
Valuing American Asian Options with
Least Squares Monte Carlo and Low

Discrepancy Sequences

by

A.J. van Niekerk

Submitted in partial fulfilment of the requirements for the degree

Master of Science in Financial Engineering

In the Faculty of Natural and Agricultural Sciences

Mathematics and Applied Mathematics Department

University of Pretoria

Pretoria

Nov 2018

i

I, AJ van Niekerk declare that the dissertation, which I hereby submit for

the degree Master of Science in Financial Engineering at the University of

Pretoria, is my own work and has not previously been submitted by me for

a degree at this or any other tertiary institution.

SIGNATURE:

DATE: Nov-2018

ii

Abstract

There exists no closed form approximation for arithmetically calculated Asian

options, but research has shown that closed form approximations are possible

for Geometrically calculated Asian options. The aim of this dissertation is to

effectively price American Asian options with the least squares Monte Carlo

approach (Longstaff & Schwartz, 2001), applying Low discrepancy sequences

and variance reduction techniques. We evaluate how these techniques affect

the pricing of American options and American Asian options in terms of ac-

curacy, computational efficiency, and computational time used to implement

these techniques. We consider the effect of, Laguerre-, weighted Laguerre-

, Hermite-, and Monomial-basis functions on the Longstaff and Schwartz

(2001) model. We briefly investigate GPU optimization of the Longstaff and

Schwartz algorithm within Matlab. We also graph the associated implied

and Local volatility surfaces of the American Asian options to assist in the

practical applicability of these options.

Keywords. Asian Options, Monte Carlo, Black-Scholes, Variance reduction,

Control variates, Antithetic variates, Quasi random sequences, Longstaff and

Schwartz, Halton sequence, Sobol sequence, least squares Monte Carlo, GPU

optimization, Implied volatility surface, Local volatility surface

Contents

1 Introduction 1

1.1 Option Terminology . 5

1.2 Advantages of Asian options 6

1.3 Stochastic processes and Arbitrage free pricing 6

2 Aim of this dissertation 9

3 Literature review 12

4 Black-Scholes-Merton model introduction 17

4.1 Black-Scholes option pricing formula 17

4.2 Black-Scholes model on European option pricing 19

4.3 Assumptions of the Black-Scholes model 21

4.4 Black-Scholes for Asian Options 21

4.5 Geometric Asian option approximation formula 22

4.6 Arithmetic Asian option approximation formula 23

5 Tree based Method for American Asian options 27

5.1 Brief introduction into Binomial model 27

5.2 Pricing American Asian options with Tree based models . . . 30

5.3 Example: Arithmetic Asian option 34

iv

6 Monte Carlo 36

6.1 Generating random numbers 38

6.2 Random number generation 40

6.2.1 Linear Congruential Generators (LCG) 40

6.3 General sampling methods . 48

6.3.1 Inverse transform method 49

6.3.2 Acceptance-Rejection method 51

6.3.3 Box-Muller method . 53

6.4 Variance reduction . 56

6.4.1 Antithetic variates . 57

6.4.2 Control variates . 62

6.4.3 Importance Sampling 66

6.5 Quasi-Monte Carlo . 72

6.5.1 Discrepancy . 75

6.5.2 Pseudo-random sequences 79

6.5.3 Van der Corput sequence 81

6.5.4 Halton sequence . 83

6.5.5 Faure sequence . 85

6.5.6 Sobol sequence . 89

6.6 Example . 94

7 Longstaff and Schwartz 99

7.1 The Least Squares Monte Carlo algorithm 110

8 Results for American Puts 113

8.1 Results for Weighted Laguerre polynomials approximation . . 115

8.2 Results for Laguerre polynomials approximation 118

8.3 Results for Monomial polynomials approximation 121

8.4 Results for Hermite polynomials approximation 124

8.5 Results with Control variates and Weighted Laguerre polyno-

mials approximation . 127

v

9 Results for American-Bermuda-Asian option 130

10 GPU Optimization of Longstaff and Schwartz 133

10.1 Graphical processing unit specifications 134

10.2 Negative aspects of using a GPU 136

10.3 Matlab: GPU optimized American option 138

11 Implied and Local volatility surfaces for Asian options 140

11.1 Derivation of Dupire’s equation 141

11.2 Local volatility expressed in terms of implied volatility 144

11.3 American Asian option Implied and Local volatility surfaces . 146

11.3.1 Example: American Asian call option: Implied and

Local volatility surfaces 147

11.3.2 American Asian put option: Implied and Local volatil-

ity surfaces . 151

12 Conclusion 155

References 157

Appendices 163

Appendix A: Definitions . 163

Appendix B: Code . 165

vi

List of Abbreviations

A Payoff of an Asian option

C(St, X) Payoff of a Call option

∆ Delta

LSM Least squares Monte Carlo

µ Drift term

N Cumulative normal distribution

Q Martingale measure

r Riskfree interest rate

S0 Initial price of underlying

St Price of the underlying at time t

σ Volatility

T Total time to expiration

ti Evenly spaced time increments

t0 Current time

t Some time between 0 and T

Wt Stochastic term

X Strike price

vii

List of Definitions

Definition 1. Forward price of a stock

Definition 2. Risk neutral

Definition 3. Wiener process

Definition 4. Inner product space

Definition 5. Hilbert space

Definition 6. Lebesgue measurable

Definition 7. Fokker-Planck equation

Definition 8. Integration by parts

viii

List of Figures

1.1 Plot of the Asian option prices 4

1.2 Plot of a stock price path and its average 4

5.1 Elementary representation of a one step tree model 27

5.2 4 time step binomial tree model 32

5.3 Plot of European and American Asian options 34

6.1 Plot of the Linear Congruential generator example 44

6.2 Plot of the mixed Linear Congruential generator example . . . 47

6.3 Plot of 1000 step Geometric Brownian motion with the Anti-

thetic variates. 62

6.4 Plot of a computer generated random numbers sequence with

1000 points . 81

6.5 Plot of a Halton sequence with 1000 points 84

6.6 Plot of a Faure sequence with 1000 points 89

6.7 Plot of a Sobol sequence with 1000 points 94

6.8 Plot of Quasi-sequences and CG generated estimates 96

6.9 Plot of Quasi-sequences(excluding Faure sequence) and CG

generated estimates . 97

6.10 Plot of Quasi-sequences and CG generated estimates 97

10.1 CPU and GPU architectures [1] 135

10.2 Generating normalised random numbers on CPU and GPU . . 137

ix

11.1 Plot of Implied volatility of American Asian call 148

11.2 Plot of Local volatility of American Asian call 150

11.3 Plot of Implied volatility of American Asian put 153

11.4 Plot of local volatility of American Asian put 153

x

List of Tables

2.1 Topics covered . 11

3.1 Time progression of pricing Asian options. 16

5.1 Example assumptions . 34

5.2 American and European Asian option values with the Bino-

mial tree method . 35

6.1 List of previous LCG research 48

6.2 European call estimates for Quasi-random sequences 95

7.1 Stock price paths for three discrete time steps 101

7.2 The corresponding cash flow(expiration payoff) matrix at time 3101

7.3 Regression vectors at time 2 102

7.4 Optimal strategy on exercise at time two 103

7.5 Cash flow table at time 2 . 104

7.6 Regressions for time 1 . 105

7.7 Early exercise decision at time 1 106

7.8 Optimally formulated stopping rule 106

7.9 Option cash flows . 107

7.10 Discounted path values over the cash flow table 108

8.1 Longstaff and Schwartz results 114

8.2 Error analysis for Weighted Laguerre American put options . . 115

xi

8.3 European and American put prices by LSM 116

8.4 Weighted Laguerre respective errors 117

8.5 Error Analysis for Laguerre approximation 118

8.6 European and American put prices by LSM simulation on

Laguerre Polynomial basis functions 119

8.7 Error analysis for respective Laguerre Approximations 120

8.8 Error Analysis for Monomial approximation 121

8.9 European and American put prices by LSM simulation on

Monomial Polynomial basis functions 122

8.10 Error analysis for respective Monomial Approximations 123

8.11 Error Analysis for Hermite approximation 124

8.12 Results for Hermite polynomials approximation 125

8.13 Error analysis for respective Hermite Approximations 126

8.14 Error Analysis for Control variate approximation 127

8.15 Results with control variates and weighted Laguerre polyno-

mials approximation . 128

8.16 Errors for respective control variate Approximations 129

9.1 Error Analysis for American Average options 131

9.2 American average options with Low discrepancy sequences . . 132

10.1 Longstaff and Schwartz approximations: CPU vs GPU 138

10.2 Random number simulation on both CPU and GPU 139

11.1 Example assumptions . 148

11.2 Simulated prices with the Longstaff and Schwartz algorithm . 149

11.3 Example assumptions . 151

11.4 Prices for American Asian put option 152

xii

Chapter 1

Introduction

An Asian option is an option where payoff depends on the average price of

the underlying asset over a certain period as opposed to at maturity. It is

also known as an average option [47] and is a path dependent style option.

Asian options were first introduced in 1987 by the Bankers Trust in Tokoyo

and their aim was to price these options on crude oil. Asian options are

of importance and interest, to thinly traded assets, since both the investor

and issuer of the Asian option enjoys some protection in very volatile market

conditions [40]. Asian options are frequently priced on interest rates, foreign

currencies, and also, more commonly known, commodities such as crude oil.

There are two distinct Asian options that are calculated either by using the

arithmetic or the geometric mean.

The calculation to obtain the average, which is used to price Asian options,

could be calculated over the lifetime of the option, or over a fixed specified

period. There exist some permutations of Asian options, called fixed- and

floating- strike options. These options have the following payoff functions.

Fixed strike Asian options:

Asian call option = max[0, A(0, T)−X]

1

Asian put option = max[0, X − A(0, T)]

Floating strike Asian options:

Asian call option = max[0, ST − kA(0, T)]

Asian put option = max[0, kA(0, T)−X]

where A denotes the average price for the period [0,T], and X is the strike

price. ST denotes the underlying assets price at time T. The k is defined as

a weighting, but is usually set to 1. We can also define A as an arithmetic

average for discrete and continuous cases, as follows.

A(0, T) =
1

T

∫ T

0

St dt (eq:1.0.1)

A(0, T) =
1

n

n−1∑
i=0

S(ti) (eq:1.0.2)

For geometrically averaged Asian options, we express the calculation of the

continuous case as

A(0, T) = exp(
1

T

∫ T

0

ln(St) dt) (eq:1.0.3)

and for the discrete case,

A(0, T) = (
n−1∏
i=0

S(ti))
1

n−1 (eq:1.0.4)

where intervals are equidistant for the discrete case of time. For example

0 = t0, t1, t2, ..., tn = T and for any specific ti = i * T
n

. In special cases,

where the average only depends on the average of the final price at time T,

we obtain the normal European option.

2

The averaging period of an Asian option can span the lifetime of the option or

any subset thereof. We will primarily be investigating the arithmetic Asian

option, although the geometrically calculated Asian option plays a vital role

in many pricing methods. Geometric Asian options enables us to find a closed

form solution, as discussed in multiple papers such as Wilkmund [8], Hubalek

and Sgarra [5], Jeon, Ji-Hun and Kang [7], and Kemna and Vorst [40].

Continuous cases of the Asian options are only valid in a theoretical context,

because the industry relies heavily on the discrete calculation of the averages.

Due to the volatile nature of the mining sector of South Africa, discrete

calculations of Asian options might be applicable. The South African mining

industry has seen some volatile commodity price movements over the past

years. According to PWC’s [46] press room, “the market capitalization for

the top 35 companies declined to R414 billion as at 30 June 2015 (compared

to R675 billion as at 30 June 2014). The decline continued when compared

to market capitalization as at 30 September 2015 of R304 billion, resulting in

an aggregate decline of R371 billion when compared to 30 June 2014.” This

was largely contributed to local cost pressures, labour action, and continuing

downswing in commodity prices. Although, most companies are improving

their productivity to address the demanding global and local environment.

This is an indication of a highly volatile market space and seems appropriate

for the pricing of Asian options. Levy [43] stated that ”In markets where

prices are prone to extreme volatility the averaging performs a smoothing

operation”. More recent events, which took place in 2017, indicated no relief

to the mining sector. The downgrade of South Africa’s sovereign credit rating

by Moody’s, Fitch, and S & P, and the mining charter of June 2017 escalated

uncertainty in the South African economic environment.

3

Figure 1.1: Plot of the Asian option prices

Figure 1.2: Plot of a stock price path and its average

4

1.1 Option Terminology

Options are defined as two distinct types, namely, put options and call

options. A call option is an option that gives the investor the right, but not

the obligation, to buy an underlying asset (i.e., stock, commodity, etc.) at a

predetermined date and predetermined price. A put option gives the investor

the right, but not the obligation, to sell the underlying asset (i.e., stock,

commodity, futures, index, etc.) at a predetermined date and predetermined

price. This means that the investor or holder of the option has the choice to

exercise the option or not.

An option can be bought at a price, which is called a premium. The

predetermined price of the contract is called the strike price or exercise price.

The date that the option can be exercised or expires is called the maturity,

exercise, or expiry date.

Both put and call options have two variants, these are called either Eu-

ropean or American options. A European option can only be exercised at

maturity, whereas an American option can be exercised anytime before and

including maturity. Hence, options have the following payoffs:

Call option = max[0, St −X] where 0 ≤ t ≤ T

Put option = max[0, X − St] where 0 ≤ t ≤ T

where T denotes the time at expiry and X denotes the strike price. This

means that either at exercise, the option will have a value called the exercise

price or will expire worthless.

5

1.2 Advantages of Asian options

Asian options have the following four main advantages:

1. Asian options are considerably cheaper than standard European and

American options with similar maturity and with an averaging period

greater than one. This is because an Asian option’s volatility of the

average price is less than the volatility of the spot price [9].

2. Asian options are exposed to considerably less volatility risk. The

averaging of the spot price over time time will lead to lower volatility

than the spot at maturity.

3. Asian options are frequently traded on thinly traded assets. Hence,

thinly traded asset prices are frequently subject to price manipulation

and Asian options offer protection against price manipulation of the

underlying, according to Kemna and Vorst [40].

4. In foreign exchange markets, [43] Asian options are offered as Over The

Counter derivatives as a means to hedge a stream of foreign currency

flows against adverse currency movements. The alternative strategy

would be to enter into a strip of individual options, which will be very

costly and all that is required to be hedged against the average of the

exchange rates.

1.3 Stochastic processes and Arbitrage free

pricing

Definition 1 (Forward price of a stock [38]). The forward price of a stock

is the current stock price denoted by S0, with an additional return measure,

which will attain the cost of holding the stock until time t. Thus the cost of

6

holding the stock for a period t, is the risk-free interest lost, so the forward

price is given by

S0e
rt

where r denotes the risk free interest rate.

Definition 2 (Risk Neutral [38]). A space is risk neutral if for non-identical

assets St and for some time period t, the value of the option at time = 0

will be the the expected value of the option at time = t, discounted with the

risk-free interest rate r over the period t. Thus, denoting

C(St, 0) = e−rtEQ[C(P, t)] (eq:1.3.1)

or

C(St, 0) = e−rtEQ[(ST −X)+] (eq:1.3.2)

where r denotes the compounded risk-free interest rate and P represents the

underling asset. Q is the equivalent martingale measure for the discounted

underlying and EQ is the expectation under this measure.

Definition 3 (Wiener process). Let (Ω,F ,P) denote a probability space

and that all variables are considered to be F measurable. Then a continuous

process X is said to be a Brownian motion or Wiener procress if,

1. P (X = 0) = 1

2. For 0 ≤ s < t < ∞, the distribution of Xt − Xs is normally distributed

with mean 0 and variance t− s

3. For m ≥ 1, 0 ≤ t0 < t1 < ... < tm and Y1, Y2, ..., Ym are independent

random variables, where Y = Xti −Xti−1

Theorem 1 (Generalized Wiener Process [37]). A generalized Wiener pro-

7

cess for a variable x can be defined in terms of dWt as‘

dx = adt+ bdWt, (eq:1.3.3)

where a and b are constants. adt implies that x has an expected drift rate of

a per unit of time, which is regarded as the deterministic component. The

bdWt term can be regarded as adding noise to the path that is followed by x,

which is regarded as the stochastic component of the process.

Theorem 2 (The process for a stock price [37]). Following from theorem 1, if

we assume that dz is zero, which implies that the process has no uncertainty,

the model implies that

∆S = µS∆t. (eq:1.3.4)

In the limit ∆t→ 0,

dS = µSdt. (eq:1.3.5)

Integrating between time 0 and T, then yields

ST = S0e
µT . (eq:1.3.6)

We then investigate the following process,

dS = µSdt+ σSdz, (eq:1.3.7)

or

d(lnS) = µdt+ σdz. (eq:1.3.8)

Equation 1.3.7 is one of the most used stock price processes to model stock

price behavior. µ denotes the underlying’s rate of return and the variable σ

denotes the volatility of the underlying. In a risk neutral world, µ will be

replaced by the risk-free rate r.

8

Chapter 2

Aim of this dissertation

A distinction can be made between the arithmetic and the geometric mean

calculated Asian options. We then look at why it would be more beneficial

to price Asian options as compared to standard European options. The

aim of this dissertation is to effectively price American Asian options, as

specified in the Longstaff and Schwartz article. Asian options are inexpensive

compared to their European counterparts and Asian options are less prone

to volitile price movements. The protection that Asian options offer make

them attractive to be structured into hedging policies, where an investor

would be exposed to a stream of averaged cash flows. When considering

the effective pricing of these Asian options, we will be investigating the

Longstaff and Schwartz [39] model to price these options. The Monte Carlo

simulation depends on the simulations of stock price paths to accurate price

derivatives. The more simulations that are included in the approximation

will lead to a more accurate answer. However, the more simulations will

lead to more computational effort to compute these approximations. Hence,

we implement variance reduction techniques and Quasi random sequences to

reduce the number of simulations that are needed to produce a relatively

accurate approximate. These techniques will increase the efficiency with

which the least squares algorithm is implemented. We aim to measure the

9

computational time that is used to implement the least squares algorithm.

Some of the other pricing models, that we will be investigating, will require

simulation techniques. Such as Monte Carlo simulation which implements

variance reduction techniques and Quasi random sequences. We aim to

investigate the effectiveness of randomness by generating random numbers

from Quasi random sequences versus computer generated random numbers.

Quasi random sequences such as the Halton [41], Sobol [50] and Faure [42]

sequences will be investigated as well as their impact on simulation pricing.

Variance reduction techniques, which are commonly used in Monte Carlo

simulations will also be discussed. Measuring the effectiveness of antithetic

variates and control variates. All of these simulation aspects will be brought

into consideration, when pricing American and American Asian options. The

LSM approach uses basis functions to approximate a continuation value.

There are different basis functions that can be use. We will, however, focus on

using Laguerre, weighted Laguerre, Monomial and Hermite basis functions.

Although the LSM method is robust to the choice of basis functions, we

investigate how the abovementioned basis functions will influence the pricing

of American options.

Finally, we discuss the optimization of the Longstaff and Schwartz model

by GPU computation. The GPU has a unique ability. It has multiple cores

that can assist in the speedup of computations, even more cores than modern

CPUs. We attempt the GPU optimization in Matlab, which is a GPU enabled

platform. We also set up Implied and Local volatility surfaces that enable

us to price these exotic options quickly, in the real world.

10

Table 2.1: Topics covered

Discussion topics Chapters

Black-Scholes approximation for Asian options 6

Binomial tree method for Asian options 7

Generating random numbers via basic LCG 8.2

Sampling methods for Monte Carlo 8.3

Variance reduction techniques 8.4

Quasi random sequences 8.5

Explanation of Longstaff and Schwartz 9

Results for variance reduction and Quasi sequences 10

Investigating the effect of basis functions in LS model 10

Pricing of exotic Asian option with LS model 11

GPU optimization of LS model 12

Implied and Local volatility surfaces for Asian options 13

In this dissertation we have the following research objectives:

1. We investigate different pricing methods for Asian options.(Binomial,

Black-Scholes, and Longstaff and Schwartz).

2. We investigate the affect of different basis functions and different Quasi-

random sequences on American options, with Longstaff and Schwartz.

As well as, multiple variance reduction techniques.

3. We then apply most efficient basis function and Quasi-random sequence

to Longstaff and Schwartz to price American Asian options.

4. We also try to optimise the speed of execution by implementing GPU

computation on the Longstaff and Schwartz algorithm.

5. We set up Local volatility surface by implementing Dupire’s equation to

price American asian options with more ease.

11

Chapter 3

Literature review

The Asian options are fully path dependent. There have been extensive

studies the past two decades on both the estimation of geometric Asian

options and artithmetic Asian options, since no general analytical solution

exists for arithmetic Asian options [40].

In 1990, Kemna and Vorst [40] made a considerable contribution towards

the pricing of Asian options. Kemna and Vorst proved that there is no

analytical expression for the value of an artithmetic calculated Asian option

and deduced that an Asian option will always be equal to, or less than, a

standard European option. Kemna and Vorst [40] also provided an analytical

expression for a geometrically calculated average, which enabled them to

find expressions in the final time interval and over the period from issue

date to maturity. The first lattice based model, which was developed for

pricing Asian options, was first proposed by Hull and White [2] in 1993.

The binomial tree method creates a new type of problem when first imple-

mented to price Asian options. The binomial tree describes the underlying

assets price evolution and the possible arithmetic averages grows increases

tremendously at lower nodes of the tree. Each of these possible arithmetic

averages has to be tracked down and calculated. This means that the number

of arithmetic averages grows exponentially when the number of time steps

12

used to compute this option increases. This makes problems with more time

steps increasingly unmanageable. To solve the problem, Hull and White [2]

proposed that one should use a set of representative averages at each node

within the tree and then employ linear interpolation in an attempt to find

the missing values of the option prices. Additional research soon followed by

Klassen [11], Barraquand and Pudet [13], and Chalasani [12]. This research

proposed a similar pricing technique as Hull and White, with the exception

that the set of representative averages will be chosen in a different manner.

Lattice models, however, stay one of the most popular models when pricing

Asian options because of its efficacy, simplicity, and flexibility. Lattice based

models can easily be implemented to price both European and American

style Asian options.

Carverhill and Clewlow(1990) [44] numerically evaluated the convolutions of

the density functions using the Fast Fourier transform method. The method

was very accurate in pricing the option, but computationally inefficient,

especially when working with relatively large averages.

Turnbull and Wakeman [45] derived a closed form approximation for a geo-

metrically calculated Asian option as well as an algorithm for the arithmeti-

cally calculated Asian option. It claims that the speed of the algorithm can

likely be compared to the speed of the Black-Scholes algorithm. Turnbull and

Wakeman have found that if the averaging period is smaller than the maturity

of the option, and assuming the rate of return is fairly constant. Then the

price estimates were similar for the Arithmetic and Geometric Asian options.

According to Levy(1992) [43], Wakeman and Turnbull (1991) recognised the

suitability of the log normal distribution as a first order approximation, but

overlooked [43] “the fact that when only the first two moments are taken into

account in the approximation, the accuracy of the log normal assumption is

acceptable making redundant the need to include additional terms in the

expansion involving higher moments.”

Levy(1992) [43] proposed to approximate the density function of the arith-

13

metic average. The paper used a straightforward approach, named the

Wilkinson approach to approximate the density function of the arithmetic

average. This approach has one main advantage, which delivers a closed form

analytical expression and is both accurate and easily implemented.

Both the abovementioned, Turnbull and Wakeman(1991) and Levy(1992),

models are straightforward, but the models will yield inaccurate approxima-

tions under certain assumptions and parameters choices.

Milevsky and Posner(1998) [48] proposed the use of elementary techniques to

derive the probability density function of the infinite sum of correlated log-

normal random variables and show that the distribution can be fitted to a re-

ciprocal gamma distribution, under some parameter restrictions. “A random

variable is reciprocal gamma distributed if its inverse is gamma distributed.”

They used the reciprocal gamma distribution result to approximate the finite

sum of the correlated log-normal random variables and then calculated the

arithmetic mean Asian option using the reciprocal gamma distributions as

the state price density function. So, Milevsky and Posner proposed a closed

form analytical solution for an arithmetic mean Asian option. Thus, when

Black and Scholes proposed the use of N(di) as their pricing function, which

represents the value of the cumulative normal distribution, Milevsky and

Posner usedG(di) in the exact same sense for the cumulative density function,

for the gamma distribution.

When using Monte Carlo simulation based models, the backbone of the

simulations uses the Black-Scholes (1973) [17] algorithm to the proposed

partial differential equation. Furthermore, in the generation of the Monte

Carlo simulations, the Boyle, Broadie, and Glasserman (1997) paper states

the necessary procedure of implementation, as well as the variance reduction

techniques. In this paper, the Quasi random number sequences are dis-

cussed. It seems that implementing the Sobol sequences yield the smallest

relative estimation error. The following sequences is discussed and tested,

Faure(1982) [42], Halton(1960) [41], and Sobol(1967) [50].

14

Longstaff and Schwartz [39] proposed using the least Squares Monte Carlo

(LSM) method for pricing American Asian options. The least squares Monte

Carlo method uses backward induction [49] in which a value is recursively

assigned to each state at each time step. Then this value is defined as the

least squares regression against market price of the option at that specific

state and time step. The option value for this regression is defined as the

value of exercise possibilities and identifying the value of the time step where

exercise would result in. We are now able to evaluate all states at different

time steps. The value of the option is calculated by making an optimal

decision on option exercise at every time step at hand. This approach is

accurate, computationally efficient, and intuitive; it provides the opportunity

to price American Asian options. To improve computational efficiency of the

LSM model, one can implement a Quasi Monte Carlo method in conjunction

with the LSM algorithm.

There is another class of models that solves the governing partial differ-

ential equation for Asian options with numerical methods, where both the

numerical explicit and implicit finite difference schemes can possibly lead

to incorrect Asian option approximations under the evaluation process. It

is found that the explicit finite difference scheme is numerically unstable

when applied to partial differential equations that model path dependent

option pricing. Otherwise, the implicit finite difference scheme is stable,

but produces incorrect approximations under certain volatility structures.

Wilmott (1993) did a comprehensive study on Asian options, which are

approximated by finite difference methods.

15

Table 3.1: Time progression of pricing Asian options.

1987 · · · · · ·• Asian options first
traded [3].

1990 · · · · · ·• Kemna an Vorst.

1991 · · · · · ·• Wakeman and Turnbull.

1992 · · · · · ·• Levy.

1993 · · · · · ·• Hull and White - Lattice
based method.

1998 · · · · · ·• Milevsky and Posner.

2001 · · · · · ·• Longstaff and Schwartz.

2012 · · · · · ·• Wilkmund.

16

Chapter 4

Black-Scholes-Merton model

introduction

A breakthrough in European stock pricing methods was obatained by Black,

Scholes and Merton in the early 1970’s [37]. This specific breakthrough was

the well renowned development of the Black-Scholes-Merton model or better

known as the Black-Scholes model. This model had a significant influence

on how to price and hedge derivatives.

4.1 Black-Scholes option pricing formula

Theorem 3. If we consider a stock which pays no dividends, We follow

the proof as propopsed by Turner [38]. The price of a European call option

C(St, X) is given by

C(St, X) = StN (d1)−XN (d2)

where N (.) is the cumulative normal distribution function and d1 =
ln X
S0
−µ−ν2T

ν
√
T

Proof:

17

The payoff of a European call is C(ST , X) = max(St −X, 0). By assuming

risk neutrality, the expected discounted payoff is C(ST , X) = e−rTmax(St −
X, 0). We have to remember that ln St

S0
is normally distributed with mean µ

and varianve σ, and let the mean of the log normal distribution be located

at the forward price of the stock. Then σ = ν2t and µ = (r − ν2

2
)t. Note x

is a variable and X is the strike price in the following derivation.

C(S0, X) = e−rTE[C(ST , X)]

= e−rTE[(ST −X)+]

= e−rT
∫ ∞
X

1√
2πTσx

(x−X)e
−(ln x

S0
−µ)2

2σ2T dS

= e−rT
∫ ∞
X

1√
2πTσx

xe
−(ln x

S0
−µ)2

2σ2T dx− e−rT
∫ ∞
X

1√
2πTσx

Xe
−(ln x

S0
−µ)2

2σ2T dx

= e−rT
∫ ∞
X

1√
2πTσ

e
−(ln x

S0
−µ)2

2σ2T dx− e−rT
∫ ∞
X

1√
2πTσx

Xe
−(ln x

S0
−µ)2

2σ2T dx

(eq:4.1.1)

Looking at the first part of the integral and now setting z =
ln x
S0
−µ

ν
√
T

then

dz = dx
xν
√
T

. The first part simplifies as follows,

e−rTS0e
µ+ ν2T

2

∫ ∞
A

1√
2π
e
−z2
2 dx (eq:4.1.2)

with A =
ln X
S0
−µ−ν2T

ν
√
T

Hence, by recognizing that the integral represents the cumulative distribution

function for the standard normal variable, we have that,

S0(1−N (
ln X

S0
− rT − ν2T

2

ν
√
T

) = S0N (−
ln X

S0
− rT − ν2T

2

ν
√
T

)

= S0N (
ln X

S0
+ rT + ν2T

2

ν
√
T

)

18

Thus, this yields the first term for the proof.

To complete the proof we now examine the second part of the pricing equa-

tion: Let z =
ln x
S0
−µ

ν
√
T

then dz = dx
xν
√
T

and,

−e−rT
∫ ∞
X

1√
2πνx

Xe
(ln x

S0
−µ)2

2ν2T = −e−rT
∫ ∞
A+ν

√
T

1√
2π
e
−z2
2 dz

= −e−rTX(1−N (A+ ν
√
T))

= −Xe−rT (N (−A− ν
√
T))

= −Xe−rT (
ln X

S0
+ rT − ν2T

2

ν
√
T

)

which yields the second term of the equation and therefore completes the

proof.

4.2 Black-Scholes model on European option

pricing

In 1973, a paper was published by Fischer Black and Myron Scholes and

their derivative pricing theory was based on a Geometric Brownian process.

Now from Theorem 2 in the previous section, we say that at some time t

and underlying asset price St comprise a Geometric Brownian motion if it

satisfies the following stochastic differential equation.

dSt = µStdt+ σStdWt (eq:4.2.1)

Where the Wt represents the Wiener process or Brownian motion, µ is the

percentage drift and σ represents the volatility. The µStdt term is known

as the deterministic term and σStdWt is known as the stochastic term that

generates the noise of the process.

With the use of Itô’s Lemma we are able to find an analytical expression for

19

the abovementioned stochastic differential equation. That is,

St = S0e
((µ−σ

2

2
)t+σ

√
tZ)

for an arbitrary initial stock value S0 and where Z represents the standard

normal distribution. From this expression we can see that log(St
S0

) is normally

distributed with mean (r − σ2

2
)t and variance σ2t. Hence,

St = S0e
((r−σ

2

2
)(t)+σ

√
tZ).

The Black-Scholes pricing formula, as stated and proved above, gives the

exact value of a European call or put option. This is where we see that

American options have no closed form solution. The price of a European

call will be denoted by C and a European put will be denoted as P on a

nondividend paying underlying asset. We assume that the initial value is

denoted by S0 and can therefore be calculated by the following formulas:

C = S0N (d1)−Ke−rTN (d2),

and

P = Ke−rTN (−d2)− S0N (−d1,)

where

d1 =
ln S0

K
+ (r − σ2

2
)T

σ
√
T

,

and

d2 = d1− σ
√
T .

and N denotes the cumulative distribution function of the standard normal

distribution, N(0, 1).

20

4.3 Assumptions of the Black-Scholes model

Assumptions for the Black-Scholes formula are as follows, stated by Hull [37],

and Winarti, Guna, and Noviyanti [6]:

1. The stock price process is stated with a constant µ and σ.

2. The short selling of securities with full use of the proceeds is permitted.

3. There are no transactional costs or taxes. All securities are perfectly

divisible.

4. There are no dividends during the life of the derivative.

5. There are no riskless arbitrage opportunities.

6. Security trading is continuous.

7. The risk-free rate of interest, r, is constant and the same for all maturities.

For our purposes we assume that σ and r are deterministic by nature.

However, it is also possible that σ and r are known functions of t. Interest

rates can be stochastic of nature, but under the assumption that the stock

price distribution at maturity of the option is still log normal [37].

4.4 Black-Scholes for Asian Options

As we discussed in theorem 3, we are able to find a closed form formula for

pricing a standard European option, on a nondividend paying stock. We

now follow Wiklund [21] [2012] and observe a formula for estimating both

arithmetic and geometric Asian options. Asian option pricing, in terms of

the Black-Scholes framework, has already been researched and developed by

21

Kemna And Vorst [40], Levy [43], Turnbull and Wakeman [45], Milevsky and

Posner [27], and Curran [20], to name a few. We investigate the pricing of

geometric Asian options in section 6.1 and discuss the pricing of arithmetic

Asian options in 6.2.

4.5 Geometric Asian option approximation for-

mula

As we discussed earlier we are able to find a closed form approximation

formula for the geometric Asian option. This is only possible because the

stock price process and the geometric average have a critical property in

common. They both have log normal distributional properties, which we

showed earlier in this dissertation. We follow Wiklund [21], and Winarti,

Guna and Noviyanti [6]. The log normal for the geometric mean will not be

proven here as it does not form an integral part of this disserataion. But the

pricing of geometric Asian options are thoroughly discussed in the papers

of Wiklund [21], and Winarti, Guna and Noviyanti [6]. We will show the

pricing formula for a non-dividend paying stock as,

C(S0, K,Aj, T) = S0AjN(dn−j + σ
√
T2,n−j)−Ke−rTN(dn−j)

P (S0, K,Aj, T) = Ke−rTN(−dn−j)− S0AjN(−dn−j − σ
√
T2,n−j)

(eq:4.5.1)

where n denotes the number of observations that form the average, j rep-

resents the number of observations that was passed in the averaging period

and h represents the observation frequency. C is the price of a call option

and P is the price of a put option and N(u) is the cumulative probability

distribution function for a standardized normal distribution. S0 represents

the stock price at time 0, K represents the strike price, r is the risk-free rate

of return, σ is the underlying stocks volatility and T represents the time to

22

maturity of the option.

where

dn−j =
ln(S0

K
) +

(
r − σ2

2

)
T1,n−j + ln(Bj)

σ
√
T2,n−j

Aj = e
−r(T−T1,n−j)−σ

2(T1,n−j−T2,n−j)
2 Bj

T1,n−j =
n− j
n

(T − (n− j − 1)h

2
)

T2,n−j =
(n− j

n

)2
T − (n− j)(n− j − 1)(4n− 4j + 1)

6n2
h

Bj =
(n∏
j=1

S(T − (n− j)h)

S

) 1
n

B0 = 1

(eq:4.5.2)

Note, if we have that n = 1 and j = 0, this formula will just reduce to the

normal Black-Scholes pricing formula. For further results and explanation of

the derivation, refer to Wiklund [21], and Winarti, Guna and Noviyanti [6].

4.6 Arithmetic Asian option approximation

formula

We have that the arithmetic mean does not follow a log normal distribution

and does not satisfy the normality assumption of the Black-Scholes frame-

work. For this reason we are unable to obtain a closed form formula to

price arithmetic Asian options. But we can ultimately work around this

shortcoming by approximating the arithmetic mean by using the geometric

mean. Then it is possible to approximate an estimate for an arithmetic Asian

option. If we want to find an estimate for an arithmetic Asian option, we

can approximate the value of this option by conditioning it to the geometric

mean price of the underlying asset. We once again follow the papers of

23

Wiklund [21], and Winarti, Guna and Noviyanti [6] for the proof of the

arithmetic Asian option approximation. Hence,

C(S0, K,A, T) = e−rTE[(A−K)+]

and

P (S0, K,A, T) = e−rTE[(K − A)+]

where A is the arithmetic mean [20] and G is the geometric mean of the

respective underlying asset. We follow the proof and reasoning of Winarti,

Guna and Noviyanti [6] for the next section. If we now consider the case

where the averaging has not yet started, the the price of an arithmetic Asian

call option can be expressed as,

C = erTE[(A−K)+]

= erTE[(A−K)+|G]

= erT
∫ ∞

0

E[(A−K)+|G = x]g(x)dx

(eq:4.6.1)

where g is denoted as the log normal density function of G. We now define

our price C in terms of C1 and C2 as in and out of the money approximations.

So,

C = e−rT (C1 + C2)

, where

C1 =

∫ K

0

E[max(A−K, 0)|G = x]g(x)dx

and

C2 =

∫ ∞
K

E[max(A−K, 0)|G = x]g(x)dx

.

Since the arithmetic average is greater than the geometric average (A ≥ G),

24

so:

C2 =

∫ ∞
K

E[(A−K)|G = x]g(x)dx

.

However, C1 is the situation where the geometric option is out of the money

and the respective arithmetic option is unknown. C2 is the situation, where

both options are out of the money. The C1 approximation is then as follows:

C1 =

∫ K

L

E[A−K|G = x]g(x)dx

with L = {x|E(A|G = x) = K} Then we have

C = e−rT (C1 + C2)

C1 + C2 =

∫ ∞
L

E[A−K|G = x]g(x)dx]

=
1

n

n∑
i=1

∫ ∞
L

E[Sti |ln(G) = ln(x)]g(x)dx−K
∫ ∞
L

g(x)dx

(eq:4.6.2)

with K
∫∞
L
g(x)dx = KN(µG−ln(L)

σG
)

The approximation for an arithmetic Asian call option can be expressed as;

C(S0, K,A, T) ≈ e−rT
[(1

n

n∑
i=1

e
µi+σ

2
i

2 N(
µG − ln(L) + γi

σG
)
)
−KN(

µG − ln(L)

σG
)

]
,

P (S0, K,A, T) ≈ e−rT
[
KN(−µG − ln(L)

σG
)−

(1

n

n∑
i=1

e
µi+σ

2
i

2 N(
µG − ln(L) + γi

σG
)
)]

(eq:4.6.3)

25

where furthermore

µG = ln(S0) + (r − σ2

2
)(t1 + (n− 1)∆t/2)

µi = ln(S0) + (r − σ2

2
)(t1 + (i− 1)∆t)

σi = σ
√

(ti)

σ2
G = σ2h

(2n+ 1)(n+ 1)

6n

L = {x|E(A|G = x) = K}

γi =
σ2h

2n
((2n+ 1)i− i2)

(eq:4.6.4)

where t1 is the time to the first averaging point, ∆t represent the time

between averaging points and other parameters are the same as defined

before.

26

Chapter 5

Tree based Method for

American Asian options

5.1 Brief introduction into Binomial model

The following will be a brief introduction into binomial stock trees. The next

figure1 5.1 shows an elementary one step tree. We assume a no arbitrage

argument.

Figure 5.1: Elementary representation of a one step tree model

1

1John C Hall, 2012. Options, Futures, and Other Derivatives (Global Edition). 8th
Edition. Pearson. Page 255, Figure 12.2

27

S0 denotes the stock price at time zero and f is the current price of an option

that derives its value from the underlying stock. An option can be based on

an underlying that is tradable or not. The total length of time will be denoted

by T and each time step will be denoted by ∆t. The stock price can move

up or down from the current value of the stock S0. So, the stock price can

move to the “upstate” or “S0u” with a factor u or move to a “downstate”

or “S0d” with a factor d. Just note that it logically makes sense that u > 1

and d < 1. The value of the stock in the “upstate” is S0u and so for the

downstate is S0d. The corresponding value for the option in the upstate and

downstate is fu and fd.

Firstly, we look at some derivations without the risk of default:

From figure 5.1 we have that: pS0u + (1− p)S0d = e(r−q)∆tS0 by equating

the expected value of the share price at time ∆t or one time step, to the

value of the share price at time zero denoted by S0 times the risk-free rate

minus the coupon rate.

Note that p is the probability to move to the upstate and (1− p) is the

probability to move to the downstate. p is a subjective probability which

will differ from investor to investor. r denotes the riskless expected return

and q is the yield rate of the asset that is paid annually or better known as a

dividend rate. The capital gain will provide a return of (r − q) . If we solve

for p we get:

pS0u+ S0d− pS0d = e(r−q)∆tS0

pS0 (u− d) = S0(e(r−q)∆t − d)

∴ p =
(e(r−q)∆t − d)

(u− d)
=

l − d
u− d

(eq:5.1.1)

Where l = e(r−q)∆t.

Substituting p into E [ST] = pS0u+ (1− p)S0d we obtain

28

E [ST] = pS0u+ S0d− pS0d

= pS0(u− d) + S0d

=
(e(r−q)∆t − d)

(u− d)
S0(u− d) + S0d

= (e(r−q)∆t − d)S0 + S0d

Hence, E [ST] = e(r−q)∆t

(eq:5.1.2)

If the asset yield rate is disregarded for a moment then E [ST] = er∆t. This

means that for valuation purposes we assume the following:2

1. It is assumed that the expected return from all assets is the risk-free

rate.

2. Discounting occurs at the risk-free rate for valuing the derivative pay-

offs.

The volatility σ of a stock price is defined so that σ
√

∆t is the standard

deviation of the return on the stock price with length of each time step ∆t.

Then the variance of the stock return is:

pu2 + (1− p) d2 − [pu+ (1− p) d]2 = σ2∆t

Substituting p into the above mentioned variance. We then obtain:

(e(r−q)∆t − d)

(u− d)
u2 +

(
1− (e(r−q)∆t − d)

(u− d)

)
d2

−

[(
e(r−q)∆t − d

)
(u− d)

u+

(
1−

(
e(r−q)∆t − d

)
(u− d)

)
d

]2

= σ2∆t

2John C Hall, 2012. Options, Futures, and Other Derivatives (Global Edition). 8th
Edition. Pearson. Page 428, Risk neutral valuation

29

Now using V ar (x) = E [x2]−E[x]2 and by substituting p and then solving

for u and d. The result is found with the Taylor expansion that a solution

for u and d are:

u = e
√
σ2∆t

and

d = e−
√
σ2∆t

or

d =
1

u

These are the values proposed by Cox, Ross and Rubenstein (1979) for

matching volatility. Assumptions made when using the binomial tree:

1. The binomial tree is recombining

2. Constant volatility

5.2 Pricing American Asian options with Tree

based models

In 1993, Hull and White [2] proposed a binomial tree based pricing method

for Asian options. This section will briefly discuss this pricing process, but

will not be proven. The binomial tree based model is able to track all possible

arithmetic average prices at each specific node in the tree. Hence, this tree

based method is able to derive exact option prices for both arithmetic and

geometric Asian options. We closely follow the model as specified by M.

Costabile [15] We first consider a European call option, which is written on

the arithmetic average of the prices of the underlying with S(t) = S at any

specified time t. At maturity T , the European option will have the payoff of

max(A(T) −K, 0). Where the A(T) denotes the average of the underlying

30

asset prices during the lifetime of the option and K denotes the strike price.

This European option is known as a fixed strike Asian option, as we have

discussed in previous sections of this dissertation. Now we are able to define

the arithmetic average of the underlying asset prices, which are attained

during the lifetime of the option as a minimum and maximum average, for

j consecutive down movements and i− j consecutive up movements. So, we

have

Amax(i, j) =
S(1 + u+ u2 + ...+ ui−j + ui−jd+ ui−jd2 + ...+ ui−jdj)

i+ 1

=
(S 1−ui−j+1

1−u + Sui−jd1−dj
1−d)

i+ 1
(eq:5.2.1)

and

Amin(i, j) =
S(1 + d+ d2 + ...+ dj + dju+ dju2 + ...+ djui−j)

i+ 1

=
(S 1−dj+1

1−d + Sdju1−ui−j
1−u)

i+ 1

(eq:5.2.2)

Then for each node (i, j) the average prices are captured in an array and

arranged from maximum to minimum arithmetic averages. The arithmetic

averages for each node (i, j) are then calculated as

A(i, j, k) =
M − k
M

Amax(i, j) +
k

M
Amin(i, j) for k = 0, 1, 2, ...,M

where M represents the number of averages at any specific node.

31

Figure 5.2: 4 time step binomial tree model

S0u
4

S0u
3

S0u
2 S0u

2

S0u S0u

S0 S0 S0

S0d S0d

S0d
2 S0d

2

S0d
3

S0d
4

For simplification of the process and illustration purposes let us consider

the four time step binomial model as seen above. By considering the ex-

ample illustrated by Dyakopu [16], we will denote the nodes as N(t, j),

where t indicates the time step and j indicates the tranches from high to

low. We now consider one of the terminal nodes, say N(4,4). There is,

however, only one possible trajectory to calculate the average for N(4, 4)

and that is the path (S0, S0u, S0u
2, S0u

3, S0u
4). But if we consider say

another node, for example at N(4, 2), then the first and maximum aver-

age can be calculated on the path (S0, S0u, S0u
2, S0u, S0) and the average

set is A(4, 2; 1) = Amax(4, 2). We also note that Su2 = Smax(4, 2; 1) is

the highest recorded value of the path. The following four averages are

calculated from the next paths: (S0, S0u, S0, S0u, S0), (S0, S0d, S0, S0u, S0),

(S0, S0d, S0, S0d, S0) and (S0, S0d, S0d
2, S0d, S0). Hence, N(4,2) has a set of

representative averages, which are all true averages, except the one average

generated by the path (S0, S0d, S0, S0u, S0). By using backward induction

we are able to approximate a estimate for the option by considering the

32

representative averages in such a way that:

Au =
(i+ 1)A(i, j, k) + S0u

i+1−jdj

i+ 2

⇒ (i+ 1)A(i, j, k) + S(i, j)u

i+ 2

and

Ad =
(i+ 1)A(i, j, k) + S0u

i+1−(j+1)dj+1

i+ 2

⇒ (i+ 1)A(i, j, k) + S(i, j)d

i+ 2

where Au is inside the range of [A(i+ 1, j, ku), A(i+ 1, j, ku− 1)] and Ad is in

the range of [A(i+1, j+1, kd), A(i+1, j+1, kd−1)]. These sets represent the

set of representative averages at each node. By using linear interplolation we

are now able to approximate the corresponding value Cu with

Cu = wuC(i+ 1, j, ku) + (1− wu)C(i+ 1, j, ku − 1)

where

wu =
A(i+ 1, j, ku)− Au

A(i+ 1, j, ku − 1)− A(i+ 1, j, ku)
,

Cd = wdC(i+ 1, j, kd) + (1− wd)C(i+ 1, j, kd − 1),

wd =
A(i+ 1, j, kd)− Ad

A(i+ 1, j, kd − 1)− A(i+ 1, j, kd)
.

Our option price is then calculated as:

C(i, j, k) = [pCu + (1− p)Cd]e−t∆t

American options then have the following payoff:

C(i, j, k) = max[A(i, j, k)−K; (pCu + (1− p)Cd)e−t∆t].

33

5.3 Example: Arithmetic Asian option

We consider the following example for European and American Asian options:

Table 5.1: Example assumptions

S0 40

σ 25%

r 6%

Time base 252

K 24-56 by 1 increments

Time to maturity 1 year

Exercised per year 36(weekly)

Figure 5.3: Plot of European and American Asian options

34

Table 5.2: American and European Asian option values with the Binomial
tree method

Strike American value European value

24 17.725 16.222
25 16.755 15.280
26 15.785 14.338
27 14.816 13.397
28 13.846 12.457
29 12.877 11.520
30 11.909 10.587
31 10.940 9.664
32 9.972 8.754
33 9.004 7.865
34 8.037 7.003
35 7.070 6.177
36 6.140 5.395
37 5.259 4.665
38 4.448 3.991
39 3.719 3.379
40 3.078 2.830
41 2.521 2.345
42 2.046 1.923
43 1.644 1.560
44 1.309 1.252
45 1.033 0.996
46 0.808 0.783
47 0.626 0.610
48 0.481 0.471
49 0.366 0.360
50 0.277 0.273
51 0.207 0.205
52 0.154 0.152
53 0.113 0.112
54 0.083 0.082
55 0.060 0.060
56 0.043 0.043

35

Chapter 6

Monte Carlo

For the purposes of this paper we will only be considering the application

of Monte Carlo methods in a financial derivative pricing setting. We let the

relative option price be denoted by µ and then written as the integral that

represents the expectation of the payoff of the financial derivative under the

risk neutral probability measure.

The general form of a Monte Carlo integral can be approximated by a discrete

function. We can then consider the numerical integration in the dimension

s. But for simplicity let us assume s = 1 and consider the numerical integral

in the one-dimensional space with the trapezoidal rule over the unit interval

[0,1]. According to Niederreiter, (1992) we obtain the following result [30],∫ 1

0

f(u)du ≈
m∑
n=0

wnf(
n

m
)

where m ≥ 0 and wn is given by w0 = wm = 1
2m

and wn = 1
m

for 1 ≤ n ≤
m− 1.

Now, in a multi-dimensional setting and considering the expectation of the

option price. The option price will be denoted by an integral of µ, which

represents the discounted payoff in the risk neutral probability setting. So

36

then we have that according to [31]

µ(f) =

∫
· · ·
∫ 1

0

f(u1, . . . , un) du1 . . . dun

µ(f) =

∫ [0,1)n

f(u)du

µ(f) = E[f(U)],

Where In = [0, 1)n is a closed n-dimensional unit cube and [0, 1)n =

u = 0 ≤ uk < 1; for k=1,2,,n. The function f , has the domain [0, 1)n

and range IR. Thus, f : [0, 1)n → IR the function f plots a random point

ui, for i = 1, 2, , n, which is in the unit cube Is = [0, 1)n and each of these

u′is has a uniform [0, 1) distribution.

Monte Carlo [36] in general, is not a competitive method for calculating one-

dimensional integrals, but Monte Carlo obtains a O(n−
1
2) convergence rate,

not just over the unit interval. For the estimation over higher dimensions as

outlined above, we also change f and σf . The standard error will still have

the form
σf√
n

for the Monte Carlo estimate based on n draws in the [0, 1]s

domain and the O(n−
1
2) convergence rate for all dimensions s. Thus Monte

Carlo methods are far more competitive in higher dimensions.

In this case, where f represents the pricing function of an option, under the

risk neutral probability measure. It will be sufficient to specify the relation

between the standard normal random variable and the Monte Carlo method

that will be explained in detail.

Now, if we have the function k of n independent standard normal random

variables. Where k now represents the payoff function of a claim, for example

Z1, ..., Zn, then we are able to get f(u) = k[Φ−1(u1), ...,Φ−1(un)], where Φ−1

indicates the inverse function of the standard normal random variable. The

distribution of the standard normal random variable is specified as

Φ(t) =
1√
2π

∫ −∞
t

e(−z2)/2dz

37

Then the Monte Carlo estimate for the expected value E[f(U)] is obtained by

taking N independent Uniform distributed random samples u = 0 ≤ uk < 1;

for k = 1, 2, , n and letting

µ(f) = E[(fU)] ≈ 1

j

j∑
i=1

f(Ui)

Where j represents the number of replications that are done. For the esti-

mation of complex problems the basic Monte Carlo approach may provide

results with large errors, because the estimation error is O(1/n).

Boyle, Broadie and Glasserman (1997) came to the following conclusion

regarding the difficulties of Monte Carlo Simulation. “The following points

must be viewed as deficiencies of the Monte Carlo method for numerical

integration:

(i) There are only probabilistic error bounds;

(ii) The regularity of the integrand is not reflected;

(iii) Generating random samples is difficult.

Practitioners avoid the difficulty of generating random samples by using

Pseudo-random numbers or Quasi random numbers instead of ”truly” ran-

dom samples. This is done because random samples are a statistical concept

that is only defined as part of a whole ensemble of samples.” Thus, it is

difficult to define a truly random sample. Therefore, later on we look at

variance reduction techniques and Quasi sequences.

6.1 Generating random numbers

At the center of almost all Monte Carlo simulations [36] there is the gen-

eration of seemingly random numbers. We treat these sequences as gen-

uinely random sequences in our Monte Carlo estimation. The following

38

section follows from Monte Carlo methods in Financial Engineering by Paul

Glasserman. Due to this assumption of “genuinely random sequences”, it

enables us to use aspects from probability- and statistical- theory. Pseudo-

random sequences are sufficient in generating random sequences to make

sense of analyses that are performed. Nonetheless, we always know that these

algorithms are deterministic by nature, which delivers seemingly random

sequences.

Before we continue with the discussion of random sequences, we discuss what

properties a random sequence ideally should comprise. For some random

variables U1, U2, ... should have the following properties,

i.) Uk,∀k ∈ Z in Uniformly distributes between 0 and 1,

ii.) all Uk,∀k ∈ Z are mutually independent

For property (i), values between 0 and a 1
4

would be equally beneficial and

can easily be normalized to be distributed between 0 and 1. Uniform random

variables over the unit interval [0, 1] can be easily transformed into samples

from any other distribution. Property (ii) is more essential to random number

generation. It implies that generated pairs should be uncorrelated from each

other and that any specific Uk should not be predictable from the sequence

U1, U2, ..., Uk−1

Hence, a random generator usually generates a finite number of random num-

bers u1, u2, ..., uk over the unit interval. Input parameters for the generating

algorithms are usually specified by the user.

So, we obtain a set U1, U2, ..., Uk of independent uniforms. An effective

random number generator then produces sequences that are consistent with

properties (i) and (ii). If we then generate a large number of values or k, then

the fraction of the values that fall into a sub-interval of the unit interval,

should be approximated by the length of the sub-interval. This is a good

indication of uniformity of the sequence that is generated. To determine

independence between the sequence values, there should be no discernible

39

pattern between the values u1, u2, ..., uk.

The basic form of a random number generator is demonstrated by

ai+1 = f(ai);ui+1 = h(ai+1) (eq:6.1.1)

for some deterministic functions f and h. ai represents the sequence on

numbers produced by the deterministic function, f .

6.2 Random number generation

6.2.1 Linear Congruential Generators (LCG)

The Linear congruential generator is a recurrence of the following form:

ai+1 = k ai mod(m) (eq:6.2.1)

ui+1 =
ai+1

m
(eq:6.2.2)

where the multiplier is denoted by k and the modulus m. These values are

integer constants for the values that are generated, for some given seed value

a0. The seed integer should be chosen by the user between 1 and m− 1. So,

the modulus operator will return the remainder of kai
m

. For example, 9 mod

4 is 1; 8 mod 3 is 2; 3 mod 5 is 3, etc. [36] “Because the result of the mod m

operation is always an integer between 0 and m− 1,so the output values ui

is produced and will always be between 0 and m−1
m

in particular, they lie in

the unit interval.”

When constructing a random number generator, there are considerations

that need to be taken account, such as computational speed, portability,

randomness, duplicability, and period length.

40

∗ Computational Speed: The reason that a random number generator

needs to be efficient is that the generator is called thousands or even

millions of times, when generating a sequence of numbers. Hence, the

Linear Congruential generator algorithm is one of the fastest generators

due to its simplicity, compared to other random number generators that

we will discuss later in this paper. These “less efficient” random number

generators use more computational time per value that is generated for

the sequence and makes the generator inherently slower than a Linear

Congruential generator. There are, however, techniques to save com-

putational time by carefully selecting your choice of input or starting

parameters. In our case, as seen in (eq:6.1.1) and (eq:6.1.2), we can

choose m to be of the power 2, which contributes to the efficiency of

the number generation by simplifying the mod function to a shift in

computation. If we consider a random number generator with poor

distribution properties, the infinitesimal speedups gained by carefully

choosing the parameters do not significantly contribute towards the

speed of the generator.

∗ Portability: An algorithm for random number generators should be able

to produce the same sequence of values on different computing plat-

forms. In the design of certain algorithms, the objective of speed

and period length sometimes are driven by machine specific properties.

Machine specific properties such as thermal noise, photoelectric effect,

or some other quantum phenomenon. Usually, these phenomena are

unpredictable in theory and recorded by a transducer and converted to

an electric signal. Hence, it is unlikely to replicate such a sequence on

another machine.

∗ Randomness: The most desired property to obtain from a random num-

ber generator is usually the hardest to define and ascertain. There are

two main factors present that drive randomness: theoretical properties

41

and statistical randomness tests. Lots of research has already been con-

ducted of the generation of points of most of the widely known random

point generators. These research articles help a lot to narrow down

parameter input values for these generators to be certain of efficacy

in parameter choices. When these random number generators have

been identified with good theoretical properties, then the generated

sequence can come under statistical scrutiny. The statistical scrutiny

is to be certain that the generated sequence does not deviate from

randomness. There is, however, an upside to the field, namely that

it has been thoroughly researched and one or more of these random

number algorithms can be applied to most applications in various fields.

∗ Duplicability: When one considers the generation of randomness from a

physical process that is performed, such as the computer’s clock speed

or some other related process. One major drawback from incorporating

such a process is the inability to reproduce the randomness that was

created. In some circumstances it would be beneficial to reproduce the

exact same type of randomness, to be able to access the impact of the

randomness on calculations that depend on this “created randomness”.

It is also easier then to compare simulations with different input argu-

ments and access the impact thereof. This type of Duplicability is seen

when working with the Linear Congruential (LCG) generator and is

reproduced easily using the same seed value, which is denoted by x0.

∗ Period length: As seen in the following example, any random number

generator that has the same form as seen in (eq. 6.2.1) will eventually

reach a specific point where the random number generator starts to

repeat itself. The best type of random number generator is one that

produces many distinct values before repeating itself. For example the

Linear Congruential generator will create n − 1 distinct values, with

42

modulus (n) before repeating itself. If a Linear Congruential generator

creates a full period, meaning n − 1 distinct values, then the spacing

between the generated values that we obtain ui, will have a width of
1
n
. We deduce logically as n increases the spacing of these randomly

generated values will be closer to each other. With a larger n the better

approximation will be a uniform distribution.

Example 6.2.1. Let us consider the following LCG;

ai+1 = k ai mod(m)

ui+1 =
ai+1

m

where:

k = 8

m = 12

a0 = 1

When we apply this basic algorithm recursively, we get to the following

sequence;

8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9

We observe that once a single value repeats itself in the sequence, the whole

sequence will repeat itself. Hence, in our case we obtained a sequence with

10 distinct values and then the sequence starts to repeat itself.

43

Figure 6.1: Plot of the Linear Congruential generator example

Because of the effectiveness and simplicity of the LCG, they are the most

widely used in practice. The mixed Linear Congruential generator was first

proposed by Lehmer [1951] [29] and takes the form of,

ai+1 = (kai + c)mod(m)

ui+1 =
ai+1

m

This equation is called the mixed Linear Congruential generator and the

example in the previous case is called the pure Linear Congruential generator.

Just as we discussed in the previous case, k and m should be integers. Now

we added an extra parameter c, which should also be an integer.

This type of algorithm has undergone some extensive research and a lot is

known about the set of values that is generated, [u1, u2, ..., un]. There are

44

some set out conditions that specify the choice of parameters so that the

generator has a full period. A full period will mean the generation of (m−1)

distinct set of values, generated from the seed value x0. These parameter

choices are set out in Knuth [1998] and are as follows:

1. c and m should be chosen as prime numbers

2. Every prime number that divides m should divide a− 1 as well.

3. a− 1 is divisible by 4 if m is.

Due to the choice of parameters as specified above, we now have that if m

is a power of 2, the generator will have a period of m − 1 if c is chosen to

be odd, and a = 4n + 1 for some integer n. As a consequence, if we have

chosen that c = 0 and m represents a prime number, then a period of m− 1

is achieved, with any particular seed value x0 6= 0. This only holds if the

following two conditions are met;

1. am−1 − 1 is a multiple of m

2. aj − 1 is not a multiple of m for j=1,2,3,..,m-1.

A specific number a that satisfies both abovementioned properties is called

a primitive root of m. We then observe that the sequence becomes

x0, ax0, a
2x0, ...mod(m)

for a chosen c = 0.

Example 6.2.2. Let us consider the following LCG;

ai+1 = (k ai + c)mod(m)

45

ui+1 =
ai+1

m

where:

k = 11

m = 71

a0 = 3

c = 17

When we apply this basic algorithm recursively, we get to the following

sequence;

[3, 50, 70, 6, 12, 7, 23, 57, 5, 1, 28, 41, 42, 53, 32, 14, 29, 52, 21, 35, 47, 37, 69, 66, 33,

25, 8, 34, 36, 58, 16, 51, 10, 56, 65, 22, 46, 26, 19, 13, 18, 2, 39, 20, 24, 68, 55, 54, 43,

64, 11, 67, 44, 4, 61, 49, 59, 27, 30, 63, 0, 17, 62, 60, 38, 9, 45, 15, 40, 31, 3∗, 50∗, 70∗]

We observe that once a single value repeats itself in the sequence, the whole

sequence will repeat itself. Hence, in our case we obtained a sequence with

70 distinct values and then the sequence starts to repeat itself. Where the

sequence starts to repeat itself is marked with *. This shows, with the careful

consideration of the choosing of parameters, it will significantly increase

the efficiency of the Linear Congruential generator to produce more distinct

values.

46

Figure 6.2: Plot of the mixed Linear Congruential generator example

Hence, to find the maximum period length that can be possibly produced

by such a Linear congruential generator is thoroughly discussed in Lewis,

Goodman, and Miller[1969], L’Ecuyer[1988], Fishman and Moore[1986], and

Park and Miller[1988].

In all the abovementioned research, the modulus m is a large prime that does

not exceed the value of 231 − 1. This represents the largest integer that can

be represented by a 32-bit word. This number also happens to be a prime

number and is known as the Mersenne prime.

Table 1 represents previously done research on Linear Congruential gener-

ators. This research indicated that using a Linear Congruential generator

can produce over 2 billion distinct values, when parameter selection is very

carefully considered. For practical application these “extremely” large gen-

erators are not very useful. Since they take a lot of computational time to

47

Table 6.1: List of previous LCG research
Modulus m Multiplier k Reference
2147483647 (231 − 1) 16807 Lewis, Goodman, and Miller[1969]
2147483647 (231 − 1) 39373 L’Ecuyer[1988]
2147483647 (231 − 1) 742938285 Fishman and Moore[1986]
2147483647 (231 − 1) 1226874159 Fishman and Moore[1986]
2147483399 40692 L’Ecuyer[1988]
2147483563 40014 L’Ecuyer[1988]

create the sequence and requires a significant amount of memory to process

the algorithm.

6.3 General sampling methods

We will briefly discuss the principal of sampling methods. We already dis-

cussed the generation of random sequences and we made the assumption that

it is possible to generate the ideal sequence of random numbers to use for

our application procedures. From [36], we have that a sequence is generated

U1, U2, ..., Un, is available, and conforms to the following distribution:

P (Ui ≤ u) =

0 ; u < 0

u ; 0 ≤ u ≤ 1

1 ; u > 1

where each is uniformly distributed between [0, 1].

We now use our uniformly generated sequence and we need to transform

them into sample paths of stochastic processes, with specific distributional

properties. Researched has been conducted extensively on both general pur-

pose methods and specialized algorithms for specific cases. In the subsections

that follows, we discuss the two most widely known techniques, namely, the

Inverse transform method and Acceptance-rejection method.

48

6.3.1 Inverse transform method

If we want to sample from a cumulative distribution function F, then we want

to generate a random variable X, that conforms to the following property

P (X ≤ x) = F (x) ∀x. So, the Inverse transform method can be applied in

the following way:

X = F−1(U) whereU uniform[0, 1] (eq:6.3.1)

where the F−1 represents the inverse function of F . For the Inverse transform

method to work efficiently, it is important that F is well defined so that F is

strictly increasing, otherwise we need to implement a rule to break ties. For

example [36],

F−1(u) = inf [x : F (x) ≥ u]

if we have that for many different x values for which F (x) = u, the specified

rule above will choose the smallest value.

If the function F is defined in such a way that the function has flat sections

or solely consists of a flat section, the these flat sections of F then correspond

to intervals of zero probability for the random variable that was generated.

Otherwise if F is well defined as a strictly increasing function, then anywhere

the density will be nonzero anywhere.

To validate our statement as seen in eq:7.3.1, we verify that the Inverse

transform method generates samples from F , we then need to check the

distribution of the X that the method produces:

FU(x) = P (X ≤ x) = P (F−1(U) ≤ x)

= P (U ≤ F (x))

= F (x)

49

since P (U ≤ F (x)) is defined as the cumulative function F (x) and F−1 is

defined to hold the following properties {F−1(u) ≤ x} and {u ≤ F (x)},
which holds ideally when F is a continuous function and holds for all u and

x.

A more general procedure for generating a random number from a distribu-

tion FX applying the Inverse transform method is as follows:

* Find the formula for the quantile function F−1
X

* Generate a uniform random number u.

* Return the random number x = F−1
X (u)

We now consider two examples to illustrate the Inverse transform method.

We consider some modifications to the Inverse transform method to increase

the efficiency with which it is implemented.

Example 6.3.1. Let us consider a Exponential distribution with mean θ

and has a cumulative distribution function F as follows:

F (x) = 1− e−
x
θ , for x ≥ 0.

This distribution represents time between jumps of a Poisson process with

rate 1
θ
. Inverting this exponential cumulative distribution function yields:

1− U = e
−x
θ

ln(1− U) =
−x
θ

⇒ X = −θ ln(1− U)

⇒ = −θ ln(U)

When we implement the inverse transform method it is unlikely to be the

fastest method for sampling from a certain distribution. Nonetheless, the

50

inverse transform method has some very attractive qualities. Firstly, the

inverse transform method plots U one-to-one to the output X, if we have

that the function F is strictly increasing. This can be utilized in variance re-

duction techniques (antithetic variates, control variates, etc.) and sensitivity

analysis. Hence, the inverse transform method requires only one uniformly

distributed random variable to generate a sample.

Glasserman [36] states “This is particularly important in using Quasi-Monte

Carlo methods where the dimension of a problem is often equal to the number

of uniforms needed to generate one path. Methods that require multiple

uniforms per variable generated result in higher-dimensional representations

for which Quasi-Monte Carlo may be much less effective.”

6.3.2 Acceptance-Rejection method

The acceptance-rejection method was first introduced by Von Neumann[1951]

[34] and for the explanation of the Acceptance rejection method, we base the

following on the lecture notes of Karl Sigman[2007] [32] and Paul Glasserman

[36].

As we have already discussed, we are able to find an explicit expression for

the inverse cumulative distribution function, denoted by F−1(x) and we aim

to generate F (y) = P (Y ≤ y), but this is not always possible. There

may exist more efficient sampling methods other than the Inverse transform

method.

Firstly, we assume that the F that we are trying to generate has a probability

density function f(x) and the function is continuous. We then use a more con-

venient distribution, say G, which is closely related to our target distribution

F . We assume that both F and G have respective probability distribution

functions f and g. We then reject a subset of generated candidates that do

not conform to our target distribution. This sampling technique does not

only apply to univariate cases but also extends to multivariate cases.

We assume that the ratio f(x)
g(x)

is bounded by a constant c > 0, supx{f(x)
g(x)
} ≤ c.

51

So then, suppose that we have a density function f defined on some set X

and let g also be a density on X, for which we know how to generate samples

from. Then the following property holds,

f(x) ≤ cg(x), ∀ x ∈ X

for some bounded constant c. This ratio is bounded between (0, 1],

0 <
f(x)

cg(x)
≤ 1.

Now we will discuss the general algorithm for the Acceptance-Rejection

method in the case of continuous random variables.

1. Generate a random number y from the distribution g.

2. Generate a random number u from Uniform(0, 1).

3. If u ≤ f(y)
cg(y)

, return y. Otherwise, go back to step 1.

Theorem 4. Proving the Acceptance-Rejection method. We have to show

that the conditional distribution of Y given that U ≤ f(Y)
cg(Y)

, is indeed the

targeted distribution F. Sigman [32]. So, P (Y ≤ y|U ≤ f(Y)
cg(Y)

) = F (y)

Proof, Firstly, P (U ≤ f(Y)
cg(Y)
|Y ≤ y) = f(Y)

cg(Y)
and because Y has the density

g(y), we have

P (U ≤ f(Y)

cg(Y)
) =

∫ ∞
−∞

f(y)

cg(y)
g(y) dy

=
1

c

∫ ∞
−∞

f(y)dy

=
1

c

= p

52

Then we use the following computations:

P (U ≤ f(Y)

cg(Y)
|Y ≤ y)

G(y)

p
=
P (U ≤ f(Y)

cg(Y)
, Y ≤ y)

G(y)

G(y)

p

=

∫ y

−∞

P (U ≤ f(y)
cg(y)

)|Y = z ≤ y

G(y)
g(z)dz

G(y)

p

=
1

G(y)

∫ y

−∞

f(z)

cg(z)
g(z)dz

G(y)

p

=
1

cG(y)

∫ y

−∞
f(z) dz

G(y)

p

=
F (y)

cG(y)

G(y)
1
c

= F (y)

We can implement the following algorithm to generate for the normal distri-

bution, X ∼ N(µ, σ2) and express the distribution as X = σZ+µ. Z denotes

the standard normal distribution and our g(x) is chosen as the exponential

distribution with rate 1, i.e g(x) = e−x, x ≥ 0

1. We generate Y with the exponential distribution at rate 1. So, generate

U and set Y = −ln(U)

2. Generate U

3. If U ≤ e
−(Y−1)2

2 , set |Z| = Y otherwise return to 1.

4. Generate U and if U ≤ 0.5 then set Z = |Z| and set Z = −|Z| if U > 0.5.

6.3.3 Box-Muller method

The Box-Muller method was first introduced by George Edward Pelham Box

and Mervin Edgar Muller in 1958. The Box-Muller method is a pseudo-

53

random number sampling method for generating pairs of independent, stan-

dard, normally distributed random numbers.

The Box-Muller method is a brilliant trick by producing two independent

standard normals from two independent uniforms. It is based on a very

familiar trick using polar coordinates as shown in J. Goodman [33]. Firstly

we investigate the following integral,

I =

∫ ∞
−∞

e
−x2
2 dx

This integral cannot be calculated by “integration”. The indefinite integral

does not have an algebraic expression in terms of elementary functions such

as, exponentials, logarithms, trig functions, etc. However, we can manipulate

the following integral,

I2 =

∫ ∞
−∞

e
−x2
2 dx

∫ ∞
−∞

e
−y2
2 dy

=

∫∫ ∞
−∞

e
−(x2+y2)

2 dxdy

Now, the last integral can be calculated in terms of polar coordinates. Where

x = r cos(θ), y = r sin(θ) and the area element will become dxdy = rdrdθ,

I2 =

∫∫ 2π

θ=0

e
−r2
2 rdrdθ

= 2π

∫ 2π

θ=0

e
−r2
2 rdr

= 2π

∫ ∞
s=0

e−sds (substituting s =
r2

2
)

= 2π

This integral was calculated by making the substitution of s = r2

2
, which

54

yields ds = rdr.

The Box-Muller algorithm is a probabilistic interpretation of the above-

mentioned manipulation. So, if we look at the problem where (X, Y) is

represented by a pair of standard normals, then the probability density is

represented by the following product,

f(x, y) =
1√
2π
e
−x2
2 .

1√
2π
e
−y2
2

=
1

2π
e
−(x2+y2)

2

Since, the density is symmetric and we now consider the polar coordinates

random variables (R,Θ) defined by 0 ≤ Θ < 2π and X = R cos(Θ) and

Y = R sin(Θ). Hence, we have that Θ is uniformly distributed over the

interval [0, 2π] and is sampled using,

Θ = 2πU1

Unlike the previous distribution, the distribution for R is expressed as follows,

F (R) = P (R ≤ r)

=

∫ r

r′=0

∫ 2π

Θ=0

1

2π
e
−r′2

2 rdrdθ

=

∫ r

r′=0

e
−r′2

2 rdr

Now, if we apply the same substitution as mentioned above s = r′2

2
, we obtain

G(r) =

∫ r2

2

s=0

esds

= 1− e
−r2
2

55

Hence, we can sample R by solving the distribution function.

G(R) = 1− e
−R2

2

= 1− U2 (Recall 1− U2 is standard uniform if U2 is.)

We can get to a solution,

X =
√
−2 lnU2 cos(2πU1)

Y =
√
−2 lnU2 sin(2πU1)

This X and Y will produce independent standard normals using independent

uniform variables U1 and U2.

6.4 Variance reduction

Monte Carlo integration has an error variance of σ2

n
. This shows that we are

able to obtain better sampling by increasing the number of simulations n.

There is, however, a trade-off. The more simulations we generate, the more

computational time is used to generate these samples. So, the trade-off is

between accuracy and computational time. Hence, we rather use methods to

reduce our σ instead. These methods that we use to reduce our σ is called

Variance reduction techniques.

These methods will increase the efficiency of Monte Carlo [36] simulation by

reducing the variance of the related simulation estimates. These methods call

on two broad strategies for reducing the variance. Firstly, taking advantage

of the tractable features of a specific model to correct simulation outputs,

and reducing the variability of the simulation inputs. We will discuss Control

variates, Antithetic variates, and Importance sampling.

56

6.4.1 Antithetic variates

Antithetic variates, according to Glasserman [36] is a method that uses

negative dependence between pairs of replications to reduce variance. The

Antithetic variance method takes on various forms and the most broadly

use is if U is uniformly distributed over the unit interval [0, 1]. We have

the property that if this is true that U is uniformly distributed over [0, 1]

then 1− U will also be uniformly distributed. Consequently, we are able to

generate a sequence of random uniformly distributed variables U1, U2, ..., Un

and we are able to generate a second path 1 − U1, 1 − U2, ..., 1 − Un using

the same law of the simulated process. Hence, for every simulated value

Ui and 1 − Ui, which forms an Antithetic pair of variables, is accompanied

each by a small and large value. For instance, if U1 is simulated to be a

“large” value (> 0.5) the accompanied antithetic will be a relatively smaller

value (< 0.5) since the variables are uniformly distributed and bounded over

the unit interval. This suggests that if an unusually large or small number

is generated it will be balanced by its antithetic pair, which will in return

reduce the variance of the simulated process.

We are able to use the inverse transform method to extend this method

to other distributions. If, under the assumption that F−1 is monotone1, we

have that F−1(U) and F−1(1 − U) both have the distribution of F but are

antithetic to each other. In the case where we have a symmetric distribution,

that is symmetric around the origin, such as the normal distribution, then

we have that F−1(u) and F−1(1− u) will have the same values but will have

opposite signs.

In a more practical application sense, where we need to simulate independent

standard normal random variables N(0, 1), we are able to pair the sequences

of the simulated antithetic variates. Hence, we pair Z1, Z2, Z3, ... which are

1A function F is monotone on an interval [a,b] if F is either increasing on the whole of
[a,b] or else decreasing on [a,b].

57

independent and identically distributed N(0, 1) variables with

−Z1,−Z2,−Z3, ... which are also independent and identically distributed

N(0, 1) variables.

If we use these pairs of standard normally distributed random variables to

simulate the increments of a Brownian path and we compare Zi and −Zi, we

observe that −Zi is a reflection of Zi around the origin. We expect that these

pairs of Antithetic variables, which incorporates the use of the reflection of

Zi will lower the variance of the estimated process.

If we wish to analyze the approach more in depth, assume that we want

to estimate E[X] with the use of antithetic sampling sequence of pairs of

observations (X1, X̃1), (X2, X̃2), (X3, X̃3), ..., (Xk, X̃k). There are two specific

properties of the simulated Antithetic pair sequence:

1. The simulated pairs (X1, X̃1), (X2, X̃2), (X3, X̃3), ..., (Xk, X̃k) are indepen-

dent and identically distributed,

2. ∀ k, Xk and X̃k will have the same distribution but the pair will not be

independent.

For illustration purposes we use X to indicate a random variable with the

distribution of the Antithetic pair Xk and X̃k.

The estimator for these antithetic sequence pair will be the average for all of

the 2n observations that were simulated and can be represented as,

X̃est =
1

2n
(
k∑
i=1

Xi +
k∑
i=1

X̃i)

=
1

n

k∑
i=1

(
Xi + X̃i

2
)

Hence, we have that:

58

(
Xi + X̃i

2
) ; ∀ i = 1, 2, 3, ..., k

represents the average between the antithetic pairs and we can clearly deduce

that Xest is the sample mean of n independent observations

(
X1, X̃1

2
), (

X2, X̃2

2
), (

X3, X̃3

2
), ..., (

Xk, X̃k

2
) (eq:6.4.1)

we have that the central limit theorem also applies and yields,

X̃est − E[X]
σest√
k

∼ N(0, 1)

for k sufficiently large and σest is presented as follows,

σest = V ar[
Xi + X̃i

2
]

We now replace σest with sest, which represents the sample standard deviation

for the k generated values as seen in eq:7.4.1. Hence, the limit of the

distribution will continue to hold with this replacement. This now provides

a asymptotic justification for a (1−α) confidence interval and is represented

as,

X̃est ± zα
2

sest√
k

A comparison needs to be made between the standard Monte Carlo estimator

and the antithetic variates, and then the use of antithetic variates would be

beneficial in terms of computational cost and accuracy. To be able to make a

fair comparison between the two, we observe that the antithetic method will

produce twice the number of variables and, hence, we deduce that twice the

computational effort will be required to generate these pairs [36]. Thus, we

will ignore any potential computational savings from, for example, flipping

the signs from the previously generated Z1, Z2, Z3, ... rather than generating

59

new normal variables. This is only appropriate when the computational cost

of generating these inputs is a small fraction of the total cost of simulating

Yi.

So, if we work under this assumption, the effort that is necessary to calculate

X̃est is approximately equal computing the sample mean of 2n independent

replications. We can then make a fair comparison of the variances of the two

relevant estimators. Thus antithetics reduce the variance if,

V ar(X̃est) < V ar(
1

2n

2n∑
i=1

Xi)

so,

V ar(
Xi + X̃i

2
) < V ar(Xi)

or,

V ar(Xi + X̃i) < 2V ar(Xi)

We then expand the variance for antithetics with some statistical properties,

V ar(Xi + X̃i) = V ar(Xi) + 2Cov(Xi, X̃i) + V ar(X̃i)

= 2V ar(Xi) + 2Cov(Xi, X̃i)

since Xi and X̃i will have the same variance, because they originate from

the same distribution. Hence, the condition for Antithetic variates should

comply with in order to reduce the variance of the estimator, the following

condition should hold,

Cov(Xi, X̃i) < 0

This condition can easily be demonstrated [35]. We define φ so that Ci =

φ(Zi). Ci is the unbiased estimator of an option and φ is the composition

60

of the mappings from Zi to the stock price and from the stock price to the

discounted payoff. The stock price process is given as,

S
(i)
t = S0e

((r−σ
2

2
)T−σ

√
TZi) ;∀i = 1, 2, ..., k

As this is the composition of two increasing functions. We have that φ is

monotone, so by the standard inequality of Barlow and Proschan, 1975.

E[φ(Zi)φ(−Zi)] ≤ E[φ(Zi)]E[φ(−Zi)]

E[φ(Zi)φ(−Zi)]− E[φ(Zi)]E[φ(−Zi)] ≤ 0

⇒ Cov(Ci, C̃i) ≤ 0

Hence, we may conclude that antithetics will reduce the variance and will

be beneficial to be implemented into Monte Carlo. The method of antithetic

variates increases efficiency when it comes to the pricing of European op-

tions and other options that depend on monotonically inputs (such as Asian

options). Other options that depend less on monotonically inputs, such as

Barrier options ,suggests that the use of the method of antithetic variates

may be less effective.

When we are interested in calculating the confidence intervals, implement-

ing the method of antithetic variates, it is of utmost importance that the

standard error should be calculated using the sample standard deviation of

only the n averaged pairs (Ci + C̃i)/2 and not the 2n individual observations

C1, C̃1, C2,

C̃2, ..., Ck, C̃k.

The pairs, for example, C1, C̃1 are not independent of each other but, they

are dependent between pairs of simulated results.

61

Figure 6.3: Plot of 1000 step Geometric Brownian motion with the Antithetic

variates.

Figure 6.3 represents a 1000 step geometric Brownian motion, which is de-

picted in blue. We then have its antithetic counterpart which is depicted in

orange and the mean is represented by a dotted line. The average at any

certain point is represents as follows (Ci + C̃i)/2.

6.4.2 Control variates

Control variates is one of the most applicable and effective variance reduction

methods that are applied to the Monte Carlo simulation, to improve the

process efficiency [36]. The Control variates method exploits information

about known error estimates to reduce the error in an estimate of an unknown

quantity.

62

To be able to describe the method, we let Y1, Y2, Y3, ..., Yn be outputs from

n replications of a simulation. In our case we want Yi to represent the

discounted payoff of a derivative on the i’th simulated path. We assume

that Yi is independently and identically distributed and our objective is to

find an estimate for E[Yi]. The same as before, our estimator for the sample

mean is

Ȳ =
(Y1 + Y2 + Y3 + ...+ Yn)

n
.

Hence, this represents an unbiased estimator that converges to probability 1

as n→∞.

If we suppose that we calculate another output with each replication, say

Xi, in conjunction with the Yi output variable. We also assume that the

generated pairs (Xi, Yi), ∀ i = 1, 2, 3, ..., k, are independent and identically

distributed and the fact that E[X] is known from the simulation of Xi. In

statistical terms we denote (X, Y) as the pair of random variables with the

same distribution as each individual pair (Xi, Yi). Then for any constant b

we are able to apply the following procedure in the effort to decrease variance

of the simulated process,

Yi(b) = Yi − b(Xi − E[X])

The expression above is for the i’th replication and then we are able to

approximate the sample mean with the following,

Ȳ (b) =
1

n

n∑
i=1

(Yi − b(Xi − E[X]))

= Ȳ − b(X̄ − E[X])

This expression is called a Control variate estimator. The error that is

obtained with (Xi−E[X]) serves as a control in the approximation of E[Y].

If we analyze this Control variate expression, we see that both are an unbiased

63

and consistent estimator for the approximation of E[Y]. The expression is

unbiased because

E[Ȳ (b)] = E[
1

n

n∑
i=1

(Yi − b(Xi − E[X]))]

= E[Ȳ − b(X̄ − E[X])]

= E[Ȳ]− b(E[X̄]− E[X])

= E[Ȳ]

= E[Y]

And, to prove that the expression is consistent, we have that,

lim
n→∞

1

n

n∑
i=1

Ȳi(b) = lim
n→∞

1

n

n∑
i=1

(Yi − b(Xi − E[X]))

= E[Y − b(X − E[X])]

= E[Y]− b(E[X]− E[X])

= E[Y]

It is also possible to find a expression for the variance of the Control variate

formulation,

V ar(Yi(b)) = V ar(Yi − b(Xi − E[X]))

= σ2
Y − 2bσXσY ρXY + b2σ2

X (eq:6.4.2)

≡ σ2(b)

where σ2
Y and σY respectively represent the variance and standard deviation

of Y (where Y represents some discounted payoff of a derivative). ρXY repre-

sents the correlation between the approximation we aim to obtain,Y , and the

Control variate X. The Control variate estimator Ȳ (b) has variance of σ2(b)
n

and the sample mean has a variance
σ2
Y

n
. Thus we deduce that the control

64

variate estimator has a smaller variance then the standard estimator if,

b2σX < 2bσY ρxy.

Hence, the choice of b is very important. We choose b in such a way that

the optimal coefficient b will minimize the variance, as seen in eq:6.4.2. This

optimal choice is given by,

b =
σY
σX

ρXY

=
σY
σX

Cov(X, Y)

σXσY

=
Cov(X, Y)

V ar(X)

As shown in the Glasserman [36] textbook, we are able to substitute this

choice of b back into eq:6.4.2 and simplify. We are then able to obtain

the ratio of the variance of the optimally controlled variable to that of the

variance of the uncontrolled variable. This ratio simplifies to,

V ar(Ȳ − b(X̄ − E[X]))

V ar(Ȳ)
= 1− ρ2

XY (eq:6.4.3)

From Glasserman [36] there are a few observations that can be made about

the above mentioned ratio,

1. With the specification of b as the optimal coefficient, the effectiveness

of this choice is represented in the correlation between the estimation

of interest Y and the control generated estimate X. This is measured

from eq:7.4.3. as the variance reduction ratio. The associated sign that

is calculated with any optimal coefficient is irrelevant since the effect

is absorbed by the optimal coefficient b.

2. If we work under the assumption that each replication requires the same

(more or less) computational effort, the eq:6.4.3. measures the com-

65

putational speed up when making use of a control variate. Hence, the

number of replications that is required to simulate Yi abd achieve the

same variance as n replications of the control variate is given by n
(1−ρ2XY)

.

3. If we the consider the variance reduction factor of 1
(1−ρ2XY)

. We notice

that this ratio increases very sharply as |ρXY | approaches 1 and on the

other hand the ratio decreases very sharply as |ρXY | moves away from

1. Hence, the variance reduction factor suggest that strong correlation

should exist between the estimate of interest Y and the control variate

X, for the Control variate method to yield substantial benefits.

One further remark that one should keep in mind, that the optimal coefficient

will not always be known in practice. If for example, E[Y] is unknown in

practice it is very unlikely that either σY or ρXY will be known quantities.

However, it is most likely that one will reap the most benefit of using the

b as it is specified above. Now we suggest that we replace our population

parameters with their sample counterparts. Hence, we obtain the following

expression with sample parameters,

b̂ =

∑n
i=1(Xi − X̄)(Yi − Ȳ)∑n

i=1(Xi − X̄)2

The Control variate method can also be extended to the use of multiple

controls. The use of multiple controls can be justified when the simulation

involves n underlying assets or we want to use multiple options as controls

with multiple strikes and maturities. This is, however, beyond the scope of

this paper. Our aim is to improve the Longstaff and Schwartz approach with

single control variates.

6.4.3 Importance Sampling

Importance sampling is a variance reduction technique in the sense that it

tries to minimize variance by changing the probability measure from which

66

paths are generated [36]. Importance sampling is a standard variance reduc-

tion technique and is well known in financial mathematics. For example, if

we are able to switch between the objective probability measure to the risk

neutral probability measure to enable us to find a better interpreted and

calculated version of the expected value we aim to find. Hence, with the

implementation of important sampling we aim to allocate more weight to

more important outcomes and thus increasing the efficiency.

To better illustrate this technique, let us consider the following problem;

α = E[g(Y)]

=

∫
g(y)f(y)dy

where we define our X as a random element of Rd with probability density

f [36]. We define g to be a function from Rd → R. The ordinary Monte

Carlo estimator is still defined as,

α̂ = α̂(n)

=
1

n

n∑
i=1

g(Yi)

where the sequence Y1, Y2, ..., Yn represent independent draws from f . Now,

we let h be another probability density that is defined on Rd and has to

satisfy the following inequality,

f(y) > 0⇒ h(y) > 0 ;∀ y ∈ Rd

Now, we are able to rewrite α in the following way;

α =

∫
f(y)

h(y)
g(y)h(y)dy

we can then interpret the integral as the expectation of the density with

67

respect to h and we therefore find the following expression,

α = Ẽ[g(Y)
f(Y)

h(Y)
] (eq:6.4.4)

where Ẽ indicates the expectation is taken with Y distributed according to

h. If the sequence Y1, Y2, Y3, ..., Yn indicates independent draws from g, the

importance sampling estimator is represented by the following expression,

α̂g = α̂g(n)

=
1

n

n∑
i=1

g(Yi)
f(Yi)

h(Yi)
(eq:6.4.5)

The value that is computed by f(Yi)
h(Yi)

is represented as a weight and is the

likelihood ratio at any Yi.

From eq:6.4.4. we are able to see that E[α̃g] = α, which proves that the

importance sampling estimator is unbiased. Thus α̃g is an unbiased estimator

for α. If we want to compare the variance obtained with importance sampling

and compare it to the normal variance obtained, then it would be sufficient

to only consider the second moments only. The expression for considering

the second moment of importance sampling is as follows,

Ẽ[(g(Y)
f(Y)

h(Y)
)2] = E[(g(Y)2f(Y)

h(Y)
)]

The second moment without importance sampling is E[(g(Y))2]. Hence,

the expectation with importance sampling can be either larger or smaller

than the expectation without importance sampling. The choice of h is very

important [36]. A certain choice of h may have a significant influence on the

expectation with importance sampling. A choice of an effective h may lead

to very effective importance sampling. If we assume that g is non-negative,

the product of g(y)f(y) will also be non-negative and it is possible to be

68

normalized to the following probability density function.

h(y) ∝ g(y)f(y) (eq:6.4.6)

By rearranging eq:6.4.6 we obtain that (g(Y)f(Y)
h(Y)

) equals a constant propor-

tionality regardless the value of Yi.

An important quote follows directly from Glasserman [36] states “In design-

ing an effective importance sampling strategy, we should try to sample in

proportion to the product of g and f. In option pricing applications, g is

typically a discounted payoff and f is the risk-neutral density of a discrete

path of underlying assets. In this case, the importance of a path is measured

by the product of its discounted payoff and its probability density.”

Likelihood Ratios

If we consider option pricing applications with respect to importance sam-

pling, we may assume that Y represents discrete paths for the underlying

assets. Let us then consider the discrete path for the stock price denoted as

Stj , for j = 0, 1, 2, 3, ..., n and we make the assumption that the process is

Markov. Then suppose the conditional distribution of Stj given Stj − 1 = y,

has a density of f(y, .). As importance sampling dictates, we now consider a

change in measure. Transition densities fi are replaced with new transition

densities hj. Hence, we deduce the likelihood ratio for this change in measure

is as follows,

n∏
j=1

fj(Stj−1
, Stj)

hj(Stj−1
, Stj)

If we make our expectation more exact, so that if E is the expectation under

the original measure and Ẽ denotes the expectation under the new measure.

Then we have the following expression,

69

E[g(S(t1), S(t2), ..., S(tn))] = Ẽ[g(S(t1), S(t2), ..., S(tn))
n∏
j=1

fj(Stj−1
, Stj)

hj(Stj−1
, Stj)

]

(eq:6.4.7)

All functions of g, under the original measure, the expectations exists and is

finite. In our stock price we assume that St0 is a constant and is represented

by density f0 under the original measure and is represented by density h0

under the new measure. This has the implication that we obtain an extra

additional initial factor of
f0(St0)

h0(St0)
in the likelihood product.

We usually simulate a stock price path through recursion that is driven by

independent and identically distributed random vectors Y1, Y1, ..., Yn. We are

now able to denote in the form of,

Stj+1
= H(Stj , Yj+1)

Yi is very likely to be normally distributed. But we need to assume that

for all Yi have the same common density f . If we then apply the change in

measure from the original measure to the new measure, the new common

density changes to g. If a change of measure takes place, we assume that

the new measure will preserve the independence of Yi. The likelihood then

changes as follows,

n∏
j=1

f(Yi)

h(Yi)

Hence, our expectation is going to change as seen in eq:6.4.7 to the following,

E[g(S(t1), S(t2), ..., S(tn))] = Ẽ[g(S(t1), S(t2), ..., S(tn))
n∏
j=1

f(Yi)

h(Yi)
]

(eq:6.4.8)

where, as before, our expectation E is the expectation under the original

measure and Ẽ denotes the expectation under the new measure and the

70

expectation under the original measure will be finite. From eq:6.4.8 we are

able to deduce that the stock prices S(t1), S(t2), ..., S(tn) are reliant on the

independent and identically distributed random vectors Y1, Y1, ..., Yn.

Importance sampling for path dependent options

Previously, we discussed employing importance sampling for general or vanilla

options and how it relates to path simulation. However, we now consider to

reduce the variance of path dependent options. We assume that the models of

the underlying assets are driven by a Brownian motion. The drift parameter

of the Brownian motion can therefore be changed to drive the underlying

assets into important regions, with “importance” determined by the payoff

of the path dependent option [36].

This method is thouroghly explained in Glasserman, Heidelberger and Sha-

habuddin (1999) [28]. Because this is not part of the aim of this dissertation,

we will only briefly discuss the following method.

This method restricts the drift of the Brownian motion to deterministic

changes over discrete time steps.

When we consider the following simulations we restrict ourselves to a discrete

time grid 0 = t0 < t1 < t2 < ... < tn−1 < tn = T and we assume that

our source of randomness will be a d-dimensional Brownian motion. We

denote our independent standard normal random vectors as Z1, Z2, ..., Zn.

We simulate the increment of the Brownian motion by considering the time

increment from time ti−1 to ti as
√
ti−1 − tiZi. We are now able to create Z,

which consists of Zi with length nd. “Each outcome of Z determines a path

of underlying assets or state variables, and each such path determines the

discounted payoff of an option. If we let H denote the composition of these

mappings, then H(Z) is the discounted payoff derived from Z. Our task is

to estimate E[H(Z)], the expectation taken with Z having the n-dimensional

standard normal distribution.” [36]

71

Let us then consider an example of an Asian call option, that is calculated

with an arithmetic average S̄ of all possible S(ti). We make the assump-

tion that the underlying is modeled as a Geometric Brownian motion or

GBM(r, σ2) and the underlying stock prices is simulated using the following;

St = Sti−1
e((r−σ

2

2
)(ti−ti−1)+σ

√
ti−ti−1Zi) ;∀ i = 1, 2, 3, .., n

Hence, for pricing the Asian call option we view the payoff of the option as

a function of Zi,

H(Z) = H(Z1, Z2, ..., Zn) = e−rT [S̄ −K]+

where we would price the option by finding E[H(Z)] and furthermore Z ∼
N(0, I).

6.5 Quasi-Monte Carlo

Quasi-random sequences, also known as a low-discrepancy sequences, have

a property that for all values of k, that its subsequence x1, x2, . . . , xk has a

low discrepancy. In layman’s terms, the discrepancy of a certain sequence

that belong to an arbitrary set, say A, is low if there are a certain number of

points, belonging to the sequence, which is proportional to the measure of A.

In section 8.5.1 we will discuss the definition of Discrepancy more rigorously.

[49] Quasi-random sequences are a very common replacement for uniformly

distributed random numbers. The quasi modifier is used to denote that

these specific low discrepancy sequences are neither random nor pseudo-

random. But, indeed these Quasi-random sequences have some properties

from random variables and in certain cases of applications, such as in our

case with the Quasi-random Monte Carlo method, their low discrepancy

provides an advantage.

[49]“Sub random numbers have an advantage over pure random numbers

72

in that they cover the domain of interest quickly and evenly. They have an

advantage over purely deterministic methods in that deterministic methods

only give high accuracy when the number of data points is pre-set whereas

in using sub random sequences the accuracy typically improves continually

as more data points are added, with full reuse of the existing points.”

Monte Carlo simulation is the application of a transformation to a input se-

quence of independent Uniformly distributed random variables U1, U2, U3,

We make the assumption that d is the upper bound for the number of

simulations that is needed to produce an output and we denote that the

function f(U1, U2, U3, .., Ud) will produce this output. If we investigate where

our problem is to price an option, f will be the transformation that converts

the independent Uniform random variables to normal random variables and

the normal random variables to the underlying asset paths and thereafter to

the discounted payoff of the respective option. As we have defined before,

our objective here is to define and calculate

E[f(U1, U2, U3, .., Ud)] =

∫
[0,1)d

f(x)dx

Just as Standard Monte Carlo approximates the function f , Quasi-Monte

Carlo approximates the function, f , as an average of the over all points

x1, x2, . . . , xn and is denoted as,

E[f(U1, U2, U3, .., Ud)] =

∫
[0,1)d

f(x)dx

≈ 1

n

n∑
j=1

f(xi) (eq:6.5.1)

where the sequence of points x1, x2, . . . , xn is in the unit hypercube [0, 1)d.

There are some relevant comments that need to be discussed regarding the

Quasi-Monte Cartlo estimate, according to Glasserman[2013] [36]

73

1. The approximation of the objective function, f , does not need to be in an

explicit form. Monte Carlo and Quasi-Monte Carlo works in such a way

that we only need an algorithm in the approximation of the function

of f . This approximation algorithm is better known as the simulation

algorithm.

2. In standard Monte Carlo, it will have no influence on the approximation of

f whether we include the boundary of the unit hypercube or not. The

value of the integral under standard Monte Carlo will remain unchanged

as denoted in eq:6.5.1. Quasi-Monte Carlo on the other hand requires

the specification of the set of points to which a boundary belongs too. It

is, however, standard practice and convenient to evaluate the integrals

to be open on the right of the hypercube and to be closed on the left

of the hypercube. Hence, our use of the unit hypercube and is denoted

as [0, 1)d.

3. In standard Monte Carlo simulation, if we simulated Uniform independent

and identically distributed random variables U1, U2, U3, . . . and we cre-

ated the following vectors (U1, U2, U3, . . . , Ud), (Ud+1, Ud+2, Ud+3, . . . , U2d)

, (U2d+1, U2d+2, U2d+3, . . . , U3d), These vectors now produce an inde-

pendent and identically distributed sequence of points from a d−dimensional

hypercube. In Quasi-Monte Carlo, the dimension of the problem will

indicate how the construction of points xi will be done. Hence, the vec-

tors xi in [0, 1)d cannot be constructed by taking sets of d consecutive

elements from a scalar sequence.

Quasi-Monte Carlo [36] is dependent on the dimension of a problem and the

dimension of the problem should be known before we are able to evaluate

the problem. This dependence on dimension is one of the most discerning

characteristics of Quasi-Monte Carlo simulation. If we consider, for exam-

ple, two different Monte Carlo algorithms with corresponding approximation

functions, lets say f and g. Where f is defined as a function f : [0, 1)d1 → R

74

and g is defined as g : [0, 1)d2 → R which results in f(U1, U2, ..., Ud1) and

g(U1, U2, ..., Ud2). This will result that both approximations will have the

same distribution, with the same variance properties and bias. The ideal

Monte Carlo algorithm would be one that requires less time to calculate

the approximations, and the dimensions d1 and d2 should be irrelevant to

the calculation except influencing computational time of the approximations.

When using standard Monte Carlo, the dimension of the problem does not

need to be specified, but with Quasi-Monte Carlo one needs to determine the

dimension of a problem before one can start the generation of Quasi random

numbers. Quasi-Monte Carlo usually performs better than standard Monte

Carlo under lower dimensional representations.

6.5.1 Discrepancy

If we want to fill a hypercube uniformly, it would make sense that we attempt

to choose a certain point xi to lie on a grid. Grids, however, have severe

shortcomings. If we have that our function f is a nearly separable function

of its d arguments, then the information of the values of f at nd is the almost

the same as the information contained of the f values at nd. Major drawbacks

of a grid is that it will leave large rectangles without containing any point

over the unit hypercube [0, 1)d and the number of points needs to be specified

in advance. If the aim is to refine the grid over the unit hypercube by adding

additional points, the points, which must be added, to be able to find the

next favorable approximation grow very quickly.

For example [36], if we construct a grid as a Cartesian product of 2k point

along each of the d dimensions. We then obtain a total of 2kd points. Now

we attempt to fill each gap in each of the d dimensions with an extra point,

which means doubling the number of points per dimension. Hence, the total

number of new points added to the grid is 2(k+1)d−2kd and grows very quickly

with k.

We now define the notation for the deviation from uniformity, which we

75

measure through various notations of discrepancy. Given a collection A of

(Lebesgue measurable) [36] subsets of [0, 1)d the discrepancy of the point

set {x1, x2, ..., xn } relative to A is defined by,

D(x1, x2, ..., xn; A) = sup
A∈A
|#{xi ∈ A }

n
− vol(A)|

where #{xi ∈ A } denotes the number of points xi that is contained within

A and vol(A) is defined as the volume of A. Thus, discrepancy by this

expression can be interpreted as the supremum over the errors by integrating

the indicator function of A using the points x1, x2, ..., xn.

If we now define A to be the collection of all rectangles over the unit hyper-

cube interval [0, 1)d of the form,

d∏
i=1

[ui, vi) , 0 ≤ ui ≤ vi ≤ 1,

yields the standard discrepancy(or extreme) D(x1, x2, ..., xn). If we only

restrict A to rectangles then,

d∏
i=1

[0, ui)

will define the star discrepancy D∗(x1, x2, ..., xn).

Niederreiter [30] in 1992 proved that the ordinary or standard discrepancy

has an upper and lower limit with relation to the definition with the star

discrepancy. Niederreiter in proposition 2.4 proved that,

D∗(x1, x2, ..., xn) ≤ D(x1, x2, ..., xn) ≤ 2dD∗(x1, x2, ..., xn) (eq:6.5.2)

where we have that for a fixed d the quantities will have the same order of

magnitude.

If we require true uniformity then it is logical that we need these discrepancy

76

measures to be as small as possible. However, both of these D and D∗

measures focus on the products of intervals and will typically ignore a rotated

subcube of the unit hypercube. If we still work under the assumption that

the integrand f is the simulation algorithm, the coordinate axis may not

yield meaningful results. It would therefore be meaningful to look at points

that achieve low results in both these measures of discrepancy; that is the

main goal of what low discrepancy methods does.

The next results are from Niederreiter [30]. If we work in the first dimension

and set d = 1. Niederreiter showed that the following holds.

D(x1, x2, ..., xn) ≥ 1

n

and

D∗(x1, x2, ..., xn) ≥ 1

2n

in both cases the minimum is obtained and the equality holds for,

xj =
2j − 1

2n
, j = 1, 2, 3, . . . , n (eq:6.5.3)

For this specified set of points, the eq:6.5.1 will be reduced to the midpoint

rule of integration over the unit interval. We notice that in eq:6.5.3 the first

n defined points have no values in common with the following set of points

for n+ 1.

If we now construct a sequence of infinite points, say x1, x2, x3, . . . defined

in the unit interval [0, 1) and we aim to measure the discrepancy of the first

k defined points of this infinite sequence. If we consider the numerical inte-

gration as defined in eq:6.5.1 the accuracy of this integration approximation

will be dependent on the amount of points that we define on the unit interval

[0, 1).

Niederreiter [30] cites that Schmidt in 1972 showed that the following holds,

77

D(x1, x2, ..., xn) ≥ D∗(x1, x2, ..., xn) ≥ c log n

n

where the sequence x1, x2, ..., xn is defined over [0, 1) and for an absolute

constant c > 0. Thus, for low discrepancy sequences in the one-dimensional

case we cannot expect something better than,

D∗(x1, x2, ..., xn) = O(
log n

n
) ,∀ n ≥ 2

By fixing the number of points in advance, in other words using the first

finite n number of points of a sequence rather than generating a different set

of points. Hence, this will have the implication of increasing the discrepancy

of the sequence by a factor log n.

If we now consider multiple dimensions, there is less known about finding

the best possible discrepancy in higher dimensions, d > 1. Niederreiter [30]

states that it is widely believed that for an s−dimensional case and s ≥ 2,

the star discrepancy of any N−element point set satisfies

D∗(x1, x2, ..., xN) ≥ as
(logN)s−1

N

where as > 0 is a constant that is dependent only on the dimension s. For

any infinite set of points x1, x2, x3, ..., the first N elements of the sequence

x1, x2, ..., xN satisfies

D∗(x1, x2, ..., xN) ≥ a′s
(logN)s

N

where a′s > 0 is a constant that is dependent only on the dimension s.

These order-of magnitude discrepancies are achieved by explicit construction

in the following section. Where the discussion continues for Halton, Faure

and Sobol sequences. Quasi sequences that achieve a star discrepancy of

O((logn)s

n
) is therefore called low discrepancy sequences.

If we obtain a large finite sequence with n points, the power of log n becomes

negligible with respect to n, but this is only true for when the dimension of

78

the problem is relatively small. Quasi-Monte Carlo has been traditionally

characterized as appropriate for problems in higher dimensions.

6.5.2 Pseudo-random sequences

A Pseudo random number generator is a deterministic algorithm that is used

to create a sequence of numbers with little or no discernable pattern in the

generated numbers, except for broad statistical properties [25]. A Pseudo

random number generator is also known as a Deterministic Random Bit

generator or DRBG.

According to Niederreiter [30] - “The success of a Monte Carlo calculation de-

pends, of course, on the appropriateness of the underlying stochastic model,

but also, to a large extent, on how well the random numbers used in the

computation simulate the random variables in the model.”

Desirable properties that we wish Pseudo random sequences to display are

as follows,

1. the smallest period length should be sufficiently large

2. it should have little intrinsic structure(for example lattice structure)

3. the Pseudo random sequence should have good statistical properties

4. the Pseudo random sequence should be computationally efficient to cal-

culate

We also have to make the distinction between uniform Pseudo random num-

ber and non-uniform Pseudo random numbers. The uniform pseudo random

number generator will simulate uniform distributed random numbers over

the unit interval [0, 1). Non-uniform Pseudo random numbers are usually

simulated from a uniform Pseudo random number and using a sampling

method the distribution of the uniform distribution is changed to the target

or desired distribution.

79

Linear Congruential Pseudo random numbers

As we have discussed in section 6.2.1. The Linear Congruential generator

is a method for producing Pseudo random numbers. The mixed Linear

Congruential generator (LCG) was first proposed by Lehmer [1951] [29]. The

parameters for the Linear Congruential generator is as follows. We choose

a large positive integer m, an integer k for k : 1 ≤ k < m and finally

c ∈ {0, 1, . . . ,m − 1}. We then select a seed value or initial value that is

denoted by a0 ∈ {0, 1, . . . ,m − 1}. We are then able to generate the values

a1, a2, a3, ... with the following recursion formula,

ai+1 = (kai + c)mod(m) , i = 0, 1, 2, . . .

From these generated values a1, a2, a3, ..., we are able to find the Linear

Congruential Pseudo random numbers,

ui+1 =
ai+1

m
∈ [0, 1) , i = 0, 1, 2, . . .

Example and graph Please refer to section 7.2.1 for the mixed Linear

Congruential example for generating Pseudo random numbers. We now plot

a 1000 points of the Linear Congruential Pseudo random points in order to

make a relavant comparison between these Pseudo generated numbers and

Quasi generated random numbers.

80

Figure 6.4: Plot of a computer generated random numbers sequence with

1000 points

We observe that these computer generated uniform random variables are not

truly evenly distributed over the unit interval. There occurs some clumping

of points over the interval and we expect that this clumping of points will

influence both accuracy and the rate of convergence. We expect greater

results, in this regards, towards our plotting of the Quasi- Monte Carlo

sequences or low discrepancy sequences.

6.5.3 Van der Corput sequence

The first Quasi random sequence that we discuss is the Van der Corput

sequence. The reason for this is that other Quasi sequences, such as the

Faure and Halton sequences, are multi dimensional expansions of the Van der

81

Corput sequence. Hence, we introduce this one-dimensional low discrepancy

sequence called the Van der Corput sequence. Firstly, we define a base− b as

an integer value that is greater or equal to two. So, for every integer k+ will

have a unique representation as a linear combination of non-negative powers

of b with coefficients in {0, 1, 2, 3, . . . , b− 1}. We are able to obtain,

k =
n∑
i=0

ci(k)bi

where we get finite number of coefficients ci(k) that are not equal to zero.

The function φ is then defined as the function that maps every k to a point

in [0, 1). The function is defined as follows,

φb(k) =
∞∑
h=0

ah(k)

bh+1

Example If we calculate a Van der Corput sequence with base = 2 and

k = {0, 1, 2, 3, 4, 5, 6, 7}. Then we calculate the first 8 entries of the Van der

Corput sequence. Then we obtain a k binary sequence with respect to every

defined k,

k in binary = {0, 1, 10, 11, 100, 101, 110, 111}

and then,

φ2(k) binary = {0, 0.1, 0.01, 0.11, 0.001, 0.101, 0.011, 0.111}

and finally we get Van der Corput sequence given as,

φ2(k) = {0, 1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8}

82

6.5.4 Halton sequence

In a one-dimensional setting the Halton sequence becomes the Van der Cor-

put sequence. Firstly, we discuss the Van der Corput sequence and then look

at the multi-dimensional case, which becomes the Halton sequence.

The Van der Corput sequence can be seen as the following equation:

n =
L−1∑
k=0

dk (n) bk;n ≥ 1

where b is the base number of which n is represented, and 0≤ dk (n) ≤ b.

This then maps onto the unit interval [0, 1). The corresponding rate of

convergence is O
(

log(n)
n

)
.

Halton sequences are mostly used to generate points in a specific space for the

use of numerical methods, for example, the Monte Carlo simulation. These

sequences are deterministic in nature, but they are of low discrepancy. This

means that the sequences appear to be random and can be applied in different

situations. To generate the Halton sequence we generalise the Van der Corput

sequence to a multi-dimensional case. Hence, for the multi-dimensional case

we obtain the equation:

n =
L−1∑
k=0

dk (n) bk;n ≥ 1

where dk (n) now represents a vector, in the form of, dk (n) = (Φb1 (n− 1) , . . .

,Φbt(n− 1)). The star discrepancy of this sequence is E∗n = O((log(n))t

n
)

Thus, we follow with a scatter plot of a Halton sequence, to observe the

random nature of the sequence and the reason for being effective random-

ization tool. In Figure 6 below, we constructed a scatter plot of all the

Halton Quasi-random sequence points. We can deduce from this plot that

there are no clustering of points and all point plotted seems to be uniformly

distributed over the hypercube of [0,1). In a more statistical setting, if we

83

test for randomness, most of the Quasi-random sequences are too uniform to

pass these tests [26].

Halton sequence graph

Figure 6.5: Plot of a Halton sequence with 1000 points

If we compare the graphs of figure 7 and figure 4, we deduce that from figure 4

there are points present that cluster together, which decrease the probability

of true randomness of these points. But in the Halton Quasi-random number

sequence we see a more evenly spread of points over the unit interval, which

leads to the conclusion of more truly random points.

84

6.5.5 Faure sequence

In 1982, Faure [42] proposed to develop a different extension of the Van der

Corput sequence to multiple dimensions. A common base is to be used across

all simulated dimensions. There is, however, a restriction on the value of the

chosen base, the base must be at least as large as the dimension itself .

If we now specify a d−dimensional Faure sequence, according to Glasser-

man [36], then the coordinates of the Faure sequence are obtained by per-

muting segments of a single Van der Corput sequence. In the choice for the

base b we choose the smallest prime number greater or equivalent to the

magnitude of d. We let ci(k) denote the coefficients in the base b expansion

of k, so that it is given in the following expression,

k =
∞∑
i=0

ci(k)bi (eq:6.5.6)

Hence, we obtain the jth coordinate j = 1, 2, ..., d of the kth point in the

Faure sequence is expressed as,

∞∑
h=1

y
(j)
h (k)

bh
(eq:6.5.7)

where y
(j)
h is defined as

y
(j)
h (k) =

∞∑
i=0

(
i

h−1

)
(j − 1)i−h+1ai(k)mod(b) (eq:6.5.8)

where
(

i
h−1

)
denotes a permutation function.

Hence, each of these defined sums in eq:6.5.6, eq:6.5.7, and eq:6.5.8 has only

a finite number of nonzero elements. If we specify the base-b expansion of

k with r number of terms, resulting that ar−1(k) 6= 0 and ai(k) = 0 ∀ i ≥ r.

Hence, we are able to view eq:6.5.8 as a matrix- vector representation and

we are able to calculate the sequence,

85

y

(j)
1

y
(j)
2

y
(j)
3

. . .

y
(j)
r

 = C(j−1)

a0(k)

a1(k)

a2(k)

. . .

ar−1(k)

mod(b)

and thus, from eq:7.5.8 the matrix Cj will be a matrix that calculates the

permutations and is an rxr matrix. Defined as,

Cj(q, s) =

(
s− 1

q − 1

)
js−q , for s ≥ q and 0 otherwise

where (q, s) specifies the entries for the matrix C. There is also a special

relationship that holds for the matrix C. This will increase the efficiency of

the calculation,

Cj = C1Cj−1

Pseudo code for Faure sequence [4]with dimension d and base b

1. We set q = (ln(N)
ln(b)

). We then define b = (b−1, b−2, ..., b−q) and we set n = 0.

2. We then calculate the b representation (aq...a1) of n. Then create a vector

for a = (a1, a2, ..., aq)
T

3. Then for i = 1, 2, ..., d calculate ak = Gk−1a

4. Also for i = 1, 2, ..., d, we calculate xnk = bak and let xn = (xn1, ..., xnd)
T

be the n’th Faure point

5. So then if n = N then we stop. Otherwise, set n = n + 1 and return to

step 2

1 %The code from DP. Kroese , T Taimre and ZI Botev [4]

2 was used to generate the Faure sequence

86

3

4 function S = faure1 (q , d ,M)

5 z = f l o o r (l og (M)/ log (q))+1;

6 a=repmat ((0 :M) ’ ,1 , z) ;

7 S =ze ro s (M+1,d) ;

8 F =ze ro s (z , z) ;

9 b=repmat (1 . / q . ˆ (1 : z) ,M+1 ,1) ;

10 S (: ,1)=sum(b .∗ a , 2) ;

11 f o r j =1: z

12 f o r i =1: j

13 G(i , j) = mod(nchoosek (j −1, i −1) ,q) ;

14 end

15 end

16 G=G’ ;

17

18 for i =1:z−1

19 a (: , i)=mod(a (: , i) , q) ;

20 a (: , (i +1): z)= f l o o r (a (: , (i +1): z)/ q) ;

21 end

22 for k=2:d

23 a=mod(a∗G, q) ;

24 S (: , k)=sum(b .∗ a , 2) ;

25 end

Example and graph

We follow and rework the example from Glasserman [36], Consider the case

where r = 2 and b = 3. Then we are able to find the corresponding C

matrices,

C(1) =
(

1 1
0 1

)
, C(2) = C(1)C(1) =

(
1 2
0 1

)

87

Our corresponding ā(k) vectors for k = 0, 1, 2, 3, 4, 5, 6, 7, 8 are

(
0
0

)
,
(

1
0

)
,
(

2
0

)
,
(

0
1

)
,
(

1
1

)
,
(

2
1

)
,
(

0
2

)
,
(

1
2

)
,
(

2
2

)
We are now able to calculate the corresponding vectors for C(1)a(k)mod(b)

and C(2)a(k)mod(b) respectively,

C(1)ā(k)mod(b) =
(

0
0

)
,
(

1
0

)
,
(

2
0

)
,
(

1
1

)
,
(

2
1

)
,
(

0
1

)
,
(

2
2

)
,
(

0
2

)
,
(

1
2

)
C(2)ā(k)mod(b) =

(
0
0

)
,
(

1
0

)
,
(

2
0

)
,
(

2
1

)
,
(

0
1

)
,
(

1
1

)
,
(

1
2

)
,
(

2
2

)
,
(

0
2

)
Now, using eq:7.5.7 to obtain a vector (1/3, 1/9). We then multiply this

vector by each of the above three sequence of vectors. Hence, we obtain,

{0, 1/3, 2/3, 1/9, 4/9, 7/9, 2/9, 5/9, 8/9}

{0, 1/3, 2/3, 4/9, 7/9, 1/9, 8/9, 2/9, 5/9}

{0, 1/3, 2/3, 7/9, 1/9, 4/9, 5/9, 8/9, 2/9}

The first row yields the first 9 elements from the Van der Corput sequence

with a specified base 3. If we view these points now in a three-dimensional

space the columns of the sequences will yield the respective coordinates to be

plotted. Hence, the first four coordinates will be [0, 0, 0], [1/3, 1/3, 1/3],[2/3, 2/3, 2/3]

and [1/9, 4/9, 7/9]. Thus, we are able to obtain the first nine points of the

three-dimensional Faure sequence.

88

Figure 6.6: Plot of a Faure sequence with 1000 points

6.5.6 Sobol sequence

Sobol sequences are once again an example of Quasi-random low discrepancy

sequences. This specific quasi-random sequence was first introduced by the

Russian mathematician Sobol in 1967. These Sobol sequences make use of

the base of two, to form finer uniform partitions of the unit interval or, in a

multi-dimensional sense, the unit hypercube. But the coordinates are finally

reordered in each dimension [50].

Let the following be an n-dimensional hyper cube, [0, 1)n, with the function

g that is integrable over the unit hypercube [0, 1)n. Hence, the primary idea

89

of Sobol was to construct a sequence yn in the hypercube [0, 1]n, so that:

lim
n→∞

1

n

n∑
j=1

g(yj) =

∫
[0,1]n

g

For the generation of the Sobol sequence we follow Joe and Kuo. [52] To

generate the k’th component of the point in a specific Sobol sequence, it will

require us to choose a polynomial with degree tk in the field of Z2, hence we

have that;

y tk + c1,ky
tk−1 + c2,ky

tk−2 + · · ·+ c tk−1,kx+ 1

where c1,k, . . . , c tk−1,k are the coefficients of the polynomial and are either 0

or 1. We will then use these coefficients c1,k, . . . , c tk−1,k to create a sequence

{n1,k, n2,k, . . . }, with the recurrence relation that will consist only of positive

integers.

np,k = 2c1,knp−1,k⊕22c2,knp−2,k⊕· · ·⊕2 tk−1c tk−1,knp− tk+1,k⊕2 tknp− tk,k⊕np− tk,k

For p ≥ tk+1, where⊕ is a bit by bit operator. The values of n1,k, n2,k, . . . , n tk,k

can be chosen randomly but need to uphold the following constraints nv ,k, 1 ≤
v ≤ tk , is odd, and less than 2v. The “direction number” is then defined as

follows

wv,k :=
nv,k
2v

Then finally, we obtain the yi,k, which is the k’th component of the i’th point

of the Sobol sequence, and is given by;

yi,k = b1w1,k ⊕ b2w2,k ⊕ . . .

where bl is the l’th bit from the right when i is written in binary, that is,

(. . . b2b1)2. There is also a more efficient way of generating a Sobol sequence.

90

It is called the Gray code, introduced by Antonov and Saleev [1979].

Example and graph

Consider the following example from Glasserman [36] to better illustrate the

process of generating a Sobol sequence.

Let us consider the primitive polynomial,

x3 + x2 + 1

with degree tk = 3. The recurrence algorithm becomes

np,k = 2np−1,k ⊕ 8np−3,k ⊕ np−3,k

and assume that we initialize the recurrence with n1,k = 1, n3,k = 3, n3,k = 3.

Then the next two elements will be calculated as follows,

n4,k = (2 · 3)⊕ (8 · 1)⊕ 1

= 0110⊕ 1000⊕ 0001

= 1111

= 15

n5,k = (2 · 15)⊕ (8 · 3)⊕ 3

= 11110⊕ 11000⊕ 00011

= 00101

= 5

From these 5 values for np,k, we are now able to calculate the corresponding

values for wp,k by dividing np,k by 2p. But there exists an equivalence that

instead of dividing by 2p we shift the binary point to the left by p places in

the representation of np,k. Thus, we are able to obtain the first 5 direction

91

numbers,

w1,k = 0.1

w2,k = 0.11

w3,k = 0.011

w4,k = 0.1111

w5,k = 0.00101

and we are able to find the corresponding generator matrix,

V =

1 1 0 1 0

0 1 1 1 0

0 0 1 1 1

0 0 0 1 0

0 0 0 0 1

thus we now calculate the sequence x1, x2, For each k we are able to take

a vector a(k) of binary coefficients of k and pre-multiply it by the matrix

V. The resulting vectors give the coefficients of a binary fraction. Hence, we

obtain the first three vectors,

V

1

0

0

0

0

 =

1

0

0

0

0

 , V

0

1

0

0

0

 =

1

1

0

0

0

 , V

1

1

0

0

0

 =

0

1

0

0

0

which yield the first three points of 1/2, 3/4, and 1/4 and the last three points

92

that can be generated from the matrix V are

V

1

0

1

1

1

 =

0

0

1

1

1

 , V

0

1

1

1

1

 =

0

1

1

1

1

 , V

1

1

1

1

1

 =

1

1

1

1

1

which produces the last three points as 7/32, 15/32, and 31/32.

In figure 7.7 below we plot 1000 points. As one is able to observe there are

minimal clumping of points and the points seem to be evenly distributed

over the unit interval. As we compare this figure 5 to the figure of Pseudo

random numbers, we are able to deduce that there are more clumping of

points under Pseudo random sequences relative to the Sobol sequence. We

expect that these remarks will have some influence on accuracy and on the

rate of convergence.

93

Figure 6.7: Plot of a Sobol sequence with 1000 points

For the code to generate the Sobol sequence, refer to the appandix or D.P.

Kroese, T. Taimre and Z.I. Botev [4].

6.6 Example

The following example will compare European Black-Scholes estimate with

Quasi-Monte carlo estimates. We see in Table 7.2 that all sequences got

good approximation except the Halton sequence. As deduced in the Glasser-

man [36] paper we expected that the Halton sequence will perform the

worst of all the Quasi-sequences and the the Sobol sequence will produce

unconditionally stable estimates.

94

Table 6.2: European call estimates for Quasi-random sequences

Strike K BS est. CG est. Sobol est. Halton est. Faure est.

80 37.730 37.737 37.746 40.468 38.03081

85 33.358 33.360 33.370 36.050 33.64382

90 29.113 29.117 29.124 31.738 29.28317

95 25.056 25.067 25.062 27.584 24.97179

100 21.249 21.265 21.248 23.636 20.75152

105 17.748 17.764 17.738 19.958 16.66818

110 14.597 14.598 14.578 16.603 12.80963

115 11.823 11.822 11.803 13.607 9.427844

120 9.434 9.451 9.423 10.983 6.876027

125 7.419 7.455 7.410 8.716 5.221166

130 5.754 5.792 5.752 6.831 4.245497

135 4.405 4.439 4.409 5.298 3.612412

140 3.331 3.353 3.333 4.068 3.152193

avg relative error 0.016 0.009 1.887 1.064

avg % rel error 0.093% 0.055% 11.098% 5.635%

Rate of convergence 0.023 0.043 0.889 2.765

[The above results are obtained for European call options for different

strike prices. We used Sobol-, Halton- and Faure-sequences to

obtain these estimates. As well as CG(computer generated) random

samples for estimation. In this example our parameters were as

follows; r=0.1, σ = 0.2, S0 = 110 and time to maturity was

1 year. We ran 10 000 simulations on 100 paths and to obtain

rate of convergence, we also ran 1 000 simulations on 100 paths.]

The following figures 6.8, 6.9 and 6.10 are plots that represent the Quasi

estimates, as they converge to the Black-Scholes estimate, for European

95

options. Quasi-Monte Carlo sequences enables us to improve on the reliability

and rate of convergence of Monte Carlo simulation. Quasi-random sequences

are deterministic sequences by nature, which results in deterministic error

bounds and improved convergence. In this case, we studied the Halton, Faure

and Sobol sequences. According the Glasserman [36], both the Halton and

Faure sequences deliver marginal better results, compared to normal Monte

Carlo. However, the Sobol sequence delivers significant better convergence

and reliability to Monte Carlo simulation. This is due to the Sobol sequence

being more evenly dispersed over the unit hypercube, compared to the other

sequences.

Figure 6.8: Plot of Quasi-sequences and CG generated estimates

96

Figure 6.9: Plot of Quasi-sequences(excluding Faure sequence) and CG

generated estimates

Figure 6.10: Plot of Quasi-sequences and CG generated estimates

97

We generated 50 to 10 000 random numbers, by an increment of 50 simu-

lations. It can be seen from figure 6.8, that the Faure sequence has a large

estimation error, for a small number of simulations. However, the Faure

sequence tend to converge faster to 3000 simulations on wards. In figure 6.9

it is observed that the Sobol sequence has a small deviation and converges

smoothly. The Sobol sequence delivered estimates with small relative errors,

under a low number of simulations and tends to be the more stable sequence.

However, the computer generated random numbers and Faure sequence tends

to have a larger standard deviation.

98

Chapter 7

Longstaff and Schwartz

Longstaff and Schwartz [39] proposed a model in 2001 to evaluate American

options by simulation. The key difference in this approach is the use of

least squares to estimate the conditional payoff to the option holder from

continuation. This approach is very applicable to path dependent options.

This method is called least squares Monte Carlo (LSM) algorithm.

The best way to describe the technique and its workings intuitively is, firstly,

to give a numerical example of the technique. The following example follows

directly from the Longstaff and Schwartz(2001) paper to describe the tech-

nique. Afterwards, we will describe the algorithm of the model in a more

formal manner.

To describe the workings of an American option fully, we will consider the

pricing of a vanilla American option for this numerical example. We will

exercise the option when we consider it to have an optimal exercise strategy;

namely when it is in the money at maturity. If we consider the same scenario

prior to the date of maturity, we consider the optimal strategy to be the

comparison between the immediate exercise value and the expected cash flows

from continuing. We would exercise the option if the immediate exercise

is greater in value. Hence, to optimally exercise an American option, is

to find the conditional expected value of continuation. We approach this

99

problem in the manner that we look at the cross-sectional information in

the simulated paths of the underlying to identify the conditional expectation

function. This is, however, done by regressing the realized cash flows from

continuation on a set of basis functions of the values of the relevant state

variables. “The fitted value of this regression is an efficient unbiased estimate

of the conditional expectation function and allows us to accurately estimate

the optimal stopping rule for the option.” [39]

Numerical example

The best way to convey this idea on pricing is by a numerical example. Let

us consider an American put option priced on an underlying, which pays no

dividends.

Strike(K)= 1.10

Risk free rate(r)= 0.06

S0= 1

e−rt= 0.9417645

For simplicity’s sake the stock price has only eight possible paths, which

we display in a table below. The stock price paths are generated under the

assumption of risk neutrality for three discrete time steps, t. Hence the paths

are as follows,

100

Table 7.1: Stock price paths for three discrete time steps

Path t=0 t=1 t=2 t=3

1 1 1.09 1.08 1.34

2 1 1.16 1.26 1.54

3 1 1.22 1.07 1.03

4 1 0.93 0.97 0.92

5 1 1.11 1.56 1.52

6 1 0.76 0.77 0.9

7 1 0.92 0.84 1.01

8 1 0.88 1.22 1.34

Our aim from this stock price paths table is to obtain a stopping rule that

will maximize the value of the option on every discrete time step and relative

path. For completeness, it is necessary to calculate all the intermediate

matrices at different time steps, because we apply our method recursively. If

the option was not exercised before the expiration date at time three, then

the cash flows (option values) among different paths will be realized by the

option holder from the following optimal strategy at time three, as seen in

the table below

Table 7.2: The corresponding cash flow(expiration payoff) matrix at time 3

Path t=0 t=1 t=2 t=3

1 - - - (1.1− 1.34)+=0.00

2 - - - (1.1− 1.54)+=0.00

3 - - - (1.1− 1.03)+=0.07

4 - - - (1.1− 0.92)+=0.18

5 - - - (1.1− 1.52)+=0.00

6 - - - (1.1− 0.90)+=0.20

7 - - - (1.1− 1.01)+=0.09

8 - - - (1.1− 1.34)+=0.00

101

These respective cash flows, which have been calculated at time three, would

be identical for both European and American option calculations.

If the option is in the money at time two, then the option holder must decide

whether to continue with the option until expiry at time three or exercise

the option immediately. From our stock price paths at time two, there are

only five possible paths that are in the money and that we can consider when

exercising the option early.

We now define X and Y so that X represents the underlying stock prices

at time two for the respective paths that are in the money. We define Y to

be the discounted corresponding cash flows received at time 3, only if the

put is not exercised at time 2. We will only consider in the money paths to

estimate the conditional expectation function, where exercise is relevant and

this will significantly improve the efficacy of the algorithm. Therefore, we

are now able to obtain the values for the defined X and Y at time 2,

Table 7.3: Regression vectors at time 2

Path Y X

1 0.00x0.94176 1.08

2 - -

3 0.07x0.94176 1.07

4 0.18x0.94176 0.97

5 - -

6 0.20x0.94176 0.77

7 0.09x0.94176 0.84

8 - -

The regression of Y on a constant X and X2 will yield the expected cash flow

from continuing with the option’s life conditional on the stock price paths at

time 2. This regression takes place with the implementation of a weighted

Laguerre polynomial as basis functions, denoted as follows,

102

L0(X) = e
−X
2

L1(X) = e
−X
2 (1−X)

L2(X) = e
−X
2 (1− 2X +

X2

2
)

. . .

Ln(X) = e
−X
2
eX

n!

dn

dXn
(Xne−X)

Then we obtain the function of continuation, denoted by F (ω; tk−1) as follows,

F (ω; tk−1) =
∞∑
j=0

ajLj(X),

where aj are constant coefficients and ω represents a specific sample path.

We then apply regression to table 4 and obtain the following conditional

expectation function E[Y |X] = −1.07 + 2.983X − 1.813X2. With the con-

ditional expectation function as defined above, we are now able to calculate

the value for continuation at time 2 and compare it to the exercise value of

the option, also known as the intrinsic value of the option, at time two.

Table 7.4: Optimal strategy on exercise at time two

Path Exercise value Continuation

1 (1.10− 1.08)+=0.02 0.0369

2 (1.10− 1.26)+=0.00 -

3 (1.10− 1.07)+=0.03 0.0461

4 (1.10− 0.97)+=0.13 0.1176

5 (1.10− 1.56)+=0.00 -

6 (1.10− 0.77)+=0.33 0.152

7 (1.10− 0.84)+=0.26 0.1565

8 (1.10− 1.22)+=0.00 -

103

We find the continuation value by substituting a value for X into the con-

ditional expectation formula. The comparison in table five yields that the

optimal time to exercise would be to exercise the option on paths 4,6, and 7

at time two. The intrinsic value of the option is larger than the continuation

value and indicates that early exercise would be optimal. These results lead

to the following cash flow table at time 2, under the assumption that the

option holder did not exercise the option prior to time 2.

Table 7.5: Cash flow table at time 2

Path t=1 t=2 t=3

1 - 0.00 0.00

2 - 0.00 0.00

3 - 0.00 0.07

4 - 0.13 0.00

5 - 0.00 0.00

6 - 0.33 0.00

7 - 0.26 0.00

8 - 0.00 0.00

We observe that if the option is exercised at time two, it will result that the

cash flow in the third column, or at time three, becomes zero. Once it is

optimal to exercise the option and it is exercised, no further cash flows will

occur because the option can only be exercised once. Hence proceeding with

the algorithm, the next stage would be to determine whether the option will

be exercised at time 1 or not.

The stock price table shows that there are five paths that will be in the money

at time one. For the five paths that are in the money at time 1, we define

as we did before for the discrete time two. The variable Y will denote the

discounted value of the option’s cash flows obtained from time two. Note that

when we define Y , we will use actual realized cash flows from each possible

path. Therefore we do not use the conditional expectation function for Y ,

104

which we defined in time two, at time 1. So, the conditional expectation

functions will differ for time 1 and time 2.

Since, an option can only be exercised once, we have that future cash flows

can either occur at time two or time three, but are mutually exclusive.

Therefore cash flows that realized in time two will be discounted back to

time one and cash flows that realized in time three will also be discounted

back to time one. As before, we define X, which represents the stock prices

that were in the money at time one . So, we set up the following table for X

and Y at time one,

Table 7.6: Regressions for time 1

Path Y X

1 0.00x0.94176 1.09

2 - -

3 - -

4 0.13x0.94176 0.93

5 - -

6 0.33x0.94176 0.76

7 0.26x0.94176 0.92

8 0.00x0.94177 0.88

Once again, we need to calculate the conditional expectation function at

time 1. This regression takes place by implementing the weighted Laguerre

polynomials by regressing Y on a constant X and X2. Thus, we are able

to get the conditional expectation function for time 1, which is E[Y |X] =

2.038− 3.335X + 1.356X2.

Now, substituting the value that we obtained for X, in table 7, into the

conditional expectation function will yield continuation values at time 1.

These continuation and exercise values are given in the table below and

comparing these two values at time one is shown to be optimal for paths one,

four, six, seven, and eight. Hence, the estimated values follows,

105

Table 7.7: Early exercise decision at time 1

Path Exercise value Continuation

1 (1.10− 1.09)+=0.01 0.0139

2 (1.10− 1.16)+=0.00 -

3 (1.10− 1.22)+=0.03 -

4 (1.10− 0.93)+=0.17 0.1092

5 (1.10− 1.11)+=0.00 -

6 (1.10− 0.76)+=0.34 0.2866

7 (1.10− 0.92)+=0.18 0.1175

8 (1.10− 0.88)+=0.22 0.1533

We have identified the optimal exercise strategy for all three discrete time

steps. Therefore, we set up an optimal stopping table where one, in the table,

indicates it would be optimal to early exercise the option.

Table 7.8: Optimally formulated stopping rule

Path t=1 t=2 t=3

1 0 0 0

2 0 0 0

3 0 0 1

4 1 0 0

5 0 0 0

6 1 0 0

7 1 0 0

8 1 0 0

From this stopping rule table, it is logical to see where the option can be

optimally exercised and it is intuitive to determine the cash flows that will

realize for this option. The stopping rule table indicates at which time and

in which path it will be optimal to exercise the option early. This leads to

106

the following option cash flow matrix,

Table 7.9: Option cash flows

Path t=1 t=2 t=3

1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.00 0.00 0.07
4 0.17 0.00 0.00
5 0.00 0.00 0.00
6 0.34 0.00 0.00
7 0.18 0.00 0.00
8 0.22 0.00 0.00

We have thus identified certain cash flows that were generated by the Amer-

ican put option. The cash flows were identified at each discrete time step

along each path. The option value can now be calculated by discounting each

value in the cash flow table, table 10. We discounted the cash flow values

back to time zero. To obtain the simulated estimate for the option, we then

sum over all the discounted values and divide it by the total number of paths,

hence averaging over the paths. By applying this procedure we obtain the

price for an American put option, which is 0.115. By comparison, it is almost

twice as expensive as an European option (0.0564) with the same underlying

stock prices.

The LSM or Least squares method algorithm illustrated how cross sectional

information can be utilized in the simulation of paths to estimate the condi-

tional expectation function. The conditional expectation function, however,

is used to identify the exercise decision that maximizes the value of the option

at each discrete time increment and along each simulated path.

107

Table 7.10: Discounted path values over the cash flow table

Path t=0

1 0.000

2 0.000

3 0.066

4 0.160

5 0.000

6 0.320

7 0.170

8 0.207

Sum= 0.923

average= 0.115

The paper by Longstaff and Schwartz [39] shows the least squares Monte

Carlo method is applied effectively, because only simple regression is applied.

The valuation framework

With the help of Longstaff and Schwartz [39], we create the following valua-

tion framework for the LSM. We assume an underlying complete probability

space (Ω,F ,P) that is defined over a time horizon of [0, T], where T denotes

the expiry of the contract. The state space Ω is defined as the set of all pos-

sible realizations, or paths, of the underlying process between [0, T]. Where

ω represents a specific path, F represents a sigma field of distinguishable

events at time T , and P is the probability measure that is defined on F .

Then F is defined as the filtration of the relevant underlying process, such

that F = {Ft; t ∈ [0, T]} and we assume that Ft = F . We also assume

the existence of the risk neutral measure Q, which leads to an arbitrage free

pricing space.

We define the notation of the cash flows by C(ω, s; t, T), which represents

a specific path ω generated by the option. This is dependent on the fact

108

that the optimal stopping rule, s, t < s ≤ T , is followed and the option is

not exercised early, prior to time t. The main objective of the least squares

Monte Carlo algorithm is to obtain an optimal stopping rule that maximizes

the value of an American option, in a path wise manner. To evaluate this

American type option, we divide the interval [0, T] into K discrete time steps

of equal length. Hence, 0 < t1 ≤ t2 ≤ · · · ≤ tK = T and we consider our

optimal stopping rule at each of these points. If the option is specified in such

a way that it is continuously exercisable, then we should set K a sufficiently

large value. According to our optimal stopping rule, if the option is in the

money at expiry then the option will be exercised. If, however, the option

is out of the money at expiry, then we allow the option to expire worthless.

At any other time, tk, than expiry, the option holder has the choice either

to exercise the option immediately or to continue the life of the option and

revisit the exercise decision at the next exercise date. Hence, the value of

the option is maximized; pathwise and logic would dictate that one should

exercise the option when the immediate exercise is greater than, or equal to,

the value of continuation.

During any time tk, the cash flow of immediate exercise [39] of the option is

known to the investor, the immediate exercise value is equal to the cash flow

at this point in time. However, the cash flows generated by the continuation

values are not known at any certain point in time tk. According to the no

arbitrage argument, the value of continuation, or the value of the option,

assuming that it cannot be exercised until after tk, is given by the remaining

discounted cash flows C(ω, s; tk, T) with respect to the risk neutral pricing

measure Q. We denote the value of continuation as F(ω, tk) at time tk as,

F(ω; tk) = EQ[
K∑

j=k+1

e−
∫ tj
tk
r(ω,s)dsC(ω, tj; tk, T)|Ftk] (eq:7.1.1)

where r(ω, s) denotes the risk-free interest rate which can possibly be stochas-

tic in nature. The expectation is taken conditional on the filtration Ftk . Then

109

the problem breaks down into evaluating the immediate exercise value with

this conditional expectation value and the optimal strategy is to exercise the

option as soon as the immediate exercise value is greater than, or equal to,

the conditional expectation value.

7.1 The Least Squares Monte Carlo algorithm

From the numerical example in the previous section [39], we saw that the

least squares Monte Carlo method makes use of least square to approximate

the conditional expectation function at discrete time steps tK−1, tK−2, ..., t1.

We find the paths of the cash flows with backwards recursion; for example,

C(ω, s; tk, T) may differ significantly from C(ω, s; tk+1, T) since it may be

optimal to stop and exercise the option at time tk+1, therefore changing

all the cash flows in a certain path, ω. If we specifically observe at time

tK−1, the unknown functional form of F(ω; tK−1), as in equation 7.1.1 can be

represented as a linear combination of a countable set of FtK−1
-measurable

basis functions.

The FtK−1
has measurable basis functions, if the conditional expectation

function is an element of the L2 space or Hilbert space of squared integrable

functions relative to some measure. The L2 space has a finite number of

orthonormal basis. Then we are able to represent the conditional expectation

as a linear function of the basis elements.

We define X to be the value of the underlying asset and we assume that X

follows a Markov process. Some choices of basis functions are as follows,

110

Laguerre polynomials

L0(X) = 1

L1(X) = (1−X)

L2(X) = (1− 2X +
X2

2
)

. . .

Ln(X) =
eX

n!

dn

dXn
(Xne−X)

Weighted Laguerre polynomials

L0(X) = e
−X
2

L1(X) = e
−X
2 (1−X)

L2(X) = e
−X
2 (1− 2X +

X2

2
)

. . .

Ln(X) = e
−X
2
eX

n!

dn

dXn
(Xne−X)

Monomial basis functions

L0(X) = 1

L1(X) = X

L2(X) = X2

. . .

Ln(X) = Xn

111

Hermite polynomials

L0(X) = 1

L1(X) = 2X

L2(X) = 4X2 − 2

. . .

Ln(X) = (−1)net
2 dne−t

2

dtn
, n = 0, 1, 2, ... and −∞ < t <∞

Then the value of continuation, F(ω; tK−1) can be defined as,

F(ω; tK−1) =
∞∑
j=0

ajLj(X),

where aj are constant coefficients. Other types of basis functions include

Jacobi polynomials, Gegenbauer polynomials, Legendre polynomials, and

Chebyshev polynomials.

Therefore, to find an approximation for F (ω; tK−1) by implementing the

least squares Monte Carlo approach, we use the first M < ∞ basis func-

tions. We denote this approximation as FM(ω; tK−1). We therefore estimate

FM(ω; tK−1) by regressing the discounted values C(ω, s; tk−1, T) onto the

specified basis functions. But this is only done for in the money paths at

time tK−1. We use these in the money paths for the estimation, since the

optimal decision dictates that the option will be exercised only when the

option is in the money. Since we are only focusing on the in the money paths

for the conditional expectation, far less basis functions are required to obtain

an accurate approximation.

112

Chapter 8

Results for American Puts

The results below are similar to the results obtained by Longstaff and Schwartz

[2001] paper, with Strike price of 40 and where the option is exercisable 50

times per year. The European option values are based on the closed form

Black-Scholes formula. The risk-free interest rate is assumed to be 6%, S

denotes the underlying stock price, and σ denotes the volatility of returns.

The number of years to expiration is two. The simulation is based on 100

000 paths of the stock price process, while implementing antithetic variates.

(s.e.) denotes the standard estimation error.

113

Table 8.1: Longstaff and Schwartz results

S0 T σ Closed form EU Bin Tree American put (s.e.)

36 1 0.2 3.844 4.476 4.471 (0.010)

36 2 0.2 3.763 4.841 4.820 (0.012)

36 1 0.4 6.711 7.102 7.092 (0.020)

36 2 0.4 7.7 8.510 8.489 (0.024)

38 1 0.2 2.852 3.252 3.242 (0.009)

38 2 0.2 2.991 3.748 3.737 (0.011)

38 1 0.4 5.834 6.145 6.137 (0.019)

38 2 0.4 6.979 7.672 7.668 (0.022)

40 1 0.2 2.066 2.313 2.313 (0.009)

40 2 0.2 2.356 2.883 2.876 (0.010)

40 1 0.4 5.06 5.311 5.306 (0.018)

40 2 0.4 6.326 6.923 6.921 (0.022)

42 1 0.2 1.465 1.618 1.616 (0.007)

42 2 0.2 1.841 2.212 2.209 (0.010)

42 1 0.4 4.379 4.581 4.581 (0.017)

42 2 0.4 5.736 6.247 6.243 (0.021)

44 1 0.2 1.017 1.111 1.116 (0.007)

44 2 0.2 1.429 1.691 1.675 (0.009)

44 1 0.4 3.783 3.946 3.955 (0.017)

44 2 0.4 5.202 5.648 5.622 (0.021)

114

8.1 Results for Weighted Laguerre polynomi-

als approximation

Table 8.2: Error analysis for Weighted Laguerre American put options

Halton Sobol Faure CG

Max Error 0.3534 0.0438 0.1676 0.105

Min Error 0.0005 0.0036 0.0007 0.0403

Error stdev 0.092314 0.013764 0.06051 0.065008

% avg est error 2.881% 0.573% 1.463% 1.928%

Avg CPU time 0.250785 0.258615 0.22502 0.04378

Longstaff and Schwartz used the same weighted Laguerre basis functions for

their article. They found the minimum and maximum approximation error to

be 0.7-2.4 cents, respectively, on 100 000 simulations using Antithetic variates

and 50 different exercise points per year. In our approximations we used only

1 000 simulations, implementing antithetic variates, for three different Low

discrepancy sequences and a Pseudo random generated sequence, with 50

different exercise points per year. Our aim was to cut on the computational

cost of the calculations and still achieve good accuracy.

For the Halton sequence, we obtained a minimum and maximum error of

0.05-35.34 cents, respectively. With a standard error deviation of 9 cents

and an average approximation error of 2.881%. The average computational

time used to calculate the approximation was 0.250785 seconds.

From our results in table 10.2, we observe that the Sobol sequence performed

exceptionally well with the smallest average approximation error of 0.573%.

Compared to the other sequences, the Sobol sequence yielded the best results.

Low discrepancy sequences are, however, computationally costly, with the

average time taken to compute these approximations being 5-6 times longer

compared to the Pseudo random sequences.

115

T
ab

le
8.

3:
E

u
ro

p
ea

n
an

d
A

m
er

ic
an

p
u
t

p
ri

ce
s

b
y

L
S
M

H
al

to
n

S
ob

ol
F

au
re

C
G

S
0

T
σ

E
u

ro
A

m
er

ic
an

E
u

ro
A

m
er

ic
an

E
u

ro
A

m
er

ic
an

E
u

ro
A

m
er

ic
an

3
6

1
0.

2
3.

75
6
3

4.
71

71
3.

92
74

4.
44

52
3.

71
07

4.
46

73
4.

08
75

4.
24

09
3
6

2
0.

2
3.

71
2
7

4.
93

06
3.

86
42

4.
83

26
3.

87
63

4.
93

57
4.

20
52

4.
74

26
3
6

1
0.

4
6.

41
8
9

7.
17

77
6.

49
44

7.
05

01
6.

92
69

7.
05

6
6.

95
36

6.
96

29
3
6

2
0.

4
7.

60
0
7

8.
58

88
7.

45
27

8.
49

38
8.

09
5

8.
34

81
8.

87
13

8.
38

3
3
8

1
0.

2
2.

91
3
4

3.
33

33
2.

64
05

3.
22

32
2.

72
67

3.
24

97
2.

89
3

3.
20

37
3
8

2
0.

2
2.

98
8
2

3.
83

22
3.

03
55

3.
77

87
2.

95
58

3.
73

88
3.

32
79

3.
61

19
3
8

1
0.

4
5.

75
9
1

6.
20

15
5.

87
18

6.
17

59
5.

66
6.

03
53

6.
31

92
6.

15
99

3
8

2
0.

4
6.

65
1
9

7.
31

56
6.

83
58

7.
62

52
6.

89
95

7.
52

51
7.

79
61

7.
46

98
4
0

1
0.

2
2.

10
5
5

2.
43

94
2.

05
4

2.
34

92
2.

15
78

2.
32

55
2.

23
65

2.
31

39
4
0

2
0.

2
2.

30
6
3

2.
95

34
2.

35
47

2.
89

13
2.

18
47

2.
78

44
2.

50
94

2.
82

36
4
0

1
0.

4
4.

68
6
9

5.
16

74
4.

70
74

5.
31

59
4.

85
35

5.
47

56
5.

27
45

5.
19

3
4
0

2
0.

4
6.

54
4
2

7.
20

47
6.

30
97

6.
95

31
6.

45
02

6.
88

95
7.

09
01

6.
96

41
4
2

1
0.

2
1.

59
5
7

1.
72

53
1.

39
14

1.
61

34
1.

47
01

1.
60

99
1.

55
18

1.
58

77
4
2

2
0.

2
1.

82
6
5

2.
37

02
1.

86
94

2.
22

29
1.

80
36

2.
17

92
2.

14
43

2.
24

98
4
2

1
0.

4
4.

26
9
7

4.
60

37
4.

20
03

4.
56

42
4.

33
17

4.
58

87
4.

56
52

4.
62

97
4
2

2
0.

4
5.

75
8

6.
22

5.
61

01
6.

22
84

5.
57

42
6.

09
6.

25
82

6.
06

67
4
4

1
0.

2
1.

02
8
8

1.
18

31
1.

11
86

1.
13

71
1.

08
77

1.
14

52
1.

07
99

1.
05

56
4
4

2
0.

2
1.

44
7
2

1.
67

55
1.

28
35

1.
67

08
1.

42
29

1.
60

12
1.

57
83

1.
68

45
4
4

1
0.

4
3.

76
8
6

3.
94

06
3.

84
94

3.
98

14
3.

75
69

3.
95

86
4.

14
75

3.
98

51
4
4

2
0.

4
5.

18
3
3

5.
65

37
5.

18
43

5.
61

83
5.

32
82

5.
49

6.
06

14
5.

50
37

[T
h

e
a
b

ov
e

re
su

lt
s

a
re

ob
ta

in
ed

fo
r

b
ot

h
E

u
ro

p
ea

n
an

d
A

m
er

ic
an

p
u

t
op

ti
on

s
im

p
le

m
en

ti
n

g
th

e
W

ei
gh

te
d

L
ag

u
er

re
b

a
si

s
fu

n
ct

io
n

s,
u

si
n

g
th

re
e

d
iff

er
en

t
L

ow
D

is
cr

ep
an

cy
se

q
u

en
ce

s.
C

G
d

en
ot

es
co

m
p

u
te

r
ge

n
er

at
ed

a
n

d
is

o
u

r
P

su
ed

o
ra

n
d

om
se

q
u

en
ce

.
S

0
d

en
ot

es
th

e
in

it
ia

l
p

ri
ce

of
th

e
u

n
d

er
ly

in
g

an
d
σ

d
en

ot
es

th
e

vo
la

ti
li

ty
w

h
ic

h
fl

u
ct

u
at

es
b

et
w

ee
n

0.
2

an
d

0.
4.

T
im

e
to

m
at

u
ri

ty
is

d
en

ot
ed

b
y

T
an

d
ch

an
ge

s
b

et
w

ee
n

1
an

d
3

ye
ar

s.
W

e
b

as
e

o
u

r
re

su
lt

s
on

1
00

0
an

ti
th

et
ic

si
m

u
la

ti
on

s,
u

si
n

g
50

ex
er

ci
se

p
oi

n
ts

p
er

y
ea

r.
].

116

Table 8.4: Weighted Laguerre respective errors
Halton Sobol Faure CG

S0 T σ (s.e.) Error (s.e.) Error (s.e.) Error (s.e.) Error

36 1 0.2 0.0841 0.2451 0.0755 0.0268 0.0800 0.0047 0.0853 0.2311
36 2 0.2 0.0884 0.1096 0.0848 0.0116 0.0944 0.1147 0.0932 0.0784
36 1 0.4 0.1406 0.0867 0.1353 0.0409 0.1363 0.0350 0.1322 0.1281
36 2 0.4 0.1754 0.1008 0.1576 0.0058 0.1727 0.1399 0.1633 0.1050
38 1 0.2 0.0845 0.0893 0.0807 0.0208 0.0836 0.0057 0.0937 0.0403
38 2 0.2 0.1002 0.0972 0.1042 0.0437 0.1000 0.0038 0.0953 0.1231
38 1 0.4 0.1396 0.0625 0.1381 0.0369 0.1321 0.1037 0.1387 0.0209
38 2 0.4 0.1642 0.3534 0.1650 0.0438 0.1700 0.1439 0.1661 0.1992
40 1 0.2 0.0860 0.1264 0.0797 0.0362 0.0807 0.0125 0.0735 0.0009
40 2 0.2 0.0986 0.0744 0.0971 0.0123 0.0956 0.0946 0.0939 0.0554
40 1 0.4 0.1372 0.1406 0.1397 0.0079 0.1365 0.1676 0.1365 0.1150
40 2 0.4 0.1633 0.2837 0.1669 0.0321 0.1651 0.0315 0.1631 0.0431
42 1 0.2 0.0745 0.1083 0.0694 0.0036 0.0747 0.0071 0.0724 0.0293
42 2 0.2 0.0893 0.1642 0.0917 0.0169 0.0858 0.0268 0.0921 0.0438
42 1 0.4 0.1340 0.0157 0.1450 0.0238 0.1368 0.0007 0.1315 0.0417
42 2 0.4 0.1608 0.0230 0.1575 0.0146 0.1664 0.1530 0.1636 0.1763
44 1 0.2 0.0607 0.0651 0.0561 0.0191 0.0633 0.0272 0.0649 0.0624
44 2 0.2 0.0820 0.0005 0.0812 0.0042 0.0817 0.0738 0.0845 0.0095
44 1 0.4 0.1363 0.0164 0.1257 0.0244 0.1270 0.0016 0.1411 0.0281
44 2 0.4 0.1513 0.0317 0.1587 0.0037 0.1635 0.1320 0.1695 0.1183

[The above results are obtained for American put options, using three different
Low Discrepancy sequences. CG denotes computer generated and is our Psuedo
random sequence. S0 denotes the initial price of the underlying and σ denotes
the volatility, which fluctuates between 0.2 and 0.4. Time to maturity is
denoted by T and changes between 1 and 2 years. We base our results on 1
000 antithetic simulations, using 50 exercise points per year. Error indicates
an approximation error for the simulated price relative to the Longstaff and
Schwartz [2001] results. (s.e.) denotes the standard theoretical estimation error.].

117

8.2 Results for Laguerre polynomials approx-

imation

Table 8.5: Error Analysis for Laguerre approximation

Halton Sobol Faure CG

Max Error 0.1907 0.1039 0.3979 0.0043

Min Error 0.0118 0.0004 0.0009 0.0292

Error stdev 0.052561 0.026392 0.093159 0.09988

% avg est error 1.267% 0.806% 1.382% 2.896%

Avg CPU time 0.260965 0.267205 0.254695 0.089875

As mentioned before, the Longstaff and Schwartz used weighted Laguerre

basis functions for their article. They found the minimum and maximum

approximation error to be 0.7-2.4 cents, respectively, on 100 000 simulations

using Antithetic variates and 50 different exercise points per year.

In our Laguerre approximations we used only 1 000 simulations, implement-

ing antithetic variates, for three different Low discrepancy sequences and

a Pseudo random generated sequence, with 50 different exercise points per

year.

For the Sobol sequence we obtained a minimum and maximum error of 0.04-

10.39 cents, respectively. With a standard error deviation of 2.6392 cents

and an average approximation error of 0.806%. The average computational

time used to calculate the approximation was 0.267205 seconds.

From our results in table 8.5, we observe that the Sobol sequence performed

exceptionally well with the smallest average approximation error of 0.806%.

Compared to the other sequences, the Sobol sequence yielded the most accu-

rate results. The Low discrepancy sequences were, however, computationally

costly, with the average time taken to compute these approximations being

3-4 times longer compared to the Pseudo random sequences.

118

T
ab

le
8.

6:
E

u
ro

p
ea

n
an

d
A

m
er

ic
an

p
u
t

p
ri

ce
s

b
y

L
S
M

si
m

u
la

ti
on

on
L

ag
u
er

re
P

ol
y
n
om

ia
l

b
as

is
fu

n
ct

io
n
s

H
al

to
n

S
ob

ol
F

au
re

C
G

S
0

T
σ

E
u

ro
A

m
er

ic
an

E
u

ro
A

m
er

ic
an

E
u

ro
A

m
er

ic
an

E
u

ro
A

m
er

ic
an

3
6

1
0.

2
3.

77
6
1

4.
62

22
3.

69
51

4.
43

77
3.

71
56

4.
54

73
3.

83
85

4.
50

22
3
6

2
0.

2
3.

81
8
8

4.
94

5
3.

67
76

4.
81

42
3.

82
14

4.
87

99
3.

76
74

4.
85

81
3
6

1
0.

4
6.

52
8

7.
04

6.
54

83
7.

10
92

6.
59

87
7.

08
45

6.
33

58
6.

91
72

3
6

2
0.

4
7.

36
2
7

8.
47

62
7.

83
68

8.
59

19
7.

91
14

8.
88

59
7.

66
93

8.
51

23
3
8

1
0.

2
2.

73
4
3

3.
34

87
2.

86
14

3.
26

85
2.

85
46

3.
25

67
2.

85
99

3.
27

92
3
8

2
0.

2
3.

09
0
3

3.
71

22
2.

87
69

3.
76

86
2.

98
23

3.
71

3
2.

92
71

3.
93

64
3
8

1
0.

4
5.

74
4
9

6.
19

08
5.

84
14

6.
19

3
5.

85
59

6.
09

74
5.

98
68

6.
49

85
3
8

2
0.

4
7.

03
7
7

7.
75

4
6.

80
3

7.
64

32
7.

03
37

7.
77

81
7.

02
15

7.
59

75
4
0

1
0.

2
1.

95
3
2

2.
27

68
2.

04
15

2.
30

49
1.

94
6

2.
33

82
2.

10
46

2.
36

61
4
0

2
0.

2
2.

17
6
4

2.
76

74
2.

42
76

2.
87

45
2.

30
56

2.
90

21
2.

39
87

3.
02

95
4
0

1
0.

4
4.

72
9
8

5.
33

15
4.

77
82

5.
35

58
5.

12
87

5.
38

09
5.

01
03

5.
33

06
4
0

2
0.

4
6.

12
0
1

7.
05

26
6.

21
6.

92
19

6.
33

8
6.

82
24

6.
43

17
7.

19
93

4
2

1
0.

2
1.

52
2
1

1.
69

77
1.

49
78

1.
64

98
1.

42
09

1.
61

79
1.

52
97

1.
68

84
4
2

2
0.

2
1.

96
1
2

2.
39

67
1.

85
48

2.
28

59
1.

89
28

2.
23

73
2.

04
24

2.
37

81
4
2

1
0.

4
4.

23
9
4

4.
40

57
4.

37
82

4.
56

97
4.

56
71

4.
81

04
4.

25
12

4.
55

66
4
2

2
0.

4
5.

41
6
4

6.
11

25
5.

59
97

6.
21

51
5.

61
75

6.
31

64
5.

56
11

6.
25

3
4
4

1
0.

2
0.

97
2
6

1.
16

56
0.

92
05

1.
11

76
0.

96
52

1.
10

69
1.

06
96

1.
16

61
4
4

2
0.

2
1.

58
1
2

1.
75

68
1.

29
08

1.
71

41
1.

37
68

1.
66

58
1.

39
72

1.
88

07
4
4

1
0.

4
3.

82
9
7

4.
08

17
3.

47
24

3.
96

88
3.

69
47

3.
91

84
3.

73
93

3.
95

73
4
4

2
0.

4
5.

01
0
4

5.
56

18
4.

93
08

5.
60

7
5.

33
49

5.
74

41
5.

14
81

5.
60

2

[T
h

e
ab

ov
e

re
su

lt
s

a
re

o
b
ta

in
ed

fo
r

b
ot

h
E

u
ro

p
ea

n
an

d
A

m
er

ic
an

p
u

t
op

ti
on

s,
u

si
n

g
th

re
e

d
if

-
fe

re
n
t

L
ow

D
is

cr
ep

a
n

cy
se

q
u

en
ce

s.
C

G
d

en
ot

es
co

m
p

u
te

r
ge

n
er

at
ed

an
d

is
ou

r
P

su
ed

o
ra

n
d

om
se

q
u

en
ce

.
S

0
d

en
o
te

s
th

e
in

it
ia

l
p

ri
ce

of
th

e
u
n

d
er

ly
in

g
an

d
σ

d
en

ot
es

th
e

vo
la

ti
li

ty
w

h
ic

h
fl

u
ct

u
at

es
b

et
w

ee
n

0.
2

a
n

d
0
.4

.
T

im
e

to
m

at
u

ri
ty

is
d

en
ot

ed
b
y

T
an

d
ch

an
ge

s
b

et
w

ee
n

1
an

d
3

ye
a
rs

.
W

e
b

as
e

ou
r

re
su

lt
s

on
1

00
0

an
ti

th
et

ic
si

m
u

la
ti

on
s,

u
si

n
g

50
ex

er
ci

se
p

oi
n
ts

p
er

ye
ar

.]
.

119

Table 8.7: Error analysis for respective Laguerre Approximations
Halton Sobol Faure CG

S0 T σ (s.e.) Error (s.e.) Error (s.e.) Error (s.e.) Error

36 1 0.2 0.0862 0.1502 0.0945 0.0343 0.0907 0.0753 0.1067 0.0242
36 2 0.2 0.1264 0.1240 0.1088 0.0068 0.1058 0.0589 0.1153 0.0181
36 1 0.4 0.1906 0.0510 0.1812 0.0182 0.2046 0.0065 0.2069 0.1838
36 2 0.4 0.2384 0.0118 0.2283 0.1039 0.2260 0.3979 0.2286 0.0043
38 1 0.2 0.0974 0.1047 0.0924 0.0245 0.1051 0.0127 0.0928 0.0292
38 2 0.2 0.1125 0.0228 0.1056 0.0336 0.1136 0.0220 0.1035 0.1914
38 1 0.4 0.2150 0.0518 0.1943 0.0540 0.1997 0.0416 0.1881 0.3505
38 2 0.4 0.2260 0.0850 0.2367 0.0258 0.2187 0.1091 0.2123 0.0725
40 1 0.2 0.0800 0.0362 0.0789 0.0081 0.0891 0.0252 0.0856 0.0521
40 2 0.2 0.1076 0.1116 0.1218 0.0045 0.1026 0.0231 0.1115 0.1445
40 1 0.4 0.1824 0.0235 0.1766 0.0478 0.1740 0.0729 0.1708 0.0186
40 2 0.4 0.2284 0.1316 0.2157 0.0009 0.2232 0.0986 0.2180 0.2793
42 1 0.2 0.0754 0.0807 0.0721 0.0328 0.0772 0.0009 0.0716 0.0714
42 2 0.2 0.0884 0.1907 0.1137 0.0799 0.1071 0.0313 0.0999 0.1661
42 1 0.4 0.1757 0.1823 0.1724 0.0183 0.1754 0.2224 0.1726 0.0254
42 2 0.4 0.2184 0.1305 0.2104 0.0279 0.2224 0.0734 0.2186 0.0050
44 1 0.2 0.0704 0.0476 0.0654 0.0004 0.0722 0.0111 0.0681 0.0561
44 2 0.2 0.0862 0.0818 0.0917 0.0391 0.0932 0.0092 0.0848 0.1907
44 1 0.4 0.1583 0.1247 0.1601 0.0118 0.1709 0.0386 0.1612 0.0093
44 2 0.4 0.1907 0.0602 0.2069 0.0150 0.2029 0.1221 0.2095 0.0450

[The above results are obtained for American put options, using three different
Low Discrepancy sequences. CG denotes computer generated and is our Psuedo
random sequence. S0 denotes the initial price of the underlying and σ denotes
the volatility, which fluctuates between 0.2 and 0.4. Time to maturity is
denoted by T and changes between 1 and 2 years. We base our results on 1
000 antithetic simulations, using 50 exercise points per year. Error indicates
an approximation error for the simulated price relative to the Longstaff and
Schwartz [2001] results. (s.e.) denotes the standard theoretical estimation error.].

120

8.3 Results for Monomial polynomials approx-

imation

Table 8.8: Error Analysis for Monomial approximation

Error Aanlysis

Halton Sobol Faure CG

Max Error 0.1684 0.1229 0.370783 0.226

Min Error 0.0182 0.0043 0.006312 0.1093

Error stdev 0.039232 0.026314 0.091495 0.061766

% avg est error 0.4468% 1.1137% 3.0857% 2.5687%

Avg CPU time 0.214855 0.25002 0.133594 0.084405

As mentioned before, the Longstaff and Schwartz used the Weighted Laguerre

basis functions for their article. They found the minimum and maximum ap-

proximation error to be 0.7-2.4 cents, respectively, on 100 000 simulations us-

ing Antithetic variates and 50 different exercise points per year. In our Mono-

mial approximations we used only 1 000 simulations, implementing antithetic

variates, for three different Low discrepancy sequences and a Pseudo random

generated sequence, with 50 different exercise points per year. For the Faure

sequence we obtained a minimum and maximum error of 0.6312 - 17.0783

cents, respectively. With a standard error deviation of 9.1495 cents and an

average approximation error of 3.0857%. The average computational time

used to calculate the approximation was 0.133594 seconds. From our results

in table 8.8, we observe that the Halton sequence performed exceptionally

well, with the smallest average approximation error of 0.4468%. Compared to

the other sequences, the Halton sequence yielded the most accurate results.

The Low discrepancy sequences were, however computationally costly, with

the average time taken to compute these approximations being 1.5-3 times

longer compared to the Pseudo random sequences.

121

T
ab

le
8.

9:
E

u
ro

p
ea

n
an

d
A

m
er

ic
an

p
u
t

p
ri

ce
s

b
y

L
S
M

si
m

u
la

ti
on

on
M

on
om

ia
l

P
ol

y
n
om

ia
l

b
as

is
fu

n
ct

io
n
s

H
al

to
n

S
ob

ol
F

au
re

C
G

S
0

T
si

g
m

a
E

u
ro

A
m

er
ic

an
E

u
ro

A
m

er
ic

an
E

u
ro

A
m

er
ic

an
E

u
ro

A
m

er
ic

an

3
6

1
0.

2
3
.7

5
22

4.
51

52
3.

91
72

4.
49

54
3.

89
99

4.
49

55
3.

87
34

4.
53

03
3
6

2
0.

2
3
.6

7
00

4.
76

36
3.

78
02

4.
87

57
3.

53
11

4.
70

11
3.

82
69

4.
92

91
3
6

1
0.

4
6
.5

6
63

7.
23

07
6.

75
11

7.
12

80
6.

83
17

7.
30

71
6.

71
60

7.
14

12
3
6

2
0.

4
7
.6

6
88

8.
53

02
7.

69
39

8.
52

59
7.

61
99

8.
44

31
7.

57
74

8.
73

40
3
8

1
0.

2
2
.7

1
30

3.
33

15
2.

71
46

3.
23

60
2.

96
46

3.
31

50
2.

92
32

3.
35

93
3
8

2
0.

2
2
.8

4
05

3.
78

34
3.

05
60

3.
73

07
3.

04
77

3.
81

75
2.

90
56

3.
77

15
3
8

1
0.

4
5
.8

5
02

6.
19

51
5.

55
97

6.
10

88
5.

98
14

6.
23

03
5.

90
86

6.
08

89
3
8

2
0.

4
7
.1

4
15

7.
79

06
6.

64
99

7.
62

02
6.

59
07

7.
57

86
6.

86
14

7.
75

12
4
0

1
0.

2
2
.0

0
06

2.
36

66
2.

17
69

2.
38

12
2.

11
53

2.
36

56
1.

95
87

2.
27

85
4
0

2
0.

2
2
.1

5
06

2.
84

43
2.

56
01

2.
86

32
2.

51
10

2.
94

09
2.

34
39

2.
94

06
4
0

1
0.

4
4
.9

5
47

5.
28

98
4.

84
08

5.
26

81
5.

19
73

5.
48

10
4.

95
47

5.
27

53
4
0

2
0.

4
6
.2

0
87

6.
85

98
6.

25
21

6.
94

82
6.

35
49

7.
10

22
6.

12
49

7.
12

34
4
2

1
0.

2
1
.4

4
55

1.
69

21
1.

41
01

1.
64

32
1.

46
17

1.
72

01
1.

34
77

1.
66

39
4
2

2
0.

2
1
.6

9
79

2.
17

49
1.

88
02

2.
26

74
1.

88
85

2.
24

61
2.

01
09

2.
33

79
4
2

1
0.

4
4
.4

3
25

4.
66

70
4.

19
26

4.
46

51
4.

28
69

4.
72

80
4.

40
94

4.
51

46
4
2

2
0.

4
5
.6

4
10

6.
33

54
5.

76
20

6.
19

13
6.

08
49

6.
61

38
5.

65
87

6.
41

96
4
4

1
0.

2
0
.8

9
77

1.
07

03
0.

98
02

1.
14

59
1.

13
97

1.
23

70
1.

10
79

1.
27

75
4
4

2
0.

2
1
.4

6
35

1.
69

35
1.

22
81

1.
70

75
1.

35
21

1.
66

87
1.

36
96

1.
69

55
4
4

1
0.

4
3
.6

2
10

3.
78

86
3.

81
95

3.
96

98
3.

73
56

4.
25

58
3.

66
77

4.
01

48
4
4

2
0.

4
5
.1

5
27

5.
69

49
5.

12
30

5.
57

44
4.

93
83

5.
50

91
5.

29
10

5.
76

54

[T
h

e
ab

ov
e

re
su

lt
s

a
re

o
b
ta

in
ed

fo
r

b
ot

h
E

u
ro

p
ea

n
an

d
A

m
er

ic
an

p
u

t
op

ti
on

s,
u

si
n

g
th

re
e

d
if

-
fe

re
n
t

L
ow

D
is

cr
ep

a
n

cy
se

q
u

en
ce

s.
C

G
d

en
ot

es
co

m
p

u
te

r
ge

n
er

at
ed

an
d

is
ou

r
P

su
ed

o
ra

n
d

om
se

q
u

en
ce

.
S

0
d

en
o
te

s
th

e
in

it
ia

l
p

ri
ce

of
th

e
u
n

d
er

ly
in

g
an

d
σ

d
en

ot
es

th
e

vo
la

ti
li

ty
w

h
ic

h
fl

u
ct

u
at

es
b

et
w

ee
n

0.
2

a
n

d
0
.4

.
T

im
e

to
m

at
u

ri
ty

is
d

en
ot

ed
b
y

T
an

d
ch

an
ge

s
b

et
w

ee
n

1
an

d
3

ye
a
rs

.
W

e
b

as
e

ou
r

re
su

lt
s

on
1

00
0

an
ti

th
et

ic
si

m
u

la
ti

on
s,

u
si

n
g

50
ex

er
ci

se
p

oi
n
ts

p
er

ye
ar

.]
.

122

Table 8.10: Error analysis for respective Monomial Approximations
Halton Sobol Faure CG

S0 T σ (s.e.) Error (s.e.) Error (s.e.) Error (s.e.) Error

36 1 0.2 0.0957 0.0432 0.0937 0.0234 0.1052 0.0234 0.0909 0.0523
36 2 0.2 0.1029 0.0574 0.1207 0.0547 0.1167 0.0547 0.1169 0.0891
36 1 0.4 0.1920 0.1397 0.1888 0.0370 0.1791 0.0370 0.1879 0.0402
36 2 0.4 0.2080 0.0422 0.2380 0.0379 0.2327 0.0379 0.2267 0.2260
38 1 0.2 0.0982 0.0875 0.1012 0.0080 0.0936 0.0080 0.0880 0.1093
38 2 0.2 0.1129 0.0484 0.1055 0.0043 0.1197 0.0043 0.1048 0.0265
38 1 0.4 0.1890 0.0561 0.1945 0.0302 0.1841 0.0302 0.1860 0.0591
38 2 0.4 0.2102 0.1216 0.2151 0.0488 0.2127 0.0488 0.2291 0.0812
40 1 0.2 0.0853 0.0536 0.0896 0.0682 0.0904 0.0682 0.0878 0.0355
40 2 0.2 0.0999 0.0347 0.1026 0.0158 0.1062 0.0158 0.1139 0.0556
40 1 0.4 0.1854 0.0182 0.1781 0.0399 0.1985 0.0399 0.1706 0.0367
40 2 0.4 0.2275 0.0612 0.2222 0.0272 0.2312 0.0272 0.2170 0.2034
42 1 0.2 0.0779 0.0751 0.0759 0.0262 0.0803 0.0262 0.0793 0.0469
42 2 0.2 0.0990 0.0311 0.0977 0.0614 0.1019 0.0614 0.0974 0.1259
42 1 0.4 0.1846 0.0790 0.1738 0.1229 0.1711 0.1229 0.1664 0.0674
42 2 0.4 0.2143 0.0924 0.2145 0.0517 0.2295 0.0517 0.2051 0.1716
44 1 0.2 0.0616 0.0477 0.0612 0.0279 0.0705 0.0279 0.0744 0.1675
44 2 0.2 0.0957 0.0185 0.0975 0.0325 0.0943 0.0325 0.0908 0.0055
44 1 0.4 0.1719 0.1684 0.1667 0.0128 0.1709 0.0128 0.1640 0.0668
44 2 0.4 0.2126 0.0729 0.2003 0.0476 0.1993 0.0476 0.2077 0.1184

[The above results are obtained for American put options, using three different
Low Discrepancy sequences. CG denotes computer generated and is our Psuedo
random sequence. S0 denotes the initial price of the underlying and σ denotes
the volatility which fluctuates between 0.2 and 0.4. Time to maturity is
denoted by T and changes between 1 and 2 years. We base our results on 1
000 antithetic simulations, using 50 exercise points per year. Error indicates
an approximation error for the simulated price relative to the Longstaff and
Schwartz [2001] results. (s.e.) denotes the standard theoretical estimation error.].

123

8.4 Results for Hermite polynomials approx-

imation

Table 8.11: Error Analysis for Hermite approximation

Halton Sobol Faure CG

Max Error 0.4969 0.2987 0.3596 0.3333
Min Error 0.0011 0.0239 0.0058 0.0034

Error stdev 0.0392 0.0263 0.0915 0.0618
% avg est error 3.849% 2.791% 2.719% 2.794%
Avg CPU time 1.0039 0.3063 0.0602 0.1273

As mentioned previously, the Longstaff and Schwartz used the Weighted

Laguerre basis functions for their article. They found the minimum and

maximum approximation error to be 0.7-2.4 cents, respectively, on 100 000

simulations using Antithetic variates and 50 different exercise points per year.

In our Laguerre approximations we used only 1 000 simulations, implement-

ing antithetic variates, for three different Low discrepancy sequences and a

Pseudo random generated sequence, with 50 different exercise points per year.

For the CG or computer generated (Pseudo random) sequence we obtained

a minimum and maximum error of 0.34 - 33.33 cents, respectively. With a

standard error deviation of 6.18 cents and an average approximation error of

2.794%. The average computational time used to calculate the approxima-

tion was 0.1273 seconds. From our results in table 22, we observe that all

three low discrepancy and Pseudo random sequence obtained relatively large

average estimation errors. These average errors are calculated over the 20

simulations as seen in table 8.11. The Low discrepancy sequences were, how-

ever, computationally costly, with the average time taken to compute these

approximations being 2-10 times longer compared to the Pseudo random

sequences.

124

T
ab

le
8.

12
:

R
es

u
lt

s
fo

r
H

er
m

it
e

p
ol

y
n
om

ia
ls

ap
p
ro

x
im

at
io

n
H

al
to

n
S

ob
ol

F
au

re
C

G

S
0

T
σ

E
u

ro
A

m
er

ic
an

E
u

ro
A

m
er

ic
an

E
u

ro
A

m
er

ic
an

E
u

ro
A

m
er

ic
an

3
6

1
0.

2
3.

94
1
3

4.
45

57
4.

05
86

4.
59

34
3.

78
24

4.
40

73
3.

76
89

4.
37

31
3
6

2
0.

2
3.

88
4
5

4.
95

69
3.

56
03

4.
84

98
3.

53
02

4.
81

52
3.

86
13

4.
89

46
3
6

1
0.

4
7.

02
9
9

7.
41

69
6.

60
56

7.
01

33
6.

51
38

6.
96

98
6.

94
67

7.
42

43
3
6

2
0.

4
7.

90
1
1

8.
86

21
7.

91
19

8.
56

99
7.

89
61

8.
78

78
7.

53
74

8.
37

07
3
8

1
0.

2
2.

78
5
0

3.
30

79
2.

77
72

3.
21

42
2.

89
38

3.
42

56
2.

76
02

3.
23

73
3
8

2
0.

2
2.

96
6
8

3.
73

61
3.

19
10

3.
82

75
2.

96
72

3.
70

02
3.

21
20

3.
85

09
3
8

1
0.

4
5.

52
3
5

5.
86

85
5.

90
69

6.
43

77
6.

24
20

6.
44

08
5.

70
79

6.
13

56
3
8

2
0.

4
6.

91
4
0

7.
46

49
6.

89
83

7.
78

65
6.

77
04

7.
71

08
6.

95
86

7.
62

67
4
0

1
0.

2
2.

27
2
9

2.
45

70
2.

24
74

2.
46

54
2.

10
88

2.
34

13
2.

18
27

2.
45

04
4
0

2
0.

2
2.

21
0
8

2.
89

30
2.

43
37

2.
94

30
2.

38
25

2.
84

66
2.

43
89

2.
98

38
4
0

1
0.

4
5.

26
8
3

5.
80

49
5.

07
88

5.
40

00
4.

91
98

5.
17

98
5.

00
96

5.
47

33
4
0

2
0.

4
5.

99
0
5

6.
65

71
6.

14
41

7.
03

99
6.

08
57

6.
88

38
6.

41
08

7.
04

34
4
2

1
0.

2
1.

53
9
2

1.
70

29
1.

36
64

1.
59

10
1.

42
99

1.
58

79
1.

51
90

1.
64

39
4
2

2
0.

2
1.

90
8
9

2.
25

85
1.

75
77

2.
22

99
1.

82
73

2.
30

41
1.

68
96

2.
11

45
4
2

1
0.

4
4.

81
8
9

4.
91

77
4.

44
90

4.
63

85
3.

94
70

4.
37

46
3.

83
41

4.
26

99
4
2

2
0.

4
5.

43
2
9

6.
14

17
5.

97
39

6.
45

54
5.

49
04

6.
17

11
5.

75
91

6.
47

15
4
4

1
0.

2
0.

97
4
4

1.
06

03
1.

04
24

1.
21

51
0.

89
60

1.
09

24
0.

97
34

1.
09

44
4
4

2
0.

2
1.

39
5
2

1.
70

52
1.

53
46

1.
80

53
1.

48
12

1.
77

33
1.

51
58

1.
72

01
4
4

1
0.

4
3.

98
7
1

4.
21

97
3.

68
98

3.
91

12
3.

91
14

4.
10

26
3.

97
31

4.
13

82
4
4

2
0.

4
5.

39
4
1

5.
94

43
4.

87
91

5.
42

08
5.

31
43

5.
98

16
4.

90
74

5.
51

47

[T
h

e
ab

ov
e

re
su

lt
s

a
re

o
b
ta

in
ed

fo
r

b
ot

h
E

u
ro

p
ea

n
an

d
A

m
er

ic
an

p
u

t
op

ti
on

s,
u

si
n

g
th

re
e

d
if

-
fe

re
n
t

L
ow

D
is

cr
ep

a
n

cy
se

q
u

en
ce

s.
C

G
d

en
ot

es
co

m
p

u
te

r
ge

n
er

at
ed

an
d

is
ou

r
P

su
ed

o
ra

n
d

om
se

q
u

en
ce

.
S

0
d

en
o
te

s
th

e
in

it
ia

l
p

ri
ce

of
th

e
u
n

d
er

ly
in

g
an

d
σ

d
en

ot
es

th
e

vo
la

ti
li

ty
w

h
ic

h
fl

u
ct

u
at

es
b

et
w

ee
n

0.
2

a
n

d
0
.4

.
T

im
e

to
m

at
u

ri
ty

is
d

en
ot

ed
b
y

T
an

d
ch

an
ge

s
b

et
w

ee
n

1
an

d
3

ye
a
rs

.
W

e
b

as
e

ou
r

re
su

lt
s

on
1

00
0

an
ti

th
et

ic
si

m
u

la
ti

on
s,

u
si

n
g

50
ex

er
ci

se
p

oi
n
ts

p
er

ye
ar

.]
.

125

Table 8.13: Error analysis for respective Hermite Approximations
Halton Sobol Faure CG

S0 T σ (s.e.) Error (s.e.) Error (s.e.) Error (s.e.) Error

36 1 0.2 0.101 0.016 0.091 0.121 0.099 0.065 0.101 0.099
36 2 0.2 0.108 0.136 0.122 0.029 0.113 0.006 0.113 0.074
36 1 0.4 0.184 0.326 0.198 0.078 0.185 0.121 0.178 0.333
36 2 0.4 0.215 0.374 0.223 0.082 0.236 0.300 0.226 0.117
38 1 0.2 0.097 0.064 0.085 0.030 0.098 0.182 0.096 0.007
38 2 0.2 0.119 0.001 0.121 0.093 0.109 0.035 0.105 0.116
38 1 0.4 0.192 0.270 0.199 0.299 0.189 0.302 0.186 0.003
38 2 0.4 0.220 0.204 0.223 0.117 0.205 0.042 0.222 0.042
40 1 0.2 0.090 0.144 0.090 0.152 0.088 0.028 0.091 0.137
40 2 0.2 0.099 0.014 0.105 0.064 0.105 0.032 0.098 0.105
40 1 0.4 0.184 0.497 0.173 0.092 0.174 0.128 0.193 0.165
40 2 0.4 0.216 0.264 0.213 0.119 0.234 0.037 0.218 0.122
42 1 0.2 0.086 0.086 0.085 0.026 0.085 0.029 0.075 0.027
42 2 0.2 0.106 0.052 0.089 0.024 0.092 0.098 0.096 0.092
42 1 0.4 0.189 0.330 0.201 0.051 0.193 0.213 0.182 0.318
42 2 0.4 0.213 0.101 0.220 0.212 0.207 0.072 0.233 0.228
44 1 0.2 0.068 0.058 0.067 0.097 0.076 0.026 0.060 0.024
44 2 0.2 0.083 0.030 0.094 0.130 0.095 0.098 0.082 0.045
44 1 0.4 0.176 0.263 0.159 0.046 0.161 0.146 0.164 0.181
44 2 0.4 0.213 0.322 0.204 0.201 0.209 0.360 0.210 0.107

[The above results are obtained for American put options, using three
different Low Discrepancy sequences. CG denotes computer generated
and is our Psuedo random sequence. S0 denotes the initial price of
the underlying and σ denotes the volatility which fluctuates between
0.2 and 0.4. Time to maturity is denoted by T and changes between
1 and 2 years. We base our results on 1 000 antithetic simulations,
using 50 exercise points per year. Error indicates an approximation
error for the simulated price relative to the Longstaff and Schwartz
[2001] results. (s.e.) denotes the standard theoretical estimation error.].

126

8.5 Results with Control variates and Weighted

Laguerre polynomials approximation

Table 8.14: Error Analysis for Control variate approximation

Halton Sobol Faure

Max Error 0.4286 0.4808 0.4793
Min Error 0.0041 0.0052 0.0002

Error stdev 0.1525 0.1683 0.1534
% avg est error 2.5984% 2.9105% 2.5938%
Avg CPU time 0.5508 0.5922 1.0766

We implemented the Pseudo random sequence as the control variate in the

following approximation. In the control variate results we obtained +2.5%

errors (from table 8.14) for all three low discrepancy sequences, compared

to the Longstaff and Schwartz results. From table 8.16 we observe that in

a relatively high volatility environment, the control variate approximations

underestimate the price of the option. But in lower volatility environment

the approximations are accurate.

In our control variate approximations, we used only 5 000 simulations, im-

plementing antithetic variates, for three different low discrepancy sequences

with 50 different exercise points per year.

The control variate approximations are also computationally more demand-

ing using a minimum of 0.5508 seconds for the Halton approximate and

a maximum of 1.0766 seconds for computing the Faure estimate. This is

far more time that is necessary to obtain a approximate compared to the

Antithetic method.

The method is applicable and deliver relatively good accuracy in low volatil-

ity situations, but should be avoided when working with relatively large

volatilities.

127

Table 8.15: Results with control variates and weighted Laguerre polynomials
approximation

Halton Sobol Faure

S0 T σ Euro American Euro American Euro American

36 1 0.2 3.8265 4.452 3.8972 4.4849 3.7528 4.4764
36 2 0.2 3.7698 4.8303 3.691 4.815 3.6414 4.8351
36 1 0.4 6.5797 6.7407 6.5949 6.8585 6.5581 6.8061
36 2 0.4 7.7889 8.127 7.8946 8.0072 7.8166 8.0087
38 1 0.2 2.8821 3.2481 2.9143 3.2241 2.8646 3.2442
38 2 0.2 3.0031 3.7403 3.0293 3.7206 2.9891 3.7452
38 1 0.4 5.781 5.8379 5.8333 5.8052 5.7853 5.8291
38 2 0.4 7.0211 7.2404 6.9924 7.2014 7.2753 7.29
40 1 0.2 2.1167 2.3221 2.0461 2.2943 2.089 2.3062
40 2 0.2 2.2888 2.8572 2.3881 2.8192 2.4172 2.8416
40 1 0.4 5.064 5.0914 5.015 5.0882 5.1531 5.07
40 2 0.4 6.4124 6.592 6.198 6.5572 6.2359 6.591
42 1 0.2 1.3966 1.6332 1.4819 1.6256 1.4822 1.6595
42 2 0.2 1.8616 2.2192 1.7891 2.2008 1.8342 2.2126
42 1 0.4 4.2135 4.4233 4.2852 4.3102 4.3511 4.3828
42 2 0.4 5.5795 6.0497 5.8121 5.9059 5.751 6.0059
44 1 0.2 0.9785 1.1229 1.0543 1.1026 0.9858 1.1074
44 2 0.2 1.3534 1.6538 1.4684 1.6969 1.4388 1.6787
44 1 0.4 3.7401 3.7102 3.7163 3.7882 3.7781 3.7536
44 2 0.4 5.1496 5.3319 5.2961 5.3485 5.358 5.4421

[The above results are obtained for both European and American put options,
using three different Low Discrepancy sequences. Psuedo random sequence
will be our control estimate. S0 denotes the initial price of the underlying
and σ denotes the volatility which fluctuates between 0.2 and 0.4. Time to
maturity is denoted by T and changes between 1 and 2 years. We base our
results on 5 000 antithetic simulations, using 50 exercise points per year.].

128

Table 8.16: Errors for respective control variate Approximations
Halton Sobol Faure

S0 T σ (s.e.) Error (s.e.) Error (s.e.) Error

36 1 0.2 0.0186 0.02 0.0192 0.0129 0.0186 0.0044
36 2 0.2 0.021 0.0093 0.0228 0.006 0.0207 0.0141
36 1 0.4 0.0353 0.3503 0.035 0.2325 0.0331 0.2849
36 2 0.4 0.0387 0.361 0.0374 0.4808 0.0355 0.4793
38 1 0.2 0.0215 0.0041 0.0221 0.0199 0.0235 0.0002
38 2 0.2 0.0244 0.0053 0.0233 0.0144 0.0237 0.0102
38 1 0.4 0.0337 0.3011 0.0326 0.3338 0.0358 0.3099
38 2 0.4 0.0378 0.4286 0.0392 0.4676 0.0403 0.379
40 1 0.2 0.0232 0.0091 0.0269 0.0187 0.0223 0.0068
40 2 0.2 0.0202 0.0218 0.0217 0.0598 0.0242 0.0374
40 1 0.4 0.0384 0.2166 0.0343 0.2198 0.0335 0.238
40 2 0.4 0.0412 0.329 0.041 0.3638 0.0405 0.33
42 1 0.2 0.0224 0.0162 0.0229 0.0086 0.0232 0.0425
42 2 0.2 0.024 0.0132 0.0238 0.0052 0.0234 0.0066
42 1 0.4 0.033 0.1647 0.038 0.2778 0.0318 0.2052
42 2 0.4 0.0343 0.1933 0.0357 0.3371 0.0375 0.2371
44 1 0.2 0.0254 0.0049 0.0237 0.0154 0.0234 0.0106
44 2 0.2 0.0231 0.0212 0.0219 0.0219 0.0241 0.0037
44 1 0.4 0.0332 0.2468 0.0353 0.1688 0.034 0.2034
44 2 0.4 0.0424 0.2901 0.0398 0.2735 0.038 0.1799

[The above results are obtained for American put options, using three different
Low Discrepancy sequences. S0 denotes the initial price of the underlying and σ
denotes the volatility. Time to maturity is denoted by T. We base our results on
5 000 antithetic simulations, using 50 exercise points per year. Error indicates
an approximation error for the simulated price relative to the Longstaff and
Schwartz [2001] results. (s.e.) denotes the standard theoretical estimation error.].

129

Chapter 9

Results for

American-Bermuda-Asian

option

Finally we get to the pricing of American Asian options. We use the results

above to obtain the best approximate for the American Asian options as pos-

sible, without sacrificing computational efficiency. We use 1000 simulations

to approximate the American average options on weighted Laguerre basis

functions with 2 low discrepancy sequences (e.g Halton and Sobol) as well as

with the Pseudo random sequence. The Faure sequence yielded inaccurate

results when approximating the American average options and has therefore

been excluded from the pricing in this section.

We price an American Asian option with the following attributes. The strike

price for this option is K = 100, the initial average of the option is denoted by

A, the risk-free interest rate is r = 6%, the underlying price is denoted by S,

and the initial underlying price is denoted by S0. The time to maturity for the

option is two years and has 100 discretization points per year. The volatility

of the underlying is assumed to be 0.2 and the average of the stock price is

calculated over three months, prior to the exercise date. We expect that the

130

calculation of the American Asian option will demand more computational

effort due to the calculation of the average share price over a three-month

look back period.

Table 9.1: Error Analysis for American Average options

Halton Sobol CG

Max Error 0.0091 0.0111 0.0055

Min Error 1.0737 0.4365 1.3659

Error stdev 0.2973 0.1357 0.4279

% avg est error 3.9478% 1.1535% 4.0010%

Avg CPU time 0.4135 0.4687 0.3265

From table 9.1, the error analysis that was performed confirmed that the

Sobol sequence yielded the smallest relative error of approximately 1.15%,

the Halton sequence yielded an error of 3.9478%, and the Pseudo random

sequence yielded an error of 4%. The Halton and Pseudo random sequence

delivered results with relatively high errors under a low number of simula-

tions. The error standard deviation for the above mentioned three sequences

was 13.57 cents, 29.73 cents, and 42.79 cents respectively. In terms of

computational effort required to run the Asian option algorithm, it took

the Quasi random sequences approximately 0.1 seconds longer to execute

the algorithm, but with a significant increase in accuracy from the Sobol

sequence.

131

T
ab

le
9.

2:
A

m
er

ic
an

av
er

ag
e

op
ti

on
s

w
it

h
L

ow
d
is

cr
ep

an
cy

se
q
u
en

ce
s

F
in

it
e

d
iff

S
ob

ol
H

al
to

n
C

G

A
S

0
A

m
er

A
v
g

A
m

er
A

v
g

(s
.e

.)
A

m
er

A
v
g

(s
.e

.)
A

m
er

A
v
g

(s
.e

.)

9
0

80
0.

94
9

0.
98

62
0.

03
69

0.
91

93
0.

03
56

0.
95

45
0.

02
53

9
0

90
3.

26
7

3.
27

92
0.

06
98

3.
19

04
0.

06
78

3.
15

55
0.

04
61

9
0

1
00

7.
88

9
7.

81
62

0.
10

54
8.

05
0.

10
75

7.
67

66
0.

08
9

9
0

1
10

14
.5

3
8

14
.7

23
0.

13
46

14
.8

43
2

0.
13

95
14

.9
06

3
0.

13
74

9
0

1
20

22
.4

2
3

22
.6

43
6

0.
12

36
23

.0
13

6
0.

14
36

23
.0

62
4

0.
15

62
10

0
8
0

1
.1

08
1.

11
91

0.
04

0.
93

0.
03

58
1.

08
88

0.
03

55
10

0
9
0

3.
71

3.
74

86
0.

07
69

3.
56

46
0.

07
34

3.
50

3
0.

06
78

10
0

10
0

8
.6

58
8.

62
43

0.
11

51
8.

54
65

0.
11

33
8.

38
45

0.
10

63
10

0
11

0
1
5
.7

17
15

.6
69

6
0.

14
72

15
.7

07
9

0.
14

75
15

.3
70

8
0.

14
02

10
0

12
0

2
3
.8

11
23

.8
63

5
0.

15
34

24
.1

20
5

0.
16

94
23

.7
96

4
0.

17
02

11
0

8
0

1
.2

88
1.

31
99

0.
04

46
1.

24
48

0.
04

31
1.

12
85

0.
03

63
11

0
9
0

4
.1

36
4.

12
33

0.
08

24
4.

04
95

0.
08

05
3.

99
55

0.
07

45
11

0
10

0
9
.8

21
9.

80
61

0.
12

94
9.

16
95

0.
12

06
9.

04
48

0.
11

34
11

0
11

0
1
7
.3

99
16

.9
62

5
0.

16
42

16
.3

25
3

0.
15

51
16

.0
33

1
0.

14
96

11
0

12
0

2
5
.4

53
25

.0
88

3
0.

18
04

48
25

.0
00

4
0.

17
83

24
.2

44
7

0.
17

8

132

Chapter 10

GPU Optimization of Longstaff

and Schwartz

GPU’s, or graphical processing units, were primarily designed because of an

increasing demand for computers to process and display sophisticated graph-

ics [14]. Graphic calculations have a parallel nature; GPUs were specifically

designed with the ability to process these calculations. In many circum-

stances it has been discovered that it is more beneficial to employ GPU’s

for image and graphical processing. The most distinguishing factors that

separates a Central processing unit or CPU from a GPU is with focus on

throughput rather than latency. There are, however, sacrifices when working

with GPUs. GPUs generally have slower clock speeds compared to CPUs,

but a GPU has an extensive amount of processors. Thus, it make sense that

GPUs are excellent at tasks, which are mathematically independent, and

can process a large number of parallel instructions. GPUs necessarily do not

excel at mathematically complex problems.

133

10.1 Graphical processing unit specifications

A graphical processing unit reaches an almost perfect balance between speed

and power. The central processing unit has a higher clock speed and con-

sumes less power in comparison with a graphical processing unit. It is crucial

to understand how the graphical processing unit is built to enable us to

program it efficiently. When we look deeper into a GPU, we see that a

fundamental unit in the GPU is a CUDA core; a combined set of CUDA

cores forms a streaming multiprocessor (SM). The streaming processor is

comparable to a central processing units core. The programming language

that is used on GPUs is known as CUDA programming. In this project,

a Nvidea GeForce GTX 1060 6GB is available for use. This device has 10

streaming multiprocessors, which consists of 128 processors each, with a total

of 1280 CUDA cores. A computer that has both a central processing unit

and graphical processing unit is called a heterogeneous computer, referring

to the CPU as the host and GPU as the device. We also have that if the

CPU and GPU resides on the same chip then they share common memory.

This setup of CPU and GPU will have low latency as the memory is shared

and do not have to be tranfered between host and device. In our case we are

working with a discrete device where the GPU device has its own memory

and if any computations are done, we will have to transfer the memory from

device to host and vice versa.

134

Figure 10.1: CPU and GPU architectures [1]

Figure 10.1 illustrates the structural differences between central processing

units and graphical processing units. As seen from figure 10.1, the GPU

is supplied with multiple weaker cores compared to the strong arithmetic

logical units (ALUs) of the central processing unit. These are massive high

performance cores, but there are only a few of them. Smaller versions

of the control unit and shared caches are shared between these streaming

processors on the GPU. Newer generations of central processing units have

multiple cores and each core has a hierarchy of caches and a comprehensive

control unit that is enabled to handle speculation and out-of-order execution

of instructions. The streaming multiprocessor consists of 128 analogous

processors, which share a small amount of local memory. This local memory

consists out of an instruction cache, L1 data cache, and shared memory.

Streaming multiprocessors work together on a single task at any given time.

The streaming multiprocessors use shared memory to process a single task

at a time. This is computationally cheap as shared memory is characterized

to have very small latency. However, the shared memory is of limited in

135

size. Parallel computing on the GPU is accomplished by launching multiple

number of threads that execute independent [14] parts of the code. Threads,

however, can be turned into blocks and then these blocks are usually or-

ganised in a grid. Then one of these blocks (consisting out of threads)

gets automatically assigned to a single streaming multiprocessor. Not all

these threads, in a certain block, are executed concurrently. Threads of

a certain block that are executed concurrently are called warps and warps

usually consist of 32 threads. From Shchekina [14], if an instruction follows

a conditional statement, then the threads that shall not enter the statement

will make the calculation nonetheless. However, this calculation will not yield

a result.

Different warps are handled by the GPU thread scheduler and multiple active

warps in the SM would mean that the GPU is using its resources efficiently.

Central processing units and graphical processing units handle instructions

in different ways. The Central processing unit uses integrated tools, like the

branch predictor that is included in its control unit and enables the central

processing unit to minimize latency. However, a graphical processing unit

will switch from the one thread to another if the one takes either too long or

if it is waiting for memory. This is a process that the GPU implements to

reduce latency. Hence, the GPU will produce a good throughput if there are

enough threads to pile up.

10.2 Negative aspects of using a GPU

A heterogeneous computer is the most well-known computer available to

consumers. However, as specified in the previous section a heterogeneous

computer consists out of a host and device, CPU and GPU respectively.

This type of configuration creates a bottleneck for data, especially when data

needs to be transferred between the GPU and CPU. The graphical processing

unit generally has better bandwidth than a central processing unit. But the

136

transfer between the host and device is extremely slow.

Figure 10.2: Generating normalised random numbers on CPU and GPU

In figure 10.2, we generated normalized random numbers on both the GPU

and CPU concurrently and recorded the time in seconds that it took to

generate these random numbers. We observe that at 1 million simulations

the CPU takes 0.0156 seconds and the GPU takes around 0.002 seconds. This

makes the GPU around 7.8 times faster than the CPU. If we move on and

look at 100 million simulations, the CPU takes 0.9844 seconds and the GPU

takes around 0.1081. This means that the GPU completed its simulations

approximately 9.1 times faster. We need to keep in mind that these times

are restricted to the current computational setup. We used a Intel i7-7700K

central processing unit versus a Nvidia GeForce GTX 6600 6GB graphics

card.

137

10.3 Matlab: GPU optimized American op-

tion

We consider a similar example as seen in section 9. We run the Longstaff

and Schwartz algorithm and observe the time it takes for the algorithm to

execute on both the central processing unit and the graphical processing

unit. We expect a marginal improvement of the performance of the algorithm

as it is more efficient to generate random numbers on the GPU. But once

these numbers are generated the data needs to be transferred to the central

processing unit for the rest of the algorithm to execute.

Table 10.1: Longstaff and Schwartz approximations: CPU vs GPU

S0 T sigma N Time CPU CPU approx TimeGPU GPU approx

36 1 0.2 100,000 4.256 4.4174 3.9844 4.401
36 1 0.2 250,000 9.3594 4.4104 9.3591 4.4162
36 1 0.2 500,000 17.4531 4.4105 17.125 4.4118
36 1 0.2 750,000 26.0938 4.4114 25.2188 4.4094
36 1 0.2 1,000,000 34 4.412 33.2813 4.4141
36 1 0.2 10,000,000 359.5313 4.415 359.125 4.415

In table 10.1, we observe that for 100 000 simulations, which is denoted by N,

that there is a 0.2716 difference in the execution time of the algorithm. The

GPU just outperforms the CPU. The graphical processing unit outperforms

the central processing unit on each of the increments of simulation, but only

by a small margin. This is likely caused by the bottleneck in heteroge-

neous computers, where data needs to be transferred between the graphical

processing unit and the central processing unit. Matlab is a GPU enabled

platform and it enables a person to send certain instructions to the GPU of

a computer. However, the data sent to the GPU needs to be retrieved and

implemented with the algorithm on the CPU concurrently.

This in comparison with table 10.2, where a significant difference in sim-

138

ulation time is observed, means that the heterogeneous computer creates

a bottleneck when the data is transferred between host and device. The

problem can be addressed by writing pure CUDA code and implementing the

whole Longstaff and Schwatrz algorithm on the graphical processing unit.

Table 10.2: Random number simulation on both CPU and GPU
N CPU time GPU time

1.00E+06 0.015625 0.002095
1.21E+06 0.015625 0.002316
1.44E+06 0.015625 0.002986
1.69E+06 0.015625 0.003287
1.96E+06 0.03125 0.00328
2.25E+06 0.015625 0.003735

...
3.10E+08 3.125 0.38516
3.13E+08 3.140625 0.383419
3.17E+08 3.203125 0.402779
3.20E+08 3.203125 0.389849
3.24E+08 3.265625 0.348078

[N represents the number of simulations that are either performed
by the central processing unit or the graphical processing unit.
The CPU time and GPU time, repsectively, give the time it
took in secodes to complete the specific number of simulations.]

139

Chapter 11

Implied and Local volatility

surfaces for Asian options

As we discussed previously, there exists no closed form solution for an Amer-

ican arithmetical Asian option. Thus implementing local volatility pricing

methodology, which is used to price exotic options and express them in terms

of vanilla options, will increase the efficiency with which these options are

priced. According to Dr A Kotze [23] most exotic options that are listed

on the JSE are estimated using local volatility models, which need a local

volatility surface.

A breakthrough was made in 1994 by Bruno Dupire [19], Emanuel Derman

and Iraj Kani [22]. They noted that under the risk neutrality assumption

that, [18], there was a unique diffusion process that was consistent with

these distributions. The corresponding state dependent diffusion coefficient

σL(S, t), which was consistent with European option prices, is better known

as the local volatility function.

The following [18] explains the state of mind of Dupire, Derman, and Kani

best, ”It is unlikely that Dupire, Derman, and Kani ever thought of local

volatility as representing a model of how volatilities actually evolve. Rather,it

is likely that they thought of local volatilities as representing some kind of

140

average over all possible instantaneous volatilities in a stochastic volatility

world. Local volatility models do not therefore really represent a separate

class of models; the idea is more to make a simplifying assumption that allows

practitioners to price exotic options consistently with the known prices of

vanilla options.”

The main difference is that Dupire published a model in continuous time

theory, while Derman and Kani investigated a discrete binomial tree version.

Using Stochastic volatility models has proven to be very useful [18], be-

cause these models explain why options with different strikes and different

expiration will yield different implied volatilities under the assumption of

the Black-Scholes model. Illustrating these implied volatilities in a graphical

manner will yield a volatility smile.

11.1 Derivation of Dupire’s equation

For the Proof of Dupire’s equation, we will follow the guidelines of J. Gatheral

[18]. A underlying stock S0, at a given maturity T, will yield a collection of

undiscounted option prices {C(S0, K, T)} for different strike prices K. This

will yield the risk neutral probability density function ϕ of the final spot

price ST through the following relationship.

C(S0, K, T) =

∫ ∞
K

dSTϕ(ST , T ;S0)(ST −K) (eq:11.1.1)

Suppose then that the stock price diffuses with the risk neutral drift µt

and local volatility σ(S, t) according to the following stochastic differential

equation that evolves log normally

dS = µtdt+ σ(St, t)dZ (eq:11.1.2)

The application of Itô with risk neutrality provides us with the partial differ-

ential equation for functions of the stock price. This partial differential equa-

141

tion is just a generalization of the Black-Scholes partial differential equation.

Let us then assume that the probability density is given by ϕ(K,T ;S0) = ∂2C
∂K2

and this must satisfy the Fokker-Planck equation. This gives us the following

partial differential equation for strike price K and option price C:

∂C

∂T
=
σ2K2

2

∂2C

∂K2
+ (rf −D)(C −K ∂C

∂K
) (eq:11.1.3)

where rf is the corresponding risk-free rate, D is the dividend rate, and C is

short for the corresponding option price.

Now the pseudo-probability density ϕ will evolve according to the Fokker-

Plack equation.

1

2

∂2

∂S2
T

(σ2S2
Tϕ)− S ∂

∂ST
(µSTϕ) =

∂ϕ

∂T
(eq:11.1.4)

Now if we differentiate equation 11.1.1 with respect to K, we obtain

∂C

∂K
= −

∫ ∞
K

dSTϕ(ST , T ;S0) (eq:11.1.5)

∂2C

∂K2
= ϕ(K,T ;S0) (eq:11.1.6)

and differentiating equation 11.1.1, with respect to time or T, yields

∂C

∂T
=

∫ ∞
K

dST [
∂

∂T
ϕ(ST , T ;S0)](ST −K)

=

∫ ∞
K

dST [
1

2

∂2

∂S2
T

(σ2S2
Tϕ)− ∂

∂ST
(µSTϕ)](ST −K)

=

∫ ∞
K

dST [
1

2

∂2

∂S2
T

(σ2S2
Tϕ)(ST −K)]−

∫ ∞
K

dST [
∂

∂ST
(µSTϕ)](ST −K)]

(eq:11.1.7)

Now we do integration by parts. We do integration by parts twice on the

first integral and once on the second integral. Hence we obtain,

142

∂C

∂T
=

1

2
σ2K2ϕ+

∫ ∞
K

dSTµSTϕ

=
1

2
σ2K2 ∂

2C

∂K2
+ µ(T)(−K ∂C

∂K
)

=
1

2
σ2K2 ∂

2C

∂K2
+ (rf −D)(−K ∂C

∂K
)

(eq:11.1.8)

This then yields the Dupire equation. We define the forward price of a stock

at time T as

FT = S0 exp

∫ T

0

µtdt

Now we attempt to express the option price as a function of the forward

price. Hence we would be able to obtain the same expression without the

drift term. In this case,

∂C

∂T
=

1

2
σ2K2 ∂

2C

∂K2
(eq:11.1.9)

Hence, by inverting the equation that we found in equation 11.1.9 and we

solve for σ2, we obtain the following expression.

σ2
local =

2∂C
∂T

K2 ∂2C
∂K2

(eq:11.1.10)

We can use equation 11.1.10, which can be calculated from known European

option prices. Therefore, the local volatilities can be expressed, as seen in

equation 11.1.10, given the set of option prices for all strikes and expirations.

Hence, equation 11.1.10 serves as a definition for local volatility, regardless

of the process that drives the volatility.

143

11.2 Local volatility expressed in terms of im-

plied volatility

We assume that the market prices of options will be quoted in terms of the

Black-Scholes implied volatility [18], denoted by σBS(K,T ;S0). Hence we

obtain that,

C(S0, K, T) = CBS(S0, K, σBS(K,T ;S0), T)

If we use and manipulate the pricing formula of Black-Scholes, we obtain the

following (from theorem 3):

CBS(ST , K, σBS(K,T ;S0)) = STN(d1)−KN(d2)

= FT [N(d1)− eyN(d2)]
(eq:11.2.1)

where FT = S0 exp
∫ T

0
µtdt is the forward price of a stock and y = log(K

FT
).

Specifying the terms as indicated here will be more convenient to work with

2 dimensionless variables. We furthermore define the Black-Scholes total

implied variance and the log-strike as,

ω(S0, K, T) = σBS(S0, K, T)T

y = log (
K

FT
)

So, we are able to further simplify equation 11.2.1, as follows:

CBS(ST , K, σBS(K,T ;S0)) = FT [N(d1)− eyN(d2)]

= FT [N(− y√
ω

+

√
ω

2
)− eyN(− y√

ω
−
√
ω

2
)

(eq:11.2.2)

144

We are then able to find Dupire’s equation as in equation 11.1.3,

∂C

∂T
=
vL
2

(
∂2C

∂y2
− ∂C

∂y
) + µ(T)C (eq:11.2.3)

where vL now denotes the local variance vL = σ2(S0, K, T). Thus by taking

derivatives with respect to the Black Scholes formula CBS, we are able to

obtain,

∂2CBS
∂ω2

= (−1

8
− 1

2ω
+

y2

2ω2
)
∂CBS
∂ω

∂2CBS
∂y∂ω

= (
1

2
− y

ω
)
∂CBS

∂ω

∂2CBS
∂y2

− ∂CBS
∂y

= 2
∂CBS
∂ω

(eq:11.2.4)

We now substitute these terms back into the Dupire equation 11.2.3 and

transform the equation in terms of implied variance,

∂C

∂y
=
∂CBS
∂y

+
∂CBS∂ω

∂ω∂y

∂2C

∂y2
=
∂2CBS
∂y2

+ 2
∂2CBS∂ω

∂y∂ω∂y
+
∂2CBS
∂ω2

(
∂ω

∂y
)2 +

∂CBS
∂ω

∂2ω

∂y2

∂C

∂T
=
∂CBS
∂T

+
∂CBS
∂ω

∂ω

∂T

=
∂CBS
∂ω

∂ω

∂T
+ µ(T)CBS

(eq:11.2.5)

If we combine and subtract equation 11.2.5 from equation 11.2.3 we are able

to cancel out the µ drift term for the equations. We also substitute the

145

expressions obtained from equation 11.2.5. Hence, the equation becomes

0 = −∂CBS
∂ω

∂ω

∂T
+
vL
2

(
∂2C

∂y2
− ∂C

∂y
)

∂CBS
∂ω

∂ω

∂T
=
vL
2

[−∂CBS
∂y

− ∂CBS∂ω

∂ω∂y
+
∂2CBS
∂y2

+ 2
∂2CBS∂ω

∂y∂ω∂y
+
∂2CBS
∂ω2

(
∂ω

∂y
)2

+
∂CBS
∂ω

∂2ω

∂y2
]

=
vL
2

∂CBS
∂ω

[2− ∂ω

∂y
+ 2(

1

2
− y

ω
)
∂ω

∂y
+ (−1

8
− 1

2ω
+

y2

2ω2
)(
∂ω

∂y
)2

+
∂2ω

∂y2
]

(eq:11.2.6)

We now cancel out the ∂CBS
∂ω

term and simplify the equation to the following:

∂ω

∂T
= vL

(
1− y

ω

∂ω

∂y
+

1

4

(
− 1

4
− 1

ω
+
y2

ω2

)(
∂ω

∂y

)2

+
1

2

∂2ω

∂y2

)
Solving for our local volatility estimator yields

vL =
∂ω
∂T(

1− y
ω
∂ω
∂y

+ 1
4

(
− 1

4
− 1

ω
+ y2

ω2

)(
∂ω
∂y

)2

+ 1
2
∂2ω
∂y2

)
This vL parameter will estimate the value of the local volatility of a certain

model and will represent it in the Black Scholes pricing framework.

11.3 American Asian option Implied and Lo-

cal volatility surfaces

Local volatility surfaces are fairly common in the pricing of exotic options.

The industry uses these surfaces to price options, which are complex to price,

quickly and efficiently. Reference prices can efficiently be obtained through

146

the implementation of these surfaces. In this section, we investigate an

example by setting up the implied and local volatility surfaces for American

Asian options.

The basic algorithm that we implement to enable us to find the local volatil-

ities can be described as follows.

1. We simulate the prices for our exotic options. These prices consist of a

matrix of prices, at different maturities and different strike prices.

2. We then calculate the corresponding implied volatility estimates with the

Black-Scholes formula for different maturity and different strike price

pairs.

3. We use Dupire’s equation to obtain local volatility estimates from the

implied volatility estimates. We also perform the necessary numerical

differentiation according to Dupire’s equation.

4. Lastly, we linearly interpolate between the local volatility estimates. This

enables us to plot the respective surface.

11.3.1 Example: American Asian call option: Implied

and Local volatility surfaces

For illustration purposes we propose the following problem. We will be

pricing an American Asian call option with the Longstaff and Schwartz

model. We start pricing this option at an initial time of 90 days and end

at 525 days, with 15-day increments. For different strike prices we start to

price at a strike price of 40 and end at 74 and move in increments of 2. Our

risk-free rate and initial underlying price is 6% and 50, respectively. We also

work under the assumption that there are 252 business days in a year.

147

Table 11.1: Example assumptions

S0 50

σ 20%

r 6%

Time base 252

K 40-74

Time start 90 days

Time end 525 days

time increment 15 days

Exercised per year 50

Figure 11.1: Plot of Implied volatility of American Asian call

148

T
ab

le
11

.2
:

S
im

u
la

te
d

p
ri

ce
s

w
it

h
th

e
L

on
gs

ta
ff

an
d

S
ch

w
ar

tz
al

go
ri

th
m

9
0

10
5

12
0

13
5

15
0

16
5

..
.

51
0

52
5

4
0

1
1.

01
6
7
4

11
.1

10
76

11
.2

14
96

11
.3

24
91

11
.4

13
68

11
.5

20
72

..
.

13
.9

05
95

14
.0

10
13

4
2

9
.1

52
3
8
1

9.
27

79
42

9.
39

85
01

9.
50

71
96

9.
62

55
52

9.
74

24
51

..
.

12
.3

21
32

12
.4

23
68

4
4

7
.2

53
7
1
7

7.
38

63
04

7.
52

16
04

7.
65

71
34

7.
79

27
07

7.
92

79
1

..
.

10
.7

87
93

10
.9

04
74

4
6

5
.2

8E
+

0
0

5.
44

88
57

5.
60

34
29

5.
75

90
75

5.
91

42
47

6.
05

56
95

..
.

9.
06

56
51

9.
18

53
94

4
8

3
.6

55
1
1
1

3.
84

75
65

4.
03

48
8

4.
20

62
36

4.
37

84
61

4.
54

43
44

..
.

7.
77

85
91

7.
90

43
79

5
0

2
.3

44
2
0
9

2.
55

90
37

2.
75

36
63

2.
93

22
75

3.
11

79
16

3.
29

08
23

..
.

6.
57

17
58

6.
69

72
4

5
2

1
.5

73
2
7
6

1.
74

79
14

1.
91

74
54

2.
06

21
13

2.
21

05
97

2.
33

20
75

..
.

5.
51

60
85

5.
65

38
86

S
tr

ik
e

(K
)

5
4

1
.0

37
4
7
2

1.
19

40
09

1.
33

53
39

1.
50

82
85

1.
65

59
85

1.
78

55
1

..
.

4.
58

82
24

4.
71

40
35

5
6

0
.6

39
6
1
1

7.
85

E
-0

1
0.

92
62

1.
06

20
35

1.
19

07
56

1.
31

18
36

..
.

3.
78

48
67

3.
88

87
85

5
8

0
.3

77
0
3
8

0.
48

35
69

0.
59

36
7

0.
72

02
42

0.
83

22
54

0.
95

49
53

..
.

3.
15

93
23

3.
23

46
58

6
0

0
.2

10
3
7
5

0.
29

52
46

0.
38

21
28

0.
47

80
64

0.
55

65
08

0.
66

47
49

..
.

2.
72

30
03

2.
78

91
82

6
2

0
.1

08
3
6
2

0.
16

31
51

0.
23

34
46

0.
30

94
36

0.
38

35
69

0.
45

92
..

.
2.

10
48

16
2.

22
46

3
6
4

0
.0

58
8
8
2

0.
09

06
6

0.
13

27
23

0.
18

07
58

0.
26

19
89

0.
30

13
19

..
.

1.
85

93
99

1.
93

03
1

6
6

0
.0

30
0
9
7

0.
05

33
65

0.
07

55
38

0.
10

45
74

0.
13

27
76

0.
15

05
54

..
.

1.
57

83
48

1.
63

34
88

6
8

0
.0

1
45

5
0.

02
62

94
0.

04
01

5
0.

05
86

87
0.

08
48

33
0.

11
14

..
.

1.
33

50
82

1.
42

45
37

7
0

0
.0

06
3
5
9

0.
01

52
96

0.
02

60
2

0.
04

04
06

0.
05

28
76

0.
07

41
95

..
.

1.
17

86
05

1.
27

04
06

7
2

0
.0

03
2
2
3

0.
00

71
8

0.
01

37
43

0.
02

56
44

0.
03

72
18

0.
04

82
58

..
.

1.
05

27
14

1.
07

92
42

7
4

0
.0

01
7
3
8

0.
00

37
92

0.
00

75
84

0.
01

45
96

0.
02

37
18

0.
03

53
85

..
.

0.
84

01
47

0.
91

16
11

7
6

0
.0

00
8
6
5

0.
00

22
07

0.
00

43
0.

00
82

0.
01

42
32

0.
02

21
99

..
.

0.
71

84
55

0.
78

94
09

7
8

0
.0

0
03

4
0.

00
12

18
0.

00
24

98
0.

00
47

35
0.

00
86

57
0.

01
47

73
..

.
0.

62
53

41
0.

66
08

67

149

Figure 11.2: Plot of Local volatility of American Asian call

We observe from figure 11.2 that Dupire’s local volatility function, in terms

of the implied volatility, will lead to a practical and usable surface to cal-

culate the exotic options reference price quickly. However, we observe some

instabilities in the local volatility graph where the prices are far in and out

of the money. We also see that the local volatility surface is not smooth

due the the numerical differentiation estimates that we calculated for the

Dupire’s equation. Both the implied and local volatility surfaces show more

or less the same shape. We observe from the local volatility surface that

the volatility estimates are generally higher than what we observed from the

implied volatility surface.

150

11.3.2 American Asian put option: Implied and Local

volatility surfaces

We will price an American Asian put option using the least squares Monte

Carlo algorithm. We start pricing this option at an initial time of 90 days

and end at 300 days, with 15 day increments. For different strike prices we

start to price at a strike price of 56 and end at 82 and move in increments

of 2.We consider the following table as a quick summary of the example that

will be considered.

Table 11.3: Example assumptions

S0 70

r 6%

Time base(days in a year) 252

K 56-82

Time start 90 days

Time end 300 days

time increment 15 days

σ 0.2

151

T
ab

le
11

.4
:

P
ri

ce
s

fo
r

A
m

er
ic

an
A

si
an

p
u
t

op
ti

on
T

im
e

in
d
ay

s
to

m
at

ru
ri

ty

90
10

5
12

0
13

5
15

0
16

5
28

5
30

0

56
0.

05
25

58
0.

07
94

88
0.

10
93

84
0.

14
14

22
0.

17
54

06
0.

21
05

55
0.

49
12

57
0.

52
40

12
58

0.
11

56
44

0.
16

04
37

0.
20

79
95

0.
25

72
38

0.
30

62
16

0.
35

51
84

0.
71

29
46

0.
75

20
04

60
0.

23
27

47
0.

30
13

56
0.

37
05

76
0.

43
85

28
0.

50
45

97
0.

56
87

16
1.

00
12

31
1.

04
55

19
62

0.
43

10
53

0.
52

71
12

0.
61

93
91

0.
70

66
85

0.
78

90
2

0.
86

70
46

1.
35

55
19

1.
40

37
8

64
0.

73
06

46
0.

84
64

15
0.

96
21

94
1.

06
94

18
1.

16
96

61
1.

25
90

55
1.

77
27

92
1.

82
31

78
66

1.
16

36
15

1.
30

07
06

1.
43

35
28

1.
54

83
47

1.
65

33
22

1.
74

98
19

2.
29

48
17

2.
34

54
22

S
tr

ik
e

(K
)

68
1.

77
06

61
1.

92
02

97
2.

05
31

93
2.

17
51

61
2.

28
03

7
2.

38
09

99
2.

91
29

31
2.

96
09

86
70

2.
56

05
16

2.
70

69
14

2.
83

86
26

2.
95

35
34

3.
05

97
1

3.
14

40
7

3.
64

02
63

3.
68

29
31

72
3.

53
64

15
3.

66
47

31
3.

77
77

34
3.

87
49

24
3.

97
40

33
4.

05
77

13
4.

46
30

57
4.

49
76

17
74

4.
68

82
49

4.
78

82
2

4.
87

50
19

4.
94

93
26

5.
02

19
34

5.
08

71
97

5.
38

32
78

5.
40

66
12

76
6.

01
19

24
6.

06
97

6.
11

63
48

6.
16

54
8

6.
20

21
36

6.
24

21
07

6.
39

98
83

6.
40

96
81

78
7.

48
41

98
7.

49
56

97
7.

50
20

52
7.

50
85

7
7.

51
50

68
7.

52
11

82
7.

50
28

9
7.

49
67

34
80

9.
08

15
64

9.
04

41
47

9.
00

16
41

8.
96

64
82

8.
93

99
19

8.
91

15
88

8.
69

65
8

8.
67

15
36

82
10

.7
72

1
10

.6
85

42
10

.6
00

75
10

.5
26

88
10

.4
63

86
10

.4
00

16
9.

97
05

36
9.

92
53

83
84

12
.5

45
14

12
.4

06
99

12
.2

77
4

12
.1

63
28

12
.0

65
08

11
.9

69
59

11
.3

23
24

11
.2

56
14

86
14

.3
81

07
14

.1
92

7
14

.0
21

21
13

.8
68

84
13

.7
33

59
13

.5
98

2
12

.7
40

34
12

.6
56

6
88

16
.2

52
14

16
.0

25
82

15
.8

18
19

15
.6

30
56

15
.4

60
4

15
.2

92
54

14
.2

25
67

14
.1

19
38

152

Figure 11.3: Plot of Implied volatility of American Asian put

Figure 11.4: Plot of local volatility of American Asian put

153

We observe from figure 11.4 that the Dupire’s local volatility function, in

terms of the implied volatility, will lead to a stable approximation of the local

volatilities. However once again, we observe that the local volatility surface is

not smooth due the the numerical differentiation estimates that we calculated

for Dupire’s equation. We also observe that the implied and local volatility

surfaces does not have the same general shape. For the implementation of

this local volatility surface, we had to carefully consider the choice of both

strike price range and time to maturity concurrently. It was observed that

both the first and second numerical derivatives, with respect to moneyness,

become very small negative approximations and then force the local volatility

approximate to become a complex approximation. Therefore, take caution

in selecting both strike price and time to maturity ranges when setting up a

local volatility surface.

154

Chapter 12

Conclusion

In conclusion, we found that it is possible to obtain a good approximation for

American Asian options under a low number of simulations, implementing

low discrepancy sequences and variance reduction techniques. The least

squares Monte Carlo algorithm needs around 15 seconds to execute under 100

000 simulations as proposed by Longstaff and Schwartz. On the other hand,

we showed that it is possible to obtain an approximation with good accuracy

implementing low discrepancy sequences. With 1000 simulations it takes

around 0.5 seconds to execute the algorithm and obtain an approximation.

The Sobol sequence proved to be very efficient in the pricing of the American

Asian options. It yielded the smallest relative error, irrespective of the choice

of basis function and under a relatively low number of simulations, and when

implementing antithetic variates.

We were also able to confirm that the least squares method is robust to the

choice of basis functions, as Longstaff and Schwartz confirmed in their article.

There is minimal deviation from the option price with the implementation

of different basis functions.

The implementation of low discrepancy sequences with the least squares

method is an efficient way of obtaining relatively good accuracy in the ap-

proximation of American option prices as well as path dependent options,

155

irrespective of the choice of basis functions.

The GPU optimization of the generation of random numbers were exponen-

tially excelled via the graphical processing unit. However, the overall least

squares Monte Carlo algorithm was marginally optimized with the “device”

or graphical processing unit. We confirmed that there is a bottleneck between

the host and device when processed data is transferred from the one to the

other. It is possible to circumvent this bottleneck in two possible ways.

Firstly, a heterogeneous computer was used to optimize the algorithm. If

the computer setup is changed, so that there is no necessity to transfer

data between host and device, it will lead to a tremendous speedup of the

algorithm. Secondly, Matlab was used to program the algorithm; it requires

the data to be transferred between the device and host. If the CUDA

code is written, which is a dedicated coding language for modern graphical

processing units, there will be no need for the data to be transferred and the

algorithm will execute solely on the graphics processing unit.

Some exotic options do not have any analytical solution for pricing. They are

usually calculated with simulation or numerical methods, which is computa-

tionally very inefficient. The construction of the local volatility surface of the

Asian options will enable us to calculate the respective Asian options price

rapidly. This amplifies the practical usefulness of local volatility surfaces for

Asian options. However, careful attention should be applied when choosing

the ranges of strike prices and times to maturity.

156

Bibliography

[1] David B Kirk and W Hwu Wen-Mei. Programming massively parallel

processors: a hands-on approach. Morgan kaufmann, 2016.

[2] J.Hull and A. White. Efficient procedures for valuing european and

american path dependent options. Journal of Derivatives, 1:21–31, 1993.

[3] Michael Curran. Valuing asian and portfolio options by conditioning

on the geometric mean price. Management science, 40(12):1705–1711,

1994.

[4] Dirk P Kroese, Thomas Taimre, and Zdravko I Botev. Handbook of

monte carlo methods, volume 706. John Wiley & Sons, 2013.

[5] Friedrich Hubalek and Carlo Sgarra. On the explicit evaluation of

the geometric asian options in stochastic volatility models with jumps.

Journal of Computational and Applied Mathematics, 235(11):3355–3365,

2011.

[6] Yuyun Guna Winarti, Lienda Noviyanti, and Gatot R Setyanto. The

european style arithmetic asian option pricing with stochastic interest

rate based on black scholes model. In AIP Conference Proceedings,

volume 1827, page 020001. AIP Publishing, 2017.

[7] Junkee Jeon, Ji-Hun Yoon, and Myungjoo Kang. Valuing vulnerable

geometric asian options. Computers & Mathematics with Applications,

71(2):676–691, 2016.

157

[8] Erik Wiklund. Asian option pricing and volatility, 2012.

[9] Investopedia Staff. Asian Option, November 2003.

[10] FokkerPlanck equation, April 2018. Page Version ID: 836231634.

[11] Timothy Klassen. Simple, fast and flexible pricing of asian options.

2000.

[12] Prasad Chalasani, Somesh Jha, Feyzullah Egriboyun, and Ashok

Varikooty. A refined binomial lattice for pricing american asian options.

Review of Derivatives Research, 3(1):85–105, 1999.

[13] Jérôme Barraquand and Thierry Pudet. Pricing of american path-

dependent contingent claims. Mathematical Finance, 6(1):17–51, 1996.

[14] Anna Shchekina. Asian option pricing using graphics processing units,

2017.

[15] Massimo Costabile, Ivar Massabó, and Emilio Russo. An adjusted

binomial model for pricing asian options. Review of Quantitative

Finance and Accounting, 27(3):285–296, 2006.

[16] Neliswa B Dyakopu. Discrete time methods of pricing Asian options.

PhD thesis, University of Western Cape, 2014.

[17] Fischer Black and Myron Scholes. The pricing of options and other

corporate liabilities. Journal of Political Economy, 81:673, 1973.

[18] Jim Gatheral. The volatility surface: a practitioner’s guide, volume 357.

John Wiley & Sons, 2011.

[19] Bruno Dupire. Pricing and hedging with smiles. Mathematics of

derivative securities, 1(1):103–111, 1997.

158

[20] Michael Curran. Valuing asian and portfolio options by conditioning

on the geometric mean price. Management science, 40(12):1705–1711,

1994.

[21] Erik Wiklund. Asian option pricing and volatility, 2012.

[22] Emanuel Derman and Iraj Kani. Riding on a smile. Risk, 7(2):32–39,

1994.

[23] Antonie Kotzé, Rudolf Oosthuizen, and Edson Pindza. Implied and local

volatility surfaces for south african index and foreign exchange options.

Journal of Risk and Financial Management, 8(1):43–82, 2015.

[24] GH Meisters. Lebesgue measure on the real line. n. i. University of

Nebraska, Lincoln, 1997.

[25] Elaine B. Barker and John M. Kelsey. Recommendation for Random

Number Generation Using Deterministic Random Bit Generators.

Technical Report NIST SP 800-90Ar1, National Institute of Standards

and Technology, June 2015. DOI: 10.6028/NIST.SP.800-90Ar1.

[26] Generating Quasi-Random Numbers - MATLAB & Simulink.

[27] Moshe Arye Milevsky and Steven E Posner. Asian options, the sum of

lognormals, and the reciprocal gamma distribution. Journal of financial

and quantitative analysis, 33(3):409–422, 1998.

[28] Paul Glasserman, Philip Heidelberger, and Perwez Shahabuddin.

Asymptotically optimal importance sampling and stratification for

pricing path-dependent options. Mathematical finance, 9(2):117–152,

1999.

[29] Derrick H Lehmer. Mathematical methods in large-scale computing

units. Ann. Comput. Lab. Harvard Univ., 26:141–146, 1951.

159

[30] Harald Niederreiter. Random number generation and quasi-Monte Carlo

methods. SIAM, 1992.

[31] R. Kufakunesu. Lecture notes wtw831, August 2016.

[32] Karl Sigman. Lecture notes, August 2007.

[33] J. Goodman. Simple sampling of gaissians, August 26 2005.

[34] John Von Neumann. 13. various techniques used in connection with

random digits. Appl. Math Ser, 12:36–38, 1951.

[35] Phelim Boyle, Mark Broadie, and Paul Glasserman. Monte carlo

methods for security pricing. Journal of economic dynamics and control,

21(8):1267–1321, 1997.

[36] Paul Glasserman. Monte Carlo methods in financial engineering,

volume 53. Springer Science & Business Media, 2013.

[37] J. Hull. Options, Futures, and Other Derivatives. Options, Futures, and

Other Derivatives. Prentice Hall, 2012.

[38] EVAN Turner. The black-scholes model and extensions. 2010.

[39] Francis A. Longstaff and Eduardo S. Schwartz. Valuing american

options by simulation: A simple least squares approach. The Society

for Financial Studies, 14:113–147, 2001.

[40] A.G.Z Kemna and A.C.F Vorst. A pricing method for options based

on average asset values. Journal of Banking and Finance, 14:113–129,

1990.

[41] X. Wang. Randomized halton sequences. Mathematical and computer

modelling, 32:887–899, 2000.

160

[42] Henri Faure. Discrpance de suites associes un systme de numration.

Acta Arithmetica, 41:337–351, 1982.

[43] Edmond Levy. Pricing european average rate currency options. Journal

of International Money and Finance, 11:474–491, 1992.

[44] Andrew Carverhill and Les J Clewlow. Flexible convolution. Risk, 3:25–

29, 1990.

[45] Stuart M. Turnbull and Lee MacDonald Wakeman. A quick algorithm

for pricing european average options. Cambridge University Press,

26:377–389, 1991.

[46] PricewaterhouseCoopers. 2017. Sas mining industry sees steep decline

in financial performance impacted by a slump in commodity prices and

increased cost pressures @ONLINE, January 2017.

[47] Investopia. Asian option @ONLINE, 2017.

[48] Moshe Arye Milevsky and Steven E Posner. Asian options, the sum of

lognormals, and the reciprocal gamma distribution. Journal of financial

and quantitative analysis, 33(3):409–422, 1998.

[49] Low-discrepancy sequence, October 2017. Page Version ID: 806063794.

[50] I.M Sobol. Distribution of points in a cube and approximate evaluation

of integrals. U.S.S.R Comput. Maths. Math. Phys., 7:86–112, 1967.

[51] J.Crank and E. Nicolson. A practical method for numerical evaluation

of solutions of partial differential equations of the heat-conduction type.

Advances in Computational Mathematics, 6:207–226, 1996.

[52] Stephen Joe and Frances Y Kuo. Remark on algorithm 659:

Implementing sobol’s quasirandom sequence generator. ACM

Transactions on Mathematical Software (TOMS), 29(1):49–57, 2003.

161

[53] Daniel J Duffy. Finite Difference Methods in Financial Engineering.

John Wiley ’I&’ Sons, Ltd, West Sussex, England, 2006.

[54] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX

Companion. Addison-Wesley, Reading, Massachusetts, 1993.

162

Appendices

Appendix A: Definitions

Definition 4 (Inner product space). Let E be a complex vector space. A

mapping 〈, 〉 ExE → C, is called an inner product in E if for any x, y, z ∈ E
the following conditions are satisfied,

1. 〈x, y〉 = ¯〈y, x〉

2. 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉

3. 〈x, x〉 ≥ 0

4. 〈x, x〉 = 0 implies that x = 0

Definition 5 (Hilbert space).

A complete inner product space is called a Hilbert space.

Definition 6 (Lebesgue measurable [24]).

We define a bounded interval as I with endpoints a and b where (a < b).

The length of I is then defined by l(I) = b− a and if I is (a,∞),(−∞, b) or

(−∞,∞), then the length of the interval will be l(I) =∞.

Then given a set E of real numbers, µ(E) will denote the Lebesgue measure

if it is defined. Preferable properties:

1. Extends length: For every interval I, µ(I) = l(I).

163

2. Monotone: If A ⊂ B ⊂ R, then 0 ≤ µ(A) ≤ µ(B) ≤ ∞.

3. Translation invariant: For each subset A of Rand for each point x0 ∈ R
we define A+ x0 := {x+ x0 : x ∈ A}. Then µ(A+ x0) = µ(A).

4. Countable additive: If A and B are disjoint subsets of R, then µ(A ∪
B) = µ(A)+µ(B). If {Ai} is a sequnce of disjoint sets, then µ(∪∞i=1Ai) =∑∞

i=1 µ(Ai).

Definition 7 (Fokker-Planck equation [10]).

In one spatial dimension and a standard Wiener process Wt. The stochastic

differential equation;

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt

with drift µ(Xt, t) and diffusion coefficientD(Xt, t) = σ2(Xt,t)
2

. The the Fokker

Planck equation for the probability density p(x, t) of the random variable Xt

is

∂

∂t
p(x, t) = − ∂

∂x
[µ(x, t)p(x, t)] +

∂2

∂x2
[D(x, t)p(x, t)]

Definition 8 (Integration by parts).

u
dv

dx
dx = uv −

∫
du

dx
vdx

164

Appendix B: Code

Appendix B is attached to this dissertation, as either a CD or USB. It contains

the MATLAB codes that were used in this dissertation.

165

