did,
while at level 4 the organisation behind the individual is
being sought.

Shamsi et al propose three steps of identification for
attribution [40]. The first step deals with the identification
of the cyber weapon used to launch the actions. They
use the definition of cyber weapon given by Rid and
McBurney. They, in turn, define cyber weapon as
“computer code that is used, or designed to be used, with
the aim of threatening or causing physical, functional, or
mental harm to structures, systems, or living beings” [41].

Thus step 1 is executed in the digital realm. Step 2
deals with the identification of the country or city of the
actor, while step 3 addresses the identification of the actor
whether it is a person or an organisation. The last two steps
thus take place in the physical world. Similarly, Clark and
Landau define three categories into which attribution can
fall [7]. These categories are the machine, the person, and
the aggregate identity, such as a state actor. Again, the
first category of attribution is executed in the digital realm,
while the other two happen in the physical world.

Table 1 summarises these different attribution processes.
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Table 1: Attribution Processes Summary
Author(s) Digital Realm Physical Realm

Cohen [39]
• Identify closest
computer

• Identify indi-
vidual behind ini-
tiating computer

• Identify initiat-
ing computer

• Identify organ-
isation behind in-
dividual

Shamsi et
• Identify cyber
weapon

• Identify coun-
try/city

al. [40] • Identify per-
son/organisation

Clark and
• Identify com-
puter

• Identify indi-
vidual

Landau [7] • Identify organi-
sation

Even though the authors use different terminology to de-
scribe the parts of their processes (steps/levels/categories),
the parts and their goals seem to be very similar. For the
sake of clarity this paper is going to overlook the deeper
meaning of the authors’ chosen terminology and from here
on simply refer to the different parts as steps.

In the digital realm the steps from all authors have the
same goal: to identify the computing device(s) responsible
for the actions that are being examined. Various digital
forensic attribution techniques can be used to achieve
this goal. The more difficult steps are performed in the
physical realm. They attempt to identify the individuals or
actors responsible for the actions that are being examined.
As already indicated in the introduction, this kind of
attribution may not be always be needed. The paper
will therefore concentrate on attribution steps that are
performed in the digital realm.

Forensic attribution techniques:

There are a large number of digital attribution techniques
with each technique having certain strengths and
weaknesses. A taxonomy of these attribution techniques
is provided by Wheeler and Larson [6]. According to
them no single technique can replace all others and a
combination of techniques can help compensate for their
respective weaknesses.

One of the techniques that the forensic examiner can
employ is to make inferences based on authentication and
authorisation information [8]. This information enables
the forensic examiner to create a basis for attribution. The
authentication information provides the actors of a digital
system and the authorisation information the actions that
these actors can perform [42].

Another technique is to order and connect the different
traces found in digital systems to build a chain of events

[8]. The sequences of these events describe how the system
arrived at the current state. By determining the actions
that lead to the events and the actors that performed the
actions, the person or program responsible can possibly be
identified [42].

Performing forensic attribution in relational databases was
investigated by Olivier [9]. He showed that database
forensics can use the same techniques as general digital
forensics to perform attribution. The traces in a relational
database are available in various log files and also stored
inside system tables. Furthermore, the authentication of
database users and the authorisation of their operations
has been standardised and is built into many relational
databases [43].

4. NOSQL SECURITY SURVEY

A survey of the documentation for the chosen four NOSQL
databases was conducted. Comparable information was
obtained on the availability of the following features:
authentication, authorisation and logging. The official
documentation was used as far as possible, but in some
cases document holes were supplemented with additional
sources. In some cases the information was readily
available, while in other cases it was necessary to delve
into the database software files. This section presents the
results of this survey.

It should be noted, that only the features available
in the official free and community editions of the
selected NoSQL databases were analysed. Some of
the NoSQL databases also have paid-for enterprise
editions available that provide additional features (See for
example Neo4j Editions [44]). These additional features
include enhancements and additions to authentication,
authorisation and logging.

The results for the three features are presented in the same
order for all the selected databases. This is to enable direct
comparison between the different NoSQL databases and
allow commonalities and/or differences to be established
for later discussion.

4.1 MongoDB

Unless otherwise indicated, this section uses the official
MongoDB documentation [12] to paraphrase the relevant
information to indicate the availability of the surveyed
features.

MongoDB supports a number of authentication mecha-
nisms that clients can use to verify their identity. These
include SCRAM-SHA-1 and x.509 client certificates.
SCRAM-SHA-1 is an authentication mechanism from
the Salted Challenge Response Authentication (SCRAM)
family that uses the SHA-1 hash function. It is a
mechanism for authenticating users with passwords and
defined in the IETF standard RFC 5802 [45].

MongoDB employs role-based access control to govern
access to a MongoDB system. A user is conferred one
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or more roles that determine the user’s access to database
resources and operations. Outside of role assignments, the
user has no access to the system. MongoDB does not
enable access control by default, but it can be enabled via
the configuration file or a start-up parameter.

Since MongoDB does not have a built-in default user,
an appropriate administration user must be created before
authentication is enabled. Alternatively, MongoDB
provides an exception where it allows an unauthenticated
connection on the local loopback interface to the admin
database. Once an appropriate administration user has
been created via this connection, no further actions can be
performed and this connection needs to be terminated to
establish a new authenticated one.

MongoDB provides a number of built-in roles that can be
used to control access to a MongoDB system. Each of
these roles have specific privileges assigned to them. The
roles are divided into different categories such as database
user, database administrator, superuser etc. However, if the
specific privileges of the built-in roles are not sufficient,
one can create new roles with the desired privileges in a
particular database.

A role grants privileges to perform sets of actions on
defined resources. A given role applies to the database
on which it is defined. Access can be granted on a
whole cluster, a specific database in the cluster or to
individual collections inside a database. Privileged actions
that are available to roles are grouped together as follows:
query and write actions, database management actions,
deployment actions, replication actions, sharding actions
and server administration actions.

MongoDB database instances can report on all their server
activity and operations. Per default, these messages are
written to standard output, but they can be directed to a
log file via the configuration file or a start-up parameter.
MongoDB’s default log verbosity level includes just
informational messages. This can be changed to include
debug messages by setting the verbosity to a higher level.

Additionally, MongoDB allows logging verbosity to be
controlled at a finer grain by providing verbosity settings
on a component level. These components include items
such as access control, commands, queries etc. Unless
explicitly set, each component has the verbosity level of
its parent. MongoDB verbosity levels range from the
informational default of 0 to the most verbose debug level
of 5.

When logging to a file is enabled, MongoDBs standard log
rotation approach archives the current log file and starts
a new one. This normally occurs when the MongoDB
instance is restarted. While the MongoDB instance is
running, this can also be triggered by either issuing the
“logRotate” command inside the database or by sending
the SIGUSR1 signal from the OS to the MongoDB process
id.

4.2 Cassandra

Unless otherwise indicated, this section uses the official
Cassandra documentation [13] to paraphrase the relevant
information to indicate the availability of the surveyed
features.

Cassandra provides pluggable authentication that can
be configured via settings in the configuration file.
The default Cassandra configuration uses the Al-
lowAllAuthenticator which performs no authentication
checks and therefore requires no credentials. It is
used to disable authentication completely. Cassandra
also includes the PasswordAuthenticator, which stores
encrypted credentials in a system table. This is used to
enable simple username/password authentication.

Cassandra uses a role-based access control framework, but
provides no fixed or pre-defined roles. Cassandra roles do
have a login property and a superuser property. The default
Cassandra user has these properties set so it can be used to
setup further users and roles once authentication has been
enabled. Users and roles are the exact same concept, but
to preserve backward compatibility they are both still used.
User statements are simply synonyms of the corresponding
role statements.

Cassandra also provides pluggable authorisation that
can be configured in the same configuration file as
authentication. By default, Cassandra is configured
with the AllowAllAuthorizer which performs no checking
and so effectively grants all permissions to all roles.
This is used if the AllowAllAuthenticator is the
configured authenticator. Cassandra also includes the
CassandraAuthorizer, which implements full permissions
management functionality and stores its data in Cassandra
system tables.

Permissions on various resources are granted to the
roles. The permissions available depend on the type
of resource. Cassandra provides the following resource
types: data resources such as keyspaces and tables,
function resources, database roles and Java managed beans
(MBeans). The resource types are structured as hierarchies
and permissions can be granted at any level of these
hierarchies and they flow downwards.

Cassandra provides all of the following permissions: CRE-
ATE, ALTER, DROP, SELECT, MODIFY, AUTHORIZE,
DESCRIBE, EXECUTE. A matrix determines which
permissions can be applied to which resources. One
can grant individual permissions to resources or use the
GRANT ALL syntax to grant all applicable permissions to
a resource.

Cassandra uses the Java logging framework Logback to
create various log files about everything that occurs in the
system. Java logging classifies messages in levels [46],
where a lower level of messages will include all the higher
level ones as well. For example, the INFO level will
include message from the higher ERROR level, while the
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lower DEBUG level will include the higher level INFO and
ERROR messages. By default the following two log files
are created: the system log file which contains all the INFO
level messages produced in the system and the debug log
file which contains all the DEBUG level messages. The
debug log file additionally contains caller information as
well.

Another log file available in Cassandra is the commit log.
To enhance performance, Cassandra keeps column updates
in memory and periodically flushes those changes to disk.
To prevent data losses when the system goes down before
flushing, these updates are also written to the commit log.
When Cassandra starts up again, it reads the commit log
back from the last known good point in time and re-applies
the changes in the commit log so it can get into the same
state as when it went down. Although the commit log only
contains the most recent changes that have not been flushed
to disk yet, there is a configuration option that will archive
the contents of the commit log.

4.3 Redis

Unless otherwise indicated, this section uses the official
Redis documentation [14] to paraphrase the relevant
information to indicate the availability of the surveyed
features.

Redis is an in-memory database that is designed to be
run inside trusted environments and accessed by trusted
clients. Untrusted access is expected to be mediated
by an intermediary layer that implements access control,
validates user input and determines what operations may
be performed against the Redis database instance.

Although Redis does not implement access control, it does
provide a tiny layer of authentication that can be enabled
by editing the configuration file and setting a password.
When the authentication layer is enabled, Redis will refuse
any queries by unauthenticated clients. A client then
must authenticate itself by sending the AUTH command
followed by the password. The AUTH command, like
every other Redis command, is sent unencrypted.

The purpose of the authentication layer is to serve as a
protection layer against the accidental exposure of a Redis
database instance to external untrusted environments. To
force the setting of a password, a Redis instance in
default configuration will only start in protected mode.
In protected mode the Redis instance only accepts clients
on the local loopback interface while throwing errors on
all other available interfaces. Once the password has
been set, the other configured interfaces will accept client
connections.

Redis has no form of authorisation. Once a client is
authenticated, any command can be called including the
FLUSHALL command which will delete the whole data
set. As mitigation, Redis allows commands to be renamed
into unguessable names, so that normal clients can be
limited to a specified set of commands. Systems that

provide and manage Redis instances would then still be
able to execute the renamed commands.

Redis does have some form of logging, although it is
advised that it be only used for debugging purposes. The
Redis “Slow Log” is a system to log queries that exceeded
a specified execution time. However, by setting the
execution time threshold to zero all commands including
queries will be logged. Keeping with its in-memory nature,
Redis keeps the slow log in memory. To prevent over usage
of memory for logging purposes, by default only the last
1024 slow log entries will be kept. To retrieve the slow
log entries, the SLOWLOG GET command needs to be
used [47].

Another form of command logging happens when
append-only file (AOF) persistence is enabled. When
enabled, every time the Redis database instance receives
a command that changes the dataset (e.g. SET) it will
append it to the AOF. The purpose of the AOF is to
rebuilt the state after the database was shutdown without
a snapshot of the current state. To prevent the file
from growing uncontrollably, Redis can from time to
time rewrite the actual stored commands with the shortest
sequence of commands needed to rebuild the current
dataset in memory.

4.4 Neo4j

Unless otherwise indicated, this section uses the official
Neo4j documentation [15] to paraphrase the relevant
information to indicate the availability of the surveyed
features.

Neo4j provides a basic authentication layer that is enabled
by default. It has a built-in default user for whom
the password can be set during installation. Should
the password not be changed during installation, Neo4j
will prompt for a password change on first connection.
Additional users can be added to the database by the
default user once authenticated.

Neo4j has no form of authorisation. This implies that once
a client is authenticated, any operation can be performed
on the database. Additionally Neo4j only accepts client
connections on the local loopback interface in default
configuration. External interfaces for remote connectivity
need to be configured explicitly.

Neo4j does provides some logging. Traffic on the
HTTP/HTTPS connector is logged to a file called http.log.
However, this traffic logging is not enabled by default.

The enterprise version of Neo4j however, does provide a
role-based access control framework that furnishes built-in
roles as well as the ability to add custom roles. It also
provides additional logging capabilities to audit security
events and queries executed. These capabilities need to be
configured first, since they are not enabled by default.



Vol.109 (2) June 2018SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS128

5. DISCUSSION

In this section the results from the security feature survey
in the previous section are discussed using a few summary
tables. Section V then discusses the implications of these
results on forensic attribution.

Table 2: NoSQL Security Features

Database
Authenti- Authori-

Logging
cation sation

MongoDB Yes Yes Yes

Cassandra Yes Yes Yes

Redis Yes No Yes

Neo4j Yes No Yes

Table 2 summarises the results from the survey of access
control and logging of the selected NoSQL databases. The
first result this summary shows, is that all of the surveyed
NoSQL databases do support authentication. However the
second result is that two of the NoSQL databases do not
provide authorisation. This divides the surveyed NoSQL
databases into two groups: The first group of databases
control both who can access them and what operations
the authenticated users can perform. The second group of
databases only control who can access them, but not what
the authenticated users can do.

Specifically, Redis only provides a thin authentication
layer that does not have different users, but rather restricts
client access via a simple password. Since it has no
differentiated user access, Redis also does not provide
any authorisation. Neo4j also does not provide any
role based authorisation, even though differentiated user
authentication is supported. This implies that in both those
databases all clients have the same full control over all
database operations once they have been authenticated.

The third result that the summary in Table 2 shows, is
that all of the surveyed NoSQL databases do provide some
form of logging. It should be noted that this survey looked
at all the log files that were being generated by the chosen
NoSQL databases, not only audit logs. Some of the log
files that were surveyed, are only created when special
features in the database are enabled, while other log files
are created by the storage mechanism that the particular
database uses. This means that rather than being general
log files, these files are specialised log files that contain
only specific type of messages.

Some NoSQL databases like MongoDB and Redis include
the ability to log queries that took particularly long to
complete. In the case of Redis, the threshold used to
determine when to log slow queries can be changed to zero,
which will make Redis log every query executed. Thus the
normal Redis slow log can be turned into a query audit log.

Table 3 summarises the default state of the security
features that are available for the surveyed NoSQL

Table 3: Features Enabled by Default
Database Access Control Logging
MongoDB No No

Cassandra No Yes

Redis No Yes

Neo4j Yes No

databases. This summary shows that only one of the
surveyed NoSQL databases comes with access control
enabled by default. The implication of this result is
that the installations of all those other NoSQL databases
will be accessible to anyone without explicit configuration
changes.

A small security consolation is that some of these NoSQL
databases will per default only accept client connections
on the local loopback interface. This means that no remote
access is possible and only clients on the same machine as
the database can connect.

In the case of MongoDB, this default “local loopback
only” state is created with the value of the network
configuration option, which can easily be changed to the
network interface of the machine. This single change
will then open up the MongoDB database to remote
clients without access control. In the case of Redis,
this “local loopback only” state is enforced by a separate
configuration option. However, by changing it and the
network configuration option, the Redis database can be
opened up to remote clients without authentication.

Table 3 also shows that logging is not enabled by default on
some databases. So even though for example MongoDB
has great logging capabilities that can audit database
access and operations, none of that is available by default.
Only after careful configuration of the various settings
will the same information be available as found in many
relational databases.

In the case of Neo4j the fact that logging is not enabled
by default is not a great loss. This is because only HTTP
traffic logging is available in the community edition of
Neo4j. The logging capabilities for security events and
queries is only available in the paid-for enterprise edition.

6. FORENSIC IMPLICATIONS

This sections considers the implications of the results
from the previous section on forensic examinations and
particularly forensic attribution. The availability of access
control and logging/auditing in the surveyed NoSQL
databases is considered separately.

6.1 Access Control

The traces or artefacts from access control in a database
can help the forensic examiner as follows: firstly, the
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authentication traces can provide a list of users that
connected around the time the operations being examined
were performed. Secondly, the authorisation matrix can
narrow down this list based on who was authorised to
perform the operations in question. The first group
of NoSQL databases that was identified in the previous
section can aid forensic attribution in this way.

The second group of NoSQL databases that the survey
identified, only have authentication available, but no
authorisation. The implication is that in those databases
all clients have the same full control over all database
actions once they have been authenticated. This means it
will not be possible to narrow down the list of users based
on the operations they are authorised to perform, since
theoretically all of the users had the authority to perform
the operations being examined.

One of the databases in the second group also has no
concept of a database user and just provides simple
password based access. From a security standpoint this
simple authentication layer provides an improvement over
having no authentication, but from an forensic attribution
standpoint, it adds almost no additional value. The
forensic examiner can only deduce that the responsible
person was in possession of the correct password, provided
the security model of the database is sound and no
unauthenticated access is possible.

The survey also showed that none of the selected NoSQL
databases have authentication enabled by default. The
forensic examiner is thus dependent on the database
administrator to have enabled authentication for possible
access control traces. But without these access control
traces being persisted into a log file or some other data file,
the mere presence of access control in the database is not
sufficient to aid forensic attribution.

6.2 Logging

The different log files that were encountered during the
survey of the selected NoSQL databases can be divided
into three groups: audit logs, system logs and storage logs.

Audit Logs: Audit logs maintain a record of various
activities in the database for later review or possible
debugging in case of errors. Two pieces of information
normally found in the audit logs that the forensic examiner
can use for forensic attribution are the access records and
the operation records.

The access records show who connected to the database
and when, while the operation records show what
operations or queries were performed when and by whom.
However, without authentication enabled or available there
will be no access records and the operations will not have
any user associated with them.

None of the surveyed NoSQL databases provided specific
audit logs in the free and community versions. This

means that to perform forensic attribution in those database
versions, the forensic examiner will have to look at the
other groups of log files.

System Logs: System or operational logs are created by the
databases during the normal running of the system and can
contain many different informational and error messages.
How valuable these system log files are to the forensic
examiner depends on their content.

The survey showed that some of the NoSQL databases
include the ability to configure what messages and
operations are written to the system log. This includes to
a certain extent access and operation records. Thus the
normal system log file can be turned into an audit log as
well.

Thus if the database administrator has enabled logging
and configured the system log appropriately, the forensic
examiner can use them to aid forensic attribution.
Unfortunately this makes the availability of system logs
not something the forensic investigator can depend on
when performing forensic attribution.

Storage Logs: Storage logs that are available on some
of the surveyed NoSQL databases are created by their
persistence mechanisms. These storage logs contain
the information of all the operations that modified the
data. Storage logs may or may not be archived after the
information they contain has been transferred to the data
files. This depends on the configuration of the database
storage and available space.

The storage logs perform two functions in the NoSQL
databases that use them. Firstly they speed up the write
speed of the database by first writing the change operations
to a small linear file before applying them to the bigger
complex data files. Secondly they maintain a record of
changes in case the database goes down before the change
operations have been fully applied to the data files.

After a failure, the database can re-apply the operations
from the storage log file to the data files to get them to
the current state. In the same way the forensic examiner
can use the storage logs to roll back the state of the
database to an earlier point in time. This process is called
reconstruction and can help identify changes that were
made and information that was removed [48].

In order to save space, Cassandra uses a technique called
compaction. Compaction is the process where the DBMS
goes through the storage log and replaces individual
operations that made changes to the same data with a single
operation that has the same outcome [49]. The problem
for the forensic examiner is that he no longer can see
the individual operations that were performed possibly by
different users.

It ultimately depends on the scenario the forensic
investigator is dealing with, as to whether these storage
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logs will aid forensic attribution or not. In the case where
data was accessed or taken, there will be no changes to
the storage log file. However, in the case where data was
modified or removed there will be entries in the storage log
file that could contain clues as to who was responsible.

7. CONCLUSION

The increase in the usage of NoSQL databases for data
storage, analysis and retrieval in recent years has meant
that more and more confidential and sensitive data is
being stored in them. This has made NoSQL databases
a new target for hackers and other unauthorised entities.
This in turn would prompt more forensic examinations
to determine which data was compromised and who was
responsible. Since these NoSQL databases seem to lack
adequate security features it was necessary to determine
how this would impact forensic attribution.

Forensic attribution in digital systems is difficult to
perform because the actions that need to be attributed
occurred in the digital world. However, the initiators of
these actions are located in the physical world. To be able
to attribute actions to a program or process, various sources
of traces are needed. These traces are then correlated to
form a chain of events that can help pinpoint the initiating
program or process.

A survey of four top ranked NoSQL databases was
performed to determine what security measures are
available, that could aid the forensic investigator to
perform forensic attribution. The survey specifically
looked at the areas of authentication, authorisation and
logging.

Even though the surveyed NoSQL databases MongoDB
and Cassandra have the same security features available as
in widely used relational databases, they are not enabled
and configured appropriately in default configuration
mode. When performing a forensic examination, the
forensic examiner is thus completely reliant on the
configuration that the database administrator performed on
the particular database.

Furthermore, the surveyed NoSQL databases Redis and
Neo4j did not provide security features that left relevant
traces. In those databases the forensic examiner is thus
forced to only use traces from outside the database to help
perform attribution of the actions that occurred inside the
database. The lack of these traces can negatively impact
the accuracy of the attribution result.

The biggest concern however, was that the surveyed
NoSQL database Neo4j only provided relevant security
measures in the paid for enterprise edition. This makes
data security seem like an optional extra, even though
many countries have laws regarding information privacy
and data security. This would make Neo4j completely
unsuitable for many applications in those countries. That is
unless the organisations wanting to use Neo4j are prepared
to pay for it.

The next step would be to determine the prevalence of free
and open source editions compared to paid-for editions
among deployed NoSQL databases. This would provide
an idea of how many NoSQL databases would not have
the necessary information at the database level to aid
forensic attribution. In those cases the forensic examiner
would need to rely on external systems and the network
to perform forensic attribution. These same NoSQL
databases would also present easier targets to hackers and
other malicious actors because of their lack of available
security features.

In order to make the available trace information that could
aid forensic examinations more concrete, a study focussed
on the detail content of the various identified log files
would be required. Such a study would also have to
consider multiple versions of the same NoSQL DBMS
software. This is because the studied NoSQL databases are
still rapidly developing and the information being logged
can change between versions.

An aspect that has not been addressed in this paper
is the protection provided to the log files that were
identified. What methods are used to prevent tampering
and what mechanisms are built into the DBMSs to detect
compromised log files? Some future work would be
required to answer these questions.
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