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Abstract 

Our inability to cultivate most micro-organisms, specifically bacteria, in the laboratory has for 

many years restricted our view and understanding of the bacterial meta-resistome in all living 

and non-living environments. As a result, reservoirs, sources, and distribution of antibiotic 

resistance genes (ARGS) and antibiotic-producers, as well as the effects of human activity and 

antibiotics on the selection and dissemination of ARGs were not well comprehended. With the 

advances made in the fields of metagenomics and metatranscriptomics, many of the hitherto 

little-understood concepts are becoming clearer. Further, the discovery of antibiotics such as 

lugdinin and lactocillin from the human microbiota, buttressed the importance of these new 

fields. Metagenomics and metatranscriptomics are becoming important clinical diagnostic tools 

for screening and detecting pathogens and ARGs, assessing the effects of antibiotics, other 

xenobiotics, and human activity on the environment, characterizing the microbiome and the 

environmental resistome with lesser turnaround time and decreasing cost, as well as discovering 

antibiotic-producers. However, challenges with accurate binning, skewed ARGs databases, 

detection of less abundant and allelic variants of ARGs, and efficient mobilome characterization 

remain. Ongoing efforts in long-read, phased- and single-cell sequencing, strain-resolved 

binning, chromosomal-conformation capture, DNA-methylation binning, and deep-learning 

bioinformatic approaches offer promising prospects in reconstructing complete strain-level 

genomes and mobilomes from metagenomes. 

Keywords: microbiome; single-cell sequencing; resistance genes; mobilome; meta-resistome; 

methylome; phased-sequencing. 
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Introduction 

Antimicrobial resistance (AMR) continues to restrict treatment options for infectious diseases. 

Hence, the attributable mortality and morbidity rates of drug-resistant infections are estimated at 

hundreds to millions of people, with attendant healthcare-associated costs of millions of dollars 

annually around the world (Pehrsson et al., 2013; Sekyere and Asante, 2018). As a means to 

increase our antibiotic arsenals and enhance treatment options for drug-resistant infections, 

increasing calls are being made to accelerate the discovery of novel antibiotics (Sekyere, 2016; 

Somboro et al., 2018). Historically, the discovery and subsequent use of novel antibiotics have 

been followed by the emergence of antibiotic resistance genes (ARGs) and resistant bacteria 

(Davies and Davies, 2010; Osei Sekyere et al., 2015), begging the question of which came first: 

antibiotics or ARGs? 

The concept of bacteria producing antibiotics to eliminate competitors was recently highlighted 

by Donia et al. (2014) with the production of lactocillin in the vaginal commensal Lactobacillus 

gasseri (Donia et al., 2014), and by Zipperer et al. (2016) with the production of lugdinin by 

Staphylococcus lugdunensis in the nasal cavities to inhibit methicillin-resistant Staphylococcus 

aureus (MRSA) (Zipperer et al., 2016). Except for these two antibiotics, most antibiotics were 

discovered from soil-inhabiting bacteria. Notably, several ARGs, such as clinically important 

metallo-β-lactamases, were initially found in soil bacteria, some of which were producers of β-

lactam antibiotics, before their emergence in clinical pathogens. Numerous environmentally 

discovered ARGs are not clinically relevant even though they could confer resistance to 

antibiotics under certain conditions when challenged with antibiotics (Berglund et al., 2017).  

Most bacteria are not cultivable under standard laboratory conditions, restricting our view and 

understanding of the bacterial meta-resistome, mobilome, species diversity, relative abundance 
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and functional interactions within all living and non-living environments until recently. 

Traditionally, research in AMR and discovery focused on cultivable bacteria, which were usually 

isolated from clinical or soil specimen (Fig. 1), and the roles played by known ARGs in those 

species (Pehrsson et al., 2013; Aguiar-Pulido et al., 2016). Thus, culture- and PCR-based 

approaches have been used to study microbial communities expressing AMR characteristics. 

Both approaches have served microbiologists well and have led to important discoveries and 

strides in AMR research and antibiotics discovery (Pehrsson et al., 2013). However, culture-

dependent techniques have intrinsic limitations because most bacteria do not grow axenically 

under standard laboratory conditions, making them undetectable by this approach, and resulting 

in under-sampling of ARGs from diverse microbial communities. In addition, PCR-based 

methods only detect known or previously described genes, which makes it biased and exclusive 

(Data S1) (Aguiar-Pulido et al., 2016) 

Over the past decade, the emergence and subsequent advances in next-generation sequencing 

(NGS) applications in microbiome studies have revolutionized the search for ARGs and 

antibiotics producers as non-cultivable microbes can now be analysed de novo without prior 

knowledge of available genes for primer design (Penders et al., 2013)(Data S1). Whole-genome 

shotgun metagenomics can be undertaken via a sequence-based approach in which the genomes 

of all microbiota in a given environmental or clinical sample is directly sequenced after 

extracting the DNA (Lanza et al., 2018). It can also be undertaken by a functional metagenomics 

approach in which cultivable bacteria are used as producers or factories to translate DNA 

fragments directly extracted from environmental or clinical microbiota into proteins. Restriction 

endonucleases are used to fragment the foreign genomic DNA and host plasmid vectors into 

strands with complementary ends to enable integration and subsequent transformation into the 
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cultivable host bacteria. This is followed by screening of the transformed bacteria for foreign 

proteins such as antibiotics (Fig. 2) (Martínez et al., 2017; Lanza et al., 2018)(See supplementary 

data S1 for more details on sequenced-based and functional metagenomics). 

Due to the differential abundance of various species in a microbiota, less represented species and 

their ARGs are commonly undetected by sequencing platforms, particularly when the read 

coverage is low (Martínez et al., 2017). As well, allelic variants of ARGs are normally not 

detectable by short-read sequencers due to their shorter sequence reads, making it difficult to 

predict the phenotypic profile of the uncultivable host species as different alleles of an ARG can 

have different resistance profiles (Arango-Argoty et al., 2018; Beaulaurier et al., 2018). 

Furthermore, the inability to reconstruct draft or whole genome sequences of species and strains 

with their associated mobile genetic elements (MGEs) such as plasmids, bacteriophages, 

transposons, and integrons, the so-called mobilome, into genomic bins (i.e., categories of same 

or similar species/taxa) for further downstream bioinformatics analyses continue to plague 

microbiome research (Martínez et al., 2017; Beaulaurier et al., 2018; Lanza et al., 2018). Finally, 

prediction of ARGs in metagenomes leads to several false negatives as current ARG databases 

are composed of only known, specific and clinically important ARGs with high sequence 

homology cut-offs and best-hit search algorithms (Martínez et al., 2017; Arango-Argoty et al., 

2018). 

Metatranscriptomics 

How does the microbiome react to stress, including antibiotic stress, from humans and 

surrounding antibiotic-producing competitors? How does exposure to these stresses lead to 

ARGs’ emergence, prevalence and distribution? How does acquired ARGs affect fitness cost and 

host physiology? To answer these questions, metatranscriptomics comes in as a better tool than 
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metagenomics. One of the ways by which the human gut microbiota affects host health is by 

metabolizing antibiotics. Even though some research has been conducted on the diversity of 

these microbial communities, it still remains unclear which microorganisms are transcriptionally 

active and what factors elicit their activity and gene expression (Aguiar-Pulido et al., 2016). It 

can be demonstrated by metatranscriptomic analysis, that exposing the active gut microbiome to 

antibiotics on a short-term basis can considerably affect gene expression, physiology and 

structure of the microbiome (Table 1; Data S1). Particularly, genes encoding drug metabolism, 

antibiotic resistance and stress response enzymes/pathways have been found across several 

bacterial phyla (Maurice et al., 2013). Furthermore, the effects of acquired ARGs on host 

physiology are best understood through metatranscriptomic analyses. For instance, changing 

gene expression in response to antibiotic challenge can affect bacterial physiology or 

morphology through efflux hyper expression and suppression of certain genes respectively 

(Martínez et al., 2017). 

Brief description of microbiomic methods used in AMR & discovery research 

All metagenomic studies essentially follow the same primary steps (Data S1): Metagenomic 

DNA extraction kits are first used to isolate purified DNA from environmental specimens. 

Metagenomic DNA extraction kits are specially designed to extract inhibitor-free DNA from 

non-cultivable or difficult-to-culture organisms in various environments such as soil and water, 

which cannot be equally achieved by other non-metagenomic DNA extraction kits; DNA 

contaminants such humic and fulvic acids are not eliminated by the latter. This is followed by 

either direct NGS or excision with endonucleases for subsequent cloning into plasmid vectors 

and transformation into bacterial hosts. These cloned transformants are multiplied to create 

libraries, which are then extracted and sequenced (Fig. 2). The function of genes within the 
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clones can be assessed through their expression in the transformant(s) (Fig. 1-2; Supplementary 

data S1) (Thomas et al., 2012).  

The metatranscriptomic process involves extracting and analyzing metagenomic messenger RNA 

(mRNA), thus providing information about genes that are actively being expressed under 

specific conditions (Quaresma et al., 2013). Processing of reads may involve (a) mapping unto a 

reference genome, in instances of specific species search, to deduce the relative expression of 

individual genes. Transcript expression can be normalized by using reads per kilobase of 

transcript per million mapped reads (Jiang et al., 2016). Alternatively, (b) reads may be 

assembled de novo into transcript contigs and supercontigs i.e., an ordered and oriented set of 

contigs still containing some gaps, which is particularly facilitated when PacBio’s single 

molecule real time (SMRT) sequencing and Iso-Seq analysis is used (Nudelman et al., 2018). 

The first approach is limited by the reference genome database information whereas the second 

approach may be limited by the ability of bioinformatic software to correctly assemble short 

reads data into contigs and supercontigs  (Aguiar-Pulido et al., 2016). 

Bioinformatics tools used in microbiome studies 

All NGS reads, including metagenomic sequence reads, are quality checked using tools such 

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), trimmed, corresponding to 

an average Phred quality score of a minimum of 30 using applications such as Trim Galore! 

(www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and filtered to remove adaptor 

sequences using tools such as AdapterRemoval (v1.1) or Trimmomatic (Tables 1-3); host 

sequences are also removed (Lindgreen, 2012; Bengtsson-Palme et al., 2015; Caputo et al., 2015; 

Willmann et al., 2015; Hansen et al., 2016; Millan et al., 2016; Raymond et al., 2016). 
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The assembly of the metagenomic sequences per sample is performed with software tools such 

as Ray Meta version 2.3.1 (Boisvert et al., 2012) and Megahit (Li et al., 2015c), SOAPdenovo, 

MetaVelvet-SL, and metaSpades (Vollmers et al., 2017)(Tables 1-3). Open reading frames’ 

prediction, which is integral in many annotation tools and precedes annotation, is done with 

softwares such as Prodigal (Hyatt et al., 2010; Caputo et al., 2015; Willmann et al., 2015; 

Raymond et al., 2016) Annotation of results may be done using KEGG, COG, MEGAN, GO, 

MG-RAST and Swiss-Prot (Aguiar-Pulido et al., 2016). Identification of ARGs is done using 

tools such as Resqu (http://www.1928diagnostics.com/resdb) and BLAST. Vmatch 

(http://www.vmatch.de/), is frequently used to scan metagenomic reads for ARGs, using for 

example the Resqu database as a reference. 

For metatranscriptomics analysis based on read mapping, BWA and Bowtie2 are used to map 

reads to specific references. Annotation of results is done using KEGG, COG, MEGAN, GO and 

Swiss-Prot. Tools such as SOAPdenovo, AbySS, MetaVelvet, Trans-Abyss and Trinity assemble 

reads de novo into contigs and supercontigs (Aguiar-Pulido et al., 2016). RNA-Seq reads are 

taken as input alongside a reference transcriptome by RSEM, which evaluates the normalized 

transcript abundance (Aguiar-Pulido et al., 2016). 

Current ARG databases such as ResFinder, SEAR, CARD (Comprehensive Antibiotic 

Resistance Database, ARGs-OAP, ARG-ANNOT, ARDB (Antibiotic Resistance Database) are 

unable to distinguish between intrinsic and acquired resistance, and are mostly plasmid- (e.g. 

SEAR) and species-specific, using best-hit approaches with high sequence homology cut-offs to 

determine ARGs from query sequences (Martínez et al., 2017; Arango-Argoty et al., 2018; 

Lanza et al., 2018). This increases false negative outcomes. In addition, these databases only host 

clinically important ARGs, making it difficult to identify unknown ARGs (Tsukayama et al., 
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2018). Arango-Argoty et al. (Arango-Argoty et al., 2018) therefore developed a new ARG-

prediction database and tool, called DeepArg, using deep machine learning instead of a best-hit 

approach, with flexible identity cut-offs to increase sensitivity. 

Sequenced-based ARG prediction, particularly for unknown ones, is not necessarily 

confirmatory. This means  their clinical importance or ability to cause resistance in their hosts 

should be established through functional studies (Tsukayama et al., 2018). Moreover, the 

inability of currently used short-read sequencers to determine the allelic variant of an ARG in 

metagenomic sequences makes it less informative as different allelic variants of the same ARG 

can have different resistance profiles (Tsukayama et al., 2018). Hence, functional metagenomics 

should be used to determine the susceptibility profiles of such predicted genes by cloning them 

into cultivable bacterial hosts. However, lack of resistance or low level resistance in the species 

used for functional screening does not necessarily imply that the gene is not an efficient 

resistance gene in its original setting (Tsukayama et al., 2018). Thus, though functional studies 

are important in determining gene function, caution should be exercised in their interpretation, as 

genes may behave differently in different bacterial hosts due to epigenetic factors and promoter 

mutations. The risk of such ARGs to human health may be confirmed by infecting animal 

models with strains transformed with such identified ARGs. 

Binning & DNA methylation, long-reads, single-cell and phased-sequencing 

A major challenge to metagenomics is the ability to reconstruct complete or draft genomes of 

individual species and strains from metagenomic data to obtain a complete picture of species or 

strains and their resistome (ARGs) and mobilome (MGEs) diversity and relative abundance 

(Martínez et al., 2017). These drawbacks are due to the low sensitivity and specificity of 

available NGS platforms for less abundant species and their genomes, making it difficult to 
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comprehensively determine all ARGs and MGEs. This is due to the absence of NGS platforms 

that can concomitantly generate long reads with high coverage. Thus, bioinformatic sorting or 

extraction of species or strains’ genomes from the metagenome sequences into categories (or 

bins), a process called binning, is affected. Without effective binning, downstream bioinformatic 

analyses to associate identified mobilome and resistome with species or strains is impossible. 

Short-read sequencers are unable to provide reads that can be easily binned into separate species 

and strains as their assembled reads cannot provide longer contigs that can be easily resolved 

into species- or strain-level bins. Long-read sequencers on the other hand, have more errors and 

shallower coverage, making it difficult to identify low-abundant species and ARGs (Beaulaurier 

et al., 2018). 

Phenotypic differences in strains of the same species in terms of virulence, pathogenicity, 

resistance etc., makes strain-resolved binning i.e., categorizing metagenomic contigs to 

simultaneously determine both gene sets and exact sequence of strains, extremely important for 

clinical microbiome applications. Thus, DNA processing protocols, high coverage long-read 

sequencing and bioinformatic algorithms have been developed to improve upon strain-resolved 

binning (Alneberg, 2018). For instance, phased sequencing, a novel technique for resolving 

chromosomal alleles into their paternal and maternal progenitors in eukaryotes, can be adapted in 

prokaryotes to enable easy strain-resolved binning (Alneberg, 2018; Choi et al., 2018). A new 

droplet-based barcode sequencing technique for creating linked-read sequencing libraries by 

uniquely barcoding the information within single DNA molecules in emulsion droplets, without 

the aid of specialty reagents or microfluidic devices has been further introduced to enhance 

phased-sequencing at a cheaper cost (Redin et al., 2017). This barcoding technique allows easy 
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binning of reads to identify allelic variants and can be used to resolve closely related strains of 

the same species. 

Furthermore, Bishara et al. (2018) recently introduced a new technique using the 10X Genomics 

(barcoding and library construction) platform and Athena assembler to generate longer highly 

contiguous (>200kb N50, <10 contigs) draft genomes with at least 20X coverage. This synthetic 

long read approach proved better than Illumina’s Truseq or PacBio’s reads as it combined long 

reads with higher coverage to enhance effective binning (Bishara et al., 2018). The Illumina 

NovaSeq 6000 sequencing system which supports an enormous output, generating up to 6 Tb 

and 20 billion reads in less than 2 days, helps to improve upon read coverage albeit its shorter 

read length of 2 x 150 bp will impact efficient binning (Svensson et al., 2018).  

Single-cell sequencing (SCS), in which DNA from single cells in the microbiota are isolated 

through special techniques for amplification and subsequent sequencing without a culturing step 

has been proposed to study under-represented or low abundance species to overcome 

metagenomic challenges (Hedlund and Deng, 2017). However, the amplification step can result 

in non-uniform amplicons and subsequent differences in read depth and abundance of genes. The 

amplification step, which is necessary obtain adequate material for downstream analyses can be 

challenging. These challenges may introduce biases and errors that can thwart data interpretation 

(Gawad et al., 2016). It is critical to obtain genetic information from single cells while 

circumventing challenges such as genome loss, amplification bias and mutations. PCR-based 

techniques of whole-genome amplification (WGA) such as degenerate oligonucleotide primed 

PCR (DOP-PCR) result in low coverage (Gawad et al., 2016). Isothermal methods are alternative 

WGA methods that generate a greater genome coverage with lower error rates than PCR-based 

methods, even though the former techniques also lack uniformity. Methods such as multiple 
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annealing and looping based amplification cycles (MALBAC) and PicoPLEX, developed to 

surmount the limitations of PCR-and isothermal-based techniques merge the two methods, by 

using isothermal amplification followed by PCR amplification of the amplicons generated by the 

isothermal step (Gawad et al., 2016). SCS can be added to metagenomics to identify less 

abundant species in the microbiota by first using 16S rRNA sequencing to identify less abundant 

species, which can be selected for SCS; however, this elaborate technique is expensive 

(Alneberg, 2018). Notwithstanding, single-cell RNA-seq holds much promise to identify 

individual cell’s reactions to antibiotics in the microenvironment. 

Bioinformatic binning tools such as ABAWACA, COCACOLA, CONCOCT, GroupM, MaxBin, 

MetaBAT and Mycc use GC content, sequence composition, genome coverage, phylogenetic 

markers and genomic signatures alone or in combination to bin metagenomes into similar taxa 

and species (Alneberg, 2018). The efficiency of these tools is however limited by short and low 

read depths, which can negatively impact efficient species and strain binning. Short reads are 

difficult to be assembled into longer contigs, leading to shorter contigs that does not allow 

efficient differentiation of genomes to the species and strain level, which affects binning 

(Alneberg, 2018). Although co-assembly, i.e. the combination of all or several samples prior to 

sequencing, has been proposed as an effective means to increase the overall relative abundance 

of lower abundance species during binning, it was found to be practically inefficient than binning 

individual assemblies (Alneberg, 2018; Beaulaurier et al., 2018). To overcome the inherent 

challenges in individual binning tools, Sieber et al. (2018) recently developed a dereplication, 

aggregation and scoring strategy (DAS) algorithm that combines a flexible number of binning 

algorithms to overcome the inherent difficulties in each. The DAS tool was found to be better 

than individual ones (Sieber et al., 2018). 
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EPIC-PCR (Emulsion, Paired Isolation and Concatenation PCR), a technique that has been 

suggested to address the afore-mentioned drawbacks of NGS platforms by linking phylogenetic 

markers and functional genes in uncultivated single cells to provide a throughput of several 

thousands of cells, has been introduced (Spencer et al., 2016). The method uses emulsion-based 

techniques to segregate cells in emulsion droplets, thus allowing cell lysis before PCR, capturing 

them in a hydrogel matrix, which holds the genomes of the bacteria for subsequent amplification 

of targeted genes. The method therefore links the identity of microbial community members to 

their function. Spencer et al. (2016) used the technique to identify a new sulfate-reducing 

microbial population among the diverse microbial population of a freshwater lake (Spencer et al., 

2016). 

A breakthrough approach in metagenomic binning was recently reported by Beaulaurier et al. 

(2018) using DNA methylation signatures and PacBio’s SMRT platform to efficiently bin 

metagenomes into species, strains, and MGEs. DNA methyltransferases (MTases), which 

catalyze the addition of methyl groups to cell- or strain-specific sequence motifs in bacteria and 

archaea, are found on both MGEs and chromosomes. MTases methylate both plasmids and 

chromosomes to ensure that the same methylation signatures exist within the cell. The 

uniqueness in methylation signatures allows it to be used alongside current binning tools to 

efficiently bin strains and associated MGEs. Bacterial methylome diversity are driven by MGEs 

bearing MTases, which can lead to similar signatures among cells hosting same MTase-bearing 

MGEs. Thus, the resolution of this approach decreases with increasing microbiome complexity, 

although its combination with current tools will enhance strain-resolved mobilome and resistome 

binning (Beaulaurier et al., 2018). 

13



Resistome and mobilome analysis 

The mobilome plays an important role in shaping the resistome of the microbiome as it shuttles 

ARGs horizontally between cells, strains and species. A perfect characterization of the mobilome 

and resistome in the microbiome is challenging as current short read platforms are unable to 

generate longer assembled contigs that can enable efficient binning and associate the resistome 

and mobilome with their host genomes. Moreover, the relatively low abundance of the mobilome 

and resistome requires deeper sequencing coverage for better detection, a property lacking by 

current long-read sequencers such as PacBio (Beaulaurier et al., 2018; Bishara et al., 2018). 

Several strategies have been developed to enhance plasmidome (mobilome) analysis in 

metagenomes. These include the use of detergents and exodeoxyribonucleases to respectively 

isolate plasmid DNA and degrade linear but supercoiled DNA, rolling-circle amplification using 

Φ29 polymerases to increase plasmid concentration, and genetic labelling that allows capturing 

of plasmid DNA in recipient cells, enable researchers to increase the quantity and quality of 

isolated plasmids for sequencing (Martínez et al., 2017; Krawczyk et al., 2018). Other methods 

include the introduction of competent cells into donor communities to receive plasmids and 

using transposon-aided capture (TRACA) to transform Escherichia coli  cells with sample DNA 

that has undergone in vitro transposition reactions (Warburton et al., 2011; Zhang et al., 2011). 

While these methods allow for detailed characterization of isolated plasmids, not all plasmids 

can be studied as different plasmid sizes (larger ones) and plasmid types are not amenable to 

these techniques. Unlike plasmidome analysis, techniques for phageome, i.e. the complete 

repertoire of phages or phage DNA in an environment, isolation and analysis yield 

comprehensive results, albeit phage contamination with host chromosomes remains a challenge 

(Martínez et al., 2017). 
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Chromosomal conformation capture (3C), a method adapted from chromosomal DNA processing 

in which formaldehyde is used to crosslink chromosomal DNA to surrounding DNA (such as 

plasmids), is another major methodical advance in plasmidome/mobilome analysis. This 

technique allows the linking of plasmid to host chromosome into single DNA elements prior to 

sequencing, enabling efficient binning of the mobilome with host species (Martínez et al., 2017). 

A novel targeted sequence capture technique to detect antibiotic, metal and biocide resistance 

genes towards overcoming the inherent deficiencies of metagenomics in terms of identifying 

less-abundant species and improve sensitivity and specificity was recently introduced. This 

technique, called ResCap (Resistome capture), further allows the simultaneous analysis of the 

presence and diversity of the mobilome, resistome and plasmid replicon genes using the 

NimbleGene technology in which constructed metagenomic libraries are hybridized and captured 

before sequencing on Illumina Nextseq (Lanza et al., 2018). 

Bioinformatic tools that can efficiently assign the mobilome to their host genomes are limited, 

although promising results are obtainable with Recycler (Rozov et al., 2017), PlasFlow 

(Krawczyk et al., 2018), and the Plasmid Constellation Network (PLACNET) (Lanza et al., 

2018). With the introduction of DNA-methylation-based binning, it is envisaged that better tools 

will be developed for mobilome analysis. 

ARGs in the human microbiome 

The role of the human gut microbiome in transporting ARGs between continents was studied by 

Bengtsson-Palme et al. (2015) using shotgun metagenomic sequencing on samples (fecal 

specimen) taken before and after exchange programs. It was observed that there was an increase 

in the relative abundance of ARGs; most notably sulphonamide ARGs (2.6-fold increase), 
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trimethoprim (7.7-fold), and β-lactams (2.6-fold), even though no antibiotics were taken within 

the period (Table 1). Variations in resistance-encoding genes, particularly to widely used 

antibiotics such as tetracyclines, β-lactams and aminoglycosides were detected (Bengtsson-

Palme et al., 2015). The study showed how travelling to different environments can affect the 

ARG profile of the microbiome and potentially result in colonization and possible infection with 

resistant microbes. However, low-abundant genes or taxa were undetected by this approach as 

ESBLs-encoding genes in Enterobacteriaceae were identified by culture (Bengtsson-Palme et 

al., 2015; Forbes et al., 2017). The effects of travel on the dissemination of ARGs has become an 

issue of interest in the light of this discovery, particularly as the world becomes increasingly 

globalized with sophisticated and fast modes of travel. 

To investigate the effects of antibiotics on the microbiome, Willmann and colleagues (2015) 

observed the development of intestinal ARGs in two healthy individuals, without exposure to 

quinolone antibiotics in the previous year, over a 6-day course of treatment with ciprofloxacin 

(Willmann et al., 2015). Antibiotics affected ARG groups differently in the two subjects, 

particularly the class D β-lactamases. Increased intestinal ARGs also occurred in the subjects 

over the course of the antibiotic administration. The study found that the ARG composition in 

both subjects returned to their original composition four weeks after treatment, albeit to different 

degrees (Willmann et al., 2015)(Table 1). The use of the fixed- and random-effects models of 

calculating selection pressure, to calculate the amount of ARGs per daily dose of a particular 

antibiotic, when rightly adopted in clinical practice, can be used to determine the effects of 

therapeutic regimens on the intestinal microbiome. Clinical application of microbiomics to 

characterise the human microbiome for administering personalized therapeutic interventions with 

minimal dysbiosis was thus demonstrated. This is however only possible when the effect of 
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antibiotics on the ARG pool is properly investigated. With a small sample size of 2 individuals, 

caution should be exercised in generalizing the findings as reproducibility is also not guaranteed. 

Again, it must be stressed that the study observed the shift in composition of the intestinal 

resistome due to the antibiotic administration. Thus, it has not been suggested that class D β-

lactamases mediate ciprofloxacin resistance. 

Raymond et al. (2016) further showed that the initial composition of the human gut microbiome 

influences the dysbiotic impact of antibiotics by administering cefprozil to healthy volunteers 

and analyzing stool samples before antibiotic exposure, at the end of treatment and three months 

after treatment (Raymond et al., 2016). Lachnoclostridium bolteae increased in most participants 

after antibiotic exposure, with a subgroup of the participants having an enrichment in 

Enterobacter cloacae. This effect was associated with lower initial microbiome diversity. Genes 

affected (increased) by antibiotic exposure included arr2 (rifampicin), (blaCepA) (beta-lactamase)

and mef(G), even though the influence of antibiotic exposure on the microbiomes of the subjects 

remained largely individual-specific (Table 1) (Raymond et al., 2016). 

While Willman et al. (2015) and Raymond et al. (2016) vouch for microbiomics in AMR 

screening, epidemiology and antibiotics prescription on a case-by-case basis, the cost, 

practicability and skills involved in such a concept should not be overlooked, particularly in 

resource-constrained settings. Nevertheless, the cheaper cost of the Oxford Nanopore (which is a 

fourth-generation biology-based NGS platform capable of sequencing DNA and RNA directly at 

the single-molecule level at a relatively cheaper cost) might make such propositions possible 

within a shorter time than imagined (Bertelli and Greub, 2013). On the other hand, the use of 

fecal microbiota transplantation (FMT), the process of transplanting fecal bacteria from healthy 

donors to recipients, to treat patients with drug-resistant Clostridium difficile infections, as 
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shown recently by Juul et al. (2018) with the use of FMT and metronidazole, portends the 

potential benefits of using the microbiome in personalized medicine (Juul et al., 2018). 

Millan et al. (2016) administered FMT from universal donors to 20 patients with recurrent RCDI 

through colonoscopy and observed them prospectively. Shotgun metagenomic sequencing and 

analysis showed that patients with RCDI had a larger number and diversity of ARGs, before 

FMT, than donors and healthy controls. β-lactamases, multidrug-resistant efflux pumps and 

fluoroquinolone ARGs were high in RCDI patients whereas donors mainly possessed 

tetracycline ARGs. Phylogenetic analysis revealed Proteobacteria as the dominant phylum in 

RCDI patients, with Escherichia coli and Klebsiella spp. being the commonest. It was observed 

that FMT decreased the number and diversity of ARGs, accompanied by decreased 

Proteobacteria but increased Firmicutes and Bacteroidetes. Furthermore, the resistome of the 

donor was similar to that of the recipient upon successful FMT, showing a change in microbiome 

consistent with healthy gut microbiome. (Table 1) (Millan et al., 2016). 

Decreased ARGs correlated with resolution of RCDI symptoms, showing the importance of 

FMT and ARGS in RCDI. However, the observed decrease in Proteobacteria following FMT 

cannot be ruled out as contributing to the resolution of RCDI symptoms. FMT, whose effect on 

the microbiota is measured by metagenomics, presents a great treatment method for those in 

whom antibiotics have failed to work; a situation corroborated by Juul et al. (2018) (Juul et al., 

2018). It may be more cost-effective than continued antibiotic use. It must be stated however, 

that FMT is not the result of metagenomics. However, the use of the method in sampling fecal 

samples before and after FMT, to investigate its effects on the composition and diversity of 

microbes and ARGs highlights its important place in FMT. 
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Identifying the sources, prevalence, diversity and hosts of ARGs is important in controlling and 

preventing AMR. Due to its ability to identify ARGs in non-cultivable bacteria, metagenomics is 

a useful tool for molecular epidemiologists fighting AMR. For instance, various other studies 

using metagenomics have identified various resistance determinants in the human microbiome, 

including β-lactamases, glycopeptide ARGs, fosA, ant(6)-Ia, ermB, lnuB, tetL, tetU, CatB1 

(Buelow et al., 2014; Caputo et al., 2015; Zaura et al., 2015; Jitwasinkul et al., 2016) and 

emerging ARGs, including a 16S rRNA methylase conferring aminoglycoside resistance and two 

tetracycline resistance proteins (Moore et al., 2013).  

Pathogenomics & AMR 

Pathogen diagnostics depends on the identification of already known aetiological agents (Miller 

et al., 2013; Osei Sekyere, 2018). Despite batteries of available tests such as culture-based 

investigations, microscopy, immunoassays, and molecular tests, aetiologies of many samples 

including nearly 40% of gastroenteritis and 60% of encephalitis cases sent to laboratories remain 

undiagnosed as the aetiologies may be novel or untargeted (Finkbeiner et al., 2008; Ambrose et 

al., 2011; Miller et al., 2013).  

Metagenomics, being culture independent and pathogen-agnostic, presents a solution, in part, to 

the above-stated limitations, as the generated sequence data can be used to predict resistance 

determinants and virulence genes. Zhou et al. (2016) used metagenomics to detect pathogens 

without a priori knowledge (Zhou et al., 2016). In their study, they investigated diarrhea in stool 

samples, and identified β-lactamase and tetracycline ARGs as the most prevalent ARGs. 

Pathogens implicated in the infection included Clostridium difficile, Clostridium perfringens, 

norovirus, sapovirus, parechovirus, and anellovirus (Zhou et al., 2016). In a similar study 

comparing metataxonomic and metagenomic approaches to culture techniques in clinical 
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pathology, Hilton and colleagues (2016) concluded that metagenomic analyses have the accuracy 

required as a clinical diagnostic tool in patients with ventilator-associated pneumonia (Table 1) 

(Hilton et al., 2016). However, metagenomics does not completely solve the puzzle of 

misdiagnosed or undiagnosed samples, warranting the development of improved pathogen 

diagnostics. 

It has recently been shown that the introduction of diarrhea-causing enterotoxigenic E. coli 

(ETEC) into healthy persons resulted in a drastic change in the hosts’ E. coli microbiome 

composition in that commensal E. coli were replaced with ETEC until the administration of 

antibiotics. The resistance of E. coli commensals to ciprofloxacin and β-lactams, to which the 

ETEC was susceptible, allowed the former to recolonize the gut 6-17 hours after antibiotics 

administration. Notably, no virulence or resistance gene exchanges were observed between the 

commenals and ETEC. The ability of ETEC to displace commensal E. coli and establish itself to 

cause diarrhoea confirms the role of pathogens in dysbiosis (Richter et al., 2018).  

Environmental reservoirs of ARGs 

AMR from soil microbiome 

The evolution of antibiotic-producing microbes in the soil and other environments over the years 

has contributed to the menace of antibiotic resistance (Perry and Wright, 2013). Human activities 

such as the use of antibiotics in agriculture have led to an increase in selection pressure, which in 

turn can influence the environmental ecology, distribution and diversity of the meta-resistome 

(Fig. 1) (Perry and Wright, 2013). There are documented examples of environmental ARGs 

moving into human pathogens, which suggest that clinical resistance may have originated from 

the environment (Poirel et al., 2005; Pehrsson et al., 2013; Perry and Wright, 2013). Indeed, 

strong proof exists to imply that genes encoding resistance to β-lactams (blaCTX-M), 
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aminoglycosides, vancomycin and quinolones (qnr), have direct links with the environmental 

resistome (Pehrsson et al., 2013).  

Xiao et al. (2016) detected and quantified a total of 16 ARGs types from paddy soils from South 

China, which were uniquely different in abundance and distribution from ARGs discovered in 

activated sludge and pristine deep ocean sediment, but similar to those of sediments from 

estuaries impacted by human activities. Multidrug-resistance genes (encoding multidrug efflux 

pumps) were found to be the most abundant (38–47.5% of detected ARG-like sequences) in this 

study (Table 2). Moreover, acriflavine, MLS (macrolide–lincosamide–streptogramin) and 

bacitracin ARGs were found. Three major resistance mechanisms, namely efflux, antibiotic 

deactivation and cellular protection were found (Xiao et al., 2016). Thus, uncultured soil bacteria 

represent a vast reservoir of ARGs that can potentially be transferred to pathogenic bacteria in 

humans and animals. It must be noted however, that apart from environmental factors, 

physicochemical properties of soil such as pH, soil organic carbon and moisture content can 

affect the composition of soil microbes and ARGs. For instance, soil pH affects nutrient 

availability or physiological activity, thereby applying selection pressure on soil microbes and 

affecting their abundance and diversity. Thus, the significant correlation between soil pH and 

microbiome distribution might have been influenced by differences in pH of the different soils 

(Xiao et al., 2016). 

The prevalence and abundance of florfenicol and linezolid ARGs in soils adjacent to swine 

feedlots were investigated by Zhao et al. (2016). A high prevalence of florfenicol ARGs was 

found in soils close to farms where florfenicol was heavily used than other sites. Extensive 

florfenicol use in livestock and spread of swine waste-contaminated soils could potentially lead 

to dissemination of florfenicol ARGs (Table 2) (Zhao et al., 2016). The possible dissemination of 
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ARGs through HGT makes this observation worrying as ARGs can spread within the 

environment and to humans with attendant public health repercussions. Veterinary antibiotics use 

should be encouraged only where necessary to reduce AMR. In both oxic and anoxic paddy soil 

zones, ARGs and enzymes involved in production of secondary metabolite and organic matter 

degradation were highly expressed (Table 2)(Kim and Liesack, 2015). 

The detection of ARGs in relatively pristine environments indicates that AMR is a widespread 

natural process that can occur without selection pressure from anthropogenic provocation, albeit 

their original function may not be to essentially mediate resistance. Thus, the original biological 

function of ARGs in bacteria is yet to be ascertained, although their use as protection against 

competition from antibiotic producers has been suggested. This is illustrated in a study in which 

Diaz and colleagues (2017) characterized various ARGs, mainly associated with efflux pumps, 

fluoroquinolone, vancomycin and sulphonamide resistance, in the pristine Artic Wetland (Diaz et 

al., 2017) (Table 2). Although there is little proof that AMR determinants are involved in natural 

processes besides conferring resistance to xenobiotics, they might be involved in vital cell 

processes including biosynthetic pathways’ regulation, homeostasis, virulence, detoxification 

(Martinez et al., 2009; Allen et al., 2010) or growth and survival (Groh et al., 2007). 

Furthermore, not all naturally occurring ARGs threaten human health and the threat they pose 

might depend on whether they are carried by commensals or pathogens (Martinez et al., 2009). 

A better understanding of the ecological role of AMR in the non-clinical setting can help forecast 

and reduce the occurrence and evolution of AMR (Martinez et al., 2009). Indeed, there remains a 

lot to learn about the effects of human-impacted changes of natural habitats/ecosystems on the 

evolution and spread of resistance in nature. Furthermore, with the rising detection of ARGs 

even in pristine environments, metatranscriptomic analysis has become imperative to determine 
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whether or not these potential functional genes are partially or fully expressed and also to 

investigate their other functions in these environments apart from potentially conferring 

resistance (Aguiar-Pulido et al., 2016). 

AMR from aquatic environments  

ARGs have been discovered in aquatic environments such as oceans and rivers, which are a rich 

source of both cultivable and uncultivable microorganisms (Fig. 1) (Chen et al., 2013). 

The prevalence, abundance and distribution of ARGs may differ from environment to 

environment depending on the level of impact of anthropogenic activities on the environment or 

the absence of it, as demonstrated by Chen et al. (Chen et al., 2013). In that work, comparative 

metagenomic profiling was carried out on samples taken from human-impacted environments, 

i.e. Pearl River Estuary in South China, and relatively pristine environments, i.e. deep ocean beds 

of the South China Sea. The most prevalent ARGs identified in the South China Sea were 

macrolide and polypeptide ARGs, with efflux pumps being the predominant mechanism. 

However, fluoroquinolone, sulphonamide and aminoglycoside ARGs were detected in the Pearl 

River estuary, which correlates with commonly used antibiotics in clinical medicine and animal 

farming (Table 2). Again, the pristine environment saw a lower diversity in both genotype and 

resistance mechanisms than that heavily impacted by human activities (Chen et al., 2013). The 

study presented a more inclusive description of the effects of urbanization on the microbial 

community, in this instance, freshwater ecosystems; this is in contrast with most studies, which 

previously focused on specific aspects of urbanization such as chemical pollution, microbial 

density and nutrient modification (YAMAGucHI et al., 1997; Paul and Meyer, 2001; Kroon et 

al., 2012). ARGs such as blaNDM, blaVIM, blaKPC, blaOXA-48 and blaIMP-type carbapenemases as well 

as tet(X) and mcr-1 genes that respectively confer resistance to carbapenems, tigecycline and 
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colistin, which are last-resort antibiotics (Graham et al., 2014; Cerqueira et al., 2017), were 

found in a study investigating the effects of disposing untreated/partially treated sewage on the 

environmental resistome and bacterial communities of a river flowing through a city in India 

(Marathe et al., 2017). Developing countries have challenges in sewage management and a lack 

of adequate treatment and proper disposal can contribute to AMR by spreading antibiotic-

resistant bacteria. Also, water-borne infections resulting from ineffective sewage disposal may 

lead to increased antibiotic use, further compounding the problem. Similarly, using functional 

metagenomics, Marathe et al (Marathe et al., 2018) found a novel mobile β-lactamase which 

hydrolyses carbapenems. The study found seven putatively novel ARGs, which include one 

amikacin resistance gene and six β-lactamases (Table 2). 

Similar studies using metagenomics to investigate marine habitats led to the identification of 

sulphonamides, bacitracin, tetracycline, β-lactams, chloramphenicol, glycopeptides and 

macrolides ARGs (Table 2) (Port et al., 2012; Yang et al., 2013a; Guo et al., 2016). 

AMR from wastewater treatment effluents 

Wastewater treatment plants (WWTPs) are notable sources of diverse kinds of bacteria and 

ARGs, some of which are associated with human pathogens. WWTPs collect liquid and solid 

waste from communities, hospitals, industries etc. for treatment and subsequent disposal (Fig. 1), 

making them an important source of resistant pathogens (Li et al., 2015a). Activated sludge, 

digested sludge and influent can facilitate the spread of ARGs and metal ARGs through HGT 

due to the varying microbial populations present in these systems (Li et al., 2015a). 

Li and colleagues (2015) reported on six plasmid DNA from two municipal WWTPs in which 

tetracycline and quinolone ARGs were the most abundant (Table 2). This culture-independent 
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metagenomic approach provided more data in a shorter time at a reduced cost, circumventing the 

challenge of traditional plasmid analysis methods (Li et al., 2015a). Oxygen in WWTP 

environments may play a role in the occurrence and abundance of ARGs as observed by Wang et 

al. (2013). Tetracycline ARGs, most predominantly tet33, were highly abundant in the anaerobic 

sludge but was absent in the aerobic sludge, although the sulphonamide resistance gene, sul1, 

was found in both environments (Wang et al., 2013). Other studies have implicated WWTPs as 

important sources of environmental ARGs and putative novel plasmids including tetracycline 

resistance genes (Zhang et al., 2011; Yang et al., 2013b; Huang et al., 2014; Bäumlisberger et al., 

2015; Rowe et al., 2016), sulphonamide resistance genes (Bengtsson-Palme et al., 2014; Tang et 

al., 2016; Tao et al., 2016) and β-lactam resistance genes (Staley et al., 2015)(Table 2). 

The effects of antibiotics on WWTPs  has been studied by challenging a WWTP with an 

antibiotic mix of norfloxacin, azithromycin, sulfamethoxazole and trimethoprim, and assessing 

their effects on the bacterial community and activity (Gonzalez-Martinez et al., 2018). ermF, 

carA and msrA (erythromycin), and sul123 (sulphamethoxazole) ARGs were detected (Table 2). 

Resistance to norfloxacin was found to be mediated by mutations in gyrA and grlB (Gonzalez-

Martinez et al., 2018). 

Moreover, ARGs-containing effluents (from municipal hospital and dairy farm) affect the 

receiving environment i.e. a river catchment, which was shown by comparing gene abundance 

for both the source and receiving environment (Rowe et al., 2017). The correlation between the 

average ARG and their transcript abundances in both farm and hospital effluents, indicated that 

the identified genes were being expressed. Prolonged hospital antibiotic usage was associated 

with high abundance of β-lactam resistance gene transcripts. Effluents contributed to high ARG 

levels in the receiving aquatic environments. Significant ARGs’ expression was associated with 

25



antibiotic use at the effluent source (Table 2) (Rowe et al., 2017), suggesting that antibiotics 

pollution directly increases ARGs expression and dissemination in the environment. 

This study by Rowe and colleagues is particularly interesting because it combines metagenomics 

and metatranscriptomics and attempts to relate the expression of ARGs in the environment to 

antibiotic selection pressure, the first study to do so. Previous studies focused on anthropogenic 

effects on the resistome in receiving waters (Rowe et al., 2017). Although the study links the 

overexpression of ARGs to antibiotic use, it must be stated that other factors such as temperature 

of effluent and metabolic activity of samples may play a role. Hence, further studies may be 

required to buttress the association between antibiotic use at effluent source and ARG expression 

(Rowe et al., 2017). 

AMR from drinking water 

Shi et al. (2013) found that chlorination increases ampC, aphA2, blaTEM-1, tetA, tetG, ermA and 

ermB ARGs, while considerably reducing sulI genes in drinking water. They confirmed that 

chlorination of drinking water could concentrate various ARGs, as well as MGEs (mobilome) 

(Shi et al., 2013). A greater percentage of the surviving bacteria after chlorination, most of which 

were Proteobacteria, was resistant to chloramphenicol, trimethoprim and cephalothin (Table 2). 

In addition, residual chlorine from chlorinated drinking water was found by another study to 

result in bacterial community shifts such that bacitracin resistance gene, bacA, and multiple 

ARGs were mainly carried by chlorine-resistant Pseudomonas and Acidovorax (Jia et al., 2015). 

Thus, while chlorination is widely used to sterilize water for drinking, the practice also selects 

for resistant bacteria and ARGs. Further research about chlorination is required before policy 

recommendations could be suggested. 
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AMR in veterinary and agricultural sources 

Antibiotics are used extensively in animal husbandry for growth promotion, therapeutics, 

metaphylaxis and prophylaxis (Osei Sekyere, 2014). In China, it is estimated that 97,000 metric 

tons of the approximately 210,000 metric tons of antibiotics produced yearly are used in animal 

husbandry. Thus, a rise in the number of resistant bacteria in the animal gut has been observed 

(Zhao et al., 2016), compounded by the fact that more than half of administered antibiotics are 

not absorbed in the animal gut and are therefore shed in the faeces, exposing the environment to 

sub-therapeutic levels of antibiotics and contributing further to AMR (Osei Sekyere and Adu, 

2015; Zhao et al., 2016). 

Leclercq and colleagues (2016) (Leclercq et al., 2016) investigated the diversity of the 

tetracycline mobilome within a Chinese pig manure sample. Two new tetracycline ARGs 

(TRGs) namely, tet(59), encoding a tetracycline efflux pump, and tet(W/N/W), encoding mosaic 

ribosomal protection, were discovered together with 17 distinct TRGs (Table 3). The discovery 

of novel TRGs after decades of diligent studies shows our limited knowledge in AMR and the 

livestock meta-resistome. 

The impact of antibiotic use in animal husbandry on human diseases was hotly contested until 

the recent emergence of the mcr-1 gene, which showed transferability from veterinary to human 

medicine (Sekyere, 2016; Sekyere and Asante, 2018). To ascertain the effects of antibiotics on 

the swine intestinal microbiome, Looft and colleagues (2012) administered growth-enhancing 

antibiotics to one group of pigs but withheld antibiotics from another group, although both 

groups received the same diet. Increased abundance and diversity of ARGs and/or in 

Proteobacteria (mainly Escherichia coli) occurred in medicated pigs than in non-medicated ones 

(Looft et al., 2012). Various studies have also described the effects of antibiotics on animals, 
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including mice, rats, and buffaloes (Chambers et al., 2015; Yin et al., 2015; Hansen et al., 2016), 

or have sought to characterize their microbiome (Table 3) (Durso et al., 2011; Bhatt et al., 2012; 

Singh et al., 2012; Guo et al., 2014; Reddy et al., 2014) and found fluoroquinolone resistance 

genes (Durso et al., 2011; Bhatt et al., 2012; Singh et al., 2012; Reddy et al., 2014) and 

tetracycline resistance genes (Guo et al., 2014). 

The effects of composting (a biological treatment of animal manure) on the transcriptional 

response of ARGs and microbes found in manure, have been studied by relating changes in the 

resistome to the composting process (Wang et al., 2017), with the resistome found to contain 

various ARGs (Table 3). An observable reduction in the aggregated expression of these ARGs in 

the resistome was noticed by comparing metatranscriptomic and metagenomic data for the 

changing microbial community following composting (Wang et al., 2017). Specifically, 

composting reduced expression levels of TRGs, tetM-tetW-tetO-tetS, but had no effect on 

sulphonamide and fluoroquinolone resistance gene expression. Although the microbial 

population changed during the process, the core resistome endured. Again, the process reduced 

ARG-bearing pathogens of clinical relevance, RNA viruses and bacteriophages (Wang et al., 

2017). Thus, composting reduced contaminants such tetracyclines and TRGs, consequently 

reducing the abundance of ARGs in manure and their spread thereof (Data S1). 

Metagenomic analysis of multiple environments 

Li et al. (2015) analyzed samples from various environments (including water, soil, sludge and 

fecal samples) and found an abundance of ARGs, corresponding to the level of anthropogenic 

activities in these environments, with the more impacted environments showing a higher 

abundance of ARGs than the less impacted environments (Table 3). ARGs for commonly used 

antibiotics in human and veterinary medicine were found: aminoglycosides, bacitracin, β-
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lactams, chloramphenicol, macrolide-lincosamide-streptogramin, quinolones, sulphonamides and 

tetracyclines (Li et al., 2015b). Resistance profiles and composition of bacterial communities 

from human, animal and environmental microbiomes have been profiled to provide extensive 

quantitative data on ARGs from multiple environments, (Pal et al., 2016). Resistance profiles 

and bacterial community compositions for the various types of environments were shown to be 

different, with microorganisms from human and animal communities showing limited taxonomic 

diversity: tetracycline, sulphonamide and metal ARGs were detected. The impact of human 

activities on the environment was further highlighted by the detection of high ARG abundances 

in environments polluted with antibiotics. The high abundance of MGEs found in environments 

polluted by pharmaceutical waste products should heighten concerns for transfer of resistance 

between bacteria (Pal et al., 2016).    

A recent study of wild and captured baboons and human guts showed substantial differences 

between the microbiomes of wild and captured baboons as well as between baboons and humans 

(Tsukayama et al., 2018). This was suggested to be due to differences in habitat and lifestyle, 

which was influenced by contact with humans; suggesting the possible transfer of ARGs 

between humans and wild animals. Novel chloramphenicol resistance determinants were 

identified in wild baboons while human-exposed baboons harboured resistance to seven 

antibiotics including newer generation β-lactams and cephalosporins (Tsukayama et al., 2018). 

Metagenomics applications in antibiotic discovery 

It is estimated that about 90% of antibiotics currently in clinical use were obtained from 

cultivable microorganisms (Katz and Baltz, 2016). The discovery and introduction of novel 

antibiotics have stalled over the past 30 years, with only two novel classes of antibiotics being 

introduced onto the market in that period: daptomycin, the cyclic lipopeptide, and linezolid, the 
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oxazolidinone (Fischbach and Walsh, 2009). Currently, traditional methods of antibiotic 

discovery involve the screening of natural sources, such as soil microorganisms for bioactive 

compounds of pharmacological interest. However, this approach of antibiotic discovery does not 

offer the promise of yesteryear, as demonstrated by the high rediscovery rates of known 

antibiotics, which has been shown to reach as high as 99.9% (Zaehner and Fiedler, 1995; 

Charusanti et al., 2012). However, metagenomics and genetic engineering can circumvent the 

limitations of cultivability to discover novel antibiotics in unknown microorganisms (Gomes et 

al., 2013). 

The discovery of lactocillin, a thiopeptide antibiotic produced by a human vaginal commensal 

has kindled the hope of obtaining novel antibiotics from the human microbiota (Donia et al., 

2014). It has long been known that bacteria produce natural antimicrobial chemicals to inhibit 

closely related competitors; however, species producing such inhibitory substances were  mostly 

found in soil (Donia et al., 2014). By employing metagenomic and metatranscriptomic methods, 

biosynthetic gene clusters were identified in human-associated bacterial genomes, with the 

thiopeptides found to be extensively distributed in the metagenomes of human microbiota (Table 

4). Lactocillin has been found to possess potent antibacterial activity against a number of Gram-

positive vaginal pathogens. The production of such bioactive compounds by human commensals 

means humans may be constantly exposed to bioactive compounds, and it would be interesting to 

study how the microbiome responds to such exposure. 

The characterization of the entire microbial diversity and genes of biotechnological interest, 

discovery of novel biosynthetic pathways and associated products, presents a potentially higher 

success rate in our search for natural antibiotics, particularly as an estimated 1% of 

microorganisms can be cultured axenically (Handelsman et al., 2007). The use of targeted 
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metagenomics (The use of PCR, accompanied by Sanger’s dideoxy chain termination sequencing 

in the analysis of the metagenome) in the discovery of new antibiotics was recently highlighted 

in a study (Hover et al., 2018). In that study, malacidins, a class of calcium-dependent antibiotics 

were discovered and found to be effective against multidrug-resistant Gram-positive pathogens 

(Table 4). 

An example of the usefulness of NGS-based metagenomics in natural product discovery is the 

identification of ‘Entotheonella’, a novel bacterial taxon, whose association with the Red sea 

marine sponge, Theonella swinhoei, produced more than 40 bioactive polyketides and modified 

peptides affiliated with seven different structural classes (Wilson et al., 2014). Polyketides are 

natural metabolites that make up the basic structure of many pharmaceuticals including anti-

cancer agents, antibiotics and antifungal agents (Table 4). 

Natural antimicrobial peptides (AMPs) have been found to be active against Gram-Positive and 

Gram-Negative bacteria, fungi, parasites and viruses (Huang et al., 2017). By inducing natural 

AMPs, green tea has been found in a study to possess antimicrobial activity against E. coli (Wan 

et al., 2016). Natural AMPs from bacteria obtained from oolong teas, a partially fermented tea 

widely used in Taiwan, with purported benefits including anti-allergic immune responses and 

anti-obesity among others, have been detected (Tables 2 & 4) (Huang et al., 2017) 

Metatranscriptomics, which can detect gene transcripts in such complex environments 

overcomes the limitation of functional gene microarrays, which only target specific species in 

complex environments. Again, metatranscriptomic sequencing resulted in more distinct and 

better defined output, facilitating the analysis of fine-scale variations in transcript sequences 

(Huang et al., 2017). 
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Limitations, future prospects and conclusions 

Though considered a game-changer in the field of microbiology, NGS metagenomics is not 

without challenges. Virome assays for instance involve complicated sample and nucleic acid 

work-ups, although NGS of all DNA is possible in a given sample. A vast amount of 

taxonomically vague sequences is discarded. Taxa that are low in abundance may be tough to 

identify and strain-resolved binning can be challenging. Also, accessibility to thorough databases 

for all microbial groups and ARGs are limited.  It is difficult to study the genetic environments 

of detected ARGs and the phylogeny of species that possess these functions (Martinez et al., 

2009). Microbiomics can be expensive depending on the sample type, depth of sequencing and 

microbes of interest, coupled with the requirement of high technical expertise (Forbes et al., 

2017). Again, obtaining high quality DNA is a challenge as they may be contaminated by 

environmental materials such as humic and fulvic acids, which are co-extracted with them. The 

use of high performance DNA extraction kits (e.g., kit Ultra Clean Mega Soil DNA from Mo 

Bio) however, can help partly evade this challenge, although their performance is influenced by 

the physicochemical nature of the environment (Gomes et al., 2013). 

There are hindrances that restrict the large-scale application of metatrascriptomics despite the 

vast promise of this field (Aguiar-Pulido et al., 2016). Most of the collected RNA is from 

ribosomal RNA, the abundance of which can reduce the concentration of mRNA, which is the 

main target of metatranscriptomics (Aguiar-Pulido et al., 2016). Furthermore, distinguishing 

between host and microbial RNA can be a challenge, although commercial enrichment kits are 

available. Thirdly, mRNA is highly unstable, and this compromises the integrity of the sample 

prior to sequencing. Lastly, reference databases for transcriptomes are limited in terms of 

coverage (Aguiar-Pulido et al., 2016).     
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Short-read and low-depth sequencing remains a major setback to effective binning of genomes, 

mobilomes and resistomes. Novel technologies and methodologies such as 3C, ResCap, DNA-

methylation-based binning, phased-sequencing, SCS, and improved depths in long read or hybrid 

sequencing holds much promise in aiding the complete reconstruction of strain-specific 

genomes, mobilomes and resistomes from microbiomes. 

Metagenomics will soon facilitate diagnosis of known and novel pathogens, cutting down cost 

and delay, enhance assessment of individual microbiomes for tailor-made therapeutic 

interventions (Miller et al., 2013), and spearhead the discovery of potent antibiotics (Hover et al., 

2018). However, for clinical diagnostic purposes, improvement in metagenomics is needed to 

decrease turnaround time and costs. Microbiome research is a robust tool for effective 

surveillance of AMR in various environments, discovering novel ARGS and antibiotics 

(lactocillin, malacidins etc.) as well as ascertaining the dynamics of ARGs transfer between 

commensals and pathogens. Metagenomics and metatranscriptomics bridge the disconnect 

between bacterial identity and activity. 
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Table 1. Antibiotic resistance genes and bacterial families identified through metagenomics/metatranscriptomics studies 

undertaken up to 2018 on humans, with next-generation sequencing 

Year of 
study 

Resistance gene 
found/expressed 

Families, Class, 
Genus and 
Species found 

Source(human) Method/Platform used Bioinformatics tool used Reference 

2012 Genes encoding 
drug metabolism, 
antibiotic 
resistance and 
stress response 
pathways 

Firmicutes Human gut Illumina HiSeq QIIME software (Quantitative Insights Into Microbial 
Ecology) (Caporaso et al., 2010) 

(Maurice et 
al., 2013) 

2013 Chloramphenicol, 
aminoglycoside 
and tetracycline 
resistance genes. 
Three novel 
resistance genes 
including a 16S 
rRNA methylase 
conferring 
aminoglycoside 
resistance, and 
two tetracycline 
resistance 
proteins nearly 
identical to a 
bifidobacterial 
MFS transporter 

Bacteria Human gut Illumina HiSeq 2000 MUSCLE (http://www.drive5.com/ 
muscle/, March 2012) , FastTree (http://www. 
microbesonline.org/fasttree/, March 2012),  
FigTree (http://tree.bio.ed.ac.uk/software/figtree/, March 
2012). PSI-BLAST (Altschul et al., 1997). 

(Moore et 
al., 2013) 

2014 Aminoglycoside 
resistance genes 
(aph(2′′)-Ib and 
an aadE-like 
gene 

Bacteroidetes 
and Clostridium 
clusters XIVa and 
IV  

Human gut Illumina 
HiSeq 2000 

SOAPdenovo (http://soap.genomics.org.cn), BLAST, CD-
HIT (Fu et al., 2012), soap.coverage 
(http://soap.genomics.org.cn)  

(Buelow et 
al., 2014) 

2015 CTX-M-15 gene, 
OXA-1 and TEM 
(beta-
lactamases), 
aph(3'')-Ib and 
aph(6)-Id genes, 

Proteobacteria, 
Actinobacteria, 
Bacteroidetes, 
and Firmicutes 

Human gut Illumina HiSeq 2000 Trim Galore! version 0.2.8 
(www.bioinformatics.babraham.ac.uk/projects/trim 
_galore/), Resqu database version 1.1 
(http://www.1928diagnostics.com/resdb), Vmatch 
(http://www.vmatch.de/)   

(Bengtsson-
Palme et 
al., 2015) 
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and tetracycline 
resistance genes 
tet(Q) and tet(X)  

2015 Beta-lactamase 
classes A and D, 
multidrug 
resistance efflux 
pumps, ARGs 
mediating 
resistance to 
aminoglycosides, 
chloramphenicol, 
macrolides, 
glycopeptides, 
and tetracyclines. 

Bacteria Human gut Illumina 
HiSeq 2000 platform 

FastQC (available from http: 
//www.bioinformatics.babraham.ac.uk/projects/fastqc/), 
FASTX-Toolkit (available from 
http://hannonlab.cshl.edu/fastx_toolkit 
/index.html), SASS aligner 
(https://atom.io/packages/aligner-scss), Ray 
Meta version 2.3.1 (Boisvert et al., 2012), MetaGeneMark 
version 
2.8, MALT (available from 
http://ab.inf.uni-tuebingen.de/software/malt/). 

(Willmann 
et al., 2015) 

2015 Beta-lactamases, 
glycopeptide, 
macrolide-
lincosamide-
streptogramin 
(MLS), 
sulphonamide 
and tetracycline 
resistance genes 

Akkermansia 
muciniphila 

Human gut Roche/454 GS FLX 
Titanium platform 

Deconseq (Schmieder and Edwards, 2011a), CLC 
workbench software (CLC bio, Aarhus, Denmark). 

(Caputo et 
al., 2015) 

2015 Erythromycin 
resistance genes, 
efflux pumps, 
chloramphenicol 
acetyltransferase 
(CatB1), beta-
lactamases 

Bacteria Gut and oral 
microbiome 

Illumina MiSeq Trimmomatic (Bolger et al., 2014), Best Match Tagger 
v3.101 (K. Rotmistrovky and R. Agarwala, 2010), 
UBLAST 
from USEARCH v7.0.1090 (Edgar, 2010), HUMAnN 
(Abubucker et al., 2012). 

(Zaura et 
al., 2015) 

2016 Beta-lactam, 
multidrug efflux 
pumps, 
fluoroquinolone 
and tetracycline 
resistance genes 

Proteobacteria 
with Escherichia 
coli 
and Klebsiella 
most prevalent 

Human gut Illumina MiSeq FASTX-Toolkit (version 0.0.13; http://hannonlab.cshl. 
edu/fastx_toolkit/index.html), Bowtie2 (Langmead and 
Salzberg, 2012). 

(Millan et 
al., 2016) 
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2016 mecA Bacteria and 
fungi 

Bronchial 
aspirates 

IlluminaHiseq PrinSeq- Lite v. 0.20.3 (Schmieder and Edwards, 2011b), 
Bowtie2. 

(Hilton et 
al., 2016) 

2016 arr2 (rifampicin), 
beta-lactamases 
(blaCepA) mef(G) 
(macrolide 
resistance gene) 

Lachnoclostridium 
Bolteae, 
Enterobacter 
cloacae,  

Human gut Illumina Hiseq Ray Meta 2.0 assembler, Prodigal 2.6, FASTA36, 
Integrative Genomic Viewer (Thorvaldsdóttir et al., 2013). 

(Raymond 
et al., 2016) 

2016 Beta-lactamase 
(Bl2e_cfxa), 
tetracycline 
resistance (tetQ) 
and macrolide 
resistance (ermA, 
ermB, ermF, and 
ermG) genes 

C. difficile, 
norovirus, 
sapovirus, 
Candida spp., 
anellovirus and 
parechovirus 

Stool sample Illumina 
HiSeq 

MBLASTX software (MulticoreWare) (Davis et al., 2015). (Zhou et al., 
2016) 

2016 blaTEM-124-like

(extended 
spectrum beta 
lactamase), fosA 
(fosfomycin), 
ant(6)-Ia, ermB, 
lnuB, tetL and 
tetU conferring 
resistance to 
aminoglycosides, 
macrolides, 
lincosamides, 
streptogramin B 
and 
tetracycline 
respectively 

Bacteria Human gut 454 pyrosequencing 
platform 

Newbler software (Roche Diagnostics), ResFinder 
(Center for Genomic Epidemiology, Technical University 
of Denmark, Kgs. Lyngby, Denmark), BioEdit v.7.0.9.0 
(http:// www.mbio.ncsu.edu/Bioedit/bioedit.html).  

(Jitwasinkul 
et al., 2016) 

2017 Genes involved in 
pH regulation and 
nickel transport  

Proteobacteria, 
Firmicutes, 
Bacteroidetes, 
and 
Actinobacteria 

Stomach/gastric 
microbiota 

Illumina HiScanSQ 
instrument 

TrimGalore! version 0.3.5 (http:// 
www.bioinformatics.babraham.ac.uk/projects/trim_galore/) 
PrinSeq version 0.20.4 (Schmieder and Edwards, 2011b) 
DUST algorithm (Morgulis et al., 2006) 

Metaxa2 software version 2.1.1 (Bengtsson‐Palme et al., 
2015) 

(Thorell et 
al., 2017) 

2018 Aminoglycoside-, 
fluoroquinolone-, 
beta-lactam- and 

E. coli Human gut Illumina HiSeq MUMmer v.3.22, RAxML 
v.7.2.8
FigTree v.1.4.2 (http://tree.bio.ed.ac.uk/software/ 

(Richter et 
al., 2018) 
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macrolide-
resistance genes 

figtree/) 

Table 2. Antibiotic resistance genes and bacterial families identified through metagenomics/metatranscriptomics studies 

undertaken up to 2018 on the environment with next-generation sequencing 

Year of 
study 

Resistance gene found Families, Class, 
Genus and Species 
found 

Source(environment) Method/Platform used Bioinformatics tool used Reference 

2011 ARGs encoding 
tetracycline, macrolide and 
multidrug resistance genes 

Bacteria 
(Actinobacteria, 
Chloroflexi, 
Proteobacteria, 
Bacteroidetes, and 
Firmicutes) 

Activated sludge Illumina Hiseq SOAPdenovo (BGI, Shenzhen, 
China), BLAST, MetaGene, 
NCBI ORF Finder, Plasm 
software (ver 2.0.4.29) 
(http://biofreesoftware.com)  

(Zhang et al., 2011) 

2012 Tetracycline resistance 
genes 

α-Proteobacteria (in 
particular 
Rhodobacterales sp.), 
Bacteroidetes 

Puget Sound estuary 
(surface water) 

Roche/454 GS FLX 
Titanium platform 

Newbler v. 2.5.3 (Roche 
Diagnostics-454 Life Sciences), 
Meta Genome Rapid Annotation 
using Subsystems Technology 
(MG-RAST), BLASTN 

(Port et al., 2012) 

2013 Macrolide, polypeptide, 
sulphonamide, 
fluoroquinolone and 
aminoglycoside resistance 
genes 

Bacteria Deep ocean bed and 
river estuary 

Illumina HiSeq 2000 BLASTX (Chen et al., 2013) 

2013 Aminoglycoside, 
tetracycline, 
sulphonamide, multidrug 
and chloramphenicol 
resistance genes 

Bacteria Activated 
sludge(WWTP) 

Illumina Hiseq 2000 BLASTX (Altschul et al., 1997), 
BLAST 

(Yang et al., 2013b) 

2013 Aminoglycoside,  
tetracycline, beta-lactam, 
chloramphenicol,  
trimethoprim, 
glycopeptide, bacitracin, 
fluoroquinolone, 
macrolide, sulphonamide, 

Bacteria 
(predominantly 
Proteobacteria) 

Aquatic environment 
(marine sediment) 

Solexa GAII 
sequencer (Illumina, 
San Diego, CA, USA) 

Platform Galaxy (Blankenberg 
et al., 2010), Velvet (Zerbino 
and Birney, 2008), blastn, Blastx 

(Yang et al., 2013a) 
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streptogramin, 
and multidrug efflux 
resistance genes 

2013 sulI, tetA and tetG, ampC, 
aphA2 

Bacteria 
(Proteobacteria) 

Drinking water Illumina Hiseq 2000 SOAPdenovo 
(BGI, Shenzhen, China), 
MetaGeneMark (Noguchi et al., 
2006), MEGAN 4 software 
(Huson et al., 2011). 

(Shi et al., 2013) 

2013 sul1 (sulphonamide 
resistance gene), tet33, 

Proteobacteria, 
Firmicutes, 
Bacteroidetes and 
Actinobacteria 

Waste water Illumina Hiseq2000 FASTX, MG-RAST QC pipeline, 
SEED 
established by Argonne National 
Lab (Argonne, USA), BLAST 

(Wang et al., 2013) 

2014 The sul2 and qnrD genes Bacteria Polluted lake (Indian 
lake) 

IlluminaHiSeq2000 FastQC 
(http://www.bioinformatics.bbsrc. 
ac.uk/projects/fastqc), Vmatch, 
Metaxa 2.0, Velvet, HMMER 
(http://hmmer.janelia.org)  

(Bengtsson-Palme et 
al., 2014) 

2014 Tetracycline resistance 
genes, sulphonamide 
resistance gene (sul2) 

bacteria Sewage treatment 
plant 

Illumina, 454 
pyrosequencing 

Chimera Slayer (Haas et al., 
2011), BLAST 

(Huang et al., 2014) 

2015 Ampicillin, cephalothin, 
and kanamycin resistance 
genes 

Bacteria 
(predominantly 
Proteobacteria) 

Aquatic environment 
(river) 

Illumina 
MiSeq platform, 
HiSeq2000 

Mothur ver. 1.29.2, SILVA 
reference database ver. 102 
(Pruesse et al., 2007) 

(Staley et al., 2015) 

2015 Tetracycline, quinolone, 
beta-lactam, 
aminoglycoside and MLS 
resistance genes 

Bacteria Waste water treatment 
plant 

IlluminaHiseq2000 MG-RAST, Statistical Analysis 
of Metagenomic Profiles 
(STAMP), BLASTX, 

(Li et al., 2015a) 

2015 Fluoroquinolone 
resistance genes including 
DNA gyrase subunit A 
(gyrA), B (gyrB), 
Topoisomerase IV subunit 
A (parC) and B (parE), 
Multidrug resistance efflux 
pumps, rpoB, tetracycline 
resistance genes 

Bacteria, archaea and 
virus domains 

Waste water Illumina-HighSeq MG-RAST (Meta Genome Rapid 
Annotation using Subsystem 
Technology, v3.2.2; website 
http://metagenomics.anl.gov; 
last access 16.06.2014) 

(Bäumlisberger et al., 
2015) 

2015 Multi-drug resistance 
genes, bacA (bacitracin 
resistance), sulphonamide 
and aminoglycoside 

Proteobacteria. Drinking water Illumina Hiseq Galaxy (https://usegalaxy.org/), 
BLAST, Mothur 
(http://www.mothur.org) 

(Jia et al., 2015) 
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resistance genes 

2015 Aminoglycoside, 
bacitracin, beta-lactam, 
chloramphenicol, MLS, 
quinolone, sulphonamide 
and tetracycline resistance 
genes 

Bacteria Water, soil, sludge 
and fecal samples 

Illumina Hiseq BLASTX, MetaPhlAn (Segata et 
al., 2012)  

(Li et al., 2015b) 

2015 Antibiotic resistance, 
secondary metabolite 
production 

Cyanobacteria, 
Xanthomonadales, 
Myxococcales, and 
Methylococcales (oxic 
layer); Clostridia, 
Actinobacteria, 
Geobacter, 
Anaeromyxobacter, 
Anaerolineae, and 
methanogenic 
archaea (anoxic 
zone) 

Paddy soil 454 GS Junior system 
(454 Life Sciences) 
454 GS FLX 
instrument (454 Life 
Sciences) 

PRINSEQ (Schmieder and 
Edwards, 2011b), BLASTN, 
QIIME (Caporaso et al., 2010) 
INFERNAL (Nawrocki et al., 
2009) 

(Kim and Liesack, 
2015) 

2016 Multidrug resistance, 
acriflavine, MLS  
and bacitracin resistance 
genes 

Bacteria Soil Illumina Hiseq 2000 MetaPhlAn (Version 2.0), 
BLASTX 

(Xiao et al., 2016) 

2016 Sulphonamide, bacitracin, 
multidrug, and MLS 
resistance genes  

Bacteria and 
Archaea. 

Marine coastal 
sediments 

Illumina Hiseq2000 
platform 

BLASTn, MEGAN 4 (Guo et al., 2016) 

2016 Multidrug transporters 
vancomycin, tetracycline, 
bacitracin, beta-lactam 
and MLS resistance genes 

Bacteroides Animal feces, manure, 
and soil 
samples collected 
from dairy farms 

Ion Torrent NextGENe V2.3.4.2, MGRAST (Pitta et al., 2016) 

2016 Aminoglycoside, 
sulphonamide, 
tetracycline, MLS, 
polypeptide and multidrug 
resistance genes 

Bacteria Pharmaceutical 
wastewater treatment 
plants (PWWTPs), 
sewage treatment 
plants (STPs) 

Illumina Hiseq2500 
platform 

Galaxy (https://usegalaxy.org/), 
FASTQ Groomer, BLAST, MG-
RAST) 
(http://metagenomics.anl.gov/),  

(Tao et al., 2016) 

2016 tetC, tetW and sul2 Bacteria river Illumina HiSeq2500 ARG-annot (Gupta et al., 2014), 
Search Engine for Antimicrobial 
Resistance (SEAR), Burrows-
Wheeler Aligner (Li and Durbin, 
2009) 

(Rowe et al., 2016) 
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2016 Florfenicol resistance 
genes(cfr, optrA, and fexA, 
floR) 

Bacteria Soils Adjacent to 
Swine 
Feedlots 

HiSeq 2500 BLAT (Kent, 2002) (Zhao et al., 2016) 

2016 Tetracycline, 
sulphonamide, beta-
lactam resistance genes 

Bacteria 
(predominantly 
Proteobacteria) 

Waste water IlluminaHiseq2500 Galaxy, MG-RAST (Tang et al., 2016) 

2017 ykfB, ylcT, leuL, rnhA Bacteroidaceae 
(21.7%), 
Veillonellaceae 
(22%), and 
Fusobacteriaceae 
(12.3%), Escherichia 
coli, Bacillus subtilis, 
and 
Chryseobacterium sp. 
StRB126 

Tea leaves (oolong 
teas) 

Illumina Miseq FASTX-Toolkit (a FASTQ/A 
shortreads 
pre-processing tools), Bowtie2, 
BLASTX, RSEM (RNA-Seq by 
Expectation-Maximization) 

(Huang et al., 2017) 

2017 blaGES and blaOXA Bacteria Effluents Illumina HiSeq2500 
(Exeter Sequencing 
Service, UK) 

SEAR (Rowe et al., 2015) 
BWA-MEM (Li, 2013) 

(Rowe et al., 2017) 

2017 BepG, MdtC (efflux pump 
related genes, gyrA, VanA, 
DHPS  

bacteria Mire Illumina HiSeq Prokka (v.1.11), BLAST, HMMer 
(v3.0) 

(Diaz et al., 2017) 

2017 Carbapenemases (NDM, 
VIM, KPC, OXA-48, IMP, 
OXA-58 
and GES types), tet(X), 
mcr-1,  

Acinetobacter, 
Proteobacteria, 
Bacteroidetes 
and Firmicutes 

Wastewater, river Illumina HiSeq2500 Trim Galore, USEARCH 
(version 
8.0.1445), 

(Marathe et al., 2017) 

2018 blaRSA1 and blaRSA2 

(class A beta-
lactamases), tet(A), 
qnr gene classes 

Bacteria River sediments PacBio RS II system BLASTx, Geneious, (Marathe et al., 2018) 

2018 ermF, carA, msrA, sul123, 
gyrA, grlB 

Alcaligenes, 
Paracoccus, and 
Acidovorax 

Waste water treatment 
systems 

Illumina MiSeq mothur v1.34.4 (Schloss et al., 
2009) 
UCHIME v4.1 (Edgar et al., 
2011) 

(Gonzalez-Martinez et 
al., 2018) 
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Table 3. Antibiotic resistance genes and bacterial families identified through metagenomics/metatranscriptomics studies 

undertaken up to 2018 on animals with next-generation sequencing 

Year of study Resistance gene 
found 

Families, 
Class, Genus 
and Species 
found 

Source 
(animal) 

Method/Platform used Bioinformatics tools used Reference 

2011 Multidrug 
resistance efflux, 
fluoroquinolone 
and cobalt–zinc–
cadmium 
resistance genes 
(14.09%). 

Bacteria, 
archaea, 
eurkaryotes, 
viruses, and 
less than 1% 
unassigned 
plasmids. 

Cattle 
faeces 

Not specified MG-RAST, (Durso et al., 
2011) 

2012 ermA, ermB, 
mefA, tet(32), 
and aadA 

Bacteria (E. 
coli) 

swine 
intestinal 
microbiota 

Roche/454 GS FLX Titanium 
platform 

BLAST, PAST (Hammer et al.) (Looft et al., 
2012) 

2012 multidrug 
resistance efflux 
pumps, 
fluoroquinolone 
and acriflavin 
resistance 
genes 

Bacteria 
(Firmicutes 
predominant) 

buffalo 
rumen 

454 Life Sciences 
technology 

MG-RAST  (Singh et al., 
2012) 

2012 Fluoroquinolone, 
copper and 
cobalt–zinc–
cadmium, 
mercury, arsenic, 
erythromycin and 
fosfomycin 
resistance genes 

Escherichia 
coli, 
Pseudomonas 
aeruginosa, 
Pseudomonas 
mendocina, 
Shigella 
flexneri, 
Bacillus cereus, 
Staphylococcus 
aureus, 
Klebsiella 
pneumonia, 
Staphylococcus 
epidermidis 

Cattle milk 454 GS-FLX technology GS Run Browser (Bhatt et al., 
2012) 
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2014 Tetracycline 
resistance genes 
(tetQ, tetO and 
tetM) 

Barnesiella, 
Lactobacillus, 
Bacteroides, 
and Clostridium 
XlVa genera 

Mouse gut Illumina 
Hiseq 2000 

MG-RAST, BLASTx (Guo et al., 
2014) 

2014 Fluoroquinolone 
resistance genes, 
multidrug 
resistance efflux 
pumps, methicillin 
resistance (In 
Staphylococci) 

Bacteria, 
viruses 

buffalo 
rumen 

Ion Torrent MG-RAST, M5NR database (M5 non-redundant 
protein 
database, 
http://tools.metagenomics.anl.gov/m5nr/),  

(Reddy et al., 
2014) 

2015 Beta-lactam 
resistance genes 

Bacteria Dairy cow 
feces 

Illumina HiSeq BLASTX, MG-RAST (Chambers et 
al., 2015) 

2015 Tetracycline, 
multidrug 
resistance genes 

Bacteria 
(Bacteroidetes 
and Firmicutes) 
dominant 

Mouse gut Illumina Hiseq 2000 (Illumina, 
USA) 

FASTX toolkit tools implemented in 
GALAXY, MG-RAST, BLAST 

(Yin et al., 2015) 

2016 vanB genes 
(vancomycin 
resistance gene) 

Enterococcus 
spp. 

Rattus 
norvegicus 
fecal 
samples 

Illumina HiSeq 2000 AdapterRemoval (v1.1) (Lindgreen, 2012), 
Bowtie2, BLASTn 

(Hansen et al., 
2016) 

2016 17 distinct 
tetracycline 
resistance genes. 
Two new tet 
genes: tet(59) 
(encoding a 
tetracycline efflux 
pump) and 
tet(W/N/W) 

Proteobacteria, 
Firmicutes 

Pig 
manure 

Illumina HiSeq 125-bp pair-end 
sequencing and 
PacBio SMRT sequencing 

PROKKA pipeline v1.10 
(http://dx.doi.org/10.1093/bioinformatics/btu153) 
, BLAST 

(Leclercq et al., 
2016) 

2017 vanR, 
tetracycline, 
fluoroquinolonone 
resistance genes,  
APH(3''), msbA, 
drrA, macB, 
macA, MFS-1 
and emrB  

Firmicutes, 
Actinobacteria, 
Bacteroidetes, 
and 
Proteobacteria 

Animal 
manure 

Illumina MiSeq platform bbduk tool in 
BBMap (V34: 
https://sourceforge.net/projects/bbmap/ 
CD-HIT (Li and Godzik, 2006), MEGAN (Huson 
et al., 2007), SOAPdenovo 
Assembler (Li et al., 2010) 

(Wang et al., 
2017) 

2018 Beta-lactamases, Firmicutes, Baboon Illumina MiSeq PARFuMs (Forsberg et al., 2012), Resfams (Tsukayama et 
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chloramphenicol 
acetyltransferase, 
TetA efflux pump 

Lactobacillales, 
Actinobacteria 

gut (Gibson et al., 2015), ShortBRED (Kaminski et 
al., 2015). 

al., 2018) 

Table 4 bioactive natural products identified through metagenomics/metatranscriptomics studies undertaken up to 2018 

Year of study Families, Class, Genus and 
Species found 

Source Natural product discovered reference 

2014 Entotheonella spp. marine 
sponge Theonella swinhoei 

Bioactive polyketides and 
peptides 

(Wilson et al., 2014) 

2014 Firmicutes, Proteobacteria, 
Actinobacteria 

Human (vaginal microbiota) lactocillin (Donia et al., 2014) 

2017 Bacteroidaceae (21.7%), 
Veillonellaceae (22%), and 
Fusobacteriaceae (12.3%), 
Escherichia coli, Bacillus subtilis, 
and Chryseobacterium sp. 
StRB126 

Tea leaves (oolong teas) Antimicrobial peptides (Huang et al., 2017) 

2018 Bacteria  Soil malacidins (Hover et al., 2018) 

Fig. 1. Sources of metagenomes and bacterial resistomes. Microbiota from which metagenomes are obtained for microbiome 

studies include the oral cavity (1), skin (2), farm animals (3 and 4), farm crops and soils (5), farm waste and farm effluents (6), 

industrial effluents (7), sewage treatment plants (8), surface and underground water (9), faeces (10), and intestines (11). Genomic 

DNA from these sources, called metagenomes (12), are used for sequencing and microbiome analysis. The numbers 1-11 show the 

various sources for sampling metagenomes. The arrows show the sources of the samples: the green and blue arrows are for clinical 

(human and animal) sources, and the red-coloured arrow shows environmental sources. 
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Fig. 2. Sequence-based and functional metagenomics steps. Metagenomes are directly extracted from collected environmental 

and/or clinical microbiota samples (1) using metagenomic DNA extraction kits and taken through one of two steps: i. direct 

sequencing with a next-generation sequencer (2) followed by bioinformatic analysis (3 and 9); ii. Exonuclease-mediated excision (4) 

and cloning into plasmid vectors (5), followed by transformation into host bacteria for multiplication into metagenomic libraries (6). 

The multiplied host bacteria are grown on selective plates to identify the functions of the various cloned genes (7). DNA from selected 

colonies on the selective plates are extracted and sequenced (8), followed by bioinformatic analysis (9). 
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