Proof of the proportion 4.1
Set x = (I, A, E,S)T, with WT being the transpose of the vector W. Then the system can
be written as

T =F(z) —V(x)
where
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According to the theory of [1], the basic reproduction number Ry of our system is the spec-
tral radius of F'V~!, where ' and V are the matrices
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The matrix F' is a non-negative matrix of rank one and can be written as the product of the
vectors, where V' is a non-singular M-matrix. The inverse of V' is
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Multiplying F and V! gives the next generation matrix
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Hence we compute the eigenvalues to obtain the spectral radius of the matrix FV 1
The spectral radius is the reproductive number Ry. There are five eigenvalues obtained from
FV~! and maximum eigenvalue is A\ = v/k1ks. Therefore the basic reproduction number for
the system is as claimed. 0
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