
RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	

RESOURCE	SCHEDULING	ALGORITHM	
FOR	MAINTENANCE	PLANNING	

INTERIM	PROJECT	REPORT	SUBMITTED	IN	PARTIAL	FULFILLMENT	FOR	
THE	REQUIREMENTS	OF	THE	MODULE																																																															

BPJ420																																																																																																	

KIRSTEN	YOUNG	
14062471	

University	of	Pretoria		

SEPTEMBER	4,	2017	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 i	

	

ANTIPLAGIARISM	PAGE	
I,	Kirsten	Young,	student	number	14062471	hereby	declare	that	this	report	is	my	own	original	work,	

and	 that	 the	 references	 listed	provides	 a	 comprehensive	 list	 of	 all	 sources	 cited	or	 quoted	 in	 this	

report.	

	 	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 ii	

EXECUTIVE	SUMMARY	
“Company	XYZ”	 is	a	company	which	outsources	maintenance	 to	various	enterprises	all	over	South	

Africa.	 Technicians	 are	 hired	 to	 travel	 to	 their	 customers	 which	 are	 geographically	 far	 from	 one	

another	to	perform	maintenance	on	electrical	devices	such	as	servers,	computers	and	air	conditioners.		

An	employee’s	workday	consists	of	both	their	travel	time	and	working	time	and	so	routing	must	be	

carefully	 considered	 in	 order	 to	 reduce	 travel	 costs.	 Company	 XYZ’s	 employees	 find	 that	 their	

workloads	are	unbalanced	i.e.	some	days	they	will	work	much	longer	hours	than	others.	This	has	led	

to	Company	XYZ	requiring	a	way	to	efficiently	schedule	their	employees	so	that	customers	demand	

can	 be	met,	while	 keeping	 costs	 low,	 resource	 utilization	 high	 and	workloads	 balanced.	 Fourier-E	

attempted	 solving	 Company	 XYZ’s	 problem	 by	 creating	 a	 linear	 programming	 resource	 allocation	

model.	The	model	worked	but	there	is	still	much	room	for	improvement.	All	the	data	was	therefore	

already	available	in	a	device	database	which	could	be	used	in	the	development	of	a	new	solution.		

After	performing	a	literature	study	it	was	found	that	the	problem	at	hand	has	many	similar	aspects	to	

that	 of	 a	Multiple	 Travelling	 Salesman	 Problem	 and	 so	 the	many	methods	 of	 solving	 this	 kind	 of	

problem	were	 researched.	 The	 genetic	 algorithm	was	 selected	 as	 the	most	 suitable	 algorithm	 for	

solving	 the	problem	because	of	 its	 short	 running	 time	and	 the	student’s	ability	 to	code	 it.	Specific	

selection,	crossover	and	mutation	techniques	were	used	to	evolve	the	initial	population	of	solutions.	

With	every	new	generation,	a	better	schedule	was	found.	The	best	solution	of	the	final	generation	

was	selected	as	the	schedule	to	analyse.		

The	genetic	algorithm	exhibited	many	advantages	over	using	the	existing	linear	programming	method.	

The	chosen	schedule	significantly	reduced	overtime,	reduced	travel	distances	and	balanced	resource	

workloads.	It	is	up	to	the	company	to	decide	whether	they	should	implement	it	or	not.	Company	XYZ	

should	validate	the	final	schedule	by	using	a	testing	team	to	ensure	that	the	assumptions	on	which	

the	model	was	based	are	acceptable.	

	

	

	

	

	 	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 iii	

TABLE	OF	CONTENTS	
ANTIPLAGIARISM	PAGE	...	I	

EXECUTIVE	SUMMARY	..	II	

LIST	OF	FIGURES	..	IV	

LIST	OF	TABLES	..	IV	

1.	 INTRODUCTION	AND	BACKGROUND	...	1	
1.1.	 THE	SERVICE	INDUSTRY	..	1	
1.2.	 COMPANY	XYZ	...	1	
1.3.	 PROBLEM	BACKGROUND	..	1	
1.4.	 FOURIER-E	...	3	

2.	 PROBLEM	STATEMENT	..	3	

3.	 PROJECT	AIM/	RATIONALE	..	4	

4.	 PROJECT	APPROACH,	SCOPE	AND	DELIVERABLES	..	5	
PROJECT	SCOPE	..	6	

5.	 LITERATURE	REVIEW	...	7	
5.1	 EXACT	METHODS	...	8	

5.1.1	 Mathematical	Programming	..	8	
5.1.2	 Dynamic	Programming	...	8	

5.2	 HEURISTIC	METHODS	..	9	
5.2.1	 Local	Search	-	Hill-Climbing	..	9	
5.2.2	 Local	Search	–	Hill-Climbing	with	Random	Restart	...	10	
5.2.3	 Local	Search	-	Simulated	Annealing	..	10	
5.2.4	 Local	Search	-	Tabu	Search	...	10	
5.2.5	 Genetic	Algorithm	...	10	

5.3	 CONCLUSION	..	14	

6.	 PROBLEM	INVESTIGATION	..	15	

7.	 SOLUTION	DEVELOPMENT	..	18	
7.1	 INPUT	...	18	
7.2	 PROCESS	...	20	
7.3	 OUTPUT	..	24	

8.	 SOLUTION	AND	SOLUTION	VALIDATION	...	26	

9.	 PROPOSED	IMPLEMENTATION	..	29	

10.	 CONCLUSION	...	31	

11.	 BIBLIOGRAPHY	..	32	

12.	 APPENDICES	..	A	
APPENDIX	A:	SIGNED	SPONSORSHIP	FORM	..	A	
APPENDIX	B:	COMPLETE	PYTHON	CODING	..	B	

	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 iv	

LIST	OF	FIGURES	
Figure	1:	An	illustration	of	the	high	level	process	Company	XYZ	uses	to	satisfy	their	customers	2	

Figure	2:	Demonstration	of	uneven	workload	distribution	...	2	

Figure	3:	Current	situation	at	Company	XYZ	versus	what	a	maintenance	plan	will	help	achieve	4	

Figure	4:	Map	showing	the	locations	of	Company	XYZ's	customers	in	the	Gauteng	region	6	

Figure	5:	Representation	of	a	routing	problem	...	7	

Figure	6:	Demonstration	of	a	local	maximum	being	reached	rather	than	the	global	maximum.	9	

Figure	7:	Demonstrations	of	common	crossover	operators	..	12	

Figure	8:	Demonstration	of	order	1	crossover	...	13	

Figure	9:	An	example	of	an	employee	job	sheet	created	by	Fourier's	model	15	

Figure	10:	Chart	showing	cost	of	schedule	over	80	weeks	..	16	

Figure	11:	Charts	comparing	generated	schedules	of	2	employees	..	16	

Figure	12:	The	basic	conceptual	model	process	which	will	be	followed	..	18	

Figure	13:	Preview	of	important	aspects	of	database	...	18	

Figure	14:	Database	which	groups	devices	common	to	a	specific	location	...	19	

Figure	15:	Genetic	Algorithm	methodology	...	20	

Figure	16:	Representation	of	an	individual	solution	..	20	

Figure	17:	Flow	chart	demonstrating	the	logic	behind	the	fitness	function	..	21	

Figure	18:	Preview	of	a	solution	in	excel	format	..	25	

Figure	19:	Graphs	depicting	the	improvement	of	solutions	with	every	new	generation	26	

Figure	20:	Comparison	of	working	days	of	initial	and	final	solutions	for	a	particular	employee	27	

LIST	OF	TABLES	
Table	1:	Genetic	Algorithm	Methodology	..	11	

Table	2:	Comparison	of	methods	for	solving	TSP	...	14	

Table	3:	Comparison	of	best	initial	solution	and	best	final	solutions	..	27	

Table	4:	Sample	schedule	for	an	individual	employee	...	29	

Table	5:	Sample	schedule	for	a	specific	day	...	29	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 1	

1. INTRODUCTION	AND	BACKGROUND	

1.1. THE	SERVICE	INDUSTRY		

There	has	been	a	rapid	growth	in	the	service	industry	over	the	last	decade.	This	is	due	to	the	fact	that	

companies	 are	 recognizing	 the	 benefits	 of	 outsourcing	 activities	 that	 are	 not	 part	 on	 their	 core	

functions	 (Linton,	 2012).	 Outsourcing	 services	 such	 as	 accounting,	 IT	 or	 maintenance	 allows	 a	

company	 to	 concentrate	 on	 the	 activities	 that	will	make	 them	money.	 Companies	 that	 provide	 a	

service	work	in	very	different	way	to	manufacturing	companies	as	people	are	the	essence	and	core	of	

the	business	 (Dorne,	2008).	Employees	working	 in	services	are	usually	not	confined	to	a	particular	

facility;	 rather	 they	 travel	 to	 provide	 their	 services	 across	 geographical	 areas.	 Unlike	 the	

manufacturing	 industry,	 services	 cannot	 build	 up	 an	 inventory	 during	 times	 where	 there	 is	 less	

demand	–	it	needs	to	be	met	as	it	is	required.	This	places	a	great	importance	on	service	management	

as	well	as	the	logistics	of	having	the	right	staff	members	at	the	right	place	and	at	the	right	time	in	

order	to	satisfy	customer	demand.		

1.2. COMPANY	XYZ	

The	company	for	which	this	project	will	be	undertaken	would	like	to	remain	confidential	and	so	for	

the	 purposes	 of	 this	 project,	 it	 will	 be	 referred	 to	 as	 ‘Company	 XYZ.’	 Company	 XYZ	 is	 a	 national	

maintenance	 company	 to	 which	 numerous	 enterprises	 all	 over	 South	 Africa	 outsource	 their	

maintenance.		

Employees	are	hired	to	travel	to	customers	to	perform	scheduled	maintenance	on	a	wide	range	of	

electrical	devices	such	as	air	conditioners,	computers,	telecoms,	servers	etc.	Scheduled	maintenance	

involves	planning	to	maintain	devices	or	machines	at	regular,	predetermined	intervals.	This	includes	

activities	such	as	inspections,	adjustments,	regular	services	and	planned	shutdowns	(O'Brien,	2017)	in	

order	to	prevent	machines	from	breaking	down.		

1.3. PROBLEM	BACKGROUND	

As	can	be	seen	in	Figure	1,	employees	(resources)	{R1;	R2;	…;	RN}	travel	from	their	branches	{B1;	B2;	

…;	BN}	to	customers’	premises	{PR1;	PR2;	…;	PRN}	where	the	electrical	devices	{ED1;	ED2;	…;	EDN}	on	

which	they	are	required	to	work	are	kept.	Each	electrical	device	has	its	own	service	time.	In	a	single	

day	employees	may	be	required	to	travel	to	multiple	locations	to	perform	services.	A	workday	of	an	

employee	will	thus	consist	of	their	travel	time	plus	the	time	they	spend	working	on	electrical	devices.	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 2	

	
FIGURE	1:	AN	ILLUSTRATION	OF	THE	HIGH	LEVEL	PROCESS	COMPANY	XYZ	USES	TO	SATISFY	THEIR	CUSTOMERS	

Customer’s	premises	are	geographically	far	from	another	and	therefore	routes	need	to	be	carefully	

considered	so	 that	employees	can	maximize	 their	 time	spent	working	and	 reduce	 travel	 costs	and	

overtime.	A	full-time	employee	should	ideally	work	40	hours	per	week	(8	hours	per	day),	but	this	is	

rarely	the	case.	In	one	week	an	employee	may	work	50	hours	and	will	have	to	be	paid	overtime.	In	the	

next	week	he	may	only	work	30	hours,	but	will	still	have	to	be	paid	for	a	full	40	hours’	worth	of	work	

because	he	was	available.	The	total	workload	or	the	resource	utilisation	of	Company	XYZ	is	therefore	

unevenly	distributed,	as	demonstrated	in	the	figure	below:			

	
FIGURE	2:	DEMONSTRATION	OF	UNEVEN	WORKLOAD	DISTRIBUTION	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 3	

1.4. FOURIER-E	

Fourier-E	(part	of	Fourier	Approach)	 is	an	 Industrial	Engineering	consulting	company	specialising	 in	

the	areas	of	Decision	Support,	Cash	Management,	Operational	Design	and	Supply	Chain	Engineering.	

Company	XZY	has	been	a	client	of	Fourier’s	for	many	years.	In	2009	Fourier	was	hired	to	help	Company	

XYZ	in	the	allocating	of	maintenance	tasks	in	order	to	smooth	out	resource	utilisation,	and	then	once	

again	in	2012	to	build	a	pilot	model	for	one	region	in	which	they	operated	which	minimised	travel	in	

addition	 to	 allocating	 maintenance	 tasks	 to	 smooth	 resource	 utilisation.	 In	 2016	 this	 model	 was	

executed	across	all	maintenance	tasks	and	resources	over	all	regions	 in	South	Africa.	Fourier-E	will	

therefore	be	very	useful	in	providing	data	for	this	project.	

2. PROBLEM	STATEMENT		
Company	XYZ	has	the	logistical	problem	of	deciding	which	jobs	need	to	done,	when	they	need	to	be	

done,	at	which	customer	premises	and	by	which	employees.	Company	XYZ	requires	a	system	which	

plans	staffing	in	such	a	way	as	to	balance	the	workloads	of	their	employees,	reduce	costs	and	meet	

customer	demand.		

	

	

	

	

	

	

	 	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 4	

3. PROJECT	AIM/	RATIONALE	
The	 aim	 of	 this	 project	 is	 to	 create	 a	maintenance	 plan	 for	 Company	 XYZ	 which	 indicates	 which	

resources	will	be	servicing	which	devices	on	which	days.	As	seen	in	Figure	3	below,	this	plan	should	

optimize	the	workload	distribution	of	employees	as	well	as	the	routes	they	travel	each	day	so	that	

customers	can	be	serviced	in	the	most	efficient	way	possible.	This	will	 lead	to	the	improvement	of	

customer	satisfaction	and	the	reduction	of	workforce	costs	(Dorne,	2008)	such	as	overtime	and	idle	

time,	as	well	as	fuel	and	vehicle	maintenance	costs.		

Current	Situation	 	 Ideal	Situation	

	

	
Moving	
towards	

	
Employees	are	working	a	different	

number	of	hours	each	day	and	some	

employees	are	working	more	hours	than	

others.		

Employees	are	scheduled	in	such	a	way	

that	their	days	are	more	or	less	8	hours	

and	each	employee	has	roughly	the	same	

amount	of	work	to	do.		

	

	
	
	
Moving	
towards	

	
Current	routes	are	complex	and	not	

much	thought	has	gone	into	them.	

Employees	find	themselves	going	back	

past	places	they	have	already	visited.		

Routes	have	been	optimized	to	reduce	

travel	time	per	day	and	thus	travel	costs	

so	that	employees	have	more	time	to	

perform	their	value	adding	jobs.		

FIGURE	3:	CURRENT	SITUATION	AT	COMPANY	XYZ	VERSUS	WHAT	A	MAINTENANCE	PLAN	WILL	HELP	ACHIEVE	

	 	

0

8

16

Ho
ur
s

Days
0

8

16

Ho
ur
s

Days

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 5	

4. PROJECT	APPROACH,	SCOPE	AND	DELIVERABLES	
This	section	provides	the	general	approach	that	will	be	taken	in	the	solving	of	Company	XYZ’s	problem.	

The	 problem	 that	 needs	 to	 be	 addressed	 and	 the	 solution	 that	 will	 presented	 is	 typical	 of	 an	

Operations	Research	based	project.	 T.A	Taha	 (1976)	defines	Operations	Research	as	 “…a	scientific	

knowledge	through	interdisciplinary	team	effort	for	the	purpose	of	determining	the	best	utilization	of	

limited	resources,”	which	is	what	this	project	ultimately	aims	to	do.	According	to	Winston	(2003)	the	

following	 seven-step	 model-building	 procedure	 should	 therefore	 be	 followed	 as	 an	 approach	 to	

solving	this	Operations	Research	based	problem:	

	
• Project	proposal	
• Literature	

review	

• Problem	investigation	
• Existing	model	analysis	

	

• Conceptual	model	
• Actual	model	

	

Phase	1:	Formulate	the	Problem	
This	phase	will	involve	speaking	to	the	employees	from	Fourier-E	which	were	involved	in	the	Resource	

Allocation	Projects	and	having	them	explain	the	background	of	the	problem.	Individual	research	will	

be	 conducted	 to	 gain	 enough	 information	 about	 the	 project	 so	 that	 a	 project	 proposal	 can	 be	

completed.		An	in-depth	literature	study	(Section	5)	will	then	be	undertaken	to	identify	what	kind	of	

problem	is	being	dealt	with	as	well	as	what	methods	are	available	to	solve	it.		

Phase	2:	Observe	the	System	
As	mentioned	in	Section	1,	Fourier-E	has	performed	several	projects	at	Company	XYZ	and	thus	have	

built	up	a	large	database	of	information	pertaining	to	the	operations	of	the	company.	This	database	

will	be	used	as	the	starting	point	for	understanding	how	the	company	works	and	how	all	the	different	

aspects	of	the	company	fit	together	i.e.	regions,	bases,	customer	premises,	resources,	equipment	etc.	

A	more	in-depth	discussion	of	the	problem	will	then	be	presented.	As	part	of	the	problem	investigation	

(Section	6),	Fourier’s	existing	model	will	be	analysed	and	the	strengths	and	shortcomings	of	it	will	be	

discussed.		

Phase	3:	Formulate	a	Mathematical	Model	of	the	Problem	
A	 conceptual	model	will	 be	designed	 to	 show	which	 inputs	 and	outputs	will	 be	 required,	 and	 the	

general	way	in	which	the	model	should	work	will	be	explained.	The	final	model	will	then	be	developed	

using	 knowledge	 and	 background	 gained	 from	 literature	 studies	 and	 Fourier’s	 model.	 The	

development	of	the	final	model	can	be	found	in	Section	7.	

Model	formulation System	observation Problem	formulation 1
1

2
2

3

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 6	

	

• Verification	and	
validation		

• Alternatives	
comparison	

• Report	
• Presentation	
• Poster	

• Implementation	
procedure	

• Recommendations	
	

Phase	4:	Verify	and	Validate	the	Model	
The	actions	that	Company	XYZ	should	take	in	order	to	verify	and	validate	the	completed	model	will	be	

explained	(Section	8).		

Phase	5:	Select	a	Suitable	Alternative	
Different	 types	 of	 scheduling	 algorithms	 and	 linear	 programming	methods	will	 be	 researched	 and	

compared	with	one	other	in	order	to	determine	if	any	are	suitable	for	the	application	at	Company	XYZ	

or	 if	 something	 completely	 new	needs	 to	 be	 formulated.	 These	 comparisons	 can	 be	 found	 in	 the	

literature	review	(Section	5).		

Phase	6:	Present	Results	and	Conclusion	
A	 final	 report,	 poster,	 and	 PowerPoint	 presentation	will	 be	 created	 to	 present	 the	 final	 proposed	

maintenance	plan	as	well	as	how	it	was	developed.			

Phase	7:	Implement	and	Evaluate	Recommendations	
The	 final	 report	 will	 include	 recommendations	 on	 how	 Company	 XYZ	 should	 go	 about	 the	

implementation	phase	if	they	were	to	accept	the	proposed	maintenance	plan	(Section	9).		

PROJECT	SCOPE	

There	is	a	large	amount	of	data	available	to	use.	There	are	6	regions	in	South	Africa	in	which	Company	

XYZ	 operates	 and	 so	 it	 would	 be	 a	

good	idea	to	model	only	the	Gauteng	

region	 initially.	 If	 the	 final	algorithm	

works	 effectively,	 it	 can	 then	 be	

easily	 adapted	 to	 solve	 for	 other	

regions	 in	 the	 future.	 The	 Gauteng	

region	 has	 only	 one	 branch,	 which	

employs	36	full-time	technicians.	The	

companies	which	this	branch	services	

are	shown	in	the	map	alongside.		

FIGURE	4:	MAP	SHOWING	THE	LOCATIONS	OF	COMPANY	XYZ'S	CUSTOMERS	IN	THE	GAUTENG	REGION	

Implementation	&	
Recommendations

Results	&	
Conclusion

Alternatives	
selection

Verification	&	
Validation 6 5 4 7

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 7	

5. LITERATURE	REVIEW	
In	this	section	a	literature	review	is	conducted	to	find	and	understand	theory	that	could	be	applied	to	

the	 problem	 at	 hand	 as	well	 as	 specific	 applications	 of	 this	 theory	 about	which	 researchers	 have	

written	papers.	There	are	a	number	of	methods	discussed	below.	One	method	or	a	combination	of	

these	different	methods	will	be	selected	to	solve	Company	XYZ’s	problem,	based	on	their	suitability	

to	the	problem	and	the	student’s	abilities.		

The	problem	at	hand	has	elements	of	both	scheduling	and	routing	because	tasks	and	technicians	need	

to	be	scheduled	 in	such	a	way	as	to	complete	all	 the	tasks	requested	by	customers,	 in	addition	to	

determining	 efficient	 routes	which	minimise	 the	 costs	 associated	with	 travelling	 to	 geographically	

distributed	customers.		

Routing	and	scheduling	problems	can	be	presented	as	graphical	networks	(Haksever	et	al.,	2000).	In	

Figure	5	below,	the	circles	are	called	nodes	which	represent	pickup	and/	or	delivery	points.	Node	1	

represents	the	depot	or	home	base	of	the	vehicles.	The	 lines	connecting	the	nodes	are	called	arcs	

which	can	represent	the	time,	distance	or	cost	required	to	travel	from	one	node	to	another.	The	goal	

of	routing	and	scheduling	problems	is	usually	to	minimize	this	time,	distance	or	cost	of	travelling.		

	
FIGURE	5:	REPRESENTATION	OF	A	ROUTING	PROBLEM	

Numerous	types	of	routing	and	scheduling	problems	are	mentioned	in	literature,	each	having	a	variety	

of	ways	in	which	they	can	be	solved.	The	classification	of	a	routing	and	scheduling	problem	depends	

on	characteristics	such	as	size	of	the	delivery	fleet,	where	the	fleet	is	housed,	capacities	of	the	vehicles,	

as	well	as	routing	and	scheduling	objectives	(Haksever	et	al.,	2000).		

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 8	

In	 the	 simplest	 and	most	well-known	 case	 of	 routing	 problems,	 the	Travelling	 Salesman	Problem	

(TSP),	a	single	vehicle	is	required	to	visit	a	set	of	nodes.	The	output	is	a	route	which	begins	and	ends	

at	 the	depot	which	enables	 the	vehicle	 to	visit	each	node	exactly	once	while	minimizing	 travelling	

distance.	 In	 the	 case	 of	 the	Multiple	 Travelling	 Salesmen	 Problem	 (mTSP),	 a	 fleet	 of	 vehicles	 is	

required	 to	visit	 a	 set	of	nodes	and	each	vehicle	 starts	 and	ends	at	 the	depot.	 The	objective	 is	 to	

determine	a	route	for	each	salesman	such	that	the	total	distance	is	minimized	and	that	each	city	is	

visited	 exactly	 once	 by	 only	 one	 salesman.	 The	 Vehicle	 Routing	 Problem	 (VRP)	 expands	 on	 the	

multiple	 traveling	 salesman	problem.	 In	 this	 case	 the	capacity	of	 the	vehicles	 is	 restricted	and	 the	

nodes	to	be	visited	have	varying	demands.	In	the	Chinese	Postman	Problem	(CPP),	the	demand	for	

service	 occurs	 on	 the	 arcs	 rather	 that	 at	 the	 nodes,	 for	 example	 street	 sweeping	 and	 newspaper	

delivery.			

From	the	descriptions	of	the	cases	above,	it	appears	that	the	Multiple	Travelling	Salesman	Problem	

most	closely	resembles	the	problem	with	which	Company	XYZ	 is	 faced,	because	there	are	multiple	

technicians	but	the	capacities	of	their	vehicles	are	not	limited	and	the	demand	for	their	service	occurs	

only	at	the	nodes.	Approaches	for	solving	the	mTSP	above	can	be	divided	into	two	categories:	exact	

algorithms	and	heuristic	algorithms.		

5.1 EXACT	METHODS	

The	following	traditional	techniques	have	been	used	to	find	exact	solutions	for	small	problems	but	as	

the	size	of	the	solution	space	increases,	so	does	the	running	time	of	these	algorithms	(Laporte,	1992).			

5.1.1 MATHEMATICAL	PROGRAMMING	

There	exists	a	wide	variety	of	mathematical	programming	methods,	the	most	basic	one	being	Linear	

programming	(LP).	This	 is	the	optimisation	of	a	problem	in	which	the	objective	and	constraints	are	

linear.	 In	 integer	programming	 (IP),	 variables	are	 restricted	 to	be	 integers.	When	some	but	not	all	

variables	are	restricted	to	be	integers,	it	is	a	mixed	integer	program	(MIP)	(Pinedo,	2012).	In	binary	

integer	programming	(BIP),	each	variable	can	only	take	on	the	value	of	0	or	1.	Various	algorithms	exist	

to	solve	the	TSP	and	variations	of	it.	Some	include	the	Branch-and-price	algorithm	and	the	Branch-

and-bound	algorithm.		

5.1.2 DYNAMIC	PROGRAMMING		

Dynamic	 Programming	 is	 very	 different	 to	 linear	 programming	 in	 that	 there	 is	 no	 standard	

mathematical	formulation	of	the	problem.	It	is	“a	method	that	in	general	solves	optimization	problems	

that	involve	making	a	sequence	of	decisions	by	determining,	for	each	decision,	sub	problems	that	can	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 9	

be	 solved	 in	 like	 fashion,	 such	 that	an	optimal	 solution	of	 the	original	 problem	can	be	 found	 from	

optimal	solutions	of	sub	problems"	(Lew	and	Mauch,	2007).	Dynamic	programming	has	often	been	

used	in	the	solving	of	Travelling	Salesman	Problems	(Laporte,	1992)	using	the	Held-Karp	algorithm.		

5.2 HEURISTIC	METHODS	

When	the	number	of	variables	gets	too	large,	computers	have	difficulty	in	finding	an	exact	solution.	

In	 the	case	of	 the	TSP	or	variants	of	 it,	 the	difficulties	 in	 solving	 this	problem	arise	 from	the	 large	

number	of	possible	tours:	the	factorial	of	the	number	of	cities	to	be	visited	(Larranaga	et	al.,	1999).	In	

this	case,	heuristics	methods	should	be	used	to	find	good,	 if	not	optimal,	solutions	to	the	problem	

(Winston,	 2003).	 Reeves	 (1993)	 defines	 a	 heuristic	 as:	 “a	 technique	 which	 seeks	 good	 (i.e.	 near-

optimal)	solutions	at	a	reasonable	computation	cost	without	being	able	to	guarantee	either	feasibility	

or	optimality,	or	even	in	many	cases	to	state	how	close	to	optimality	a	particular	feasible	solution	is.”	

Several	common	heuristic	approaches	are	presented	below:		

5.2.1 LOCAL	SEARCH	-	HILL-CLIMBING	

Hill-climbing	involves	starting	at	a	random	point	in	the	search	space	and	then	looking	at	the	closest	

neighbour/	candidate	solutions.	If	the	value	of	a	neighbour	solution	is	better	solution	than	the	current	

solution,	then	it	becomes	the	current	node.	If	the	neighbour	is	not	a	better	solution,	the	current	node	

remains	the	same.	The	process	loops	over	and	over	until	no	better	solution	can	be	found	i.e.	a	local	

maximum	 has	 been	 reached.	 It	 is	 possible	 to	 have	 more	 than	 one	 local	 optimum.	 In	 Figure	 6,	

depending	on	the	starting	position,	a	local	maximum	may	be	reached	and	the	algorithm	would	get	

stuck,	but	it	may	not	be	the	global	maximum	i.e.	the	best	solution.	This	is	one	of	the	major	drawbacks	

of	the	hill-climbing	algorithm.		

	
FIGURE	6:	DEMONSTRATION	OF	A	LOCAL	MAXIMUM	BEING	REACHED	RATHER	THAN	THE	GLOBAL	MAXIMUM.		

	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 10	

5.2.2 LOCAL	SEARCH	–	HILL-CLIMBING	WITH	RANDOM	RESTART	

This	algorithm	fixes	the	problems	associated	with	hill-climbing.	The	hill-climbing	algorithm	is	run	until	

a	local	maximum	is	found.	It	will	then	be	run	again	starting	from	a	different	random	position	in	the	

search	space,	which	possibly	enables	a	new	local	maximum	to	be	found.	This	process	is	repeated	and	

eventually	the	best	optimum	that	was	found	will	be	returned.		

5.2.3 LOCAL	SEARCH	-	SIMULATED	ANNEALING	

This	algorithm	is	based	on	the	same	idea	as	hill-climbing	with	restart	but	it	is	different	in	the	sense	

that	the	neighbour	chosen	is	not	always	an	improvement	to	the	current	solution	i.e.	the	algorithm	

may	move	 downhill.	 This	 is	 because	 it	 looks	 further	 than	 just	 the	 neighbour	 solution	 –	 it	 takes	 a	

random	walk	in	the	search	space	to	see	if	there	are	better	solutions	beyond	local	maximums	in	the	

hopes	 of	 discovering	 the	 global	 maximum	 i.e.	 searches	 getting	 stuck	 in	 at	 local	 maximums	 are	

prevented.	Simulated	annealing	was	inspired	by	metallurgy’s	annealing	technique	-	a	method	used	to	

reduce	defects	in	a	metal	by	using	heating	and	controlled	cooling	down	of	the	material.	This	search	

process	 is	 dependent	 on	 the	 variable	 ‘t’	 or	 ‘temperature’.	 The	 algorithm	 begins	 with	 a	 high	

temperature,	and	 slowly	 cools	down	 to	a	 low	 temperature.	The	higher	 the	 t,	 the	more	 the	 search	

ignores	local	maximums	while	the	lower	the	t,	the	more	this	algorithm	behaves	like	the	normal	hill	

climbing	algorithm.		

5.2.4 LOCAL	SEARCH	-	TABU	SEARCH	

Unlike	 the	 above	 local	 search	 algorithms,	 Tabu	 search	makes	 use	 of	memory	which	 enables	 it	 to	

overcome	local	maximums.	This	heuristic	is	commonly	used	in	the	solving	of	mTSPs,	TSPs	and	VRPs	

(Uldall,	Taarnhøj	and	Vorts,	2008).		

5.2.5 GENETIC	ALGORITHM	

Genetic	algorithms	were	inspired	by	processes	observed	in	biological	evolution	and	natural	selection.	

In	 this	algorithm,	a	 solution	 to	a	problem	can	be	viewed	as	an	 individual	 and	a	group	of	 solutions	

becomes	a	population.	Some	sort	of	objective	function,	called	the	fitness	function,	is	used	to	compare	

various	individuals	in	a	population.	In	an	iterative	process,	new	generations	are	formed	from	the	best	

performing	 individuals	 in	 the	 previous	 generation	 as	 well	 as	 their	 offspring,	 while	 keeping	 the	

population	size	constant.	New	generations	are	created	through	selection,	crossover	and	mutation	of	

individuals	from	the	previous	population.		

	

	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 11	

Potvin	(1996)	defines	the	steps	to	a	simple	“pure”	genetic	algorithm	as	follows:	

TABLE	1:	GENETIC	ALGORITHM	METHODOLOGY	

Step	1.	Create	an	initial	population	of	P	chromosomes	(generation	0).	

Step	2.	Evaluate	the	fitness	of	each	chromosome.	

Step	3.	Select	P	parents	from	the	current	population	via	proportional	selection		

Step	4.	Choose	at	 random	a	pair	of	parents	 for	mating.	Exchange	bit	 strings	with	 the	one-point	

crossover	to	create	two	offspring.	

Step	5.	Process	each	offspring	by	the	mutation	operator,	and	insert	the	resulting	offspring	in	the	

new	population.	

Step	6.	Repeat	steps	4	and	5	until	all	parents	are	selected	and	mated	(P	offspring	are	created).	

Step	7.	Replace	the	old	population	of	chromosomes	by	the	new	one.	

Step	8.	Evaluate	the	fitness	of	each	chromosome	in	the	new	population.	

Step	9.	Go	back	to	step	3	if	the	number	of	generations	is	less	than	some	upper	bound.	Otherwise,	

the	final	result	is	the	best	chromosome	created	during	the	search.	
	

Some	of	the	concepts	mentioned	above	are	described	as	follows:		

Fitness:	 In	 order	 to	 evaluate	 how	 effective	 a	 solution	 is,	 and	 to	 compare	 effectiveness	 between	

solutions,	 a	 fitness	 function	 is	 required.	 In	 the	 case	 of	 a	 TSP,	 the	 shorter	 a	 solution’s	 total	 travel	

distance,	the	more	effective	that	solution	is,	and	so	the	fitness	of	the	solution	would	be	a	function	of	

the	total	distance	travelled.		

Selection:	The	selection	process	of	a	genetic	algorithm	determines	which	individuals	should	mate	and	

produce	offspring	 for	 the	next	 generation.	 The	 aim	of	 selection	 is	 to	 choose	 individuals	with	high	

fitness	values	and	to	discard	the	poor	performing	ones.	However,	these	bad	individuals	should	also	

have	a	chance	to	be	selected	because	they	may	lead	to	useful	genetic	material	(Razali	and	Geraghty,	

2011).	Various	selection	methods	exist:		

• Proportional	roulette	wheel	selection	selects	individuals	in	proportion	to	their	fitness,	so	the	

higher	an	individual’s	fitness	value,	the	more	likely	is	it	is	to	be	selected	(Luke,	2013).		

• In	rank	based	roulette	wheel	selection,	solutions	are	ordered	according	to	their	fitness	values	

and	selection	probabilities	are	calculated	for	each	solution	based	on	their	ranks	relative	to	the	

population	 rather	 than	 on	 their	 fitness	 value.	 This	 selection	 method	 is	 therefore	 not	

influenced	 by	 extremely	 high	 performing	 individuals,	 like	 the	 proportional	 roulette	 wheel	

selection	is.		

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 12	

• Tournament	 selection	 is	 the	 most	 popular	 method	 due	 to	 its	 efficiency	 and	 simple	

implementation	 (Razali	 and	 Geraghty,	 2011).	 k	 individuals	 are	 randomly	 chosen	 from	 the	

population	and	the	individual	with	the	best	fitness	value	wins.	The	larger	the	value	of	k,	the	

greater	 chance	 for	 loss	 of	 diversity	 in	 new	 generations	 (Blickle	 and	 Thiele,	 1995).	 This	 is	

because	 poor	 performing	 individuals	 are	 unlikely	 to	win	 large	 tournaments	 and	 therefore	

don’t	get	a	chance	to	be	selected	for	mating.		Smaller	values	of	k	give	most	individuals	a	chance	

to	 be	 selected	 and	 thus	 preserve	 genetic	 diversity.	 In	 a	 study	 performed	 by	 Razali	 and	

Geraghty	(2011),	it	was	found	that	tournament	selection	gave	better	results	than	proportional	

roulette	wheel	for	all	sizes	of	problems	that	were	tested.	It	was	also	easier	to	implement	than	

the	rank	based	roulette	wheel	selection	method.		

Crossover:	Crossover	is	the	Genetic	Algorithm’s	distinguishing	feature	(Luke,	2013).	The	best	features	

of	the	parents	chosen	from	the	selection	step	are	combined	to	create	offspring.	There	are	three	well-

known	crossover	methods,	which	are	illustrated	in	Figure	7.		

• One-point	crossover:	a	random	number	is	chosen	between	0	and	the	length	of	the	solution	

which	is	the	cut	point.	The	child	will	contain	the	values	up	until	the	cut	point	from	parent	1,	

and	the	values	after	the	cut	point	in	parent	2.		

• Two-point	crossover:	This	method	breaks	up	the	solution	at	2	points,	creating	a	section	which	

is	swapped	with	the	section	created	from	the	other	parent.		

• Uniform	crossover:	This	method	selects	random	positions	in	both	the	parents	to	swap	their	

genes.		

	
FIGURE	7:	DEMONSTRATIONS	OF	COMMON	CROSSOVER	OPERATORS	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 13	

When	applying	the	pure	genetic	algorithm	to	a	TSP,	a	problem	is	encountered	when	using	any	of	the	

aforementioned	crossover	methods.	After	applying	a	crossover,	some	cities	may	appear	more	than	

once	in	the	offspring	created,	making	them	infeasible	solutions	i.e.	the	child	is	not	a	permutation	of	

its	parents.	Potvin	(1996)	describes	the	‘order	1	crossover’	method	(as	illustrated	in	Figure	8)	which	

overcomes	this	issue.	The	aim	of	this	technique	is	to	preserve	the	ordering	of	the	locations	from	both	

parents	and	it	works	in	the	following	way:		

1. Select	a	random	part	of	the	chromosome	from	parent	1	by	randomly	choosing	2	cut	points	

2. Drop	this	part	down	to	child	1	and	mark	out	these	locations	from	parent	2	

3. Add	 the	 remaining	 values	 from	parent	2	 to	 the	 child	 in	 the	order	 in	which	 they	appear	 in	

parent	2,	starting	after	the	second	cut	point	

4. If	a	second	child	is	required,	swap	parent	1	and	parent	2	and	go	back	to	step	1.		

	
FIGURE	8:	DEMONSTRATION	OF	ORDER	1	CROSSOVER	

Mutation:	In	order	to	maintain	genetic	diversity	through	generations,	a	mutation	of	some	individuals	

should	occur	with	a	small	probability.	Mutation	prevents	the	algorithm	from	getting	stuck	at	a	local	

optima	(Larranaga	et	al.,	1999).	Examples	of	mutation	methods	include:		

• Swapping:	2	locations	in	the	chromosome	are	randomly	selected	and	then	swapped.		

• Scrambling:	Two	cut	points	are	randomly	selected,	and	the	locations	within	the	two	cut	points	

are	randomly	permuted	

Elitism:	This	concept	is	often	used	in	genetic	algorithms	to	ensure	that	the	best	performing	individuals	

(the	elites)	appear	in	future	generations.	However	this	technique	may	cause	premature	convergence	

if	not	kept	in	check	(Luke,	2013).		

According	to	Pinedo	(2012),	using	genetic	algorithms	is	advantageous	because	they	are	easily	coded	

and	give	good	solutions,	but	their	computation	time	can	be	longer	than	other	heuristic	approaches.		

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 14	

5.3 CONCLUSION	
The	 problem	with	which	 Company	 XYZ	 is	 faced	 can	 be	 classified	 as	 a	 type	 of	 Travelling	 Salesman	

Problem.	 A	 variety	 of	 exact	 and	 heuristic	 methods	 exist	 to	 solve	 these	 problems,	 which	 are	

summarised	and	compared	below:		

TABLE	2:	COMPARISON	OF	METHODS	FOR	SOLVING	TSP	

Method	 Advantages	 Disadvantages	

Mathematical	
programming	

Many	formulations	of	TSP	have	
been	found		

Almost	impossible	to	find	optimal	
solution	for	large	problems	
Long	running	time	

Dynamic	
programming	

Existing	Held-Karp	method	found	
in	literature	

Long	running	time	
Difficult	to	develop	code	
High	memory	usage	

Hill-climbing	 Very	simple	algorithm	 High	chance	of	getting	stuck	at	local	
optima	

Hill-climbing	with	
random	restart	

Local	optima	can	be	avoided	 If	random	restart	points	are	close,	same	
local	optimum	will	continually	be	
reached	

Simulated	
annealing	

Easily	coded	
Local	optima	can	be	avoided	

Can	be	slow,	especially	if	cost	function	
is	expensive	to	compute	
Simpler,	faster	methods	exist	
Cannot	tell	if	solution	is	optimal	

Tabu	search	 Local	optima	can	be	avoided	 Only	works	in	discrete	spaces	
Requires	a	lot	of	memory	
Cannot	tell	if	solution	is	optimal	

Genetic	algorithm	 Easily	coded	
Known	to	have	produced	good	
solutions	
Local	optima	can	be	avoided	
A	lot	of	literature	found		

Longer	running	times	than	other	
heuristic	approaches	
Cannot	tell	if	solution	is	optimal	

	

Because	it	is	such	a	large	problem,	heuristics	appears	to	be	the	best	way	of	finding	a	valid	solution.	

Genetic	Algorithm	is	an	effective	method	which	has	commonly	been	used	to	solve	TSPs.	The	genetic	

algorithm	techniques	found	can	be	adapted	for	the	specific	use	of	the	solving	Company	XYZ	problem.		

	 	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 15	

6. PROBLEM	INVESTIGATION	
Before	 Fourier-E’s	 intervention,	 Company	 XYZ	 had	 no	 specialized	 programming	 or	 algorithmic	

methods	to	use	in	the	scheduling	of	their	employees.	Each	day	a	manually-created	job	sheet	was	given	

to	an	employee	who	would	then	have	to	visit	and	service	each	of	the	service	requests	in	that	day.	If	

another	job	came	up,	it	would	simply	be	added	on	top	of	the	pile.	This	meant	that	no	thought	went	

into	the	routing	or	the	order	in	which	jobs	should	be	done	and	so	there	was	a	lot	of	travelling	back	

and	 forth.	 This	 lead	 to	 employees	 working	 overtime	 which	 became	 costly	 for	 Company	 XYZ.	 As	

mentioned	in	the	background	of	the	problem,	resource	utilisation	was	also	unbalanced.	Some	weeks,	

an	employee	would	work	much	longer	hours	than	in	other	weeks.	These	issues	lead	to	the	need	for	

consulting	 Fourier-E	 to	 perform	a	 resource	planning	project.	 From	2009,	 Fourier-E	 has	worked	on	

building	models	to	improve	maintenance	task	allocation,	smooth	out	resource	allocation	and	minimise	

travel	times	for	Company	XYZ.	Their	final	linear-programming	model	was	used	to	schedule	employees	

over	an	80-week	period	 for	all	 the	 regions	 in	which	Company	XYZ	worked.	 Its	 logic	worked	 in	 the	

following	way:		

1. A	resource	is	selected	

2. A	particular	week	is	selected	

3. The	site	with	the	most	equipment	is	selected	to	be	serviced	first	in	this	week	

4. Thereafter,	the	closest	site	with	the	most	equipment	is	selected	

5. The	time	available	is	checked	to	see	if	the	resource	can	perform	the	service	

6. The	equipment	to	be	serviced	is	selected,	ordered	by	priority,	and	time	available	

7. The	maintenance	plan	of	the	current	equipment	is	updated		

The	output	of	the	model	is	an	employee	job	sheet	which	included	the	following	information:	

• Resource	number	

• Week	number	

• List	 of	 equipment	

to	be	serviced	

• Total	travel	time	

• Total	task	time	

• Total	time	

	

	

	 FIGURE	9:	AN	EXAMPLE	OF	AN	EMPLOYEE	JOB	SHEET	CREATED	BY	FOURIER'S	MODEL	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 16	

A	graph	has	been	created	to	show	the	costs	associated	with	the	use	of	the	modelled	schedule	over	

the	80-week	period.	This	chart	illustrates	the	imbalance	of	workload	over	the	80	weeks.	There	are	still	

periods	with	high	utilisation	of	employees	and	periods	where	there	is	very	little	utilisation.		

	
FIGURE	10:	CHART	SHOWING	COST	OF	SCHEDULE	OVER	80	WEEKS	

The	charts	below	compare	the	schedules	of	two	employees.	The	red	line	represents	the	employees’	

available	 time	 to	work	 in	 a	week.	 The	 charts	 clearly	 show	 that	 employees	 are	 still	 not	 being	 fully	

utilized,	 and	 their	 schedules	 have	 not	 balanced	 their	 workloads	 over	 the	 80-week	 period.	 Also	

Resource	3755927	has	a	much	busier	schedule	than	Resource	1212551,	even	though	he/	she	has	less	

time	available	to	work.		

	 	

	
FIGURE	11:	CHARTS	COMPARING	GENERATED	SCHEDULES	OF	2	EMPLOYEES	

0

20000

40000

60000

80000

100000

Weeks

All	Resources

Sum	of	TimeCost Sum	of	ReturnTravelTime Sum	of	TotalTimeCost

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Weeks

Resource	1212551

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Weeks

Resource	3755927	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 17	

The	model	works	for	Company	XYZ	and	they	are	currently	using	it	to	automate	their	scheduling	

process	but	there	is	still	there	is	much	room	for	improvement.	Fourier’s	model	can	therefore	be	

used	as	a	base	on	which	to	improve	in	order	to	solve	the	problems	of	Company	XYZ.	The	following	

considerations	have	been	made	regarding	the	current	and	potential	model:	

• Linear	 programming	was	 used	 to	 create	 Fourier’s	model.	 Because	 of	 the	 large	 number	 of	

variables	and	constraints,	this	model	took	days	to	solve,	which	makes	it	impractical	to	use	on	

a	daily	or	weekly	basis.	Literature	reveals	that	metaheuristics	is	a	useful	tool	in	solving	large,	

complex	problems	and	so	this	should	be	implemented	in	the	new	model	

• Fourier’s	model	worked	in	terms	of	weeks.	This	allows	for	the	freedom	of	refining	the	weekly	

schedule	if	emergencies	need	to	be	accommodated.	However,	daily	scheduling	provides	more	

accurate	travel	times	and	so	it	should	be	incorporated	into	the	new	model		

• The	model	created	a	static	plan	for	80	weeks.	In	this	long	time	frame,	a	lot	can	happen	and	

change	which	makes	this	long	term	plan	impractical.	If	changes	should	occur,	or	emergency	

services	need	to	scheduled,	then	the	model	should	be	able	to	reorganise	existing	schedules.		

• The	robustness	of	the	schedule	needs	to	be	considered.	Is	it	better	to	have	a	rough	plan	which	

guides	employees	but	they	can	make	changes	if	they	need	to,	or	to	have	a	very	detailed	plan	

which	an	employee	has	to	stick	to?		

• Emergency	breakdowns	or	issues	can	happen	at	any	point	in	time,	which	the	model	needs	to	

take	 into	account.	 Is	 it	better	 to	have	 for	example	7	resources	with	100%	utilisation	and	a	

separate	team	to	deal	with	emergencies,	or	to	have	10	resources	with	75%	utilisation	so	that	

they	are	available	when	emergencies	occur?		

All	these	points	will	be	considered	in	the	development	of	the	final	model,	which	is	presented	in	the	

following	section.		

	

	

	 	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 18	

7. SOLUTION	DEVELOPMENT	
This	section	describes	the	chosen	algorithm	and	its	development	in	detail.		

	
FIGURE	12:	THE	BASIC	CONCEPTUAL	MODEL	PROCESS	WHICH	WILL	BE	FOLLOWED	

7.1 INPUT	
The	Database	

The	device	database	is	an	excel	spreadsheet	containing	information	about	each	device	that	Company	

XYZ	is	required	to	service.	This	database	will	be	converted	into	a	csv	file	to	be	used	as	an	input	to	the	

algorithm.	 Important	 attributes	of	 each	equipment	which	 the	algorithm	will	 use	 in	 its	 calculations	

include	the	device’s	identification	number,	service	time	(minutes),	as	well	as	its	longitude	and	latitude.	

A	preview	of	this	database	is	shown	in	the	figure	below:			

	
FIGURE	13:	PREVIEW	OF	IMPORTANT	ASPECTS	OF	DATABASE	

There	are	20379	electrical	devices	in	the	database	that	need	to	be	serviced.	In	the	Travelling	Salesman	

Problem,	the	number	of	possible	routes	is	a	factorial	of	the	number	of	cities	to	visit.	If	each	electrical	

device	were	to	be	treated	as	a	city,	there	would	be	20378!	=	8.02	E+78968	routes	to	consider.		

Many	of	the	devices	are	 located	in	the	same	buildings,	and	so	to	simplify	the	problem	slightly,	the	

electrical	devices	in	the	database	will	be	ordered	according	to	their	coordinates.	Devices	in	the	same	

locations	will	then	be	grouped	together,	and	a	new	input	csv	file	will	be	created	such	as	the	one	in	

Figure	14	using	a	simple	Python	program.	This	will	ensure	that	when	creating	random	individuals	for	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 19	

the	 population,	 devices	 in	 the	 same	 location	 will	 not	 be	 separated,	 and	 the	 algorithm	 will	 then	

optimize	distances	between	locations	rather	than	distances	between	the	devices	themselves.		

	
FIGURE	14:	DATABASE	WHICH	GROUPS	DEVICES	COMMON	TO	A	SPECIFIC	LOCATION	

After	applying	the	grouping	program	there	are	7778	locations,	labelled	1	to	7778,	which	means	there	

are	now	only	7778!	=	3.74	E+26887	routes	to	consider.		

Assumptions	

The	following	assumptions	will	be	applicable	in	the	building	of	the	genetic	algorithm:		

• 36	full-time	technicians	are	currently	employed	by	Company	XYZ	

• Technicians	work	Monday	through	Friday	

• Technicians	should	work	roughly	8	hours	per	day	

• All	technicians	have	the	required	skills	to	service	any	electrical	device	

• Technicians	drive	at	an	average	speed	of	70	km	per	hour	(vehicles	make	use	of	main	roads	

where	possible)		

• Technician	drives	back	to	depot	after	their	last	job	in	a	day	

• Servicing	of	a	device	has	to	be	completed	the	day	it	was	started	

• Servicing	of	any	device	requires	only	one	technician		

• Straight	line	distances	are	used	between	two	locations		

	

	

	

	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 20	

7.2 PROCESS	
The	genetic	algorithm	will	be	built	in	Python	3.6	using	the	methodology	below,	adapted	from	Table	1	

to	apply	to	a	Multiple	Travelling	Salesman	Problem.	Each	step	of	the	Genetic	Algorithm	will	then	be	

described	 in	more	detail.	Note	that	the	complete	python	coding	for	the	algorithm	can	be	found	 in	

Appendix	B.		

	
FIGURE	15:	GENETIC	ALGORITHM	METHODOLOGY	

1. Generate	initial	population	

Firstly,	the	solution	to	the	problem	(chromosome)	will	be	represented	as	a	list	of	location	IDs,	in	which	

each	location	represents	the	devices	it	holds.	Each	location	is	listed	exactly	once.	This	satisfies	the	first	

objective	of	the	model:	to	satisfy	all	customer	demand.	i.e.	service	each	device	once.		

1	 2	 3	 …	 7776	 7777	 7778	

FIGURE	16:	REPRESENTATION	OF	AN	INDIVIDUAL	SOLUTION	

Now,	Algorithm	1	generates	a	population	by	taking	this	initial	solution	as	an	input	and	creating	100	

random	permutations	of	it:		

	 	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 21	

Algorithm 1: Population

Input: Initial solution (ind)
Output: Population consisting of s permutations of initial solution

def population(ind, s):
 return [random.sample(ind, len(ind)) for i in range(s)]

	

2. Evaluate	fitness	of	each	individual	of	the	population	

In	order	to	compare	these	different	solutions	and	determine	which	are	better	than	others,	a	fitness	

function	is	required.	Going	back	to	the	problem	statement,	the	main	objectives	of	the	model	are	to	1)	

reduce	travel	times	and	2)	even	out	workload	distribution.	The	fitness	function	therefore	needs	to	be	

comprised	of	two	elements:	1)	total	distance	of	the	schedule	and	2)	the	total	deviation	from	8	hours	

of	working	time	per	resource	per	day.	This	fitness	function	will	take	an	individual	solution	as	an	input,	

and	 return	 that	 solution’s	 total	distance	and	deviation.	The	 flow	diagram	below	demonstrates	 the	

logic	behind	the	fitness	function:	

	
FIGURE	17:	FLOW	CHART	DEMONSTRATING	THE	LOGIC	BEHIND	THE	FITNESS	FUNCTION		

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 22	

Firstly,	 the	 travel	 time	 to	 the	 first	 location	 listed	 in	 the	 solution	 from	 the	depot	 is	 calculated.	The	

following	algorithm	will	be	used	to	calculate	the	straight	line	distances	between	2	locations,	and	then	

be	multiplied	by	the	speed	of	the	vehicle	to	find	the	travel	time:		

Algorithm 2: Distance

Input: Origin coordinates and destination coordinates
Output: Straight line distance in km between 2 input locations

def distance(origin, destination):
 lat1, lon1 = origin
 lat2, lon2 = destination
 radius = 6371
 dlat = radians(lat2 - lat1)
 dlon = radians(lon2 - lon1)
 a = sin(dlat / 2) * sin(dlat / 2) + cos(radians(lat1)) *
 cos(radians(lat2)) * sin(dlon / 2) * sin(dlon / 2)
 c = 2 * atan2(sqrt(a), sqrt(1 - a))
 d = radius * c
 return d
	

If	there	is	enough	time	left	in	the	day	for	the	resource	to	drive	there	and	perform	the	servicing,	then	

the	resource	will	 travel	to	that	 location.	The	travel	time	and	servicing	times	are	then	added	to	the	

total	working	hours,	and	the	total	distance	for	the	schedule	 is	updated.	When	there	 is	not	enough	

time	left	in	the	day	for	a	resource	to	drive	to	a	location,	he	will	drive	back	to	the	depot,	and	then	a	

new	resource	will	be	selected	to	travel	to	that	location.	Once	all	36	resources	are	used	up	in	a	day,	a	

new	day	begins	with	resource	1.		

Note	that	the	‘is	there	time	to	travel	to	location	and	service	devices’	decision	block	does	not	check	if	

there	is	also	time	to	drive	back	to	the	depot	once	servicing	is	complete.	This	means	that	the	drive	back	

to	the	depot	may	cause	an	employee’s	day	to	run	over	480	minutes.	When	a	resource	drives	back	to	

the	 depot,	 his	 total	 time,	 service	 time	 and	 travel	 time	 for	 that	 day	 are	 printed.	 This	 is	 when	 the	

deviation	of	the	schedule	is	calculated:		

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 	 (,-./01023	0456)8

91:;0
		where	‘count’	is	the	total	number	of	schedules	created.	

3. Copy	elites	to	new	generation	

This	process	will	be	described	in	step	7	

	

	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 23	

4. Select	parents	with	tournament	selection	

Tournament	selection	will	be	used	as	the	method	of	selecting	parents	for	breeding.	Randomly	select	

k	individuals	from	the	population	and	return	the	best	performing	individual	from	this	group.				

Algorithm 3: Selection (Tournament selection)

Input: Population (P) and tournament size (k)
Output: Winning individual of the tournament

def selection(P, k):
 best = null
 for i in range(1, k):
 ind = random individual in P
 if (best == null) or fitness(ind) > fitness(best):
 best = ind
 return best
	

5. Crossover	selected	parents	to	create	children	

Order	one	cross	over	was	selected	as	the	method	of	performing	a	crossover	to	prevent	invalid	solution	

from	being	created.		

Algorithm 4: Crossover (Order one)

Input: Two individual parents, p1 and p2
Output: Child containing characteristics from both parents, with no location
repetitions

def crossover(p1, p2):

 r1 = random number between 0 and length of length of parents
 r2 = random number between 0 and length of length of parents
 child = list with length equal to length of p1
 Copy elements between r1 and r2 from p1 to child, in same positions as p1
 y = List holding elements of p1 which are not in child yet
 Order the elements in y according to their order in p2
 Copy remaining elements into child according to their order in p2
 starting after r2

 return child
	

6. Mutate	some	individuals	in	new	generation	

Algorithm 5: Mutation (Swapping)

Input: An individual (ind)
Output: Individual with 2 locations swapped around

def mutation(ind):
 x = random integer between 0 and length of individual
 y = random integer between 0 and length of individual
 ind[x], ind[y] = ind[y], ind[x]

 return ind

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 24	

7. New	generation	

An	‘evolve’	function	is	created	by	combining	selection,	crossover	and	mutation.	The	individuals	of	the	

population	will	 be	 sorted	 according	 to	 their	 fitness	 values.	 The	 top	 20%	of	 the	population	will	 be	

copied	 to	 the	 next	 generation	 as	 they	 are	 [Step	 3:	 Copy	 elites	 to	 new	 generation].	 Next,	 random	

individuals	will	be	chosen	from	the	current	generation	to	produce	2	children.	The	elites	may	also	be	

selected	for	breeding.	Once	crossover	occurs,	there	may	be	a	chance	that	the	children	are	mutated.	

This	process	will	loop	through	until	the	next	generation	is	large	enough.		

Algorithm 6: Evolution

Input: Population (P) sorted in order of fitness, mutation probability (m),
elitist percentage (r)
Output: New population

def evolve(P, m = 0.01, r = 0.2):

 retain_length = length of P * r
 parents = P[:retain_length]
 parents_length = length of parents
 desired_length = length of P - parents_length
 children = []

 while length of children < desired_length:

 p1 = selection(p, 3)
 p2 = selection(p, 3)

 if p1 is not the same as p2:
 child1 = crossover(p1, p2)
 child2 = crossover(p2, p1)
 append child1 to parents
 append child2 to parents

 for i in parents:
 if m > randomly generated number between 0 and 1:
 mutate(i)

 sort individuals in parents according to fitness

 return parents

	

7.3 	OUTPUT	

The	evolution	function	will	be	run	100	times	to	produce	100	generations.	The	best	performing	solution	

of	 the	 100th	 generation	 will	 be	 exported	 as	 a	 csv	 file	 and	 analysed.	 The	 solution	 indicates	 which	

resources	will	be	performing	services	on	which	devices,	on	which	day,	how	long	their	day	will	be	and	

what	proportions	of	 it	will	be	spent	travelling	and	actually	performing	the	service.	 	A	preview	of	a	

solution	can	be	seen	in	the	following	figure:		

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 25	

	
FIGURE	18:	PREVIEW	OF	A	SOLUTION	IN	EXCEL	FORMAT	

The	output	will	also	show	how	many	days	will	be	required	to	complete	servicing	of	all	electrical	devices	

as	well	as	the	schedule’s	total	distance	travelled	and	total	deviation.		

	

	

	

	

	

	

	

	

	

	

	 	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 26	

8. SOLUTION	AND	SOLUTION	VALIDATION	
This	section	presents	the	final	solution	as	well	as	how	Company	XYZ	should	go	about	the	process	of	

verifying	and	validating	the	final	model.		

Graphs	have	been	created	to	show	how	both	the	total	distance	and	total	deviation	of	the	solutions	

decreased	 with	 every	 new	 generation	 created.	 Both	 the	 best	 and	 worst	 fitness	 values	 of	 each	

generation	were	plotted,	as	can	be	seen	in	the	graphs	below:		

	

	
FIGURE	19:	GRAPHS	DEPICTING	THE	IMPROVEMENT	OF	SOLUTIONS	WITH	EVERY	NEW	GENERATION	

To	show	how	the	genetic	algorithm	performed,	the	best	solution	of	the	final	generation	is	compared	

with	 the	 best	 solution	 of	 the	 initial	 generation	 in	 Table	 3	 on	 the	 following	 page:				

……………………………………………………..	

316497.06

312328.59

308000

310000

312000

314000

316000

318000

320000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

To
ta
l	D

ist
an
ce
	(k
m
)

Generation

Total	Distance

Best Worst

142.51

140.45

138
139
140
141
142
143
144
145

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

St
an
da
rd
	D
ev
ia
tio

n

Generation

Deviation

Best Worst

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 27	

TABLE	3:	COMPARISON	OF	BEST	INITIAL	SOLUTION	AND	BEST	FINAL	SOLUTIONS	

	 Initial	Solution	 Final	Solution		

Total	overtime	 91.206	hours	 91.296	hours	

Total	idle	time	 13	872.654	hours	 13	669.592	hours	

Total	distance	 316	843.8	km	 312	328.59	km	

Total	deviation	 142.86	minutes	 140.45	minutes	

Days	to	complete	 189	days,	36	resources	 189	days,	7	resources	

	

Overtime	hours	increased	only	very	slightly	but	idle	time	has	decreased	by	203	hours.	This	has	allowed	

the	servicing	of	all	the	devices	to	take	place	in	189	days,	using	only	7	resources	on	the	189th	day	rather	

than	the	initial	36.	The	graphs	below	show	a	randomly	selected	employees’	working	hours	over	the	

period	of	the	schedules.	The	average	length	of	a	working	day	has	increased	from	the	initial	solution	to	

the	final	solution	which	means	that	the	days	for	this	employee	are	more	full	i.e.	there	is	less	idle	time.		

	

	
FIGURE	20:	COMPARISON	OF	WORKING	DAYS	OF	INITIAL	AND	FINAL	SOLUTIONS	FOR	A	PARTICULAR	EMPLOYEE	

353.1

0

100

200

300

400

500

600

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

Le
ng
th
	o
f	w

or
ki
ng
	d
ay
	(m

in
ut
es
)

Day

Initial	Solution

359.7

0.0

100.0

200.0

300.0

400.0

500.0

600.0

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

Le
ng
th
	o
f	w

or
ki
ng
	d
ay
	(m

in
ut
es
)

Day

Final	Solution

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 28	

There	has	been	a	reduction	in	the	deviations	from	an	8-hour	working	day,	but	there	is	still	visibly	a	lot	

of	 idle	time.	This	can	be	used	to	the	company’s	advantage	-	any	employee	with	free	time	on	their	

schedule	can	be	put	“on	call”	for	any	emergencies	that	may	occur.	

Has	the	genetic	algorithm	addressed	Company	XYZ’s	issues?		

The	way	the	algorithm	is	built	does	not	allow	a	resource	to	travel	to	location	if	there	won’t	be	enough	

time	to	service	the	devices,	and	so	by	using	this	algorithm,	Company	XYZ	can	automatically	cut	down	

on	their	overtime	costs.		

The	algorithm	produces	daily	schedules	for	each	employee	rather	than	weekly.	This	means	that	the	

travelling	times	are	more	accurate	and	the	schedule	is	more	specific.		

The	genetic	algorithm	produces	a	solution	within	hours	while	the	linear	programming	method	that	

was	being	used	 took	days.	This	means	 that	 the	company	can	use	 the	algorithm	 for	more	dynamic	

planning	because	 it	 is	more	efficient	and	easier	to	keep	up	with	continuous	changes.	 If	any	device	

services	pop	up	that	were	not	initially	planned	for,	the	algorithm	can	be	rerun	to	accommodate	these	

devices	in	a	more	optimal	way.	Company	XYZ	can	run	the	model	it	at	the	beginning	of	each	week	to	

create	schedules,	instead	of	following	a	static	80-week	plan.				

Solution	Validation	

The	 schedules	 produced	 by	 the	 genetic	 algorithm	 should	 be	 validated	 before	 the	 company	 starts	

implementing	them.	The	company	can	put	together	a	testing	team	for	a	week	or	two	which	follow	the	

schedule	as	it	is,	and	then	report	back	any	issues	they	may	have	had.	Parameters	such	as	travelling	

speed,	and	time	in	the	day	may	have	to	be	adjusted	if	employees	find	that	they	cannot	manage	with	

the	given	schedule.	A	benefit	of	using	this	algorithm	is	that	 it	only	requires	Python	which	is	a	free,	

open	source	programming	software	as	well	as	a	person	with	a	background	of	coding.	The	code	can	on	

a	continuous	basis	be	easily	be	adapted	and	modified.		

	

	

	

	

	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 29	

9. PROPOSED	IMPLEMENTATION	
The	csv	output	file	that	was	produced	by	the	algorithm	can	be	used	in	a	number	of	ways.	Firstly,	the	

excel	table	can	be	filtered	to	show	the	schedule	of	each	employee.	Resource	17	for	example,	has	the	

following	schedule	for	two	weeks:		

TABLE	4:	SAMPLE	SCHEDULE	FOR	AN	INDIVIDUAL	EMPLOYEE	

Day	 Devices	 Total	Time	 Travel	time	 Service	time	

75	

11296,	11297,	11298,	11299,	11300,	
11301,	11302,	11303,	11304,	11305,	
11306,	11307,	11308,	11309,	11310,	
11311,	11312,	11313,	11314,	11315,	
11316,	11317,	11318,	11319,	11320,	
11321,	11322,	11323,	11324	

431.9	 20.0	 411.9	

76	 10954,	10955,	10956,	10957	 400.0	 20.0	 380	
77	 6121	 395.5	 80.5	 315	
78	 3480,	3481,	3482,	3483	 412.7	 32.7	 380	
79	 7514,	7515,	7516,	7517	 398.4	 18.4	 380	
80	 3306	 354.8	 39.8	 315	
81	 19914,	19915,	19916,	19917	 405.7	 25.7	 380	
82	 5329	 348.7	 53.7	 295	
83	 10564	 315.0	 20.0	 295	
84	 20183	 273.9	 63.9	 210	

	

The	excel	table	can	also	be	filtered	to	show	each	day.	Managers	of	Company	XZY	can	use	this	to	see	

which	of	their	employees	will	servicing	which	devices.	The	table	below	is	a	sample	for	some	of	the	

employees	on	day	1.		

TABLE	5:	SAMPLE	SCHEDULE	FOR	A	SPECIFIC	DAY	

Resource	 Devices	 Total	time	 Travel	time	 Service	time	
13	 ['[12086,	12087,	12088,	12089]']	 401.9	 21.9	 380	
14	 ['[2428,	2429]']	 424.1	 64.1	 360	
15	 ['[4276]']	 268.7	 58.7	 210	
16	 ['[16432,	16433]']	 422.8	 32.8	 390	
17	 ['[13703,	13704,	13705,	13706]']	 400.7	 19.7	 381	
18	 ['[3946,	3947,	3948,	3949]']	 438.4	 58.4	 380	
19	 ['[2424]',	'[17003]']	 391.7	 69.2	 322.5	
20	 ['[18285]']	 331.5	 16.5	 315	
21	 ['[19976,	19977]']	 410.6	 22.6	 388	

	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 30	

As	mentioned	in	Section	8,	the	algorithm	must	first	be	put	to	the	test	to	ensure	that	it	is	benefitting	

the	company	and	that	 the	schedule	 it	has	produced	 is	verified	and	validated.	Once	the	scheduling	

method	has	been	implemented	at	the	Gauteng	branch	and	used	for	a	period	of	time,	users	of	this	

system	can	start	making	suggestions	and	improvements,	and	get	rid	of	bugs.	Thereafter,	a	finalised	

algorithm	can	be	adopted	by	other	regions	in	the	country.	

	

	

	

		

	 	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 31	

10. CONCLUSION	
Company	XYZ	 is	having	 trouble	scheduling	 their	 staff	and	determining	which	routes	 its	 technicians	

should	be	taking	 in	order	to	satisfy	customer	demand,	while	 incurring	minimal	costs.	This	problem	

was	addressed	by	conducting	a	literature	review	to	determine	what	type	of	problem	was	at	hand	and	

what	methods	have	been	developed	to	solve	similar	problems.	The	problem	can	be	classified	as	a	type	

of	Travelling	Salesman	problem.	It	was	found	that	the	Genetic	Algorithm	proves	to	be	a	very	useful	

efficient	method	of	solving	these	problems.	Using	Python	3.6,	a	genetic	algorithm	was	built	and	run	

100	 times	 to	create	100	generations.	With	each	new	generation,	a	better	 scheduling	 solution	was	

found	i.e.	schedules	which	reduced	travel	distances	and	balanced	technician	workloads.		

And	 so,	 going	 back	 to	 the	 problem	 statement,	 has	 the	 developed	 solution	 met	 its	 objectives?	

“Company	XYZ	requires	a	system	which	plans	staffing	in	such	a	way	as	to	balance	the	workloads	of	

their	employees,	reduce	costs	and	meet	customer	demand.”	A	genetic	algorithm	has	been	created	[a	

system	which	plans	staffing]	which	 iteratively	reduces	solutions’	deviation	from	an	8	hours’	day	of	

work	[balance	workloads]	and	total	travelling	distance,	thereby	saving	on	petrol,	vehicle	maintenance	

costs	and	overtime	[reduce	costs].	The	algorithm	ensures	that	every	electrical	device	will	get	serviced	

[meet	customer	demand].		

Before	any	schedule	 is	 implemented	Company	XYZ	should	go	through	a	validation	phase	to	ensure	

that	assumptions	made	 in	the	model	are	suitable.	Using	the	genetic	algorithm	to	create	schedules	

could	be	advantageous	for	Company	XYZ	because	it	reduces	overtime,	plans	daily,	and	finds	solutions	

quickly.		

	 	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 32	

11. BIBLIOGRAPHY	
Blickle,	 T.	 and	 Thiele,	 L.	 (1995)	 ‘A	 Comparison	 of	 Selection	 Schemes	 used	 in	 Genetic	 Algorithms’,	

Evolutionary	Computation,	2(11),	pp.	311–347.	doi:	10.1162/evco.1996.4.4.361.	

Dorne,	R.,	2008.	Service	Chain	Management:	Technology	Innovation	for	the	Service	Business.	s.l.:s.n.	

Haksever,	C.	et	al.	(2000)	Vehicle	Routing	and	Scheduling,	Service	Management	and	Operation.	

Kokemuller,	 N.,	 n.d.	 Advantages	 &	 Disadvantages	 of	 a	 Part-Time	 Employees.	 [Online]		

Available	 at:	 http://smallbusiness.chron.com/advantages-disadvantages-parttime-employees-

21870.html	

[Accessed	25	March	2017].	

Laporte,	 G.	 (1992)	 ‘The	 traveling	 salesman	 problem:	 An	 overview	 of	 exact	 and	 approximate	

algorithms’,	 European	 Journal	 of	 Operational	 Research,	 59(2),	 pp.	 231–247.	 doi:	 10.1016/0377-

2217(92)90138-Y.	

Larranaga,	 P.	 et	 al.	 (1999)	 ‘Genetic	 Algorithms	 for	 the	 Travelling	 Salesman	 Problem:	 A	 Review	 of	

Representations	 and	 Operators’,	 Artificial	 Intelligence	 Review,	 13(2),	 pp.	 129–170.	 doi:	

10.1023/A:1006529012972.	

Lew,	A.	and	Mauch,	H.	 (2007)	 ‘1	 Introduction	 to	Dynamic	Programming’,	Studies	 in	Computational	

Intelligence,	38,	pp.	3–43.	Available	at:	www.springerlink.com.	

Linton,	I.,	2012.	Taking	Technology	to	the	Market:	A	Guide	to	the	Critical	Success	Factors	in	Marketing	

Technology.	s.l.:Gower	Publishing.	

Luke,	S.	(2013)	Essentials	of	Metaheuristics.	2nd	edn,	Optimization.	2nd	edn.	doi:	10.1007/s10710-	

O'Brien,	 J.,	 2017.	 What	 is	 scheduled	 maintenance	 critical	 percent?.	 [Online]		

Available	 at:	 https://www.fiixsoftware.com/blog/scheduled-maintenance-critical-percent/	

[Accessed	26	March	2017].	

Pinedo,	M.	L.	(2012)	Scheduling:	Theory,	Algorithms,	and	Systems.	Fourth,	Springer.	Fourth.	London.	

doi:	10.1007/s13398-014-0173-7.2.	

Potvin,	 J.-Y.	 (1996)	 ‘Genetic	 Algorithms’,	 Annals	 of	 Operations	 Research,	 63,	 pp.	 339–370.	 doi:	

10.1016/B978-0-12-804494-0.00010-3.	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 33	

Razali,	M.	and	Geraghty,	J.	(2011)	‘Genetic	algorithm	performance	with	different	selection	strategies	

in	 solving	 TSP’,	 World	 Congr.	 Eng.,	 II(978-988-19251-4–5),	 pp.	 4–9.	 Available	 at:	

http://umpir.ump.edu.my/2609/.	

Reeves,	 C.	 R.,	 1993.	Modern	Heuristics	 Techniques	 for	 Combinatorial	 Problems.	 London:	 Blackwell	

Scientifici	Publicaitons.	

Uldall,	C.	P.,	Taarnhøj,	E.	S.	and	Vorts,	S.	(2008)	Technician	Routing	and	Scheduling.	Denmark.	Available	

at:	http://orbit.dtu.dk/getResource?recordId=211562&objectId=1&versionId=1.	

Winston,	W.	(2003)	‘Introduction	to	Linear	Programming’,	in	Operations	Research:	Applications	and	

Algorithms.	4th	edn,	pp.	49–125.	

	

	

	

	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 A	

12. APPENDICES	

APPENDIX	A:	SIGNED	SPONSORSHIP	FORM	

	

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 B	

APPENDIX	B:	COMPLETE	PYTHON	CODING	
import math
import csv
import random
import null

daylength = 8 * 60
employed = 36
depot = -26.117920, 28.135320
speed = 70 / 60

with open("/Users/kirstenyoung/Google Drive/University/4th
Year/BPJ/Data/CSVs/GroupedData.csv") as csvfile:
 ImportEquip = list(csv.reader(csvfile, delimiter=';'))
 eqtdetails = {}
 initialsolution = []

Initial Solution
def initialise():
 counter = 0
 for e in ImportEquip:
 counter += 1
 initialsolution.append(counter)
 eqtdetails[counter] = e
 return initialsolution

def devices(location):
 return eqtdetails[location][1]

Calculate distance between 2 equipment locations
def d(origin, destination):
 lat1, lon1 = origin
 lat2, lon2 = destination
 radius = 6371
 dlat = math.radians(lat2 - lat1)
 dlon = math.radians(lon2 - lon1)
 a = math.sin(dlat / 2) * math.sin(dlat / 2) + math.cos(math.radians(lat1)) *
math.cos(
 math.radians(lat2)) * math.sin(dlon / 2) * math.sin(
 dlon / 2)
 c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
 d = radius * c
 return d

Return the coordinates of a device
def coords(device):
 return float(eqtdetails[device][3]), float(eqtdetails[device][4])

Return the service time of a device
def serv(device):
 return float(eqtdetails[device][2])

Rotate elements ina list
def rotate(lst, x):
 lst[:] = lst[x + 1:] + lst[:x + 1]
 return lst

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 C	

Calculate the total distance of the schedule
def fitness(solution):
 resource = 1
 day = 1
 timeleft = daylength
 totaltime = 0
 distance = 0
 depot = -26.117920, 28.135320
 fromcoords = depot
 deviation = 0
 count = 0

 for i in solution:

 tocoords = coords(i)
 travel = d(fromcoords, tocoords) / speed
 service = serv(i)

 if (travel + service) > timeleft:
 travel = d(fromcoords, depot)
 distance += travel
 totaltime += travel / speed
 deviation += (daylength - totaltime) ** 2
 count += 1

 totaltime = 0
 timeleft = daylength
 fromcoords = depot
 resource += 1
 travel = d(fromcoords, tocoords) / speed

 if resource > employed:
 totaltime = 0
 timeleft = daylength
 fromcoords = depot
 resource = 1
 day += 1
 travel = d(fromcoords, tocoords) / speed

 if (travel + service) <= timeleft and resource <= employed:
 totaltime += travel + service
 timeleft -= travel + service
 distance += travel * speed
 fromcoords = tocoords

 deviation += (daylength - totaltime) ** 2
 standarddeviation = (deviation / (count + 1)) ** (0.5)

 return round(distance, 2), round(standarddeviation, 2)

Create a population of individuals
def population(solution, size):
 return [random.sample(solution, len(solution)) for i in range(size)]

Calculate average fitness of a population
def grade(pop):
 dis = 0
 dev = 0
 for i in pop:
 dis += fitness(i)[0]
 dev += fitness(i)[1]
 return round(dis / len(pop), 2), round(dev / len(pop), 2)

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 D	

Tournament selection
def selection(pop, k):
 best = null
 for i in range(1, k):
 ind = pop[random.randint(1, len(pop) - 1)]
 if (best == null) or ind[0] < best[0]:
 best = ind
 return best

Crossover
def crossover(parent1, parent2):
 l = len(parent1)

 # Get 2 random numbers between 0 and length of individual
 r1 = random.randint(0, l - 1)
 r2 = random.randint(0, l - 1)
 while r1 >= r2:
 r1 = random.randint(0, l - 1)
 r2 = random.randint(0, l - 1)

 # Create the child... initial elements are -1
 child = [-1] * l

 # Copy elements between r1, r2 from parent1 to child
 for i in range(r1, r2 + 1):
 child[i] = parent1[i]

 # Create list to hold elements of parent1 which are not in child yet
 y = [0] * (l - (r2 - r1) - 1)
 j = 0
 for i in range(0, l):
 if parent1[i] not in child:
 y[j] = parent1[i]
 j += 1

 # Order of places is the same as the number of elements after r2
 copy = parent2[:]
 rotate(copy, r2)

 # Order the elements in y according to their order in parent2
 y1 = [0] * (l - (r2 - r1) - 1)
 j = 0
 for i in range(0, l):
 if copy[i] in y:
 y1[j] = copy[i]
 j += 1

 # Copy remaining elements into child according to their order in parent2
starting after r2
 for i in range(0, len(y1)):
 ci = (r2 + i + 1) % l
 child[ci] = y1[i]

 return child

Mutate
def swap(solution):
 x = random.randint(0, len(solution) - 1)
 y = random.randint(0, len(solution) - 1)
 solution[x], solution[y] = solution[y], solution[x]
 return solution

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 E	

Evolve the population
def evolve(graded, mutate=0.01, retain=0.2):

 p = [x[1] for x in graded]
 retain_length = int(len(p) * retain)
 parents = p[:retain_length]
 parents_length = len(parents)
 desired_length = len(p) - parents_length
 children = []

 while len(children) < desired_length:

 p1 = selection(p, 3)
 p2 = selection(p, 3)

 if p1 != p2:
 child1 = crossover(p1, p2)
 child2 = crossover(p2, p1)
 children.append(child1)
 children.append(child2)

 parents.extend(children)

 for i in parents:
 if mutate > random.random():
 parents.remove(i)
 parents.append(swap(i))

 graded = [((fitness(x)), x) for x in parents]
 graded = [x for x in sorted(graded)]
 fitnesses = [x[0] for x in graded]
 print(fitnesses[0],fitnesses[99])

 return graded

def output(solution):

 resource = 1
 day = 1
 schedule = []
 timeleft = daylength
 totaltime = 0
 traveltime = 0
 servicetime = 0
 FromCoords = depot

 for i in solution:

 ToCoords = coords(i)
 travel = d(FromCoords, ToCoords) / speed
 service = serv(i)

 if (travel + service) > timeleft:
 traveltime += d(FromCoords, depot) / speed
 totaltime += d(FromCoords, depot) / speed

 z = []
 for j in schedule:
 z.append(devices(j))

 print(str(day) + ";" + str(resource) + ";" + str(z) + ";" +
str(totaltime) + ";" + str(traveltime) + ";" + str(servicetime))

RESOURCE	SCHEDULING	ALGORITHM	

FOR	MAINTENANCE	PLANNING	

	 F	

 totaltime = 0
 traveltime = 0
 servicetime = 0
 timeleft = daylength
 schedule = []
 FromCoords = depot

 resource += 1

 travel = d(FromCoords, ToCoords) / speed

 if resource > employed:
 totaltime = 0
 traveltime = 0
 servicetime = 0
 timeleft = daylength
 schedule = []
 FromCoords = depot
 resource = 1
 day += 1

 travel = d(FromCoords, ToCoords) / speed

 if (travel + service) <= timeleft and resource <= employed:
 totaltime += travel + service
 timeleft -= travel + service
 traveltime += travel
 servicetime += service
 schedule.append(i)
 FromCoords = ToCoords

 z = []
 for i in schedule:
 z.append(devices(i))

 print(str(day) + ";" + str(resource) + ";" + str(z) + ";" + str(totaltime) +
";" + str(traveltime) + ";" + str(servicetime))

initial = initialise()

p = population(initial, 100)

pop = [((fitness(x)), x) for x in p]
pop = [x for x in sorted(pop)]

for i in range(100):
 pop = evolve(pop)

print(output(pop[0][1]))

	

	

