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1. Introduction and Background

Let G be a graph with vertex set V (G) and edge set E(G). The cardinal-
ities of V (G) and E(G) are called the order and size of G and denoted by
n(G) and m(G), respectively. The minimum and maximum degree of G are
denoted by δ(G) and ∆(G), respectively. When the context is clear we omit
the G and simply write n, m, ∆ etc. For undefined concepts and notation
we refer the reader to [1].

A graph G is locally connected (LC ) if for every v ∈ V (G) the open neigh-
bourhoodN(v) of v is nonempty and induces a connected graph. The concept
of a locally connected graph was introduced by Chartrand and Pippert [2].
One of the first results proved on the topic is the following.

Theorem 1.1 ([2]). If G is a connected LC graph of order at least 3 with
∆ ≤ 4, then G is either hamiltonian or isomorphic to the complete tripartite
graph K1,1,3.

Global cycle properties of locally connected graphs with ∆ = 5 were
investigated by Kikust [8], Clark [3], Hendry [6] and Gordon, Orlovich, Pots
and Strusevich [4]. Hendry [5] defined a graph G to be fully cycle extendable
if every vertex of G lies on a 3-cycle and for every nonhamiltonian cycle C in
G there is a cycle C∗ in G that contains all the vertices of C plus a single new
vertex. The combined results of the mentioned authors yield the following.

Theorem 1.2 ([3, 4, 6, 8]). If G is a connected LC graph with ∆ = 5 and
δ ≥ 3, then G is fully cycle extendable. However, there exist infinitely many
nonhamiltonian connected LC graphs with ∆ = 5 and δ = 2.

It is well-known that the Hamilton Cycle Problem (the problem of decid-
ing whether a given graph is hamiltonian) is NP-complete.

Henceforth we abbreviate Hamilton Cycle Problem to HCP. Theorem 1.1
shows that the HCP for LC graphs with ∆ ≤ 4 is fully solved. Gordon et al.
[4] proved that it is NP-complete for LC graphs with ∆ = 7. Irzhavski [7]
improved on this result by proving the following:

Theorem 1.3 ([7]). The HCP for LC graphs with minimum degree 2 and
maximum degree 5 is NP-complete. Moreover, for any two integers d and D
such that D ≥ 6 and 2 ≤ d ≤ D, the HCP for locally connected graphs with
minimum degree d and maximum degree D is NP-complete.
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We would like to thank the referee who made us aware of Irzhavski’s
theorem.

If R is a finite set of natural numbers, we say a graph G is R-regular if
the degrees of the vertices in G are all elements of R. In Section 2 we state
a corollary of Irzhavski’s theorem in terms of R-regular graphs. We also use
his technique to prove one of our main results in Section 4. Since Irzhavski’s
paper [7] has only been published in Russian, we include the main steps of
the proof for easy access.

Theorem 1.1 prompted us to investigate the HCP for LC graphs with
average degree at most 4, i.e., graphs with m ≤ 2n. In Section 3 we charac-
terize LC graphs with m < 2n. In Section 4 we show that for any natural
number k the HCP is NP-complete for LC graphs with m = 2n+ bn1/kc, but
polynomially solvable for LC graphs with m ≤ 2n+ k log n.

2. Hamilton Cycles in R-regular LC graphs

Picouleau [9] proved the following result regarding the complexity of the
HCP for r-regular graphs.

Theorem 2.1 ([9]). For any fixed integer r ≥ 3 the HCP for r-regular graphs
is NP-complete.

The problem of the complexity of the HCP for R-regular LC graphs
is settled by Theorem 1.2 and the following result, which is a corollary of
Theorem 1.3, proved by Irzhavski [7].

Theorem 2.2 ([7]). The HCP for R-regular LC graphs is NP-complete if
R = {2, 5} or R is any set of natural numbers with maxR ≥ 6.

Proof. It is sufficient to prove the cases R = {2, 5} and R = {r}, r ≥ 6.
Consider any cubic graph G. By Theorem 2.1 it is sufficient to show that

G can be transformed in polynomial time to an R-regular LC graph G∗ such
that G∗ is hamiltonian if and only if G is hamiltonian. We briefly explain
Irzhavski’s transformation for the cases R = {2, 5} and R = {6}.

For the case R = {2, 5}, the graph G∗ is constructed by replacing each
vertex in G with a triangle (henceforth called a node of G∗) and each edge
in G with a border isomorphic to the graph B shown in Figure 1, so that
neighbouring nodes of G∗ are joined by borders as shown in Figure 2. It is
easily seen that G∗ is LC and {2, 5}-regular.
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Figure 1: The translation of vertices and edges in G to nodes and borders in G∗.

For a vertex v1 in G with N(v1) = {u1, u2, u3}, let V1 and Ui, i = 1, 2, 3
be the nodes in G∗ corresponding to v1 and ui, i = 1, 2, 3, respectively and
let Bi be the borders in G∗ corresponding to the edges v1ui, i = 1, 2, 3. Let
the vertices a, b, c, d, x be as shown in Figure 3.
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Figure 2: A node in a {2, 5}-regular LC graph G∗ connected with borders to three other
nodes in G∗.

Without loss of generality, suppose G has a Hamilton cycle C that con-
tains the path u1v1u2. Then C also contains the path v2u3v3, where N(u3) =
{v1, v2, v3}. Those two paths correspond, for example, to the two paths in
G∗ indicated by thick lines in Figure 3. Hence, for any Hamilton cycle in G,
there is a corresponding Hamilton cycle in G∗.

Now suppose G∗ has a Hamilton cycle C∗. If C∗ contains the pair ad, bc
of “parallel edges”, then C∗ obviously contains the path adxcb. It follows
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Figure 3: Illustrating how a Hamilton cycle in G translates to a Hamilton cycle in G∗.

that C∗ contains at most one pair of parallel edges incident with any given
node of G∗.

Now suppose C∗ contains no pair of parallel edges incident with V1. Since
cxd is a subpath of C∗, at most one of the edges {ad, bd, bc} of B3 lies on
C∗. The same is true for the corresponding edges of the borders B1 and B2.
The vertices of V1 therefore lie on a P3 in C∗, and in one of the borders,
say B1, the cycle C∗ has no edge of the form ad, bc or db incident with V1.
But then C∗ contains the pair of parallel edges of B1 incident with U1. Thus
C∗ translates to a Hamilton cycle in G. This proves the result for the case
R = {2, 5}.

Figure 4 illustrates how two nodes are joined by a border to effect the
transformation in the case R = {6}. (The sketch that appears in [7] has
been redrawn so as to show clearly how the construction for the {2, 5}-case
has been modified to obtain a 6-regular LC graph.)

For r ≥ 7 it is not difficult to obtain an r-regular LC graph with the de-
sired properties by expanding the nodes and borders in the {2, 5}−contruction.
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Figure 4: A 6-regular LC construction.

3. Characterization of the connected LC graphs with m < 2n

We first prove the following.

Proposition 3.1. If G is a connected LC graph of order n and size m, then
m ≥ 2n− 3.

Proof. The proof is by induction on n. The result is obviously true if n ≤ 3.
Now let G be a connected LC graph of order n ≥ 4 and size m. Let x
be a vertex of minimum degree in G. We may assume d(x) = 2 or 3. Let
H = G− x.

If d(x) = 2, then H is obviously a connected LC graph of order n− 1 and
size m−2. Hence, by our induction hypothesis, m−2 ≥ 2(n−1)−3 = 2n−5,
so then m ≥ 2n− 3.

If d(x) = 3, there are two cases to consider.

Case 1. G[N(x)] ∼= K3: In this case H is a connected LC graph of size
m−3 and hence, by our induction hypothesis, m−3 ≥ 2n−5, so m ≥ 2n−2.

Case 2. G[N(x)] is a path v1v2v3: In this case the graph H + v1v3 is
connected and LC and has size m− 2. Hence, by our induction hypothesis,
m− 2 ≥ 2n− 5, so m ≥ 2n− 3.
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Suppose that for i = 1, 2, the graph Gi has a proper induced subgraph
Hi that is isomorphic to a given graph H. If we identify the subgraphs H1

and H2 while retaining all other edges present in G1 and G2, the resulting
graph G of order n(G) = n(G1) + n(G2)− n(H) is said to be obtained from
G1 and G2 by pasting G1 and G2 together on a copy of H. We observe the
following.

Observation 3.2. Let H be any graph with δ(H) ≥ 1 and suppose G is a
graph consisting of two LC graphs pasted together on a copy of H. Then G
is also LC.

If an LC graph G consists of two LC graphs of order at least 3 each, pasted
together on an edge (i.e., on a copy of K2), we say that G is a reducible LC
graph. If G is an LC graph that consists of more than one component, we also
consider G to be reducible, since each of its components is a connected LC
graph. We define an irreducible LC graph G as a graph that is not reducible.

A set of vertices S in a connected graph G is a vertex cut if G − S is
disconnected. If {x, y} is a vertex cut in a connected LC graph G, then it is
easily seen that xy ∈ E(G). This implies the following.

Observation 3.3. If G is an irreducible LC graph of order n, then G ∈
{K2, K3} if n ≤ 3, and G is 3-connected if n ≥ 4.

In order to characterize the connected LC graphs with m < 2n it suffices
to characterize the irreducible ones, as the next result shows.

Proposition 3.4. If G is a connected reducible LC graph with m < 2n, then
G is obtained by pasting irreducible LC graphs of size less than twice the order
together along edges.

Proof. The proof is by induction on n. By assumption, G is the union of two
LC graphs G1, G2 having two vertices x, y and the edge xy in common. For
i = 1, 2, let ni,mi be the number of vertices and edges, respectively, in Gi.
Proposition 3.1 implies that mi ≥ 2ni − 3 for i = 1, 2. As n = n1 + n2 − 2
and m = m1 + m2 − 1, it follows that mi < 2ni for i = 1, 2, and now the
result follows by induction.

A vertex u in a graph G is called a universal vertex if u is adjacent to
every vertex in G−u. A graph is called a wheel if it consists of a cycle (called
the rim of the wheel) plus a universal vertex (called the centre of the wheel).
Figure 6 depicts a wheel of order 9.
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Figure 5: A wheel of order 9.
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Figure 6: A fan of order 9.

Let W be a wheel with centre w and rim w1w2 . . . wt. The edges wwi,
i = 1, . . . t are called the spokes of W . A wheel of order n may be extended
to a wheel of order n+ 1 by inserting a spoke, i.e., by subdividing an edge on
the rim of W and joining the inserted vertex to the centre of W . The reverse
of this action is called eliminating a spoke.

If an edge on the rim of a wheel is deleted, the resulting graph is a fan.
Thus a fan is a path plus a universal vertex. Let F be a fan with central
vertex v and rim v1 . . . vp. The edges vv1 and vvp are the outer spokes of F ,
and vv2, . . . , vvp−1 the inner spokes. A fan may be extended by inserting a
spoke between two of its spokes, or by adding a new vertex and joining it to
to the central vertex and an end vertex of the rim. A fan may be reduced by
eliminating an internal spoke or deleting an end vertex of the rim (together
with its two incident edges).

A θ-graph is the union of three internally disjoint paths with shared end-
vertices. An extended θ-graph consists of a θ-graph plus a universal vertex.

An extended θ-graph may be viewed as two wheels W and Y pasted
together on a fan F such that the centre of Y is pasted to the centre of W .
If F is a triangle (a fan with just two spokes) the result is a wheel plus an
edge. An example of an extended θ-graph is depicted in Figure 7.

Note that a wheel of order 4 is a K4, and any vertex in a K4 may be
regarded as its centre. Thus pasting a K4 and any other wheel together on
a triangle necessarily results in an extended θ-graph.

If two wheels W and Y of order at least 5 each are pasted together on a
triangle such that the centre of Y is pasted to a vertex on the rim of W , the
result is called a triangle bicycle.

If two wheels W and Y of order at least 5 each are pasted along a diamond
(that is, a K4 minus an edge) such that the centre of Y is pasted to a vertex
on the rim of W , the result is called a diamond bicycle.
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Figure 9: A diamond bicycle.

For example, let W be a wheel with centre w and rim w1w2 . . . w8w1

and let Y be a wheel with centre y and rim y1y2 . . . y5y1. Figure 8 depicts a
triangle bicycle, obtained from W and Y by pasting the triangle Y [{y, y1, y2}]
to the triangle W [{w1, w2, w}]. Figure 9 depicts a diamond bicycle, obtained
from W and Y by pasting the diamond Y [{y, y2, y1, y3}] to the diamond
W [{w2, w, w3, w1}].

Theorem 3.5. G is an irreducible LC graph with m(G) ≤ 2n(G)− 1 if and
only if G ∈ T1 ∪ T2 ∪ T3, where

• T3 = {K2, K3}.

• T2 consists of all the wheels.

• T1 consists of the extended θ-graphs, the diamond bicycles and the tri-
angle bicycles.

Proof. Adding a universal vertex to any connected graph obviously results
in an LC graph. This, together with Observation 3.2, implies that every
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graph in T1 ∪ T2 ∪ T3 is LC. It is easily seen that every graph in T1 ∪ T2 is
3-connected and that every graph in Ti satisfies m = 2n− i, i = 1, 2, 3. Thus,
if G ∈ T1∪T2∪T3, then G is an irreducible LC graph with m(G) ≤ 2n(G)−1.

To prove the converse, suppose G is an irreducible LC graph with m(G) ≤
2n(G)− 1. We prove by induction on the order that G ∈ T1 ∪ T2 ∪ T3.

If n(G) ≤ 3, then G ∈ T3, so the basis step is proved.
Now suppose n(G) ≥ 4. Then G is 3-connected by Observation 3.3. Since

m(G) < 2n(G), it therefore follows that G has a vertex, say x, of degree 3.
Let H = G−x. Since G is locally connected, G[N(x)] is isomorphic to either
K3 or P3.

We now consider three cases, depending on the relative size of G. In each
case we use the fact that if G[N(x)] is a K3, then H is an irreducible LC
graph, and if G[N(x)] is a path v1v2v3, then H + v1v3 is an irreducible LC
graph. Note that in the latter case, G can be retrieved from H by subdivid-
ing the edge v1v3 with a vertex x and then adding the edge xv2.

Case 1. m(G) = 2n(G)− 3:
If G[N(x)] is a K3, then m(H) = m(G) − 3 = 2n(H) − 4, contradicting
Proposition 3.1. Hence we may assume that G[N(x)] is a path v1v2v3. Then
m(H+v1v3) = 2n(H)−3. It therefore follows from our induction hypothesis
that H + v1v3 ∈ T3, so H + v1v3 is a K3. But then G is a diamond, contra-
dicting that G is irreducible. Hence K2 and K3 are the only irreducible LC
graphs with m = 2n− 3.

Case 2. m(G) = 2n(G)− 2:
If G[N(x)] is a K3, then m(H) = 2n(H) − 3, so then it follows from our
induction hypothesis that H ∈ T3 and hence H ∼= K3. Then G ∼= K4, so
G ∈ T2.

Now suppose G[N(x)] is a path v1v2v3. Then m(H + v1v3) = 2n(H +
v1v3)− 2. Hence, by our induction hypothesis, H + v1v3 is a wheel W . Since
the set {v1, v2, v3} induces a triangle in W , the centre w of W is either v1, v2
or v3.

If w = v2, then v1 and v3 are consecutive vertices on the rim of W . Then
G is the wheel obtained from W by inserting the spoke wx. Hence G ∈ T2.

Now suppose w = v1. Then we may suppose that v3 is the successor of v2
on the rim of W . Let v+3 be the successor of v3 on the rim of W . If n(W ) ≥ 5,
then since v1v3 6∈ E(G), it follows that G[N(v+3 )] is not connected, contra-
dicting that G is LC. Hence n(W ) = 4, so W ∼= K4. This implies that G is
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a wheel of order 5, centred at v2. Hence G ∈ T2.

Case 3. m(G) = 2n(G)− 1:
Suppose G[N(x)] is a K3 with vertex set v1, v2, v3. Then m(H) = 2n(H)−

2. Hence, by our induction hypothesis, H is a wheel. Then G[{x, v1, v2, v3}]
is a K4, and G is obtained by pasting this K4 and the wheel H together on
the triangle G[{v1, v2, v3}]. Thus G is an extended θ-graph, so G ∈ T1.

Now suppose G[N(x)] is a path v1v2v3. Then m(H + v1v3) = 2n(H +
v1v3) − 1, so by our induction hypothesis H + v1v3 ∈ T1. There are three
cases to consider.

(a) H + v1v3 is an extended θ-graph: Let u be the universal vertex of
H + v1v3. Then H + v1v3 − u consists of two vertices a and z and three
internally disjoint a− z paths P1, P2, P3.

If u = v2, then v1 and v3 are two consecutive vertices on one of the paths
P1, P2, P3, and G is obtained from H + v1v3 by inserting x on the edge v1v3
and joining x to u. So in this case G is also an extended θ-graph.

If u = v1, then since G[N(v3)] is connected, we may assume that P1 = az
and P2 and P3 have length 2 each. Let y and w be the internal vertices of
P2 and P3, respectively. First, suppose v2 = a. Then v2 is a universal vertex
of G. If v3 = z, then G − v2 consists of the three internally disjoint v1 − v3
paths v1xv3, v1yv3 and v1wv3. If v3 = y, then G−v2 consists of the the three
internally disjoint v1 − z paths v1z, v1xv3z and v1wz. In either case, G is an
extended θ-graph. By symmetry, this proves all the cases when v2 ∈ {a, z}.
If v2 6∈ {a, z}, it is sufficient to consider the case v2 = w, v3 = z. Then
G consists of the wheels G[{v2, a, v1, x, v3}] and G[{a, v1, v2, v3, y}], pasted
together on the diamond G[{a, v2, v1, v3}], so then G is a diamond bicycle.

Now suppose u 6∈ {v1, v2, v3}. Then we may assume that P1 = az and
P2 = ayz, where {a, y, z} = {v1, v2, v3}. If y = v2, then G consists of the
wheel G[{y, u, a, x, z}] and the wheel G[{u, y} ∪ V (P3)], pasted together on
the diamond G[{y, u, a, z}]. So in this case G is a diamond bicycle. If y = v1,
then G consists of the wheel G[{z, u, y, x, a}] and the wheel G[{u} ∪ V (P3)],
pasted together on the triangle G[{u, z, a}], so then G is a triangle bicycle.
In either case G ∈ T1.

(b) H + v1v3 is a triangle bicycle: Then H + v1v3 consists of two wheels
W and Y , each of order at least 5, pasted together on a triangle T such that
w and y, the respective centres of W and Y , are distinct vertices in T . We
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may assume that G[v1, v2, v3] is a triangle in W . First, suppose v1 or v3 is
the centre of W , say v1 = w. Then we may assume that v3 is the successor
of v2 on the rim of W . Let v+3 be the successor of v3 on the rim of W . Now
v1 6∈ NG(v3) and since n(W ) ≥ 5, there is no path from v2 to v+3 in G[N(v3)].
Hence G[N(v3] is not connected, contradicting that G is LC. This proves
that {v1, v3} ∩ {w, y} = ∅ and hence G[{v1, v2, v3}] 6= T .

We may therefore assume that v2 = w and v1v3 is an edge on the rim of
W . Since y 6∈ {v1, v2, v3}, it follows that v1v3 6∈ E(T ). Now let W ∗ be the
wheel obtained from W by subdividing the edge v1v3 with the vertex x and
adding the edge xw. Then G is the triangle bicycle consisting of the wheels
W ∗ and Y , pasted together on the triangle T . Hence G ∈ T1.

(c) H + v1v3 is a diamond bicycle: Then H + v1v3 consists of two wheels
W and Y , each of order at least 5, that share a diamond D such that w and
y, the respective centres of W and Y , are distinct vertices in D.

Suppose v1 = w. Then we may assume that v3 is the successor of v2 on
W . Let v+3 be the successor of v3 on W . If v3 = y, then G[N(v+3 )] is not
connected, since there is no path from v1 to v3 in NG(v+3 ). If v3 6= y, then
there is no path from v+3 to v2, so then G[N(v3)] is not connected. This
proves that {v1, v3} ∩ {w, y} = ∅ and that G[{v1, v2, v3}] is not a triangle in
D.

We may therefore assume that v2 = w and v1v3 is an edge on the rim of
W such that v1v3 is not an edge of the diamond D. Hence G is a diamond
bicycle, consisting of two wheels pasted together on D.

Corollary 3.6. Every irreducible LC graph with n ≥ 3 and m ≤ 2n − 1 is
hamiltonian.

4. The Hamilton Cycle Problem for sparse LC graphs

A modification of the construction that produced the {2, 5}-regular graph
G∗ in the proof of Theorem 1.3 (see Figure 3), yields the following result.

Theorem 4.1. For every natural number k > 1 the Hamilton Cycle Problem
for locally connected graphs with m = 2n+ bn1/kc is NP-complete.

Proof. Consider any cubic graph G of order n. Let G∗ be the {2, 5}-regular
graph obtained from G as in Theorem 1.3. If k > 1, we extend the border B
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by successively attaching diamonds as shown in Figure 10, until the resulting
graphGN hasN = (3n/2)k vertices. (Note that the order ofG∗ is 3n+(9n/2),
which has the same parity as 3n/2.)

Figure 10: Extending a border in G∗ to construct GN .

This can be done in polynomial time. Each added vertex has degree 4
and the neighbours of vertices of degree 2 are of degree 5 in GN . Hence the
average degree of the vertices that are not in the node-set of GN is 4. Note
that GN has n nodes and each node has three vertices, each of which has
degree 5. Hence ∑

v∈V (GN )

d(v) = 5(3n) + 4(N − 3n) = 4N + 3n,

so
|E(GN)| = 2N + 3n/2 = 2N +N1/k.

GN is clearly LC, and it follows easily from the proof of Theorem 1.3 that
GN is hamiltonian if and only if G is.

Our next theorem shows that if the value of m in Theorem 4.1 is slightly
decreased, the complexity of the problem is significantly reduced.

Theorem 4.2. For every natural number k the Hamilton Cycle Problem for
LC graphs is in P for graphs with 2n+ k log2 n edges or fewer.
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The proof of Theorem 4.2 relies on the following reduction procedure,
which decreases the order of an LC graph, while retaining local connectivity.

Reduction procedure. Let G be an LC graph of order n and size 2n+ p,
where p is a positive integer. We choose a set of edges in G, which we refer
to as special edges of G. We describe three types of reductions that may be
performed on G.

Reduction 1: Suppose v ∈ V (G) has degree 2, and let N(v) = {x, y}. Now
delete the vertex v. The resulting graph G′ is LC and |E(G′)| = 2|V (G′)|+p.
We observe that G does not have a Hamilton cycle containing the edge xy.
We also note that G is hamiltonian if and only if G′ has a Hamilton cycle
containing the edge xy. We therefore add xy to the set of special edges of
the reduced graph.

Reduction 2: Suppose G has a vertex v of degree 3 such that 〈N(v)〉 is a
path x1x2x3. Then we delete v and add the edge x1x3. The resulting graph
G′ is LC and |E(G′)| = 2|V (G′)| + p. We call v a nice vertex of degree 3.
We note that G′ is hamiltonian if G is, but the converse need not be true.

Reduction 3: Suppose G has a vertex v of degree 3 such that 〈N(v)〉 is
a triangle. Then we delete v. The resulting graph graph G′ is LC and
|E(G′)| = 2|V (G′)| + p − 1. We call v a problematic vertex of degree 3. It
follows from Proposition 3.1 that we meet at most p+ 3 problematic vertices
of degree 3 when we successively delete vertices of degree 3. We note that G′

is hamiltonian if G is, but the converse need not be true.

Next, we present some observations, lemmas and definitions that will be
used to prove Theorem 4.2

Observation 4.3. If we reduce a graph G by removing a vertex v by means
of a Type 1, 2 or 3 reduction, then the neighbours of v are mutually adjacent
in the resulting graph (even if two of the neighbours were not adjacent in G).

If v is a vertex in a connected graph G such that the neighbours of v are
mutually adjacent, then clearly G − v is connected, so by Observation 4.3,
Reductions 1, 2 and 3 do not create new vertex cuts. We shall apply this
observation in the special version described in Lemma 4.4 below.
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Lemma 4.4. Let G be a connected LC graph and let F be a graph obtained
from G by means of a number of consecutive reductions of Types 1, 2 or 3.
Let z be the last vertex of G that was removed to obtain F and suppose z had
exactly two neighbours x, y in F . Then {x, y} is a vertex cut of G.

The square of an n-cycle, denoted by C2
n, is the 4-regular graph obtained

from the n-cycle Cn by adding an edge between each pair of vertices at
distance 2 from one another. The graph C2

12 is depicted in Figure 11.

 

 v1 

 v2 
v3 

v4 

v5 

v6 

v8 

v7 

v9 

v10 

v11 

v12 

Figure 11: The square of a 12-cycle.

Gordon et al. [4] proved the following.

Lemma 4.5. [4] Every connected 4-regular LC graph is the square of a cycle.

Let v1v2 . . . v2nv1 denote the underlying 2n-cycle of the graph C2
2n. If the

three edges between the sets {v1, v2} and {v2n−1, v2n} are deleted from C2
2n,

the result is a a zig-zag strip of order 2n. If the vertex v2n is also deleted, the
result is a zig-zag strip of order 2n− 1. Thus a zig-zag strip consists of two
“parallel” paths whose lengths differ by at most one, with edges between the
paths in a zig-zag pattern. Figure 12 depicts zig-zag strips of order 11 and
12.

Each triangle in a zig-zag strip may be viewed as a fan with two spokes,
having its apex on one of the two parallel paths and its rim on the other.
We call a graph obtained from a zig-zag strip by inserting spokes into such
fans (as described in Section 3) a nice generalized strip. Note that any nice
generalized strip is locally connected. Figure 13 depicts an example of a nice
generalized strip.

A fan in a graph G is a nice fan if every internal vertex on the rim of the
fan has degree 3 in G, i.e., only the end vertices of the rim and the centre may

15



Figure 12: Zig-zag strips of order 11 and 12.

Figure 13: An example of a nice generalized strip.

have neighbours outside the fan. We note that every fan in a nice generalized
strip is a nice fan, provided its rim is on one of the two parallel paths.

A path cover of a graph is a set of vertex disjoint paths that contain all
the vertices of the graph. An r-path cover is a path cover consisting of r
vertex disjoint paths.

Lemma 4.6. Let S be a nice generailzed strip and let a1, a2 and b1, b2 be the
end vertices of the two parallel paths of S. Suppose Q is a path cover of S
such that the end vertices of all the paths in Q are in {a1, a2, b1, b2}. Then
there are at most 26 possibilities for the end vertices of the paths in Q.

Proof. If Q is a 1-path cover (i.e., a Hamilton path), then the two end vertices
can be chosen from the set {a1, a2, b1, b2} in

(
4
2

)
= 6 ways.

Now suppose Q is a 2-path cover {Q1, Q2}. If neither Q1 nor Q2 is a
singleton, then there are only 2 possibilities for their end vertices, since S is
planar. If Q1 is a single vertex v, then there are 4 choices for v and for each
such choice there are 3 possibilties for the end-vertices of Q2. Thus the total
number of possibilities in the case of a 2-path cover is 14.

If Q is a 3-path cover, then two of the three paths in Q are singletons, so
in this case there are only 6 possibilities for the end vertices.

Thus the total number of possibilities is 6 + 14 + 6 = 26.

If G is a graph with a chosen set of special edges, we call a Hamilton cycle
of G that contains all the special edges of G a special Hamilton cycle of G.

For simplicity, we only prove Theorem 4.2 for k = 1, since it easily gen-
eralizes to an arbitrary natural number k. We actually prove the following
slightly more general result for k = 1.
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Theorem 4.7. The problem of deciding whether an LC graph of order n and
size at most 2n + log2n has a Hamilton cycle containing a set of prescribed
edges is in P.

We precede the proof with a brief outline, so that the reader can keep
track of the main steps while going through the details of the proof.

Outline of proof. Let G be an LC graph of order n and size at most 2n+log2 n,
with a prescribed set of special edges. We use our reduction procedure to
iteratively remove vertices of degree 2 and 3, until we obtain a graph H that
has exactly blog2 nc vertices or has minimum degree 4, whichever occurs first.
We choose the special edges of H to consist of the special edges inherited from
G, together with every edge that became special due to a Type 1 reduction.
Then any special Hamilton cycle of G reduces to a special Hamilton cycle of
H, but the converse is not necessarily true.

We now reverse the reductions by first returning vertices of degree 3 as
far as possible without returning vertices of degree 2, to obtain the graph G∗.
When reversing a reduction, any edges that were added during the reduction
are deleted, so G∗ is an induced subgraph of G.

An analysis of the structure, order and size of G∗ allows us to shrink G∗

to a graph H ′ of sufficiently small size so that it can be checked in O(nc) time
(for some constant c) whether H ′ has a special Hamilton cycle, and which is
such that H ′ has a special Hamilton cycle if and only if G∗ has one.

If G = G∗, we are done. If not, there is at least one vertex z in G−V (G∗)
that has two neighbours x, y in G∗ and xy is an edge that became special
due to a Type 1 reduction. By Lemma 4.4, {x, y} is a vertex cut of G, and
since G is locally connected, G− {x, y} has exactly two components. Let Z
be the component of G−{x, y} that contains z. Let Gxy = G[V (Z)∪{x, y}]
and let G1 = G[V (G∗) ∪ V (Gxy)]. Then G1 has a special Hamilton cycle if
and only if G∗ has a special Hamilton cycle and Gxy has a special Hamilton
cycle containing the edge xy. To check whether Gxy has such a Hamilton
cycle, we repeat our algorithm, starting with the 3-cycle zxyz instead of the
graph H. Again this is an O(nc) algorithm.

Since the number of Type 1 reductions that we need to reverse is less than
n, repeated applications of the procedure result in an O(nc+1) algorithm for
determining whether G has a special Hamilton cycle.

Now we present the detailed proof.
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Proof. Let G be an LC graph of order n and size at most 2n + log2 n, with
a given set of special edges. We may assume G is connected, since otherwise
the problem is trivial. We perform reductions 1, 2 and 3 in any order until
the resulting graph H has precisely blog2 nc vertices or has minimum degree
at least 4. In either case it follows from the discussions of the reductions
above that |E(H)| ≤ 2|V (H)|+ log2 n.

Case 1. H has precisely blog2 nc vertices :

In this case |E(H)| ≤ 2 log2 n+log2 n = 3 log2 n. We consider each subset
of E(H) and check if that subset induces a special Hamilton cycle of H.
This algorithm has time complexity O(2|E(H)| log2 n) = O(23 log2 n log2 n) =
O(n3 log2 n).

We now focus on the maximal nice fans. We create the graph G∗ by
reversing all the reductions of Types 2 and 3 that can be reversed without
reversing any reductions of Type 1. We note that |E(G∗)| ≤ 2|V (G∗)|+log2 n.

If a nice vertex whose neighbours form a triangle in a nice fan of order
greater than 3 is returned by reversing a Type 2 reduction, then the edge of
the triangle that is on the rim of the fan is deleted. (For, if a spoke were
deleted we would not get an LC graph.) Thus, reversing a Type 2 reduction
can extend a maximal nice fan but does not create additional maximal nice
fans. Hence, if no Type 3 reductions were reversed to create G∗ from H,
then the number of maximal nice fans in G∗ would be at most the number
of edges of H, i.e., at most 3 log2 n.

However, we may need to return problematic vertices of degree 3 to create
G∗. Returning a problematic vertex of degree 3 whose neighbours are a tri-
angle in a maximal nice fan divides that fan into two edge disjoint maximal
nice fans - see Figure 14.

Figure 14: Reversing a reduction of Type 3 divides a maximal nice fan into 2 maximal
nice fans.
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Since the number of problematic vertices that were deleted from G to
create H is at most log2 n + 3 (as explained in the description of Reduction
3), the addition of problematic vertices to H creates at most log2 n + 3
additional maximal nice fans. Thus the number of maximal nice fans in G∗

is at most |E(H)|+ log2 n+ 3 = 4 log2 n+ 3.
We now reduce any maximal nice fan in G∗ that has more than 4 spokes

to a nice fan with exactly four spokes, by eliminating internal spokes (as
described in Section 3). Call the resulting graph H ′. Since eliminating a
spoke amounts to reducing the number of vertices by one and the number of
edges by two, it follows that |E(H ′)| ≤ 2|V (H ′)|+ log2 n.

We may assume that the set of special edges in G∗ does not contain
two non-consecutive internal spokes of any nice fan (since otherwise G∗, and
hence G, will be nonhamiltonian). It is therefore possible to choose edges to
be special in H ′ so that H ′ has a special Hamilton cycle if and only if G∗ has
a special Hamilton cycle.

We note that if F is a nice fan in G∗ that was obtained from a nice fan
in H by adding only nice vertices of degree 3, the two outer spokes of F are
both in H. Thus, if F is reduced to a fan with four spokes in H ′, it contains
at most 2 vertices that were not in H.

If a problematic vertex of degree 3 is inserted into a triangle in a nice fan
while we are building G∗, then two of the three the neighbours of that vertex
lie on the outer spokes of two new maximal nice fans (see Figure 14). Thus
returning a problematic vertex results in at most 3 more vertices in H ′ that
were not in H. Thus

|V (H ′)| ≤ |V (H)|+ 2(4 log2 n+ 3) + 3(log2 n+ 3) = 12 log2 n+ 15

and
|E(H ′)| ≤ 2|V (H ′)|+ log2 n ≤ 25 log2 n+ 30,

so all the Hamilton cycles inH ′ can be found by means of anO(225log2n+30 log2 n) =
O(n25 log2 n) algorithm.

Thus, in this case there is an O(n26) algorithm for determining whether
G∗ has a special Hamilton cycle.

If G = G∗, we are done. If not, we reverse a Type 1 reduction and carry
on as explained in the last paragraph of the outline of the proof. The result is
an O(n27) algorithm for determining whether G has a special Hamilton cycle.
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Case 2. H has more than log2 n vertices (and δ(H) ≥ 4):

Recall that also in this case, |E(H)| ≤ 2|V (H)|+ log2 n. Let

X = {v ∈ V (H) : dH(v) > 4}, N = NH−X(X), M = G[X ∪N ].

We assume that X is nonempty. (Otherwise, the argument below is simpler.)
Note that ∑

v∈V (H)

dH(v) ≤ 4|V (H)|+ 2 log2 n.

Hence, since δ(H) ≥ 4, it follows that
∑

v∈X(dH(v)−4) ≤ 2 log2 n, and hence
|X| ≤ 2 log2 n. Now

|N | ≤
∑
v∈X

dH(v) =
∑

v∈V (H)

dH(v)−
∑

v∈V (H)−X

dH(v).

But every vertex in H −X has degree exactly 4 in H, so

|N | ≤ 4|V (H)|+ 2 log2 n− 4(|V (H)| − |X|)
= 4|X|+ 2 log2 n
≤ 10 log2 n

and
|V (M)| ≤ 12 log2 n.

Now ∑
v∈V (M) dH(v) = 4|V (M)|+

∑
v∈X(dH(v)− 4)

≤ 4|V (M)|+ 2 log2 n.

Hence
|E(M)| ≤ 2|V (M)|+ log2 n ≤ 25 log2 n.

Since every vertex in H −X has exactly 4 neighbours in H, it can easily
be proved using the same reasoning as in Lemma 4.5 that every component
in H − V (M) together with its neighbors in N form a zig-zag strip that has
its two end edges in N and all the other vertices in H − V (M) - see Figure
15.

Since every vertex in N has degree 4 in H and has at least one neighbour
in X, no vertex in N lies in more than one zig-zag strip of H, and each
zig-zag strip in H contains 4 vertices of N . Since |N | ≤ 10 log2 n, it follows
that H has at most 5/2 log2 n zig-zag strips.
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Figure 15: Structure of H.

We now create the graph G∗ by reversing all the reductions of Types 2
and 3 that can be reversed without reversing a reduction of Type 1. We first
return vertices that have three neighbours in a zig-zag strip. If only nice
vertices are added to a zig-zag strip, that strip becomes a nice generalized
strip. If a problematic vertex is added in a nice generalized strip, then the
nice generalized strip becomes two nice generalized strips and we then add
the problematic vertex and its neighbours to M , as illustrated in Figure 16.
Thus each addition of a problematic vertex to a nice generalized strip creates
one more nice generalized strip and increases the number of vertices in M by
4 and the number of edges by 6.

Since there are at most log2 n+ 3 problematic vertices, |V (M)| increases
to at most

12 log2 n+ 4(log2 n+ 3) = 16 log2 n+ 12

and |E(M)| increases to at most

25 log2 n+ 6(log2 n+ 3) = 31 log2 n+ 18,

while the number of nice generalized strips increases to at most

5/2 log2 n+ log2 n+ 3 = 7/2 log2 n+ 3.

The intersection of a Hamilton path of G∗ with each nice generalized
strip is a path cover of which the end vertices of all the paths are in N .
By Lemma 4.6 there are 26 possibilities for the end vertices of such path
covers. For each of those, there is an O(n) algorithm for deciding whether
there exists a corresponding path cover containing all the special edges in the

21



Figure 16: Reversing reductions of Type 2 and 3 to create G∗

strip. Therefore, since there are at most 7/2 log2 n+3 nice generalized strips,
there is an O(n) · 267/2 log2 n+3 < O(n) · (25)7/2 log2 n+3 < O(n19) algorithm for
deciding whether there exist corresponding path covers containing all the
special edges in all the strips.

So far we have returned vertices that have three neighbours in a zig-zag
strip. We now return vertices whose neighbours induce triangles or paths
with 3 vertices in M . Denote the resulting extension of M by M∗. Using the
method of Case 1, we find that M∗ contains at most |E(M)| + log2 n + 3 =
32 log2 n+ 21 maximal nice fans.

Now we reduce M∗ to the graph M ′ by reducing all the maximal nice fans
in M∗ to fans with at most 4 spokes and choose appropriate special edges
for M ′ as in Case 1. Then

|V (M ′)| ≤ |V (M)|+ 2(32 log2 n+ 21) + 3(log2 n+ 3)

= 16 log2 n+ 12 + 67 log2 n+ 51 = 83 log2 n+ 63,

and
|E(M ′)| ≤ 2|V (M ′)|+ log2 n ≤ 166 log2 n+ 126.

Let H ′ denote the graph consisting of M ′ together with all the nice gen-
eralized strips. Then H ′ has a special Hamilton cycle if and only if G∗ has
a special Hamilton cycle. For each subset of E(M ′) and each choice of path
covers of the strips we check, in O(n) time, if the subsets of E(M ′) and the
path covers of the strips form a special Hamilton cycle of H ′. The complexity
of this algorithm is at most O(n19) · 2166log2n+126 ·O(n) = O(n176).

Thus, in this case there is an O(n176) algorithm for determining whether
G∗ has a special Hamilton cycle.
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If G = G∗, we are done. If not, we reverse a Type 1 reduction and carry
on as explained in the last paragraph of the outline of the proof. The result
is an O(n177) algorithm for determining whether G has a special Hamilton
cycle.
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