

 Production

scheduling of
Aluminium Anodising
plant

 Carina Behr, 14010047

 September 28, 2017

 Project Report submitted in partial

fulfilment of the requirements for
the module BPJ 410 Project
at the Department Industrial and
Systems Engineering, University of
Pretoria.

DECLARATION OF ORIGINALITY

I, Carina Behr, student number 14010047, hereby declare that this report is my own

original work and that the references listed provide a comprehensive list of all sources

cited or quoted in this report.

Abstract

Wispeco Aluminium decided to reduce a double line aluminium anodising plant to

a single line. This change forces the anodising plant to run at maximum capacity. To

be able to run at maximum capacity, it is suggested that a production schedule be put

in place to optimise the movement of the cranes and minimise the makespan of a day’s

work.

Production scheduling literature, including the popular α / β / γ notation was in-

vestigated to assist with identifying the characteristics of the relevant problem. An

important characteristic that was identified is that the anodising problem is a flow shop

problem. Once these characteristics were identified, peer-reviewed articles were investi-

gated to identify similar problems. An article was identified which addresses the multiple

cranes that cannot cross over one another, the flow shop characteristic and the parallel

machines. This article was used to start formulating an algorithmic model as solution.

This algorithm was coded in Python. To ensure that the results generated by the algo-

rithm are relevant and correct, the results were compared to actual time-studies. The

model tested the influence of three heuristic scheduling approaches on the makespan of

the products. The heuristics tested were FIFO, Priority orders and Shortest Processing

Times. The results compared over three production days indicated that the schedule

does not have a large impact on the makespan of a day’s work. This project suggests

that the scheduling on the anodising plant is continued as it currently operates. The

current method might not be the optimal solution for any given day, but produces an

adequate makespan, which will not disrupt the normal processes that workers are used

to.

Keywords: Production scheduling, Anodising, Flow shop

2

Contents

List of Figures iv

List of Tables v

1 Introduction 1

1.1 Introduction and Background . 1

1.1.1 Wispeco Aluminium . 1

1.1.2 Anodising Plant . 2

1.2 Problem Statement . 5

1.3 Project Aim and Rationale . 5

1.4 Activities, Tasks, Deliverables, Resources and Constraints 7

2 Literature Review 9

2.1 Classifying Scheduling Problems . 9

2.1.1 α: Machine Environment . 9

2.1.2 β: Job Characteristics . 10

2.1.3 γ: Objective Function . 11

2.1.4 Summary . 12

2.2 Solution Strategies and Applications . 13

2.2.1 Heuristics . 13

2.2.2 Application: Flow Shop . 14

2.2.3 Application: Single Hoist Scheduling of Electroplating PCB’s . . . 14

2.2.4 Application: Multi-degree scheduling 15

i

3 As-is Scheduling 17

3.1 Problem Investigation . 17

3.1.1 Stages . 17

3.1.2 Colouring . 18

3.2 Scheduling . 19

3.2.1 Order Scheduling . 19

3.2.2 Crane Scheduling . 21

4 Algorithmic Approach and Solution 23

4.1 Model Parameters . 23

4.2 Model Variables . 24

4.3 Model Constraints . 25

4.3.1 Constraints for Crane 1 . 25

4.3.2 Constraints Defining the Crane Capacity 26

4.3.3 Constraints Rejecting Crossover of Cranes 26

5 Results 29

5.1 7 August 2017- Day shift . 30

5.1.1 Current Schedule . 30

5.1.2 FIFO . 36

5.1.3 Priority . 36

5.1.4 Shortest Processing Time . 36

5.2 22 August 2017- Day shift . 36

5.2.1 Current Schedule . 36

5.2.2 FIFO . 37

5.2.3 Priority . 37

5.2.4 Shortest Processing Time . 37

5.3 23 August 2017- Day shift . 37

5.3.1 Current schedule . 37

5.3.2 FIFO . 38

5.3.3 Priority . 38

5.3.4 Shortest Processing Time . 38

ii

5.4 The best heuristic . 38

5.5 Validation . 39

5.6 Sensitivity Analysis . 39

5.6.1 More Sealing or Anodising tanks 39

5.6.2 Higher demand . 40

6 Conclusion and Recommendations 42

6.1 Conclusion . 42

6.2 Recommendations . 43

6.2.1 Future Projects . 43

Bibliography 44

A Signed Industry Sponsorship Form 46

B Priority Indication Form 48

C Python Algorithm 50

D Schedule Gantt Chart: 7 August 2017 60

iii

List of Figures

1.1 Beam holding profiles . 3

1.2 Cranes moving beams through anodising process 4

2.1 PCB electroplating line . 14

2.2 Multi-degree process with multiple robots 16

3.1 Anodising stations . 18

3.2 List of orders . 20

4.1 Diagram of Algorithm . 28

5.1 Gantt chart . 30

5.2 Gantt chart . 31

5.3 Gantt chart . 31

5.4 Gantt chart . 32

5.5 Gantt chart . 32

5.6 Gantt chart . 33

5.7 Gantt chart . 33

5.8 Gantt chart . 34

5.9 Gantt chart . 34

5.10 Gantt chart . 35

5.11 Gantt chart . 35

iv

List of Tables

1.1 Micron distribution in the anodising plant 6

2.1 Possible values . 10

2.2 β-variables . 11

2.3 Objective functions . 12

3.1 Anodising colours . 18

3.2 Crane 1 Sequence . 22

3.3 Crane 2 Sequence . 22

4.1 Model parameters . 24

4.2 Model variables . 25

5.1 Theoretical vs Actual makespan . 39

5.2 Effect of More Tanks in minutes . 40

5.3 Maximum orders . 40

v

Chapter 1

Introduction

Production scheduling is a significant part of optimising processes and facilities. Wispeco

Aluminium (the company where this project is executed) has decided that their anodising

plant needs to be improved by using production scheduling techniques. This chapter

serves as an introduction to the company, the plant, and the problem, while focusing on

the reasoning behind the project and how the outcomes will help Wispeco. In chapter

2, a literature study will describe production scheduling approaches and a few example

articles will be revised. These articles will serve as a reference for the solution of the

project, of which an overview will be given in chapter 4, which follows the as-is process

described in chapter 3. Chapter 5 will conclude the report by giving a summary of what

was discussed and what will be done to complete the project.

1.1 Introduction and Background

1.1.1 Wispeco Aluminium

Wispeco Aluminium is the leading aluminium extruder in Africa. The head office is

located in Alberton, with smaller factories all over South Africa. Wispeco has three

main units. The aluminium recycling and billet casting is where aluminium ore, scrap

and other metals are melted together to create the ideal aluminium alloy for extrusion.

The extrusion unit has its own die manufacturing section [1]. The two surfacing units

are powder coating and anodising, which has South African bureau of Standards (SABS)

1

2

certification.

Wispeco defines an extrusion as the long piece of aluminium that has been extruded

into a specific form, before the piece of aluminium has been finished. These aluminium

extrusions are used in transport, energy, agricultural, general engineering, automotive

and other industries [15]. The company has over 3 000 different dies that are used to

create extrusions. More or less 2 500 of these die forms are anodised in a financial year

[11].

1.1.2 Anodising Plant

This project will focus on the finishing process called anodising. Anodising is an elec-

trolytic reaction used to produce a layer of aluminium oxide on the aluminium alloy [1].

This layer functions as both decoration and protection of the aluminium. Currently, at

the anodising plant of Wispeco, production is done on two lines: The manual anodis-

ing plant (MAP) and the automated anodising plant(AAP). Both lines have two teams,

with 11 staff members per team for the AAP and 12 members per team at the MAP.

The plant is currently producing jobs in the most convenient way for the workers and

not the most efficient way. According to Xin-She Yang [21], an optimal solution can

be identified by pursuing detailed studies and tested methods. The two lines share one

support team of 13 members and a dispatch team with 16 members. The anodising plant

has its own quality control, packaging and dispatch teams. The extrusions that enter or

exit the anodising plant are referred to as profiles. Three anodic layer thickness options

are produced by the plant (25µm, 15µm and 10µm). The thickness of this layer is de-

termined by the duration of time that the profiles are submerged in the anodising tank.

The thicker layers are for coastal customers, while inland customers do not require as

thick a layer. Profiles are hung onto a structure called a beam, which is moved through

the anodising process by a crane. All profiles on a beam, are as rule, orders with the

same layer thickness. Currently, the plant produces five different colours of anodising or

a natural finish. The colours vary from bronze to black, with three shades in between.

Figure 1.1 displays a few beams with profiles jigged (hung) onto the beam and ready

for anodising.

The cranes that move the beams from tank to tank through the anodising process

3

Figure 1.1: Beam holding profiles

are shown in figure 1.2. A more detailed study of the plant continues in chapter 2.

Currently, the two lines combined produce approximately 140 000m2 of anodised

aluminium per month. The market for anodising as a finishing process is declining.

The main reason for this decline, according to Wispeco’s management, is that Chinese

manufacturers can produce the same product at a third of the cost. Powder coating is

also a cheaper alternative in the current market. The AAP theoretically has the capacity

to produce the total current throughput, thus management has decided to produce on

a single line. If the AAP produces optimally, the single line should be able to meet

demand. Anodising is not expected to grow significantly in the coming years, because of

the cheaper alternative of powder coating. There is, however, still a place for anodising,

as the finishing layer is more durable and protects the aluminium better than powder

coated surfaces [14].

During a research project [10], the influence of variables on the thickness of the

anodised layer was investigated. No new assignable causes were identified. During this

project, the researcher noted that many of the profiles are over-anodised (over-processed).

4

Figure 1.2: Cranes moving beams through anodising process

The setup times to change between layer thickness on the AAP is significant. To keep

from losing production time, the operators anodise all 10µm profiles on a 15µm cycle.

The 25µm are anodised longer, but as the change over from 25µm to 15µm takes place,

the first two or three 15µm beams are over anodised.

Cranes are used to move the beams through the anodising process. There are cur-

rently two cranes on the AAP. The cranes are programmed to move profiles through

a specific sequence. A new programmable logic controller (PLC) which can be pro-

grammed to move beams at specific times instead of at specific steps in a sequence is

being investigated. Some staff members at the plant are of opinion that more cranes are

needed to perform optimally however, purchasing new cranes will create added expense

to the company.

5

1.2 Problem Statement

Currently, the change-over time to move between different micron layers takes too long.

The different micron layers have predetermined times that the profiles must remain in the

anodising tank for satisfactory quality (which is determined by measuring the thickness

of the anodised layer in microns). The goal is to reduce the change-over times and

minimise the total processing time of one day’s production. When the time that the

beam has to be in a certain station is up, the crane must react by immediately moving

the beam to the next processing station or tank. Beams can be loaded to maximum

capacity and the two cranes can move the beams through the process according to a

time schedule, based on the anodising time or the time that causes the bottleneck in the

process.

1.3 Project Aim and Rationale

A vacation work study was done on the anodising plant to conceptualise a “dream” plant

that could compete with Chinese imports. The Wispeco anodising plant currently pro-

duces anodised aluminium at R30 per square meter, while the Chinese industry produces

at about R10 per square meter. This study concluded that the best way forward is to

run current production on a single anodising line. An estimation has been made that,

on a single line, production cost will reduce from R30 per square meter of anodising to

R21 per square meter [11]. This cost reduction results in an estimated R950 000 savings

per month if all current orders are processed. The aim of this project following on the

afore-mentioned study, is to make the new goal possible by optimising crane movement

within the plant.

The management of the plant’s main concern is to improve Overall Equipment Effi-

ciency (OEE). A more detailed literature study will include the review of OEE.

OEE = PerformanceEfficiency +Quality + Availability (1.1)

There will be a specific focus on the performance efficiency of OEE, which can be calcu-

6

lated with either of the following formulas [6]:

PerformanceEfficiency =
ProcessedAmount× TheoreticalCycleT ime

OperatingT ime
(1.2)

PerformanceEfficiency = NetOperatingRate×OperatingSpeedRate (1.3)

This term usually needs an engineering approach, where availability requires a man-

agement approach. The focus of this project will not be on the quality of throughput,

however, the suggested solution cannot reduce the quality of the throughput.

Table 1.1 shows the distribution of production in terms of the anodising layer thick-

ness in the financial year (July 2015 to June 2016). The production of each thickness

is measured in square meters. Management of the anodising plant records performance

measures and production in terms of square meters, as that is the unit in which the

anodised finish of aluminium is sold to customers. During the afore-mentioned year,

there were some 20µm orders, which can be ignored for future cases, as this order was

specifically completed for a priority customer.

Table 1.1: Micron distribution in the anodising plant

Microns Square meters produced Percentage of production

10µm 287 244.27 20.80%

15µm 728 899.95 52.78%

20µm 17 494.01 1.27%

25µm 347 326.81 25.15%

To improve the OEE equation 1.1, the suggestion is to dynamically schedule the

crane movement with an algorithm. Scheduling could be in the form of an algorithm,

a simulation or a combination of these two as described by Herrmann [7]. This project

uses an algorithm to solve the scheduling problem and sensitivity analysis to address

uncertainty. Production scheduling is mainly focused on improving quality, production

and delivery time whilst contributing to a continually improving manufacturing process

[9]. The percentage of work allocated to each thickness layer as outlined in Table 1.1

must be taken into consideration when designing this scheduling system.

7

1.4 Activities, Tasks, Deliverables, Resources and

Constraints

The desired deliverable is to build a algorithm which helps to schedule the movement

of the cranes that move beams through the anodising process. The program should

have scenarios with different numbers of cranes as a form of sensitivity analysis. These

scenarios can be used to assist in determining the number of cranes required to work

optimally and ensure that the number of cranes is not the bottleneck in the system. If the

number of cranes needed (to ensure that the cranes are not the bottleneck) is identified,

the new bottleneck must be identified to become a future project at the anodising plant.

The theory behind bottlenecks and the use of DBR-scheduling (Drum, Buffer, Rope) [8]

will be considered and be incorporated into the schedule if applicable.

Industrial engineering techniques should be used to complete this project. These

include motion studies of current crane schedule, source problem identification, develop-

ing a dynamic scheduling model, eliminating the current bottleneck and identifying the

new bottleneck. A possible problem with the implementation of this scheduling solution

could be that the workers in the factory will override the proposed schedule and produce

in such a way that suits them better. A possible managing solution could be walking

the “gemba” [19], which refers to management who should be walking on the floor. This

technique can be used in the pre phase of the project to make sure that the solution is

practical and will contribute to the plant sufficiently. “Gemba” can be continued after

the implementation of the scheduling system to make sure the algorithm works and to

identify possible improvement opportunities. Other risks in the execution of the project

include mismanagement of time, failure in support from management, creep in the scope

of the project or industry could have expectations above the available skill set. A risk

that could cause failure of the project is if the scheduling algorithm cannot integrate

with the current system sufficiently or if the algorithm cannot be used by the AAP.

This project has a time constraint of finishing the development of the main deliverable

by end of September. There are two cranes that can be observed in the current plant.

The only way to predict the effectiveness of more cranes is by using simulation; More

cranes cannot be purchased. The algorithm can be developed in any preferred language.

8

Python is the suggested method, as some experience has been gained in this language.

Chapter 2

Literature Review

To be able to identify possible algorithmic approaches for this scheduling problem, it is

necessary to classify the current problem in a universal manner. The α / β / γ notation

is useful to classify the problem and to identify key elements. This notation identifies the

machines (resources), constraints and objective function respectively [2]. Heuristics need

to be researched to identify similar solving models to use as a reference when solving

a model. Three possible models that have been solved have been identified to use as

possible references.

2.1 Classifying Scheduling Problems

2.1.1 α: Machine Environment

Alpha can either be a numerical value, indicating that the process has only one machine,

or it can indicate the type of setup of machines in the relevant process [17]. α1 can have

the values of: {0,P,Q,R,PMPM,QMPM,G,X,O,J,F} [2], while α2 is an integer indicating

the number of machines in the process.

The following α1 values have the stated meanings:

9

CHAPTER 2. LITERATURE REVIEW 10

Table 2.1: Possible values

α-Value Interpretation

0 All jobs are sent to a specific machine. α takes the value of α2 = 1.

P All the parallel machines are exactly the same in purpose and machine

speed.

Q The parallel machines are similar (executes the same process, but the

machine speed differs.

R The parallel machines differ in terms of the operations executed.

PMPM The identical speed machines can execute different operations (Multi-

Purpose Machine).

QMPM The multi-purpose machine performs different operations at different

speeds.

The remaining options of {G,X,O,J,F} are for dedicated machines. G, is for general

shop, which has only the general characteristics of dedicated machines and preceding

relationships [2], where mixed shop (X), open shop (O), job shop (j) and flow shop

(f) are all special types of general shops. A flow shop has a predetermined order of

processing. All jobs will go through the same sequence in a flow shop. Job shop is

where each job has a unique sequence to complete processing on specialized machines.

Similarly, open shop can have unique sequences for jobs, but every job must be processed

on every machine. Mixed shop is a combination of a job shop and a open shop [16].

2.1.2 β: Job Characteristics

The second descriptive variable is β. This variable describes certain characteristics of

the job and the processes that it undergoes. There are six variables within β, which

indicates the ins and outs of the process. All variables are equal to zero if the statement

regarding the variable is false.

CHAPTER 2. LITERATURE REVIEW 11

Table 2.2: β-variables

β-variable Meaning

β1 Job-splitting (also referred to as preemption). This variable indicates

whether processing may be interrupted and continued at a later stage.

β1 = pmtn.

β2 This variable indicated whether there are predetermined preceding rela-

tionships. A precedence tree can be drawn to indicate which operations

need to take place before others. β2 = prec.

β3 β3 = ri, which indicates the release (starting date) of each job.

β4 β4 = pi, where pi is used to indicate the predetermined and controlled

processing times of each job.

β5 β5 = di, which is the deadlines for each job. The jobs cannot be finished

any later than this date.

β6 This variable indicates whether the similar products can be batched when

processing. There can be up to n jobs in a batch. β5 = p-batch or s-

batch. The sum of the processing times of all the jobs in a batch equals

the processing time of the batch.

2.1.3 γ: Objective Function

The objective function is the criteria for the process to be optimised in a certain measure.

The objective function must thus be defined by this measure. One of the most influential

variables in terms of objective function is the finishing time of a job, which is defined

by Ci for each job, Ji. Secondly, the change in cost that is caused by a schedule has an

influence. This cost is denoted as fi(Ci), as it is a function of the finishing time per job.

Popular objective functions are [2]:

CHAPTER 2. LITERATURE REVIEW 12

Table 2.3: Objective functions

Measure Equation to be minimised

Bottleneck fmax(C) := max{fi(Ci)|i = 1,, n}
Sum objec-

tive

∑
fi(C) :=

∑n
i=1 fi(Ci)

Lateness Li := Ci − di
Earliness Ei := max{0, di − Ci}
Tardiness Ti := max{0, Ci − di}
Absolute

deviation

Di := |Ci − di|

Squared

deviation

Si := (Ci − di)2

Unit

penalties

Ui :=

0 if Ci ≤ di

1 otherwise

Individual or combinations of the measures listed above can be used as objective

functions, such as
∑
wiDi and

∑
wiUi, where wi denotes the weight assigned to each

job. The objective function could also be to merely minimise the total processing time,

or the maximum processing time per job i. The most important objective functions are

Cmax and Lmax.

2.1.4 Summary

Based on the above definitions, the α / β / γ-notation can be used to describe nearly

any discrete scheduling problem. Some examples of deterministic models are: 1|ri, |Lmax

and Q|pmtn, ri|Cmax [20].

The scheduling problem at Wispeco Aluminium is a flow shop problem with the

cranes being the two machines available. A job is defined as a single beam, loaded

with multiple profiles. The jobs can be batched, but not split. Each operation in the

process has a predetermined time required for completion. Jobs cannot go over this time

period. The minimal amount of work that the anodising plant is currently receiving

CHAPTER 2. LITERATURE REVIEW 13

that deadlines do not need to be assigned to the respective jobs. The makespan of the

process must only be minimised. The following variables serves as the classification of

the Wispeco anodising scheduling problem.

α1 = F

β2 = prec, with precedent relations according to the manufacturing proccess

β6 = p− batch
γ = max{Ci|i = 1...n}

2.2 Solution Strategies and Applications

Heuristics and three applicable articles are investigated to be compared with this problem

and to assist in finding possible solutions.

2.2.1 Heuristics

Metaheuristics are methods used in scheduling, to find a good solution which is not

necessarily the optimal solution. These methods produce adequate solutions. However,

they have the drawback of being difficult to apply to mulitple and varying problems. In

addition, these methods produce only one solution whereas many problems have multiple

working solutions. According to Jarboui et al [9], there are two method categories that

metaheuristics can fall into. The first is where there is a random solution, which is

improved using iterations to determine an improved solution like greedy randomized

adaptive search procedure (GRASP) and variable neighbourhood search (VNS). The

second method determines a family of solutions at every iteration. Metaheuristics can

be applied on monocriterion scheduling or multicriteria scheduling.

Heuristics are metaheuristics, which have been applied to a specific problem. Pinedo

[18] suggests the profile fitting heuristics for flow shop problems with limited or no storage

in between machines. Other problems can be solved with heuristics used for travelling

salesman problems.

CHAPTER 2. LITERATURE REVIEW 14

2.2.2 Application: Flow Shop

In a flow shop application, Gupta et al. [5] a production schedule. The model is created

for a flow shop environment with two machines and one transporter. The model uses

processing times, setup times, transport times from machine one to machine two and

transport times from machine two back to machine one. The Average High Ranking

(AHR) of the processing and setup times are used in the model, as these actual times

are “fuzzy” (which is defined as uncertain or imprecise data). The model must minimise

the makespan by choosing a sequence with the shortest completion time. The model

starts with two random sequences of jobs and determines the sequence with the shortest

completion time. This process is then iterated to find a good solution.

The logic of this model can be used in the algorithm created for the Wispeco problem.

Two models can be created one after the other, one for each crane. The cranes will serve

as the transporters and each tank will serve as a machine.

2.2.3 Application: Single Hoist Scheduling of Electroplating

PCB’s

Lim [13] scheduled a PCB electroplating line. The electroplating of PCB’s is a very

similar process to that of anodising aluminium, as it is a smaller scale version of the

same process. In this article, a genetic algorithm approach was followed instead of

mathematical programming based approaches that are often followed. This example

consists of a series of chemical tanks, moved through the system by means of a hoist, as

shown in Figure 2.1.

Figure 2.1: PCB electroplating line

CHAPTER 2. LITERATURE REVIEW 15

In this model, S is the system, with S = S0, S1...SN , SN+1 and N = the number of

tanks in the system. S0 represents the loading station and SN+1 represents the unloading

station. The time that the hoist takes to move from one station to the next, with or

without a job, as well as the range of time that the job is required to be in each station

are used as parameters. The hoist and tanks can only hold one job at a time. The

objective of this model is to minimise the cycle time of one job coming into the system

until it leaves the system.

This model is very similar to the anodising problem at Wispeco Aluminium. The

hoist can be compared to the cranes in the anodising plant and there are also a series

of chemical tanks creating the process. The only difference between this model and the

anodising plant is that the anodising plant has multiple tanks at certain steps in the

process. To be able to use this model as reference, it must be adapted to be able to skip

a number of the tanks in the system.

2.2.4 Application: Multi-degree scheduling

Li et al. [12] describes a more relevant scheduling example which is similar to the problem

at Wispeco. This example is a flow shop where there are n stages in the process and one

of the stages have multiple machines while the other stages has single machines. Each

machine can produce one unit at a time and each robot (moving the parts from machine

to machine) can only move one part at a time, known as robot capacity constraints. A

part pickup criteria called the time window is applicable to the example. This criteria

is used when there is a lower and upper limit within which a part must be moved from

one machine to the next. Other options for part pickup criteria is the no-wait criteria,

where parts have to be picked up immediately after processing, or the free pickup, which

implies that a part can be picked up at any time. This article deals with a process

without any buffers between stages, but to reduce the bottleneck, the drum process

usually has an extra machine to improve throughput [8]. The next bottleneck is often

caused by the robots transporting the parts through the process, but instead of choosing

the more expensive option of purchasing another robot, it is wise to first use scheduling

techniques to improve sequences and throughput. In this example, it has been taken

into consideration that the robots used for transporting cannot cross over each other.

CHAPTER 2. LITERATURE REVIEW 16

Every robot thus has a few stages that it can move from and to. In this example, a cycle

is defined as a period in which a certain number of parts (K) start and complete the

process. One of the problems that the article identifies in the model is that the model will

not be able to solve flow shop problems with more than thirty stages. The objective of

the model is to maximise throughput, which is the same as minimising the cycle time in

degree cycles. Mixed integer linear programming is used to solve the scheduling problem

and a numerical example is used to show the implementation of the model. The model

is illustrated in Figure 2.2, where Sn is the nth stage (stage v refers to the multi-machine

stage), Mn is the machine at stage n and H is the number of robots transporting the

goods in the plant.

Figure 2.2: Multi-degree process with multiple robots

This example is similar to the problem at Wispeco and the model will be able to

be adapted accordingly. The aluminium plant at Wispeco has thirteen stages with two

cranes (robots) moving the parts, which cannot cross each other on the line. The model

described has been implemented on a few examples, where the increase in throughput,

and decrease in cycle time serves as proof of the success of this model. The latter seems

to be the model with the most similarities with the anodising plant scheduling and will

thus be used in the conceptual design of the scheduling algorithm.

Chapter 3

As-is Scheduling

This chapter aims to describe the environment and processes of scheduling as it currently

operates at Wispeco Aluminium. The following was identified as the as-is process of

anodising with specific focus on the scheduling for a 24 hour day’s work.

3.1 Problem Investigation

The anodising plant at Wispeco Aluminium is moving toward a single line plant (where it

is currently a double line plant). This decision forces the plant to have a larger through-

put or smaller completion time of the same amount of aluminium profiles anodised. The

following sections describes the plant.

3.1.1 Stages

The stations in the aluminium anodising plant serves as the stages in the desired model.

The stations are presented in figure 3.1, where the brackets indicate all tanks that form

one stage. These stages relate to stage v with G machines as described in chapter 2.

This process is controlled by two cranes which can be the robots in the related model.

The cranes cannot cross each other on the line and must pick up the necessary materials

within a short time frame.

17

CHAPTER 3. AS-IS SCHEDULING 18

Figure 3.1: Anodising stations

3.1.2 Colouring

In addition to the process in Figure 3.1, the process includes a colouring station. The

anodising plant produces six different colours, which contributed to production in the

financial year of 2015 to 2016 as shown in Table 3.1. The natural colour does not require

a colouring step in the process. All five other colours add one station to the process.

The amount of time that the beam is submerged in the colouring tank determines the

colour of the output. Based on Table 3.1 and the fact that all colours need an extra tank,

management of the anodising plant has suggested to move away from producing colours

other than natural. With the knowledge that all beams will then follow the exact same

process, the scheduling problem can be classified as a flow shop problem [4].

Table 3.1: Anodising colours

Colour Square meters produced Percentage of production

N: Natural 1 307 559.61 94.68%

B1: Very light Bronze 2 708.84 0.20%

B3: Bronze 9 722.44 0.70%

B5: Dark Bronze 156.27 0.01%

B7: Darkest Bronze 502.71 0.04%

B9: Black 60 315.17 4.37%

The anodising plant is currently running the automated cranes on a predetermined

sequence, which completes the necessary jobs between 2 hours, 23 minutes and 3 hours,

23 minutes without any downtime. This will be used as a basic metric to compare to the

improved schedule. However, when the anodising plant changes to a single line plant,

CHAPTER 3. AS-IS SCHEDULING 19

the throughput will increase and thus the cycle time must decrease to maintain customer

satisfaction. Without sequencing to improve cycle time, the plant will not be able to

keep up with the amount of work. This model will also be an indication of whether

scheduling will improve the cycle time sufficiently and whether an additional crane is

needed.

3.2 Scheduling

3.2.1 Order Scheduling

The person in charge of scheduling a day’s work at the anodising plant is the planner.

The planner sets up a list of all the orders received, where he specifies which orders

are the most important. This is indicated on the shift handover form which is given to

the FLM (First Line Manager) together with the list of jobs available to be processed.

These important orders are usually reworks, orders where the customer calls to indicate

the orders are urgent as well as orders from priority customers. Appendix B shows an

example of the shift handover form, which indicates the priority of an order by means of

dots. The more dots the form has, the more urgent the order is. Figure 3.2 shows the

first page of five from the list of orders available to be processed.

From the list of ready orders, the FLM on the floor decides which orders to complete

first. The beams are filled to physical capacity, which ranges between 35 and 120 square

meters on a single beam, depending on the size of the profile to be jigged. Each profile

has a specific die number which indicates its shape. The shape and the length of the

profile determines the square meters that will be anodised on a single profile. This figure

is used to determine the square meters that has been hung on one beam. The jiggers

know how many profiles of a certain type should hang on a beam.

The rule of thumb used to determine the order of processing from the list is usually

the most important orders first (according to the priority list received from the planner).

Thereafter, the FLM processes work from the list of orders classified either as “nice” or

“bad” work. “Nice” work commonly refers to profiles that are easy to jig and contribute

the majority of square meters produced for the day (a measure monitored daily to ensure

the plant is doing enough work). “Bad” work is the opposite. It refers to work that

CHAPTER 3. AS-IS SCHEDULING 20

Figure 3.2: List of orders

takes more time and effort to jig and has a significantly smaller contribution to the day’s

monitored square meters produced. The FLM usually prefers to do the “nice” work first.

As the day progresses, the FLM indicates on the planner’s list what work has been

completed. After the 12 hour night shift, the day shift continues with the same list

and completes as many orders as possible. The work that has not been completed, are

usually prioritised the following day. The planner sets up a new list every day, which is

in line with the company goal: “One day delivery”.

The schedule for the AAP was followed on 22 August 2017, when 34 beams and 2263

square meters were processed during the day shift, which started 2 hours late. The late

start was due to the caustic tanks that were not at the desired temperature. On 23

August 2017, 42 beams and 2655 square meters were processed during the 12-hour day

shift. On 7 August 2017, the AAP processed 36 beams and 2372 square meters during

the day shift. This shift started 1 hour late, again due to incorrect temperatures in the

CHAPTER 3. AS-IS SCHEDULING 21

caustic tanks.

3.2.2 Crane Scheduling

The two cranes on the AAP are controlled by a PLC (Programmable Logic Circuit),

which has one operator. The operator must enter the square meters desired on each

jigged beam into the PLC and switch the process to manual if there are any breakdowns.

The PLC is currently programmed to move according to a predetermined sequence. The

sequence does not change for any type of product, unless a breakdown forces the operator

to control the line manually. The last column of Table 3.3 displays the average time it

takes to complete each move. Based on these times, the algorithmic model assumes

all crane movements (the combined move of moving a beam out of one tank and into

another) takes one minute to complete.

CHAPTER 3. AS-IS SCHEDULING 22

Table 3.2: Crane 1 Sequence

Process Into tank

or Out of

tank

Average

Move-

ment Time

(Seconds)

Jigging Out 46

Cleaning In 14

Etch Rinse 1 Out 39

Etch Rinse 2 In 7

Desmut Out 42

Desmut Rinse In 6

Etch Rinse 2 Out 40

Desmut In 7

Desmut Rinse Out 59

Jigging In 18

Stripping Out 42

Etch Rinse 2 In 7

Desmut Out 38

Desmut Rinse In 15

Hot Etch Out 43

Etch Rinse 1 In 8

Etch Rinse 2 Out 40

Desmut In 15

Cleaning Out 79

Hot etch In 15

Desmut Rinse Out 48

Anodising In 12

Transfer station Out 52

Stripping In 18

Table 3.3: Crane 2 Sequence

Process Into tank

or Out of

tank

Average

Move-

ment Time

(Seconds)

Anodising Out

Acid Rinse 1 In

Acid Rinse 1 Out

Acid Rinse 2 In

Sealing Out

Jigging In

Final Rinse Out

Sealing In

Off-jig Out

Transfer station In

Acid Rinse 2 Out

Chapter 4

Algorithmic Approach and Solution

The multi-degree model in Section 2.2.4 was used as reference to create the model de-

scribed in this chapter. In this model, there are two cranes and 12 processes with between

one and 4 tanks for each process. There is a time frame within which the crane must pick

up the relevant beam. In the application of an anodising plant, there are processes that

have no time frame for stations like etching, the first caustic rinse, desmut, anodising

and the first acid rinse. The processes which cannot be processed longer than the given

processing times are referred to as critical processes.

4.1 Model Parameters

Notation usage to be noted when understanding the parameters and variables used in

the model is as follows. A superscript 0, means that the set of relevant values include the

loading station (station 0). A superscript +, means the unloading station is included. No

super or subscripts, refers to the stations excluding the loading and unloading stations.

A super- or subscript v, refers to all tanks, thus including each tank in stations a, v and

f as described in Table 4.1 below.

The following parameters will be used (the naming of all variables and parameters

are similar to those used by Lin et al. [12], for simplification):

23

CHAPTER 4. ALGORITHMIC APPROACH AND SOLUTION 24

Table 4.1: Model parameters

Parameter Description and or value

n Number of stages, 1-13. The loading station is 0 and the unloading

station is number 14

a, v, f The three stages with parallel machines, referring to anodising, final rinse

and sealing respectively.

G, J, P The number of parallel machines used in stage a, v and f respectively.

H The number of cranes used to transport jobs = 2

Move(i) The first transportation, in a cycle, of a part from stage i to i + 1, where

i ∈ N0

lh The crane assignment, where h ∈ H. The first crane is responsible for

moves from station 0 to I1 (0 to 7) and the second crane is responsible

for moves I1 to I2, where I2 = n+1 = 14

Li The minimum processing time a part requires in stage i, where i ∈ N
Ui The maximum processing time a part may undergo in stage i, where

i ∈ N
ai The time it takes to pick up a part from i, where i ∈ N0. This time

relates to move(i))

bi The time it takes to drop a part off at i + 1, where i ∈ N0. This time

relates to move(i+1)

di The travel time of a loaded crane to move from i to i + 1, including the

pick-up time (ai) and the drop-off time (bi), where i ∈ N0

ei,j The travel time of an empty crane from i to j, where i, j ∈ N+, i 6= j

and ei,j = ej,i

B A small positive number

K A large number

4.2 Model Variables

Table 4.2 introduces all variables to be used in the model.

CHAPTER 4. ALGORITHMIC APPROACH AND SOLUTION 25

Table 4.2: Model variables

Parameter Description and or value

T Cycle time

ti The starting time of move(i), where ti0 and i ∈ N0

tmax1 The starting time of the last move(i) within the cycle for crane 1

tmin2 The starting time of the first move(i) within the cycle for crane 2

tmax2 The starting time of the last move(i) within the cycle for crane 2

nh
i nh

i :=

1 if the move(i) is the last move for robot h

0 otherwise

uhj uhj :=

1 if the move(j) is the first move for robot h

0 otherwise

wh
i,j wh

i,j :=

1 if the move(j) is the first and move(i) is the last move for robot h

0 otherwise

yi,j yi,j :=

1 if tr,i < tu,j

0 otherwise

where i < j

yi,i+1 yi,i+1 :=

1 if tr,i + di − bi < tu,i+1 + ai+1

0 otherwise

where i ∈ {I1...Ih−1}

Objective function : Z = min{tmax2}

4.3 Model Constraints

What follows are constraints to be used as guidelines in the algorithm.

4.3.1 Constraints for Crane 1

tmax1 +

I1∑
i=1

(di + ei+1,0)Xi <= T (4.1)

CHAPTER 4. ALGORITHMIC APPROACH AND SOLUTION 26

tmax1 >= ti i ∈ {I1, I2} (4.2)

tmax1 <= ti − (Xi − 1)K i ∈ {I1, I2} (4.3)

I1∑
i=0

Xi = 1 (4.4)

Constraint 4.1 ensures that the time that the last process starts,plus the crane move-

ments to finish the cycle is not greater than the cycle time. Constraint 4.2 ensures that

tmax1 is the largest possible value, which will be the starting time of the last process.

Constraint 4.3 ensures that tmax1 only obtains a value when i is the last move for crane

1. Constraint 4.4 defines Xi = 1 with only one possible non-zero value for all possible i

values.

4.3.2 Constraints Defining the Crane Capacity

tj − ti >= di + ei+1,j − (1− yi,j)K ∀i, j ∈ {I1, I2} (4.5)

ti − tj >= dj + ej+1,i − yi,jK ∀i, j ∈ {I1, I2} (4.6)

Each crane can carry maximum one beam at a time.

4.3.3 Constraints Rejecting Crossover of Cranes

ti+1 − (ti + di + Li) >= (yi,i+1 − 1)K ∀i, j ∈ {I1, I2} (4.7)

ti + di − bi − (ti+1 + ai+1) >= −yi,i+1K + δ ∀i, j ∈ {I1, I2} (4.8)

These constraints are valid where i+1 is the shared station between the two cranes.

The parameters, variables and constraints listed above is used as guidelines in the

Python algorithmic model. These constraints are not a description of the entire model,

CHAPTER 4. ALGORITHMIC APPROACH AND SOLUTION 27

but merely a starting point. Figure 4.1 indicates the logical approach of the algorithmic

model and the complete algorithm is added as Appendix C.

The algorithm is used to test three scheduling heuristics. The best heuristic is the

main deliverable of the project which can be implemented at Wispeco Aluminium. The

heuristics that were tested to be used as guidance at Wispeco was: FIFO (First In,

First Out), Priority (which completes priority orders first and then follows the schedule

as Wispeco currently uses) and Shortest processing time (all 10µm orders, followed by

15µm and 25µm) [3].

CHAPTER 4. ALGORITHMIC APPROACH AND SOLUTION 28

For all the jobs

For all the processes

Starting time of this
process + processing

time + crane movement
< time available in shift

While the move is valid and there is sufficient time left during the shift

While the process for this job is not completed

For all the time that should be available for the process to be completed

The
process

has 1
tank

The tank
is

available

Initialise the jobs to
be completed

Initialise the relevant tanks,
cranes and processing times

The move is valid

Yes

Yes

No

Increase starting
time interval

The crane is
available to

bring the beam
and fetch it

after the
processing

time

Yes

One of
the tanks

are
available

No

Yes

Increase starting
time interval

No

Save the move in the relevant variables (tanks and crane)

Set the starting time for the next process to the end time of this process +1

For the critical processes

The crane picks
up the beam

immediately after
processing time

should stop
The move is valid

Yes No

Save the move in the
relevant variables
(tanks and crane)

Yes

No

No

Figure 4.1: Diagram of Algorithm

Chapter 5

Results

Three days (7 August, 22 August and 23 August 2017) of production at the anodising

plant were followed to retrieve the results discussed in this chapter. The schedule for

each day was entered into the algorithmic model, described in Chapter 3. The results

retrieved from the algorithm is used to compare schedules for a shift’s work according

to three possible heuristics. The heuristics are FIFO, Priority and Shortest processing

time.

The current schedule follows an inexact process. The beams are filled with jobs as

the FLM sees fit, with special attention being paid to the priority orders that need to

be completed before the end of two shifts.

The FIFO scheduling heuristic was created from the list of jobs as discussed in

the “As-is” description. The same jobs that were processed in the current schedule of

Wispeco are used. The priority schedule is the priority orders first (indicated in bold),

followed by the rest of the orders from the schedule as it is currently set up at Wispeco.

Most of the priority orders are completed during night shift. Day shift is thus completing

the remaining priority orders. Schedules according to the shortest processing time,

completes all 10µm orders, followed by all 15µm orders and then completing all 25µm

orders.

The processing time according to the model starts at 06:00 and thus all anodising

starts at 06:24 when the first beam is submerged in a anodising tank. The lists under

each subsection indicate the microns required on every beam processed.

29

CHAPTER 5. RESULTS 30

5.1 7 August 2017- Day shift

On this date, processing did not start at 06:00. The caustic rinse tanks were not at

the desired temperature (either too hot or too cold), which caused processing to start

after 08:00. The schedule was entered into the model, which does not take that fact into

consideration. The processing times in this report will thus start at 06:00 and will end

before the shift ends at 18:00.

Beams processed: 34

Square meters processed: 2 372

5.1.1 Current Schedule

[15, 15, 15, 15, 15, 15, 15, 10, 15, 25, 25, 25, 15, 15, 25, 25, 15, 25, 25, 25, 15, 15, 15, 15,

25, 15, 25, 25, 25, 25, 25, 25, 15, 25]

Last beam completed anodising: 15:01

Figures 5.1 to 5.11 displays a visual representation of the Gantt chart created by the

algorithmic model for the current schedule on 7 August 2017. The first 15 beams are

coloured to simplify reading of the Gantt chart. The minutes are indicated in the top

row. Appendix D illustrates the remaining part of Gantt chart without colour.

Figure 5.1: Gantt chart

CHAPTER 5. RESULTS 31

Figure 5.2: Gantt chart

Figure 5.3: Gantt chart

CHAPTER 5. RESULTS 32

Figure 5.4: Gantt chart

Figure 5.5: Gantt chart

CHAPTER 5. RESULTS 33

Figure 5.6: Gantt chart

Figure 5.7: Gantt chart

CHAPTER 5. RESULTS 34

Figure 5.8: Gantt chart

Figure 5.9: Gantt chart

CHAPTER 5. RESULTS 35

Figure 5.10: Gantt chart

Figure 5.11: Gantt chart

CHAPTER 5. RESULTS 36

5.1.2 FIFO

[10, 15, 15, 25, 25, 25, 25, 15, 25, 25, 15, 25, 25, 25, 25, 25, 15, 25, 15, 25, 25, 25, 15, 25,

15, 15, 15, 15, 15, 15, 15, 15, 15, 15]

Last beam completed anodising: 14:54

5.1.3 Priority

[15, 15, 25, 25, 25, 25, 25, 25, 15, 15, 25, 15, 15, 15, 15, 15, 10, 15, 25, 25, 15, 15,

15, 15, 15, 15, 25, 25, 25, 25, 25, 25, 15, 25]

Last beam completed anodising: 14:53

5.1.4 Shortest Processing Time

[10, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 25, 25, 25, 25, 25, 25,

25, 25, 25, 25, 25, 25, 25, 25, 25, 25]

Last beam completed anodising: 15:09

5.2 22 August 2017- Day shift

On the 22nd of August 2017, there was another problem with caustic rinse tank temper-

atures, which influenced the number of beams processed. Processing only started after

09:00.

Beams processed: 34

Square meters processed: 2 263

5.2.1 Current Schedule

[15, 15, 25, 15, 25, 25, 25, 25, 10, 25, 15, 10, 15, 25, 15, 15, 10, 10, 15, 15, 25, 15, 25, 15,

25, 10, 25, 25, 25, 25, 15, 15, 15, 15]

Last beam completed anodising: 14:29

CHAPTER 5. RESULTS 37

5.2.2 FIFO

[25, 15, 15, 15, 15, 15, 15, 25, 15, 15, 15, 15, 15, 10, 10, 15, 10, 10, 25, 25, 15, 25, 25, 15,

25, 25, 25, 25, 10, 25, 25, 25, 15, 25]

Last beam completed anodising: 14:54

5.2.3 Priority

[15, 15, 25, 25, 15, 15, 15, 25, 15, 25, 25, 25, 10, 25, 15, 10, 15, 25, 15, 10, 10, 15, 25,

15, 15, 25, 10, 25, 25, 25, 25, 15, 15, 15]

Last beam completed anodising: 14:23

5.2.4 Shortest Processing Time

[10, 10, 10, 10, 10, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 25, 25, 25, 25,

25, 25, 25, 25, 25, 25, 25, 25, 25, 25]

Last beam completed anodising: 15:09

5.3 23 August 2017- Day shift

On 23 August 2017, processing did not start later than planned, but other breakdowns

and human interferences could influence the actual processing time in comparison with

the model output.

Beams processed: 42

Square meters processed: 2 655

5.3.1 Current schedule

[15, 15, 10, 15, 25, 15, 25, 15, 15, 25, 25, 25, 15, 15, 15, 15, 15, 15, 15, 15, 25, 15, 25, 25,

25, 25, 25, 25, 25, 15, 15, 25, 15, 25, 15, 25, 25, 25, 25, 25, 15, 15]

Last beam completed anodising: 16:48

CHAPTER 5. RESULTS 38

5.3.2 FIFO

[15, 15, 15, 15, 15, 15, 15, 15, 10, 25, 25, 15, 25, 25, 25, 25, 25, 15, 15, 15, 15, 15, 15, 25,

25, 25, 15, 25, 15, 15, 15, 15, 15, 25, 15, 25, 25, 25, 25, 25, 25, 25]

Last beam completed anodising: 16:35

5.3.3 Priority

[25, 25, 15, 25, 25, 25, 25, 25, 15, 15, 15, 15, 15, 15, 15, 10, 25, 15, 15, 25, 15, 15,

15, 15, 15, 15, 15, 15, 25, 15, 25, 25, 25, 25, 25, 15, 15, 25, 25, 25, 25, 25]

Last beam completed anodising: 16:25

5.3.4 Shortest Processing Time

[10, 15, 25,

25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25]

Last beam completed anodising: 16:50

5.4 The best heuristic

The results that take the four possible scheduling methods into consideration show that

the schedule does not make a large difference in the makespan of the process.

The priority method used produces the shortest makespan for the 22nd and 23rd

of August, while the difference between the shortest makespan and that of the current

method is only 5 to 33 minutes. This result indicates that a change in scheduling

method is not significant. The current method provides the process with a relatively

short makespan, with the team keeping the mindset that they do not need to make

drastic changes to what they are used to. It would, however, be advised that all priority

work is finished during the night shift to ensure they are all completed before the end of

the day.

CHAPTER 5. RESULTS 39

5.5 Validation

Although the algorithmic model cannot be compared to an existing model, certain char-

acteristics can be compared to that of reality. In reality, there is human interference and

breakdowns (which forces the operator of the PLC to set the AAP to manual). These

contributing factors cause the makespan to be longer than the theoretical makespan

(provided by the algorithmic model). All the days regulated indicate in Table 5.1, that

the theoretical makespan is smaller than that of the actual makespan. The makespan

indicated in this table is measured from the minute the first beam for the day enters the

anodising tank, until the last beam is removed from the anodising tank.

Table 5.1: Theoretical vs Actual makespan

Date Theoretical makespan (minutes) Actual makespan (minutes)

7 Aug 541 610

22 Aug 489 496

23 Aug 648 720

5.6 Sensitivity Analysis

Sensitivity analysis is done on the number of tanks and a higher demand to determine

the effect the change on the model and on the production line.

5.6.1 More Sealing or Anodising tanks

To determine the effect of more critical tanks on the process outcomes, the model was

changed and the effect tabulated. In reality, the four anodising tanks that were used in

the model consists of two tanks with two stations each. By adding another tank, the

process gains two extra stations. Table 5.2 indicates the results for 23 August with the

schedule as Wispeco currently uses. The effect of more anodising and sealing stations

are investigated in terms of the makespan up to the anodising process and in terms of

the makespan up to the sealing process.

CHAPTER 5. RESULTS 40

Table 5.2: Effect of More Tanks in minutes

4 stations each 6 anodising stations,

4 sealing stations

6 stations each

Makespan up to anodising 648 599 605

Makespan up to last tank 713 697 654

These results show that an extra anodising tank in the AAP can reduce the total pro-

duction time by 16 minutes, where the AAP produces an average of 3,5m2 per minute.

An additional anodising tank can thus result in 56m2 additional production. An addi-

tional anodising and a sealing tank results in a reduced production time of an additional

43 minutes (thus 59 minutes in total), which can result in 207m2 produced more in a

single shift. The sales for 2016 were on average R45/m2 and the costs R30/m2. The

result of such a change could thus be R 3 100 more profit per shift or R124 000 per

month of double shifts. The advantage of this decision will also be that there are no

capital expenses for adding tanks, as the tanks for the current second production line

could be used for the AAP. There will, however, be additional electricity costs which

were not accounted for in this calculation.

5.6.2 Higher demand

The model can take any input, but will not successfully execute if there are too many

orders to be processed during one 12-hour shift. A number of different combinations

were tested and Table 5.3 indicates what the maximum orders are if all orders are of the

same anodising thickness.

Table 5.3: Maximum orders

Anodising thickness Maximum number of beams processed

10µm 58

15µm 52

25µm 35

These tests also indicated that there are only 3 sealing and anodising tanks necessary

CHAPTER 5. RESULTS 41

if all the orders are 10µm. The FLM can thus note that if there is a day where one of

the tanks are out of order, it would be most beneficial to complete all the 10µm orders

before underutilising the plant by waiting for a tank to open.

Chapter 6

Conclusion and Recommendations

6.1 Conclusion

The aluminium anodising plant at Wispeco Aluminium needs to implement a scheduling

system to ensure minimum makespan of the process. To solve this problem, a mathe-

matical model was formulated and solved by a heuristic method developed in Python.

The model focuses on characteristics of reality like the two cranes which cannot cross

over one another and the cranes both have a capacity of one. The model takes into

consideration that the beams have a critical processing time where after the beams need

to be moved to the next station (because over processing causes defects).

The algorithm is used to test three types of heuristics. All three heuristic scheduling

approaches gave similar results. The suggestion to Wispeco is to keep the scheduling pro-

cess as it currently is. The current scheduling approach produced the shortest makespan

for two out of the three days that were tested. Keeping the scheduling system is better

for the workforce, as they are comfortable with the known. The theoretical makespan

of the model was compared with the actual makespan measured on three different days.

All the theoretical makespans are shorter than the actual, which is realistic if factors like

human error are considered.

There has not yet been any conclusion on number of cranes to be used on the AAP.

42

CHAPTER 6. CONCLUSION AND RECOMMENDATIONS 43

6.2 Recommendations

It is recommended that the scheduling procedure of the anodising plant at Wispeco

aluminium is not changed. The current scheduling approach produces a schedule that has

an adequate makespan. It is also recommended that members of management consider

moving an anodising and a sealing tank from the current MAP to the AAP as soon as

the plant is only operating on a single line. It could have financial benefits for the plant.

6.2.1 Future Projects

Different projects that can be pursued at the anodising plant could be an electronic

administration system, Statistical Process Control and a more advanced scheduling al-

gorithm.

The entire administration trail used in the anodising plant is paper based. The job

cards for each beam is moved through the process with the beam, but sometimes the

job cards fall in the chemicals and the information is lost. The operator of the PLC

also receives a paper with the desired anodising thickness of each beam. All these paper

based administration tasks can be done electronically. An electronic system will reduce

the need to copy information by hand to ensure everyone has the desired information

and it will also reduce the risk of losing information. A system could be implemented to

interact with the current Enterprise Resource Planning (ERP) system.

Currently the anodising process does not always produce the desired thickness, even

if the anodised material is in the anodising tank for the required time or even longer.

Statistical Process Control can be applied to the anodising plant to determine the effect

of parameters on the anodising thickness and to help eliminate assignable causes.

A more advanced scheduling algorithm will produce better results. This model only

finds the best schedule between four options. A more advanced model could iterate all

possible combinations to find the optimal scheduling solution.

Bibliography

[1] A.W. Barce and P.G. Sheasby. The Technology of Anodizing Aluminium. Technicopy

Ltd., 2 edition, 1979.

[2] Peter Brucker. Scheduling Algorithms. Springer, 2004.

[3] DomagojJakobovi and Kristina Marasovi. Evolving priority scheduling heuristics

with genetic programming. Elsevier, 2012.

[4] Jacomine Grobler. Particle swarm optimization and differential evolution for mulit-

objective multiple machine scheduling. Master’s thesis, University of Pretoria, 2008.

[5] Deepak Gupta, Sameer Sharma, and Shefali Aggarwal. Flow shop scheduling on

2-machines with setup time and single transport facility under fuzzy environment.

Springer Science & Business Media, 2013.

[6] Robert C Hansen. Overall equipment effectiveness: a powerful produc-

tion/maintenance tool for increased profits. Industrial Press, Inc., 2001.

[7] Jeffrey W. Herrmann, editor. Handbook of Production Scheduling. Springer, 2006.

[8] James F. Cox III and Jr. John G. Schleier. Theory of Constraints Handbook.

McGraw-Hill Education, 2010.

[9] Bassem Jarboui, Patrick Siarry, and Jacques Teghem, editors. Metaheuristics for

Production Scheduling. Wiley, 2013.

[10] Khethiwe Kunene. Variable data in an anodising plant. Data gathering project as

Chemical Engineer of Wispeco Anodising plant., 2017.

44

BIBLIOGRAPHY 45

[11] Khethiwe Kunene and Carina Behr. The dream anodising plant. January 2017

Project on a dream anodising plant at Wispeco, 01 2017.

[12] Xin Li, Felix T.S. Chan, and S.H. Chung. Optimal multi-degree scheduling of

multiple robots without overlapping in robotic flowshops with parallel machines.

Elsevier, 2015.

[13] Joon-Mook Lim. A genetic algorithm for a single hoist scheduling in the printed-

circuitboard electroplating line. Pergamon, 1997.

[14] United Anodisers Ltd. Anodising vs powder coating. Website, 2016.

[15] Wispeco Pty Ltd. The largest aluminium extruder in africa. Webpage.

[16] Ying Ma, Chengbin Chu, and Chunrong Zuo. A survey of scheduling with deter-

ministic machine availability constraints. Elsevier, 2010.

[17] Vladimir Marik, Luis M. Camarinha-Matos, and Hamideh Afsarmanesh, editors.

Knowledge and Technology Integration in Production and Services. Springer, 2002.

[18] Michael L. Pinedo. Scheduling Theory, Algorithms and Systems. Springer, 2012.

[19] AR Rahani. Production flow analysis through value stream mapping: A lean man-

ufacturing process case study. Engineering Preocedia, 2012.

[20] R.L.Graham, E.L.Lawler, J.K.Lenstra, and A.H.G.Rinnooy Kan. Optimization and

approximation in deterministic sequencing and scheduling: A survey. Annals of

Discrete Mathematics, 1979.

[21] Xin-She Yang. Nature-Inspired Metaheuristic Algorithms. Luniver Press, 2008.

Appendix A

Signed Industry Sponsorship Form

46

Appendix B

Priority Indication Form

48

Appendix C

Python Algorithm

50

‐*‐ coding: utf‐8 ‐*‐
"""
Created on Mon Jun 26 08:26:54 2017

@author: carina
"""

import sys
craneBus = [[0],[0]] #Crane busy/idle for a timeframe. If busy, with which job
task =[15,15,15,15,15,15,15,15,15,15,10,10,10,10,25,25,25,25,25] #FIFO : One day's jobs
tank = [[],[],[],[],[],[],[],[],[],[],[],[],[]] #timeframe in use/idle for a tank
anodisingtanks = [[],[],[],[]]
sealtanks = [[],[],[],[]]
frinsetanks = [[],[]]
done = [[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]] #Processes complete/incomplete (1/0) for a job
cranesplit = 6 #Index of Last tank that crane 1 moves to
cranemovetime = 1 #minutes for crane movment between processing times
processingtime =[2,8,1,2,3,1,30,2,1,1,1,30,1]
anodising = 6
anodisetime = [30,45,60]
seal = 11
sealtime = [25,38,63]
frinse = 9
daymin = 12*60
lastjob = [0,0,0,0,0,0,0,0,0,0,0,0,0]
jobtoano = []
jobtofrinse = []
jobtoseal = []
firsttry = 1
firstsealtry = 1
firstfrinsetry = 1
criticaltanks = [1,2,4,6]

for i in range(0,len(done)):
 jobtoano.append(0)
 jobtoseal.append(0)
 jobtofrinse.append(0)
 for u in range(0,len(tank)):
 done[i].append(0)

for i in range(0,daymin): #minutes in 12 hour shift
 craneBus[0].append(0)
 craneBus[1].append(0)
 for u in range(0,len(anodisingtanks)):
 anodisingtanks[u].append(0)

1

 sealtanks[u].append(0)
 for u in range(0,len(tank)):
 tank[u].append(0)
 for u in range(0,len(frinsetanks)):
 frinsetanks[u].append(0)
timedone = 0
varbreak = False

for job in range(0,len(task)):
 timeint = 0
 if task[job] == 10:
 processingtime[anodising] = anodisetime[0]
 processingtime[seal] = sealtime[0]
 elif task[job] == 15:
 processingtime[anodising] = anodisetime[1]
 processingtime[seal] = sealtime[1]
 elif task[job] == 25:
 processingtime[anodising] = anodisetime[2]
 processingtime[seal] = sealtime[2]
 for process in range(0,len(tank)):
 if (timeint + processingtime[process] + cranemovetime < daymin):
 toolittletime = 0
 while (toolittletime == 0) and (done[job][process] == 0):
 if process <= cranesplit:
 cranenr = 0
 else:
 cranenr = 1
 movevalid = True
 stopwhile = 0
 original = timeint
 while (movevalid) and (stopwhile == 0) and (toolittletime == 0):
 varbreak = False
 findanotank = 0
 findsealtank = 0
 findfrinsetank = 0
 for i in range(timeint, processingtime[process] + timeint+1):
 if varbreak == True:
 break
 if (timeint + processingtime[process] + cranemovetime > daymin):
 toolittletime = 1
 break
 if process == 0:
 if (craneBus[cranenr][timeint] == 0):
 if (tank[process][timeint‐1] == 0) and (tank[process][timeint] == 0) and (tank[process][i+1] == 0) and (tank[pr
 movevalid = True

2

 if (movevalid) and (i == processingtime[process] + timeint):
 stopwhile = 1
 else:
 timeint += 1
 if (timeint + processingtime[process] + cranemovetime > daymin):
 toolittletime = 1
 movevalid =False
 break
 else:
 timeint +=1
 if timeint > i:
 break
 elif process == cranesplit:
 allanofull = 0
 for u in range(0,len(anodisingtanks)):
 if anodisingtanks[u][timeint‐1] != 0:
 allanofull = 1
 if u == len(anodisingtanks)‐1:
 timeint +=1
 varbreak = True
 break
 else:
 if (craneBus[cranenr][timeint] == job + 1) or (craneBus[cranenr][timeint] == 0):
 if (craneBus[cranenr][timeint] == 0) and (firsttry == 1):
 firsttry = 0
 for r in range(timeint,0,‐1):
 if craneBus[cranenr][r] == job + 1:
 craneBus[cranenr][r] = 0
 break
 if findanotank == 0:
 if (anodisingtanks[u][timeint‐1] == 0) and (anodisingtanks[u][timeint] == 0) and (anodisingtanks[u
 movevalid = True
 jobtoano[job] = u
 findanotank = 1
 if (movevalid) and (i == processingtime[process] + timeint):
 stopwhile = 1
 varbreak = True
 break

 else:
 timeint += 1
 varbreak = True
 if (timeint + processingtime[process] + cranemovetime > daymin):
 toolittletime = 1
 movevalid =False

3

 break
 else:
 if (anodisingtanks[u][timeint‐1] == 0) and (anodisingtanks[u][timeint] == 0) and (anodisingtanks[u
 movevalid = True
 if (movevalid) and (i == processingtime[process] + timeint):
 stopwhile = 1
 break
 else:
 timeint += 1
 varbreak = True
 if (timeint + processingtime[process] + cranemovetime > daymin):
 toolittletime = 1
 movevalid =False
 if timeint > i:
 break
 else:
 timeint += 1
 varbreak = True
 if (timeint + processingtime[process] + cranemovetime > daymin):
 toolittletime = 1
 varbreak = True
 break
 elif process == seal:
 allsealfull = 0
 for s in range(0,len(sealtanks)):
 if sealtanks[s][timeint‐1] != 0:
 allsealfull = 1
 if s == len(sealtanks)‐1:
 timeint +=1
 varbreak = True
 break
 else:
 if (craneBus[cranenr][timeint] == job + 1) or (craneBus[cranenr][timeint] == 0):
 if (craneBus[cranenr][timeint] == 0) and (firstsealtry == 1):
 firstsealtry = 0
 for r in range(timeint,0,‐1):
 if craneBus[cranenr][r] == job + 1:
 craneBus[cranenr][r] = 0
 break
 if findsealtank == 0:
 if (sealtanks[s][timeint‐1] == 0) and (sealtanks[s][timeint] == 0) and (sealtanks[s][i+1] == 0):
 movevalid = True
 jobtoseal[job] = s
 findsealtank = 1
 if (movevalid) and (i == processingtime[process] + timeint):

4

 stopwhile = 1
 varbreak = True
 break

 else:
 timeint += 1
 varbreak = True
 if (timeint + processingtime[process] + cranemovetime > daymin):
 toolittletime = 1
 movevalid =False
 break
 else:
 if (sealtanks[s][timeint‐1] == 0) and (sealtanks[s][timeint] == 0) and (sealtanks[s][i+1] == 0):
 movevalid = True
 if (movevalid) and (i == processingtime[process] + timeint):
 stopwhile = 1
 break
 else:
 timeint += 1
 varbreak = True
 if (timeint + processingtime[process] + cranemovetime > daymin):
 toolittletime = 1
 movevalid =False
 if timeint > i:
 break
 else:
 timeint += 1
 varbreak = True
 if (timeint + processingtime[process] + cranemovetime > daymin):
 toolittletime = 1
 varbreak = True
 break
 elif process == frinse :
 allfrinsefull = 0
 for f in range(0,len(frinsetanks)):
 if frinsetanks[f][timeint‐1] != 0:
 allfrinsefull = 1
 if f == len(frinsetanks)‐1:
 timeint +=1
 varbreak = True
 break
 else:
 if (craneBus[cranenr][timeint] == job + 1) or (craneBus[cranenr][timeint] == 0):
 if (craneBus[cranenr][timeint] == 0) and (firstfrinsetry == 1):
 firstfrinsetry = 0

5

 for r in range(timeint,0,‐1):
 if craneBus[cranenr][r] == job + 1:
 craneBus[cranenr][r] = 0
 break
 if findfrinsetank == 0:
 if (frinsetanks[f][timeint‐1] == 0) and (frinsetanks[f][timeint] == 0) and (frinsetanks[f][i+1] ==
 movevalid = True
 jobtofrinse[job] = f
 findfrinsetank = 1
 if (movevalid) and (i == processingtime[process] + timeint):
 stopwhile = 1
 varbreak = True
 break

 else:
 timeint += 1
 varbreak = True
 if (timeint + processingtime[process] + cranemovetime > daymin):
 toolittletime = 1
 movevalid =False
 break
 else:
 if (frinsetanks[f][timeint‐1] == 0) and (frinsetanks[f][timeint] == 0) and (frinsetanks[f][i+1] ==
 movevalid = True
 if (movevalid) and (i == processingtime[process] + timeint):
 stopwhile = 1
 break
 else:
 timeint += 1
 varbreak = True
 if (timeint + processingtime[process] + cranemovetime > daymin):
 toolittletime = 1
 movevalid =False
 if timeint > i:
 break
 else:
 timeint += 1
 varbreak = True
 if (timeint + processingtime[process] + cranemovetime > daymin):
 toolittletime = 1
 varbreak = True
 break
 else:
 if (craneBus[cranenr][timeint] == 0) or (craneBus[cranenr][timeint] == job + 1):
 if(tank[process][timeint‐1] == 0) and (tank[process][timeint] == 0) and (tank[process][i+cranemovetime] == 0)

6

 movevalid = True
 if (movevalid) and (i == processingtime[process] + timeint):
 stopwhile = 1
 craneBus[cranenr][original] = 0
 craneBus[cranenr][timeint] = job +1
 else:
 timeint += 1
 varbreak = True
 if (timeint + processingtime[process] + cranemovetime > daymin):
 toolittletime = 1
 movevalid =False
 if timeint > i:
 break
 else:
 timeint += 1
 varbreak = True
 if (timeint + processingtime[process] + cranemovetime > daymin):
 toolittletime = 1
 movevalid =False
 if timeint > i:
 break
 if movevalid:
 done[job][process] = 1
 if (process == 0):
 craneBus[cranenr][timeint] = job + 1 #before processing
 timedone = timeint + processingtime[process]
 timeint +=1
 for i in range(timeint, timedone+1):
 if i + cranemovetime < daymin:
 tank[process][i] = job + 1 #cranemovetime word benodig vir job0, proses0
 elif (process == cranesplit):
 if firsttry == 0:
 craneBus[cranenr][timeint] = job + 1 #before processing: if not directly into anodise
 timedone = timeint + processingtime[process]
 timeint +=1
 for i in range(timeint, timedone+1):
 if i + cranemovetime < daymin:
 anodisingtanks[u][i] = job + 1
 elif (process == seal):
 if firstsealtry == 0:
 craneBus[cranenr][timeint] = job + 1 #before processing: if not directly into anodise
 timedone = timeint + processingtime[process]
 timeint +=1
 for i in range(timeint, timedone+1):
 if i + cranemovetime < daymin:

7

 sealtanks[s][i] = job + 1
 elif (process == frinse):
 if firstfrinsetry == 0:
 craneBus[cranenr][timeint] = job + 1 #before processing: if not directly into anodise
 timedone = timeint + processingtime[process]
 timeint +=1
 for i in range(timeint, timedone+1):
 if i + cranemovetime < daymin:
 frinsetanks[f][i] = job + 1
 else:
 timedone = timeint + processingtime[process]
 for i in range(timeint, timedone):
 if i + cranemovetime < daymin:
 tank[process][i+1] = job + 1
 timeint = timedone + cranemovetime
 if timeint < daymin:
 if process== cranesplit:
 cranenr += 1
 craneBus[cranenr][timeint] = job + 1 #timeint without cranemovetime,after processing
 else:
 print 'The day is too short to complete all this work. We could only complete up to job nr ' + str(job+1)
 lastjob[process] = job
 break

#Keep jobs in tank until it is fetched by a crane
 for process in range(0,len(tank)):
 if job == lastjob[process]:
 break
 if process <= cranesplit:
 cranenr = 0
 print 'proses ' + str(process+1)
 print str(tank[process])
 print 'kraan ' + str(cranenr+1)
 print str(craneBus[cranenr])
 else:
 cranenr = 1
 print 'processs ' + str(process+1)
 print str(tank[process])
 print 'crane ' + str(cranenr+1)
 print str(craneBus[cranenr])
 if process == cranesplit:#anodising and crane split has been mixed
 lasttime = len(anodisingtanks[u]) ‐ anodisingtanks[u][::‐1].index(job+1) ‐ 1
 if anodisingtanks[u][lasttime] != craneBus[cranenr+1][lasttime+1]:
 cranepickup = False

8

 while cranepickup == False:
 for i in range(lasttime+1,len(craneBus[cranenr+1])‐1):
 if i > daymin:
 cranepickup = True
 break
 if craneBus[cranenr+1][i+1] == job + 1:
 anodisingtanks[u][i] = job + 1
 timepickup = i
 cranepickup = True;
 for r in range(lasttime + 1,timepickup):
 anodisingtanks[u][r] = job + 1
 break
 else:
 continue
 if (cranepickup == False) and (i == len(craneBus[cranenr+1])‐lasttime):
 break
 elif process == seal:
 lasttime = len(sealtanks[s]) ‐ sealtanks[s][::‐1].index(job+1) ‐ 1
 if lasttime+1 > daymin:
 break
 if sealtanks[s][lasttime] != craneBus[cranenr][lasttime+1]:
 cranepickup = False
 while cranepickup == False:
 for i in range(lasttime+1,len(craneBus[cranenr])‐1):
 if i > daymin:
 cranepickup = True
 break
 if craneBus[cranenr][i+1] == job + 1:
 sealtanks[s][i] = job + 1
 timepickup = i
 cranepickup = True;
 for r in range(lasttime + 1,timepickup):
 sealtanks[s][r] = job + 1
 break
 else:
 continue
 if (cranepickup == False) and (i == len(craneBus[cranenr])‐lasttime):
 break
 elif process == frinse:
 lasttime = len(frinsetanks[f]) ‐ frinsetanks[f][::‐1].index(job+1) ‐ 1
 if lasttime+1 > daymin:
 break
 if frinsetanks[f][lasttime] != craneBus[cranenr][lasttime+1]:
 cranepickup = False
 while cranepickup == False:

9

Appendix D

Schedule Gantt Chart: 7 August

2017

60

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

0 0 0 0 23 24 0 25 26 24 0 25 26 25 27 28 26 27 29 0 27 0 0 0 28 29 28 26 27 28 30

28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 0 0 0 0 29 29 29 29 29 29 0 0 0 0 0 0

27 27 27 27 27 27 27 27 27 27 27 27 27 27 0 0 28 28 28 28 28 28 28 28 0 0 29 29 29 29 29

26 26 26 26 26 26 26 26 0 0 0 0 0 0 0 27 27 0 0 0 0 0 0 0 0 28 0 0 0 0 0

25 25 25 25 25 25 25 0 0 26 26 26 0 0 0 0 0 0 27 27 0 0 0 0 0 0 0 28 28 0 0

24 24 24 24 24 0 0 0 25 25 25 0 0 26 26 26 0 0 0 0 0 27 27 27 27 27 27 27 0 0 28

23 23 23 23 0 0 24 24 24 0 0 0 25 0 0 0 0 26 26 26 26 26 26 26 26 26 26 0 0 27 27

20 20 20 20 20 20 20 20 20 20 20 0 0 0 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

22 0 0 0 0 26 26 26

19 19 0 0 23

21 21 21 21 21 21 21 0 0 0 24

0 17 0 19 0 0 19 21 19 0 19 20 19 0 20 15 20 15 20 21 20 21 0 21 22 0 0 22 16 21 16

0 0 0 0 19 19 0 0 21 21 21 21 21 21 21 21 21 21 21 0 0 0 0 0 0 22 22 0 0 0 0

0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 20 0 0 0 0 21 0 0 0 0 0 0 0 22 22 22

0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 20 0 0 0 0 21 0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 20 0 0 0 0 21 21 21 21 21 0 0 0 0

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 0 0 0 0 0 0 20 20 20 20 20 20 20 20 20 20

18 18

16 0 0 21

0 0 0 0 0 0 0 0 0 0 0 0 0 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

0 0 0 29 30 29 31 0 0 0 0 0 0 30 0 0 31 32 0 0 27 28 29 30 0 31 32 33 0 28 29

30 30 30 30 0 0 0 31 31 31 31 31 31 31 31 31 0 0 32 32 32 32 32 32 32 32 0 0 33 33 33

29 29 29 0 0 30 30 30 30 30 30 30 30 0 0 0 0 31 31 31 31 31 31 31 31 0 0 32 32 32 32

0 0 0 0 29 0 0 0 0 0 0 0 0 0 30 30 30 30 30 30 30 30 30 0 0 0 31 31 31 31 31

0 0 0 0 0 0 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 0 0 30 30 30 30 30 30 30

28 0 0 29 29 29 29 29 29 29 0

27 0 0 28 28 28 28 28 28 28 0 0

25 25

26 26

23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 0 0 27 27 27 27 27 27 27 27 27 27 27

24 0 0 0 0 0 28

22 0 22 0 0 0 0 0 0 0 0 0 0 0 0 18 22 18 0 23 0 0 23 0 23 24 23 0 24 0 24

0 23 23 0 0 0 0 24 24 0 0 0

0 23 0 0 0 0 0 24 0

0 22 0 23 0 0 0 0 0

0 0

0 22 22 22 22 22 22 22 22 22 22 22 22 22 0 0 0 0 0 0 0 0 0 0 0 23 23 23 23 23 23

20 20

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 0 0 22 22 22 22 22 22 22 22 22 22 22 22 22 22

21 21

19 19

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430

30 31 0 0 32 33 34 0 0 0 0 0 0 0 29 30 0 31 32 30 0 31 32 33 34 33 0 0 0 0 0

33 33 33 33 33 0 0 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0 0 0 0 0 0 0

32 32 32 32 0 0 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 0 0 34 34 34 34 34 34

31 0 0 0 0 32 32 32 32 32 32 32 32 32 32 32 32 32 0 0 0 0 0 0 33 0 0 0 0 0 0

0 0 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 0 0 32 32 32 0 0 0 0 33 33 33 33 33

0 30 30 30 30 30 30 30 30 30 30 30 30 30 30 0 0 0 31 31 31 0 0 32 32 32 32 32 32 32 32

29 29 29 29 29 29 29 29 29 29 29 29 29 29 0 0 30 30 30 0 0 0 31 31 31 31 31 31 31 31 31

25 25 25 25 25 25 25 25 25 25 25 25 0 0 0 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29

26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 0 0 30 30 30 30 30 30 30 30 30 30 30

27 27

28 28

0 0 0 0 0 0 21 23 21 24 0 0 25 0 19 24 19 25 26 25 0 25 20 25 20 22 26 22 26 0 26

0 0 0 0 0 0 0 0 0 0 0 0 0 25 25 25 25 0 0 26 26 26 26 26 26 26 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 26 0 0 0

24 24 24 24 24 24 24 24 24 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 26 0

0 0

23 23 23 23 23 0 0 0 24 24 24 24 24 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 26 0

20 0 0 25 25 25 25 25 25 25

22 0 0 0 0 0 0

21 21 21 21 21 21 0 0 23

19 19 19 19 19 19 19 19 19 19 19 19 19 19 0 0 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 32 33 34 0 0 0 0 0 0 32

0 0

34 34 0

0 0 0 34 0 0 0 0 0 0 0 0

33 0 0 34 34 34 34 34 34 34

32 0 0 33 33 33 33 33 33 33 33

31 0 0 32 32 32 32 32 32 32 32 0

29 29

30 30

27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 0 0 31 31 31 31 31 31 31 31 31 31 31

28 0 0

0 26 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 23 0 27 0 0 27 24 27 24 27 0 27 28 0

0 27 27 0 0 0 0 0 0 0 0 28

0 27 0 0 0 0 0 0 0

0 27 0 0 0 0 0

0 0

0 27 0 0 0 0 0

25 25

0 0 26

23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 27

24 0 0 0 0 0 0 0 0

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492

33 34 0 0 0 0 0 0 0 0 0 0 0 0 33 34 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

34 0

0 0 34 34 34 34 34 34 34 34 34 34 34 34 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 33 33 33 33 33 33 33 33 33 33 33 33 33 0 0 34 34 34 34 0 0 0 0 0 0 0 0 0 0 0

29 29 29 29 29 29 29 29 29 29 29 29 29 0 0 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33

30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 0 0 34 34 34 34 34 34 34 34 34 34

31 31

32 32

0 28 0 28 0 28 0 28 0 26 0 26 0 29 0 0 29 0 29 30 29 0 29 30 0 25 30 25 30 0 30

28 0 0 0 0 0 0 0 0 0 0 0 0 0 29 29 0 0 0 0 30 30 30 0 0 0 0 0 0 0 0

0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 30 30 0 0 0 0 0

0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 30 0 0 0

0 0

0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 30 0 0 0

25 0 0 0 0 0 0

26 26 26 26 26 26 26 26 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 29 29 29 29 29 29 29

27 27

0 0 0 0 0 0 0 0 28

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

0 0

0 0

0 0

0 0

0 0

0 0

0 0

33 33

34 34

31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 0 0 31 0 31 0 31 0 0 32 27

0 31 31 0 0 0 0 0 0 0 0 32

0 31 0 0 0 0 0 0 0

0 31 0 0 0 0 0

0 0

0 31 31 31 31 0 0

30 30

29 29

27 0

28 28

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554

0 0

0 0

0 0

0 0

0 0

0 0

0 0

33 33 33 0

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

31 27 32 33 32 0 32 33 0 28 32 28 33 0 33 0 0 0 0 34 0 0 34 0 29 33 29 34 0 34 0

32 32 0 0 33 33 33 0 0 0 0 0 0 0 0 0 0 0 0 0 34 34 0 0 0 0 0 0 0 0 0

0 0 0 32 0 0 0 0 33 33 33 33 0 0 0 0 0 0 0 0 0 0 0 34 34 34 34 0 0 0 0

0 0 0 0 0 32 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0

0 0

0 0 0 0 0 32 32 32 0 0 0 0 0 33 33 33 33 33 33 33 33 33 33 0 0 0 0 0 34 34 34

30 30

29 0 0 33 33 33 33 33

0 31

28 28 28 28 28 28 28 28 28 0 0 32

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 30 34 30 0

0 0

0 0

0 0

0 0

0 0

30 0 0 34

33 33

31 31

32 32

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 31 0 31 33 0 33 0 0 0 0 32 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

34 34

33 33 33 33 33 0

31 31 0

32 32 32 32 32 32 32 32 32 32 32 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

617 618 619 620 621 622 623 624 625 626 627 628 629 630

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 34 0 34 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 34 34 34 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction and Background
	1.1.1 Wispeco Aluminium
	1.1.2 Anodising Plant

	1.2 Problem Statement
	1.3 Project Aim and Rationale
	1.4 Activities, Tasks, Deliverables, Resources and Constraints

	2 Literature Review
	2.1 Classifying Scheduling Problems
	2.1.1 : Machine Environment
	2.1.2 : Job Characteristics
	2.1.3 : Objective Function
	2.1.4 Summary

	2.2 Solution Strategies and Applications
	2.2.1 Heuristics
	2.2.2 Application: Flow Shop
	2.2.3 Application: Single Hoist Scheduling of Electroplating PCB's
	2.2.4 Application: Multi-degree scheduling

	3 As-is Scheduling
	3.1 Problem Investigation
	3.1.1 Stages
	3.1.2 Colouring

	3.2 Scheduling
	3.2.1 Order Scheduling
	3.2.2 Crane Scheduling

	4 Algorithmic Approach and Solution
	4.1 Model Parameters
	4.2 Model Variables
	4.3 Model Constraints
	4.3.1 Constraints for Crane 1
	4.3.2 Constraints Defining the Crane Capacity
	4.3.3 Constraints Rejecting Crossover of Cranes

	5 Results
	5.1 7 August 2017- Day shift
	5.1.1 Current Schedule
	5.1.2 FIFO
	5.1.3 Priority
	5.1.4 Shortest Processing Time

	5.2 22 August 2017- Day shift
	5.2.1 Current Schedule
	5.2.2 FIFO
	5.2.3 Priority
	5.2.4 Shortest Processing Time

	5.3 23 August 2017- Day shift
	5.3.1 Current schedule
	5.3.2 FIFO
	5.3.3 Priority
	5.3.4 Shortest Processing Time

	5.4 The best heuristic
	5.5 Validation
	5.6 Sensitivity Analysis
	5.6.1 More Sealing or Anodising tanks
	5.6.2 Higher demand

	6 Conclusion and Recommendations
	6.1 Conclusion
	6.2 Recommendations
	6.2.1 Future Projects

	Bibliography
	A Signed Industry Sponsorship Form
	B Priority Indication Form
	C Python Algorithm
	D Schedule Gantt Chart: 7 August 2017

