
An explicit nonstandard finite difference scheme for the

FitzHugh-Nagumo equations

R. Appadu, M. Chapwanya ∗, O. A. Jejeniwa, and J.M-S. Lubuma

Department of Mathematics & Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa

Abstract

In this work, we consider numerical solutions of the FitzHugh-Nagumo system of equa-

tions describing the propagation of electrical signals in nerve axons. The system consists of

two coupled equations: a nonlinear partial differential equation and a linear ordinary differ-

ential equation. We begin with a review of the qualitative properties of the nonlinear space

independent system of equations. The sub equation approach is applied to derive dynamically

consistent schemes for the sub models. This is followed by a consistent and systematic merging

of the sub schemes to give three explicit nonstandard finite difference schemes in the limit of

fast extinction and slow recovery. A qualitative study of the schemes together with the error

analysis is presented. Numerical simulations are given to support the theoretical results and

verify the efficiency of the proposed schemes.
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1 Introduction

The FitzHugh-Nagumo (FH-N) system is widely studied in applied mathematics, thanks to its rich

dynamics, [15, 35, 20]. In this work we consider the FH-N system of equations in the form

ε
du

dt
= f(u)− v + I

dv

dt
= u− γv,

(1.1)

where ε and γ are non negative constants. In addition, f(u) = u(1− u)(u− β), where β ∈ (0, 1
2
).

We are interested in the numerical discretisation of the equations in the limit case ε ≪ 1, i.e.,

fast excitation and slow recovery [10, 18]. In the literature, the unknown u measures the potential

difference across the cell membrane and the unknown v measures the transmembrane currents

which influence the tendency of the cell to regain before being able to fire again. In addition, I is a
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constant stimulus which represents an externally applied current, [4]. The system of equations (1.1)

is the simplified form of the Hodgkin-Huxley system used in the modeling of nerve axon dynamics.

A non diffusive FH-N equation has been studied as a standard model for action potential of a nerve

impulse, [14, 26]. It displays excitability which is also common in Hodgkins-Huxley and some

other ionic models [19].

The theoretical and numerical analysis of the system of equations (1.1), and its reaction dif-

fusion variants, have been studied extensively in the literature. Here we only highlight the results

which are relevant for the current study. Results on existence of fast waves obtained using a geo-

metric approach for singular perturbation problems can be found in [9]. On the other hand, results

on the existence of traveling wave pulse for the reaction diffusion system for sufficiently small ε
are reported in [8]. Further theoretical results have been reported by several other authors, see for

example [28, 29, 30, 24].

Several numerical techniques have been developed to solve the FH-N system. Among these,

is the variational iteration method (VIM) and the Adomian decomposition method (ADM) em-

ployed in [33]. The obtained results were compared with Hopscotch finite different scheme which

was first proposed in [17], and further modified in [16]. Further simulations were obtained using

the Galerkin-type schemes and collocation method and the results showed that only few terms are

required to produce approximate solutions which are accurate and more efficient than the other

schemes. It was also observed that the VIM is more accurate than the ADM. In [27], a pseudospec-

tral method which is based on the use of Chebychev polynomials was shown to be useful in the

study of the propagation of steep fronts.

It is also known that the use of standard time integration techniques such as forward or back-

ward Euler and Runge-Kutta methods to solve such differential models often lead to numerical

instabilities due to selection of discretisation parameters [13, 34, 22]. Despite the numerous appli-

cation of nonstandard finite difference (NSFD) methods in approximating solutions of differential

equations, it remains important to study the efficiency of these discretisation to the FH-N equations.

In particular, NSFD schemes have the potential to be dynamically consistent with the properties of

the continuous model. To the best of the authors knowledge, no work has been carried out on the

use of NSFD discretisation for the system of the FH-N system of equations.

The idea of NSFD methods can be traced back to the work of Mickens in the late 1980’s. A

guiding philosophy in the construction of NSFD schemes is provided in [23]. Since then, significant

progress has been made in the theory of these methods, see for example the contributions in [5].

The idea of the construction of the NSFD schemes is that the discrete model must preserve the

properties of the continuous model they represent. Here we summarise some of the ideas for

continuous dynamical systems.

Let D ⊂ R
d be a domain (d ≥ 1) and let f ∈ C0(D,Rd) such that

dy

dt
= f(y), y(0) = y0, (1.2)

with y0 ∈ R
d and t > 0. To introduce and develop the ideas of NSFD methods, we consider the

ordinary differential equation (1.2). The numerical approximation of y(t) is represented by yn at

time tn = n∆t, where n = 0, 1, · · · . An explicit finite difference scheme to (1.2) is expressed as

follows

yn+1 = F (yn; ∆t), y0 = y0. (1.3)
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Definition 1.1 ([5]). A one-step scheme (1.3) is called a nonstandard finite difference scheme if at

least one of the following conditions is satisfied:

• The classical denominator ∆t, of the discrete derivative is replaced by a non-negative func-

tion φ(∆t) such that φ(∆t) = ∆t+O([∆t]2);

• Nonlinear terms that occur in the right-hand side of (1.2) are approximated in a non-local

way, e.g., y2 ≈ ynyn+1.

The power and performance of the NSFD can be represented in terms of qualitative stability or

dynamic consistency.

Definition 1.2 ([7]). Assume the solution to a differential equation satisfies some property P . A

numerical approximation (1.3) is dynamically consistent with the differential equation if the nu-

merical solutions satisfy P for all values of the involved time step.

Some of the properties highlighted in Definition 1.2 for equations in engineering and sciences

include: positivity, boundedness, preservation of fixed-points and their stability properties, exis-

tence of special solutions (e.g., traveling waves, solitons, etc) and limit cycles and other periodic

solutions. Since (1.2) is an autonomous differential equation, a stronger result on the solution for a

one-dimensional problem is

Theorem 1.1 ([7]). For y ∈ R, the difference scheme (1.3) is qualitatively stable with respect to

the monotonicity on initial values if and only if

∂F

∂v
≥ 0, ∆t > 0, v ∈ R.

The objective of this work is to present a systematic derivation of explicit nonstandard finite

difference schemes for the FH-N model (1.1). A major property of the proposed NSFD schemes is

that the discrete model preserves the properties of the continuous model, see Definition 1.2. Hence

this work is motivated by the rich dynamics of the system (1.1) and its sub models, see for example

[28, 29, 30, 24, 20] and references therein. In particular, we will only consider explicit schemes,

and to keep the work focused, we only consider NSFD schemes.

This paper is organised as follows: in Section 2, we consider the temporal sub model of the

system (1.1) and present its qualitative analysis. Here, three nonstandard finite difference schemes

are presented for single-ODE equation and a system two-ODE equations of the FH-N equation. In

each case, numerical experiments are performed to determine the performance of the schemes. In

Section 3, we take motivation from Section 2 to derive schemes for the PDE models. In particular,

schemes for the time and space independent equations are coupled to obtain complete schemes

for the full system of FH-N equations. Numerical experiments are carried out for both the one-

PDE-model and the system of FH-N equations. We end in Section 4 where conclusions and future

directions are outlined.

2 The space independent FH-N model

We begin by presenting a qualitative study of the temporal model (1.1) for I > 0. The model is also

identified in the literature as a FH-N model, see for example [20]. Many of the results discussed
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here have been reported in [20, 4], and for completeness, we reformulate our requirements here.

In the work, the authors showed the existence of both supercritical and subcritical bifurcations. A

total of at least 8 bifurcation diagrams were observed. Here we are interested in the existence of

equilibria for different selection of parameters. In particular, we have three distinct cases: one, two

or three equilibria. Defining ψ(u) = f(u)− u/γ, so that ψ(u) = −I at the equilibria, we have the

following result.

Proposition 2.1 ([20]). Let Ee = (ue, ve) be an equilibrium point. If ψ′(ue) < 0, then Ee is a

stable node for f ′(ue) < γ and is a repeller if f ′(ue) > γ. If ψ′(ue) > 0, then Ee is a saddle point.

The proof of this result follows directly from the Hartman-Grobman linearisation process. If γ
and β are related by the inequality

1

γ
>

1

3

(

β − 1

2

)2

+
1

4
, (2.1)

the system of equations (1.1) has a unique equilibrium solution E0 = (u0, v0) which is asymptoti-

cally stable if f ′(u0) < γ and ψ′(u0) < 0. It is unstable if f ′(u0) > γ and ψ′(u0) < 0. The other

cases can be discussed by defining

δ :=
1

3

(

β − 1

2

)2

+
1

4
− 1

γ
. (2.2)

In this case, there exists one, two or three equilibria depending on the values of I . This scenario is

shown in Figure 1 for a selection of parameters satisfying either δ < 0 or δ > 0. First we notice that

Hopf bifurcation occurs when ψ(u) has a minimum, ψ(ul) = −Il and a maximum, ψ(ur) = −Ir.
If Ir < −I and Il > −I there is only one equilibrium and I = −Ir and I = −Il are saddle-node

bifurcation values for I .

The three-equilibria case is obtained when Ir < −I < Ir. Here we identify the equilibria as

follows: E0 = (u0, v0), E1 = (u1, v1) and E2 = (u2, v2) where u0 < u1 < u2. E1 is always a

saddle point since ψ′(u1) > 0, see Figure 1(b). If ψ′(u0) < 0, ψ′(u2) < 0 and γ ≥ 1, then E0 and

E2 are stable. Choosing a value −ψ(u2) > I and increasing I until −ψ(u1) < I , only E0 exists

first and it is stable if I is very small. When the value of I is increased: E0 becomes unstable; E1

and E2 show through a saddle-node bifurcation, E2 showing instability; E2 later becomes stable.

These three processes show up but not always in this order. Eight different events are possible. For

a complete discussion, see for example [20].

2.1 Numerical schemes

Throughout the paper, a numerical approximation of the unknown variable w(x, t) on a uniform

grid will be written aswn

m
at time tn = n∆t and spatial point xm = m∆x, wherem = 0, 1, 2, · · · ,M

and n = 0, 1, 2, · · · . We begin by neglecting the equation for v in (1.1), i.e., we consider the FH-N

equation given by

ε
du

dt
= f(u) = u(1− u)(u− β). (2.3)
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(a) Bifurcation diagram for δ < 0. (b) Bifurcation diagram for δ > 0.

Figure 1: Bifurcation diagram for the the FH-N system (1.1). In Figure (a) we choose β = 0.139,

γ = 2.54, and in Figure (b) we have β = 0.25, γ = 6.0.

The three fixed points of equation (2.3) are u∗1 = 0, u∗2 = 1 and u∗3 = β. The fixed points u∗1 and u∗2
are both stable while u∗3 is unstable [31]. As pointed by [31], no effort will be made to find an exact

scheme to (2.3) due to its complexity. We begin by recalling the following schemes (see [31, 32])

ε
un+1 − un

φ1(∆t)
= −un+1(un)2 + (1 + β)(un)2 − βun+1, (2.4)

ε
un+1 − un

φ1(∆t)
= −(2un+1 − un)(un)2 + (1 + β)(un)2 − βun+1, (2.5)

where φ1(∆t) is chosen to satisfy φ1(∆t) = ∆t + O([∆t]2). In particular, we have φ1(∆t) =
[exp(∆t/ε)− 1]/(1/ε). These schemes preserve positivity and the stability/instability of the fixed

points. Using a full nonlocal discretisation, we propose

ε
un+1 − un

φ(∆t)
= −un+1(un)2 + (1 + β)(un)un+1 − βun+1, (2.6)

where φ(∆t) = [1 − exp(−∆t/ε)]/(1/ε). We notice that the right hand side of scheme (2.6) can

be written in the form un+1(1 − un)(un − β) and it trivial to verify that the scheme preserves all

the three fixed points. The numerical schemes (2.4), (2.5) and (2.6) can be written explicitly in the

form

un+1 = g(un), (2.7)

for some function g(un). We write scheme (2.6) explicitly as

un+1 = g(un) =
un

1 + φ{(un)2 − (1 + β)un + β}/ε. (2.8)

Clearly g(un)|∆t=0 = un. On differentiating g(un), we have

g′(un) =
1 + φ{β − (un)2}/ε

{1 + φ[(un)2 − (1 + β)un + β]}2/ε. (2.9)
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At fixed point u∗1, we have

g′(0) =
1

1 + βφ/ε
≥ 0.

We also note that |g′(0)| < 1, hence the fixed point u∗1 is stable as expected. For the fixed point u∗2,
we have

g′(1) = 1− φ

ε
(1− β) ≥ 0,

using the definition of φ and the fact that β ∈ (0, 1/2). In addition |g′(1)| < 1 so that u∗2 is also

stable as expected. For the third fixed point u∗2, we have

g′(β) = 1 + β
φ

ε
(1− β) ≥ 0,

since β ∈ (0, 1/2). We also have |g′(β)| > 1 so that the fixed point u∗3 is unstable as expected. The

above analysis prooves the following result.

Theorem 2.1. The proposed new scheme (2.6) is topologically dynamically consistent with the

properties of (2.3).

Remark 2.1. We note that a similar analysis on the standard forward Euler scheme reveals that

we need ∆t <
ε

2β(1− β)
to preserve the stability and monotonicity of initial values. That is,

∆t is linearly dependent on ε which limits the efficiency of the scheme. In this work we aim to

design schemes that remove this ε−dependence in the time stepping procedure, while keeping the

algorithms as simple as possible.

We test the performance of the presented schemes via an example as follows

Experiment 1. Consider

ε
du

dt
= u(1− u)(u− β), t > 0,

u(0) = u0.
(2.10)

In Figure 2 we present simulations using schemes (2.4) – (2.6) to illustrate topological dynamic

consistency of scheme (2.6). Comparison of nonstandard finite difference schemes with standard

finite difference schemes is also provided elsewhere, see for example [3]. It is clear from Figure 2

that scheme (2.6) outperforms all the other schemes.

The above discussion and scheme (2.4)–(2.6), suggest that we have the following three possible

schemes for the temporal system (1.1).

ε
un+1 − un

φ1(∆t)
= −un+1(un)2 + (1 + β)(un)2 − βun+1 − vn + I,

vn+1 − vn

φ1(∆t)
= un − γvn,

(2.11)

ε
un+1 − un

φ1(∆t)
= −(2un+1 − un)(un)2 + (1 + β)(un)2 − βun+1 − vn + I,

vn+1 − vn

φ1(∆t)
= un − γvn,

(2.12)
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(a) Scheme (2.6). (b) Standard scheme.

Figure 2: In the simulations we choose β = 0.25 and tmax = 2 for different initial values.

and

ε
un+1 − un

φ(∆t)
= −un+1(un)2 + (1 + β)(un)un+1 − βun+1 − vn + I,

vn+1 − vn

φ(∆t)
= un − γvn.

(2.13)

For the purpose of comparison, we propose the following standard Euler scheme

ε
un+1 − un

∆t
= f(un)− vn + I,

vn+1 − vn

∆t
= un − γvn,

(2.14)

where f(un) = −(un)3 + (1 + β)(un)2 − βun. The analysis of the nonstandard schemes (2.11)-

(2.13) is very complex and will not be presented here. However, we will use the following result

which is based on the standard Euler scheme in benchmarking their performance.
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Theorem 2.2. Assuming that the function f(u) satisfies the conditions γε − f ′(ue) > 0 and

1 − γf ′(ue) > 0, where (ue, ve) is the equilibrium point of system (1.1), then the standard finite

difference scheme (2.14) preserves the stability of the equilibrium (ue, ve) if

∆t <
γε− f ′(ue)

1− γf ′(ue)
.

Remark 2.2. In the literature, equations (1.1), (2.3) and later on (3.8) have all been identified as

FitzHugh-Nagumo equations. This also includes the reaction diffusion model to be considered later

in the paper.

2.2 Numerical simulations

In this section we perform numerical experiments of the system of equations (1.1) by choosing

parameters so that they satisfy the existence and stability results summarised above. The examples

considered here do not represent all the possible bifurcation scenarios for system (1.1). In particu-

lar, [20] gave eight possible scenarios and we are not going to simulate all of them here. The main

purpose of this section is to show that the derived schemes preserve the properties of the continuous

model. In all the experiments in this section, we consider

Experiment 2. Consider model (1.1) subject to initial conditions, u(0) = u0, and v(0) = v0.

The selection of parameters will be explained in the text.

2.2.1 Single equilibrium

We first consider the case where there exists one equilibrium, in which case the relation given by

equation (2.1) must be satisfied. Here we choose β = 0.139, γ = 2.54 and ε = 0.008, as used in

[4], and a single equilibrium point E0 is obtained. The corresponding bifurcation diagram is given

in Figure 1.

From Proposition 2.1, it is found that for I = 0.026, E0 = (0.0546, 0.0215) is a stable equi-

librium and for I = 0.05, E0 = (0.1225, 0.04823) is an unstable equilibrium. The two cases

are illustrated by plotting phase trajectories as given in Figures 3. To test the performance of the

schemes, we select ∆t = 0.01 which is within the stability restriction for standard forward scheme

as summarised in Theorem 2.2, and ∆t = 0.1 for NSFD schemes. In particular, for the selection

of parameters here, the forward Euler scheme requires that ∆t < 0.0408. While it is clear from the

figures that schemes (2.11), (2.12) and (2.14) develop nonphysical oscillations over time, scheme

(2.13) provides spurious free simulations.

In Figure 4, we illustrate further the stability of the equilibrium for different initial values using

scheme (2.13) alone and ∆t = 0.1. The results support the local stability given in Proposition 2.1.

2.2.2 More than one equilibrium

The simulations in this section are motivated by the authors in [20], where some arguments were

given with respect to the convergence of trajectories to either of the equilibrium points for a given

8



v(x,t)

-0.2 0 0.2 0.4 0.6 0.8 1

u
(x

,t
)

0

0.05

0.1

0.15

0.2
Scheme (2.12)

Scheme (2.13)

Scheme (2.14)

Scheme (2.15)

Equilibrium

v(x,t)

-0.2 0 0.2 0.4 0.6 0.8 1

u
(x

,t
)

0

0.05

0.1

0.15

0.2
Scheme (2.12)

Scheme (2.13)

Scheme (2.14)

Scheme (2.15)

Equilibrium

(a) E0 is stable. (b) E0 is unstable.

Figure 3: Phase plane trajectories in the (u, v) plane when: (a) E0 is stable, and (b) E0 is unstable.

−0.2 0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

u
(x

,t
)

v(x,t)
−0.2 0 0.2 0.4 0.6 0.8 1

−0.05

0

0.05

0.1

0.15

0.2

u
(x

,t
)

v(x,t)

(a) E0 is stable. (b) E0 is unstable.

Figure 4: Phase plane trajectories in the (u, v) plane when: (a) E0 is stable, and (b) E0 is unstable.

initial condition. For this case of more than one equilibrium, we choose the parameter β, γ such that

relation δ > 0 given above holds. In particular, we choose β = 0.25, γ = 6, ε = 0.01 and I = 0.035
so that model (1.1) is bistable. We obtain the three equilibria given by E0 = (0.1283, 0.0214),
E1 = (0.3563, 0.0594) and E2 = (0.7653, 0.1276).

We give convergence results in Figures 5 – 8 where for each scheme we choose ∆t = 0.03 and

∆t = 0.003. While scheme (2.13) shows converged results at ∆t = 0.03, the other three schemes

need a much smaller time step for the trajectories to be attracted to the correct equilibrium.

3 The spatial models

Following earlier work on NSFD methods, a natural approach will be to derive schemes for the sub

equations and then merge them to design a scheme for the full equation, c.f. [23, 11]. Here we
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Figure 5: Phase plane trajectories in the (u, v) plane when: E0 and E2 are stable with E1 unstable,

using scheme (2.11).
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Figure 6: Phase plane trajectories in the (u, v) plane when: E0 and E2 are stable with E1 unstable,

using scheme (2.12).

follow the same approach to design NSFD schemes for the following model

ε
∂u

∂t
= ε

∂2u

∂x2
+ f(u)− v + I

∂v

∂t
= u− γv,

(3.1)
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Figure 7: Phase plane trajectories in the (u, v) plane when: E0 and E2 are stable with E1 unstable,

using scheme (2.13).
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Figure 8: Phase plane trajectories in the (u, v) plane when: E0 and E2 are stable with E1 unstable,

using scheme (2.14).

where x ∈ Ω. First we consider the time independent problem for (3.1) given by

ε
∂2u

∂x2
+ f(u)− v + I = 0 (3.2)

u− γv = 0.

The second equation simplifies to v = u/γ, and therefore we have

ε
∂2u

∂x2
− u3 + (1 + β)u2 − βu− u

γ
+ I = 0. (3.3)
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The equation depicts the steady state reaction diffusion equation which has been studied exten-

sively in the literature, see for example [4, 27, 12]. A first integral of (3.3) is

E =
ε

2

(

∂u

∂x

)2

− u4

4
+ (1 + β)

u3

3
− β

u2

2
− 1

γ

u2

2
+ uI, (3.4)

where E is a constant representing the energy, see [6]. A corresponding discrete energy preserving

form is,

ε

2

(

um+1 − um
ψ(∆x)

)2

+G(umum+1) =
ε

2

(

um − um−1

ψ(∆x)

)2

+G(umum−1), (3.5)

which is invariant under the transformation m ↔ m + 1, with ψ(∆x) satisfying ψ(∆x) = ∆x +
O([∆x]2). The exact scheme is

ε
um+1 − 2um + um−1

ψ(∆x)2
−u2

m

(

um+1 + um−1

2

)

+(1+β)um

(

um+1 + um + um−1

3

)

−βum−
um
γ
+I = 0.

(3.6)

Consequently, we propose the following scheme for (3.2),

ε
um+1 − 2um + um−1

ψ(∆x)2
−u2

m

(

um+1 + um−1

2

)

+ (1 + β)um

(

um+1 + um + um−1

3

)

− vm + I = 0,

(3.7)

um − γvm = 0.

In the next sections, the scheme derived above will be combined with the schemes for the temporal

model derived in Section 2 and numerical simulations will be performed to test their performance.

3.1 Single FH-N equation

As highlighted above, there are several variants of the FH-N equations. A single FH-N equation as

formulated in Experiment 3 is often referred to as the FH-N model, see [21, 2]

Experiment 3. Consider

ε
∂u

∂t
= ε

∂2u

∂x2
+ u(1− u)(u− β), x ∈ (∞,∞)

u(x, 0) = w(x, 0),

lim
x→−∞

u(x, t) = 1, lim
x→−∞

u(x, t) = 0,

(3.8)

where w(x, t) is the travelling wave solution given in [21], i.e.,

w(x, t) =
1

2
− 1

2
tanh

{

x− ct

2
√
2

}

.

The traveling wave speed is c =
√
2(1− 2β)/2ε.
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The following schemes will be considered: combining schemes (2.4) and (3.7) gives

ε
un+1
m

− un
m

φ1(∆t)
= ε

un
m+1 − 2un

m
+ un

m−1

[ψ(∆x)]2
−un

m
un+1
m

(

un
m+1 + un

m−1

2

)

+ (1 + β)un
m

(

un
m+1 + un

m
+ un

m−1

3

)

− βun+1
m

, (3.9)

combining schemes (2.5) and (3.7) gives

ε
un+1
m

− un
m

φ1(∆t)
= ε

un
m+1 − 2un

m
+ un

m−1

[ψ(∆x)]2
−(2un+1

m
− un

m
)un

m

(

un
m+1 + un

m−1

2

)

+ (1 + β)un
m

(

un
m+1 + un

m
+ un

m−1

3

)

− βun+1
m

, (3.10)

and finally, combining schemes (2.6) and (3.7) gives

ε
un+1
m

− un
m

φ(∆t)
= ε

un
m+1 − 2un

m
+ un

m−1

[ψ(∆x)]2
−un

m
un+1
m

(

un
m+1 + un

m−1

2

)

+ (1 + β)un+1
m

(

un
m+1 + un

m
+ un

m−1

3

)

− βun+1
m

.

(3.11)

We present profiles of the solutions for different selection of ε in Figure 9. The L∞ errors for

all the schemes for different values of the number of grid points in space, is plotted in Figure 10.

In all the simulations we use

R =
φ(∆t)

ψ2(∆x)
=

1

2
.

From Figure 10, it is seen that scheme (3.11) produces the least error followed by scheme (3.10).

It is clear that all profiles for schemes (3.9) – (3.11) are almost indistinguishable with the exact

solution.

3.2 System of FH-N equations

In this section we consider nonstandard finite difference schemes for the full system of equations

given in (3.1). The system represent a coupled differential system in activator-inhibitor variables.

We will study the convergence of two different schemes whose derivation was motivated by the

preceding sections. A traveling wave problem derived from (3.1) with I = 0 was investigated in

[25]. The asymptotic traveling wave speed was obtained to be

c =
1− 2β√

2ε
,

defined using the current variables. Convergent numerical solutions, with respect to the traveling

wave speed, are given in [27]. In their work, pseudospectral methods were used and the exact wave

speed was compared with the numerical approximations. We will adopt their numerical experiment

to show that the proposed nonstandard finite difference method is also efficient for non smooth

problems that develop shock-like steep fronts.
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Figure 9: Profiles for the travelling wave solution with comparison to the exact solution. We choose

β = 0.25, tmax = 1, M = 64 and a truncated domain x ∈ (−5, 15).
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Figure 10: L∞ error plots for the four schemes. We choose β = 0.25, tmax = 1 and a truncated

domain x ∈ (−5, 15).

Combining schemes (2.11) and (3.7), we have

ε
un+1
m

− un
m

φ1(∆t)
= ε

un
m+1 − 2un

m
+ un

m−1

ψ2(∆x)
− un

m
un+1
m

(

un
m+1 + un

m−1

2

)

+

(1 + β)un
m

(

un
m+1 + un

m
+ un

m−1

3

)

− βun+1
m

− vn
m
+ I,

vn+1
m

− vn
m

φ1(∆t)
= un

m
− γvn

m
,

(3.12)
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and combining schemes (2.13) and (3.7), we have

ε
un+1
m

− un
m

φ(∆t)
= ε

un
m+1 − 2un

m
+ un

m−1

ψ2(∆x)
− un

m
un+1
m

(

un
m+1 + un

m−1

2

)

+

(1 + β)un+1
m

(

un
m+1 + un

m
+ un

m−1

3

)

− βun+1
m

− vn
m
+ I,

vn+1
m

− vn
m

φ(∆t)
= un

m
− γvn

m
.

(3.13)

We test the performance of these schemes by considering several experiments. In the first

experiment we have

Experiment 4. We solve system (3.1) subject to periodic boundary conditions and

u(x, 0) = 0.5, v(x, 0) = 0. (3.14)

The parameters are chosen following Experiment 2, i.e., β = 0.139, γ = 2.54 and ε = 0.008. In

addition, I = 0.026 for a single and stable equilibrium, and I = 0.05 for a single and unstable

equilibrium with respect to ODE model (3.1).
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(a) Scheme (3.12). (b) Scheme (3.13).

Figure 11: Convergence results corresponding to Experiment 4 for I = 0.026 and R = 0.4.

In Figures 11 and 12 we display solution profiles of u(x∗, t) and v(x∗, t) against t on the same

axes for x∗ = 5. In each figure, we run simulations for different number of temporal grid points.

While simulations in Figure 11 show comparable convergence for the two schemes, the case is

different in Figure 12. Here scheme (3.13) is more superior compared to scheme (3.12).

The next experiment is motivated by the work of [27].
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Figure 12: Convergence results corresponding to Experiment 4 for I = 0.05 and R = 0.4.

Experiment 5. We solve system (3.1) subject to zero-flux boundary conditions and

u(x, 0) =

{

0 x > 0
u0(x) otherwise

, v(x, 0) =

{

0.15 x < −17
0 otherwise

. (3.15)

where β = 0.1, γ = 0.5, ε = 0.001, I = 0 and

u0(x) =
1

(1 + exp(4|x| − 17))2
− 1

(1 + exp(4|x| − 13))2
.
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Figure 13: Convergence results for Experiment 5 with different choices of spatial grid spacing and

R = 0.4.

Convergence results for different choices of spatial grid spacing are given in Figure 13 for

u(x, t∗) and v(x, t∗) with t∗ = 1.0. The rapid convergence of scheme (3.13) is evident. In particular,

for the chosen grid spacing, the solution profiles are indistinguishable.
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4 Conclusion

The purpose of this work was to design explicit nonstandard finite difference schemes for the FH-

N system of equations in the limit ε → 0. The work is motivated by earlier literature where

NSFD methods were found to be efficient in cases where oscillatory solutions or problems that

develop shock-like steep fronts are investigated, [1]. In addition, the rich dynamics of the temporal

model presented in [20] motivates the idea of efficient discrete models for the system. In particular,

existence of multiple equilibria and rich bifurcation events (based on the stimuli I), makes any

numerical approach for such a system of equations complicated.

We presented nonstandard finite difference schemes for the FH-N system of reaction diffusion

equations. Four different sub models of the full FH-N system were considered: the temporal single

ODE model, the temporal system, the single PDE model and the full reaction diffusion system. We

started by recalling the qualitative analysis of the temporal model with the aim to design schemes

preserving the properties of this continuous model. Three explicit schemes were proposed and their

performances was benchmarked against a standard explicit finite difference scheme. Our results

showed the superiority of NSFD schemes and spurious-oscillation-free simulations were observed.

Acknowledgements

The authors acknowledge the support of South African DST/NRF SARChI Chair on Mathematical

Models and Methods in Bioengineering and Biosciences (M3B2) of the University of Pretoria.

MC and AR also acknowledge the support of National Research Foundation of South Africa Grant

Numbers 93476 and 95864 respectively. Thanks are also addressed to the anonymous reviewers

whose suggestions have contributed to the improvement of the paper.

References

[1] A.A. Aderogba, M. Chapwanya, J. Djoko Kamdem, and J.M.-S. Lubuma. Coupling finite

volume and nonstandard finite difference schemes for a singularly perturbed Schrödinger

equation, Int. J. Comput. Math., 93 (2016), pp. 1833–1844.

[2] A.A. Aderogba, M. Chapwanya, and O.A. Jejeniwa. Finite difference discretisation of a model

for biological nerve conduction, In International Conference of Numerical Analysis and Ap-

plied Mathematics 2015 (ICNAAM 2015), volume 1738, page 030009. AIP Publishing.

[3] A.A. Aderogba and M. Chapwanya. An explicit nonstandard finite difference scheme for the

Allen–Cahn equation, J. Difference Equ. Appl., 21 (2015), pp. 875–886.

[4] J.G. Alford and G. Auchmuty. Rotating wave solutions of the FitzHugh–Nagumo equations,

J. Math. Biol., 53 (2006), pp. 797–819.

[5] R. Anguelov and J.M-S. Lubuma. Contributions to the mathematics of the nonstandard fi-

nite difference method and applications, Numer. Methods Partial Differential Equations, 17

(2001), pp. 518–543.

17



[6] R. Anguelov, P. Kama, and J.M-S. Lubuma. On non-standard finite difference models of

reaction–diffusion equations, J. Comput. Appl. Math., 175 (2005), pp. 11–29.

[7] R. Anguelov and J.M.-S. Lubuma. Nonstandard finite difference method by nonlocal approx-

imation, Math. Comput. Simulation, 61 (2003), pp. 465–475.

[8] G. Arioli and H. Koch. Existence and stability of traveling pulse solutions of the FitzHugh–

Nagumo equation, Nonlinear Anal., 113 (2015), pp. 51–70.

[9] G.A. Carpenter. A geometric approach to singular perturbation problems with applications

to nerve impulse equations, J. Differential Equations, 23 (1977), pp. 335–367.

[10] A. Carpio and L.L. Bonilla. Pulse propagation in discrete systems of coupled excitable cells,

SIAM J. Appl. Math., 63 (2003), pp. 619–635.

[11] M. Chapwanya, J.M.-S. Lubuma, and R.E. Mickens. Nonstandard finite difference schemes

for Michaelis–Menten type reaction-diffusion equations, Numer. Methods Partial Differential

Equations, 29 (2013), pp. 337–360.

[12] M. Chapwanya, J.M.-S. Lubuma, and R.E. Mickens. From enzyme kinetics to epidemiological

models with Michaelis–Menten contact rate: Design of nonstandard finite difference schemes,

Comput. Math. Appl., 64 (2012), pp. 201–213.

[13] Z. Chen, A.B. Gumel, and R.E. Mickens. Nonstandard discretizations of the generalized

Nagumo reaction-diffusion equation, Numer. Methods Partial Differential Equations, 19

(2003), pp. 363–379.

[14] R. FitzHugh. Impulses and physiological states in theoretical models of nerve membrane,

Biophys. J., 1 (1961), pp. 445–466.

[15] C. Rocsoreanu, A. Georgescu and N. Giurgiteanu. The FitzHugh-Nagumo model: bifurca-

tion and dynamics, Mathematical modelling: theory and applications, volume 10. Springer-

Science + Business Media, B.V., Kluwer Academic, New York, (2000)

[16] A.R. Gourlay. Hopscotch: a fast second-order partial differential equation solver, IMA J.

Appl. Math., 6 (1970), pp. 375–390.

[17] P. Gordon. Nonsymmetric difference equations, Journal of the Society for Industrial and

Applied Mathematics, 13 (1965), pp. 667–673.

[18] J. Guckenheimer and C. Kuehn. Homoclinic orbits of the FitzHugh–Nagumo equation: Bi-

furcations in the full system, SIAM J. Appl. Dyn. Syst., 9 (2010), pp.138–153.

[19] J.P. Keener and J. Sneyd. Mathematical physiology, volume 1. New York: Springer, 1998.

[20] T. Kostova, R. Ravindran, and M. Schonbek. Fitzhugh–Nagumo revisited: Types of bifurca-

tions, periodical forcing and stability regions by a Lyapunov functional, Int. J. Bifurc. Chaos,

14 (2004), pp. 913–925.

18



[21] Y.N. Kyrychko, M.V. Bartuccelli, and K.B. Blyuss. Persistence of travelling wave solutions

of a fourth order diffusion system, J. Comput. Appl. Math., 176 (2005), pp. 433–443.

[22] R.E. Mickens. Nonstandard finite difference schemes for reaction-diffusion equations, Numer.

Methods Partial Differential Equations, 15 (1999), pp. 201–214.

[23] R.E. Mickens. Nonstandard finite difference models of differential equations. World Scien-

tific, Singapore, 1994.

[24] S. Mischler, C. Quininao and J. Touboul. On a kinetic FitzHugh–Nagumo model of neuronal

network, Comm. Math. Phys., 342 (2016), pp.1001–1042.

[25] J.D. Murray. Mathematical Biology II: Spatial Models and Biomedical Applications, Inter-

disciplinary Applied Mathematics. Springer New York, 2011.

[26] J. Nagumo, S. Arimoto and S. Yoshizawa. An active pulse transmission line simulating nerve

axon. Proceedings of the IRE, 50 (1962), pp. 2061–2070.

[27] D. Olmos and B.D. Shizgal. Pseudospectral method of solution of the FitzHugh–Nagumo

equation, Math. Comput. Simulation, 79 (2009), pp. 2258–2278.

[28] J. Rauch and J. Smoller. Qualitative theory of the FitzHugh-Nagumo equations, Adv. Math.,

27 (1978), pp.12–44.

[29] C. Reinecke and G. Sweers. Existence and uniqueness of solutions on bounded domains to a

FitzHugh–Nagumo type elliptic system, Pacific J. Math., 197 (2001), pp. 183–211.

[30] C. Reinecke and G. Sweers. Solutions with internal jump for an autonomous elliptic system

of FitzHugh–Nagumo type, Math. Nachr., 251 (2003), pp. 64–87.

[31] L-I.W. Roeger and R.E Mickens. Exact finite-difference schemes for first order differential

equations having three distinct fixed-points. J. Difference Equ. Appl., 13 (2007), pp. 1179–

1185.

[32] L-I.W. Roeger. Nonstandard finite difference schemes for differential equations with n+1

distinct fixed-points, J. Difference Equ. Appl., 15 (2009), pp. 133–151.

[33] A.A. Soliman. Numerical simulation of the FitzHugh-Nagumo equations, Abstr. Appl. Anal.,

2012 (2012), ID 762516.

[34] E.H. Twizell, A.B. Gumel. and Q. Cao. A second-order scheme for the Brusselator reaction–

diffusion system, J. Math. Chem., 26 (1999), pp. 297–316.

[35] B. Zinner. Existence of traveling wavefront solutions for the discrete Nagumo equation, J.

Differential Equations, 96 (1992), pp. 1–27.

19


	Introduction
	The space independent FH-N model
	Numerical schemes
	Numerical simulations
	Single equilibrium
	More than one equilibrium


	The spatial models
	Single FH-N equation
	System of FH-N equations

	Conclusion

