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Abstract

A modelling framework that describes the dynamics of populations of the female Anopheles
sp mosquitoes is used to develop and analyse a deterministic ordinary differential equation model
for dynamics and transmission of malaria amongst humans and varying mosquito populations.
The framework includes a characterization of the gonotrophic cycle of the female mosquito. The
epidemiological model also captures a novel feature whereby treated human’s blood can become
mosquitocidal to the questing mosquitoes upon the successful ingestion of the treated human’s
blood. Analysis of the disease free system, that is the model in the absence of infection in the
human and mosquito populations, reveals the presence of a basic offspring number, N , whose size
determines the existence and stability of a thriving mosquito population in the sense that whenN ≤
1 we have only the mosquito extinction steady state which is globally asymptotically stable, while for
N > 1 we have the persistent mosquito population steady state which is also globally asymptotically
stable for these range of values ofN . In the presence of disease, N still strongly affects the properties
of the epidemiological model in the sense that for N ≤ 1 the only steady state for the system is
the mosquito extinction steady state, which is globally and asymptotically stable. As N increases
beyond unity in the epidemiological model, we obtained the epidemiological basic reproduction
number, R0. For R0 < 1, the disease free equilibrium, with both healthy thriving susceptible
human and mosquito populations, is globally asymptotically stable. Both N and R0 are studied
for control purposes and our study highlights that multiple control schemes would have a stronger
impact on reducing both N and R0 to values small enough for a possible disease vector control and
disease eradication. Our model further illustrates that newly emerged mosquitoes that are infected
with the malaria parasite during their first blood meal play an important and strong role in the
malaria disease dynamics. Additionally, mosquitoes at later gonotrophic cycle stages also impact
the dynamics but their contributions to the total mosquito population size decreases with increasing
number of gonotrophic cycles. The size of the contribution into the young mosquito population
is also dependent on the length of the gonotrophic cycles, an important bionomic parameter, as
well as on how the mosquitoes at the final gonotrophic cycles are incorporated into the modelling
scheme.
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Highlights

• Gonotrophic cycles are essential in mosquito size and malaria disease burden estimation.

• Basic offspring number, which depends on number of gonotrophic cycles, determines existence,
stability and size of a mosquito population.

• For , a disease threshold parameter exists; for, a globally asymptotically stable human and
mosquito steady-state co-exists.

• Newly emerged mosquitoes exposed to malaria parasites during first blood meal strongly influ-
ence malaria disease burden/dynamics.

• Gonotrophic cycle length affects and size of the contribution into the aquatic/young mosquito
population.
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1 Introduction

Malaria, a parasite-caused disease, remains one of the most highly prevalent and deadly human dis-
eases, with significant impact in the tropics, especially, sub-saharan Africa. Although, between 2000
and 2015 malaria mortality rates fell among all age groups, including children under five, [30], there
were about 216 million cases of malaria in 91 countries in 2016 (an increase of five million compared
with 2015) and, in fact, the number of malaria cases has been increasing in some parts of the Amer-
icas, South-East Asia, Western Pacific and Africa. Thus, although in many other regions infections
are stable or going down, the severity of the malaria problem is still a cause for concern.

There has been an appreciable effort at the world stage level to fight malaria infestation as a
disease within human populations. Some of these efforts have been successful at the local level, where
some WHO areas have recorded zero new cases of malaria over an appreciable period of time [30].
Most of the large scale efforts, starting with the UN sponsored Garki project [14], through the Roll
Back Malaria initiative or the partnership towards a world free of malaria together with the Bill and
Melinda Gates foundation as well as some private research initiatives towards the development of an
effective vaccine against malaria disease [9], are still to yield fruits. Measuring the level of success of
the control efforts at the local and global scale requires the use of indices that are robust enough to
serve as indicators of progress or failure. Some approaches that have been used as measurable indices
of control include, but are not limited to, the computation of the incidence rate (the number of new
infections from susceptible individuals per unit time), the prevalence rate (the proportion of infections
in the entire population) and others. Each of the aforementioned indices, though very useful as an
immediate indicator of disease presence, is static and may not be very useful if one was to begin to
study the disease dynamics over longer periods of time. In this case, one may wish to examine dynamic
indices of transmissibility such as the secondary attack rate (the proportion of infected individuals in
a country or region amongst the susceptible population that are in contact with each primary infected
person in the population) or the reproduction number (the average number of successful transmissions
attributable to each infected person). The secondary attack rate measures the risk of transmission
and carries limited information as it can only indicate the risk as a range from low to high, while the
reproduction number would offer a more accurate and dynamic index to quantify the actual number of
possible new cases. The reproduction number is largest when the single infectious person is introduced
into a completely susceptible population; this would be the case of the introduction of a new infectious
malaria carrier into a malaria free zone where conditions of transmission are favourable. When the
reproduction number is calculated for a situation where we have a new infection introduced into a
completely susceptible population, we talk of the basic reproduction number. The theory asserts that
the infection can spread into the population if the basic reproduction number is greater than one.

Calculating the basic reproduction number for a disease requires that one understands all features
of the particular infectious disease such as effective contacts rates, incubation periods, recovery rates,
etc, that will be different for different infectious diseases. For the case of malaria, the computation
of the reproduction number is complicated by the fact that the malaria parasite has adapted its life
cycle so that it needs to grow both in the human and the mosquito population and by the fact that
the parasite is naturally passed from one human to the other only because of the human biting habit
of the Anopheles sp mosquito. That is, each single mosquito must bite two different humans at two
different times to be able to serve as a vector for the malaria transmission rom one human to another.
Within the framework of the mosquito’s life style, we assume that these two different effective bites
will take place at two distinct gonotrophic cycles. This requirement for the mosquito to have an
effective biting contact involving two different humans means that we must study the characteristics
of the disease within both the mosquito and human populations. From the mathematical perspective,
we need to develop mathematical models that capture the dynamics of both the mosquito and the
human populations in a more accurate manner. One important byproduct of a good mathematical
model for the dynamics of malaria transmission is the formula for the basic reproduction number.
Several models for dynamics of malaria transmission and the population dynamics of malaria vector
have been studied. These include [18, 19, 17, 15, 16, 21] among many others. However, in the current
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literature we have not come across mathematical models that take into consideration the fact that for
the malaria disease to be transmitted from one human to the next by the Anopheles sp mosquito, the
vector must bite the two persons involved at different times. The purpose of the current manuscript
is to derive and study a mathematical model for the dynamics of malaria transmission that takes into
consideration the multiple biting habit of the mosquito and, in the process, to derive a more realistic
estimate for the basic reproduction number for malaria. We exploit the fact that the mosquito’s
reproductive life cycle can be divided into gonotrophic cycles1 and, while counting the number of such
gonotrophic cycles, we use the time lapse required to complete each gonotrophic cycle as a means to
indirectly include the mosquito’s age structure into the mosquito-human interactive framework. So,
only the mosquitoes in the transmission chain that are old enough and were infected early enough
would contribute to the process of transferring the malaria infection from human to human. We
continue to build our model within the earlier framework proposed by Ngwa [18] and used before in
Ngonghala et al. [15, 16, 17] and Nourridine et al. [21]. In the following subsection, we briefly describe
this framework and also indicate the objectives of this paper.

1.1 The mosquito reproductive stages and demographic framework

Each mosquito can be in one of three physiological states: (i) at the breeding site (these are adult
female vectors at the breeding site that are either newly emerged or are older but have laid eggs
at least once before), (ii) questing for blood meals (these are the questing vectors: fertilized and
searching for blood meals), and (iii) resting after a blood meal in preparation for reproducing (these
are mosquitoes resting after a blood meal and that will eventually move to a breeding site to lay eggs, if
they arrive there successfully). Each vector can also have different infection status: infected, infectious
or susceptible. It is understood that for a single mosquito to transfer an infection from one human
host to another, three conditions must be satisfied: first, it must bite two hosts at different sufficiently
distinct points in time, second, the mosquito must survive during the infection’s development; that is,
between the time the mosquito is infected and the time when it has become infectious and thus in the
position to transfer the infection to the next human host and, third, a physiological reproductive need
must be triggered so that the mosquito starts seeking for another blood meal. The meeting of these
requirements play an important role in the malaria transmission problem and also has a direct bearing
on the size of the mosquito population since each successful gonotrophic cycle leads to an increase in
the mosquito’s population as more offspring may arise. Now, for the Anopheles sp mosquito and the
malaria parasite for example, it takes about 10 days from the time the mosquito ingests the malaria
gametocytes from an infectious human to the time when the mosquito is able to transfer the infection
to another human if, and when, it has a successful contact with that human, [22]. During the adult
female mosquito’s terrestrial life period, the reproductive centred activities of blood feeding and egg
laying continue and it is assumed that at some point in its quest for blood meals from the human
population, the mosquito can become infected with the malaria parasite. However, because of the 10
days time lapse between being infected and being infectious, any active mosquito that successfully
picks up a malaria infection will become infectious after at least two gonotrophic cycles. From this
reasoning, an adult mosquito that got infected with the malaria parasite within the first few days of
eclosion can be come infectious to humans only approximately from its second week of existence after
hatching from the pupa. To mathematically capture the disease dynamics, the incubation period as
well as the period of infectivity for the disease within the mosquito population can be built directly
into the number of gonotrophic cycles that the mosquito could have had during its entire life history
as we now present below

Reproductive success of mosquitoes requires that a newly emerged adult female mosquito locates
a mating partner followed by proper mating. For the Anopheles sp mosquito, the mating takes place
within the first 3 − 5 days of the adult’s life. There is a controversy over which event comes first:

1The cyclic path of blood feeding −→ resting for egg maturation −→ oviposition −→ blood feeding that is repeated
several times during the mosquitos entire reproductive life is referred to as the gonotrophic cycle. The length of the
gonotrophic cycle is the interval between successive batches of eggs.

4



mating before the first blood feeding episode or taking the first blood meal before mating and whether
the female mosquito re-mates at all, [31, 29]. Here, we assume that the female Anopheles sp mosquito
mates once and, after mating she stores the spermatozoa in spermatheca after copulation, so that
during each subsequent oviposition, the eggs can be fertilized during their transit through the oviduct
[25, 4, 6, 10, 3, 7]. When the fertilized female mosquito ingests blood, she rests while the blood is
digested and the eggs are developed. Afterwards she migrates to a suitable place, the vector breeding
site, where she lays her eggs and then resumes seeking a host for the next blood meal. The cycle of
blood feeding and egg laying, also known as the gonotrophic cycle [11], repeats itself until the female
dies. In the current paper, we explicitly count the gonotrophic cycles that a reproducing mosquito
can undergo in its entire reproductive life, as in [20], but for the sake of mathematical tractability,
after cycle two, we lump all subsequent gonotrophic cycles into the third gonotrophic cycle through
a feedback looping mechanism to ensure that we capture all the questing population, as shown in
Figure 1 below. This assumption introduces long lived mosquitoes, in contrast to [20] where it was
assumed that in the last cycle, the mosquito lays its last batch of eggs and dies. Though the later is
more realistic, we continue to use the former for mathematical tractability. So, all mosquitoes that
are still alive and active after the third gonotrophic cycle are re-classed into the third cycle. What is
sought, and captured, in the modelling here is the fact that each reproductive episode is preceded by
a successful blood meal ingestion from a human host; an activity that may result in the transmission
of the malaria infection between the human and the mosquito hosts. However, only mosquitoes that
have gone through two or more gonotrophic reproductive cycles, and that were infected at least two
cycles earlier, can transmit the infection to the human.

The identification of a mosquito at different stages of the gonotrophic cycle, its vital demographic
parameters as well as its physiological and disease status, places it into easily identifiable compart-
ments that can be useful for the purposes of mathematical modelling. We note that many of these
compartments will overlap. For example, while the physiological compartments are mutually exclusive
with each other, the disease and physiological compartments can overlap. The compartmentalization
so constructed allows us to follow the progression of each vector through the different classes, as they
proceed with survival strategies. So, a newly emerged adult female mosquito must mate, seek and
receive a blood meal, rests, lays eggs to complete its first reproductive cycle, and then the pattern of
blood feeding, resting and egg laying is repeated in each cycle as many times as it is possible during
ts entire adult life period. In the process of taking a blood meal from an infected human, it can get
nfected and can also pass on the infection to the next human as soon as the parasite has matured in

the mosquito. So the disease dynamic processes can be coupled to the life style of the mosquito by ex-
ploiting the fact that the mosquito has a human blood feeding habit. A rather remarkable complement,
and a completion of the coupling process, is the ability, through this modelling framework, to quan-
tify the reproductive gains that accrue to the mosquito consequent on its interaction and successful
acquisition of a blood meal from humans.

Ingestion of a vertebrate’s blood is an integral part of the female Anopheles sp mosquito’s repro-
ductive life and each egg laying episode is preceded by a vertebrate blood meal. The blood feeding
habit of the mosquito is also influenced by its blood preference factor in the sense that some mosquitoes
prefer human blood (anthropophilic mosquitoes), while the others prefer non-human blood (zoophilic
mosquitoes). We do not explicitly consider mosquitoes which prefer to feed on non-human blood in
this paper since we can safely assume that such mosquitoes will not contribute to human malaria
transmission; even though they may contribute to the mosquito population size. Omitting these class
of mosquitoes does not adversely affect the analysis presented here since only those mosquitoes that
repeatedly feed on humans, and thus are most likely to be responsible for the human malaria trans-
mission are of interest in this study. It is not well understood whether mosquitoes can change their
blood preference subject to availability of vertebrate host, however we shall use the fact that there is
a possibility of alternative blood meals (from non-human host) for the mosquito, when we derive the
expression for the flow rate of the breeding site mosquitoes to human habitats, to emphasize the fact
that we have not considered the conservation of all breeding site mosquitoes in the modelling process.
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Within the human population we only consider a compartmentalization according to the disease
status and divide the human population into three classes: the susceptible (Sh), infectious (Ih) and
treated (Th). So progression from the susceptible to infectious class occurs after a successful encounter
with an infectious questing mosquito, while progression from the infectious to the treated compartment
occurs only after treatment. Treatment provides recovery from the infection with partial immunity so
that members from the treated class eventually become susceptible after some time. An added feature
of the treated class is that its members’ blood become toxic to mosquitoes so that a questing mosquito
that feeds on this class may die due to the fact that the treatment renders the treated human’s blood
mosquitocidal because it contains engineered deadly antigens, [23]. It is assumed that, because of the
cost, only those that are infected with malaria and present with symptoms receive the treatment. So
one objective of this paper is to measure the impact of this feature of the treated malaria patients
on the overall dynamics of the malaria transmission problem. However, the primary objective of this
paper is to asses the impact of the additional compartments modelling the fact that we allow only aged
mosquitoes in the transmission chain to be infectious to humans, particularly from the points of view
of the mosquito population size, malaria disease control and the measurable index of transmissibility.
The outcome is an improved formula for the basic reproduction number for malaria.

The remaining part of the paper is organised in the following way: in Section 2 we present in detail
the model formulation and show how the different compartments link up together into a coherent
framework for mosquito-human-mosquito-malaria interactions. We show how we can scale the system
to reduce the relevant parameters at the end of Section 2. In Section 3 we begin the analysis of the
model with the disease free, or mosquito only dynamics model, and continue the analysis with the full
epidemiological model in Section 4. We conclude the paper with a discussion in Section 5, where we
also present possible areas of control and an overall conclusion.

2 Model formulation

We now give a detailed derivation of the model equations to be studied in this paper. We consider,
for a start, an SITS (Susceptible-Infectious-Treated-Susceptible) model for the malaria transmission
dynamics in the human population and an SI epidemiological model for the malaria dynamics in
the mosquito population. As we shall see, though we consider an SI epidemiological model for the
dynamics in the mosquito population, what we get is in fact an SEI epidemiological model because
the recognition of the different gonotrophic cycles introduces an age structure in the model.

2.1 Notation

The notation for the different types of state variables, that captures the different compartments
discussed above, is explained and shown in Table 1. Since all mosquito and human state variables
can either be in an infected or susceptible state, we identify susceptible variables with the letter S
and infected variables with the letter I, followed by subscript that will further identify the type of
the variable being used. For example, Iuk,j is used to represent an infected mosquito of type U that
is in its k-th reproductive stage and picked up the infection at its j-reproductive stage, and Suk is
used to represent a susceptible mosquito of type U at the reproductive stage k. Thus aging is factored
into the modelling framework by counting and identifying the reproductive stages of each mosquito
through the subscripts k and j, as explained in Table 2. The double subscript notation employed
here allows us to track each active mosquito through its reproductive stages and so indirectly captures
an age structure2 of the population in the sense that at the same reproductive stage, mosquitoes of
type V are always younger that mosquitoes of type U . In fact, all adult mosquito of type V at the
reproductive stage k are always considered far younger than mosquitoes of type U at the reproductive
stages k + 1, k = 1, 2, . . . ,. The parameters of the system are detailed in Table 3 where, we display
each parameter of the system stating clearly its physical meaning and quasi dimensional unit.

2We ignore all those adult mosquitoes that do not succeed to enter the reproductive cycle chain for any reasons.
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Type of variable Description Quasi-
dimension

V These are vectors at the breeding site that are either
newly emerged or have returned to the breeding site
to lay eggs. We call these the breeding site vectors.

M

W These are vectors that have left the breeding site (per-
haps to the human habitat) to search of a blood meal.
We call these questing vectors.

M

U These are vectors that have succeeded in acquiring a
blood meal and are now resting in view of returning
to the breeding site to lay eggs. We generally refer to
these type of vectors as reproducing vectors.

M

Nh Host of human type from which the mosquito can draw
needed blood as needed for its survival as a species

H

A Aquatic stages of the vector: these include eggs, larvae
and pupae

A

Table 1: Types of state variables and their quasi dimensional unit which is either H for humans, A
for aquatic life stage, and M for adult mosquitoes or terrestrial forms of the mosquito

State variable Description Quasi-
dimension

Sh, Ih, Th Density of susceptible, infectious and treated humans H

Slk Density of susceptible vectors of type l in the k-th
reproductive stage of their life, k ≥ 1 and l ∈ {u, v, w}.

M

Ilk,j Infected vector of type l at the reproductive stage
k, that was first exposed and picked up the malaria
infection at the reproductive stage j, k, j ≥ 1 and
l ∈ {u, v, w}.

M

Table 2: Detailed description of state variables showing the disease status and their quasi-dimension.
The human and mosquito populations are both divided into classes representing disease status; that is,
susceptible and infectious classes. The mosquito population is further divided into classes representing
physiological status as well as the stage of their life in terms of the gonotrophic cycle count.

As indicated earlier, the human population is divided into three classes linked to their disease
status: the susceptible (Sh), infectious (Ih) and treated (Th). The new feature here, based on the
recent 2018 study, [23], is that the treated class T is completely protected against further infection
for the time when the medication is active, while at the same time the blood from humans T has
a mosquitocidal effect on the questing mosquitoes. Interactions between questing mosquitoes and
humans from the treated class therefore can serve as an additional cause of death for the questing
mosquitoes. Births occur in all human compartments at rate λh, while natural deaths occur at rate
µh. Infected humans can recover without treatment at rate rh to join the susceptible class, while the
infected humans receive treatment at rate δh to enter the treated class, where they eventually loose
their protection at the rate γh to join the susceptible class. Disease related deaths have not been
considered in the present formulation.

The mosquito population is divided into two broad classes: the aquatic class representing juvenile
forms of the mosquito and the terrestrial class representing the adult forms of the mosquito. The
terrestrial class is further divided into compartments representing the physiological status so that at
any time t we have:

(i) type V mosquitoes, which are the mosquitoes at the breeding site, that are either newly emerging
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from the aquatic stage, or have returned to the breeding site after their resting period to lay
eggs;

(ii) type W mosquitoes that have left the breeding site and are questing for blood meals within the
human population;

(iii) type U mosquitoes that have successfully acquired a blood meal from a human and are now
resting before returning to the breeding site to lay eggs.

The transition from type V to type W is triggered by the reproductive need that requires that a female
mosquito ingests vertebrate blood for the maturation of her eggs, while the transition from type W
to type U is made possible by a successful acquisition of a blood meal from a human and, finally, the
transition from type U to type V is possible only if the mosquito survives the resting period required
for the maturation of her eggs. It is assumed that in each of these states, the mosquito can be killed.
For example, it is assumed that if a mosquito fails to acquire a blood meal during an interaction with
a human, then it has been killed. Each of the U , V and W types of mosquitoes are further divided
into sub classes representing its reproductive stage as determined by the number of gonotrophic cycles
it has undergone. With this compartmentalization, if Nu is the total size of the population of type
U , then Nu is obtained as the sum of all U type mosquitoes in different gonotrophic stages. Similar
definitions apply for the total size of breeding site mosquitoes, Nv, and the total size of questing
mosquitoes, Nw. So, from the adopted compartmentalization, in addition to the aquatic stage density
A, the total active adult mosquito populations Nm and the human population Nh at time t are given,
respectively, by

Nh = Sh + Ih + Th, Nm = Nu +Nv +Nw, (1)

where Nu is total size of the reproducing vectors, Nv is total size of the breeding site vectors and Nw

is the total size of the questing vectors. These are computed using the expressions

Nu =

3∑

k=1

Suk +

3∑

j=1

3∑

k=j

Iuk,j , Nv =

3∑

k=1

Svk +

2∑

j=1

3∑

k=j+1

Ivk,j ,

Nw =

3∑

k=1

Swk
+

2∑

j=1

3∑

k=j+1

Iwk,j
.

Natural deaths in all mosquito compartments are denoted by µ∗, where the subscript is the label of
the variable whose death rate we wish to describe. For example, µSv1 is the death rate of susceptible
vectors of type V at the gonotrophic cycle 1 and µIw3,1 is the death rate of infected questing mosquitoes
at the gonotrophic cycle 3 that were infected at gonotrophic cycle 1.

In Table 4, we show the transitions that take place within the mosquito populations. The full
human-mosquito interactive framework in the presence of malaria disease is shown in Figures 1 and
2. Basically, Figure 1 shows the flow and the progression of the mosquitoes from a lower gonotrophic
cycle count to higher ones. The points in the chain, where mosquitoes can interact with humans
are clearly indicated with the shaded H-box attached to relevant w mosquito compartment. All
mosquitoes that fail to take a blood meal at any H-interactive location are assumed to have been killed
during the interaction, and each mosquito that succeeds at this point transforms with probability qw
to a mosquito of type U , which later contributes to the aquatic stages of the mosquito population
through simple oviposition of eggs at the rate λv(U) per reproducing mosquito of type U . Type
U mosquitoes can either be infected, indicated by the I label, or susceptible (indicated with the S
label). Mosquitoes at gonotrophic cycle 3 (and above) that survive, re-enter the chain through a
pull back term at a reduced rate indexed with the proportion θk or θk,j . In Figure 2 we show the
human-mosquito interactive scenarios at the different gonotrophic cycles. Successful human-mosquito
interactions at all the gonotrophic cycles contribute to an increase in the mosquito population size
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and, if infection is successful, it is with probability phw and then, we also have the introduction of
new infections in the mosquito population. Successful mosquito-human interactions at gonotrophic
cycles 3, in addition to leading to an increase of the mosquito population size, may also lead to the
introduction of new infections into the human population with probability pwh. It is understood that
phw is, in general, different from pwh. The human-mosquito interactive points only show mosquitoes
of type W interacting with humans H. As in [17, 15, 16], we consider the following types of successful
transitions and possible outcomes:

(i) Successful interactions between mosquitoes and humans that do not lead to the transfer of
infection between the two species but lead to an increase in the mosquito population size;

(ii) Successful interactions between humans and mosquitoes that lead to the transfer of new infections
between the two species as well as to an increase in the mosquito population size;

(iii) Unsuccessful interactions between humans and mosquitoes are assumed to result in the death of
the latter.

In the present framework, we have not considered the possibility of unsuccessful interactions between
humans and mosquitoes after which the mosquito lives to try and bite a human again.

The epidemiological model studied in this paper is an SITS (Susceptible-Infectious-Treated-Susceptible)
model for the flow of the disease within the human population, as shown in Figure 2, and an SEI
(Susceptible-Exposed-Infectious) model for the flow of the disease within the mosquito population.
As mentioned earlier, one important novelty of the introduced model is the idea that blood from the
treated humans can have a mosquitocidal effect on the mosquitos upon ingestion, [23]. On the other
hand, a simplification here is that we assume an instantaneous infectiousness within the human popu-
lation while, in the mosquito population we allow for a development (incubation) of the disease, that
is captured through the aging process of the adult parasite carrying female mosquitos. More precisely,
the incubation period is described implicitly by considering the gonotrophic and life stage cycles. It
is illustrated in detail in Figure 1. There we see that any new infection that enters the mosquito
compartment comes as a result of a successful interaction between a type W susceptible mosquito and
an infectious human and, if this is the case, we allow at least six stages (representing a considerable
delay) from the moment of the first infection to the compartment labelled Iw3,1 , through which the in-
fection can pass into the human population. In the case of mosquitoes becoming infected in their first
gonotrophic cycle that, due to the mosquito’s life span, accounts for the majority of human infections,
it means that at least two gonotrophic cycles must pass before they become infectious. If a mosquito
gets infected at a later cycle, it still must pass through at least six life stages which are lumped into
2 or 1 gonotrophic cycles but, due to the mosquito life span, the chances of it living long enough to
be able to pass the infection to humans are small. Therefore, lumping the higher gonotrophic cycles
does not distort the overall picture of the spread of malaria.

On the other hand, we observe that a mosquito infected during its first gonotrophic cycle also must
live through six stages to become infectious in its third gonotrophic cycle hence, from the modelling
perspective, we can interpret the model as requiring the delay of two gonotrophic cycles between
becoming infected and becoming infectious also for the mosquitoes infected during the second and
third cycles. To make the notation consistent with this interpretation, we will treat the mosquitoes
that were infected in the third gonotrophic cycle, reproduced and begun the next gonotrophic cycle,
as if they were infected in the second cycle. In a similar way, to become infectious, the mosquitoes
that were infected during the second cycle, must live through one more cycle and, if they survive, they
reproduce and begin the next cycle, but then they are treated as if they were infected during the first
cycle. In this way, the infectious mosquitoes can be considered as having survived two gonotrophic
cycles after becoming infected and thus they are grouped in one class, labelled Iw3,1 , as if all of them
were infected in the first cycle.

We believe that our framework captures the fact that only older mosquitoes that were infected
early enough can be infectious to humans and thus there is a large portion of the mosquito population
that do not contribute to the transfer of the infection between humans.
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Parameter Description Quasi-
dimension

L Bio-transition factor or rate of oviposition per reproducing vector.
A measure of successful contribution into the aquatic stages.

AM−1

νA Rate of transition from aquatic to adult stage. T−1

ξv Bio-transition factor to measure successful transition from aquatic
to adult stage.

MA−1

µA,1 Natural death rate of aquatic stage organisms. T−1

µA,2 Additional death rate at the aquatic stage due to limitation of
aquatic resources.

A−1T 1

ρk Rate of flow of reproductive stage k susceptible resting vectors to
the breeding site.

T−1

ρk,j Rate of flow of resting vectors at reproductive stage k that was
first infected at reproductive stage j to the breeding site.

T−1

ak Rate of flow of breeding site vectors at reproductive stage k to
human habitat sites. This is weighted by the proportion of an-
thropophilic mosquitoes to zoophilic mosquitoes to give bk(H).

T−1

rh Rate of recovery of infectious humans. T−1

δh Rate of treatment of infectious humans. T−1

γh Rate of loss of protection from treatment. T−1

λ∗ Natural birth rate. In the human population it has the subscript
h, and in the vector population, it has the subscript v. In general
λ∗ is a density dependent function of the population size.

H (or M)
T−1

µ∗ Natural death rate. In the human population, it is has the sub-
script h while in the vector population the subscript is the label
for the class of vector under consideration. For example, µSv1 is
the natural death rate for susceptible vectors of type v in their
first stage of life. In general, µ∗ could be a function of the given
population size.

H (or M)
T−1

bw Human biting rate of the mosquitoes. The density of bites placed
on humans by each questing mosquito per unit time.

BM−1T−1

phw Infectivity of the humans to mosquitoes. It is the probability that
a successful bite placed by a susceptible mosquito on an infectious
human will transfer the infection to the mosquito.

1

pwh Infectivity of the mosquitoes to humans. This is the probabil-
ity that a successful bite placed by an infectious mosquito on a
susceptible human will transfer the infection to the human.

1

qw Probability of successfully acquiring a blood meal from a human. 1

θsk Fraction of susceptible reproducing vectors at reproductive stage
k that eventually survive to re-enter the chain.

1

θik,j Fraction of stage k reproducing vectors that first picked up infec-
tion at stage j and that eventually survive to re-enter the chain.

1

α Fraction of vectors that survive to enter the reproducing class after
successfully harvesting blood from treated humans.

1

Table 3: Description of parameters and their quasi-dimension: H(Humans), M(Mosquitoes at adult
stage), T(Time), B(Bites), A (Aquatic stage mosquitoes).
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Transition
schema

Description Rate and Outcome

Svk → Swk
(or

Ivk,j → Iwk,j
).

Type V susceptible vector (or infec-
tious vector at reproductive stage
k that first picked up infection at
stage j) is attracted to humans.

bk(H). Vector moves to hu-
man habitat to become a re-
productive stage k questing
vector.

Suk → Svk (or
Iuk,j → Ivk+1,j

)
Type U susceptible vector (or infec-
tious vector at reproductive stage k
that first picked up infection at re-
productive stage j) is attracted to
breeding sites. k → k + 1.

ρk, ρk,j . Vector moves to
breeding site to lay eggs as a
breeding site vector at repro-
ductive stage k + 1.

Swk
+ Sh →

Suk + Sh

Type W susceptible vector in its k-
th stage in life interacts to feed on a
susceptible human.

qwβk(Swk
, SH). Successful ac-

quisition of a blood meal →
reproducing vectors of type U ;
no new infections.

Swk
+ Ih →

Iuk,k + Ih

Type W susceptible vector at repro-
ductive stage k feeds on an infec-
tious human. Transfer of infection
may occur with probability phw to
produce an infected k-stage vector
of type U .

phwqwβk(Swk
, IH). Successful

acquisition of a blood meal →
reproducing infectious vector
of type U . New infections en-
ter the system through human
to mosquito transmission.

Swk
+ Th →

Swk
+ Th

Susceptible mosquito of type W in
its k−th stage in life interacts to bite
a treated human.

qwβk(Swk
, Th). Successful ac-

quisition of a blood. A frac-
tion α survives to become sus-
ceptible reproducing vectors
of type U ; no new infections.

Iwk,j
+ Sh →

Iuk,j + Ih

Infectious vector of type W at re-
productive stage k that was first
infected with the malaria parasite
at reproductive stage j interacts to
bite a susceptible human.

pwhqwβk(Iwk,
, SH). Successful

acquisition of a blood meal →
reproducing infectious vectors
of type U and an infectious
human. New infections enter
the system through mosquito
to human transmission.

Iwk,j
+ Ih →

Iuk,j + Ih

Infectious vector of type W at re-
productive stage k that first became
infected at reproductive stage j in-
teracts to bite an infectious human.

qwβk(Iwk,j
, IH). Successful

acquisition of a blood meal →
reproducing infectious vectors
of type U ; no new infections.

Iwk,j
+ Th →

Iuk,j + Th

Infectious vector of type W at repro-
ductive stage k that first became in-
fected at reproductive stage j bites
a treated human.

qwβk(Iwk,j
, TH). Successful

acquisition of a blood. A frac-
tion α survives to become sus-
ceptible reproducing vectors
of type U ; no new infections.

Table 4: Description of the different transitions and their outcomes. bk(H) = ak
H

H+κ , and the exposure

rate βm(Xm, Yh) = bw
XmYh
Nh

where Nh is the total size of the human population, Xm is a fraction of
the component of the vector population and Yh is a component of the human population. Whenever
there is a successful mosquito-human interactions, there is at least production of new mosquitoes.
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Figure 1: Figure showing the flow in the mosquito dynamics. The different gonotrophic cycle levels are
clearly shown and each lower level feeds into the higher level. The points where human interactions
with mosquitoes are possible are H-shaded, and the contributions to the aquatic stages are shown with
the dotted lines leading to the circular block labelled aquatic stages. Only mosquitoes of type W can
interact with humans and only mosquitoes that have successfully interacted with humans can change
status to mosquitoes of type U and enter the next gonotrophic cycle. Mosquitoes in gonotrophic cycles
greater than or equal to three are allowed to reenter the chain in the backward loop at the reduced
rate with the proportion θsk or θik,j , depending on the disease status of the mosquito. Reentering
infected mosquitoes are relabelled to indicate the number of gonotrophic cycles since infection so
that the infective mosquitoes are always treated as if they were infected during the first cycle. We
read this from this figure by observing that whenever a new infection enters the mosquito population
through a successful infection of a susceptible mosquito, we must wait at least 2 gonotrophic cycles
(or count six arrows from the point of first infection) before entering the class labelled Iw3,1 through
which the infection must pass to enter the human population. In this figure, #q (respectively, ##q)
is the probability that type Swk

mosquitoes, for k = 1, 2, 3 (respectively, type Iwk,j
mosquitoes for

k, j = 1, 2, 3), successfully acquire blood from a human, changing status to a corresponding type Sui
(respectively, Iuk,j ) mosquito. For # = 1, Swk

successfully acquired the blood meal from a susceptible
human; for # = α, it was acquired from a human treated with the modelled mosquitocidal drug,
however, the mosquito survived the mosquitocidal effects of the drug; for # = 1−phw, it was acquired
from an infectious human, however, the mosquito failed to pick-up the parasite from the infectious
human with probability 1− phw. For ##q, when ## = 1, Iwk,j

successfully acquired the blood meal
from either a susceptible human or an infectious human, meanwhile when ## = α, the successful
meal was from a treated human, with the mosquito surviving the mosquitocidal effects of the drug.

12



Mosquito - Human Disease 

Transmission Interaction

Gonotrophic 

Cycle Level I

Gonotrophic 

Cycle Level II

Gonotrophic 

Cycle Levels 

III

Gonotrophic Cycle Level I

with changed to ,

changed to  ,

changed to  ,

,
changed to  

,
.

+

Gonotrophic Cycle Level II

with changed to ,

changed to  ,

changed to  ,

,
changed to  

,
,

,
changed to  

,
,

,
changed to  

,
.

+

,

,
H

death

,

,
H

death

H
,

death

Figure 2: Figure showing the flow in the mosquito-human epidemiological model dynamics. The
points where the mosquito interacts with humans are possible are indicated with the H-shaded block
and the possible outcomes in the mosquito population and the flow of disease dynamics in the human
populations are indicated at each gonotrophic cycle. At the gonotrophic cycles 1 and 2, no new
infections are possible within the human population since the gonotrophic time period is shorter than
the sporogonic within-vector parasite cycle [27, 26]. However, at gonotrophic cycles 3 or more, new
infections are possible in the human population due to interactions between humans and infectious
mosquitoes and, as a result, there is a flow depicting new infections from the susceptible to the
infectious class in the human population. Demographic flows such as births and deaths are not shown
in this figure, but it is understood that natural death and births occur in each compartment, as
explained in the text.
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2.2 The flow and exposure rates

Here we briefly describe how we model the different flow and contact rates within and between the
mosquito and human populations.

(i) The flow rate from the breeding site to human habitat: We start with the premise that various
adult mosquitoes have different blood preferences in the sense that some mosquitoes prefer non-
human, or animal, blood over human blood (zoophilic mosquitoes), while others prefer human
blood meals over the animal ones (anthropophilic mosquitoes). However, the decision to target
a particular type of blood depends on a number of factors including, say, the proximity to the
blood source, and others, which we do not consider here. To proceed, we introduce parameters
that allow for quantifying the preferences of female Anopheles sp mosquitoes that seek, or quest,
for the vertebrate blood meals prior to the initiation of a gonotrophic cycle. We define two
blood preference factors, or zoophilic indices, Bh (the number of mosquitoes per human that
prefer human blood) and Bv (the number of mosquitoes per animal, or non-human host, that
prefer animal or non-human blood). So, if the density of humans and non-humans present are,
respectively, H and Ṽ , then from the just assumed definition of Bh and Bv, we have that
BhH and BvṼ mosquitoes get attracted to humans and non-humans, respectively3. Of the
BhH + BvṼ mosquitoes that leave the breeding site to become questing vectors, a proportion

BhH

BhH+BvṼ
= H

H+κ quest in the human population, while the remainder 1− H
H+κ will quest in the

animal population. We note that if either Bh = 0 or H = 0, then all female adult mosquitoes
will quest for blood within the animal population and we have a situation, where there are no
interactions with humans. Though in the mosquito only model we could still model the mosquito
population dynamics from an animal-mosquito perspective, this case is not very interesting from
the human-malaria-mosquito modelling perspective and so we do not pursue this angle here.
On the other hand, if either Bv = 0 or Ṽ = 0, then all female adult mosquitoes quest only
for human blood and we have solely anthropophilic mosquitoes to deal with. In what follows,
we shall assume that Bh > 0, Bv > 0, H > 0 and Ṽ ≥ 0 to capture the possibility of having
both zoophilic and anthropophilic mosquitoes. We then interpret κ = Bv

Bh
Ṽ as a parameter

that measures the presence of alternative blood source for mosquitoes. Here, as in [20], it is
reasonable to assume that each fertilized vector at each reproductive stage will have its blood
preference, but for simplicity, we have assumed that the blood preference will be the same for
all mosquitoes of the same species, and account only for anthropophilic mosquitoes. Therefore
the flow rate to humans by the breeding site mosquitoes is bk(H) = ak

H
H+κ , and ak is as defined

in Table 3.

(ii) The rate of exposure of humans to mosquitoes: The exposure rate of mosquitoes at the repro-
ductive stage k to humans βk(?, ?) is modelled using a restricted form of homogeneous mixing
based on the idea that the mosquito has a human biting habit. We start by defining the human
biting rate bw of questing mosquitoes at reproductive stage k as the number of bites placed
by each mosquito on humans per unit time so that if there are Nwk

questing mosquitoes at

the reproductive stage k and Nh humans, we have a total of bw
Nwk
Nh

bites per human per unit

time. If we have a total of Sh susceptible humans in the population, this leads to bw
Nwk
Nh

Sh

bites placed on susceptible humans and the proportion
Iwk
Nwk

bw
Nwk
Nh

Sh = bw
Iwk

Sh

Nh
is a measure

of the exposure of susceptible humans to potentially infectious mosquitoes at the reproductive
stage k. Therefore, the exposure rate between susceptible humans and infectious mosquitoes at

the reproductive stage k is βk(Iwk
, Sh) = bw

Iwk
Sh

Nh
. In general, the exposure rate between any

fraction of the human population Yh
Nh

, where the total human population is Nh, and the questing

mosquitoes of density Xwk
at the reproductive stage k, is βk(Xwk

, Yh) = bw
Xwk

Yh
Nh

. There are two
levels of having a successful exposure and/or effective contact: at the first level, the mosquito

3We do not insist on a conservation of the total mosquito population from the breeding site in this flow argument
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can successfully take a blood meal with probability qw and then live to reproduce, or this contact
fails with probability 1 − qw and the mosquito is assumed killed, while at the second level the
successful feeding can lead to the transfer of the infection, either from human to mosquito with
probability phw, or from mosquito to human with probability pwh. It is then understood that
where the transfer of infection was possible but did not take place, the chance is 1 − phw or
1− pwh, as the case may be.

(iii) The rate of recruitment into the aquatic stages: The rate of recruitment into the aquatic
stages will eventually determine the rate of adult mosquito eclosion (emergence of new adult
mosquitoes). We model this by assuming that the female reproducing mosquitoes have a birth
rate, that is, the density of offspring produced by one reproducing mosquito per unit time, and
define a real valued function λv : [0,∞) → R whose output is a measure of the birth rate per
reproducing vector of type U ∈ [0,∞) per unit time. We argue as follows: If each mosquito u
of type U eventually produces λv(u) aquatic organisms per unit time, then, in the presence of
u vectors of type U , λv(u) is the density dependent (only on mosquitoes of type U) per capita
birth rate. Therefore, u vectors (of type U) will lead to uλv(u) new aquatic type vectors per
unit time. The function λv must have some desired properties. When we consider all sources of
births in the mosquito population, the rate of contribution into the aquatic stages, for a given
recruitment function of our choice, is then an expression of the form

Rate of recruitment into aquatic stages =
∑

k

ρkλv(Suk)Suk +
∑

(k,j)

ρk,jλv(Iuk,j )Iuk,j , (2)

if it is assumed that each of these mosquitoes live separate and independent life style. On the
other hand we can assume that λv is a function of the total reproducing mosquito population,
Nu =

∑
k Suk +

∑
(k,j) Iuk,j , and hence we have an expression of the form

Rate of recruitment into aquatic stages =
∑

k

ρkλv(Nu)Suk +
∑

(k,j)

ρk,jλv(Nu)Iuk,j , (3)

where there is a strong dependence on the total size of the reproducing mosquitoes. The ac-
tual existence of mosquitoes to continue to the next generations depends on the fact that the
reproducing mosquitoes must find suitable breeding sites to lay their eggs. It may be that a
mosquito will choose a particular breeding site over another depending on several factors that
could include the absence of predators, presence of other larvae at that breeding site and even
the proximity from the resting place. Thus, the relationship between the reproducing mosquitoes
and the newly emerging adults cannot simply be assumed to be a linear response. This justi-
fies our assumption that the adult mosquito eclosion rate is density dependent. Some sources,
for example [5], use a delay modelling argument (after assuming the existence of a birth rate
function satisfying some biologically meaningful properties), to derive a formula for the rate of
emergence of new adults in a delayed differential equation framework. Others, see for example
[1, 12], approach the problem of modelling the rate of new adult mosquito eclosion by including
at least one (or more) state variable to represent the aquatic stages of the mosquito and then
evoke the idea that the limitation of the carrying capacity of the breeding site will introduce
a competition in the aquatic stages of the mosquito population’s eggs or larvae as a source of
nonlinearity and density dependence on the dynamics. Here, we simply assume that the net
effect of the activities of the reproducing mosquitoes contribute to the density of adult mosquito
vectors in the next generation through the birth term at a rate dependent on the birth rate
function λv : [0,∞)→ R, to write down the expressions given by (2) and (3). The function λv,
so described and fixed in general, is assumed to depend in a nonlinear way on the size of the
reproducing mosquitoes, the mosquitoes that eventually survive the questing processes and then
are in a position to lay eggs. Therefore the form of λv should therefore not be interpreted as
modelling the competition between the adult mosquitoes.
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(iv) The flow rate of resting vectors to the breeding site. Vectors of type U return to the breeding site
at the rate ρ∗, where the subscript is linked to the variable whose flow rate is described. Since
each mosquito only can be in one of two disease states (susceptible or infected), we distinguish
flow rates with either a single subscript notation for susceptible vectors or a double subscript
notation for infected vectors. For example, we write ρk to represent the rate of flow of susceptible
vectors of type U at the reproductive stage k, Suk , to the breeding site and ρk,j to represent the
flow rate of infected vectors of type U at the reproductive stage k that were first infected at the
reproductive stage j, Iuk,j , to the breeding site. We conjecture that that older vectors, perhaps
because of experience and memory effects [13], may have a faster flow rate to the breeding site
than younger ones that may need more time to search and locate it. However, in a simplistic
calculation, we can assume the flow rates to the breeding site to be the same for all ages.

(v) All other flow rates from one compartment to the other are simply assumed to be inversely
proportional to residence time within the given compartment.

2.3 The model equations

We now write down the equations for each state variable, based on the description given above.
The flow diagrams in Figures 1 and 2 show the links between the different compartments. By
counting the different state variables, following the compartmentalization shown in Figure 1, we can
work out the number of equations to formulate. In all we have: (i) The susceptible mosquito vari-
ables (Svk , Swk

, Suk), k = 1, 2, 3, leading to 9 equations in total, (ii) the infected mosquito variables
(Ivk,j , Iwk,j

, Iuk,j ), k, j ∈ {1, 2, 3}–12 equations, the human variables (Sh, Ih, Th)- 3 equations. In total,
we have 24 equations. Thus, the equations governing the rate of change of the different state variables,
including one aquatic stage, can be written down as we now present below.

For the dynamics within the mosquito population we have the 21 equations

dA

dt
= Rate of recruitment into aquatic stages − (νA + µA,1 + µA,2A)A,

dSv1
dt

= ξvνAA− (µSv1 + b1(Nh))Sv1 ,

dSw1

dt
= b1(Nh)Sv1 − (β1(Sw1 , Sh) + β1(Sw1 , Ih) + β1(Sw1 , Th))− µSw1Sw1 ,

dSu1
dt

= qwβ1(Sw1 , Sh) + (1− phw)qwβ1(Sw1 , Ih) + αqwβ1(Sw1 , Th)− (ρ1 + µSu1)Su1 ,

dIu1,1
dt

= phwqwβ1(Sw1 , Ih)− (ρ1,1 + µIu1,1)Iu1,1 ,

dSv2
dt

= ρ1Su1 − (b2(Nh) + µSv2)Sv2 ,

dIv2,1
dt

= ρ1,1Iu1,1 − (b2(Nh) + µIv2,1)Iv2,1 ,

dSw2

dt
= b2(Nh)Sv2 − (β2(Sw2 , Sh) + β2(Sw2 , Ih) + β2(Sw2 , Th))− µSw2Sw2 ,

dIw2,1

dt
= b2(Nh)Iv2,1 −

(
β2(Iw2,1 , Sh) + β2(Iw2,1 , Ih) + β2(Iw2,1 , Th)

)
− µIw2,1Iw2,1 ,

dSu2
dt

= qwβ2(Sw2 , Sh) + (1− phw)qwβ2(Sw2 , Ih) + αqwβ2(Sw2 , Th)− (ρ2 + µSu2)Su2 ,

dIu2,2
dt

= phwqwβ2(Sw2 , Ih)− (ρ2,2 + µIu2,2)Iu2,2 ,

dIu2,1
dt

= qwβ2(Iw2,1 , Sh) + qwβ2(Iw2,1 , Ih) + αqwβ2(Iw2,1 , Th)− (ρ2,1 + µIu2,1)Iu2,1 ,

dSv3
dt

= ρ2Su2 + θs3ρ3Su3 − (b3(Nh) + µSv3)Sv3 ,
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dIv3,2
dt

= ρ2,2Iu2,2 + θi3,3ρ3,3Iu3,3 − (b3(Nh) + µIv3,2)Iv3,2 , (4)

dIv3,1
dt

= ρ2,1Iu2,1 + θi3,2ρ3,2Iu3,2 + θi3,1ρ3,1Iu3,1 − (b3(Nh) + µIv3,1)Iv3,1 ,

dSw3

dt
= b3(Nh)Sv3 − (β3(Sw3 , Sh) + β3(Sw3 , Ih) + β3(Sw3 , Th))− µSw3Sw3 ,

dIw3,2

dt
= b3(Nh)Iv3,2 −

(
β3(Iw3,2 , Sh) + β3(Iw3,2 , Ih) + β3(Iw3,2 , Th)

)
− µIw3,2Iw3,2 ,

dIw3,1

dt
= b3(Nh)Iv3,1 −

(
β3(Iw3,1 , Sh) + β3(Iw3,1 , Ih) + β3(Iw3,1 , Th)

)
− µIw3,1Iw3,1 ,

dSu3
dt

= qwβ3(Sw3 , Sh) + (1− phw)qwβ3(Sw3 , Ih) + αqwβ3(Sw3 , Th)− (ρ3 + µSu3)Su3 ,

dIu3,3
dt

= phwqwβ3(Sw3 , Ih)− (ρ3,3 + µIu3,3)Iu3,3 ,

dIu3,2
dt

= qwβ3(Iw3,2 , Sh) + qwβ3(Iw3,2 , Ih) + αqwβ3(Iw3,2 , Th)− (ρ3,2 + µIu3,2)Iu3,2 ,

dIu3,1
dt

= qwβ3(Iw3,1 , Sh) + qwβ3(Iw3,1 , Ih) + αqwβ3(Iw3,1 , Th)− (ρ3,1 + µIu3,1)Iu3,1 .

For the dynamics within the human population we have three equations

dSh
dt

= λhNh + rhIh + γhTh − pwhqwβ3(Iw3,1 , Sh)− µhSh,
dIh
dt

= pwhqwβ3(Iw3,1 , Sh)− (rh + δh + µh)Ih, (5)

dTh
dt

= δhIh − (γh + µh)Th.

The novelty in the current modelling exercise lies in the fact that, in the absence of infection, Ih =
Iu∗,∗ = Iw∗,∗ = Th = 0, we have the mosquito population only dynamic model. In this case, the disease
free system is a three-stage reproductive system for the mosquito populations with one aquatic stage
A, given by the system of equations:

dA

dt
= Rate of recruitment into aquatic stages − (νA + µA,1 + µA,2A)A,

dSv1
dt

= ξvνAA− (µSv1 + b1(Nh))Sv1 ,

dSw1

dt
= b1(Nh)Sv1 − β1(Sw1 , Sh)− µSw1Sw1 ,

dSu1
dt

= qwβ1(Sw1 , Sh)− (ρ1 + µSu1)Su1 ,

dSv2
dt

= ρ1Su1 − (b2(Nh) + µSv2)Sv2 , (6)

dSw2

dt
= b2(Nh)Sv2 − β2(Sw2 , Sh)− µSw2Sw2 ,

dSu2
dt

= qwβ2(Sw2 , Sh)− (ρ2 + µSu2)Su2 ,

dSv3
dt

= ρ2Su2 + θs3ρ3Su3 − (b3(Nh) + µSv3)Sv3 ,

dSw3

dt
= b3(Nh)Sv3 − β3(Sw3 , Sh)− µSw3Sw3 ,

dSu3
dt

= qwβ3(Sw3 , Sh)− (ρ3 + µSu3)Su3 ,

with the associated equation

dSh
dt

= (λh − µh)Sh. (7)
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Given that in the absence of infectionNh = Sh, this is also the equation for the total human population.
Since the interaction between the mosquitoes and the humans does not have an effect on the human
population except in the presence of the disease, equation (7) shows that if λh > µh we have growth in
the human population and decay when λh < µh. For simplicity, we can assume that λh = µh leading
to a constant human population model. The disease free model is therefore capable of displaying more
complex behaviour from the point of view of the mosquito than is the case with conventional malaria
models.

For the total mosquito population under consideration, we separate the aquatic stages from the
adult stages and denote the total sum of the active adult mosquitoes of type U, V and W , respectively,
by Nu, Nv and Nw, as shown in (1), and from linearity we have,

dA

dt
= Rate of recruitment into aquatic stages − (νA + µA,1 + µA,2A)A,

dNv

dt
=

3∑

k=1

dSvk
dt

+

2∑

j=1

3∑

k=j+1

(
dIvk,j
dt

)
,

dNw

dt
=

3∑

k=1

dSwk

dt
+

2∑

j=1

3∑

k=j+1

(
dIwk,j

dt

)
, (8)

dNu

dt
=

3∑

k=1

dSuk
dt

+

3∑

j=1

3∑

k=j

dIuk,j
dt

,

so that adding up all the relevant equations from (4) we have the system

dA

dt
= Rate of recruitment into aquatic stages − (νA + µA,1 + µA,2A)A, (9)

dNm

dt
= ξvνAA− bw(1− qw)Nw − (1− α)

ThNw

Nh
− natural deaths, (10)

where

natural deaths =

3∑

k=1

(µSvkSvk + µSukSuk + µSwk
Swk

) +

2∑

j=1

3∑

k=j+1

(
µIvk,jIvk,j + µIwk,j

Iwk,j

)

+

3∑

j=1

3∑

k=j

(
µIuk,jIuk,j .

)
(11)

For simplicity, we assume a constant rate of oviposition, so that the function λv : [0,∞) → R is the
constant function, λv(x) = L, ∀x ∈ R+, in which case models (2) and (3) will lead to the same rate
of oviposition given by

Rate of recruitment into aquatic stages = L


∑

k

ρkSuk +
∑

(k,j)

ρk,jIuk,j


 . (12)

Then, the equations governing the total population take the form

dA

dt
= L


∑

k

ρkSuk +

3∑

j=1

3∑

k=j

ρk,jIuk,j


− (νA + µA,1 + µA,2A)A, (13)

dNm

dt
= ξvνAA− bw(1− qw)Nw − (1− α)

ThNw

Nh
− natural deaths, (14)

where the expression for natural deaths is given by (11). Equation (13) shows that each reproducing
vector supplies the aquatic stages at the constant rate L and that the rate of removal of organisms
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from the aquatic stage comprises the transitions into the adult stage at the rate νA, the deaths from
natural causes at the rate µA,1 and additional deaths due to overcrowding at occur at the rate µA,2A.
Equation (14) shows that the rate of increases of the total adult population is determined by the
quantity of new adults emerging from the aquatic stages at the rate ξvνA and the deaths or removals
due to three reasons (1) deaths due to natural causes, (2) deaths due to unsuccessful interaction
with the human population with probability (1− qw) and (3) deaths with probability (1− α) due to
the mosquitocidal effect of the drugs used in the treatment of infected persons, [23]. Equation (14)
clearly shows the dependence of the size of the total population on the size of the questing mosquito
population. The natural death for mosquitoes at each reproductive stage is assumed to be inversely
proportional to their life span, which in turn is determined by how much time is left for the mosquito
to live as captured by the gonotrophic cycle counter at that time. Now, since all the death rates
are constant, the total death rate for the adult mosquito population is µNm for some constant µ.
A proposal on how to calculate these residence times, and hence the natural death rates was given
in [20]. Essentially it is assumed that the youngest vectors are the susceptible mosquitoes of type
V just emerging from the aquatic stage, represented here by Sv1 , while the oldest vectors are the
reproducing vectors of type U at the last reproductive stage. We use the following argument to derive
a system of equations whose solution will contain the solution of the system (13)-(14). From the
continuity and positivity of the variables and parameters, there exist a positive constant c such that(∑

k ρkSuk +
∑3

j=1

∑3
k=j ρk,jIuk,j

)
≤ cNm since each S∗ ≤ Nm. So, ignoring all the other sources

of death for the adults mosquito population, we can argue that from continuity and positivity, there
exist µ > 0 such that the sum over all natural death rates is bounded above µNm. So, we can use the
equivalent system

dA
dt ≤ LcNm − (νA + µA,1 + µA,2A)A,

dNm
dt ≤ ξvνAA− µNm,

}
(15)

from which using standard results on differential inequalities and the solutions of the corresponding
system, we can establish boundedness of solutions (13)-(14). System (15), with equality is monotone
competitive and clearly has bounded solutions. In fact, we can easily show that there exists a parameter
Ñ = LcξvνA

µ(νA+µA,1) such that for Ñ < 1 the only steady state of the system is the trivial steady state

(Nm, A) = (0, 0) which is globally and asymptotically stable, while for Ñ > 1, there is a unique
non-trivial steady state (Nm, A) = (N∗

m, A
∗) which is globally also globally and asymptotically stable.

That is, a transcritical bifurcation occurs at Ñ = 1 where a stable non-trivial steady state solution
emerges as the trivial steady state solution looses stability as Ñ increases through Ñ = 1. So the
solutions of the (15) always exist and are bounded. And so by extension, the solutions of the full
system are bounded.

Now, using the formula for βk, we have the epidemiological system

dA

dt
= L


∑

k

ρkSuk +
∑

(k,j)

ρk,jIuk,j


− (νA + µA,1 + µA,2A)A, (16)

dSv1
dt

= ξvνAA− (µSv1 + b1(Nh))Sv1 , (17)

dSw1

dt
= b1(Nh)Sv1 − (bw + µSw1)Sw1 , (18)

dSu1
dt

= qwbw

(
Sh
Nh

+ (1− phw)
Ih
Nh

+ α
Th
Nh

)
Sw1 − (ρ1 + µSu1)Su1 , (19)

dIu1,1
dt

= phwqwbw
Ih
Nh

Sw1 − (ρ1,1 + µIu1,1)Iu1,1 , (20)

dSv2
dt

= ρ1Su1 − (b2(Nh) + µSv2)Sv2 , (21)
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dIv2,1
dt

= ρ1,1Iu1,1 − (b2(Nh) + µIv2,1)Iv2,1 , (22)

dSw2

dt
= b2(Nh)Sv2 − (bw + µSw2)Sw2 , (23)

dIw2,1

dt
= b2(Nh)Iv2,1 −

(
bw + µIw2,1

)
Iw2,1 , (24)

dSu2
dt

= qwbw

(
Sh
Nh

+ (1− phw)
Ih
Nh

+ α
Th
Nh

)
Sw2 − (ρ2 + µSu2)Su2 , (25)

dIu2,2
dt

= phwqwbw
Ih
Nh

Sw2 − (ρ2,2 + µIu2,2)Iu2,2 , (26)

dIu2,1
dt

= qwbw

(
Sh
Nh

+
Ih
Nh

+ α
Th
Nh

)
Iw2,1 − (ρ2,1 + µIu2,1)Iu2,1 , (27)

dSv3
dt

= ρ2Su2 + θs3ρ3Su3 − (b3(Nh) + µSv3)Sv3 , (28)

dIv3,2
dt

= ρ2,2Iu2,2 + θi3,3ρ3,3Iu3,3 − (b3(Nh) + µIv3,2)Iv3,2 , (29)

dIv3,1
dt

= ρ2,1Iu2,1 + θi3,3ρ3,2Iu3,2 + θi3,1ρ3,1Iu3,1 − (b3(Nh) + µIv3,1)Iv3,1 , (30)

dSw3

dt
= b3(Nh)Sv3 − (bw + µSw3)Sw3 , (31)

dIw3,2

dt
= b3(Nh)Iv3,2 −

(
bw + µIw3,2

)
Iw3,2 , (32)

dIw3,1

dt
= b3(Nh)Iv3,1 −

(
bw + µIw3,1

)
Iw3,1 , (33)

dSu3
dt

= qwbw

(
Sh
Nh

+ (1− phw)
Ih
Nh

+ α
Th
Nh

)
Sw3 − (ρ3 + µSu3)Su3 , (34)

dIu3,3
dt

= phwqwbw
Ih
Nh

Sw3 − (ρ3,3 + µIu3,3)Iu3,3 , (35)

dIu3,2
dt

= qwbw

(
Sh
Nh

+
Ih
Nh

+ α
Th
Nh

)
Iw3,2 − (ρ3,2 + µIu3,2)Iu3,2 , (36)

dIu3,1
dt

= qwbw

(
Sh
Nh

+
Ih
Nh

+ α
Th
Nh

)
Iw3,1 − (ρ3,1 + µIu3,1)Iu3,1 , (37)

dSh
dt

= λhNh + rhIh + γhTh − pwhqwbw
Sh
Nh

Iw3,1 − µhSh, (38)

dIh
dt

= pwhqwbw
Sh
Nh

Iw3,1 − (rh + δh + µh)Ih, (39)

dTh
dt

= δhIh − (γh + µh)Th. (40)

Simplifications: If we set λh = µh, then Nh is constant and one of the equations for the human
compartments becomes redundant. Thus we can work only with two equations since then we can
determine the third variable from Sh + Ih + Th = Nh = Nh(0), a constant.

2.4 Scaling and non-dimensionalisation

We scale the system by setting, for k, j ∈ {1, 2, 3},

τ =
t

T 0
, suk =

SUk

S0
Uk

, swk
=
SWk

S0
Wk

, svk =
SVk
S0
Vk

, iuk,j =
IUk,j

I0Uk,j

, ivk,j =
IVk,j
I0Vk,j

, (41)

iwk,j
=

IWk,j

I0Wk,j

, a =
A

A0
, sh =

Sh
Nh

, ih =
Ih
Nh

, th =
Th
Nh

, (42)
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where the terms with zero superscript are reference variables for each of terms in the system. Given
that we do not have a clear idea on the actual bounds for the sizes of each of the variables for the
vector equation at each reproductive stage, we select these representative variables so that we have a
system with a tractable number of parameters as follows:

A0 =
νA + µA,1
µA,2

, S0
v1 =

ξvνAA
0

µSv1 + b1(Nh)
, S0

w1
=
b1(Nh)S0

v1

bw + µSw1

, S0
u1 =

qwbwS
0
w1

ρ1 + µSu1
, (43)

I0u1,1 =
phwqwbwS

0
w1

ρ1,1 + µIu1,1
, S0

v2 =
ρ1S

0
u1

µSv2 + b2(Nh)
, I0v2,1 =

ρ1,1I
0
u1,1

b2(Nh) + µIv2,1
, (44)

S0
w2

=
b2(Nh)S0

v2

bw + µSw2

, I0w2,1
=
b2(Nh)I0v2,1
bw + µIw2,1

, S0
u2 =

qwbwS
0
w2

ρ2 + µSu2
, I0u2,2 =

phwqwbwS
0
w2

ρ2,2 + µIu2,2
, (45)

I0u2,1 =
qwbwI

0
w2,1

ρ2,1 + µIu2,1
, S0

v3 =
ρ2S

0
u2

µSv3 + b3(Nh)
, I0v3,2 =

ρ2,2I
0
u2,2

b3(Nh) + µIv3,2
, (46)

I0v3,1 =
ρ2,1I

0
u2,1

b3(Nh) + µIv3,1
, S0

w3
=
b3(Nh)S0

v3

bw + µSw3

, I0w3,2
=
b3(Nh)I0v3,2
bw + µIw3,2

, (47)

I0w3,1
=

b3(Nh)I0v3,1
bw + µIw3,1

, S0
u3 =

qwbwS
0
w3

ρ3 + µSu3
, I0u3,3 =

phwqwbwS
0
w3

ρ3,3 + µIu3,3
, (48)

I0u3,2 =
qwbwI

0
w3,2

ρ3,2 + µIu3,2
, I0u3,1 =

qwbwI
0
w3,1

ρ3,1 + µIu3,1
, T 0 =

1

µh
. (49)

Then, we define the dimensionless parameter groupings for k, j ∈ {1, 2, 3}

bsk = (bk(Nh) + µSvk)T 0, bik,j = (bk(Nh) + µIvk,j )T
0

τsk = (bw + µSwk
)T 0, τik,j = (bw + µIwk,j

)T 0

ρsk = (ρk + µSuk)T 0, ρik,j = (ρk,j + µIuk,j )T
0

as = µhT
0, ai = (rh + µh + δh)T 0, at = (γh + µh)T 0, λh = µh

βs =
pwhqwbwI

0
w3,1

µhNh
, βi =

pwhqwbwI
0
w3,1

(rh+µh+δh)Nh
δ = δh

rh+µh
, γ = γh

µh
, r = rh

µh

γs3 =
θs3ρ3S

0
u3

(b3(Nh)+µSv3
)S0

v3

, γi3,3 =
θi3,3ρ3,3I

0
u3,3

(b3(Nh)+µIv3,2 )I
0
v3,2

γi3,2 =
θi3,2ρ3,2I

0
u3,2

(b3(Nh)+µIv3,1 )I
0
v3,1

, γi3,1 =
θi3,1ρ3,1I

0
u3,1

(b3(Nh)+µIv3,1 )I
0
v3,1

ck =
LρkS

0
uk

A0(νA+µA,1)
, ck,j =

Lρk,jI
0
uk,j

A0(νA+µA,1)
, c0 = (νA + µA,1)T

0





, (50)

leading to the scaled system

da

dτ
= c0




3∑

k=1

cksuk +

3∑

j=1

3∑

k=j

ck,jiuk,j − (1 + a)a


 , (51)

dsv1
dτ

= bs1(a− sv1), (52)

dsw1

dτ
= τs1(sv1 − sw1), (53)

dsu1
dτ

= ρs1((sh + (1− phw)ih + αth)sw1 − su1), (54)

diu1,1
dτ

= ρi1,1(sw1ih − iu1,1), (55)

dsv2
dτ

= bs2(su1 − sv2), (56)

div2,1
dτ

= bi2,1(iu1,1 − iv2,1), (57)

21



dsw2

dτ
= τs2(sv2 − sw2), (58)

diw2,1

dτ
= τi2,1(iv2,1 − iw2,1), (59)

dsu2
dτ

= ρs2((sh + (1− phw)ih + αth)sw2 − su2), (60)

diu2,2
dτ

= ρi2,2(sw2ih − iu2,2), (61)

diu2,1
dτ

= ρi2,1((sh + ih + αth)iw2,1 − iu2,1), (62)

dsv3
dτ

= bs3(su2 + γs3su3 − sv3), (63)

div3,2
dτ

= bi3,2(iu2,2 + γi3,3iu3,3 − iv3,2), (64)

div3,1
dτ

= bi3,1(iu2,1 + γi3,2iu3,2 + γi3,1iu3,1 − iv3,1), (65)

dsw3

dτ
= τs3(sv3 − sw3), (66)

diw3,2

dτ
= τi3,2(iv3,2 − iw3,2), (67)

diw3,1

dτ
= τi3,1(iv3,1 − iw3,1), (68)

dsu3
dτ

= ρs3((sh + (1− phw)ih + αth)sw3 − su3), (69)

diu3,3
dτ

= ρi3,3(sw3ih − iu3,3), (70)

diu3,2
dτ

= ρi3,2((sh + ih + αth)iw3,2 − iu3,2), (71)

diu3,1
dτ

= ρi3,1((sh + ih + αth)iw3,1 − iu3,1), (72)

dsh
dτ

= as(1 + rih + γth − βsiw3,1sh − sh), (73)

dih
dτ

= ai(βishiw3,1 − ih), (74)

dth
dτ

= at(δih − γth). (75)

From a mathematical and Physical stand point, all we wish to establish is whether for a given set of
initial conditions, the system defined by equations (51)-(75) has a bounded and biologically meaningful
solution. Let x ∈ R24 be a vector of state variables as represented by system (51)-(75). Then, we
situate the type of solutions that are of biological interest to us with the following definition.

Definition 1 (Realistic solution.) Let x ∈ R24 be a solution of system (51)-(75). The solution x
is called realistic if each component of x is bounded and non-negative. That is, if each xi ∈ [0,∞), i =
1, 2, · · · , 24

3 Analyzing the model’s equations: the disease free model

In the absence of infection, the disease free system for humans reduces to Nh = constant, while the
mosquito subsystem turns into

da

dτ
= c0

(
3∑

k=1

cksuk − (1 + a)a

)
, (76)
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dsv1
dτ

= bs1(a− sv1),
dsw1

dτ
= τs1(sv1 − sw1),

dsu1
dτ

= ρs1(sw1 − su1), (77)

dsv2
dτ

= bs2(su1 − sv2),
dsw2

dτ
= τs2(sv2 − sw2),

dsu2
dτ

= ρs2(sw2 − su2), (78)

dsv3
dτ

= bs3(su2 + γs3su3 − sv3),
dsw3

dτ
= τs3(sv3 − sw3),

dsu3
dτ

= ρs3(sw3 − su3). (79)

Now, let x = (a, sv1 , sw1 , su1 , · · · , sv3 , sw3 , su3)T be a column vector in R10
+ . Then the disease free

system may be written in the form

dx

dτ
:= f(x) = A(x)x, x(0) = x0, (80)

where A is a 10× 10 matrix that may be written in the block form

A(x) =




−c0(1 + a) c1 c2 c3
b1 B1 O O
0 s2 B2 O
0 O s3 B3


 , (81)

where Bk, k = 1, 2, 3 are 3 × 3 matrices , b1 is a 3 × 1 column vector and ck, k = 1, 2, 3 are 1 ×
3 row vectors given by

b1 = (bs1 , 0, 0)T , ck = (0, 0, c0ck), k = 1, 2, 3, (82)

Bk =



−bsk 0 0
τsk −τsk 0
0 ρsk −ρsk


 , k = 1, 2, B3 =



−bs3 0 bs3γs3
τs3 −τs3 0
0 ρs3 −ρs3


 , (83)

sk =




0 0 bsk
0 0 0
0 0 0


 , k = 2, 3 are 3× 3 matrices , (84)

0 = (0, 0, 0)T and O are respectively 1× 3 and 3× 3 zero matrices. (85)

Clearly A(x) is a Metzler matrix and since the right hand side is Lipschitz continuous, there exists
a maximally defined solution whenever the initial condition x(0) is chosen non-negative. That is, for
non-negative initial conditions, x(t) exists and is non-negative, for all t > 0, from the Picard-Lindelöf
(or Cauchy-Lipschitz) Theorem, [8]. Furthermore, since A(x) is a Metzler matrix the maximal solution
so identified is also bounded as demonstrated above. Such a solution is also realistic in the sense of
Definition 1.

The scaled version of system (80) shows clearly the possibility of two steady state solutions: the
trivial equilibrium solution s∗vk = s∗uk = s∗wk

= a∗ = 0 and the nontrivial equilibrium solution svk =
suk = swk

= a∗, for each k = 1, 2 and s∗v3 = s∗u3 = s∗w3
= 1

1−γs3
a∗. Thus, the non-trivial steady state,

when it exists, must satisfy the equation:

c0

((
c1 + c2 + c3

1

1− γs3

)
a∗ − (1 + a∗)a∗

)
= 0⇒ a∗ = 0 or a∗ = c1 + c2 +

c3
1− γs3

− 1. (86)

The non-zero solution for a∗ in (86) is realistic, that is, non-negative, only if γs3 < 1 and c1+c2+
c3

1−γs3
>

1. To see that γs3 is indeed less than unity, we return to the definition of this quantity in terms of the
original variables to see that

γs3 =
θs3ρ3S

0
u3

(b3(Nh) + µSv3)S0
v3

=
b3ρ3bwqwθs3

(ρ3 + µSu3) (µSv3 + b3) (bw + µSw3)
< 1

since qw, θs3 ∈ [0, 1]. Now set N = c1 + c2 + c3
1−γs3

to see that if N < 1, we have only the trivial steady

state and that when N > 1, a new non-trivial steady state appears. A transcritical bifurcation, where
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a non-trivial steady state comes into existence as N increases through unity, occurs at N = 1. Hence,
from now, we interpret the quantity N as the basic offspring number and write, in terms of this basic
offspring number, the disease free equilibrium (DFE) state in the form:

sDFEvk
= sDFEuk

= sDFEwk
= N − 1,

sDFEv3 = sDFEu3 = sDFEw3
= 1

1−γs3
(N − 1),

N = c1 + c2 +
c3

1− γs3
. (87)

Thus, whenever we shall refer to the disease free equilibrium solution, xDFE , we shall mean the
solution x ∈ R10 where

x∗ = xDFE =
(
aDFE , sDFEv1 , sDFEw1

, sDFEu1 , sDFEv2 , sDFEw2
, sDFEu2 , sDFEv3 , sDFEw3

, sDFEu3

)
(88)

together with sh = 1, where the system is in equilibrium with values given by (87) and all disease
related variable are zero. We have proved the following result.

Theorem 1 System (80) always admits 0 as an equilibrium solution for all values of its parameters. If
N > 1, then it also admits a positive equilibrium, x∗ whose size and existence is completely determined
by the threshold parameter N

The trivial equilibrium solution identified by Theorem 1 always exists for all parameter values of the
system and represent the extinction state, where the system postulates the fact that the mosquito
population has died out. The non-zero equilibrium state predicted by the same theorem only exist, as
a realistic solution of the system in the sense of Definition 1, when N > 1. The threshold parameter
N , identified with the offspring number for the system has ecological and biological importance.

The basic offspring number has properties analogous to the basic reproduction number in epidemi-
ological models in that if this number is bigger than unity, the mosquito population can establish
itself in the environment and if the number is less than or equal to unity, the mosquito population will
die out. This interpretation allows us to define the basic offspring number as the average number of
new adult mosquitoes that can arise from one reproducing adult mosquito during the entire period of
that reproducing mosquito’s reproductive life in the absence of density dependence. The basic offspring
number is a measurable index of mosquito abundance through which we can discuss mosquito control
strategies.

Remark 1 We can state the following remarks

1. Given the fact that we count the reproductive age of the mosquito in terms of the gonotrophic
cycles, we expect that the identified basic offspring number will have contributions from each
gonotrophic cycle. To see this, using the parameter groupings from (43)-(49) and (50), we easily
establish that, in the original parameters of the model, we have

N = Lξv
νA

νA + µA,1
ws1(1 + ws2 + ws2

ws3
1− γs3

), γs3 = θs3ws3 , (89)

where,

ws1 =
ρ1

ρ1 + µSu1

bw
bw + µSw1

b1(Nh)

b1(Nh) + µSv1
qw,

ws2 =
ρ2

ρ2 + µSu2

bw
bw + µSw2

b2(Nh)

b2(Nh) + µSv2
qw, (90)

ws3 =
ρ3

ρ3 + µSu3

bw
bw + µSw3

b3(Nh)

b3(Nh) + µSv3
qw.

Clearly, from this form we can obtain a general formula of wsk associated with cycle k, namely

wsk =
ρk

ρk + µSuk

bw
bw + µSwk

bk(Nh)

bk(Nh) + µSvk
qw, k = 1, 2, 3, (91)
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and its value is completely determined by the parameters bk(Nh) = ak
Nh

Nh+κ
– the rate of flow

of breeding site vectors in the reproductive stage k to human environs for questing, bw a human
biting rate of the mosquito, qw – the probability of successfully acquiring a blood meal from the
human and ρk – the rate of successful return of reproducing vectors in the reproductive stage k
to the breeding site to lay their (k + 1)-st batch of eggs.

2. The above allows us to generalise in the case where we consider up to n gonotrophic cycles before
lumping, we may define, see also [20], the basic offspring number Nn after n gonotrophic cycles
as

Nn = Lξv
νA

νA + µA,1

n∑

k=1

αk

k∏

j=1

wsj , α1 = α2 = · · · = αn−1 = 1, αn =
1

1− θsnwsn
. (92)

Since each wsi < 1, our modelling results say that the dominant contribution to the basic off-
spring number Nn is from the first gonotrophic cycle, and this seems to agree with the general
trend whereby the quality of the brood of eggs for Anopheles sp mosquitoes tend to decrease
with increasing number of gonotrophic cycles4. This provides a justification for lumping higher
gonotrophic cycles as explained in the introduction.

To study the long term dynamics, we begin with the observation that system (80) is cooperative.
We briefly recall the definition of a cooperative system, [24], and other definitions that may be useful
for the understanding of some of the proofs and notation used below, in Appendix A. We note simply
that for cooperative systems of autonomous ordinary differential equations, the global asymptotic
stability of an equilibrium can be studied using the result of Theorem 7 stated in Appendix A. Thus,
the dynamics of the unscaled version of system (80) can be summarized in the following theorem:

Theorem 2 For any initial condition in R10
+ , we have the following results:

(i) When N ≤ 1, the trivial equilibrium 0 is globally asymptotically stable in the closed subspace
R10
+ .

(ii) When N > 1, the trivial equilibrium 0 is unstable, and the positive equilibrium x∗ is asymptot-
ically stable and R10

+ \ {0} is its basin of attraction.

Proof: It suffices to verify the assumptions of Theorem 7 in Appendix A.

• Assume N ≤ 1. Then, there is only one equilibrium, 0. For sufficiently large A > 0, the following
inequality holds:

(νA + µA,1 + µA,2A)

νA + µA,1
≥ 1

N 8
. (93)

Thus, let m > 0 and Am be sufficiently large so that (93) is verified. With the following variables

Am ≥ m, Sv1,m =
1

N
ξvνA

(µv1 + b1(H))
Am ≥ m,

Sw1,m =
1

N 2

b1(H)ξvνA
(bw,1 + µSw1) (µv1 + b1(H))

Am ≥ m, Su1,m =
w1

N 3
Am ≥ m,

and

Sv2,m =
ρ1

(b2(H) + µSv2)

w1

N 4
Am ≥ m,

Sw2,m =
2b2(H)

(bw,2 + µSu2)

ρ1
(b2(H) + µSv2)

w1

N 5
Am ≥ m, Su2,m =

w2w1

N 6
Am ≥ m,

4Depending on the Anopheles mosquito species, and on the quality and size of the blood meal drawn, a female
mosquito lays a batch of 50 − 200 eggs during a single oviposition. Successive batches of eggs tend to decrease in size
and the number of eggs laid may vary depending on the season [22], page 68. We have not considered issues of seasonal
variations in this paper.
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and

Sv3,m =
ρ2

(b3(H) + µSv3)

w2w1

N 7
Am ≥ m,

Sw3,m =
2b3(H)

(bw,3 + µSu3)

ρ2
(b3(H) + µSv3)

w3w1

N 8
Am ≥ m, Su3,m =

w3w2w1

N 9
Am ≥ m,

chosen, such that fi < 0, i = 2, ..., 10, where fi is the right hand side of the i-th equation in
(80). Finally, thanks to (93), and using the fact that N < 1, we have

f1 =
(
b
(w3w2w1

N 9
+
w2w1

N 6
+
w1

N 3

)
− (νA + µA,1 + µA,2Am)

)
Am

<

(
bw1

N 9
(w3w2 + w2 + 1)− (νA + µA,1 + µA,2Am)

)
Am

< (νA + µA,1)

(
1

N 8
−
(
νA + µA,1 + µA,2Am

νA + µA,1

))
Am < 0.

Thus, choosing bm = (Am, Sv1,m, ..., Su3,m) leads to f(bm) < 0. Hence, with a = 0, we can
apply Theorem 7 in Appendix A, and deduce that 0 is GAS on [0, bm]. However, since m can
be chosen arbitrarily large, we deduce that 0 is GAS on R10

+ .

• Assume N > 1. Then the inequality

νA + µA,1 + µA,2A

νA + µA,1
< N , (94)

holds for A sufficiently small. Let ε > 0, and let Aε be sufficiently small for (94) to hold and

Aε ≤ ε, Sv1,ε =
ξvνAN

(µv1 + b1(H))
Aε ≤ ε,

Sw1,ε =
b1(H)ξvνAN 2

(bw,1 + µSw1) (µv1 + b1(H))
Aε ≤ ε, Su1,ε = w1N 3Aε ≤ ε.

Thus

Sv2,ε =
ρ1

(b2(H) + µSv2)
w1N 4Aε ≤ ε,

Sw2,ε =
2b2(H)

(bw,2 + µSu2)

ρ1
(b2(H) + µSv2)

w1N 5Aε ≤ ε,
Su2,ε = Sw2,ε = w2w1N 6Aε ≤ ε,

and

Sv3,ε =
ρ2

(b3(H) + µSv3)
w2w1N 7Aε ≤ ε,

Sw3,ε =
2b3(H)

(bw,3 + µSu3)

ρ2
(b3(H) + µSv3)

w3w1N 8Aε ≤ ε,
Su3,ε = w3w2w1N 9Aε ≤ ε,

so that

fi > 0, i = 2, ..., 10.

Finally, thanks to (94), and using the fact that N > 1, we deduce

f1 =
(
b
(
w3w2w1N 9 + w2w1N 6 + w1N 3

)
− (νA + µA,1 + µA,2Aε)

)
Aε

> (νA + µA,1)

(
N −

(
νA + µA,1 + µA,2ε

νA + µA,1

))
Aε > 0.
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Hence, we deduce f(aε) > 0, with aε = (Aε, ..., Su3,ε).Thus, according to Theorem 7 in Appendix
A, X∗ is GAS in [aε, bm]. Since aε can be chosen smaller than any x > 0, and bm can be chosen
larger than any x, we deduce that X∗ is asymptotically stable on R10

+ , with a basin of attraction
being R10

+ \ {0} (because system (80) is cooperative; see Theorem 4 in [1]). This also implies that 0
is unstable.

However, we can go further. Define the following compact set

Ω =
{
x ∈ R10

+ : 0 ≤ x ≤ x∗} .

Then using the fact that the disease free system is monotone, Ω is positively invariant with respect
to the disease free system, meaning that if X(0) ∈ Ω, then X(t) ∈ Ω. Thus, Theorem 2 can be
reformulated as

Theorem 3 For any initial conditions in Ω, we have the following results:

(i) When N ≤ 1, the trivial equilibrium 0 is globally asymptotically stable in Ω.

(ii) When N > 1, x∗ 6= 0 exists. The trivial equilibrium 0 is unstable, and the positive equilibrium
x∗ is globally asymptotically stable in Ω \ {0}.

That is why for the rest of the paper we assume that the mosquito population belongs to Ω.

4 Analyzing the model’s equations: The epidemiological model

In the last section we have examined the disease free model which, in the present framework, captured
the mosquito only dynamics as a four stage system of equations, where the first stage, consisting of the
aquatic stages of the mosquito population, is modelled by the state variable A, and the remaining three
stages are used to model the gonotrophic cycles which the mosquito must complete for reproduction
through laying viable eggs into the aquatic stage. We saw that the disease free model exhibited
richer dynamics than is normally the case with most standard epidemiological models for insect borne
diseases. Theorem 3 showed that when the basic offspring number N > 1, the non trivial equilibrium
solution for the disease free model is globally and asymptotically stable. This result points to the
fact that under certain desirable conditions, the mosquito population will establish itself in a given
locality. Are there other steady states for the full system?

4.1 Existence of steady states for the epidemiological model

The global stability of the non-trivial equilibrium vector population solution in the absence of disease,
drawn from the fact the system is monotone cooperative, ensures establishment of a non-zero stable
mosquito population in the system. This stability result is demographic in nature and is not related to
the epidemiological model’s consideration of a disease free state. The result however, provides a basis
for the existence of the disease related solutions for the full epidemiological model since any other
solutions for the full epidemiological model can only be constructed on the stable mosquito population
as a base. What we would like to find in the present section is whether in the presence of the disease
in the system, there exist other steady states in addition to the disease free equilibrium state (DFE).
To answer this question we proceed by setting to zero the right hand side of the equations for the
scaled epidemiological system, given by equations (51)-(75). We recall that, based on the scaling used,
sh + ih + th = 1 ⇒ sh = 1 − ih − th for all time τ ≥ 0 and that from equation (75), if t∗h is a steady
state solution, then we have t∗h = δ

γ i
∗
h. So define f, g : [0, 1]→ R by

f(ih) = sh + (1− phw)ih + αth, g(ih) = sh + ih + αth; sh = 1− ih − th, th =
δ

γ
ih. (95)
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Then, if x∗ ∈ R24
+ is an equilibrium solution for system (51)-(75) written in the form (115), we have

s∗v1 = s∗w1
= a∗, s∗u1 = f(i∗h)a∗, i∗u1,1 = a∗i∗h, (96)

s∗v2 = s∗w2
= f(i∗h)a∗, s∗u2 = (f(i∗h))2a∗, i∗v2,1 = a∗i∗h,

i∗w2,1
= i∗v2,1 , i∗u2,1 = i∗w2,1

g(i∗h), i∗u2,2 = f(i∗h)a∗i∗h,

}
(97)

s∗w3
= s∗v3 =

(f(i∗h))
2a∗

1−γs3f(i∗h)
, s∗u3 =

(f(i∗h))
3a∗

1−γs3f(i∗h)
, i∗u3,3 =

(f(i∗h))
2a∗

1−γs3f(i∗h)
i∗h,

i∗v3,2 = i∗u2,2 + γi3,3i
∗
u3,3 , i∗w3,2

= i∗v3,2 , i∗u3,2 = g(i∗h)i∗w3,2
,

i∗w3,1
=

i∗u2,1+γi3,2 i
∗
u3,2

1−γi3,1g(i∗h)
, i∗v3,1 = i∗w3,1

, i∗u3,1 = g(i∗h)i∗w3,1
,





(98)

where a∗ is a parameter still to be determined. The steady states in equations (96) are those for the
mosquitoes at the first gonotrophic cycle, while those in equations (97) are for the second gonotrophic
cycle and those in equations (98) for the third one. Since both f(ih) and g(ih), as defined in equation
(95) are less than 1, the sizes of the steady states decrease with increasing gonotrophic cycles.

Now, if we substitute equations (96)-(98) into the equation for the aquatic stage, we get

a∗F (i∗h) =

3∑

k=1

cks
∗
uk

+

3∑

j=1

3∑

k=j

ck,ji
∗
uk,j

= a∗(1 + a∗), (99)

that leads to the solution a∗ = 0, corresponding to the trivial equilibrium solution, where all variables
are zero, and a non trivial solution a∗ 6= 0, given by a∗(i∗h) = F (i∗h) − 1. The formula for F (i∗h) is
directly read from the expression in the middle of (99), arising from that fact that a∗ appears only
linearly in all middle summand terms of that equation. We conjecture that F so identified will be
linked to the epidemiological model’s basic reproduction number which we shall compute below. We
then note that a non-negative equilibrium solution for a∗ will exists only when F ≥ 1. The quantity
F so constructed is a function of i∗h ∈ [0, 1], indicating the existence of an endemic human equilibrium
state configuration, when i∗h ∈ (0, 1). When a non-zero equilibrium solution, i∗h 6= 0, exists, it must
satisfy the equation

βi(1− (1 +
δ

γ
)i∗h)i∗w3,1

− i∗h = 0⇒ i∗w3,1
=

i∗h
βi(1− (1 + δ

γ )i∗h)
, (100)

so that a non-negative equilibrium solution, when it exists, must satisfy the equation

i∗h
βi(1− (1 + δ

γ )i∗h)
=
i∗u2,1(i∗h) + γi3,2i

∗
u3,2(i∗h)

1− γi3,1g(i∗h)
(101)

obtained by equating the two values of i∗w3,1
from (98) and (100). Note that i∗h = 0 is always a solution

and that, in this instance, f(0) = g(0) = 1 and the equilibrium computed above reduces to the disease
free equilibrium computed earlier and shown in (87). It is easily established that (100) has at least
one positive solution for i∗h ∈ (0, 1) ⊂ (0, (1 + δ

γ )).We have proved the following result.

Theorem 4 The epidemiological model has at least one endemic equilibrium solution whenever the
threshold condition F > 1 is satisfied.

4.2 The epidemiological model’s basic reproduction number

We consider now the full epidemiological model, given by either system of equations (16)-(40) or,
equivalently, by the scaled system (51)-(75). System (16)-(40) is not monotone. It, however, admits
the trivial equilibrium 0, which corresponds to the system with a full susceptible human population,

without mosquitoes. It admits also a XDFE =
(
ADFE , SDFEv1 , SDFEw1

, SDFEu1 , 0, · · · , SDFEu3 , 0, 0, 0, 0
)T

,
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which corresponds to a susceptible human population, Sh = Nh, and a susceptible mosquito popula-
tion.

Let us compute the Basic Reproduction Number related to system. To do that, we follow the stan-
dard procedure, [28], and consider only the equations where the disease is in progression. Considering
the scaled version of the model, we consider only the equations

diu1,1
dτ

= ρi1,1(sw1ih − iu1,1),
div2,1
dτ

= bi2,1(iu1,1 − iv2,1),

diw2,1

dτ
= τi2,1(iv2,1 − iw2,1),

diu2,2
dτ

= ρi2,2(sw2ih − iu2,2),

diu2,1
dτ

= ρi2,1((sh + ih + αth)iw2,1 − iu2,1),

div3,2
dτ

= bi3,2(iu2,2 + γi3,3iu3,3 − iv3,2),

div3,1
dτ

= bi3,1(iu2,1 + γi3,2iu3,2 + γi3,1iu3,1 − iv3,1), (102)

diw3,2

dτ
= τi3,2(iv3,2 − iw3,2),

diw3,1

dτ
= τi3,1(iv3,1 − iw3,1),

diu3,3
dτ

= ρi3,3(sw3ih − iu3,3),

diu3,2
dτ

= ρi3,2((sh + ih + αth)iw3,2 − iu3,2),

diu3,1
dτ

= ρi3,1((sh + ih + αth)iw3,1 − iu3,1),

dih
dτ

= ai(βishiw3,1 − ih).

Then, we rewrite the system as follows

dx

dt
= F(x)− V(x),

where x = (iu1,1 , iv2,1 , iw2,1 , iu2,2 , iu2,1 , iv3,2 , iv3,1 , iw3,2 , iw3,1 , iu3,3 , iu3,2 , iu3,1 , ih),

F(x) =




ρi1,1sw1ih
0
0
ρi2,2sw2ih
0
0
0
0
0
ρi3,3sw3ih
0
0
aiβishiw3,1




, V(x) =




ρi1,1iu1,1
−bi2,1(iu1,1 − iv2,1)
−τi2,1(iv2,1 − iw2,1)ρi2,2iu2,2
−ρi2,1((sh + ih + αth)iw2,1 − iu2,1)
−bi3,2(iu2,2 + γi3,3iu3,3 − iv3,2)
−bi3,1(iu2,1 + γi3,2iu3,2 + γi3,1iu3,1 − iv3,1)
−τi3,2(iv3,2 − iw3,2)
−τi3,1(iv3,1 − iw3,1)
ρi3,3iu3,3
−ρi3,2((sh + ih + αth)iw3,2 − iu3,2)
−ρi3,1((sh + ih + αth)iw3,1 − iu3,1)
aiih




.

Then, we evaluate the Jacobians FDFE and V DFE of F and V at the XDFE . Obviously, V DFE

is an M-Matrix such that V DFE−1
exists and is positive. After some computations, we can derive

a formula for FDFEV DFE−1
. Then, we find the spectral radius %(FDFEV DFE−1

) = maxλ{|λ| :

λ is an eigenvalue of FDFEV DFE−1} that, as it is known, basic reproduction number. Since the

matrix FDFEV DFE−1
is sparse, we quickly obtain the spectral radius that we need. We note first
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that at XDFE , sh = 1, th = 0, sDFEw1
, sDFEw2

, and sDFEw3
, are given by

sDFEw1
= sDFEw2

= a∗, sDFEw3
=

1

1− γs3
a∗, (103)

where a∗ is given by the last equation in (86). Direct computations yield

%(FV −1) =

√
βi

√
sDFEw1

+ γi3,2(sDFEw2
+ γi3,3 .s

DFE
w3

)
√

1− γi3,1
(104)

Then, the basic reproduction number R0 is such that R2
0 = %(FV −1)2. We note that R2

0 is split into
the sum of three mutual parts where

R2
0 = R2

01 +R2
02 +R2

03 , (105)

where

R2
01 =

βis
DFE
w1

1− γi3,1
, R2

02 =
βiγi3,2s

DFE
w2

1− γi3,1
, R2

03 =
βiγi3,2γi3,3s

DFE
w3

1− γi3,1
. (106)

We now examine the nature of the terms in the above expressions. To do this we return to the original
variables of the model by using the relevant expressions from(43)-(50) and, by substitution, we easily
see that the presence of the infection in the system also introduces contributions to the reproduction
number in the form of terms such as in (90), but associated with the disease variables. Here these
terms that represent contributions from the infected vectors at the reproductive stage k that were first
infected at reproductive stage j are given as follows:

wi1,1 =
ρ1,1

ρ1,1 + µIu1,1

bw
bw + µSw1

b1(Nh)

b2(Nh) + µIv2,1
qw, (107)

wi2,1 =
ρ2,1

ρ2,1 + µIu2,1

bw
bw + µIw2,1

b2(Nh)

b3(Nh) + µIv3,1
qw, (108)

wi2,2 =
ρ2,2

ρ2,2 + µIu2,2

bw
bw + µSw2

b2(Nh)

b3(Nh) + µIv3,2
qw, (109)

wi3,1 =
ρ3,1

ρ3,1 + µIu3,1

bw
bw + µIw3,1

b3(Nh)

b3(Nh) + µIv3,1
qw, (110)

wi3,2 =
ρ3,2

ρ3,2 + µIu3,2

bw
bw + µIw3,2

b3(Nh)

b3(Nh) + µIv3,1
qw, (111)

wi3,3 =
ρ3,3

ρ3,3 + µIu3,3

bw
bw + µSw3

b3(Nh)

b3(Nh) + µIv3,2
qw. (112)

We also note that we require γi3,1 < 1 for the expressions for R2
0i

, i = 1, 2, 3 to be positive. Using the
definitions of this parameter grouping, we find that

γi3,1 = θi3,1wi3,1 < 1, γi3,2 = θi3,2
wi3,2wi2,2
wi2,1wi1,1

ws1 , γi3,3 = θi3,3phwws2
wi3,3
wi2,2

, (113)

βi = wi1,1wi2,1
νA + µA,1
µA,2

ξvνA
b1(Nh) + µSv1

b3(Nh)bwphwpwhqw

Nh (γh + δh + µh)
(
µIw3,1 + bw

) , (114)

so that it is evident that 1−γi3,1 > 0. It is clear from the above that the nonzero endemic equilibrium
exists only when N > 1, since the only way we can have a positive basic reproduction number is if
N > 1.
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4.3 Global asymptotic stability of the DFE

First, according to [28], the following result holds:

Theorem 5 When R2
0 < 1, the DFE is locally asymptotically stable. It is unstable, when R2

0 > 1.

To show that the DFE is globally asymptotically stable, we will use [2]. Let us first rewrite the
system in the following manner





dx

dt
= f(x, i),

di

dt
= g(x, i),

where x is the vector representing the state of different compartments of non-transmitting individ-
uals (e.g. susceptible, immune) and the vector i represents the state of compartments of different
transmitting individuals (e.g. infected, exposed). Here, for the purpose of this section,

x = (sv1 , sw1 , su1 , sv2 , sw2 , su2 , sv3 , sw3 , su3 , sh, th) ,

i = (iu1,1 , iv2,1 , iw2,1 , iu2,2 , iu2,1 , iv3,2 , iv3,1 , iw3,2 , iw3,1 , iu3,3 , iu3,2 , iu3,1 , ih),

so that XDFE =
(
sDFEv1 , sDFEw1

, sDFEu1 , sDFEv2 , sDFEw2
, sDFEu2 , sDFEv3 , sDFEw3

, sDFEu3 , 1, 0
)
. From ((51)-(75)),

we deduce, with h(suk , iuk,j ) =
∑3

k=1 cksuk +
∑3

j=1

∑3
k=j ck,jiuk,j ,

f(x, i) =





c0
(
h(suk , iuk,j )− (1 + a)a

)
,

bs1(a− sv1),
τs1(sv1 − sw1),
ρs1((sh + (1− phw)ih + αth)sw1 − su1),
bs2(su1 − sv2),
τs2(sv2 − sw2),
ρs2((sh + (1− phw)ih + αth)sw2 − su2),
bs3(su2 + γs3su3 − sv3),
τs3(sv3 − sw3),
ρs3((sh + (1− phw)ih + αth)sw3 − su3),
as(1 + rih + γth − βsiw3,1sh − sh),
at(δih − γth).

g(x, i) =





ρi1,1(sw1ih − iu1,1),
bi2,1(iu1,1 − iv2,1),
τi2,1(iv2,1 − iw2,1),
ρi2,2(sw2ih − iu2,2),
ρi2,1((sh + ih + αth)iw2,1 − iu2,1),
bi3,2(iu2,2 + γi3,3iu3,3 − iv3,2),
bi3,1(iu2,1 + γi3,2iu3,2 + γi3,1iu3,1 − iv3,1),
τi3,2(iv3,2 − iw3,2),
τi3,1(iv3,1 − iw3,1),
ρi3,3(sw3ih − iu3,3),
ρi3,2((sh + ih + αth)iw3,2 − iu3,2),
ρi3,1((sh + ih + αth)iw3,1 − iu3,1),
ai(βishiw3,1 − ih).

Clearly, according to the result of Theorem 3 on mosquito dynamics without diseases, XDFE is GAS

for the system
dx

dt
= f(x,0) (assumption 1 in [2]). Then, we can rewrite g as follows

g(x, i) = Ai− Ĝ(x, i),

where A = JG(XDFE ,0). We need to show that A is an M-Matrix and Ĝ(x, i) ≥ 0 (assumption 2 in
[2]). Since JG(XDFE ,0) = V DFE , where V DFE is an M-Matrix, it remains to show that Ĝ(x, i) ≥ 0.
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In fact, we have

Ĝ(x, i) =




ρ1,1ih
(
sDFEw1

− sw1

)

0
0

ρ2,2ih
(
sDFEw2

− sw2

)

0
0
0
0
0

ρ3,3ih
(
sDFEw3

− sw3

)

0
0
0




.

The sign of Ĝ completely relies on the sign of sDFEwi
− sw1 , for i = 1, 2, 3. However, the mosquito

model being a monotone system, it means that if x(0) ≤ XDFE (see the Theorem 3 in the mosquito
dynamic section) then x(t) ≤ XDFE , for all t ≥ 0, such that sDFEwi

− sw1 ≥ 0, and thus Ĝ(x, i) ≥ 0,
and this completes the proof. The conditions for the global stability of the disease free steady state
as postulated by Castillo et al., [2], being verified, we can thus deduce

Theorem 6 The DFE is globally asymptotically stable when R2
0 < 1.

The result of Theorem 6 establishes the global stability of the disease free equilibrium, when
R2

0 < 1. This is a results which we earlier established when examining the disease free model and
this outcome was expected. We also have seen that when R2

0 > 1, an endemic equilibrium solution is
possible and we believe that such an endemic solution will be stable for R2

0 > 1. Since our main focus
in this paper was to derive an improved formula for the basic reproduction number for a mosquito
centered model that captures the mosquito’s gonotrophic cycles, and identify vulnerable points in the
evolutionary path of the spread of malaria disease within human and mosquito populations, we do
not pursue the issue of stability of the endemic equilibrium state any further. Additionally, another
main focus was to analyse relevant components of the reproduction number, in order to exploit it for
control purposes, which can be done and explained without numerical simulations by studying the
basic reproduction number, we do not deem it necessary, here, to carry out numerical simulations.
We leave it for a future study, which also helps keep the length of this manuscript within reasonable
limits. We indicate that from the form of the basic reproduction number, it is clear that if we apply
control measures that can lead to the reduction of the basic offspring number, then we would find
a way to control malaria transmission since we need a certain minimum threshold in the mosquito
population size to sustain the mosquito population at a stable non-zero state. The formula for R2

0,
written in three parts (see equations (105) and (106)) shows clear dependence on the stable questing
mosquito population densities (those categories of mosquitoes that interact with humans), which is
a prerequisite to the existence of a viable mosquito population. We discuss this further in the next
section, where we summarize the results of the current paper, discussing possible vulnerable spots in
the malaria transmission chain and hence some possible control measures. We also indicate prospects
for future work.

5 Discussion and Conclusion

The mosquito’s gonotrophic cycle is an important and integral component of its demography. It is also
central to the human malaria disease transmission and plays an important role in malaria dynamics
because some aspects of the cycle ensure mosquito-human interactions presenting opportunities for
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mosquitoes to acquire and transmit the malaria parasite. A successful interaction between humans
and mosquitoes potentially also guarantees a successful mosquito reproduction, continuing the malaria
cycle. Thus understanding the mosquito’s gonotrophic cycle and examining it for areas that could be
exploited for control is essential for the fight towards malaria eradication. Unfortunately, very little
has been done to analyse the gonotrophic cycle from a mathematical perspective. This manuscript
is one of the first steps towards understanding the gonotrophic cycle of the malaria transmitting
mosquito from the mathematical perspective and looking at ways to exploit and influence it for a
positive malaria control.

To this end, we developed a mathematical model of the mosquito life cycle, from the aquatic
stages to the adult stages, incorporating the gonotrophic and feeding cycles of mosquitoes with focus
on possible control mechanisms. The model provides a way to understand the dynamics of the malaria
transmitting mosquitoes, in particular, their feeding and reproductive cycles and their interaction with
the human population, revealing the key control points in the malaria disease chain. It extends the
idea originally introduced in [20] in that we have incorporated the disease dynamics and introduced
the aquatic stages of the mosquitoes, assuming a linear recruitment rate from the aquatic stages into
the adult mosquito population. An advantage of this model over other malaria models is in the model
formulation, that clearly demarcates the stages of the adult mosquito gonotrophic cycle involved in the
disease transmission, and the contributions of the feeding stages towards the growth of the mosquito
population. However, we had to decide how many stages, and hence how many gonotrophic cycle
loops we can conveniently include in the model. This question, pertaining to the trade-off between
mathematical tractability of the model and having a realistic model, is addressed below. Additionally,
we incorporated a class of treated humans, treated with a high but safe dose of a mosquitocidal drug,
in this case Ivermectin, based on a recent 2018 study [23], that can lead to the demise of the mosquito
when the mosquito feeds on these class of humans.

Analysis of the model in the absence of malaria reveals the existence of the basic offspring number
N defined in equation (89), whose size determines whether there is a thriving mosquito population
or if the mosquito population goes extinct. Specifically, when N < 1, the mosquito extinction equi-
librium (a trivial mosquito equilibrium state with a positive susceptible human state) is globally and
asymptotically stable, while when N > 1 there exists a persistent positive vector population state
that is globally asymptotically stable. A study of this basic offspring number reveals that its size is
affected by the rate of oviposition per reproducing mosquito (denoted in this manuscript by L) and the
bio-transition factor that measures the successful transition from aquatic to adult stage mosquitoes
(denoted by ξv). The relationship is assumed to be linear for both cases. From the expression for N
and the aforementioned linear relationship, it is easy to see that a 10% reduction of L, respectively
ξv, will produce a corresponding 10% reduction of N , regardless of the sizes of other parameters.
Thus, these are desirable targets for control. In addition, an increase in the death rates of the aquatic
stages of the mosquito, the resting/breeding site mosquitoes, the questing mosquitoes and the fed and
reproducing mosquitoes, holding all other parameters fixed, would also lead to a decrease of N . From
the control perspective, the death rates of the aquatic stage mosquitoes and that of the breeding site
mosquitoes can be increased by using human and environmentally friendly larvicides and pesticides at
the breeding sites, while controlling the questing mosquito population would require a continuous use
of, safe insecticide treated bed nets. Control of the fed and reproducing mosquito death rates would
require, when possible, eliminating the breeding sites near human habitats, thus making it difficult for
the mosquitoes to visit them and/or increasing the possibility of their deaths when they visit, because
they may be too fatigued to fly back.

Other desirable targets for control that can directly affect the size of the basic offspring number
are: the flow rate of vectors to human habitats in search of a blood meal, at each reproductive stage
k, the human biting rate of mosquitoes, which is the probability of a mosquito successfully acquiring a
blood meal from a human (denoted here by qw), and the rate of successfully returning to the breeding
site after a blood meal. Reducing the flow rates to and from human habitats requires removal of
the breeding sites near human habitats, when possible, while reducing contacts between humans and
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the questing mosquitoes would reduce the mosquito biting rates and the probability of a questing
mosquito successfully acquiring a blood meal.

A question of importance in our work was how to explicitly incorporate the gonotrophic cycles in
the modelling formulation without loosing mathematical tractability but at the same time preserve
their effects on the basic offspring offspring number? From equation (89), it is evident that: (i)
the magnitude of the basic offspring number increases with increasing number of gonotrophic cycles
accounted for, (ii) the dominant contribution to the magnitude of the basic offspring number is from
the first gonotrophic cycle and (iii) the largest size of the basic offspring number will not exceed

Lξvqw

(
k − 1 +

1

1− θsk

)
> 0, for the case k > 1. Here, θsk ∈ [0, 1] is the proportion of susceptible

reproducing vectors at gonotrophic or reproductive stage k, that eventually survive to re-enter the
chain, contributing to the the human-mosquito interaction. In Figure 1 (with all disease classes
removed, i.e. just considering the first column terms), we chose k = 3, that is, we decided to use the
three staged model, and we highlighted the results for this case.

Two further questions of interest in the model formulation were: how large should k be and
how should we incorporate the mosquitoes that were in their final gonotrophic cycle in the model?
Obviously, k is determined by both the lifespan of the mosquito as well as the length of the gonotrophic
cycle - how often during its lifetime a mosquito feeds and returns to lay eggs. In fact, in [11], it was
noted that the length of the mosquito’s gonotrophic cycle is one of the most important bionomic
parameters as, among others, it estimates the frequency of contacts between mosquitoes and humans
and hence the opportunities available for the mosquito to acquire and transmit the malaria parasite.
Thus, the way we incorporate this aspect in our model is of great importance and warrants further
discussion. In [20], where the idea of explicitly modelling the mosquito’s gonotrophic cycles in a
model with no disease was first introduced, it was assumed that the mosquitoes in the final stage
laid their eggs at the breeding site and died with no further interaction with the human population.
This assumption makes sense if we consider a 2-3 day gonotrophic cycle counting them during the
entire average lifespan of a mosquito. If such an assumption was made, then in the expression for
the basic offspring number, which we can call Nnon−truncated, we would set θsk to zero. For this case,
the magnitude of Nnon−truncated does not exceed Lξvqwk, where k, as discussed, is the number of
gonotrophic cycles. However, if we truncate the number of stages at k and account for the effects
of the fed mosquitoes not only in increasing the aquatic stage population but also in increasing the
size of the breeding site mosquitoes, as well as the effect of questing mosquitoes at this stage in the

human-mosquito interaction, then we easily see that Nnon−truncated < N , since
1

1− θsk
≥ 1. That

is, the non-truncated model estimates the basic offspring number to be smaller as compared to a
truncated model. Nonetheless, as the proportion of susceptible reproducing vectors at gonotrophic
stage k that eventually survive to re-enter the chain (contributing to the human-mosquito interaction)
approaches zero (i.e. as θsk → 0) (which is the case when we account for more gonotrophic cycles),
then N → Nnon−truncated. Furthermore, a model truncated and looped at the second gonotrophic
cycle will give a smaller estimate for the basic offspring number compared to the one truncated and
looped at the third, and thus higher, gonotrophic cycles.

In the presence of parasitemia in the human and mosquito populations, we obtained the model’s
epidemiological basic reproduction number R0, which only exists when N > 1. We showed that
when R2

0 < 1, and thus R0 < 1, there exist a globally and asymptotically stable positive disease-free
equilibrium (DFE) which becomes unstable as R0 grows large passing through the value R0 = 1. Thus,
the model’s dynamic predicts that reducing R0 to a value less than 1 would lead to disease control
and possibly disease eradication. The effects of truncating and looping versus not truncating on the
size of the basic reproduction number is easily seen in the expression for R2

0. Based on the analysis
that led to the value of R2

0, as shown in (105), it can be seen that for a k staged model, we will have

R2
0 =

k∑

j=1

R2
0j

, where R2
0j

represents the contribution to disease dynamics from questing mosquitoes at
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the gonotrophic stage j. Each term R2
0j

, for the k staged model, has the form R2
0j

= βi
1

1−γik,1
Cjs

DFE
wj

,

where γik,1 = κθik,1qw <

{
qw
θik,1

< 1, where κ < 1 is a constant that depends on the model

parameters. Here, θik,1 is the proportion of the infected fed and reproducing mosquitoes at gonotrophic
or reproductive stage k that were first infected with malaria at the first gonotrophic stage and survived
to re-enter the chain of feeding, egg laying and human-mosquito interaction; qw is, as earlier defined,
the probability of successfully acquiring a blood meal from humans; and Cj , for 1 < j ≤ k, is a function
of the parameters, that represent the fraction of the infected vectors at the reproductive stage k, that
were first infected with the malaria parasite at the reproductive stage j, and that survived to re-enter
the chain, contributing to the human-mosquito interaction effects as well as to the disease transmission.
In fact, C1 = 1, that is, all mosquitoes infected at the first gonotrophic cycle that survive to the kth

gonotrophic cycle play a central role in the propagation of the disease. Furthermore, sDFEwj
= N − 1

for 1 ≤ j < k and at the kth gonotrophic cycle, sDFEwk
is bounded above by

1

1− θsk
(N − 1) . From

the aforementioned discussion, it is clear that truncating the number of gonotrophic stages at k has
an impact on the estimated size of the basic reproduction number. The easiest way to see this is by
setting θik,1 = 0 and allowing θsk → 0, then βi

1
1−γik,1

Cjs
DFE
wj

→ βiCj (N − 1) < R2
0j

. Note that the

expression βiCj (N − 1) gives the contribution from each gonotrophic stage to the basic reproduction
number for the k-stages non-truncated model. It makes sense that the basic reproduction number
for a truncated model is larger than that for the non-truncated model, because, in truncating and
accounting for the effects of the mosquitoes at the kth stage on the mosquito-human interaction and
the disease dynamics, we introduce mosquitoes, a small proportion though, that can potentially live
forever.

From the preceding discussions, and also as highlighted by the expressions R2
0j

and hence R2
0 (see

equations (105)-(114)), as well as the steady states defined in equations (96)-(98), it is evident that
the greatest contribution to the magnitude of the basic reproduction number is from the mosquitoes
infected at the first gonotrophic cycle that survive later gonotrophic cycles, exhausting the length of
their life cycle. In fact, it highlights the fact that newly emerged mosquitoes that are infected with
the malaria parasite during their first blood meal play an important and strong role in the size of
the mosquito population as well as the malaria disease dynamics and burden. Thus targeting these
mosquitoes will play a great role in reducing R0 and hence the disease burden and transmission.
Additionally, mosquitoes at later stages also impact the size of the basic reproduction number and
hence the disease burden, but their contributions decreases with increasing gonotrophic cycle at which
they were infected. In particular, if we inspect steady states defined in equations (96)-(98), we see
that the steady state populations for the breeding site, reproducing and questing mosquitoes at later
gonotrophic cycles are decreasing with increasing gonotrophic cycles.

From the expression for R2
0, it is also evident that the aquatic mosquito stages have an impact on

the disease burden and dynamics. Inhibiting the successful transition from the aquatic to the adult
staged mosquitoes will lower ξv, and hence R0, and this will reduce the disease burden. This can be
achieved by reducing the density of mosquito eggs, larvae and pupa at breeding sites. Reducing the
number of bites that a mosquito places on a human, as well as the probability of a successful meal,
are all desirable targets, that can be achieved with the use of insecticide treated bednets, reducing
contacts between humans and mosquitoes. Obstructing the flow between human habitats and the
breeding sites by removing the breeding sites from human habitats will also lead to a lower R0 value
and hence towards a disease control.

One of the control methods we were interested in was the use of mosquitocidal drugs administered
to infected individuals, that have a potential to kill mosquitoes that feed on these humans. The idea
is based on a 2018 trial study that showed that Anopheles sp mosquitoes can be targeted and killed
when they feed on humans treated with a high dose of a safe mosquitocidal drug such as ivermectin.
From our mathematical model, and the conceptual model presented in Figure 2, the rate at which
humans were recruited into the treated class is given by δh. From the expression for R2

0, an increase in
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δh would lead to a reduction in the size of R2
0 and hence R0. This means that if this drug combination

is eventually approved for mass human use, it will play an important role in reducing the disease
burden, especially if it is the first line drug used to treat malaria. Additionally, if the proportion
of mosquitoes that survived, which we denoted here by α, was smaller then the size of the infected
mosquitoes will reduce, hence also positively impacting the malaria control. This can easily be seen
since the function g defined in (95) is 1 when α = 0 and less than 1 for α ∈ [0, 1). Thus a smaller
α means a smaller steady state mosquito population, as evident in equations (96)-(98). Thus, if this
medication combination is found safe and approved for use by infected malaria patients, it will provide
an additional way for better malaria control.

To conclude, we have presented a model that explicitly describes the roles of the mosquitoes at
various gonotrophic cycles in the mosquito dynamics, and how they contribute to the basic offspring
number in the absence of the malaria disease, as well as the basic reproduction number, in the presence
of disease. The model clearly shows the complexity of the malaria problem and the fact that control
must be applied at various fronts: eliminating breeding sites and breeding site mosquitoes, inhibiting
contacts between humans and mosquitoes, inhibiting the successful transition from aquatic to adult
stage mosquitoes and also reducing mosquito size. The presented model is a first step towards un-
derstanding the entire complex malaria problem. Further work will include analyzing the full malaria
problem, studying the impact of the treatment class on the disease burden, amongst others.
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Appendix A: Some technical definitions (cooperative systems, partial
order relation and order interval)

Definition 2 (Cooperative systems.) Let x ∈ Ω be a vector of state variables and consider an
n-dimensional autonomous system of ordinary differential equations

ẋ = f(x), x(0) = x0, (115)

where Ω ⊆ Rn is an open subset, and f : Ω −→ Rn is a continuous function. System (115) is called
cooperative if for every i, j ∈ {1, 2, ..., n} such that i 6= j, the function fi(x1, ..., xn) is monotone
increasing with respect to xj.

Thus, if f is differentiable, it suffices to verify that
∂fi
∂xj

≥ 0 for every i, j ∈ {1, 2, ..., n} , i 6= j. It

is easy to verify that the requirements of Definition 2 are verified for system (80), since A(x) is an
almost constant Metlzer matrix.

Definition 3 (Partial order relation.) Let there be given an arbitrary set X. A partial order re-
lation on X is a relation ≤ that is reflexive, transitive and antisymmetric in the sense that
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(i) ∀x ∈ X,x ≤ x, (reflexive);

(ii) ∀x, y, z ∈ X,x ≤ y, y ≤ z ⇒ x ≤ z, (transitive);

(iii) ∀x, y ∈ X,x ≤ y, y ≤ x⇒ x = y (antisymmetric).

In the context of Definition 3, we write x < y if x ≤ y and x 6= y. We will use a partial order on
X = Rn by defining for any x, y in Rn, x ≤ y if xi ≤ yi for all i = 1, 2, 3 · · · , n.

Definition 4 (Order interval.) If u,v ∈ Rn, with u ≤ v, then we write [u,v] ≡ {y ∈ X : u ≤ y ≤
v} and call it the order interval generated by u and v.

The following is an important result in the theory of monotone systems that was used in establishing
some results:

Theorem 7 (see Theorem 6 [1]) Let a, b ∈ Ω such that a ≤ b, [a, b] ⊂ Ω and f(b) ≤ 0 ≤ f(a).
Then, (115) defines a (positive) dynamical system on [a, b]. Moreover, if [a, b] contains a unique
equilibrium p, then p is globally asymptotically stable on [a, b].
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