Contrasting strategies for wing-moult and pre-migratory fuelling in western and eastern populations of Common Whitethroat *Sylvia communis*

MAGDALENA REMISIEWICZ,^{1,2*} ZEPHNÉ BERNITZ,³ HERMAN BERNITZ,⁴ MARC S. BURMAN,^{1,2,5} JACOBUS M.H. RAIJMAKERS,⁶ JOHANNES H.F.A. RAIJMAKERS⁷, LES G. UNDERHILL,² ANNA ROSTKOWSKA,⁸ YAHKAT BARSHEP,⁹ SERGEJ A. SOLOVIEV¹⁰ & ILONA SIWEK¹

¹Bird Migration Research Station, Faculty of Biology, University of Gdańsk, , Wita Stwosza 59, 80-308, Gdańsk, Poland

²Animal Demography Unit, Department of Biological Sciences, University of Cape Town, Rondebosch, 7701,

South Africa

³PO Box 1276 Middelburg, Mpumalanga, 1050, South Africa

⁴Department of Oral Pathology and Oral Biology, School of Dentistry, University of Pretoria, PO Box 1266,

Pretoria, 0001, South Africa

⁵Centre for Statistics in Ecology, the Environment and Conservation, Department of Statistical Sciences,

University of Cape Town, Rondebosch, 7701, South Africa

⁶PO Box 5067, Vanderbijlpark, 1900, South Africa

⁷23 Roy Campbell St, Vanderbijlpark, 1911, South Africa

⁸Students' Ornithological Group, Department of Vertebrate Zoology, Institute of Biology, University of Białystok, Ciołkowskiego 1K,15-245 Białystok, Poland

⁹A.P. Leventis Ornithological Research Institute, University of Jos, PO Box 13404, Laminga, Jos East, Plateau State, Nigeria

Department of Inorganic Chemistry, Faculty of Chemistry, Dostoevsky Omsk State University, 644077,
Omsk, Prospect Mira 55A, Russia

*Corresponding author: Magdalena Remisiewicz

Email: magdalena.remisiewicz@biol.ug.edu.pl

Table S1. Mean relative mass of flight feathers in adult Common Whitethroats expressed as a % of the total mass of all wing feathers treated as 100%, and as % of the total mass of all primaries (P1–P9) treated as 100%. The relative mass was derived by averaging the mass of corresponding feathers from both wings in one bird found dead in Poland.

Primary no	P1	P2	Р3	P4	P5	P6	P7	P8	Р9
Mean mass relative to P1-T3 mass [%]	5.7	6.0	6.2	6.9	7.1	7.7	8.2	8.6	9.3
Mean mass relative to P1-P9 [%]	8.7	9.1	9.5	10.2	10.8	11.8	12.7	12.9	14.2
Secondary or tertial no		S2	S 3	S 4	S5	S 6	T1	T2	Т3
Mean mass relative to P1-T3 mass [%]		4.6	4.3	4.1	3.8	3.6	4.1	3.1	1.6

Table S2. Moult sequence and moult parameters of separate wing feathers for adult Common Whitethroats caught in July–October 2013–2016 in Poland. Feathers numbered as in de Beer (2001). All moult parameters estimated using the Underhill-Zucchini moult model for data type 4 (pre-moult birds excluded). $^{\#}$ -(in the first column) = estimates obtained from combined data for P1–P4, and for T1–T3, using the feather number as a covariate and assuming common sd of moult start date. T1–P9 = moult timing calculated from the moult start of the first feather to the moult end of the last replaced feather (dates in bold). All = moult timing calculated for all wing feathers combined. Primaries = for all primaries combined. n = sample sizes. The rate of growth (% PFMG/day) calculated as the relative mass of the feather (or group of feathers) divided by moult duration of that feather (group of feathers). Asterisks = moult duration in Poland longer, and moult rate slower than for the corresponding feathers in South Africa (see Table S3), at statistical significance: * = P < 0.05, ** = P < 0.001 (one-sided Z-test). n/a = not applicable.

Feather		Moult pa	rameters			n		Rate of	Inter-
	Mean start date (se)	Duration in days (se)	SD of start date (se)	Mean end date (se)	Pre- moult	In moult	Post- moult	growth (%PFMG/ day)	shedding intervals (days)
T1#	30 Jun (10.1)	33 (8.9)**	17.7 (6.9)	1 Aug (10.1)	17	30	93	0.12*	
P1#	1 Jul (10.1)	20 (7.7)**	10.4 (3.4)	22 Jul (10.1)	4	10	126	0.28**	1
S 5	5 Jul (10.1)	45 (10.2)**	16.4 (7.6)	19 Aug (10.1)	50	50	40	0.08**	4
S1	8 Jul (10.1)	30 (7.3) **	14.6 (6.2)	7 Aug (10.1)	25	37	78	0.17*	3
S2	9 Jul (6.6)	35 (6.8) **	13.1 (5.3)	13 Aug (6.6)	40	46	54	0.13**	1
P2#	9 Jul (9.1)	16 (9.1) *	10.4 (3.4)	23 Jul (9.1)	5	14	121	0.38	0
P3#	9 Jul (9.4)	15 (9.4)	10.4 (3.4)	23 Jul (9.4)	10	11	119	0.41	0
T2#	11 Jul (10.6)	20 (9.4) **	17.7 (6.9)	30 Jul (10.6)	9	28	103	0.16**	2
P6	11 Jul (5.3)	26 (5.1) **	10.0 (3.8)	6 Aug (5.3)	16	33	91	0.29**	0
P9	11 Jul (4.9)	44 (5.9) **	11.8 (4.4)	24 Aug (4.9)	24	83	33	0.21**	0
P8	13 Jul (4.6)	36 (5.1) **	11.0 (4.0)	18 Aug (4.6)	24	65	51	0.24**	2
P4	13 Jul (6.8)	16 (5.9) **	9.0 (4.0)	29 Jul (6.8)	12	18	110	0.42	0
P7	13 Jul (5.0)	31 (5.1) **	11.1 (4.2)	13 Aug (5.0)	20	51	69	0.26**	0
P5	14 Jul (7.2)	18 (6.1) **	10.31 (4.5)	1 Aug (7.2)	15	22	103	0.40	1
S4	14 Jul (8.8)	37 (9.7) **	15.6 (7.5)	20 Aug (8.8)	66	43	31	0.11**	0
T3#	18 Jul (11.9)	13 (9.4) **	17.7 (6.9)	31 Jul (11.9)	14	22	104	0.13	4
S6	19 Jul (5.5)	32 (6.1) **	12.1 (5.0)	20 Aug (5.5)	42	57	41	0.11**	1
S 3	23 Jul (5.7)	23 (5.9) **	11.1 (4.8)	15 Aug (5.7)	65	37	38	0.19*	4
T1-P9	30 Jun (10.1)	56 (n/a)	(n/a)	24 Aug (4.9)	9	98	33	1.78	
Primaries	3 Jul (3.4)	48 (3.9)	10.0 (3.1)	20 Aug (3.4)	0	104	33	2.08	
All	2 Jul (3.7)	55 (4.6)*	10.9 (3.5)	26 Aug (3.7)	3	122	15	1.82	

Table S3. Moult sequence and moult parameters of separate wing feathers for adult Common Whitethroats caught in November–April 1987-2017 in South Africa. Feathers numbered as in de Beer (2001). For all feathers moult timing estimated using the Underhill-Zucchini moult model for data type 2. # (in first column) = estimates obtained from combined data for T1–T3, using the feather number as a covariate and assuming common sd of moult start date. P1–S4 = moult timing calculated from the moult start of the first and the moult end of the last replaced feather (dates in bold); the remaining symbols as in Table S2. All = moult timing calculated for all wing feathers combined.

eather	Moult parameters					n		Rate of	Inter-
	Mean start date (se)	Duration in days (Sse)	SD of start date (se)	Mean end date (se)	Pre-moult	In moult	Post- moult	growth (%PFMG/ day)	shedding intervals (days)
P1	31 Dec (4.4)	11 (3.5)	18.2 (7.7)	16 Jan (4.4)	15	9	98	5.68	
P2	2 Jan (4.2)	14 (3.7)	18.8 (7.7)	19 Jan (4.2)	17	12	93	6.01	2
Р3	7 Jan (3.8)	15 (3.6)	17.5 (6.9)	22 Jan (3.8)	20	14	88	6.25	5
P4	10 Jan (3.4)	13 (3.3)	15.6 (6.1)	21 Jan (3.4)	23	13	86	6.89	3
T1#	13 Jan (6.3)	22 (6.4)	23.5 (8.3)	4 Feb (6.3)	11	9	35	4.34	3
P5	13 Jan (3.0)	14 (3.2)	14.9 (5.7)	31 Jan (3.0)	25	14	83	4.08	0
T2#	16 Jan (8.3)	7 (4.1)	23.5 (8.3)	23 Jan (8.3)	12	3	40	4.09	3
T3#	16 Jan (8.3)	7 (4.0)	23.5 (8.3)	24 Jan (8.3)	12	3	40	3.81	0
P6	21 Jan (2.8)	12 (2.9)	13.5 (5.3)	1 Feb (2.8)	31	13	78	7.06	5
S1	23 Jan (4.3)	19 (4.8)	13.4 (5.8)	11 Feb (4.3)	14	10	31	5.03	2
P7	24 Jan (3.2)	17 (3.4)	16.8 (6.1)	10 Feb (3.2)	36	18	68	3.07	1
P8	27 Jan (3.0)	18 (3.3)	16.2 (5.7)	15 Feb (3.0)	40	22	60	1.63	3
S2	29 Jan (3.8)	21 (4.6)	13.9 (5.9)	19 Feb (3.8)	16	12	27	8.24	2
P9	30 Jan (3.1)	24 (3.7)	17.8 (5.9)	24 Feb (3.1)	44	28	50	7.73	1
S6	7 Feb (4.4)	19 (4.8)	17.0 (7.3)	25 Feb (4.4)	21	10	24	3.60	8
S 3	9 Feb (4.1)	17 (4.6)	16.8 (7.0)	26 Feb (4.1)	22	10	23	8.57	2
S4	12 Feb (4.7)	15 (4.8)	20.8 (9.2)	27 Feb (4.7)	23	9	23	4.63	3
S 5	12 Feb (4.3)	12 (4.2)	18.0 (8.0)	24 Feb (4.3)	23	7	25	9.29	0
P1-S4	31 Dec (4.4)	58 (n/a)	(n/a)	27 Feb (4.7)	15	17	23	1.71	
Primaries	29 Dec (3.6)	54 (4.6)	17.2 (5.3)	21 Feb (3.6)	15	58	50	1.86	
All	2 Jan (5.2)	57 (6.5)	16.9 (6.4)	28 Feb (5.2)	7	27	21	1.77	

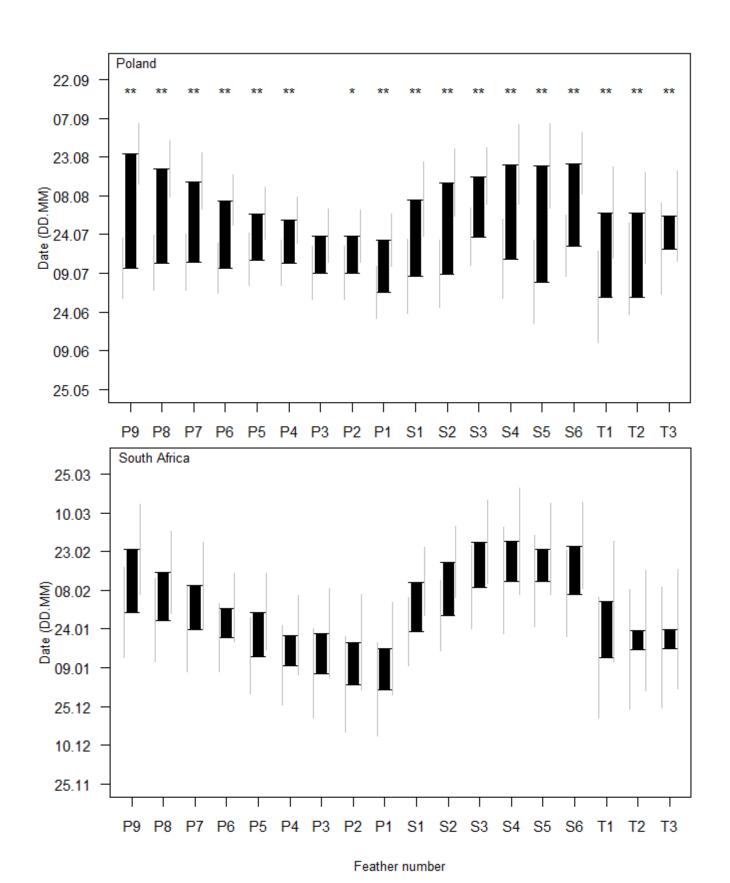
Table S4. Underhill-Zucchini moult models used to determine the effect of region where moult takes place (see Fig. 1) on moult parameters estimated for all primaries, secondaries and tertials jointly in adult Common Whitethroats caught in July–October 2013–2016 in Poland and in November–April 1987–2017 in South Africa. Models ranked by Akaike Information Criteria corrected for small sample (AICc), k is the number of parameters in a model, ΔAICc gives the difference in AICc from the best model, the Akaike weights (wAICc) assess the relative support that a given model has from the data, compared with the other models. 1 = parameter assumed constant for Poland and South Africa. Best fitted model in bold face. PFMG = Proportion of Feather Mass Grown, Day = day number from 1 June, region = region (Poland or South Africa) used as a covariate. Models are formulated as in Erni *et al.* (2013).

Model no according to AICc	ording to moult duration mean start date SD of start date		AICc	ΔΑΙС	wAICc
1	PFMG ~ Day 1 region region	5	969.43	0.00	0.58256
2	PFMG ~ Day region region	6	971.89	2.46	0.17058
3	PFMG ~ Day 1 region 1	4	972.26	2.83	0.14176
4	PFMG ~ Day region region 1	5	974.24	4.81	0.05255
5	PFMG ~ Day region region 1	5	974.24	4.81	0.05255
6	PFMG ~ Day region 1 region	5	1002.27	32.84	0.00000
7	PFMG ~ Day 1 1 1	3	1114.48	145.05	0.00000
8	PFMG ~ Day region 1 1	4	1119.03	149.60	0.00000

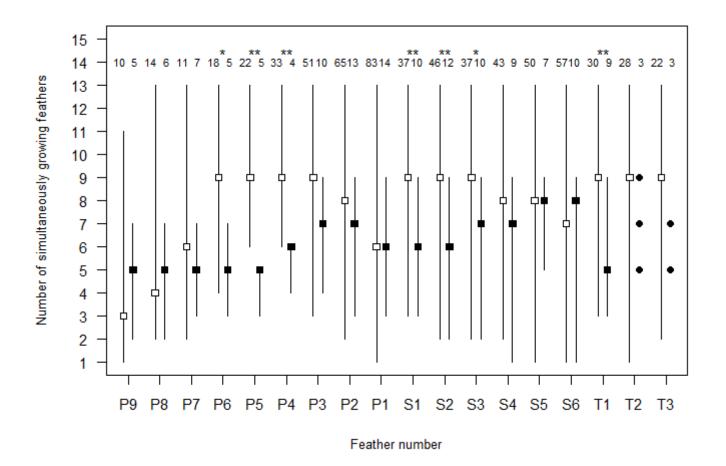
Table S5. Mean wing lengths of Whitethroats caught in the four study regions (Fig 1), considering the moult status of measured wings. Comparisons within region = comparisons of wing length measured on pre-moult (worn) and post-moult (fresh) wings in Poland and South Africa, where both categories occur; U and P = results of U-tests. Comparisons between regions = comparisons of the wing length of pre- and post-moult wings (as marked in the rows) between the regions; the pre-moult wing lengths in Poland and South Africa were compared to those in Siberia (Kruskal-Wallis ANOVA: $H_{2,123}$ =8.42, P = 0.0149); Z and P = results of post-hoc Tukey's test.

Country	Moult status of wing	Wing length (mm)			region	ons within of pre- -moult birds	Comparisons between regions				
	Of Willig	Mean (sd)	Min	Max	n	U	P	Z	Р	Z	р
Poland	Pre-moult	73.2 (2.3)	68	77	18	380.00	0.0950	0.05	0.9999	2.03	0.1265
	Post-moult	74.2 (1.8)	70	79	57			0.54	0.9999	1.54	0.3704
South	Pre-moult	73.2 (2.1)	67	77	33	756.00	0.1500			2.48	0.0392
Africa	Post-moult	73.8 (2.3)	69	79	32					2.23	0.0776
Siberia	Pre-moult	71.6 (3.1)	62	77	72			•	•		
Nigeria	Post-moult	74.6 (2.0)	69	81	337				•		

Table S6. Comparison of primary moult rates estimated by Underhill-Zucchini models for Whitethroats in Poland and in South Africa (Tables S2, S3) with those for other insectivorous passerine migrants. We calculated the moult rates (%PFMG/day) by dividing moult duration estimated in each study by the mass of all primaries = 100%, to enable comparisons of relative primary moult rates between species of different size. Species arranged by the primary moult rate; our results in bold.


Species	Location	Primary moult rate	Moult start date (se)	Moult duration in days (se)	Source
Barn Swallow Hirundo rustica	South Africa	0.81	29 Nov (0.4)	123 (0.7)	Burman 2016
Blackcap Sylvia atricapilla	SW England	1.41	12 Jul (0.6)	71 (1.3)	Morrison et al. 2015
Willow Warbler Phylloscopus trochilus	SW England	1.46	12 Jun (0.6)	69 (0.9)	Morrison et al. 2015
Willow Warbler Phylloscopus trochilus	Guinea Bissau	1.47	4 Dec (-)	68 (-)	Underhill <i>et al.</i> 1992
European Stonechat Saxicola rubicola	NW Germany	1.48	19 Jul (1.7)	68 (4.5)	Flinks et al. 2008
Willow Warbler Phylloscopus trochilus	Ivory Coast	1.49	24 Dec (3)	67 (4)	Salewski <i>et al</i> . 2004
Common Whitethroat Sylvia communis	SW England	1.50	4 Jul (0.7)	67 (1.4)	Morrison et al. 2015
Melodious Warbler Hippolais polyglotta	Ivory Coast	1.54	13 Sep (17)	65 (17)	Salewski <i>et al</i> . 2004
Common Whitethroat Sylvia communis	NE South Africa	1.86	29 Dec (3.6)	54 (4.6)	this study
Willow Warbler Phylloscopus trochilus	Brabant, Belgium	1.89	12 Jun (2.2)	53 (3.7)	Underhill <i>et al.</i> 1992
Common Whitethroat Sylvia communis	Poland	2.08	3 Jul (3.4)	48 (3.9)	this study
Willow Warbler Phylloscopus trochilus	Lapland, Finland	2.38	13 Jul (0.6)	42 (1.7)	Underhill <i>et al</i> . 1992

REFERENCES


- **Burman, M.S.** 2016. Citizen science reveals complex changes in barn swallow phenology in South Africa over three decades. PhD Thesis. Department of Biological Sciences, University of Cape Town.
- Morrisson, C.A., Baillie, S. R., Clark, J. A., Johnston, A., Leech, D.I. & Robinson, R.A. 2015. Flexibility in the timing of post-breeding moult in passerines in the UK. *Ibis* **157**: 340–350.
- Underhill, L.G., Prys-Jones, R.P., Dowsett, R.J., Herroelen, P., Johnson, D.N., Lawn, M.R., Norman, S.C., Pearson, D.J. & Tree, A.J. 1992. The biannual primary moult of Willow Warblers *Phylloscopus trochilus* in Europe and Africa. *Ibis* 134: 286–297.
- **Flinks, H., Helm, B. & Rothery, P.**2008. Plasticity of moult and breeding schedules in migratory European Stonechats *Saxicola rubicola*. *Ibis* **150**: 687–697.

Salewski, V., Altwegg, R., Erni, B., Falk, K.H., Bairlein, F. & Leisler, B. 2004. Moult of three Palaearctic migrants in their West African winter quarters. *J. Ornithol.* **145**: 109–116.

Fig. S1. Moult timing and sequence of each wing feather for western (Poland–Nigeria) and eastern (Siberia–South Africa) Whitethroats. P1–P9 = primaries, S1–S6 = secondaries, T1–T3 = tertials, arranged as in a left wing with the bird facing away (de Beer *et al.* 2001). Bars = mean periods of feather growth (Tables S2 & S3), grey lines = estimated *SD* of the mean start dates (left) and mean end dates (right). Asterisks = feather where moult duration was longer in Poland than in South Africa (one-sided *Z*-test: * = P < 0.05,** = P < 0.001; Tables S2 & S3).

Fig. S2. The number of wing flight feathers growing simultaneously with the feather on the X-axis for Common Whitethroats in Poland and in South Africa. Squares = medians (white = Poland, black = South Africa), whiskers = range, black circles = values for the groups too small to calculate the medians, numbers above whiskers = sample sizes, asterisks = significant difference between Poland and South Africa (*U*-test: * = P < 0.05, ** = P < 0.01).

