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Abstract

Real phenomena often leads to challenges in data. One of these is out-
liers or influential values. Especially in a small sample, these values can
have a major influence on the modeling process. In the beta regression
framework, this issue has been addressed mainly in two ways: the as-
sumption of a different response model and the application of a minimum
density power divergence estimation (MDPDE) procedure. In this paper,
however, we propose a simple hierarchical Bayesian methodology in the
context of a varying dispersion beta response model that is robust to out-
liers, as shown through an extensive simulation study and analysis of two
real data sets. To robustify Bayesian modeling a heavy-tailed Student’s t
prior with uniform degrees of freedom is adopted for the regression coeffi-
cients. This proposal results in a wieldy implementation procedure which
avails practical use of the approach.

1 Introduction

Data within the unit interval is prevalent in many experiments within the ap-
plied sciences like medical research and sociology, amongst others. Financial
data is also often reported in terms of rates or percentages. Data like this can
be modelled using the beta distribution since it provides support for the unit
interval (0, 1). The beta distribution is characterized by two parameters α and
β with density function

f(y) =
yα−1(1− y)β−1

B(α, β)
0 < y < 1, (1)

where B(α, β) is the beta function. The expected value is αβ and the variance is
αβ2. In many real life applications there is a variable of interest i.e. a response
variable as well as predictors which could be used to explain the underlying data-
generating mechanism of the response for improved inference. In this case the
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density function (1) proves difficult to implement and interpret as the response
model in a regression setup. For this reason, a reparameterized version of the
beta distribution is used with the density function as follows:

f(y) =
yµφ−1(1− y)φ(1−µ)−1

B(µφ, φ(1− µ))
0 < y < 1, (2)

with E(Y ) = µ, 0 < µ < 1,Var(Y ) = µ(1−µ)
φ+1 , φ > 0. We use the notation

y ∼ Beta(µ, φ), where µ is the location parameter and φ can be interpreted
as a precision parameter since large values of φ results in a smaller variance.
Comparing (1) and (2) we note that α = µφ, β = φ(1 − µ). This framework
was adopted by Paolino,(Paolino, 2001) Kieschnick and McCullough (2001) and
Ferrari and Cribari-Neto (2004) amongst others to develop a beta regression
model. The beta regression model and its variants/compositions have become
popular in medical studies because of their practical use. (Albert et al., 2014;
Liu and Li, 2016; Wang and Luo, 2017; Kim and Lee, 2017; Liu and Eugenio,
2018)
Initially, the beta regression model was developed assuming a homogeneous
precision parameter and a location sub-model in the form of a generalized linear
regression model (GLM) for the location parameter, using a link function

g(µ) = X>β, (3)

where X = (x1, . . . ,xn)>, xi ∈ Rm is the i-th covariate, β = (β1, . . . , βm)>

and g(.) is an appropriate link function. Later, this framework was developed
to accommodate heterogeneous precision using a precision sub-model as follows,

h(φ) = Z>γ, (4)

Z = (z1, . . . ,zn)>, zi ∈ Rp is the i-th covariate, γ = (γ1, . . . , γp)
> and h(.) is

an appropriate link function. Since the initial development based on maximum
likelihood estimates, a Bayesian framework for the estimation of the parameters
has been proposed by Cepeda-Cuervo et al. (2016) Bayesian analysis has been
shown to perform competitively well when compared to the MLE and often
better in the case of small samples. (McNeish, 2016) Currently there are two
R packages available to practitioners for fitting a beta regression model, betareg
and Bayesianbetareg. The first package uses maximum likelihood estimation to
estimate the regression coefficients for a location and precision model, based on
the work by Ferrari and Cribari-Neto (2004). A Bayesian framework using nor-
mal priors are used in the second package, based on the work by Cepeda-Cuervo
et al. (2016) Both of these packages are very efficient in the estimation process.
Although this framework is for responses within the unit interval, it can be
applied to data within any finite interval using the well-known transformation
y−a
b−a ∈ [0, 1] for a < y < b. Also, data consisting of datum inside a certain
interval as well as on the boundaries can be transformed to be within the unit

interval using the transformation
y−a
b−a (n−1)+0.5

n ∈ (0, 1), with no observations on
the boundaries.
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Figure 1: AIS data set: Body fat percentage versus lean body mass

Real data, however, often presents challenges such as outliers or influential val-
ues such as the AIS data set as presented in Bayes et al. (2012) and illustrated
in Figure 1, where the solid line is the regression model obtained using the data
without the outlying values and the broken line is the regression model based
on the full data. The aim is to model the body fat percentage (BFP) using lean
body mass (LBM) as a predictor. In Figure 1 the effect of the outliers on the
regression model is evident. The question arises whether the outliers should be
included or not.

Espinheira et al. (2008) developed influential analysis to discover values with
high leverage that are also influential in parameter estimation under various
perturbation schemes. Once the influential values are determined, the choice of
manual removal is left to the practitioner. In smaller data sets it is simple to
investigate the data and remove outlying or influential values if the practitioner
chooses to do so. The process of removing datapoints is not to be encouraged
on the basis of contradicting model information, and is a monumentous task for
larger data sets or a high dimensional covariate space. This complex decision
is further exacerbated by the effect on the significance test of the intercept,
as summarized in Table 1 for this data set. It is clear from Table 1 that the
intercept is deemed significant in the case where the outliers are not included
but insignificant if the outliers are included in the modeling. This is especially
of concern since anatomically, the intercept should not be zero. The decision of
removing outliers clearly has profound consequences. Also, the decision is made
on a subjective conjecture which is troublesome in any scientific study. Rather,
a modeling framework that can effectively handle outliers should be developed
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Table 1: 95% Confidence intervals from the betareg procedure

Full data Outliers deleted

β0 (−0.408; 0.6043) (0.463; 1.2127)
β1 (−0.035;−0.019) (−0.044;−0.032)

to circumvent the necessity of such a decision. Ghosh (2017) successfully devel-
oped the MDPDE framework for the beta regression model which is robust with
respect to outliers. In this method however, there are still some future research
needed to determine the optimal tuning parameter and a basic computational
framework for ease of implementation by a practitioner.

The aim of this paper is to develop a modeling framework and estimation proce-
dure that is robust to outliers or influential values and computationally inexpen-
sive, with a comprehensible implementation. The assumption of homogeneity of
dispersion is not necessary for our proposal. We present the framework as well as
a simple efficient implementation procedure using R. Our method is developed
for regularization and stabilization of inference, using a Bayesian procedure.
The proposed framework with details on implementation is presented in Section
2. A simulation study founding the proof of concept is presented in Section 3
and real data sets are analyzed in Section 4. The paper is concluded with a
discussion and some recommendations.

2 Robust Bayesian beta regression model (RB-
BRM)

The framework we propose will be general in the sense that we do not assume
homogeneity of the precision parameter but instead model it using a proper link
function and predictors, if needed. We use the reparameterized beta distribution
(2) as the response model and employ a location and dispersion (not precision)
regression model, similar to (3) and (4). The location sub-model is defined as:

g(µ) = X>β, (5)

where X = (x1, . . . ,xn)>, xi ∈ Rm is the i-th covariate with corresponding
regression parameter βi, with β = (β1, . . . , βm)>, and g(.) is an appropriate
link function like the logit or probit function. The dispersion sub-model is
defined as:

h(φ) = −Z>γ, (6)

Z = (z1, . . . ,zn)>, zi ∈ Rp is the i-th covariate with corresponding regression
parameter γi, with γ = (γ1, . . . , γp)

>, and h(.) is an appropriate link function
like the exp function. Note the difference between (4) and (6). The negative
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sign is incorporated to model the dispersion rather than the precision. Using
(6) allows the interpretation of γi in the same direction as the dispersion, rather
than the precision. A positive γi implies that an increase in the i-th predictor
results in a higher dispersion parameter. This setup facilitates a more logical
interpretation than the model in (4).

2.1 Bayesian specification

In our proposal the estimation space is of dimension Rm+p, which might be
troublesome in the case of a small sample size. A Bayesian approach is used for
the estimation of the parameters to facilitate smaller sample sizes. Addition-
ally, the robustness needed in the case of outliers, is established by the Bayesian
viewpoint as proposed in this paper. The Bayesian procedure established by
Cepeda-Cuervo et al. (2016) assumes a Gaussian prior for the regression coeffi-
cients. The Gaussian distribution is light tailed and very sensitive to outliers.
To develop a regularized robust Bayesian procedure we employ a Student’s t
prior on the regression coefficients for both the location and dispersion sub-
models, (5) and (6) (see Lange et al. (1989) and Gelman et al. (2003) for more
details). Let t(µ, τ, ν) denote the Student’s t-distribution with mean µ, scale
τ , and degrees of freedom (DF) ν, such that the expected value is µ and the
variance is τν

ν−2 , ν > 2. Then, we assume

βj ∼ t(µβj
, τβj

, νβj
), j = 0, 1...,m, (7)

and
γk ∼ t(µγk , τγk , νγk), k = 0, 1..., p. (8)

To avoid the issue of overfitting due to prior specification and surrendering to
Occam’s razor, (Simpson et al., 2015) we will set µβj

= 0 for j = 0, 1, ...,m and
µγj = 0 for k = 0, 1, ..., p, so that the modes of the prior distributions are situ-
ated at values that will result in a simpler model. Using this approach ensures
that a more complicated (high-dimensional regression) model is chosen above a
simpler (constant) model, only if the data necessitates it to be so.

It is well-known that as νβj
; νγk → ∞, the Student’s t distribution approaches

the Gaussian distribution. If the Student’s t prior is appropriate for the data
then the estimated DF should be small. For this purpose we employ a hierar-
chical framework by assuming a uniform prior (designate U(2, 100)) for the DF.
If the DF is less than two then the variance is infinite. In practice, there are
only marginal differences between the Student’s t and Gaussian distributions as
the DF increases beyond 30. The scale hyperparameters τβj

, j = 0, 1, ...,m and
τγk , k = 0, 1, ..., p are set to large values (which results in large variances) as
to construct weakly informative Student’s t priors. Alternatively, a prior could
also be envoked on the scale hyperparameters for a full hierarchical specifica-
tion, which is not within the scope of the current research.

Suppose y1, . . . , yn are n independent responses each taking a value in (0, 1), and
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are associated with respective m- and p-dimensional covariate sets (x1, . . . ,xn)
and (z1, . . . ,zn). The full model specification is then

yi|(µi, φi) ∼ Beta(µi, φi), i = 1, ..., n (9)

g(µi) = x>i β = β0 + β1Xi,1 + β2Xi,2 + ...+ βmXi,m

βj |νβj ∼ t(0, τβj , νβj )
νβj
∼ U(2, 100)

h(φi) = −z>i γ = −γ0 − γ1Zi,1 − γ2Zi,2 − ...− γpZi,p
γk|νγk ∼ t(0, τγk , νγk)
νγk ∼ U(2, 100)

The hyperparameters in this specification are τβj
, 1, ...,m and τγk , k = 1, ..., p.

These hyperparameters govern the dispersion of the priors of the regression
coefficients and will be analysed for their effect on the posterior results in a
sensitivity study.
The Laplace and Cauchy distributions can also be used as weakly informative
priors but increases the computational cost of the estimation procedure. Since
our aim is to provide a robust framework for inference within the beta regression
model that is simple in the implementation and use for practitioners, we will
focus on the prior specification as set out above.

2.2 Posterior validation

The propriety of the posterior distribution should be established in any Bayesian
model since if the posterior is not proper (not a valid probability distribution)
the posterior inference based on sampling schemes are not valid. If the priors
are all proper and non-degenerate, then the posterior is proper everywhere ex-
cept on the Lebesgue set (null set). In this paper we use a bounded uniform
distribution as a hyperprior for the DF of the Student’s t prior on the regres-
sion coefficients. This prior specification is proper everywhere ensuring a proper
posterior. The propriety of the posterior is easily established as follows.
Let Dobs = (n,y,X,Z) denote the observed data. From the full model specifi-
cation (9), the joint posterior distribution of (β,γ) has the form

π(β,γ|Dobs) = L(β,γ|Dobs)π(β)π(γ), (10)

where the likelihood has form

L(β,γ|Dobs) =

n∏
i=1

yµiφi−1
i (1− yi)φi(1−µi)−1

B(µiφi, φi(1− µi))

with µi = g−1(x>i β), φi = h−1(−z>i γ), π(β) =
∫
π(β|νβ)π(νβ)dνβ and π(γ) =∫

π(γ|νγ)π(νγ)dνγ .
As an example, if the logit and log link functions are used for the location and
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dispersion sub-models, respectively, the likelihood has the form

L(β,γ|Dobs) =

n∏
i=1

y

exp(x>i β)

1+exp(x>
i
β)

exp(−z>i γ)−1

i (1− yi)
exp(−z>i γ)

(
1− exp(x>i β)

1+exp(x>
i
β)

)
−1

B
(

exp(x>i β)

1+exp(x>i β)
exp(−z>i γ), exp(−z>i γ)

(
1− exp(x>i β)

1+exp(x>i β)

)) .
The posterior distribution of (β,γ) is proper if and only if∫

Rp

∫
Rm

L(β,γ|Dobs)π(β)π(γ)dβdγ <∞.

Since the priors are proper and due to the fact that the Student’s t distribution
can be represented as a scale mixture of normal’s with the weight function as the
inverse gamma distribution, the propriety of the posterior distribution follows
from Figueroa-Zuniga et al. (2013)

2.3 Software implementation

The Bayesian analysis is done using simulated samples from the stationary pos-
terior distribution of the parameters (10), using MCMC sampling schemes. Es-
tablishing convergence and posterior inference is done based on these simulated
samples. The coda package in R(Plummer et al., 2006) provides trace plots, con-
vergence plots and diagnostics like the Gelman(Gelman et al., 2003) or Geweke
diagnostics, highest posterior density intervals, credible intervals and posterior
summaries. The code provided in the supplementary material uses coda to inves-
tigate the convergence(Gelman et al., 2003) and autocorrelation of the simulated
samples, as well as to calculate the estimates and credible intervals for the pa-
rameters. The data analysis in this paper has been done using JAGS(Plummer,
2003) and R.

3 Simulation study

In this section simulated data is used to illustrate the proposed framework and
as proof of concept. The sensitivity of the posterior distribution to the hyper-
parameter values is also investigated in this section to establish the robustness
of the posterior results.

We start by simulating a data set with no outliers based on a predictor set of
dimension 1 for the location model with a fixed φ = 155.
As an example the logit link for g(.) is used and constant dispersion (identity
link for h(.) with an intercept only) is assumed in this section. In general, any
appropriate link function will suffice.

3.1 No outliers

A predictor set was simulated from a Gaussian sample and the regression coef-
ficients were set to β0 = 0.5 and β1 = 1 respectively.
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Figure 2: Simulated data: MLE (solid line) and RB-BRM (dashed line)

The betareg package was used to fit a regression model to the data (broken line)
as well as the new method (solid line) with the lines presented together with
the data in Figure 2. The estimated regression equations are

logitRB−BRM(µ) = 0.4947(0.4308; 0.5742) + 0.9796(0.9073; 1.0582)x

φ = 150.08(86.2367; 228.4974) (11)

and

logitMLE(µ) = 0.4687(0.2878; 0.6496) + 0.97116(0.8735; 1.0689)x

φ = 176.07(83.15; 268.99). (12)

From (11) and (12) it is clear that both methods elicit the true regression
structure, logit(µ) = 0.5+x, φ = 155. The pseudo R2,(Efron, 1978) for the MLE
is 99.2% and for the RB-BRM is 99.35 %. The estimated DF is νβj

= 28, j = 0, 1.
These large values indicate the good performance of the MLE’s or a Bayesian
set-up with a Gaussian prior. It is evident that in the case of a well-behaved
data set, as in this case, the two methods perform competitively well. In the
next section the performance in the presence of gross outliers are investigated.

3.2 Contaminated data under different perturbation schemes

Now the simulated data set is manually contaminated with outliers according
to four perturbation schemes as in Bayes et al. (Bayes et al., 2012) The pertur-
bation schemes are described as:

1. Decreasing the response by δ units for larger values of the predictor.
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2. Increasing the response by δ units for smaller values of the predictor.

3. Combining schemes 1 and 2 i.e. decreasing the response for larger values of
the predictor and increasing the response for smaller values of the predictor
by δ units.

4. Decreasing the response by δ units for middle values of the predictor.

The results are illustrated in Figure 3. It is clear that the MLE is very much
influenced by outliers and the outliers influence the estimation method in such a
way that the regression curve is not representative of the data anymore. The ro-
bust estimation, on the other hand, is not drastically influenced by the outliers,
as the MLE’s are, and provide more robust results. Keeping in mind that the

(1) (2)

(3) (4)

Figure 3: Perturbed data: MLE (solid line) and RB-BRM (dashed line)

true regression structure is β0 = 0.5, β1 = 1 we investigate the resulting credible
and confidence intervals under the two estimation procedures, the RB-BRM and
MLE. This is illustrated in Figure 4. Note that perturbation scheme 0 repre-
sents the simulate data with no outliers. It is evident that the estimates resulting
from MLE does not contain the true underlying regression structure for most of
the perturbed schemes. This is not true for the estimates under the RB-BRM
procedure. The resulting estimates are stable and the intervals contain the true
value in each case. It is important to note that the same hyperparameters, to
ensure vagueness, were used for all scenario’s as τβj = 1000, j = 0, 1. In the case
of the perturbed data the estimated DF is νβj = 2.578, 3.12, 7.68, 7.12, j = 0, 1
for perturbation schemes 1,2,3 and 4, respectively. These values motivate the
use of a Student’s t prior since the distribution of the regression parameters is
heavy-tailed due to the outliers in each case.
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Figure 4: Simulated (0) and Perturbed (1-4) data: Credible (left) and confidence
(right) intervals for the parameters under the RB-BRM (left) and MLE (right)

3.3 Sensitivity analysis

In this section the sensitivity of the posterior results are investigated when the
prior parameters assume different values. (Robert, 2007) Assessment of the ro-
bustness of the prior distribution, can be done trough the fact that the full model
specification has a hierarchical structure as in (9). As pointed out by Robert,
(Robert, 2007) the main purpose of the hierarchical extension was actually to
avoid the restrictive framework of conjugate priors. The sensitivity analysis for
the proposed framework is done by investigating the posterior results based on
changes in the the hyperparameter values. The simulated data set presented in
Section 3.1, is used as the data. Recall that the true underlying values of the
regression coefficients are β0 = 0.5 and β1 = 1.

Firstly, the scale hyperparameters τβj , j = 0, 1 are fixed at one of eight val-
ues (1-3000) and the resulting credible intervals for β0 and β1 are displayed in
Figure 5. The credible intervals presented in Figure 5 contains the true underly-
ing value for both the parameters β0 and β1, in most cases. This illustrates the
robust inference based in the RB-BRM framework proposed in this paper. The
null hypothesis of the true values is rejected for very small values of the scale
hyperparameters, since the prior is centered at zero. This result is expected,
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Figure 5: Credible intervals for the parameters under the RB-BRM procedure
for different values of τβj , j = 0, 1

since the resulting prior is extremely informative since it is centered at zero
with very small variance. For larger values of τβj

, j = 0, 1 the null hypothesis is
not rejected, preserving the true underlying regression model. Although, from
a practical viewpoint, large values of τβj , j = 0, 1 is feasible to construct weakly
informative priors.
Secondly, various upper bounds of the uniform prior for the degrees of freedom
were investigated and the procedure is very robust to this deviation. The up-
per bound has very little to no effect on the regression coefficients. To ensure
propriety of the posterior a finite upper bound is needed. We advise that the
upper bound should exceed 30 as to deter from a forced heavy-tailed prior on
the regression coefficients, since it might not be justified in all cases.

4 Applications

4.1 AIS data set

In the first application we return our attention to the AIS data set introduced
in Section 1. The AIS data set available in the R package sn contains health
measurements of several athletes collected at the Australian Institute of Sport
(AIS). A subset of this data set, the data on rowing athletes, has been studied
by Bayes et al. (Bayes et al., 2012) since there are outliers present in this
subgroup. The aim is to use lean body mass (LBM) as a predictor of body fat
percentage (BFP), which is a value between 0% and 100%, theoretically. There
are two outlying values present in the subset of rowers. In the introduction of
this paper, the impact of the outliers have been highlighted. Now we reanalyze
the data set using the proposed RB-BRM framework. For comparability we
assume constant dispersion and a location sub-model based on the predictor
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LBM as follows:

BFPi ∼ Beta(µi, φ)

logit(µi) = β0 + β1LBMi

The model was fitted using the new proposed RB-BRM framework and also
the MLE’s using the betareg package on the full data set and also on the data
set where the outliers were removed. The values of the hyperparameters were
assumed to be τβ0 = τβ1 = τγ0 = 1000. The estimated equations (with credible
and confidence intervals) are as follows for the full data set:

BFPi,MLE ∼ Beta(µi, 96.62(51.76; 141.48))

logitMLE(µi) = 0.098(−0.408; 0.6043)− 0.027(−0.035;−0.019)LBMi

and

BFPi,RB−BRM ∼ Beta(µi, 78.623(46.84; 118.77))

logitRB−BRM(µi) = 0.828(0.7601; 0.8932)− 0.03848(−0.0405;−0.036)LBMi,

ν̂β0
= 12.78, ν̂β1

= 24.05,

and for the data set without outliers:

BFPi,MLE ∼ Beta(µi, 246.31(128.61; 363.81))

logitMLE(µi) = 0.8377(0.463; 1.2127)− 0.038(−0.044;−0.032)LBMi

and

BFPi,RB−BRM ∼ Beta(µi, 79.147(47.832; 118.644))

logitRB−BRM(µi) = 0.828(0.763; 0.889)− 0.0385(−0.0404;−0.0365)LBMi

ν̂β0
= 51.27, ν̂β1

= 50.56.

These results compare well with available results.(Bayes et al., 2012; Smithson
and Verkuilen, 2006) The difference in the RB-BRM with regards to the in-
clusion or exclusion of the outliers, is negligible. This is not the case for the
model based on the MLE’s which emphasize the necessity of our proposal. The
estimated DF of the priors indicate the ability of the model to effectively handle
the outliers. When the outliers are included, the estimated DF is small, indi-
cate the heavy tail behaviour of the regression coefficients. In the case where
the outliers are removed, the RB-BRM proposal that utilizes Student’s t priors,
reduces to the Gaussian priors due to the large estimated DF. The fitted re-
sults are illustrated in Figure 6. It is evident from Figure 6 that the regression
based on the MLE’s are very sensitive to the inclusion of the outliers. This
is especially clear in Figure 6 (b) where the close-up reveals how similar the
results are for the RB-BRM irrespective of the inclusion of the outliers. This
illustrates the robustness of the new RB-BRM proposal to outliers, in contrast
to the sensitivity of the MLE’s.
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(a) Full data set (b) Close-up of 50 < LBM <
70

Figure 6: AIS data: MLE (full data set - dashed line and without outliers - solid
line) and RB-BRM (full data set - dotted line and without outliers - dot-dashed
line).

4.2 Psychology data set

A psychological study based on 166 nonclinical women was conducted in Aus-
tralia to investigate the effects of stress, anxiety and depression. More details
can be found in Smithson and Verkuilen(Smithson and Verkuilen, 2006) where
it is pointed out that this data set presents with heteroscedasticity. However,
Ghosh (2017) analyzed this data set under the assumption of homogeneous dis-
persion. Smithson and Verkuilen(Smithson and Verkuilen, 2006) noted that
there are a number of inluential observations which might influence the esti-
mates. In this section we will analyze the data by assuming firstly homogeneous
dispersion (see Figure 7 (a)), and then secondly heterogeneous dispersion (see
Figure 7 (b)). Also, the analysis was conducted using the full data set and then
by discarding some influential values.
The response is the anxiety score, and the stress score is used as the predic-
tor for the location as well as the dispersion model. It is clear from Figure 7
that the model that assumes heterogeneous dispersion is more appropriate. A
beta regression model is fitted to the data using the MLE and the RB-BRM,
respectively, which yielded the following results for the full data set,

logitRB−BRM(µi) = −3.854(−4.161;−3.526) + 4.473(3.589; 5.389)Stressi,
ν̂β0

= 2.472, ν̂β1
= 2.449,

logRB−BRM(φi) = 3.637(3.058; 4.157)− 3.396(−4.93;−2.851)Stressi,
ν̂γ0 = 2.506, ν̂γ1 = 2.398
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and

logitMLE(µi) = −4.0237(−4.2881;−3.7593) + 4.9414(4.1388; 5.744)Stressi,

logMLE(φi) = 3.9608(3.5698; 4.3518)− 4.2733(−5.3389;−3.1861)Stressi,

and for the data set without outliers,

logitMLE(µ) = −4.111(−4.3804;−3.8416) + 5.2799(4.3651; 6.1947)Stressi,

logMLE(φ) = 4.2012(3.7894; 4.613)− 5.2515(−6.4959;−4.0071)Stressi

The estimated DF again indicated the appropriateness of the heavy tailed prior
when the data includes outliers. The model based on the RB-BRM is not
presented for the data set without outliers since the difference to the model
based on the full data set is marginal. From the estimates, γ̂1 = 3.396 which
implies that increased stress leads to increased dispersion in the anxiety for a
specific individual due to our dispersion model specification in (6). In Figure
7, however, all four models are illustrated, for both the homogeneous (a) and
heterogeneous (b) dispersion assumption. It is clear from Figure 7 that the
assumption of homogeneous dispersion is not a valid assumption as noted by
Smithson and Verkuilen (2006). In Figure 7 the unstable behaviour of the

(a) Homogenous dispersion (b) Heterogeneous dispersion

Figure 7: Anxiety and Stress data: MLE (full data set - dashed line and without
outliers - solid line) and RB-BRM (full data set - dotted line and without outliers
- dot-dashed line)

MLE is again clear. The robustness of the new framework is evident under
the assumption of homogenous as well as heterogeneous dispersion, since the
estimated regression models fitted with and without outliers, virtually overlap.

5 Discussion

In this paper we addressed the need for an easily implementable estimation
procedure within the context of varying dispersion beta regression. The ap-
proach comprises of a hierarchical Bayesian set-up using weakly informative
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heavy-tailed Student’s t priors for the regression coefficients and a proper uni-
form prior for the degrees of freedom. This proposal facilitates a comprehensible
implementation that supports the model definition and practical application of
the framework. The restrictive assumption of homogeneity of the dispersion or
precision is not necessary for out proposed method.

The use of proper priors ensure the posterior propriety which makes for an
attractive alternative solution to the challenge of outliers within the beta re-
gression framework. A simulation study using different perturbation patterns
thoroughly investigated the robustness of the proposed model in the presence
of various types of outliers. The robustness of the posterior to the choice of the
hyperparameter values, were illustrated in a sensitivity analysis.

The robust Bayesian variable dispersion beta regression model (RB-BRM), pro-
posed in this paper, was applied to the AIS data set and the psychology data
set with success. In the AIS data set, the outliers are clear to the naked eye
since the focus is on one predictor. In a case such as this, visual inspection for
outliers is feasible. This is, however, not the case in the second data set we
analyzed, the psychology data set, since there are two predictors. A predictor
space of non-unit dimension poses a challenge to visual inspection for prominent
outliers. For a high dimension, visualization is a near impossible task. The need
for the robust model is clear in the psychology data set, as well as the violation
of the homogeneous dispersion assumption.

The applicability and necessity for this framework is evident from the simu-
lation study as well as the analysis of the real data sets. This framework is an
easily implementable tool for use by practitioners in the field of medical research
where the response is measured in any finite interval. The proposed framework
can be extended to facilitate random effects and non-linear behaviour in future.
This extension can be easily incorporated into the computational procedure
presented with this paper.
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