

Posture control of a low-cost

commercially available hexapod robot for

uneven terrain locomotion

Mayur Tikam

10055747

Dissertation submitted in partial fulfilment of the requirements for the degree

Master of Engineering (Mechanical Engineering)

Department of Mechanical and Aeronautical Engineering

Faculty of Engineering, Built Environment and Information Technology

UNIVERSITY OF PRETORIA

 Supervisor: Prof. Nico J. Theron

 Co-supervisor: Dr Dan Withey

May 2018

ii

Abstract

Legged robots hold the advantage on uneven and irregular terrain, where they exhibit superior

mobility over other terrestrial, mobile robots. One of the fundamental ingredients in achieving this

exceptional mobility on uneven terrain is posture control, also referred to as attitude control. Many

approaches to posture control for multi-legged robots have been taken in the literature; however, the

majority of this research has been conducted on custom designed platforms, with sophisticated

hardware and, often, fully custom software. Commercially available robots hardly feature in research

on uneven terrain locomotion of legged robots, despite the significant advantages they pose over

custom designed robots, including drastically lower costs, reusability of parts, and reduced

development time, giving them the serious potential to be employed as low-cost research and

development platforms. Hence, the aim of this study was to design and implement a posture control

system on a low-cost, commercially available hexapod robot – the PhantomX MK-II – overcoming the

limitations presented by the lower cost hardware and open source software, while still achieving

performance comparable to that exhibited by custom designed robots.

For the initial controller development, only the case of the robot standing on all six legs was

considered, without accounting for walking motion. This Standing Posture Controller made use of the

Virtual Model Control (VMC) strategy, along with a simple foot force distribution rule and a direct

force control method for each of the legs, the joints of which can only be position controlled (i.e. they

do not have torque control capabilities). The Standing Posture Controller was experimentally tested

on level and uneven terrain, as well as on a dynamic balance board. Ground truth measurements of

the posture during testing exhibited satisfactory performance, which compared favourably to results

of similar tests performed on custom designed platforms.

Thereafter, the control system was modified for the more general case of walking. The Walking

Posture Controller still made use of VMC for the high-level posture control, but the foot force

distribution was expanded to also account for a tripod of ground contact legs during walking.

Additionally, the foot force control structure was modified to achieve compliance control of the legs

during the swing phase, while still providing direct force control during the stance phase, using the

same overall control structure, with a simple switching strategy, all without the need for torque

control or modification of the motion control system of the legs, resulting in a novel foot force control

system for low-cost, legged robots. Experimental testing of the Walking Posture Controller, with

ground truth measurements, revealed that it improved the robot’s posture response by a small

amount when walking on flat terrain, while on an uneven terrain setup the maximum roll and pitch

iii

angle deviations were reduced by up to 28.6% and 28.1%, respectively, as compared to the

uncompensated case. In addition to reducing the maximum deviations on uneven terrain, the overall

posture response was significantly improved, resulting in a response much closer to that observed on

flat terrain, throughout much of the uneven terrain locomotion.

Comparing these results to those obtained in similar tests performed with more sophisticated, custom

designed robots, it is evident that the Walking Posture Controller exhibits favourable performance,

thus fulfilling the aim of this study.

Keywords: Legged robots, hexapod robot, posture control, Virtual Model Control, force control,

uneven terrain locomotion

iv

Acknowledgements

I would like to thank my project supervisor, Prof. N. J. Theron, for being willing to take on a project

outside of his regular field of research and for providing guidance and insights throughout the course

of the project. In addition, I would like to express my gratitude towards my co-supervisor,

Dr D. Withey, whose willingness to share his knowledge and expertise, as well as spending tireless

hours sharing ideas and reviewing my documentation, are truly appreciated.

This research would not have been possible without funding from the TSO unit at the CSIR – I sincerely

appreciate the financial support received from them, as well as the moral support from the

management and technical assistance from many of the staff members, with various aspects of design

and manufacturing required in this project. A noteworthy acknowledgement should also be made to

Estelle Lubbe, for sharing the insights she gained throughout her research work with the PhantomX

platform, as well as for converting her kinematic model algorithm from MATLAB to C++.

I am also grateful to the MIAS group at the CSIR, for allowing me to make use of their facility and

resources, and to staff members at MIAS for their assistance with the Vicon motion capture system

and gathering data during experimental testing.

Other individuals I would like to thank include Kevin Ochs, for being willing to share his hexapod

locomotion software (before making it publicly available) and providing useful information for getting

acquainted with the code base, as well as Corne Gouws at NMISA, for taking out the time to assist

with the testing of force sensors. My thanks also go out to Malcolm Pandaram, for helping me to get

started on working with Linux and coding in C++, and to Kriven Naidoo for his assistance during

experimental testing.

Finally, this dissertation is dedicated to my mother, Daksha Tikam, without whose continuous

inspiration, encouragement, and sacrifices, I would never have had the opportunity to pursue my

studies as far as I have.

v

Table of Contents

Lists of Figures ... x

List of Tables ... xv

Nomenclature ...xvi

List of Acronyms ..xvi

List of Symbols .. xviii

Chapter 1: Introduction .. 1

1.1 Background ... 1

1.2 Problem Statement ... 2

1.3 Aim .. 3

1.4 Methodology ... 3

1.5 Scope ... 4

1.6 Validation and Verification Methods .. 5

1.7 Contributions of the Study .. 5

1.8 Dissertation Overview ... 6

Chapter 2: Literature Review .. 8

2.1 The Field of Robotics ... 8

2.2 Mobile Robots ... 9

2.2.1 Types of Locomotion ... 11

2.2.2 Wheeled Robots .. 12

2.3 Legged Robots ... 13

2.3.1 Advantages of Legged Robots ... 13

2.3.2 Disadvantages of Legged Robots .. 15

2.3.3 Types of Legged Robots .. 16

2.3.4 Gaits and Stability ... 19

2.3.5 Legged Robot Sensory Systems... 21

2.3.6 Applications of Legged Robots .. 26

2.4 Control Considerations for Uneven Terrain Walking .. 27

2.5 Previous Work on Posture Control for Hexapod and Quadruped Robots 30

2.5.1 Virtual Model Control Strategies .. 31

2.5.2 Other Posture Control Strategies .. 34

2.5.3 Work on Commercially Available Platforms ... 42

2.5.4 Review of Strategies Used in the Literature ... 44

2.6 Conclusion ... 45

vi

Chapter 3: Background Theory .. 46

3.1 Hexapod Robots .. 46

3.1.1 Body Structures ... 46

3.1.2 Leg Configurations .. 49

3.1.3 Gaits .. 52

3.2 Transformation Mathematics and Kinematics .. 54

3.2.1 Frame Descriptions ... 55

3.2.2 Kinematics ... 63

3.3 Virtual Model of a Hexapod Robot ... 65

3.4 Interaction Control Methods in Manipulator Robotics .. 69

3.4.1 Interaction Tasks with Manipulators .. 69

3.4.2 Indirect Force Control ... 70

3.4.3 Direct Force Control .. 72

3.4.4 Final Note on Motion-Based Force Control .. 73

3.5 The Robot Operating System (ROS) .. 74

3.5.1 A Brief History of ROS ... 74

3.5.2 Fundamental Features and Core Components ... 75

Chapter 4: Description of Robot Platform .. 79

4.1 PhantomX MK-II Hexapod Robot .. 79

4.1.1 Original Hardware ... 80

4.1.2 Original Software .. 81

4.2 Sensory System ... 81

4.2.1 Joint Position Sensors ... 82

4.2.2 Inertial Measurement Unit ... 83

4.2.3 Foot Force Sensors .. 84

4.3 Software .. 88

4.3.1 ROS Locomotion Software Stack: hexapod_ros .. 89

4.3.2 Sensor Feedback in ROS .. 92

4.4 Other Hardware Required for ROS Integration .. 95

4.4.1 USB2AX Servo Communication Interface ... 95

4.4.2 AX/MX Power Hub .. 95

4.4.3 USB Hub .. 96

4.5 Fully Equipped Platform .. 97

4.6 Conclusion ... 98

vii

Chapter 5: Preliminaries for Control .. 99

5.1 Controllability Analysis .. 99

5.1.1 Simplified Dynamic Model of Hexapod ... 99

5.1.2 A Note on Using Algebraic Controllability Theorem ... 103

5.1.3 Algebraic Controllability Analysis at an Arbitrary Time Instant 104

5.1.4 A Note on Controllability with Dynamic Motion ... 106

5.1.5 Concluding Remark ... 106

5.2 Posture Calculation ... 107

5.2.1 Body Coordinate Frame .. 107

5.2.2 Height Calculation ... 108

5.2.3 Orientation Calculation ... 110

5.2.4 Concluding Remark ... 111

5.3 Frequency Domain Representations of Linear Systems ... 112

5.4 Conclusion ... 112

Chapter 6: Standing Posture Control ... 114

6.1 Control Structure .. 114

6.1.1 A Note on Posture Calculation .. 115

6.1.2 Virtual Model Control Strategy ... 115

6.1.3 Foot Force Distribution ... 122

6.1.4 Single Leg Force Controller ... 125

6.1.5 Overall Control Structure .. 133

6.2 Experimental Setup and Tests... 136

6.2.1 Step Tests on Flat, Level Terrain ... 137

6.2.2 Uneven Terrain Tests .. 137

6.2.3 Balance Board Tests .. 138

6.2.4 Vicon Setup and Data Processing .. 139

6.3 Results and Discussion .. 142

6.3.1 Step Tests on Flat, Level Terrain ... 143

6.3.2 Uneven Terrain Tests .. 147

6.3.3 Balance Board Tests .. 149

6.4 Conclusion ... 150

viii

Chapter 7: Walking Posture Control .. 151

7.1 Shortcomings of Standing Posture Control System for Walking .. 151

7.1.1 Posture Calculation ... 152

7.1.2 Virtual Model Controller ... 152

7.1.3 Foot Force Distribution ... 152

7.1.4 Single Leg Force Controller ... 152

7.2 Modifications Made to Control Structure for Walking ... 153

7.2.1 Height Calculation ... 153

7.2.2 Virtual Model Controller ... 154

7.2.3 Foot Force Distribution ... 154

7.2.4 Single Leg Force Controller ... 157

7.2.5 Overall Control Structure .. 168

7.3 Experimental Setup and Testing ... 172

7.3.1 Uneven Terrain Test Setup.. 172

7.3.2 Test Procedure .. 173

7.3.3 Vicon Setup and Data Processing .. 175

7.4 Results and Discussion .. 176

7.4.1 Walking on Flat Terrain ... 177

7.4.2 Walking on Uneven Terrain .. 180

7.5 Conclusion ... 185

Chapter 8: Conclusion ... 187

8.1 Summary of Implemented Methods ... 187

8.2 Main Findings of the Study ... 189

8.3 Recommendations .. 191

8.3.1 Locomotion Engine ... 191

8.3.2 Robotic Platform ... 191

8.3.3 Posture Control System .. 192

8.3.4 Uneven Terrain Testing of Legged Robots .. 193

8.4 Study Aim Fulfilment ... 194

Bibliography .. 195

ix

Appendix A: Foot Force Sensor .. 206

A-1 OptoForce 3-Axis Force Sensor OMD-20-SE-40N Datasheet [83] 207

A-2 Force Sensor Sensitivity Reports ... 209

A-3 Force Sensor Testing ... 217

A-3.1 Apparatus and Test Setup ... 217

A-3.2 Testing Procedure ... 219

A-3.3 Post-processing of Measured Data ... 220

A-3.4 Test Results ... 221

A-3.5 Discussion of Results ... 225

A-3.6 Conclusion ... 226

A-4 Results of Force Sensor Tests .. 227

Appendix B: New Foot for PhantomX MK-II .. 232

B-1 Design of New Foot for PhantomX MK-II .. 233

B-2 Manufacturing Drawings of Newly Designed Foot ... 237

Appendix C: Updates to PhantomX Parameters for hexapod_ros 241

Appendix D: Computation of IMU Orientation from ROS Driver Output 243

Appendix E: Uneven Terrain Test Setup ... 247

E-1 Investigation on Existing Uneven Terrain Testing Methods ... 248

E-2 Development of Test Setup for this Study .. 252

E-3 Sondor SPX 45 Foam Datasheet [123] .. 257

x

Lists of Figures

Figure 2.1: KUKA industrial robots in an automotive assembly line [20] ... 9

Figure 2.2: Self-portrait of NASA's Curiosity rover on the surface of Mars [21] 10

Figure 2.3: A tour guide robot at the Museum of the Great War in Meaux, France [22] 10

Figure 2.4: Specific power versus attainable speed for various methods of locomotion [3] 12

Figure 2.5: One-legged, three-dimensional hopping machine developed at CMU [23] 17

Figure 2.6: Honda's ASIMO humanoid robot climbing down stairs [30] .. 17

Figure 2.7: Boston Dynamics' BigDog quadruped climbing a snow-covered hill [1] 18

Figure 2.8: PhantomX MK-II hexapod robot, popular with hobbyists [15] ... 18

Figure 2.9: SCORPION eight-legged robot designed for space robotics applications [32] 19

Figure 2.10: Simplified, high-level block diagram of BigDog's control structure [1] 28

Figure 2.11: StarlETH quadruped robot developed by ETH Zurich [6] .. 29

Figure 2.12: COMET-IV hexapod on uneven and soft terrain [8].. 32

Figure 2.13: Warp1 quadruped regulating its posture on a balance board [4] 32

Figure 2.14: StarlETH quadruped trotting over terrain with loose obstacles [6] 33

Figure 2.15: High-level block diagram illustrating control structure of HITCR-II [10] 33

Figure 2.16: HITCR-II hexapod walking on uneven terrain in the form of rectangular blocks [10] 34

Figure 2.17: Experiments of a hexapod walking on a slope in the (a) pitch and (b) roll direction [40] 35

Figure 2.18: Simplified block diagram of adaptive posture control system implemented in [43] 35

Figure 2.19: Messor hexapod on rocky terrain [28] ... 36

Figure 2.20: LAURON V hexapod on rough terrain [9] .. 37

Figure 2.21: Illustration of LAURON V on slope, orientating its feet relative to the gravitational vector

using the fourth rotational joints in its legs [9] .. 38

Figure 2.22: Experimental test of LAURON V walking on a slope [9].. 38

Figure 2.23: Experimental test of LAURON V climbing over obstacle approximately 40 cm high [9] .. 39

Figure 2.24: Diagram of hierarchical control architecture used on Weaver hexapod [13] 39

Figure 2.25: Inclination control test of Weaver hexapod [13] .. 40

Figure 2.26: Weaver hexapod on a section of the multi-terrain testbed used in [13] 40

Figure 2.27: SEAs used on StarlETH for (a) hip abduction/adduction, (b) hip flexion/extension and (c)

knee flexion/extension joints [6] .. 41

Figure 2.28: HITCR-II leg structure, showing joint actuator construction and 3 DOF force sensors [10]

 .. 41

Figure 2.29: Leg structure of LAURON V with fourth rotational joint [9] ... 42

Figure 2.30: Conceptual illustration of CR200 using its front legs as manipulators [39] 42

Figure 2.31: MX-Phoenix hexapod on rocky terrain [59] .. 43

xi

Figure 3.1: Rectangular hexapod body structure, with legs mounted (a) at 45°, and (b) perpendicular

to main body ... 47

Figure 3.2: Hexagonal, or circular, hexapod body structure, with legs mounted axisymmetrically

around body .. 47

Figure 3.3: Schematic depicting trunk of Messor hexapod with central leg attachment points

extended outward, as well as coxa joint workspaces [35] ... 48

Figure 3.4: Schematic representations of (a) mammal, (b) insect (a.k.a. reptile), and (c) arachnid type

hexapod leg configurations (extracted from [33]) .. 49

Figure 3.5: Illustration of typical insect leg, with various segments labelled accordingly [62] 50

Figure 3.6: Schematic of 3 DOF hexapod leg, indicating the individual segments and the rotational

axes of their joints ... 51

Figure 3.7: SILO6 hexapod with legs in (a) insect-like and (b) pseudo-mammal configuration [24] 51

Figure 3.8: Messor robot in (a) hexapod mode, with arachnid leg configuration, and (b) quadruped

mode, with corner legs positioned to front and back of body, while central legs carry a payload [35]

 .. 52

Figure 3.9: Leg numbering notation used for hexapod gait descriptions ... 52

Figure 3.10: Hexapod gait diagrams depicting leg sequencing through time (along horizontal axis) for

(a) metachronal, (b) ripple, (c) tripod, and (d) typical tetrapod (a.k.a. quadruped) gaits 54

Figure 3.11: Rotation of a frame using the ZYX Euler angle sequence [65] .. 60

Figure 3.12: Schematic representation of an arbitrary link, showing the length of the link line

mutually perpendicular to the joint axes (adapted from [64]) ... 64

Figure 3.13: Mappings between kinematic descriptions – solid arrows indicate forward mappings,

while dashed arrows indicate inverse mappings (recreated from [64]) ... 65

Figure 3.14: Free-body diagram of the virtual model of a hexapod robot ... 67

Figure 3.15: High-level block diagram depicting typical impedance control structure in manipulators

(recreated from [68]) .. 71

Figure 3.16: High-level block diagram depicting typical direct force control structure in manipulators

(recreated from [68]) .. 73

Figure 3.17: Schematic diagram illustrating basic concepts of inter-node communication in ROS [76]

 .. 78

Figure 4.1: PhantomX MK-II hexapod robot - front view [15] .. 79

Figure 4.2: ArbotiX-M Robocontroller from Vanadium Labs [79] ... 80

Figure 4.3: ArbotiX Commander – wireless controller for ArbotiX powered walking robots [80] 81

Figure 4.4: Dynamixel AX-12A servo motor used as joint actuators for the PhantomX MK-II [78] 82

Figure 4.5: Mapping between angular output and digital position values of AX-12A servo motor 83

Figure 4.6: LORD MicroStrain® 3DM-GX3® -25 miniature Attitude Heading Reference System [82] .. 83

Figure 4.7: Construction of semi-spherical OptoForce 3D force sensor [84] 85

xii

Figure 4.8: Model of OptoForce 3D force sensor (OMD-20-SE-40N), indicating coordinate frame of

measured forces [83] .. 86

Figure 4.9: Tibia segment of PhantomX with new foot and OptoForce sensor in contact with ground

 .. 88

Figure 4.10: Default PhantomX leg configuration for hexapod_ros IK engine, with offsets between

link lines and servo centre planes indicated for femur and tibia leg segments 91

Figure 4.11: USB2AX – Dynamixel servo communication interface for USB [86] 95

Figure 4.12: 6 Port AX/MX Power Hub used to power Dynamixel servos [92] 96

Figure 4.13: Transcend® 4 Port USB 3.0 Hub (TS-HUB3K) [93] ... 97

Figure 4.14: Fully equipped PhantomX hexapod robot platform utilized in this study 97

Figure 4.15: Electronic equipment mounted onboard the PhantomX platform 98

Figure 5.1: Simplified model of hexapod robot body, acted on by gravitational force and foot contact

forces (a world-fixed coordinate frame is indicated in the top left) .. 100

Figure 5.2: Schematic of PhantomX hexapod with body coordinate frame, {𝑩}, and leg numbers [19]

 .. 108

Figure 6.1: Block diagram of Foot Force Controller for a single leg 𝑖, indicated in blue (adapted from

[19]) ... 129

Figure 6.2: High-level block diagram depicting overall control structure on hexapod robot; posture

control system is indicated by blue blocks (adapted from [19]) .. 134

Figure 6.3: PhantomX hexapod robot platform standing on artificial rocks 138

Figure 6.4: PhantomX hexapod robot platform standing on balance board 139

Figure 6.5: PhantomX standing on level balance board for height reference in Vicon measurements

of flat terrain step tests .. 140

Figure 6.6: Screenshot of Vicon Tracker GUI, showing PhantomX object model and coordinate frame

(x-, y-, and z-axes are indicated in red, green, and blue, respectively) .. 141

Figure 6.7: Posture response of system to step changes in reference height [19] 143

Figure 6.8: Posture response of system to step changes in reference roll angle [19] 145

Figure 6.9: Posture response of system to step changes in reference pitch angle [19] 146

Figure 6.10: Comparison of PhantomX hexapod robot platform standing on uneven terrain, with

(right) and without (left) posture control activated [19] .. 148

Figure 6.11: Posture response of system to step changes in reference height, while standing on

uneven terrain [19] ... 148

Figure 6.12: Roll and pitch response of the robot to tilting of balance board, as measured by Vicon

[19] .. 149

xiii

Figure 7.1: Block diagram of Foot Force Controller for a single leg i, with saturation and anti-windup

mechanisms moved further downstream .. 157

Figure 7.2: Block diagram of modified Foot Force Control structure for a single, swing leg i, providing

output wind-down and active compliance during interaction ... 159

Figure 7.3: Block diagram of Foot Force Controller for single leg i, for both stance (direct force

control) and swing (compliance control) phases during walking ... 163

Figure 7.4: High-level block diagram depicting overall control structure on hexapod robot,

incorporating Walking Posture Control system .. 169

Figure 7.5: Uneven terrain test platform with 10 × 10 block field in the centre 173

Figure 7.6: Screenshot of Vicon Tracker GUI, showing the PhantomX object model above the uneven

terrain test platform object model ... 176

Figure 7.7: Posture response while walking forward on flat terrain, with posture control disabled . 177

Figure 7.8: Posture response while walking backward on flat terrain, with posture control disabled

 .. 178

Figure 7.9: Posture response while walking forward on flat terrain, with posture control enabled . 178

Figure 7.10: Posture response while walking backward on flat terrain, with posture control enabled

 .. 179

Figure 7.11: Posture response while walking forward on uneven terrain, with posture control

disabled ... 181

Figure 7.12: Posture response while walking backward on uneven terrain, with posture control

disabled ... 181

Figure 7.13: Posture response while walking forward on uneven terrain, with posture control

enabled ... 182

Figure 7.14: Posture response while walking backward on uneven terrain, with posture control

enabled ... 182

Figure A.1: Weights of various sizes, used for calibration and testing at NMISA's Force Laboratory 218

Figure A.2: Force sensor test setup with main apparatus labelled... 218

Figure A.3: Close up view of loaded cradle balanced on OptoForce sensor 219

Figure A.4: Underside of cradle bar, showing chamfered hole (circled in red) where cradle is to be

rested on force sensor .. 220

Figure A.5: Force sensor (ISE0A024) test measurements – “run 1” (using only 2 loading steps) 222

Figure A.6: Force sensor (ISE0A024) test measurements – “run 2” (repeatability test; using 8 loading

steps) ... 222

Figure A.7: Force sensor (ISE0A024) test measurements – “run 180” (reproducibility test; using 8

loading steps) .. 223

xiv

Figure B.1: CAD model of original foot assembly of PhantomX MK-II hexapod 233

Figure B.2: Model of original PhantomX MK-II foot (a) mounted in tibia; (b) partially exploded view

showing slot in tibia plate which holds foot in place .. 234

Figure B.3: Centreplate part of new PhantomX foot .. 234

Figure B.4: Multiple views of sensor mount part of new PhantomX foot .. 235

Figure B.5: Assembly of new PhantomX foot with OptoForce sensor: (a) fully assembled view; (b)

exploded view ... 235

Figure B.6: Models of OptoForce sensor (a) mounted onto robot foot, and (b) being detached from

leg without disassembling entire tibia segment ... 236

Figure B.7: Frontal view of new PhantomX foot with OptoForce sensor, mounted onto tibia segment

 .. 236

Figure E.1: Experimental test of BigDog walking on a rubble pile [1] ... 248

Figure E.2: (a) Various uneven terrain models, and (b) typical experimental test setup with LittleDog

quadruped [27] ... 249

Figure E.3: Multi-terrain testbed, with four segments, used in experimental tests with Weaver

hexapod [13] ... 249

Figure E.4: Discrete distribution of block heights used in uneven terrain test setup (continuous

normal distribution with 𝜇 = 4 cm and 𝜎 = 1.8 cm shown in red) ... 254

Figure E.5: 3D bar plot of 10 × 10 block field generated for uneven terrain test setup 254

Figure E.6: Uneven terrain test platform with 10 × 10 block field in the centre 256

xv

List of Tables

Table 2.1: Sensors commonly used on legged robots, including examples of robots using them 22

Table 6.1: Parameter values used for VMC in Standing Posture Control system 136

Table 6.2: Parameter values used for Single Leg Force Controller in Standing Posture Control system

 .. 136

Table 6.3: Default posture setpoint values for Standing Posture Controller 136

Table 7.1: Parameter values used for VMC in Walking Posture Control system 171

Table 7.2: Parameter values used for Single Leg Force Controller in Walking Posture Control system

 .. 171

Table 7.3: Limiting values used to prevent instability in Single Leg Force Controller 171

Table 7.4: Default posture setpoint values for Walking Posture Controller....................................... 174

Table A.1: Force sensor (ISE0A024) test measurement results – “run 1” .. 223

Table A.2: Force sensor (ISE0A024) test measurement results – “run 2” (repeatability test) 223

Table A.3: Force sensor (ISE0A024) test measurement results – “run 180” (reproducibility test) 224

Table A.4: Maximum measurement errors of force sensor tests for loads of 20 N and 40 N 224

Table A-5: Force sensor (ISE0A019) test measurement results – “run 1” .. 227

Table A-6: Force sensor (ISE0A019) test measurement results – “run 2” (repeatability test) 227

Table A-7: Force sensor (ISE0A019) test measurement results – “run 180” (reproducibility test) 227

Table A-8: Force sensor (ISE0A020) test measurement results – “run 1” .. 227

Table A-9: Force sensor (ISE0A020) test measurement results – “run 2” (repeatability test) 227

Table A-10: Force sensor (ISE0A020) test measurement results – “run 180” (reproducibility test) .. 227

Table A-11: Force sensor (ISE0A023) test measurement results – “run 1” .. 228

Table A-12: Force sensor (ISE0A023) test measurement results – “run 2” (repeatability test) 228

Table A-13: Force sensor (ISE0A023) test measurement results – “run 180” (reproducibility test) .. 228

Table A-14: Force sensor (ISE0A024) test measurement results – “run 1” .. 228

Table A-15: Force sensor (ISE0A024) test measurement results – “run 2” (repeatability test) 228

Table A-16: Force sensor (ISE0A024) test measurement results – “run 180” (reproducibility test) .. 229

Table A-17: Force sensor (ISE0A025) test measurement results – “run 1” .. 229

Table A-18: Force sensor (ISE0A025) test measurement results – “run 2” (repeatability test) 229

Table A-19: Force sensor (ISE0A025) test measurement results – “run 180” (reproducibility test) .. 229

Table A-20: Force sensor (ISE0A026) test measurement results – “run 1” .. 230

Table A-21: Force sensor (ISE0A026) test measurement results – “run 2” (repeatability test) 230

Table A-22: Force sensor (ISE0A026) test measurement results – “run 180” (reproducibility test) .. 230

Table A-23: Force sensor (ISE0A027) test measurement results – “run 1” .. 230

Table A-24: Force sensor (ISE0A027) test measurement results – “run 2” (repeatability test) 230

Table A-25: Force sensor (ISE0A027) test measurement results – “run 180” (reproducibility test) .. 230

Table A-26: Force sensor (ISE0A028) test measurement results – “run 1” .. 231

Table A-27: Force sensor (ISE0A028) test measurement results – “run 2” (repeatability test) 231

Table A-28: Force sensor (ISE0A028) test measurement results – “run 180” (reproducibility test) .. 231

Table E.1: Height values of individual blocks making up the uneven terrain test setup (measured in

units of centimeters) ... 255

xvi

Nomenclature

List of Acronyms

3D Three-dimensional

AHRS Attitude Heading Reference System

API Application programming interface

BLDC Brushless direct current

CAD Computer-aided design

CMU Carnegie-Mellon University

CNN Cellular non-linear network

COM Centre of mass

CPG Central pattern generator

CR200 Crabster200

CSIR Council for Scientific and Industrial Research (in South Africa)

DAQ Data acquisition

DH Denavit-Hartenberg

DOF Degrees of freedom

DPSS Defence, Peace, Safety and Security

EEPROM Electrically erasable programmable read-only memory

FRF Frequency response function

GPS Global positioning system

GUI Graphical user interface

HD Harmonic Drive

ID Identifier

IEEE Institute of Electrical and Electronics Engineers

IK Inverse kinematics

IMU Inertial measurement unit

IR Infrared

IROS IEEE/RSJ International Conference on Intelligent Robots and Systems

LIDAR/LiDAR Light Detection and Ranging, or Light Radar

LiPo Lithium polymer

LQR Linear quadratic regulator

LRF Laser rangefinder

MIAS Mobile Intelligent Autonomous Systems

xvii

MMC Motor Map Controller

NMISA National Metrology Institute of South Africa

NUKE Nearly Universal Kinematics Engine

ODV OptoForce Data Visualization

PCFDC Posture Control strategy based on Force Distribution and Compensation

PD Proportional-derivative

PI Proportional-integral

PID Proportional-integral-derivative

PS3 PlayStation® 3

PS4 PlayStation® 4

PSD Power Spectral Density

RAM Random-access memory

RMS Root-mean-square

ROS Robot Operating System

ROV Remotely operated vehicle

RSJ Robotics Society of Japan

SEA Series elastic actuator

SHSC Sky-Hook Suspension Control

SLAM Simultaneous Localization and Mapping

TSO Technology for Special Operations

TTL Transistor-transistor logic

UAV Unmanned aerial vehicle

USB Universal Serial Bus

VMC Virtual Model Control(ler)

YAML YAML Ain’t Markup Language (recursive acronym)

xviii

List of Symbols

Symbol Description SI Unit

English Letters and Symbols

𝟎 3 × 3 zero matrix –

𝟎𝑚×𝑛 𝑚 × 𝑛 zero matrix –

𝑨 Coefficient matrix of state vector in state-space model –

𝑩 Coefficient matrix of control input vector in state-space model –

𝐶 Damping coefficient N·s/m

𝑪 Derivative gain matrix –

𝐷 Derivative control action –

𝑒 Error signal –

𝒆 Error state vector –

𝑒𝑐,𝑖 Compliance error of the 𝑖th foot m

𝑒𝑓,𝑖 Force error of the 𝑖th foot N

𝑒𝑠,𝑖 Tracking error of the 𝑖th foot m

𝑓𝑐 Filter cut-off frequency Hz

𝑓𝑖,𝑧 z-component of contact force at the 𝑖th foot N

𝑓𝑚,𝑖 z-component of the force measured on the 𝑖th foot N

𝑓𝑠 Static force N

𝑓(𝑡) Function of time, 𝑡 –

𝑭𝑖,𝑧 𝑛×1 vector of z-components of 𝑛 foot contact forces N

𝐹𝑓𝑓 Feedforward control action –

𝑭𝑠 Feedforward term in virtual model controller –

𝐹(𝑠) Function of Laplace variable, 𝑠 –

𝐹𝑉𝑀𝐶 Vertical force commanded by virtual model controller N

𝑭𝑽𝑴𝑪 Virtual model controller output vector –

𝐹𝑧 Force in the z-direction N

𝑔 Gravitational acceleration constant (9.81) m/s2

𝐺 Centre of mass of a rigid body –

𝐺(𝑠) Transfer function –

𝐻(𝑠) Transfer function of first-order filter –

xix

𝐼 Moment of inertia of a rigid body kg·m2

𝑰 3 × 3 identity matrix –

𝐼𝑖 Integral control action for 𝑖th foot m

𝑘 Order of state-space system –

𝐾 Spring stiffness coefficient N/m

𝑲 Proportional gain matrix –

𝐾𝐶 Compliance gain of Single Leg Force Controller 1/s

𝐾𝑑 Derivative gain –

𝐾𝐼 Integral gain of Foot Force Controller m/N·s

𝐾𝑝 Proportional gain –

𝐾𝑃 Proportional gain of Foot Force Controller m/N

𝐾𝑆,𝑖 Switching gain of Single Leg Force Controller for the 𝑖th leg –

ℒ{𝑓(𝑡)} Laplace transform of 𝑓(𝑡) –

𝑀 Mass of rigid body kg

𝑴 Rotation matrix returned by IMU –

𝑀𝜃 Pitch moment commanded by virtual model controller N·m

𝑀𝜙 Roll moment commanded by virtual model controller N·m

𝑛 Number of feet in contact with the ground –

𝑁 Number of legs on the robot –

𝑁𝑓 Parameter defining derivative filter cut-off frequency rad

𝒑 Position vector m

Δ𝑝𝑖,𝑧
Adjustment value for z-position of the 𝑖th foot (single leg force

controller output)
m

𝑃 Proportional control action –

𝑷
Matrix representation of contact foot positions for force-torque

equilibrium equations
–

𝑞0 Scalar part of quaternion –

𝒒 Quaternion vector –

𝒒̅ Imaginary part of quaternion –

𝑸 Controllability test matrix –

𝑟 Reference input signal for controller –

𝑟(∙) Rank of a matrix –

𝑹 Rotation matrix –

ℝ3 Three-dimensional space –

xx

𝑠 Laplace variable rad/s

𝑡 (Continuous) Time variable s

𝑡∗ Time instant s

𝑡𝑘 Sampling instant (discrete time variable) s

Δ𝑡𝑘 Duration between previous and current sampling instants s

𝑇 Cycle time s

𝑇𝑑 Derivative time constant s

𝑇𝑠𝑡 Stance phase duration s

𝑇𝑠𝑤 Swing phase duration s

𝑇𝑡 Tracking time constant s

𝑢 Control signal –

𝒖 Control input vector in state-space model –

𝒖𝐼𝑀𝑈 Euler angle vector describing rotation of IMU rad

𝒖𝑍𝑌𝑋 Euler angle vector (using ZYX rotation sequence) rad

𝒙 State vector in state-space model –

𝒙∗ Arbitrary state –

𝑥𝑑,𝑖 x-component of position commanded by gait engine for foot 𝑖 m

𝑦 Measured input signal for controller –

𝑦𝑑,𝑖 y-component of position commanded by gait engine for foot 𝑖 m

𝑌(𝑠) Laplace transform of controller input signal –

𝒛 Vector in space –

𝑧𝑑,𝑖 z-component of position commanded by gait engine for foot 𝑖 m

Δ𝑧𝑖
Actual, commanded adjustment value for z-position of the 𝑖th

foot (after applying artificial saturation)
m

Δ𝑧𝑙𝑖𝑚 Foot force controller output saturation limit m

𝑧𝑟,𝑖
z-component of position reference for inverse kinematics

engine, for foot 𝑖
m

𝑧𝑡,𝑖 z-component of temporary position reference, for foot 𝑖 m

ℤ Set of all integer numbers –

xxi

Greek Letters and Symbols

𝛽 Duty factor –

𝜃 Pitch angle rad

𝜇 Mean –

𝜎 Standard deviation –

𝜏𝑐 Filter time constant s/rad

𝜙 Roll angle rad

𝜓 Yaw angle rad

𝜔𝑐 Filter cut-off frequency rad/s

Superscripts

′ Relative to body coordinate system

−1 Inverse (of a matrix or vector)

𝑇 Transpose (of a matrix or vector)

Subscripts

𝑎𝑣𝑔 Average (divided among a certain number of legs)

𝑏 Body coordinate system

𝑑 Desired value (control setpoint)

𝑓 Filtered

𝐺 Of the Centre of Mass

𝑖 Of the 𝑖th foot, or general index

𝑗 General index

𝐼𝑀𝑈 Of the Inertial Measurement Unit

𝑤 World coordinate system

𝑥 In the x-direction or about the x-axis

𝑦 In the y-direction or about the y-axis

𝑧 In the z-direction or about the z-axis

𝜃 In the pitch direction or about the pitch axis

𝜙 In the roll direction or about the roll axis

Accent Characters

∙ First time derivative (typically yielding velocity)

∙∙ Second time derivative (typically yielding acceleration)

̂ Unit vector

xxii

1

Chapter 1: Introduction

Legged robots constitute an important research field as they introduce the capability of uneven terrain

mobility to robotic systems. Lowering the barriers to entry in this field has the potential to improve

the progress of legged robot capabilities and real-world applicability. Therefore, this study deals with

the development and implementation of a posture control system to improve uneven terrain

locomotion of a hexapod robot, specifically on a low-cost, commercially available platform, as

platforms such as this present promise for low-cost research and development platforms.

In the sections of this chapter which follow, brief background information will be given and the

motivation for the study will be elaborated. In addition, an overview of the methodologies and scope

of the study will be provided, along with validation and verification methods, contributions made by

the study, and a glimpse into the content presented throughout the remainder of this dissertation.

1.1 Background
In the world of mobile robotics, legged robots hold the advantage on uneven and irregular terrain.

Their ability to walk with discrete ground contact points grants them access to environments and

terrain which most other vehicles, such as wheeled and tracked robots, are unable to traverse [1]–[4].

Various types of legged robots exist, ranging from those with two legs, known as bipeds, to ones that

have six (hexapods) or more legs [3]. Quadrupeds (four-legged robots) and hexapods are commonly

used because of their capacity for static stability, with hexapod robots exhibiting superior efficiency

with regard to statically stable walking [5].

One of the key ingredients in achieving locomotion on uneven and irregular terrain, that has been

identified in much of the literature [1], [6]–[10], is posture control (also referred to as attitude control),

with particular emphasis on controlling the height of the robot’s body above the ground, along with

its orientation relative to the horizontal plane, in the form of roll and pitch angles [4], [6], [10]. A

 Chapter 1: Introduction

2

selection of posture control implementations exist on quadruped and hexapod platforms, with one of

the most widely used methods being Virtual Model Control (VMC) [4], [6], [7], [10]–[12].

However, most of this research takes place on custom designed platforms, with sophisticated (and

consequently expensive) hardware, sensors, and actuators (often with torque control capabilities),

e.g. [4], [6], [10], or even complex, over-actuated leg structures, e.g. [9], [13]. Additionally, many of

these platforms run on custom software, written from the ground up.

Commercially available legged robot platforms, on the other hand, pose many advantages over their

custom designed cousins, the foremost being radically lower costs. Other primary advantages of these

platforms include reusability of parts and reduced development time. Commercial legged robots are

also becoming more widely available, especially hexapods, which are popular among hobbyists

because of their inherent stability [3]. One of the main shortcomings of such platforms is that most of

the low-cost servo motors they use as actuators do not provide torque control capabilities, meaning

they cannot be used with some of the control techniques commonly employed on more sophisticated

platforms in the literature. Additionally, low-cost actuators, hardware, and sensing equipment

generally provide lower accuracy and are manufactured to lower tolerances than their more expensive

counterparts, which could contribute to larger control errors and, consequently, degraded

performance.

Recently, the Technology for Special Operations (TSO) unit, at the Defence, Peace, Safety and Security

(DPSS) division of the Council for Scientific and Industrial Research (CSIR) in South Africa, have sought

to embark on research in the area of legged robotics, in order to investigate the use of such platforms

for terrestrial locomotion in real-world, field use. An initial study in this respect has been conducted

in [14], wherein the low-cost, PhantomX MK-II hexapod platform [15] was acquired and outfitted with

a proprioceptive sensory system. This platform was also utilized to gather data that was used to test

a full state estimation algorithm. The fundamental aim of [14] was to provide a starting point for future

studies on the control of these types of robotic platforms, for uneven terrain locomotion.

1.2 Problem Statement
It is important to explore the viability of uneven terrain locomotion on commercially available

platforms with lower costs, especially to enable wider spread applicability and adoption of legged

robot technology outside of the lab. Despite the notable advantages offered by commercially available

platforms, custom designed platforms are, by far, the most common in literature, with commercial

platforms hardly featuring in posture control development. Furthermore, commercial platforms do

not feature built-in posture control capabilities in their standard locomotion software.

 Chapter 1: Introduction

3

With posture control being such a vital element for achieving useful uneven terrain locomotion, as

discussed in the previous section, the development and testing of a posture control system on a

commercially available legged robot, is required.

1.3 Aim
The aim of this study is to demonstrate the implementation of a posture control system on the

low-cost, commercially available hexapod robot acquired by TSO. To this end, the design and

development of the control system will need to be adapted to overcome the limitations presented by

the commercially available robotic platform (especially the joint actuators which can only be position

controlled, having no torque control capability) and the available locomotion software. Despite these

adaptations, the design should attempt to still achieve performance comparable to that displayed on

more sophisticated, custom designed platforms.

1.4 Methodology
Before commencing with development of a posture control system, existing methods utilized in the

literature will be thoroughly investigated, while also identifying the relevant background and theory

pertinent to this study. Thereafter, appropriate upgrades will be made to the existing hexapod robot

platform, in terms of both hardware and software, while staying true to the philosophy of using

low-cost components.

In addition, preliminary analyses required for controller development will be carried out, along with

the derivation of methods for determining the actual posture of the robot, based on the available

sensory information.

This will be followed by the development and implementation of a posture control system, for the

simpler case of the hexapod standing on all six of its legs, rather than immediately dealing with the

complexities involved in walking on uneven terrain. The performance of the implemented control

system will be experimentally tested, to gain further insights and form a basis for implementation

during walking.

Finally, the control system will be modified and expanded for the more general case of walking on

uneven terrain. An artificial uneven terrain setup will be manufactured, for use in experimental tests

which will be utilized to validate the performance and effectiveness of the implemented posture

control method.

 Chapter 1: Introduction

4

1.5 Scope
In carrying out the abovementioned methodology to fulfil the aim of this study, the following aspects

will form part of the scope of the project:

• Incorporation of the necessary sensors, electronic equipment, and hardware on the hexapod

platform, required for the purpose of posture control;

• Updating parameters and settings in the selected locomotion software to get the platform

running on this software;

• Minor modifications to the locomotion software to incorporate the implemented control

system;

• Design and development of a control system to regulate the robot body’s posture, in the form

of height and orientation;

• Digital implementation of the designed control system, by writing the relevant control

software;

• Manufacturing of a simple test setup that emulates uneven terrain conditions on which the

hexapod can walk; and

• Experimental testing of the implemented control systems, as well as processing and analysis

of the test data.

This study is focussed specifically on the development and implementation of the first iteration of a

posture control system for the hexapod platform being used, to serve as a proof of concept and a

foundation for future studies to expand on this work, for more advanced implementations. Therefore,

the following will not form part of the project scope:

• Major physical modifications to the hexapod platform, or detailed investigations on factors

such as its kinematics, dynamics, and energy efficiency, among others;

• Development and incorporation of an advanced, exteroceptive sensory system;

• Major modifications to the locomotion software or implementation of more gaits in the same

software, as well as writing of custom locomotion software or sensor drivers;

• Further development or implementation of a full state estimation algorithm for the platform;

• Development of higher level tasks of control, planning, or autonomy, beyond posture control;

• Optimization of the gains and parameters used in the designed control system; and

• Development of standardized terrain setups and testing procedures for legged robots, or

methods for accurately characterizing and describing terrains so they can be reproduced in

comparative studies.

 Chapter 1: Introduction

5

1.6 Validation and Verification Methods
Accuracy and precision of the measurements provided by new foot force sensors, incorporated onto

the hexapod, will be validated through simple dead weight tests performed with the sensors. The

measured data will be processed, analysed, and compared to the actual loads induced on the sensors,

to determine whether the force values they measure (calculated from the raw data using the

manufacturer provided calibration factors) are within an acceptable tolerance range.

With regard to the designed posture controller, selected components of the control system will be

mathematically analysed for a variety of scenarios, to verify that the proposed control algorithm will,

in fact, produce the desired behaviour. An example of this is the analysis of the steady state behaviour

of the designed Foot Force Controller, to verify that it does provide anti-windup and active compliance

functionalities, as desired (see Chapters 6 and 7).

Furthermore, experimental testing will be used to validate the performance of the implemented

control system, as well as its ability to improve the dynamic behaviour of the robot on both flat and

uneven terrain conditions. In order to ensure that the posture measurements calculated from sensor

data are valid, they will be compared to ground truth measurements taken by a Vicon motion capture

system [16], during experimental testing.

1.7 Contributions of the Study
The following contributions will be made by the successful completion of this study:

1. Design of new feet (which can be easily replicated and manufactured) to incorporate

OptoForce 3D force sensors onto the PhantomX MK-II hexapod robot platform, for research

and development.

2. Upgrade of the open source hexapod_ros locomotion software [17] to repeatedly read the

position feedback from the robot’s servo motors during locomotion. This can potentially be

contributed back to the Robot Operating System (ROS) community.

3. Implementation of a Virtual Model Controller on a low-cost, commercially available hexapod,

taking into account the robot’s dynamic behaviour. To the best of the author’s knowledge,

this has only been previously implemented on custom designed and manufactured platforms.

4. Presentation of a simple foot force distribution rule, that can be used on hexapod robots

walking with a tripod gait, without requiring complex optimization problems to be repeatedly

solved during locomotion.

5. Implementation of a direct force control method on the stance legs of a robot, to enable the

control of contact forces (for posture control) using low-cost joint actuators, with only position

control capabilities (no direct torque control). Furthermore, the method does not require

 Chapter 1: Introduction

6

complex control structures with online terrain estimation features, such as the method in [18]

which attempts to control contact forces through position-based control of the leg.

6. Development of a new force control system that achieves both direct force control (for stance

legs) and active compliance control (for swing legs), i.e. both direct and indirect force control

actions for interaction tasks, using the same general control structure and a simple switching

technique when changing between leg phases, all without the need for torque control. To the

best of the author’s knowledge, such a force control formulation has not been previously

developed or implemented on a legged robot.

7. Investigation into existing uneven terrain testing methods for legged robots, and identification

of shortcomings in these methods, along with suggestions for future studies to be conducted

in this area. Additionally, an uneven terrain setup will be created that can be used in later

studies with the hexapod platform (or other small legged robot platforms), while also being

comprehensively reported on to allow for easy replication by other researchers for their

experimental tests (although this does not constitute a standardized terrain setup nor testing

procedure for legged robots on uneven terrain).

8. Experimental testing of a fully implemented posture control system on the PhantomX MK-II

platform, to formally demonstrate the effectiveness of the methods when used on a low-cost,

commercially available legged robot platform.

Contributions 3 and 5, as well as part of 4, in the list above, are included in a paper that was published

in [19] and presented at the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS 2017), at Vancouver, Canada, in September 2017.

1.8 Dissertation Overview
Following this Introduction, Chapter 2 of the dissertation presents comprehensive background

information on legged robots, in the greater context of the field of robotics, familiarizing the reader

with important considerations and terminology germane to this study and the discussions presented

in subsequent chapters. The chapter then delves further into the matter of control of legged robots

for uneven terrain locomotion, providing a thorough review of the literature available on posture

control of quadruped and hexapod robots.

For a more detailed coverage of specific background theory required in later discussions, Chapter 3

elaborates further on topics such as hexapod robots and interaction control methods. In addition,

particular terminology and technical information, which are utilized throughout the dissertation, are

provided, including that related to transformation mathematics, virtual modelling of a hexapod, and

the meta-operating system used for implementing the control software developed in this study.

 Chapter 1: Introduction

7

Chapter 4 then proceeds to present the PhantomX MK-II hexapod robot platform available for use in

this study. An overview of the existing sensory system is given, while the chapter focusses more deeply

on the new foot force sensors incorporated onto the platform, including the main findings of testing

carried out with the sensors to validate the measurements they provide. Software utilized for

locomotion and sensor data feedback are also discussed, serving as a backdrop for later discussions

regarding the digital implementation of the designed control systems.

In Chapter 5, a simplified controllability analysis is carried out for the legged robot system, as a means

of gaining useful insights into the conditions required for controlling the robot’s body posture as

desired, as well as scenarios which could lead to a loss of controllability during operation. Additionally,

procedures for computing the robot’s posture for the purpose of posture control are described,

elaborating on the methods employed to obtain the necessary information from the data provided by

the onboard sensors. Before proceeding with the discussions on controller development, some basic

frequency domain concepts utilized in subsequent chapters are also introduced.

Thereafter, the development and implementation of the Standing Posture Control system, which only

considers the case of the robot standing on all six legs, is covered in Chapter 6. Experimental tests,

performed to assess the performance of this control system, are explained, followed by the

presentation of the experimental results. These results are analysed and discussed in detail, with

comparisons to results obtained on custom designed platforms in similar tests. The content from this

chapter was published in [19].

Having gained valuable insights from the development and testing of the Standing Posture Control

system, Chapter 7 examines the shortcomings of this controller, when walking is considered, and

introduces modifications made to the control structure to overcome these inadequacies. For the

purpose of testing the ensuing Walking Posture Control system, the development of an uneven terrain

setup is briefly described, along with the experimental test procedure employed. Once again, the

experimental results are presented and discussed, placing them in context with the literature by

comparisons to results reported for tests conducted on custom designed hexapods.

In conclusion, Chapter 8 summarizes the methods utilized in the study and reiterates the main findings

drawn from analysing the results. Suggestions and recommendations for improvements are also

presented, opening the door for future development at the close of this study.

8

Chapter 2: Literature Review

To begin with, this chapter presents a review of the field of robotics and the place of legged robotics

within the field. It also serves to introduce the reader to essential concepts and terminology pertinent

to this study, which will be used throughout this dissertation. The review is then directed more

specifically toward control considerations for legged robots walking on uneven terrain, ultimately

investigating one of the central requirements for uneven terrain mobility – posture control. In

particular, existing methods of posture control available in the literature, on quadruped and hexapod

robots, are reviewed and compared, rationalizing the motivation for this study and divulging a clear

choice for the control method to be implemented.

2.1 The Field of Robotics
Robotics is a rather wide field of engineering with various categories and areas of application.

Autonomous robotic systems are generally classified into two major categories, namely manipulation

robotics and mobile robotics [2]. Manipulators, also referred to as robot arms, are primarily used in

the domain of industrial manufacturing, where they are fixed at the shoulder to a particular position

in an assembly line and can perform repetitive tasks, such as spot welding and painting, with immense

speed and accuracy [3] (see Figure 2.1). They are also extremely precise in positioning electronic

components on circuit boards [3], particularly useful in the electronics industry where the use of

robotic arms has made it possible to realize the production of devices such as the mobile telephone

and laptop computer.

 Chapter 2: Literature Review

9

Figure 2.1: KUKA industrial robots in an automotive assembly line [20]

While manipulators are remarkably successful in these types of environments, they are fundamentally

limited by their lack of mobility [3]. They have a restricted range of motion defined by their position

and configuration and can thus only be used for very specific tasks in a specific location. Mobile robots,

on the other hand, have the ability to travel within the environment they are in, “flexibly applying

[their] talents wherever [they are] most effective” [3]. The following section delves further into the

field of mobile robotics.

2.2 Mobile Robots
Mobility opens up a whole array of functionality and applications for robots. The ability to move

around rather than carrying out tasks in one place allows mobile robots to be utilized in many different

ways. Environments which are dangerous or inhospitable for humans (both on Earth and in space), for

instance, can be accessed by mobile robots, in which case teleoperated systems are a popular choice,

allowing a human operator to remotely perform localization and cognition activities, while the robot

controls the low-level complexities associated with locomotion [3]. A fine example of this type of

mobile robot application is NASA’s Curiosity rover, sent to explore Mars and study the planet’s

habitability [21]. The self-portrait displayed in Figure 2.2 is a composite of dozens of component

images taken by the rover using the camera at the end of its onboard robotic arm.

 Chapter 2: Literature Review

10

Figure 2.2: Self-portrait of NASA's Curiosity rover on the surface of Mars [21]

In more friendly environments, robots operate in the same space as humans and sometimes even

interact with them. In these situations, their real advantage lies in their ability to function

autonomously, in addition to their exceptional mobility, in which case it is vital that they are able to

keep track of their position and navigate throughout their environment without human intervention

[3]. Tour guide robots are one such example, as depicted in Figure 2.3.

Figure 2.3: A tour guide robot at the Museum of the Great War in Meaux, France [22]

 Chapter 2: Literature Review

11

Equipped with these fantastic abilities, mobile robots have found employment in a vast assortment of

occupations (more examples of which can be found at [3]), and the many different implementations

of robots in particular applications are more diverse still.

While a multitude of examples of commercial and research based mobile robots could be provided,

this discussion is more focussed on the various methods in which mobility is achieved in robotics.

Central to this idea is the topic of locomotion mechanisms, discussed in more detail in the following

section.

2.2.1 Types of Locomotion
A robot's locomotion mechanism essentially furnishes it with the ability to move around through its

environment [3], making it mobile. As one would imagine, movement can be achieved in a large variety

of ways. Designs of mobile robots are thus wide ranging, with many locomotion mechanisms drawing

inspiration from biological creatures, who seem to achieve locomotion with such elegance and

efficiency. There are robots in existence, especially in the research environment, which can move by

walking, jumping, running, sliding, skating, swimming, flying, or even rolling [3].

Furthermore, robotic locomotion cannot be discussed without mention of the wheel. A human

invention which has not been developed in nature – at least not in the form of a fully rotating, actively

powered joint [3] – the wheel is one of the most prominent forms of locomotion today, not only in

mobile robotics.

In fact, the mechanical complexity associated with most biologically inspired locomotion mechanisms

renders them quite impractical for use outside of the research world, at least at the current stage of

technological development. Machado and Silva [2] point out that there are three fundamental

configurations of mobile robot locomotion on ground:

• Rotational devices, such as wheels and tracks;

• Legs, resembling those of animals and insects;

• Articulated structures, similar to the body of a snake.

It is important, at this stage, to mention that other forms of mobile robots do exist, including those

that fly or swim, as well as autonomous vehicles which navigate through the air or water, such as

unmanned aerial vehicles (UAVs). However, these will not be reviewed further, given that the focus

of this study is on land-based locomotion.

Articulated body robots do present certain advantages in particular situations [2], where wheeled or

legged robots would not do so well, but this type of locomotion introduces its own complexities.

 Chapter 2: Literature Review

12

Robots of this sort are not the main focus of this study either. Therefore, the following sections go

into further detail on the subjects of wheeled and legged robots.

2.2.2 Wheeled Robots
It is easy to see why the use of wheels for vehicles and robots has been so prolific in civilization up to

this point when one considers the mechanical simplicity with which wheels can be implemented, along

with the exceptional efficiencies [3] and speed [2] which can be achieved with them.

However, in order to attain these high efficiencies and be effective, wheeled vehicles require

predominantly regular and, in most cases, prepared surfaces, such as tarred or paved [2]. Flat and

hard surfaces, such as railway tracks, minimize rolling friction and can be one or two orders of

magnitude more efficient than other forms of locomotion [3], as depicted in Figure 2.4. The softer and

less uniform the terrain though, the greater the rolling friction, leading to a rapid accumulation of

inefficiencies. This is clearly represented in Figure 2.4 by the high power consumption required by a

tyre on soft ground.

Figure 2.4: Specific power versus attainable speed for various methods of locomotion [3]

Another difficulty experienced by wheeled vehicles is the inability to traverse significantly sized

obstacles and large surface irregularities [2]. All-terrain vehicles and tracked vehicles, such as tanks,

present an alternative with increased mobility in irregular terrain. However, they are also only able to

 Chapter 2: Literature Review

13

surpass relatively small obstacles and still succumb to many of the challenges faced by conventional

wheels, while consuming much larger amounts of energy as a result of the increased surface contact

and rolling friction. In fact, Machado and Silva [2] found that research in 1967 estimated that more

than 50% of the land surface of the Earth is inaccessible to traditional vehicles with wheels and tracks.

It should also be noted that most wheeled vehicles require suspension systems for the wheels to

maintain ground contact in the presence of terrain irregularities [3].

Why, then, are wheels utilized for locomotion in the majority of applications of ground-based vehicles

and mobile robots? The answer to this question lies in the fact that the civilized world and, more

specifically, the human environment in which most of these robots are designed to function consist

largely of engineered and relatively smooth surfaces [3]. Some of them are even specifically designed

for wheeled locomotion (asphalt roads, for example). As alluded to above, the wheel is yet to be

surpassed, in terms of performance and efficiency, as a locomotion method in such environments.

Moreover, balance is generally not a significant problem with wheeled vehicles, as can often be the

case with legged robots, since they are almost always designed to be statically stable (see Section

2.3.4) [3].

2.3 Legged Robots
It is on uneven terrain that legged robots really come into their own and display their true potential.

In fact, Raibert [23] identified their increased mobility in rough terrain as one of the two most

significant reasons for studying legged machines, the other being to improve on the understanding of

human and animal locomotion.

The advantages exhibited by legged robots are wide-ranging. These will be elaborated below, followed

by a discussion of some of their disadvantages.

2.3.1 Advantages of Legged Robots
Almost every source in the literature pertaining to research on legged robots mentions, even if at least

briefly, the advantages they provide on uneven terrain. Siegwart and Nourbakhsh [3] concisely

describe these key advantages as being increased adaptability and manoeuvrability on rough terrain.

Their superior mobility in natural terrains stems from the use of a discrete number of footholds or

ground-contact points during locomotion, as opposed to requiring a continuous support surface, as is

the case with wheeled and tracked vehicles [2], [3], [23], [24]. These ground-contact points can be

selected and established in accordance with terrain conditions, while surface irregularities are

adapted to by varying individual leg configurations [2].

 Chapter 2: Literature Review

14

Raibert [23] explains that legged systems can select their footholds in the terrain to be the best in

their vicinity, while wheels are obliged to traverse the worst terrain. He illustrates this using a step

ladder as an example, as a legged system can ascend using the rungs as footholds, while the ascent of

a wheeled system is hindered by the spaces between the rungs. Siegwart and Nourbakhsh [3] allude

to a similar point, stating that, as long as the robot maintains adequate ground clearance, the quality

of the ground between the set of point contacts does not affect mobility. Raibert [23] further suggests

that the individual footholds used by a legged robot can be selected with consideration for stability

and traction.

In addition to providing improved mobility on uneven terrain, discrete footholds can also improve

energy consumption on softer surfaces, such as sandy soil, as they deform the terrain less than wheels

or tracks, consequently requiring less energy to get out of the depressions [2] (the reader is reminded

of the elevated energy consumption of wheeled systems on soft ground, depicted in Figure 2.4 above).

Moreover, [2] points out that the contact area between the foot and the ground can be constructed

in a manner which reduces the ground support pressure.

Along with stepping over obstacles in rough terrain, legged robots can also cross holes or chasms,

including those larger than their own body size, provided that their legs can achieve a reach greater

than the width of the hole [3]. The reader will likely recognize that this is not usually possible with

wheeled vehicles, which are often unable to cross significantly sized holes without falling or sinking

into them. Even if only one section of the vehicle falls into a rather deep depression in the terrain, one

or more of the wheels on the other side of the vehicle could lose contact with the ground, preventing

sufficient traction to navigate back out of the chasm. Exhibiting mobility over natural obstacles or

ditches, as well as man-made obstructions such as stairs, means that legged robots are able to operate

in both structured and unstructured environments [24].

It was mentioned earlier that wheeled vehicles require suspension systems to traverse terrain

irregularities. Legs, on the other hand, can provide an active suspension for the vehicle, decoupling

the path of the body from the paths of the individual feet, as well as varying body height to dampen

the effects of terrain irregularities on the body, thus allowing the payload to travel smoothly in spite

of prominent terrain variations [2], [23]. Raibert [23] also asserts that, “in principle, the performance

of legged vehicles can, to a great extent, be independent of the detailed roughness of the ground.”

Gonzalez de Santos et al. [24] go further to explain that the ability of legged robots to keep their bodies

levelled and maintain static stability while negotiating uneven terrain is essential for carrying

equipment and sensors which would need to remain levelled whilst taking measurements.

 Chapter 2: Literature Review

15

Along with keeping onboard equipment and sensors levelled, the robot can impart additional

translation and rotation motions to its body without changing its footholds, consequently providing

additional degrees of freedom (DOF) for the onboard equipment when necessary [24]. For instance,

when immobilized, the robot body can be actuated to act as an active support base for a manipulator

arm or tool mounted onto it [2].

Alternatively, a legged robot could also utilize one (or more) of its own legs for manipulation tasks, as

can be observed in many animals [2]. Many legged robots have multiple degrees of freedom in each

leg, allowing them to manipulate objects in the environment with incredible dexterity [3].

Another benefit of having multiple degrees of freedom in the leg joints is that legged robots can

change their direction of motion without any slippage [2], equipping them with inherent omni-

directionality [24]. Their legs could also be used to hug themselves to the terrain or objects that they

move on, as in the case, for example, of improving their balance when moving along the outside

surface of pipes [2].

Having many legs also introduces the potential for failure tolerance. Unlike wheeled locomotion, in

which the failure of one wheel usually results in a critical loss of mobility, legged robots may possess

sufficient legs for redundancy, thus allowing them to maintain static balance and continue locomotion

in the event of one or more of the legs incurring severe damage [2]. This is particularly true for robots

with a large number of legs, such as six-legged [25] or eight-legged walking robots.

The topic of failure tolerance has started receiving more attention in robotics research relatively

recently [2]. A fascinating demonstration of such research is presented by Cully et al. [26], who utilize

learning algorithms to bestow robots with the ability to adapt like animals. Their research was carried

out on both a robotic arm and a six-legged walking robot. Employing an approach which they refer to

as “Intelligent Trial and Error,” their robots are able to conduct experiments using estimates of

“learnt” behaviours and discover ways in which to compensate for damage (in the form of damaged

legs or joints, for example). In many cases this method results in the robot realizing a behaviour with

superior performance and efficiency compared to the default behaviour, in both damaged and

undamaged conditions.

2.3.2 Disadvantages of Legged Robots
Despite their incredible array of abilities and advantages, legged robots are not infallible. The main

disadvantages they are faced with include the need for complex control algorithms [2], as well as

issues related to power consumption and mechanical complexity [3].

 Chapter 2: Literature Review

16

The point on the complexity of the control algorithms involved in achieving stable locomotion with

skilful manoeuvrability is of vital importance and can be clearly observed in much of the literature

pertaining to legged robots, where multi-layered and interlinked control schemes and algorithms are

typically utilized. Just a few of the tasks addressed by the control systems of many research robots

include terrain modelling, path planning, foothold selection, gait generation, feet trajectory planning,

joint position control, posture and attitude control, stabilization, and more [8], [9], [25], [27], [28].

As indicated in [3], mechanical complexity arises because, in order to achieve the high manoeuvrability

which legged robots are famous for, they require their legs to have sufficient degrees of freedom to

impart forces in several different directions. These legs ought to also have the capability of supporting

some of the total weight of the robot, as well as being able to lift and lower the robot in many cases.

Legs with multiple degrees of freedom usually require many actuators, and the mechanisms used in

leg construction can be relatively heavy, both of which contribute to large energy consumption to

operate satisfactorily [2]. Machado and Silva [2] also identified another notable limitation of legged

robots as operating at comparatively lower speeds than other locomotion mechanisms.

2.3.3 Types of Legged Robots
Legged robots require a minimum of one leg to achieve locomotion. This result may be slightly

surprising for the reader; however, one-legged robots have been developed and studied, with a

certain amount of success. Siegwart and Nourbakhsh [3] highlight that having only one leg reduces

the mass of the robot, eliminates the need for multi-leg coordination, and results in only one point

contact with the ground, giving it the potential for use on the roughest terrain.

It was already mentioned that legged robots can cross gaps as large as their reach. However, Siegwart

and Nourbakhsh [3] profess that one-legged robots hold an advantage over multi-legged robots in this

respect, as they are able to dynamically cross gaps larger than their own stride “by taking a running

start.” This distinction has perhaps become less pronounced in recent times with the advent of

multi-legged robots which can run, bound, and jump much more successfully, and at higher speeds,

than before. A great example of this is Boston Dynamics' WildCat robot, which can gallop outdoors,

untethered, at speeds up to 32 km/h [29].

Although one-legged robots pose certain benefits, balance remains the biggest challenge [3], as one

would expect. Raibert [23] and his group at the Carnegie-Mellon University (CMU) mainly used their

one-legged hopping machines, such as the one shown in Figure 2.5, for research purposes. The aim of

their research was to identify the fundamental concerns to be addressed when controlling legged

robots, develop primary control algorithms, and study running.

 Chapter 2: Literature Review

17

Figure 2.5: One-legged, three-dimensional hopping machine developed at CMU [23]

Two-legged robots, also referred to as bipeds, are much more common. They are predominantly

constructed with a humanoid structure [2], [3], and their anthropomorphic form is ideal for

researching human-robot interaction [3]. Bipeds have been developed which are able to run, jump,

climb up and down stairs, and even perform acrobatic manoeuvres like somersaults [3]. One of the

most well-known bipedal, humanoid robots is Honda's ASIMO (Advanced Step In Innovative Mobility)

[30], shown in Figure 2.6. Similar to one-legged robots, balance and stability are the main concerns

regarding bipeds, as they continuously require active control to prevent them from falling over [2],

[3].

Figure 2.6: Honda's ASIMO humanoid robot climbing down stairs [30]

 Chapter 2: Literature Review

18

Robots with three legs or more are referred to as multi-legged robots [2]. Since three-legged robots,

or tripods, are not very commonly used, they will not be discussed further. Quadruped robots, on the

other hand, which are rather popular, have four legs and are usually of mammalian form [3]. Even

though they are passively stable, maintaining stability during walking is still tricky as the gait is required

to actively shift the centre of mass (COM) during locomotion [3]. BigDog by Boston Dynamics is one of

the most well-known quadruped robots. Its capabilities demonstrate the practical viability of legged

robots, proving that they are not limited to the research world [1]. Figure 2.7 demonstrates BigDog

operating in the “real world.”

Figure 2.7: Boston Dynamics' BigDog quadruped climbing a snow-covered hill [1]

Another popular variety of legged robot is the six-legged, or hexapod, robot. Hexapod robot

construction is often inspired by insects, having legs with three degrees of freedom [3]. Renowned for

their static stability, hexapods reduce control complexity slightly and, as a result, can be readily built

and used by hobbyists [3]. A prevalent hexapod platform in hobby robotics, the PhantomX MK-II, is

displayed in Figure 2.8.

Figure 2.8: PhantomX MK-II hexapod robot, popular with hobbyists [15]

 Chapter 2: Literature Review

19

Ding et al. [5] state that hexapods present the greatest efficiency for statically stable walking, and

Gonzalez de Santos et al. [24] found that, while statically stable legged robots are inherently slower

than those with dynamic stability, hexapods are able to achieve higher speeds than quadrupeds when

walking with statically stable gaits. Furthermore, Preumont et al. [31] discovered that statically stable

robots with more than six legs pose no advantage with regards to walking speed.

Eight-legged robots also exist [2], but are not as common. An example is the SCORPION robot shown

in Figure 2.9, which was developed for space robotics explorations and is being evaluated by NASA for

extraterrestrial exploration [32].

In addition, application specific legged robots, such as pipe inspection and climbing robots [2], as well

as wheel-leg hybrid robots have been developed [2], [3], but these will not be discussed further here.

Figure 2.9: SCORPION eight-legged robot designed for space robotics applications [32]

2.3.4 Gaits and Stability
Legged robot locomotion is achieved by coordinating the leg motions, in a sequence of lift and release

events for each leg, referred to as a gait [3]. The determination of the best sequence of lift-off and

placement of the feet on the ground is referred to as gait, or locomotion, planning and is, according

to [5], the most frequently studied problem in the field of legged robotics. A legged robot's leg count

determines the amount of gaits it can possibly realize, with a one-legged robot technically not using a

gait as it does not have multiple legs which require coordination [3].

 Chapter 2: Literature Review

20

As mentioned earlier, stability is usually more of a concern with legged robots than for those with

wheels, as they have a propensity for falling over during locomotion and also require active balancing

if they have too few legs. Accordingly, robotic locomotion is categorized as being either statically

stable locomotion or dynamic locomotion [5].

At this point it is enlightening to present a formal definition of the term “statically stable.” During

statically stable locomotion the moving body is required to be stable at all times, thus the vertical

projection (along the gravitation vector) of the centre of mass must always remain within the interior

of the supporting polygon created by the supporting feet (i.e. the feet in contact with the ground) [4],

[5], [27]. When this condition is not met, the robot is said to walk with a dynamically balanced gait [4].

Siegwart and Nourbakhsh [3] explain that a statically stable pose can be achieved with three legs, as

long as the COM remains within the ground contact tripod. They illustrate this with the example of a

three-legged stool, which maintains balance without requiring motion or active control. If the stool is

gently pushed, the small deviation from stability is passively corrected back to the stable pose upon

removal of the disturbing force. During walking, however, a statically stable gait requires that, at the

very least, a tripod of supporting legs is constantly in contact with the ground [3], implying that a robot

would require more than three legs to achieve statically stable locomotion.

A quantitative measure of the stability of a walking robot at any given time can be evaluated in the

form of a stability margin. The stability margin is defined as the minimum distance from the vertical

projection of the COM onto the ground to the edges of the polygon of support created by the ground

contact feet [33].

Examples of static gaits include walking and crawling, while dynamic gaits include running, hopping,

trotting, and galloping [5], [27]. According to [27], dynamic gaits allow for faster locomotion with the

drawback of being far more demanding on the balancing task. Thus, for highly irregular terrain having

significantly sized obstacles, statically stable gaits are preferable, especially from a control perspective.

The extent of the control demand related to dynamically balanced locomotion is brought to light in

[3] with an intriguing analogy to organisms found in nature with various successful leg configurations.

Creatures with six or more legs, such as insects and arachnids, are able to walk immediately from the

time of birth, as balance is a relatively simple problem for them (having inherent static stability). Larger

animals with four legs, such as mammals and reptiles, generally do not walk with a statically balanced

gait but are able to stand easily with a stable pose on their four legs. Such animals usually spend a few

minutes after birth learning how to stand, after which it takes them yet another few minutes to learn

how to walk without falling over [3]. Some mammals have perfected the ability to walk on two legs,

 Chapter 2: Literature Review

21

and in some cases, such as humans, balance has evolved to the stage where jumping on one leg is

even possible. Since standing on two legs is not a statically stable pose, it takes infants several months

to learn and develop the ability to stand and walk without falling and even more time to be able to

confidently run, jump, and stand on a single leg [3].

An alternative to using a pre-planned and fixed gait is to plan the footholds, leg sequences, and body

motions in a flexible manner, adapting to the terrain conditions and robot's state as it walks. This is

referred to as a free gait and is especially beneficial when walking on highly irregular terrain [5].

Adaptive foothold, body path, and leg trajectory planners are implemented on a variety of legged

robots found in the literature, e.g. [27], [28], [34].

Gaits are characterized in terms of the concepts of cycle time, 𝑇, duty factor, 𝛽, and relative phase

[25]. The cycle time is essentially the time taken to complete a single cycle of the gait and is broken

down into the stance phases, 𝑇𝑠𝑡, and swing phases, 𝑇𝑠𝑤, of the various legs [25].

The duty factor for a leg is defined as the ratio (thus 𝛽 ∈ [0,1]) between the duration of the leg stance

phase, or support period, and the cycle time [25], [33]:

 𝛽 =
𝑇𝑠𝑡

𝑇𝑠𝑡 + 𝑇𝑠𝑤
. (2.1)

A gait can be distinguished as a walking or running gait based on its duty factor, as 𝛽 ≥ 0.5 for walking

and 𝛽 < 0.5 for running gaits [33].

Relative phase is a similar concept to duty factor; however, the relative phase of a leg 𝑖 is defined as

the fraction of the cycle time elapsed from the instant at which a reference foot is set down to the

instant that foot 𝑖 sets down [25]. The right rear limb of the robot is usually designated as the reference

leg, with the setting down of this foot being considered as the start of a stride [25].

2.3.5 Legged Robot Sensory Systems
An important topic worth considering when discussing legged robots, or any form of robot or

autonomous system for that matter, is that of sensors and sensory systems. According to [3], one of

the most significant tasks which an autonomous system is required to perform is to acquire

information about the environment around it. This is accomplished by extracting meaningful

information from measurements taken using a variety of sensors.

2.3.5.1 Types of Sensors

Sensors are usually classified based on two functional categories [3]:

• Proprioceptive or exteroceptive sensors

• Active or passive sensors

 Chapter 2: Literature Review

22

Siegwart and Nourbakhsh [3] explain that proprioceptive sensors measure aspects which are internal

to the robotic system, such as motor speed, wheel load, joint angles, and battery voltage, to name a

few. Exteroceptive sensors, on the other hand, are used to obtain information from the surroundings

of the robot, in order to identify environmental features. Examples of exteroceptive sensory

measurements include measurements of distance, light intensity, and sound amplitude.

Proprioceptive and exteroceptive sensors are often used in combination on mobile robots.

As described in [3], passive sensors rely on measurements of ambient energy entering into the sensor

from the environment, as in the case of temperature probes, microphones, and cameras. Active

sensors, however, emit energy into the environment and make measurements of the reaction of the

environment. Their interactions with the environment are thus more controlled than those of passive

sensors, usually resulting in superior performance. The downsides of this method of measurement

include the risk of the emitted energy potentially having an effect on the very characteristics

attempted to be measured by the sensor, as well as the possibility of interference with other signals.

Some examples of active sensors are ultrasonic sensors and laser rangefinders.

Some of the sensors commonly used on legged robots are described in Table 2.1, along with examples

of robots using these sensors.

Table 2.1: Sensors commonly used on legged robots, including examples of robots using them

Sensor Type Description
Proprioceptive/
Exteroceptive

Joint-position
sensors

Measure angles of the joints in the legs.

Robot examples:

• SILO6 – 2000 pulse/turn encoder [24]

• Warp1 – joint and motor encoders [4]

• LittleDog [34]

Proprioceptive

Heading
sensors

Determine direction in which robot is moving.
Examples of sensors used to measure heading include
gyroscopes, inclinometers, and compasses, the two most
common types of compasses being Hall effect and flux
gate compasses [3].

Robot example:

• SILO6 – electromagnetic compass [24]

Can be
proprioceptive (such
as gyroscopes and
inclinometers) or
exteroceptive (such
as compasses) [3]

 Chapter 2: Literature Review

23

Inertial
Measurement
Unit (IMU)

Consists of three accelerometers aligned with the axes of
the local coordinate frame, and three gyroscopes
measuring angular velocities about each axis [35].
Generally used to determine robot pose, or more
specifically body orientation in legged robots.

Robot examples:

• Messor [35]

• LAURON V [9]

• Warp1 [4]

• StarlETH [6]

• LittleDog [27], [34]

Proprioceptive

Foot
force/load
sensors

Measure force/load exerted on each foot; sometimes only
contact sensors are used to determine whether feet are in
contact with ground [4].

Robot examples:

• Warp1 – contact/distance sensors and load
sensors [4]

• Messor – resistive sensors (resistance inversely
proportional to force) [35]

• LAURON IV – Three-dimensional (3D) foot force
and spring force sensors [36]

• LittleDog – 3-axis force sensors [34]

• StarlETH [6]

Proprioceptive

Joint torque
sensors

Measure torque on leg joints.
In many cases, measurements of electrical current in joint
actuators are used to estimate joint torques.

Robot examples:

• Warp1 [4]

• Messor [35]

• LAURON series of hexapods [9], [36]

• Weaver [13]

Proprioceptive

Cameras

Obtain images of robot’s surroundings and environment.
Used for tasks such as visual odometry and Simultaneous
Localization and Mapping (SLAM) [35].

Robot examples:

• Messor – video camera [35]

• BigDog – stereo cameras [1]

• LAURON V – stereo cameras and infrared (IR)
camera [9]

Exteroceptive

 Chapter 2: Literature Review

24

Laser
rangefinder
(LRF) and
LIDAR1

Measures distance using a laser beam. LIDAR generally
uses multiple laser scanning to obtain three-dimensional
range information [37].

Robot example:

• Messor – uses LRF for map building [35]

• LAURON V – rotating LIDAR [9]

• BigDog [1]

Exteroceptive

Structured
light system

A vertical laser stripe, usually projected onto stairs to
measure stair height and depth.

Robot example:

• Messor [35]

Exteroceptive

Global
positioning
system (GPS)

Outdoor beacon system using a collection of satellites to
determine global position [3].

Robot examples:

• SILO6 [24]

• LAURON IV [36]

• BigDog [1]

Exteroceptive

The sensors described above are a mere glimpse into the topic of sensory systems and perception.

Especially when considering a legged robot which is required to function robustly outside the

laboratory environment, on uneven terrain and with autonomy, the appropriate and sufficient use of

sensors is crucial. BigDog, for example, boasts approximately fifty sensors on board, ranging from an

IMU and joint-position sensors to sensors monitoring homeostasis, such as hydraulic pressure and

temperature, engine speed and temperature, and many others [1].

However, before outfitting a robot with a huge number of sensors, of every variety imaginable, it is

vital to bear in mind a few key aspects of different sensor types, particularly pertaining to the intended

application of the robot in question. This is especially true when considering proprioceptive and

exteroceptive sensor types, which are further elaborated in the following section.

2.3.5.2 Proprioceptive versus Exteroceptive Sensors

When using exteroceptive sensors the robot's surroundings are perceived from the viewpoint of the

robot's local reference frame [3]. Since walking robots are mobile machines, their motion and

continually changing position can have a notable effect on the overall behaviour of the exteroceptive

sensors.

1 The term LIDAR, also written as LiDAR, is sometimes taken to be an acronym of “Light Detection and Ranging”
but can also be considered a portmanteau of the words “light” and “radar” [37].

 Chapter 2: Literature Review

25

Furthermore, exteroceptive sensors are vulnerable to erroneous performance or a lack of functionality

depending on environmental conditions [3]. An example which illustrates this clearly is that of GPS, in

which the receiver is required to read data, in a line-of-sight manner, from four satellites

simultaneously. This is unlikely to be possible in locations such as indoors, in confined spaces like city

blocks with a large number of tall buildings and even in dense forests, causing the GPS sensor to not

function effectively in such areas. The specific orbital paths of the various satellites which constitute

the GPS system also result in the coverage in different parts of the Earth not being geometrically

identical. Compasses are another example, as the magnetic fields of man-made structures and other

magnetic objects in their vicinity can affect these sensors’ performance. Many other examples may

come to the reader's mind, such as cameras which would not be very useful in conditions with low or

no light, or laser and infrared which would not effectively detect objects such as glass.

It is also easy to conceive that sensors which rely on data being sent out and received from external

sources could be susceptible to hacking, jamming, or being overridden by external, and possibly

malicious, entities wishing to obtain information about the robot's state and location, as well as

preventing it from carrying out its intended mission. This issue is of grave concern especially in defence

and security-based applications of mobile robots, as in the case of a hexapod robot being developed

by the CSIR for military operations.

Needless to say, proprioceptive sensors are not plagued by these problems as they are not dependent

on signals coming in from sources external to the robot, or on the conditions in the robot's

surroundings and environment. Rotella et al. [38] go as far as declaring that exteroceptive sensors,

such as cameras or GPS units, are unfit for use in unstructured environments on their own, asserting

that the activities of control and localization should be accomplished through proprioceptive sensing.

Naturally, these sensors do present their own problems. While proprioceptive sensors are extremely

accurate at measuring the characteristics which they are primarily designed to measure [3], using the

data obtained from them to estimate other factors can quickly reduce their accuracy and even

effectiveness. For instance, Gonzalez de Santos et al. [24] indicate that using even extremely accurate

joint-position sensors for the purposes of odometry and dead-reckoning builds up cumulative position

errors, or drift, which increases with the distance walked. This is mainly attributed to flexion in the leg

links and joints, as well as foot slippage. It is intuitive to reason that estimating characteristics such as

position, rather than measuring them against a fixed reference point (with exteroceptive sensors such

as land-based beacon systems [3]), would give rise to inaccuracies. Many research groups counteract

this by using data from multiple sensors or combining both proprioceptive and exteroceptive sensors,

obtaining the “best of both worlds,” so to speak. In the case of SILO6, Gonzalez de Santos et al. [24]

 Chapter 2: Literature Review

26

fuse data from the joint-position sensors with data from heading sensors, such as a compass, in order

to improve the accuracy of their measurements, along with combining this information with GPS data

when satellite reception is available. Another example is that of fusing foot force sensor data with

joint current data in order to improve the accuracy of limb load measurements, a technique used by

robots such as Messor [35].

It is thus clear that neither proprioceptive nor exteroceptive sensors, on their own, are the

quintessential solution, or “silver bullet,” for legged robot sensory systems. These two categories

present their own advantages and disadvantages, with each one being necessary for a number of

different applications. However, for the task of posture control on uneven terrain, it seems more

appropriate to rely on a proprioceptive sensory system, allowing the robot to stabilize itself and

navigate the terrain regardless of environmental conditions and reception from external sources. This

is especially true when considering that the application area focussed on in this study involves

operations in the defence domain.

2.3.6 Applications of Legged Robots
Legged robot applications are exceedingly wide-ranging. It was pointed out earlier that one of the

most common appeals of using legged robots lies in their ability to replace humans in environments

which are difficult for humans to access or would endanger their lives [2]. This is not the only use for

legged robots, however. Machado and Silva [2] have put together a fairly comprehensive list of legged

robot applications from a multitude of sources in their review of the available literature (up to the

point of writing). The following list of applications is chiefly compiled using the work of [2], with

additional citations indicated for applications also mentioned in various other sources:

• Exploration of remote locations, such as in:

o Volcanoes,

o Space [28], [32],

o The sea bottom [39];

• Working in hostile or dangerous environments, such as:

o Places with high radiation levels, or chemical or biological pollution, such as nuclear

power plants [28],

o Mining prospecting and mine exploration,

o Demining and recovery of unexploded munitions [7], [8], [24],

o Disaster areas [28],

o Search and rescue missions [28],

o Military operations [1];

 Chapter 2: Literature Review

27

• Excavation or construction works;

• Forestry [3];

• Assisting humans with payload transportation operations;

• Medical applications, such as endoscopies or a substitute for wheelchairs;

• Entertainment [3] and home use (predicted to be utilized for domestic tasks or as simple

companions);

• Education;

• Hobby use [3].

While this list is comprehensive, it is not exhaustive, and it is also likely that even more applications

will be discovered as research into legged robots progresses, making the technology increasingly

feasible and capable.

2.4 Control Considerations for Uneven Terrain Walking
It has already been stated that stability becomes an important concern when dealing with legged

robots, especially those with fewer legs, and that the control requirements for walking, particularly

on rough terrain, are quite intensive. As a natural consequence, legged robot control systems have

been in development since the early days of research into legged robotics.

In the 1980s Raibert [23] and his team at CMU’s Leg Laboratory began experimenting with control

algorithms for simple legged robots, in an attempt to determine the fundamental components which

would be required in order to effectively control these robots. They worked on an assortment of one-,

two-, and four-legged machines and accomplished a wide range of manoeuvres including hopping,

running (with trotting, pacing, and bounding gaits), climbing simple stairs, jumping over obstacles, and

even simple gymnastic manoeuvres. They found that they were able to control these dynamic motions

using a relatively simple control approach, breaking down the behaviour into three primary activities:

• Supporting the body with vertical bouncing or hopping motions;

• Controlling the posture, or attitude, of the body through torques at the hip during the stance

phase of each leg; and

• Placing the feet in strategic locations to maintain balance and achieve the desired velocity.

Raibert et al. [1] refer to these three activities as the “essential ingredients” of the control systems.

However, they acknowledged that the initial research was limited, in view of the fact that these robots

still lacked onboard power and control algorithms which provided locomotion and stability on rough

terrain. These obstacles would need to be overcome in order to build practical legged robots.

 Chapter 2: Literature Review

28

This is where the research described in [1], on the BigDog quadruped robot, comes in. BigDog is an

outstanding demonstration of the versatility and practical applicability of legged robots. It is a

self-contained robot with onboard power and sensors, which allow it to travel over a multitude of

terrain types, including mud and snow. It is able to stand, squat, walk (with crawling, trotting, running,

bounding, and galloping gaits), jump, carry large loads, and even travel on inclines with various

surfaces, including rutted and rocky trails.

The control system coordinates the leg and body kinematics, along with the ground reaction forces,

while responding to basic postural commands [1]. Load carrying ability is optimized by distributing the

load among the legs. Terrain changes are sensed and accordingly adapted to by posture control. The

posture control algorithm essentially controls the body position and attitude by utilizing the leg

kinematics and ground reaction forces, implementing computed leg compliance on terrain

irregularities. The body pitch and roll angles, along with the height, relative to the ground can thus be

controlled, resulting in adaptation to local terrain variations without the need for higher-level terrain

sensing. Figure 2.10 illustrates an extremely simplified, high-level block diagram of the main

components which make up the control structure of BigDog.

Figure 2.10: Simplified, high-level block diagram of BigDog's control structure [1]

In addition, footfall placement is adjusted to compensate for the orientation of the body and the

ground plane relative to gravity [1]. Accordingly, the control system makes the robot lean forward on

inclines, backward on declines, and sideways while walking along a contour line. Shallow to moderate

inclines can be handled by merely making minor postural adjustments, while inclines steeper than 45°

also require that the walking gait pattern be modified and smaller steps are taken.

 Chapter 2: Literature Review

29

Many similarities can be observed in the control systems of other robots in the literature. For example,

the quadruped StarlETH (see Figure 2.11), used in the Autonomous Systems Lab of the Institute of

Robotics and Intelligent Systems at ETH Zurich, requires that its body roll, pitch, and height are kept

constant in most of its gaits [6]. Hutter et al. [6] point out the following as the key elements of their

control system, in order of decreasing priority:

1. Maintaining support and stability;

2. Controlling the height of the robot body;

3. Controlling the pitch and roll angles of the robot body;

4. Controlling the main body turning rate; and

5. Controlling the main body velocity.

Figure 2.11: StarlETH quadruped robot developed by ETH Zurich [6]

Points 2 and 3 essentially constitute posture control. The importance of posture, or attitude, control

is exceptionally evident in the above discussion, especially for locomotion on uneven terrain. This is

not confined to robots which primarily execute dynamic motions and balance dynamically. Even on

hexapod robots, which predominantly walk with statically stable gaits, posture control is deemed by

many researchers to be imperative for locomotion on rough terrain.

 Chapter 2: Literature Review

30

Arena et al. [40] insist that the issue of attitude control is fundamental for hexapods during locomotion

on uneven terrain. Moreover, the impressive manoeuvrability displayed by multi-legged robots was

realized by Roennau et al. [9] to be a result of kinematics that allows high flexibility and continuous

terrain adaptation. They accomplish terrain adaptation on their hexapod robot, LAURON V, by means

of a reactive control system which adjusts body position and posture. Furthermore, Zhang et al. [10]

argue that posture adjustment can be effectively used to achieve a larger stability margin, a necessity

for broad terrain adaptation to unstructured terrain which, according to them, is “the purpose of

research on hexapod robot[s].”

There are also more specific applications of hexapod robots in which posture control is vital. Demining

work is one such application. Uchida and Shimoi [7] identified that for demining it is important that

each leg is placed precisely to avoid mines and that a stable attitude is maintained. In view of the fact

that the terrains of the minefields which they considered were uneven, Uchida and Shimoi [7]

indicated that active attitude control would indeed be required to maintain a stable attitude. Irawan

and Nonami [8], whose work involved a later iteration of the hexapod robot used in [7] for demining

tasks, also identified that their robot, COMET-IV, is required to maintain a horizontally stable attitude,

especially on uneven ground with soft surfaces.

Another illustrative example is the Crabster200 (CR200) six-legged, undersea, remotely operated

vehicle (ROV), which can overcome high tidal currents by being operated to adjusted its body posture

against the current direction [39].

It is apparent from this analysis that posture, or attitude, control is unquestionably an essential

requirement for the locomotion of multi-legged robots, of all types, on uneven terrain. Therefore, the

following section focusses specifically on posture control work and approaches carried out in the

literature.

2.5 Previous Work on Posture Control for Hexapod and Quadruped

Robots
Since a hexapod robot is being used in this study, the focus from this point on will predominantly be

on hexapods, while also considering work done on quadrupeds, owing to the fact very similar control

techniques are applied to these types of robots. Given that bipedal robots continuously require active

stabilization and control, as mentioned previously, and generally have a humanoid structure, they

utilize fairly different walking motions and control strategies compared to quadrupeds and hexapods.

As a result, bipeds are not investigated further in the sections that follow.

 Chapter 2: Literature Review

31

2.5.1 Virtual Model Control Strategies
Research into posture control of legged robots has been ongoing for some time. One of the earlier

posture controllers developed for a hexapod was based upon the Virtual Model Control (VMC) scheme

[12]. Nelson and Quinn [12] implemented the control method on a pneumatically actuated,

cockroach-like robot, named Robot III, using an optimization approach to solve the force distribution

problem. The resulting algorithm was able to control the posture of the robot in conformance with

commanded body postures and orientations, as well as reject disturbances such as the case of the

robot being pushed sideward. Nelson and Quinn [12] claim that the algorithm could easily be modified

to be used during locomotion.

A few years earlier, Yoneda et al. [41] implemented a variation of Sky-Hook Suspension Control (SHSC),

which is traditionally used for wheeled vehicles, on the TITAN VI quadruped robot. The method is

based on equilibrium equations involving the ground reaction forces of the robot’s support legs and

is, in fact, very similar to VMC. They also included a passive suspension element, made of elastic

material and having a stroke of 30 mm, to each foot of the robot, in order to absorb the impact when

the foot touches down, thus reducing the disturbance induced on the robot body. As a result, posture

was able to be controlled quite well, with dynamic walking on uneven terrain conditions exhibiting

maximum pitch and roll angles of the body of slightly less than 3°. It should be noted, however, that

the uneven terrain used was simply a 40 mm thick plate, which is quite small compared to the size of

TITAN VI, a 195 kg robot with leg lengths of up to 1.289 m [41].

Taking inspiration from this work, Uchida and Shimoi [7] also utilized SHSC on a simulation of the

COMET-I mine detecting hexapod robot (mentioned earlier), for the cases of both even and uneven

terrain, with uneven terrain being represented by a 10 mm high step-obstacle in the robot’s path of

motion. Based upon their simulated results, they conclude that the proposed control scheme would

be useful for uneven terrain locomotion [7].

This idea of basing the posture control on a virtual model of the body and ground reaction forces has

been taken forward through later iterations of COMET. A newer version of the large, hydraulically

driven hexapod, COMET-IV, is used by Irawan and Nonami [8] for walking on uneven and extremely

soft terrain, as can be seen in Figure 2.12. Their attitude control method attempts to optimize the

virtual forces from the moment of inertia of the robot’s body with linear quadratic regulator (LQR)

control [8].

 Chapter 2: Literature Review

32

Figure 2.12: COMET-IV hexapod on uneven and soft terrain [8]

Qingjiu and Fukuhara [42] went a step further with the idea of employing a virtual suspension model

for a robot, utilizing the method to control both the posture and vibrations of the body of a hexapod

robot by means of sliding mode control. They performed experiments with the control algorithm on a

rather large, crab type, six-legged robot and were able to realize both a stable posture and decreased

vibrations with three kinds of gaits.

Yet another variation of virtual model based control was implemented in the form of a conventional

proportional-integral-derivative (PID) controller on the Warp1 quadruped robot [4]. Ridderström and

Ingvast [4] explored the case of the robot standing on all four legs and were thus able to use a simple

distribution rule for the vertical leg forces, rather than an optimization algorithm. The resulting

controller was able to track step changes in the posture reference values, as well as regulate the body

posture while the robot stood on a balance board which was manually tilted back and forth, as

depicted in Figure 2.13.

Figure 2.13: Warp1 quadruped regulating its posture on a balance board [4]

 Chapter 2: Literature Review

33

Virtual Model Control has remained a popular posture control method even in more recent times,

owing to its simplicity and effectiveness. One of the well-known legged robot platforms using the VMC

technique is the StarlETH quadruped from ETH Zurich [6]. They distribute the required foot forces by

optimization and use joint torque controllers to achieve the desired forces. Incorporating this posture

control system into their greater, hierarchical locomotion control structure allows StarlETH to walk

with a variety of dynamic gaits and carry out dynamic manoeuvres on an assortment of terrain

conditions, as in the experiment shown in Figure 2.14.

Figure 2.14: StarlETH quadruped trotting over terrain with loose obstacles [6]

Zhang et al. [10] also implemented VMC, with optimization methods for foot force distribution, on

their “bionic” hexapod robot, HITCR-II. They termed their algorithm the Posture Control strategy based

on Force Distribution and Compensation, or PCFDC. Interestingly, this is one of the few

implementations which essentially plugs the posture control module into the inverse kinematics (IK)

based foot position control system. Thus, to adapt to the terrain, foot forces are adjusted by providing

corrections to the desired foot-end positions of each leg, rather than by controlling leg joint torques.

This is portrayed more clearly in the block diagram of Figure 2.15.

Figure 2.15: High-level block diagram illustrating control structure of HITCR-II [10]

 Chapter 2: Literature Review

34

Both simulations and experiments with HITCR-II were used by Zhang et al. [10] to test their control

strategy, imitating uneven terrain conditions with obstacles in the form of rectangular blocks (see

Figure 2.16). They found significant improvements in posture and stability margin while the robot

walked over the obstacles, and the authors proclaim that the PCFDC controller effectively improves

walking stability.

Figure 2.16: HITCR-II hexapod walking on uneven terrain in the form of rectangular blocks [10]

2.5.2 Other Posture Control Strategies
Although Virtual Model Control, and similar techniques, have been commonly used and shown to be

effective, other approaches to posture control have been taken. One such case is a study by Arena et

al. [40], in which they took an analogic spatio-temporal approach over digital control. They

implemented a cellular non-linear network (CNN) as a central pattern generator (CPG) for the

locomotion control, and achieved attitude control with proportional-integral (PI) controllers on each

of the legs, which were also implemented as non-linear controllers based on a CNN. They tested the

control system on a hexapod robot platform, where the attitude controller was used to maintain a

horizontal orientation of the platform while walking on sloping planes, as demonstrated in Figure 2.17.

Walking on uneven or irregular terrain was not considered by them in this study.

 Chapter 2: Literature Review

35

(a) (b)

Figure 2.17: Experiments of a hexapod walking on a slope in the (a) pitch and (b) roll direction [40]

In a later study, Arena et al. [43] employed a similar approach in order to control a cockroach-like

hexapod robot to climb over obstacles. Locomotion is still achieved with a CNN-based CPG, but

attitude is now controlled using PID controllers for pitch and roll, with a Motor Map Controller (MMC)

adaptively varying their references depending on which phase of walking or climbing the robot is in.

The phase is determined based on exteroceptive sensing to detect upcoming obstacles. A simplified

block diagram of the control scheme is illustrated in Figure 2.18. In the study, the control system was

implemented only in simulation, using fictitious antennae to evaluate the distance to, as well as height

of, the obstacle in front of the robot.

Figure 2.18: Simplified block diagram of adaptive posture control system implemented in [43]

 Chapter 2: Literature Review

36

Similarly, Campos et al. [25] make use of a nonlinear dynamical system to achieve lateral postural

control (only roll angle) of a hexapod robot, with the gait being generated using a CPG. To test the

method, the robot was simulated to walk on a platform which was continuously subjected to changes

in its lateral inclination, and the attitude controller was found to be able to keep the robot’s roll angle

to a minimum [25].

In contrast, Belter and Skrzypczynski [28] implemented a posture optimization strategy, based on the

Particle Swarm Optimization method, on the Messor robot, for traversing rough terrain. Their results

showed that the approach allows the robot to determine the optimal posture, in terms of stability,

while climbing obstacles and walking on irregular terrain. However, it should be noted that this does

not necessarily allow for a specific posture to be held while walking and that the level of autonomy

displayed in their study requires exteroceptive sensors for dynamic path and foothold planning.

Figure 2.19: Messor hexapod on rocky terrain [28]

As mentioned earlier, another robot which utilizes posture adjustment is the CR200 ROV developed

for subsea exploration (see Figure 2.30). In order to address the problem of the robot overturning in

high tidal currents, Gyeong-Mok et al. [39] implemented a controller to adjust the body posture

against the current. The implemented algorithm is based fully on the kinematics (forward and inverse)

of the robot, not taking forces into account. While the controller manages to successfully adjust

posture using the kinematics, it should be noted that, since this robot is an ROV, it is only semi-

autonomous, at least in the implementation discussed in [39]. Therefore, it does not continuously

adjust its posture depending on the terrain while walking, rather requiring a desired posture as a user

input to the controller.

 Chapter 2: Literature Review

37

A more autonomous posture control approach based primarily on kinematics has been taken by

Roennau et al. [9], to enable the LAURON V hexapod robot, shown in Figure 2.20, to surmount

obstacles and steep slopes without having knowledge about its environment.

Figure 2.20: LAURON V hexapod on rough terrain [9]

Their controller has three main “behaviours” which contribute to the posture control: position,

inclination, and height behaviour. Each behaviour makes adjustments to the foot positions, to

effectively adjust posture [9]. These three behaviours are scalable and can be independently switched

on and off. The control algorithms for each behaviour utilize a proportional gain type of control

strategy and take into account the foot positions and ground contact status of each foot. The COM of

the robot is also dynamically calculated based on the centres of mass of the main robot body and each

individual leg, by following the Denavit-Hartenberg (DH) notation. Based on the foot positions and

IMU data, the slope of the terrain is estimated and the desired robot pose is dynamically set to half of

the steepness of this virtual slope.

In addition to these main behaviours, a vital component in improving uneven terrain manoeuvrability

is the incorporation of a fourth rotational joint on each leg of LAURON V [9]. This improves kinematic

ranges and adjusts the leg shanks to always be parallel to the gravity vector (see Figure 2.21),

decreasing large joint torques resulting from the shanks being perpendicular to the ground inclination

(which in turn reduces energy consumption). In fact, the adjustment of the angle of this fourth joint is

one of the primary functions of the posture controller’s inclination behaviour.

 Chapter 2: Literature Review

38

Figure 2.21: Illustration of LAURON V on slope, orientating its feet relative to the gravitational vector using the fourth
rotational joints in its legs [9]

Experimental results revealed that LAURON V was able to climb over large obstacles (relative to its

own height), as well as stand on slopes up to 42° and walk on slopes of up to 25°, with all three

behaviours and the fourth rotational joints turned on [9] (examples of experimental tests can be seen

in Figures 2.22 and 2.23). Roennau et al. [9] suggest that foot slippage was the main problem when

walking on slopes. LAURON V is also able to remain stable in the presence of impulse disturbances,

such as being pushed or kicked sideward [9]. While the control system’s performance is certainly

impressive, it is worthwhile to take note of the large computational requirements of the controller

and how slowly LAURON V is able to carry out the above manoeuvres even in lab conditions, as can

be viewed in the video at [44], in which many of the motions are sped up significantly.

Figure 2.22: Experimental test of LAURON V walking on a slope [9]

 Chapter 2: Literature Review

39

Figure 2.23: Experimental test of LAURON V climbing over obstacle approximately 40 cm high [9]

Another hexapod which uses additional leg joints and a kinematic approach to controlling posture on

uneven terrain is Weaver. However, Bjelonic et al. [13] took it a step further than LAURON V by

equipping Weaver with five joints per leg, for a total of 30 DOF. The authors propose that this allows

Weaver to cope with large slopes in any orientation, rather than only in the longitudinal direction like

LAURON V. They also use DH notation for the kinematics and proprioceptive sensing to determine the

orientation of the gravity vector relative to the robot’s body. Their inclination controller increases

stability by shifting Weaver’s COM and adjusting the additional leg joints to align the force ellipsoids

of the foot tips with the gravity vector, improving both manoeuvrability and energy efficiency.

Furthermore, Weaver utilizes impedance controllers to provide compliant behaviour of the legs,

which, according to Bjelonic et al. [13], realizes self-stabilizing behaviour by reacting to unstructured

terrain. A diagram of this hierarchical control architecture is presented in Figure 2.24.

Figure 2.24: Diagram of hierarchical control architecture used on Weaver hexapod [13]

 Chapter 2: Literature Review

40

Based on the results of experimental tests, Bjelonic et al. [13] report that, with their reactive posture

control system, Weaver was able to walk up slopes of up to 30° and stand with static stability on

inclines of up to 50° (see Figure 2.25). They also found that mobility was improved and angular motions

reduced while walking on a variety of uneven terrains (see Figure 2.26).

Figure 2.25: Inclination control test of Weaver hexapod [13]

Figure 2.26: Weaver hexapod on a section of the multi-terrain testbed used in [13]

Most of the abovementioned robots are custom designed platforms with custom software written

from the ground up. Robots like BigDog [1], COMET [7], [8], TITAN VI [41], and Warp1 [4], among

others, are large, heavy platforms, the manufacturing and construction of which is no trivial

undertaking. Smaller robots like StarlETH [6] and HITCR-II [10] boast highly specialized actuators and

sensing equipment, much of which is custom designed and manufactured. Figure 2.27 shows a

detailed representation of the three different series elastic actuators (SEAs) used on StarlETH,

consisting of brushless direct current (BLDC) motors, Harmonic Drive (HD) gearboxes, springs, chain

drives, and deflection encoders, among other specialized components [6]. HITCR-II’s legs, the

structure of which is illustrated in Figure 2.28, also make use of BLDC motors and harmonic reducers,

along with custom designed 3 DOF foot force sensors [10].

 Chapter 2: Literature Review

41

(a) (b) (c)

Figure 2.27: SEAs used on StarlETH for (a) hip abduction/adduction, (b) hip flexion/extension and (c) knee flexion/extension
joints [6]

Figure 2.28: HITCR-II leg structure, showing joint actuator construction and 3 DOF force sensors [10]

More complex still are robots like LAURON V [9], [36] and Weaver [13], which possess additional leg

joints and have redundant degrees of freedom (see Figure 2.29), or CR200 [39] which is designed to

have multi-function legs which can act as manipulators (see Figure 2.30).

 Chapter 2: Literature Review

42

Figure 2.29: Leg structure of LAURON V with fourth rotational joint [9]

Figure 2.30: Conceptual illustration of CR200 using its front legs as manipulators [39]

2.5.3 Work on Commercially Available Platforms
Despite their increased costs and development time, platforms such as those described above are, by

far, the most common in literature, though commercially available platforms are beginning to gain

more popularity in legged robotics studies. However, much of the time, commercial platforms like the

PhantomX hexapod are used for research on higher level tasks such as localization and mapping [45],

[46], terrain classification [47], [48], and road following [49]. Even when stabilization or uneven terrain

mobility are considered with these platforms, they are often modified physically and controlled with

fully custom software, as in [50], or controlled primarily using kinematics, e.g. [51].

Some work is being done on attitude control and uneven terrain walking with low-cost hexapod

platforms in the hobby robotics community. One project of particular interest, utilizing the PhantomX

MK-II, was the work done by Renée Love [52] on hexapod locomotion software which included an

attitude adjustment feature. The locomotion software code base was originally written by Kevin Ochs

[53] for his custom designed Golem hexapod, primarily as a means to learn how to use the Robot

Operating System (ROS) [54] (see Section 3.5). Renée Love’s fork of the project aimed to modify the

code base for use on the PhantomX MK-II, as chronicled on her forum thread at [52]. The two projects,

along with some contributions by other members, were eventually incorporated into a single code

 Chapter 2: Literature Review

43

base and refactored as a more generic hexapod locomotion stack for ROS. This has now been made

available on GitHub at [17], with the idea that it can be utilized for any hexapod with legs that have 3

or 4 DOF (with the fourth joint being for a tarsus leg segment, like that on Golem).

The attitude control feature incorporated into this locomotion stack uses the orientation information

provided by an onboard IMU to raise or lower specific legs, with the aim of maintaining a level

orientation of the robot body, and is thus aptly termed auto-levelling [17]. Adjustment of the leg

positions is based purely on inverse kinematic calculations, assuming the robot to be standing on a

planar surface. An example of the PhantomX MK-II, running on this locomotion software, can be

observed in the video at [55] as it adjusts its attitude in response to the gradual tilting of the board on

which it is standing.

A more recent hobby project showcasing impressive uneven terrain mobility is the MX-Phoenix

hexapod created by prolific hobby roboticist Kåre Halvorsen, who goes by the pseudonym Zenta [56].

Although the MX-Phoenix is a custom designed platform, it makes use of commercially available

actuators and electronic equipment, with the body parts being manufactured using a low-cost 3D

printer [57], thus keeping the costs lower than those of many sophisticated and high-tech research

platforms. The hexapod is demonstrated in the video at [58] climbing stairs and scaling significantly

uneven terrain, such as large rocks (as can be seen in Figure 2.31). This level of mobility is made

possible, in part, by the long tibia segments designed for the legs, along with the dynamic gait

algorithm created by Zenta [57]. It is apparent from Zenta’s forum posts [59] and the video [58] that

the reactive gait is designed to lower the robot’s swing legs until they contact the terrain, before

changing them to stance legs. Simple switch sensors are integrated into the feet to determine their

contact status [59].

Figure 2.31: MX-Phoenix hexapod on rocky terrain [59]

 Chapter 2: Literature Review

44

Though the body orientation of the MX-Phoenix robot can be observed at [58] being adjusted freely

while standing on uneven terrain, it should be noted that this follows user inputs from the remote

control and is achieved with kinematic calculations [59], like with most other locomotion packages for

hobby platforms. Zenta [59] explains that the gait engine also adjusts the body level so as to equalize

the leg heights when all six legs are simultaneously in contact with the terrain, thereby roughly aligning

the body with the terrain slope. This is accomplished entirely using foot position information and, at

the time of writing this dissertation, no IMU has been incorporated into the MX-Phoenix platform, so

it has no information about its orientation relative to the gravity vector or world frame. Zenta [59] has

expressed that incorporating an IMU is planned to be the next step in the development of MX-Phoenix.

However, even with this added sensory information, the control of the body level would still be based

wholly on kinematics, and there is no evidence, at least at this stage, that any of the robot’s kinetic

dynamics are planned to be taken into account in the locomotion and control software. This limits the

robot’s ability to dynamically react to disturbances from the environment, especially if no contact

force information is taken into account. On highly uneven, or even dynamically varying, terrain

conditions, the assumptions that purely kinematic control strategies are based on quickly become

irrelevant, resulting in inadequate posture regulation. In fact, Schneider and Schmucker [60] assert

that, in addition to increasing their reliability and functionality, the use of force information on walking

robots simplifies many of their control algorithms.

While the above examples demonstrate a promising start in uneven terrain mobility with

commercially available or low-cost platforms, they still lack the manoeuvrability and adaptability on

uneven terrain exhibited by some of the more complex and capable control systems implemented on

the custom designed platforms discussed above.

2.5.4 Review of Strategies Used in the Literature
It is evident from the preceding discussions that Virtual Model Control is one of the most commonly

employed posture control techniques. The strategy relies on simple, linear control laws and has been

shown to be effective in controlling the posture of a variety of legged robots.

Many of the other techniques utilize much more complicated control strategies, either involving

non-linear networks or higher levels of control, such as dynamic foothold planning, with exteroceptive

sensing capabilities. Furthermore, methods that are based primarily on kinematics generally seem to

rely on additional leg joints to improve the robot’s manoeuvrability and terrain adaptability.

Considering that low-cost, commercially available platforms have simpler kinematic structures and

less sophisticated hardware, it would be preferable to keep the control strategy as simple as possible.

A further advantage of this is that such strategies could eventually be implemented on less powerful

 Chapter 2: Literature Review

45

or costly computational hardware, which could potentially be mounted onto the robot itself. With

these ideas in mind, it is apparent that VMC-based posture control techniques appear to be the

“stand-out” choice for implementation on a commercial legged robot platform.

2.6 Conclusion
An overview of fundamental concepts regarding legged robots, in the context of the field of robotics,

has been provided in this chapter. A more specific investigation on uneven terrain locomotion has also

been carried out, reviewing literature pertaining to the control tasks associated with such locomotion.

This literature review has revealed that, while uneven terrain locomotion with hexapods has been

quite successfully demonstrated in the lab on specialized robotic platforms, achieving such locomotion

on lower cost, commercially available platforms would be highly advantageous, making the

technology more feasible to implement in the real world. Furthermore, posture control has been

clearly shown to be a vital component in realizing uneven terrain locomotion, with a great deal of

development still required to effectively implement it on low-cost, commercial robots. This provides

a strong motivation for the implementation of a posture control system on such a robotic platform in

this study.

Additionally, the Virtual Model Control (VMC) strategy has been identified as a suitable technique to

explore for implementation on a low-cost robotic platform, owing to its widespread usage and

utilization of simple, linear control laws to regulate body posture. Therefore, the posture control

system designed in this study will be based on the VMC strategy.

46

Chapter 3: Background Theory

Chapter 2 provided an overview of legged robotics and the research conducted in the literature on

posture control for quadruped and hexapod robots, through which the motivation for this study was

identified. In this chapter, specific topics pertaining to this study will be discussed in more detail,

including hexapod robots and interaction control methods. Additionally, particular background theory

and terminology required to facilitate the understanding of technical discussions in the remainder of

this dissertation will be introduced and explained, such as transformation mathematics, virtual

modelling of a hexapod, and the software system used to implement the control systems designed in

this study.

3.1 Hexapod Robots
In view of the fact that a hexapod robot is used in this study, this section expands upon this type of

legged robot in more detail than Section 2.3.3, with specific emphasis on mechanical design and

construction, as well as gaits used for locomotion.

3.1.1 Body Structures
The main body of a legged robot is essentially a frame which acts as an attachment point for the legs

and houses the robot subsystems, such as the onboard computer, sensors and power system [24], as

well as carrying a payload, if present. Therefore, the body is required to be large enough while also

being rigid enough to withstand deformation, without adding excessive mass to the robot. Though

this may make the body construction seem like a fairly simple matter, it is not such a straightforward

design consideration. In addition to being required to perform the abovementioned functions, the

body shape determines key features of the robot, such as static stability. Likewise, the distribution of

the legs around the body determines the size of actuators required, which in turn affects the total

mass of the robot and, consequently, the speed at which it can travel.

Hexapod robot body structures, or shapes, are primarily grouped into two basic categories:

rectangular and hexagonal (also referred to as circular) body structures [5], [31]. Additionally, a

 Chapter 3: Background Theory

47

hexapod structure exists that incorporates features of both the rectangular and hexagonal body

shapes. These three body structures are described in more detail below.

On hexapods with rectangular body structures, the six legs are divided into two groups of three,

distributed symmetrically, about the longitudinal mid-plane, on the two sides of the body [5]. This

body type has traditionally been the most common on hexapods [24], [31], with a large amount of

literature available on rectangular hexapods [33], some examples of which include [7], [8], [31], [42],

[61]. While it is common for the front and back legs to be mounted at 45° angles to the body,

predominantly for the purpose of increasing kinematic range, as depicted in the schematic diagram in

Figure 3.1 (a), some rectangular hexapods in the examples above have all six legs mounted

perpendicular to the main body, as can be seen in Figure 3.1 (b).

(a) (b)

Figure 3.1: Rectangular hexapod body structure, with legs mounted (a) at 45°, and (b) perpendicular to main body

Hexagonal, or circular, hexapods have round or hexagonally shaped bodies with the six legs distributed

axisymmetrically around the body [5]. The main advantage of this body type is that it does not require

a special gait for turning or changing direction, unlike rectangular hexapods [31]. A significant

drawback of this configuration, however, is that it demands more complex control, as the trajectories

of the various legs are different, even in a straight line, whereas the leg trajectories of rectangular

hexapods are all the same when moving in a straight line [31]. A schematic diagram of this body

structure is illustrated in Figure 3.2 below.

Figure 3.2: Hexagonal, or circular, hexapod body structure, with legs mounted axisymmetrically around body

 Chapter 3: Background Theory

48

Another body configuration which has been gaining popularity is one in which the attachment points

for the central legs, on both sides, are shifted outward slightly (away from the longitudinal axis of the

body) [5], [24]. This can, in essence, be seen as a transition between the rectangular and hexagonal

body types [5]. The rationale behind using this configuration is related to its energy saving ability [5].

Gonzales de Santos et al. [24] explain that this energy saving property arises from the fact that

satisfactory force distribution can be obtained when the central legs are shifted outward slightly,

resulting in these legs supporting less weight and increasing the contribution of the corner legs to

supporting the body. To illustrate the effectiveness of this configuration, they show that moving the

central legs of their SILO6 hexapod robot slightly outward reduces the maximum joint torque by

approximately 15.06%.

Walas and Belter [35] also use this rectangular body structure with an “extended middle” on the

Messor robot to improve force distribution, as well as for realizing suitable dimensions to enable the

hexapod to climb stairs. Figure 3.3 depicts a schematic of Messor’s main body, or trunk, clearly

showing the central leg attachment points extended outward. In addition to the main dimensions of

the trunk, this diagram also indicates the angular workspace for the first joint (coxa) of each leg.

Figure 3.3: Schematic depicting trunk of Messor hexapod with central leg attachment points extended outward, as well as
coxa joint workspaces [35]

 Chapter 3: Background Theory

49

3.1.2 Leg Configurations
Leg designs of walking robots are often biologically inspired, with mammal and insect-like legs typically

being used [24]. Tedeschi and Carbone [33] elaborate that the major distinction between the two

configurations is that insect type legs, also referred to as reptilian type legs, are configured such that

the legs protrude out from the two sides of the body with the knee joints positioned to the sides of

the base. On the other hand, the bodies of mammals are located above the legs, with the knee joints

positioned below the hip.

Another leg configuration, which is essentially a variation of the insect type, is the arachnid

configuration, wherein the leg extremities are still situated to the side of the body but the knees

protrude out above the robot body [33]. Schematic representations of these three leg configurations

are illustrated in Figure 3.4.

(a) (b) (c)

Figure 3.4: Schematic representations of (a) mammal, (b) insect (a.k.a. reptile), and (c) arachnid type hexapod leg
configurations (extracted from [33])

Walking robots with mammal type legs are more energy efficient, as this configuration requires lower

joint torques to support the body [24], [33]. However, they are less efficient with respect to stability,

owing to a narrower support polygon and higher centre of mass of the robot [24].

Insect-like legs provide greater efficiencies for both static and dynamic stability measures as they offer

a wider support polygon, while keeping the COM lower [24]. However, according to [24] the joint

torques and power consumption in this configuration increase “extraordinarily.”

Mammalian legs are usually found on quadruped robots, some examples being BigDog [1], LittleDog

[27], [34] and Warp1 [4]. Hexapods, on the other hand, are much more commonly equipped with

insect-like leg configurations, often drawing inspiration from the cockroach (examples include the

robots used in [12] and [43]) or stick insect (as in the case of the LAURON series of hexapods [9], [36]).

Insect type legs will accordingly be the focus of the remainder of this discussion, which is also equally

applicable to arachnid type legs, as they only differ from insect-like legs in the positioning of the tibia,

or knee, joint.

 Chapter 3: Background Theory

50

The majority of the insects which inspire hexapod leg design have at least four leg joints [5], [36], with

the main segments of the insect leg being the coxa, femur, tibia, and tarsus [5]. Figure 3.5 illustrates

a typical insect leg with six different segments indicated.

Figure 3.5: Illustration of typical insect leg, with various segments labelled accordingly [62]

Hexapod robot legs sometimes have up to six degrees of freedom [5], but most hexapods have legs

with three degrees of freedom (provided by three independent leg joints) [36], which are often

referred to as 3 DOF legs. Almost all hexapod legs have coxa, femur, and tibia segments (and

associated joints), as depicted in Figure 3.6 below, which shows the three distinct segments of a 3 DOF

hexapod leg, along with the rotational axes of the corresponding joints (at the base of each segment).

In addition to these three segments, some hexapods incorporate a fourth, or even fifth joint. Some

examples of such robots were given in Chapter 2. Often, the fourth segment is a tarsus, or foot, as in

the case of Golem [53], but some hexapods, such as the LAURON series [9], [36], include a trochanter

joint for the fourth degree of freedom.

Three degrees of freedom are sufficient to accomplish motion by specifying the desired ground

contact points for each foot [24]. Therefore, the fourth joint is often neglected in view of weight

reduction and simplification of the mechanism. As expressed in [24], it is important that the legs be

kept lightweight, as they contribute to the total mass of the robot, which is ultimately supported by

the legs themselves. Consequently, the legs must have a high payload-to-weight ratio.

 Chapter 3: Background Theory

51

Figure 3.6: Schematic of 3 DOF hexapod leg, indicating the individual segments and the rotational axes of their joints

Interestingly, to address the large power consumption of the insect-like leg configuration, Gonzalez

de Santos et al. [24] developed a leg which can be configured in either the insect or pseudo-mammal

form to achieve suitable stability along with energy efficiency. Their SILO6 hexapod can be seen in

Figure 3.7 with its legs in these two configurations.

(a) (b)

Figure 3.7: SILO6 hexapod with legs in (a) insect-like and (b) pseudo-mammal configuration [24]

Messor can also use a similar leg configuration, walking on its four corner legs, like a quadruped, while

using the central legs to carry a payload underneath its trunk [35], as can be seen in Figure 3.8. During

this “quadruped walking,” Messor’s legs get positioned towards the front and back, rather than out

 Chapter 3: Background Theory

52

to the side. However, the tibia joints, or knees, still protrude outward, and actually slightly upward

like the arachnid configuration, instead of being positioned below the body as with traditional

mammal leg configurations.

(a) (b)

Figure 3.8: Messor robot in (a) hexapod mode, with arachnid leg configuration, and (b) quadruped mode, with corner legs
positioned to front and back of body, while central legs carry a payload [35]

3.1.3 Gaits
Having a relatively large number of legs, hexapod robots generally walk with statically stable gaits, as

mentioned previously. In addition, many of the commonly used hexapod gaits possess a certain degree

of symmetry [25]. This does not, however, imply that there is a shortage of gaits which can be used

on a hexapod robot. Some of the most common hexapod gaits are described below. The leg numbering

notation defined in Figure 3.9 is used for the gait descriptions in the remainder of this section.

Figure 3.9: Leg numbering notation used for hexapod gait descriptions

 Chapter 3: Background Theory

53

Campos et al. [25] identified the three most frequently used hexapod gaits to be:

• Metachronal gait – a low speed gait which “can be described as a back-to-front propagating

wave” [25] (the gait is thus also referred to as a wave gait), as the legs on either side of the

robot move one-by-one, from the back to the front, one side at a time; duty factor 𝛽 = 3/4.

• Ripple gait – a medium speed gait in which the pairs of corner legs diagonally opposite each

other (L1-R3 and L3-R1 pairs) move together in phase, while the two central legs (L2 and R2)

move alone; duty factor 𝛽 = 5/8.

• Tripod gait – a high speed gait in which a tripod of legs (L1-L3-R2 for example) remains in

contact with the ground while the remaining three legs move together in phase (technically

described by Campos et al. [25] as the “ipsilateral anterior and posterior legs, and the

contralateral middle leg,” moving together in phase at each step); duty factor 𝛽 = 1/2.

Another gait worth discussing is the quadruped gait [5], also known as the tetrapod gait [63]. This gait

involves four legs acting to support the body while the remaining two move together in phase [5], in

a sequence similar to the gaits used by quadruped robots. A variety of sequences can be utilized, one

example being that legs L1-R3, R1-L3, L2-R2 are paired to move together [5]. The reader will likely

have noticed a similarity to the ripple gait with this sequence of steps, the only difference being that

central legs move together rather than one after the other. As a result, the gait is expected to achieve

a similar speed to the ripple gait. This can also be perceived from the duty factor of 𝛽 = 2/3 [5] for

the quadruped gait, which differs from the ripple gait by only 1/24.

In their study of the literature, Ding et al. [5] found that the quadruped gait shows favourable fault

tolerant abilities in certain conditions as a result of three of the four support legs being able to support

the robot body in the event that one is damaged or broken.

Figure 3.10 illustrates the leg sequences of the gaits described above, with the dark bars indicating

swing legs. It should be noted that these diagrams simply depict the pairing of the legs during swing

as time progresses (along the horizontal axis), not accounting for potential overlaps and phase shifts

in the swing phases of the individual legs.

 Chapter 3: Background Theory

54

(a) (b)

(c) (d)

Figure 3.10: Hexapod gait diagrams depicting leg sequencing through time (along horizontal axis) for (a) metachronal, (b)
ripple, (c) tripod, and (d) typical tetrapod (a.k.a. quadruped) gaits

This section discussed factors related to the design, construction, and locomotion of hexapods at

large, in order to assist in the understanding of the explanations of the robotic system used, as well as

design considerations for the control system, which are presented in later chapters.

The sections which follow focus more specifically on theory related to the modelling and control of

robotic systems, with particular regard to aspects applicable to the current study.

3.2 Transformation Mathematics and Kinematics
Of course, before being able to study the motions associated with robotic systems, it is necessary to

be able to describe the locations of the various bodies and objects of interest. These could include not

only parts of the robot itself, but also items which it uses and interacts with, or which are present in

its environment [64]. At the most fundamental level, objects, specifically rigid bodies, can be described

in space by just their position and orientation. Consequently, methods of representing and

manipulating these properties mathematically are of great interest and importance in robotics.

In order to facilitate the description of how objects are related to each other, in three-dimensional

space, a coordinate system, or frame, is rigidly attached to each object [64]. This way, an object can

be described by the position and orientation of its frame relative to a particular coordinate system.

Since frames, themselves, are coordinate systems, any frame can act as the reference coordinate

system within which to describe the position and orientation of a body [64]. Therefore, it is frequently

necessary to be able to transform, or change the description of bodies, between various frames. As a

result, the mathematics related to describing bodies in space involves a variety of representations and

 Chapter 3: Background Theory

55

operations, for manipulating their position and orientation quantities, with respect to different

coordinate systems.

Excellent and detailed treatments of this mathematics can be found in numerous texts on the subject.

One of the quintessential resources which includes foundations of spatial descriptions and

transformations (along with a range of other fundamental topics in robotics) is Introduction to

Robotics: Mechanics and Control by Craig [64]. For a more summarized presentation of the

mathematics pertaining to transformations, with specific emphasis on representing orientation, the

reader is pointed to the reference text by Diebel [65].

Hence, the purpose of this discussion is not to provide an in-depth coverage of the mathematics

referred to above. Instead, the focus is on bringing the key aspects of interest to the reader’s attention,

as well as highlighting some of the imperative considerations regarding different conventions

currently used to define orientation. The information presented in the remainder of this section is

based on the resources mentioned above, i.e. [64], [65].

3.2.1 Frame Descriptions
As mentioned above, frames require both a position and orientation, relative to a chosen coordinate

system, to be fully described in space. The two primary methods of representing these quantities will

be discussed in more detail below, followed by an overview of general coordinate frame

transformations, as well as other methods of parameterizing orientation, specifically when describing

the attitude of a robot body.

3.2.1.1 Position Vectors

Of the two attributes used to describe a frame, position is quite straightforward. As is generally the

case in mechanics, the position of a point in three dimensional space is represented by a 3 × 1 vector

[64]. In a Cartesian coordinate system, the three components of the vector denote the x-, y-, and

z-positions of the point, with the position vector, 𝒑, being expressed mathematically as

 𝒑 = [

𝑝𝑥
𝑝𝑦
𝑝𝑧
]. (3.1)

When considering the representation of attitude for rigid bodies such as robots, two coordinate

systems are of particular interest [65]:

• The world coordinate system, which is fixed in inertial space and is generally used as the

reference frame. A subscript 𝑤 is used to identify the position of this coordinate system,

denoting its origin as 𝒑𝑤.

 Chapter 3: Background Theory

56

• The body coordinate system, which is rigidly attached to the body whose orientation, or

attitude, is required to be described. A subscript 𝑏 is used to identify the position of this

coordinate system, denoting its origin as 𝒑𝑏.

If just these two coordinate systems are used, the expression of points and vectors in one of the two

frames can be distinguished by simply using a prime symbol. Thus, if a vector 𝒑 represents a point

expressed in the world coordinates, then 𝒑′ can be used to express the same point in body

coordinates.

Accordingly, the origins of the two frames expressed in their own coordinates, i.e. 𝒑𝑤 and 𝒑𝑏
′ , are both

zero. However, the origin of the world frame expressed in body coordinates, 𝒑𝑤
′ , and the origin of the

body frame expressed in world coordinates, 𝒑𝑏, are non-zero, in general.

These fundamentals are sufficient to be able to represent the position of a rigid body in the two main

coordinate systems of interest. This leads to the second attribute used to describe frames: orientation,

which is the subject of discussion in the following sub-section.

3.2.1.2 Rotation Matrices

The orientation of a frame relative to some other frame is denoted by a 3 × 3 rotation matrix. When

multiplied with a vector, a rotation matrix rotates the vector while preserving its length. More

specifically, the rotation matrix, 𝑹, associated with the attitude of a rigid body transforms a vector

represented in world coordinates into one represented in body coordinates [65]. Thus, for 𝒛 ∈ ℝ3, a

vector expressed in the world coordinates, and 𝒛′ ∈ ℝ3, the same vector expressed in the body

coordinates, the following relations apply:

 𝒛′ = 𝑹𝒛 (3.2)

 𝒛 = 𝑹𝑇𝒛′, (3.3)

where 𝑹𝑇 is the transpose of 𝑹.

The mapping of vectors between coordinate frames, as described in Equations (3.2) and (3.3),

effectively involves projecting the vector components onto the unit vectors of the frame being rotated

into, i.e. the destination frame. Thus, the rotation matrix, 𝑹, is simply a stack of the unit vectors that

describe the world and body coordinate systems. In particular, the rows of 𝑹 are the unit vectors of

the body frame expressed in the world coordinates, while the columns of 𝑹 are the unit vectors of the

world frame as expressed in the body coordinates [65]. Mathematically, this is represented as

 Chapter 3: Background Theory

57

 𝑹 = [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] = [

𝒙̂𝑏
𝑇

𝒚̂𝑏
𝑇

𝒛̂𝑏
𝑇

] = [𝒙̂𝑤
′ 𝒚̂𝑤

′ 𝒛̂𝑤
′]. (3.4)

Care should be taken not to confuse the prime symbols in Equation (3.4), which indicate the vectors

being expressed in the body coordinates, with the superscripted 𝑇 symbol, which is used to represent

the transpose of a vector or matrix. This notation will be used consistently throughout this

dissertation, with prime symbols never being used to express a transpose.

Since unit vectors are orthonormal, it can be seen in Equation (3.4) that so are the rows and columns

of the rotation matrix. Hence, from linear algebra it is known that

 𝑹−1 = 𝑹𝑇 , (3.5)

where 𝑹−1 is the inverse of 𝑹. The physical interpretation of this property, with respect to rotation

matrices, is that, with 𝑹 representing the rotation of the body frame relative to the world frame, the

rotation of the world frame relative to the body frame is simply given by the transpose of 𝑹. This is

exactly what is represented mathematically in Equations (3.2) and (3.3).

While the elements of the rotation matrix can also be interpreted and calculated in a few other ways,

details of this can be found by the reader at the sources provided above. At this stage, it is more

pertinent to bring to light an important factor related to the definition of rotation matrices: two

possible conventions exist, and are currently used, for defining rotation matrices.

 The definitions in Equations (3.2) – (3.4) are based on the convention used in [65], where the rotation

matrix describes a rotation from the world coordinates to the body coordinates. Conversely, the other

convention defines the rotation matrix as that which maps from the body coordinates to the world

coordinates, and this is the convention followed by Craig [64].

Using 𝑺 to denote a rotation matrix defined by the latter convention, the vector mapping relations

equivalent to Equations (3.2) and (3.3) become,

 𝒛 = 𝑺𝒛′ (3.6)

 𝒛′ = 𝑺𝑇𝒛. (3.7)

Comparing Equations (3.2) and (3.3) to Equations (3.6) and (3.7), it is clear that,

𝑹 = 𝑺𝑇

𝑺 = 𝑹𝑇 .
(3.8)

 Chapter 3: Background Theory

58

Hence, the relation between the rotation matrices of the two conventions is that they are the

transposes of each other. Consequently, the individual elements of the two rotation matrices are

linked by the following relation:

 𝑟𝑖𝑗 = 𝑠𝑗𝑖, (3.9)

where 𝑟𝑖𝑗 is the element in the 𝑖th row and 𝑗th column of 𝑹, and 𝑠𝑗𝑖 is the element in the 𝑗th row and

𝑖th column of 𝑺.

Although converting between rotation matrix descriptions in the two conventions is a simple task of

taking the transpose of the matrix, it is crucial to ensure that the rotation matrix being used is in the

correct convention before performing the associated mathematical operations on it, a fact that will

become more evident in Chapter 5. The remainder of this section will persist with the convention of

[65] for presenting operations related to rotations and frame descriptions.

In many instances, it is beneficial to describe the rotation of a frame as a series of sequential rotations

performed on the frame. To this end, a useful property of rotation matrices is that they can be

multiplied together to yield an equivalent rotation matrix, which applies the same overall rotation as

the final rotation obtained by sequentially applying the original rotation matrices. This can be

illustrated more coherently by an example of rotating a vector 𝒛 between arbitrary coordinate

systems, denoted by prime and double prime symbols, as follows:

Let

 𝒛′ = 𝑹𝑎𝒛 (3.10)

 𝒛′′ = 𝑹𝑏/𝑎𝒛
′. (3.11)

Then,

 𝒛′′ = 𝑹𝑏/𝑎𝑹𝑎𝒛 = 𝑹𝑏𝒛, (3.12)

where

 𝑹𝑏 = 𝑹𝑏/𝑎𝑹𝑎. (3.13)

It should be noted from the above equations “that the rotations are applied in the reverse order” [65].

Thus, in Equation (3.13) 𝑹𝑏 represents a rotation sequence in which 𝑹𝑎 is applied first, followed by

the rotation 𝑹𝑏/𝑎. Since the rotation matrix descriptions in the convention of [64] are the transposes

of those used here, it is natural that the multiplication order of sequential rotations, in that

convention, is the opposite of that observed in Equation (3.13). That is, the convention in [64] applies

sequential rotations by post-multiplying them.

 Chapter 3: Background Theory

59

3.2.1.3 General Coordinate Frame Transformations

The expressions in Equations (3.2) and (3.3) apply to general vectors, which are relative quantities that

lack a position in space. On the other hand, transforming a point between two coordinate systems

requires that the offset to the origin of the target frame is first subtracted (yielding a vector quantity),

before the rotation matrix is applied. Thus, using the definitions of points and coordinate frame origins

in Section 3.2.1.1, general transformations can be written as

 𝒑′ = 𝑹(𝒑 − 𝒑𝑏) = 𝑹𝒑 + 𝒑𝑤
′ (3.14)

 𝒑 = 𝑹𝑇(𝒑′ − 𝒑𝑤
′) = 𝑹𝒑′ + 𝒑𝑏 . (3.15)

Therefore, it can be seen that general transformations of points from one frame to another involve

both a translation and a rotation. This result illuminates the need for both position and orientation, or

attitude, information to describe rigid bodies in space. The combination of position and attitude

information represents the pose of a rigid body.

Although position is most intuitively denoted by 𝒑𝑏, which expresses the position of the origin of the

body frame in world coordinates, it is just as valid to utilize 𝒑𝑤
′ , which represents the origin of the

world frame with respect to the body coordinates. From Equations (3.14) and (3.15), it is evident that

these two representations of position are related to one another as follows:

 𝒑𝑤
′ = −𝑹𝒑𝑏 (3.16)

 𝒑𝑏 = −𝑹
𝑇𝒑𝑤

′ . (3.17)

While rotation matrices are one form of characterizing attitude, other parameterizations of attitude

do also exist, as will be discussed in the section which follows.

3.2.1.4 Other Parameterizations of Attitude

Using rotation matrices to represent and manipulate attitude can be cumbersome, while also

presenting the possibility of being computationally expensive to store and perform operations with.

Two other popular methods for parameterizing the attitude, or orientation, of rigid bodies are Euler

angles and quaternions.

3.2.1.4.1 Euler Angles

One of the most common ways of encoding attitude information is with a set of three Euler angles,

which offers an intuitive and easy to use method of working with orientations. These three angles

represent three sequential coordinate rotations and can describe any rotation. A wide variety of

rotation sequences and associated Euler angle triples are possible [65], but these will not be

elaborated in this discussion. The focus here is on one specific rotation sequence which is prevalent

in the fields of aerospace engineering and computer graphics, as well as robotics. While a number of

 Chapter 3: Background Theory

60

names are given to this set of rotation angles, such as Cardan angles or Tait-Bryan angles, it is

customary in aeronautics and robotics to refer to them simply as Euler angles. More specifically, the

three individual angles, 𝜙, 𝜃, and 𝜓, are known as roll, pitch, and yaw, respectively.

These three angles are applied in a ZYX rotation sequence; that is, first the frame is rotated about the

z-axis through an angle of 𝜓, then this new frame is rotated about its y-axis by 𝜃, finally being followed

by a rotation about the x-axis of the latest frame through an angle of 𝜙. Mathematically, this is

expressed with rotation matrices as

 𝑹𝑍𝑌𝑋(𝜙, 𝜃, 𝜓) = 𝑹𝑥(𝜙)𝑹𝑦(𝜃)𝑹𝑧(𝜓), (3.18)

where 𝑹𝑍𝑌𝑋(𝜙, 𝜃, 𝜓) is the rotation matrix representation of the Euler angle rotation sequence and

𝑹𝑖(𝛼), with 𝑖 ∈ [𝑥, 𝑦, 𝑧], is a rotation matrix denoting a coordinate rotation, or rotation about the

𝑖-axis by an arbitrary angle 𝛼.

This sequence of rotation is illustrated in Figure 3.11, where the coordinate frame described by

(𝑥, 𝑦, 𝑧) coordinates is rotated into the (𝑥′, 𝑦′, 𝑧′) frame, with intermediate rotations into the

(𝑥′′′, 𝑦′′′, 𝑧′′′) and (𝑥′′, 𝑦′′, 𝑧′′) coordinates.

Figure 3.11: Rotation of a frame using the ZYX Euler angle sequence [65]

 Chapter 3: Background Theory

61

The multitude of operations and calculations that can be performed with Euler angles will not be

discussed here. However, the one important operation that the reader’s attention will be drawn to is

the conversion from a rotation matrix to the ZYX Euler angles. Letting 𝒖𝑍𝑌𝑋(𝑹) be the vector function

of 𝑹 that yields the associated roll, pitch and yaw angles, the following mapping holds:

 𝒖𝑍𝑌𝑋(𝑹) = [

𝜙(𝑹)
𝜃(𝑹)
𝜓(𝑹)

] = [

atan2(𝑟23, 𝑟33)

− asin(𝑟13)

atan2(𝑟12, 𝑟11)
], (3.19)

where atan2⁡(𝑦, 𝑥) is used to compute the arc tangent, taking into account the quadrant in which the

arguments lie.

A drawback of using Euler angles is that, for some rotation sequences, they can have singular

configurations. For the ZYX sequence, this singularity occurs at pitch angles of 𝜃 =
𝜋

2
+ 𝑛𝜋, for 𝑛 ∈ ℤ

(the set of all integers). Physically, this corresponds to a vehicle pitched vertically upward, or inverted

with the nose pointing straight down. In such singular configurations, the roll and yaw angles cannot

be distinguished. This problem of singularities can be overcome by using quaternions.

3.2.1.4.2 Quaternions

Along with providing the advantage of not having mathematical singularities, attitude

parameterizations using quaternions are also more accurate than Euler angles when integrating

incremental changes in angular velocity over time. An extensive compilation of quaternion

mathematics is available (many fundamentals of which can be found at [66]), but this does not pertain

to the current study. This section simply serves to present the mathematical definition of a quaternion,

along with the necessary conversion equations.

A quaternion, 𝒒, is comprised of four quantities and defined as [66]

 𝒒 = 𝑞0 + 𝑞1𝒊 + 𝑞2𝒋 + 𝑞3𝒌, (3.20)

where 𝒊, 𝒋 and 𝒌 are hyperimaginary numbers.

In Equation (3.20), the quantity 𝑞0 is the real, or scalar, part of the quaternion, while 𝑞1𝒊 + 𝑞2𝒋 + 𝑞3𝒌

makes up the imaginary, or vector, part. It is also customary to represent the quaternion by a 4 × 1

vector, as

 𝒒 = [

𝑞0
𝑞1
𝑞2
𝑞3

] = [
𝑞0
𝒒̅], (3.21)

where 𝒒̅ denotes the imaginary part of 𝒒.

 Chapter 3: Background Theory

62

Quaternions are usually normalized to have a unity norm (in which case they can also be referred to

as unit quaternions), that is

 ‖𝒒‖ = √𝑞0
2 + 𝑞1

2+𝑞2
2+𝑞3

2 = 1. (3.22)

Two important conversions related to quaternion representations of attitude are those from a unit

quaternion to a rotation matrix and from a unit quaternion to ZYX Euler angles. The mapping function,

𝑹𝑞(𝒒), which calculates a rotation matrix from the elements of a unit quaternion is defined as

 𝑹𝑞(𝒒) = [

𝑞0
2 + 𝑞1

2−𝑞2
2−𝑞3

2 2𝑞1𝑞2 + 2𝑞0𝑞3 2𝑞1𝑞3 − 2𝑞0𝑞2
2𝑞1𝑞2 − 2𝑞0𝑞3 𝑞0

2 − 𝑞1
2+𝑞2

2−𝑞3
2 2𝑞2𝑞3 + 2𝑞0𝑞1

2𝑞1𝑞3 + 2𝑞0𝑞2 2𝑞2𝑞3 − 2𝑞0𝑞1 𝑞0
2 − 𝑞1

2−𝑞2
2+𝑞3

2

]. (3.23)

Consequently,

 𝒛′ = 𝑹𝑞(𝒒)𝒛 (3.24)

 𝒛 = 𝑹𝑞(𝒒)
𝑇𝒛′. (3.25)

From Equations (3.19) and (3.23) it follows that the mapping function which converts unit quaternion

quantities into roll, pitch, and yaw angles is defined as

 𝒖𝑍𝑌𝑋 (𝑹𝑞(𝒒)) = [

𝜙(𝑹𝑞(𝒒))

𝜃(𝑹𝑞(𝒒))

𝜓(𝑹𝑞(𝒒))

] = [

atan2(2𝑞2𝑞3 + 2𝑞0𝑞1, 𝑞0
2 − 𝑞1

2−𝑞2
2+𝑞3

2)

−asin(2𝑞1𝑞3 − 2𝑞0𝑞2)

atan2(2𝑞1𝑞2 + 2𝑞0𝑞3, 𝑞0
2 + 𝑞1

2−𝑞2
2−𝑞3

2)

]. (3.26)

3.2.1.5 Final Note on Conventions

As was mentioned earlier, all the operations and relations presented in Section 3.2.1.4 are based on

the rotation matrix convention adopted by Diebel [65]. Naturally, these functions are formulated

differently for rotation matrices defined in the other convention, owing to their elements being in

diagonally opposite locations to those used here, as well as the different order of multiplication used

when applying these rotations sequentially. Therefore, the importance of using the appropriate

functions, for converting between attitude representations with rotation matrices defined in a

particular convention, cannot be stressed enough. If the functions defined for one convention are

used on rotation matrices in the other convention, inadvertent transposing of the rotations will

effectively take place, switching the attitude representation from the intended frame to the other

frame along the way. Furthermore, rotation sequences may be applied in the wrong order, resulting

in a very different orientation description than the one intended. Clearly, the potential for errors is

great if care is not taken to adhere to a single convention when working with rotation matrices.

 Chapter 3: Background Theory

63

A further caveat to keep in mind is that the vector descriptions of quaternions may be defined with

the scalar part of the quaternion, 𝑞0, appearing as the last element of the vector, rather than the first.

That is, the quaternion, 𝒒, may be represented, just as validly as in Equation (3.21), by [66]

 𝒒 = [

𝑞1
𝑞2
𝑞3
𝑞0

] = [
𝒒̅
𝑞0
]. (3.27)

Accordingly, when using the quantities of a quaternion parameterization of attitude, it is necessary to

be mindful of the order in which those quantities are provided.

3.2.2 Kinematics
In addition to frame descriptions and transformation mathematics, another important topic regarding

the study of robotics is that of kinematics, which is the science of motion without regarding the forces

that cause it [64]. A thorough treatment of the kinematics related to the PhantomX is available at [14],

[67]. The purpose of this section is merely to highlight some of the considerations of kinematics

germane to this study, as well as defining terminology utilized in this regard.

3.2.2.1 Link Descriptions

As described in Section 3.1.2, the legs of a walking robot are made up of various rigid body segments

connected in a chain by joints. Each of these segments is referred to as a link [64]. From a

mathematical perspective, Craig [64] describes a link to be considered only as a rigid body defining

“the relationship between two neighbouring joint axes” in a kinematic chain. Each joint axis is defined

by a line in space, and, for any two axes in three-dimensional space, there exists a line that is mutually

perpendicular to both axes. This mutually perpendicular line always exists and is unique, except in the

case of the two axes being parallel. For the mathematical model of a kinematic chain, the links are

defined by these mutual perpendiculars between the joint axes.

Thus, the link length is determined as the length of this line connecting the joint axes, regardless of

the geometry of the actual body which makes up a link. This is illustrated in Figure 3.12, where a

schematic of an arbitrary link between two joints is shown, along with the mutually perpendicular line

between them defining the link length. Clearly, the link line does not necessarily coincide with the

physical geometry of the link in space. It is important to keep this observation in mind for the

discussion on the kinematic parameters of the PhantomX, in Chapter 4. In the case of the last link of

a chain, the link length is generally defined from the last joint to a point on the end-effector. On the

PhantomX leg, the end point of interest is the tip of the foot, hence the last link line is projected out

to this point, which generally makes contact with the ground.

 Chapter 3: Background Theory

64

Figure 3.12: Schematic representation of an arbitrary link, showing the length of the link line mutually perpendicular to the
joint axes (adapted from [64])

The Denavit-Hartenberg (DH) notation, mentioned in Section 2.5.2, utilizes the link definition

introduced above, along with a few other parameters describing the relationships between

consecutive links and joints, to obtain mathematical descriptions, or models, of mechanisms. The

derivation of such a kinematic model, using DH notation, for the PhantomX can be found at [14], [67].

3.2.2.2 Kinematic Description Mappings

For a mechanism forming a kinematic chain, the position of its end-effector can be represented in

three different ways. One method of specifying the positions of all the links, for a mechanism having

𝑛 degrees of freedom, is with a set of 𝑛 joint position variables, in the form of an 𝑛 × 1 joint vector

[64]. The space encompassing all such joint vectors is referred to as joint space.

By using a kinematic model of the chain, such as that touched on above, the position of the

end-effector, specifically the position of the foot in the case of a robot leg, can be computed from the

joint space description relative to an orthogonal, or Cartesian, coordinate system. Accordingly, such a

description of the kinematic chain is said to be in Cartesian space, sometimes referred to operational

space, task-orientated space, or simply task space [64].

Before being able to use the joint positions to determine the Cartesian space description, however, it

is necessary to consider how those joints are actuated. Kinematic joints are hardly ever actuated

directly. In some cases, two actuators could work together in a differential pair to impart motion to a

single joint, while another possibility is to use a linear actuator to rotate a revolute joint through the

motion of a linkage [64]. Even if electric motors are used as rotational joints, the angular position

 Chapter 3: Background Theory

65

values of the motor outputs do not necessarily coincide with those of the joints, as defined in the

kinematic model. Since sensory equipment generally measures the positions of actuators, this set of

values in actuator space makes up the actuator vector, from which the joint vector can be computed.

Figure 3.13 portrays the three different descriptions of a kinematic chain, with arrows indicating

mappings between descriptions in different spaces. The solid arrows represent forward mappings,

while dashed arrows indicate inverse mappings. Thus, in robotics the term forward kinematics

(mentioned a few times in Chapter 2) refers to the computation of the end-effector position, in

Cartesian coordinates, from joint position information (which usually also involves mapping from the

actuator vector to the joint vector). On the other hand, inverse kinematics, or IK, is related to

determining the joint positions, and subsequently the actuator positions, required to achieve a desired

end-effector position.

Figure 3.13: Mappings between kinematic descriptions – solid arrows indicate forward mappings, while dashed arrows
indicate inverse mappings (recreated from [64])

This background information (Section 3.2.2) facilitates the discussions in Section 4.3.1, which involve

some of the parameters required for the kinematic mappings used in controlling the motion of the

PhantomX.

3.3 Virtual Model of a Hexapod Robot
Based on the analysis of posture control techniques in Section 2.5, it was concluded that the Virtual

Model Control (VMC) strategy was the obvious choice to be implemented in this study, owing to its

effectiveness, simplicity and use of well understood, linear control laws.

Before proceeding with detailed discussions about the robotic platform and control related matters,

it will be valuable to introduce the basic theory of creating a virtual mathematical model for the

 Chapter 3: Background Theory

66

hexapod robot. An idea of the rationale behind VMC was given throughout Section 2.5, but it will be

explained more coherently here.

The basic premise of VMC is to treat the main body of the robot as a mass in free space and create a

model with virtual elements attached to it [11]. These virtual elements passively act to regulate the

body posture relative to a desired point, by applying the necessary restorative forces to it. As a result,

the mechanical characteristics of the elements can be freely chosen to obtain the desired dynamic

behaviour of the robot body. Then, to achieve this behaviour, the legs are controlled in a manner

which emulates the effects of the virtual elements on the robot body [6].

A vital assumption which underlies this approach is that the dynamics of the legs are insignificant

enough, when compared to that of the body, to allow them to be neglected in the model (but still be

used to apply control actions on the body). While, strictly speaking, this is not generally the case and

the leg motions can have a substantial effect on the body’s motion, in practice it is usually adequate

to cast these unmodelled dynamics off as disturbances to the system and have the control system

compensate for them. Considering the application, in most cases the simplicity and ease of

implementation resulting from this assumption far outweigh the small gains in accuracy that could be

obtained by exploring much more complicated methods, which do take the additional dynamics and

nonlinearities into account. This is evidenced by the numerous, successful implementations of the

technique presented in the literature.

Given that the virtual elements, and their mechanical characteristics, can be freely chosen in the

model, the question of what virtual elements to select arises. Although it is certainly possible to make

use of any mathematical model of an element which one desires, it is usually best to make use of

elements which represent physical components, as they provide a physical analogue to the virtual

model and often have well understood mechanical characteristics.

To this end, it is customary to make use of linear springs and dampers in the model. In particular,

translational spring-dampers are used for linear motion along axes, while torsional spring-damper

elements are employed for angular motion about axes. Since the robot body’s height above the

ground and orientation relative to the horizontal plane are commonly of interest in posture control

tasks, the translational spring-dampers are generally applied in the vertical direction, while torsional

spring-dampers are typically applied about the body’s roll and pitch axes.

The spring-damper elements are attached to the robot’s COM at one end, while the other end is

grounded such that, at the steady state, or static, position, the linear and angular displacements are

at the posture reference values, or setpoints. That is, the virtual elements impart the necessary forces

 Chapter 3: Background Theory

67

to restore deviations in the body posture from the setpoints, in accordance with the dynamic

behaviour they are designed to achieve.

A schematic, free-body diagram of a virtual model, as described above, is depicted in Figure 3.14. The

legs are indicated by dashed lines, to make it explicit that they are ignored in the model. Furthermore,

the full mass of the robot, 𝑀 (including the masses of the legs), is assumed to act at the COM, 𝐺, of

the main body, indicated in the diagram as a weight, 𝑀𝑔, where 𝑔 = 9.81⁡m/s2 is the gravitational

acceleration.

Figure 3.14: Free-body diagram of the virtual model of a hexapod robot

By taking the sums of force in the z-direction (Σ𝐹𝑧) and the moments about the x- and y-axes (Σ𝑀𝑥

and Σ𝑀𝑦), the following equations of motion describing the virtual model of the robot body are

obtained:

𝑀𝑝̈𝐺,𝑧 = Σ𝐹𝑧 ⁡⁡= −𝐾𝑧Δ𝑝𝐺,𝑧 − 𝐶𝑧Δ𝑝̇𝐺,𝑧

𝐼𝜙𝜙̈ ⁡⁡⁡⁡= Σ𝑀𝑥 = −𝐾𝜙Δ𝜙 − 𝐶𝜙Δ𝜙̇

𝐼𝜃𝜃̈ ⁡⁡⁡⁡⁡= Σ𝑀𝑦 = −𝐾𝜃Δ𝜃 − 𝐶𝜃Δ𝜃̇,

(3.28)

 Chapter 3: Background Theory

68

where 𝑀⁡⁡⁡ ≡ Mass of the robot,

 𝐼𝜙 ⁡⁡⁡≡ Moment of inertia about the x-axis (roll moment of inertia),

 𝐼𝜃 ⁡⁡⁡≡ Moment of inertia about the y-axis (pitch moment of inertia),

 𝑝̈𝐺,𝑧 ≡ Vertical acceleration of robot body,

 𝜙̈ ⁡⁡⁡⁡≡ Angular acceleration about x-axis (roll acceleration),

 𝜃̈ ⁡⁡⁡⁡⁡≡ Angular acceleration about y-axis (pitch acceleration),

 Δ𝑝𝐺,𝑧 ≡ Vertical displacement of robot body from the static position,

 Δ𝜙⁡⁡ ≡ Angular displacement about x-axis (roll angle) from the static position,

 Δ𝜃⁡⁡⁡ ≡ Angular displacement about y-axis (pitch angle) from the static position,

 𝐾𝑧, 𝐾𝜙, 𝐾𝜃 ⁡⁡≡ Virtual spring stiffness coefficients,

 𝐶𝑧, 𝐶𝜙, 𝐶𝜃 ⁡⁡⁡≡ Virtual damping coefficients,

and, as is commonly used throughout this dissertation, single and double overdots denote the first

and second time derivatives, respectively, of the symbols they modify.

A point to be noted (which will become important when using this model for control) is that since the

above equations have been derived for displacement relative to the static position, the robot’s weight

is compensated by the static load on the vertical spring. Hence, the gravitational force does not appear

in the mathematical model.

A further observation which can be made from Equations (3.28) is that by assuming the virtual

elements to be acting on the centre of mass of the robot, rather than some other point on its body,

the equations of motion of the three posture variables are decoupled, greatly simplifying the dynamics

for control. More specifically, each direction of motion can be treated as an independent, single

degree of freedom system, allowing for each control variable to be controlled individually.

Thus, these equations, describing the virtual model of the robot, provide the basis for determining the

forces which the controller will eventually be required to apply to the robot, to regulate its posture

with the desired dynamic behaviour. This will become more apparent in Chapter 6. In fact, it will be

seen that selecting the controller gains effectively boils down to specifying the desired mechanical

characteristics of the virtual elements used in the model derived above.

 Chapter 3: Background Theory

69

3.4 Interaction Control Methods in Manipulator Robotics
In Section 2.5 it was alluded to that most of the implementations of posture control in the literature

make use of joint torque control to achieve the desired foot forces, but that joint actuators do not

always offer the capability for torque control. This is especially prominent in commercially available

platforms, and it will become more apparent in Section 4.2 that this is indeed the case for the platform

used in this study.

Nevertheless, it is still necessary to be able to control the foot forces, and so other force control

methods are required to be explored, especially those that can attain force control by appropriately

controlling the motion of the leg. Given that a robot leg is kinematically equivalent to a manipulator,

it is applicable to look into motion-based, force-control methods used for manipulators. The

conceptual overview of such control methods in the remainder of the section is drawn from [68].

3.4.1 Interaction Tasks with Manipulators
Manipulator robots are increasingly required to operate autonomously in unstructured environments,

rather than just in extremely controlled environments which can be characterized and modelled very

well beforehand. It is thus quite discernible that utilizing purely motion control strategies, to handle

interactions between the robot and its environment, quickly becomes inadequate. During such

interactions, physical constraints are imposed by the environment on the geometric paths which the

end-effector may follow, a condition referred to as constrained motion. Inevitable modelling errors

and uncertainties may lead to escalation of the contact forces, ultimately resulting in potentially

unstable behaviour during the interaction or, eventually, even saturation of the joint actuators or

breakage of the object which the robot is handling.

Therefore, appropriate control strategies are required for the task of interaction of the robot with the

environment. Interaction control strategies can be classified into one of two categories: indirect force

control and direct force control [68]. The major distinction between the two techniques is that the

former modifies motion control based on measured forces, without closing a force feedback loop,

while the latter can achieve a desired contact force value, owing to the closure of a force loop [68].

Indirect force control schemes include compliance control (also referred to as stiffness control) and

impedance control, wherein the contact force is related to the end-effector position error through a

mechanical stiffness or impedance, the parameters of which can be adjusted as desired. A manipulator

operated with impedance control can be described by the dynamics of an equivalent mass-spring-

damper system, for which the contact force acts as an input.

On the other hand, direct force control strategies involve explicitly regulating the contact force to a

desired value, rather than managing the motion of the manipulator under the influence of external

 Chapter 3: Background Theory

70

forces. When the environment model is known in detail, a commonly employed strategy in

manipulators is that of hybrid position/force control, which attempts to control position in the

unconstrained task directions while purely controlling force in the constrained directions. However,

detailed models of the environment are usually unavailable, and in such cases inner/outer

motion/force control strategies can be useful, in which a force control loop encloses the inner motion

control loop of the manipulator [68]. Thus, in addition to feeding the desired contact forces in the

constrained directions to the outer force control loop, it is also possible to provide the desired end-

effector motion as input to the inner loop. This results in a parallel control composition of both force

control and motion control actions, with force control dominating motion control along constrained

task directions.

At this stage, it is worth mentioning that a comprehensive examination of the modelling of

manipulator dynamics, as well as detailed derivations of motion and force control strategies, is not

really relevant to this study and will thus not be presented. Instead, a brief, conceptual overview of

the various control techniques mentioned above will be given, to provide an idea of the methodologies

followed for solving interaction control problems. Details of the applied solutions will be elaborated

when discussing their implementation on the robot used for this study in Chapters 6 and 7.

3.4.2 Indirect Force Control
When a manipulator is controlled to achieve a desired end-effector position, by means of proportional

control action on the position error, the presence of a contact force results in the manipulator not

attaining its desired position. At steady state, this type of proportional, feedback control results in the

manipulator behaving like a generalized spring [68], as it exhibits a position offset proportional to the

applied force. Thus, such a control approach offers active compliance (hence the name compliance

control), or compliant behaviour during interaction, rather than completely rigid motion.

Compliance control is designed only to deliver a specified static behaviour during interaction, with no

ability to specify or influence the transient motion of the manipulator. For dynamic behaviour, mass

and damping must also be included besides stiffness, resulting in impedance control. In manipulators,

such active impedance is usually achieved by using inverse dynamics based motion control, which

determines the required actuator control inputs by taking into account the full dynamics of the

manipulator, including the effects of contact forces on the end-effector’s acceleration. At steady

state, the resultant behaviour of the manipulator is analogous to that obtained with the compliance

controller, with the incorporation of mass and damping into the impedance model only affecting the

dynamic behaviour of the end-effector during interaction with the environment.

 Chapter 3: Background Theory

71

However, merely using impedance control in this manner, for the motion control, typically results in

inadequate trajectory tracking in free space, as the presence of even small disturbances to the

end-effector’s acceleration could result in undesirably large deviations from the desired trajectory. A

potential remedy to this problem is to specify the impedance properties such that a low

mass-to-stiffness ratio is obtained, resulting in relatively stiff behaviour of the manipulator.

Unfortunately, the drawback of this is often that it directly conflicts with the desire of compliant

behaviour from the impedance controller, especially when the manipulator interacts with a rather stiff

environment.

For this reason, the actions of motion control and impedance control are usually separated. The

motion control action is deliberately made “stiff” to ensure satisfactory disturbance rejection, but

instead of tracking the desired end-effector position it acts to track a reference position provided by

the impedance controller, without accounting for how motion will be affected by contact forces. In

effect, the impedance controller uses the desired position as input, with feedback of the contact forces

and suitable integration of the acceleration and velocity components, to generate a position reference

to be used by the motion controller.

The resulting control structure consists of an inner motion control loop and an outer impedance

control loop, as illustrated in the high-level, conceptual block diagram in Figure 3.15. The impedance

properties are selected to ensure an equivalent mass-spring-damper behaviour is obtained by the

position displacement between the desired position and reference position for the motion controller,

rather than by the actual motion of the end-effector.

Figure 3.15: High-level block diagram depicting typical impedance control structure in manipulators (recreated from [68])

 Chapter 3: Background Theory

72

3.4.3 Direct Force Control
The methods of indirect force control through motion control described above limit the contact force

values during interaction with the environment, rather than ensuring precise control of desired

contact forces, despite the need for force feedback. However, certain interaction tasks do require that

precise contact forces are obtained. For such cases, a different approach can be taken to design a

direct force control scheme, which acts to diminish the error between the desired and measured forces

[68]. This is accomplished by closing an outer force control loop which generates the reference input

for the manipulator’s motion control system, thus regulating the contact force to a desired value.

It should be noted that while indirect force control methods, such as impedance control, generally

operate in the manipulator’s unconstrained directions, simply reacting to forces resulting from

interaction, precise force regulation is usually required in constrained directions of motion.

Similar to the case of impedance control, the task of the outer force control loop is to provide a

position displacement, or offset, by which the reference position for the inner motion control loop

can be adjusted. To this end, the position offset can be computed through proportional-integral (PI)

control action on the force error. The integral action ensures that, at steady state, the contact force is

equal to the desired force, while the proportional action is utilized to improve the transient behaviour

during interaction.

Since regulation of the contact force takes place in the manipulator’s constrained directions, it

overrides the control of the end-effector’s motion. As described earlier, in order to retain motion

control along the unconstrained task directions, a parallel control approach is generally taken, such

that position adjustments are only made for directions in which the force error acts (constrained

directions), while position tracking in unconstrained directions remains unaffected. Although, in

manipulators this usually requires some redefinition of the integral control action, to provide the

inverse dynamics based motion controller with appropriate velocity and acceleration adjustment

values in the constrained directions as well. Further details of this composition will not be discussed

herein.

A high-level, conceptual block diagram of a typical direct force control structure for manipulators is

presented in Figure 3.16. This diagram depicts a parallel composition of motion and force control for

the manipulator. Signals without labels are identical to those in Figure 3.15.

 Chapter 3: Background Theory

73

Figure 3.16: High-level block diagram depicting typical direct force control structure in manipulators (recreated from [68])

3.4.4 Final Note on Motion-Based Force Control
It is worthwhile, at this point, to mention that generally the inverse dynamics based motion controllers

used on manipulators generate torque reference points as input to the actuators. This might suggest

that the methods discussed in the preceding sections are no more useful to a robot with position

controllable actuators than the torque control methods utilized in most legged robot literature.

However, it is important to realize that for purely torque control based methods usually found in

legged robot literature, the desired outputs of the robot, in the task space, are directly converted into

the joint space, using the leg Jacobian, and used to calculate the actuator inputs (joint torque

reference values). Thus, torque controllable joints are necessary to achieve the desired motion and

forces.

On the other hand, the methods discussed above do not directly calculate torque inputs, but rather

focus on relating the desired interaction behaviour to the necessary motion which would achieve this.

Thus, the force control loops operate purely in the task space, generating the necessary inputs to the

robot’s motion control system, which then attempts to achieve this desired motion, producing the

desired force or dynamic behaviour as an effect of the motion. In theory, this means that the errand

of interaction control can be separated from the method of motion control utilized, regardless of

whether that is based on controlling joint torques or positions. Of course, in practical application some

additional considerations are required to be made to implement such methods together with different

motion control techniques.

 Chapter 3: Background Theory

74

Nonetheless, the deduction to be made from this discussion is that the interaction control techniques

described above are indeed important to consider, and they do indeed provide meaningful insights

for attaining force, or interaction, control with robots having purely position-based motion control

capabilities.

3.5 The Robot Operating System (ROS)
Chapter 2 provided a flavour of the complexities involved in robotic control and tasks involving

autonomous behaviour. These complexities extend further out across the entire spectrum of robotic

and autonomous systems development. Tasks required to create an autonomous, robotic system

range from the lowest level of hardware-software communication, through various layers of sensory

feedback and motion control hierarchies, all the way up to high-level challenges such as environmental

perception, planning and navigation, each of which presents its own set of difficulties. Needless to

say, the creation of software to address these problems and achieve the level of autonomy required

of robots is no trivial undertaking. This is where the Robot Operating System, or ROS, comes into the

picture.

3.5.1 A Brief History of ROS
ROS was designed to bridge the gaps between individual solutions created to solve the large multitude

of problems faced in robotics. While various laboratories or research groups are able to focus on

specific aspects of robotic development, it goes without saying that no single individual, laboratory,

or institution can tackle the entire range of issues on their own [69]. For this reason, ROS was created,

from the ground up, to facilitate collaboration in the development of robotics software. The resulting

system is a flexible framework for writing complex robot software, which includes conventions and

software utilities that assist in the creation of robust capabilities required on a multitude of robotic

systems [69].

Before ROS was formally originated, the idea behind such a system began with numerous efforts at

Standford University in the mid-2000s, to create prototypes of flexible and dynamic robotics software

systems, primarily for application to their in-house robotics research programmes [70]. Willow

Garage, which was a California-based robotics incubator, took on the task of extending these concepts

further and creating well-tested implementations, as part of their Personal Robotics project, and so

the entity of ROS was born in 2007.

Over the next few years, the framework went through many iterations of design and implementation

concepts at both Willow Garage and Stanford [70]. The core ideas and fundamental software packages

of ROS gradually took shape through development by a large number of contributors, until eventually

the first distribution of ROS was released in 2010, with many of the components and application

 Chapter 3: Background Theory

75

programming interfaces (APIs) that still make up the current framework today. From the beginning,

ROS software development took place under the permissive BSD open source license, at multiple

institutions, and for a variety of robots. Over time, ROS has been adopted by much of the robotics

research community, growing into a widely-used platform with tens of thousands of users around the

world, utilizing ROS in a range of domains from hobby projects to large, industrial automation systems.

With a core philosophy in ROS being to promote collaborative development of generic software

components, the entire framework has been designed to be as modular and distributed as possible

[71]. The modularity gives users the option to utilize as many or as little of the components of ROS

they require, while easily being able to integrate the framework into their own projects. A distributed

nature also means that users can leverage the enormous number of packages, made available by the

huge community, as well as being able to easily share their own packages for others to use. The

integration point of solutions built by the ROS community on top of a common infrastructure offers

users many useful features, ranging from drivers for hardware to functionalities universally required

on robots, and even tools that assist software development [71].

3.5.2 Fundamental Features and Core Components
Although referred to as the Robot Operating System, ROS is in fact a meta-operating system for the

robot, which runs in the operating system of the computer or machine on which it is being used.

Currently, only Unix-based platforms are supported, with ROS software being primarily developed and

tested on Ubuntu and Mac OS X systems, although the community does also provide support for some

other Linux platforms [72].

For a robotic system, ROS provides the services expected of an operating system, including hardware

abstraction, low-level device control, message-passing and communication between processes, and

implementation of commonly used functionality, among others [72], [73]. These services are carried

out across a peer-to-peer network of ROS processes, referred to as the Computation Graph. This

Computation Graph, sometimes referred to simply as the Graph, could run on a single machine or be

distributed across multiple machines, in a network of interconnected computers, robots, and other

applicable devices.

Processes or programs made to run in ROS can be written in a variety of programming languages,

through the use of the related client libraries [74]. The ROS client libraries are collections of code which

make many of the ROS concepts and functionalities available to the programmer, in their language of

choice. Currently, the main languages for which robust support for ROS is focussed on are C++ and

Python, with the associated client libraries for these languages being roscpp and rospy, respectively.

Of these two, roscpp is the most widely used and acts as the high-performance library for ROS. On the

 Chapter 3: Background Theory

76

other hand, rospy is geared towards taking advantage of the object-oriented, scripting nature of

Python, promoting implementation and development speed over runtime performance.

Detailed, technical information about the components which make up ROS programs can be found at

the ROS Wiki [75], along with comprehensive examples and tutorials for writing software to run in

ROS. In the remainder of this section, the basic features and concepts will be introduced and briefly

described, in order to facilitate the explanations about ROS-specific implementations of the software

written in this study. In essence, the overview below acts as a glossary of ROS-related terminology

that is used throughout the remainder of this dissertation.

Firstly, software in ROS is organized into packages [76]. Packages are the most elementary items which

can be built and released in ROS, with the idea being that they provide a usefully organized collection

of resources that deliver a particular function or solution. Some examples of resources that can be

contained within packages include ROS runtime processes, ROS-dependent libraries, datasets, and

configuration files.

As discussed above, the actual runtime processes in ROS run as part of the Computation Graph.

Processes and data are provided to the Graph and communicated across it in various ways. These

various concepts, which make up the Computation Graph, are the most pertinent to the discussions

of software written for ROS in this study, and are thus elaborated below [76]:

• Nodes – These are the actual runtime processes referred to above, which perform

computations and are written using the client libraries. Since ROS is designed to be highly

modular, nodes are generally written to carry out very specific tasks and be as “lightweight”

as possible, with robotic control systems typically comprising of many nodes.

• Master – The ROS Master acts as a “nameservice” in the Computation Graph, providing name

registration and lookup to the rest of the elements of the Graph. Nodes communicate with

the Master, reporting registration information for their topics and services (see below),

allowing for nodes to find, and communicate with, each other.

It should be noted that nodes only communicate with the Master for lookup information,

connecting directly to other nodes when sending, or receiving, information to, or from, them.

• Parameters and the Parameter Server – The Parameter Server, currently part of the Master,

provides a central storage point for data, known as parameters, to be stored during runtime.

Parameters can be accessed by nodes, or even users via the command line, at any time and

can include any useful data such as robot platform information, configuration properties,

hardware and software settings, and controller properties, to give just a few examples.

 Chapter 3: Background Theory

77

• Messages – Communication between nodes is accomplished by passing messages to each

other. A message is effectively a data structure, comprising of fields of specific data types. The

most basic messages represent standard, primitive data types, such as integers and Booleans,

as well as arrays of these types. More complex messages are created as arbitrarily nested

structures of these basic types and arrays.

• Topics and the Publish / Subscribe Model – A topic is a unique name used to identify the

context and relevance of the content of a message. Messages are routed across the Graph

using publish / subscribe semantics, in which a node sending out a message publishes it to a

given topic, while nodes requiring particular kinds of data subscribe to the appropriate topics.

A single topic may have multiple, concurrent publishers or subscribers, while a given node

may publish and subscribe to multiple topics. The model is designed to separate entities that

generate information from those that utilize the information, and so publishers and

subscribers are generally unaware of each other’s existence. This enhances the modular

architecture of ROS and allows for complex systems to be built up more easily.

As an example, one could consider the case of a sensor driver, which would simply publish the

relevant sensory information over a particular topic, while any nodes which require this

information would subscribe to the topic. This way, the driver is not dependent on how the

nodes use the information, or even, in fact, on the presence or existence of nodes in the

system which utilize this information. Furthermore, the nodes could be written such that they

are independent of the method in which sensory information is obtained from hardware, or

possibly even independent of the particular hardware or sensors used, as the nodes are only

interested in the resulting information which comes through on the topic.

• Callbacks – In order for nodes to be able to use the messages published on topics they are

subscribed to, callback functions are required to be written and linked to the appropriate

subscribers in the node’s source code. When a message is published over a topic, ROS calls

the associated callback functions of the subscribed nodes, passing the message into the

callbacks as an input, and loading the callbacks onto their nodes’ callback queues, for

processing. A callback defines how the contents of a message should be handled, with most

callbacks often simply copying the message contents over to local data structures in the node,

to be used at a later stage of computation within the node.

In roscpp, callback queues are processed by spinners, with a variety of spinning models

available that offer the user with options between single- or multi-threaded spinning, as well

as blocking or non-blocking spinning. More details can be found at [77].

 Chapter 3: Background Theory

78

• Services – Although the publish / subscribe model offers many advantages, its many-to-many,

one-way transport methodology is not suitable for request / reply interactions, which can

often be required in distributed systems. In ROS, these types of interactions are facilitated via

services, which are similar to messages but are defined as a pair of message structures,

specifying the data for both the request and the reply. Similar to the case of topics, a service

is offered by a node under a unique name, and client nodes make use of the service by sending

out a request message and awaiting the providing node’s reply.

From a coding perspective, this functionality is usually exposed to the developer by the client

libraries in a manner that emulates a remote procedure call.

• Bags – ROS bags represent collections of stored message data, in a ROS-readable format.

Message data can be saved in bags by recording the necessary topics. These stored data can

then be inspected, analysed, and even played back in ROS to simulate the presence of the

publishing nodes during development and testing.

A schematic diagram, illustrating the basic concepts of inter-node communication in ROS, is presented

in Figure 3.17.

Figure 3.17: Schematic diagram illustrating basic concepts of inter-node communication in ROS [76]

79

Chapter 4: Description of Robot

Platform

In this chapter the specific hexapod robot platform used in this study will be introduced and discussed,

in detail. Existing sensors will be given an overview, while the new foot force sensors incorporated

onto the platform will be presented. Furthermore, the ROS software utilized for locomotion and

sensor feedback will be elaborated upon, serving as a basis for the discussions on digital

implementation of the designed control systems, which will follow in later chapters.

4.1 PhantomX MK-II Hexapod Robot
In Chapter 1 it was stated that the PhantomX MK-II hexapod robot [15], introduced in Section 2.3.3

(see Figures 2.8 and 4.1), forms the basis of the robotic platform utilized in this study. This is the

second generation of PhantomX hexapods distributed by Trossen Robotics. The PhantomX MK-II was

originally chosen by Lubbe [14], based on a trade-off study comparing it to other commercially

available hexapods, and acquired by the TSO unit of the CSIR for research purposes.

Figure 4.1: PhantomX MK-II hexapod robot - front view [15]

 Chapter 4: Description of Robot Platform

80

4.1.1 Original Hardware
It can be seen in Figure 4.1 that the PhantomX MK-II, constructed primarily from Plexiglas [15], has a

rectangular body structure with an extended middle. In addition to the central legs being shifted

outward, the front and back legs are mounted at 45° angles to the longitudinal plane of the body. An

arachnid type leg configuration is used for the legs, each of which have three DOF, resulting in a total

of eighteen DOF for the robot.

Each leg joint is actuated by Dynamixel AX-12A hobby-class servo motors [78], which have a nominal

operating voltage of 11.1 V and are able to provide feedback of angular position, angular speed,

temperature, load, and input voltage. While the AX-12A servos can be controlled with respect to either

position or speed, offering an optional “wheel mode” which allows the servos to spin freely, it should

be noted that these actuators do not provide any direct torque control functionality. On the hexapod,

the actuators are powered by an 11.1 V Lithium polymer (LiPo) battery, mounted in between the lower

and upper plates of the main body.

Compared to most hexapod platforms used for research, for example [7]–[10], [13], [24], [35], [36],

[42], this robot is relatively small, with the main body being approximately 260 mm long and 200 mm

wide. The platform also has a relatively low mass of approximately 2 kg.

Three kit options for the PhantomX MK-II were offered by Trossen Robotics during its production run,

namely Barebones, No Servos, and Comprehensive [15]. All but the Barebones kit included the

necessary electronic components to operate the robot. The Comprehensive kit was procured by TSO

for research.

A central component of the electronic system is the ArbotiX-M Robocontroller from Vanadium Labs

[79], an Arduino compatible microcontroller developed specifically for controlling Dynamixel servo

motors and running locomotion software for hobby-class legged robots. The ArbotiX-M

Robocontroller is displayed in Figure 4.2.

Figure 4.2: ArbotiX-M Robocontroller from Vanadium Labs [79]

 Chapter 4: Description of Robot Platform

81

Another principal piece of hardware included with the electronics is the ArbotiX Commander, a

hand-held, gamepad style controller which uses an XBee radio communication module to wirelessly

control ArbotiX powered walking robots [80]. Figure 4.3 shows the ArbotiX Commander.

Figure 4.3: ArbotiX Commander – wireless controller for ArbotiX powered walking robots [80]

Updates to the hardware system used in this study are discussed in Sections 4.3.1 and 4.4.

4.1.2 Original Software
Vanadium Labs have developed open source locomotion software called NUKE (an acronym for Nearly

Universal Kinematics Engine), which generates inverse kinematics and gait engines for a variety of

legged robot configurations [15]. While NUKE is the official software offered, maintained, and

supported by Trossen Robotics for the PhantomX MK-II, an alternative, open source firmware package,

referred to as the Phoenix Code, is also available and can be used with the PhantomX hexapods,

among other legged robots [81]. The Phoenix Code is a more advanced kinematics engine, providing

an assortment of walking gaits and robot motion features. In fact, most of the original software which

made up the Phoenix Code was based on kinematics work done by Zenta [81], who was introduced in

Chapter 2. Lubbe [14] made use of this locomotion software, on the ArbotiX-M Robocontroller, for

the PhantomX.

However, in this study, the software system was overhauled completely. Details about the upgraded

software are discussed in Section 4.3 below.

4.2 Sensory System
As discussed in Section 2.3.5, the sensory system of a mobile robot platform is of great significance

and essentially determines its capabilities. More specifically, it was concluded in Section 2.3.5.2 that

the task of posture control of a hexapod requires a suitable proprioceptive sensory system. Lubbe [14]

initially outfitted the PhantomX with such a system of sensors for the purpose of testing a state

 Chapter 4: Description of Robot Platform

82

estimation algorithm with the hexapod. In addition to the position feedback built into the joint

actuators, an IMU and foot contact sensors were incorporated into the robotic platform.

While the majority of this sensory system was suitable for use of posture control in this study, the foot

contact sensors were required to be replaced by more capable force sensors. Hence, only a brief

description of the joint position sensors and IMU will be given below, followed by a discussion on the

integration of new force sensors on the robot’s feet.

4.2.1 Joint Position Sensors
The angular positions of the leg joints are determined from the position feedback provided by the

Dynamixel AX-12A joint actuators (shown in Figure 4.4). In “joint mode” these servo motors have an

operating range of 300° at a resolution of 0.29° [78]. The angular position is represented digitally by a

2-byte integer and can take on values in the range of 0 – 1023 (mapping to 0° – 300°), for both goal

and feedback positions, as illustrated by the diagram in Figure 4.5.

Data such as goal and feedback positions are stored in registers of the Control Table of the built-in

microcontroller inside the Dynamixel servo [78]. This Control Table is made up of an EEPROM

(electrically erasable programmable read-only memory) area and a RAM (random-access memory)

area. Data in the EEPROM area remains stored even when the servo is powered off and includes the

servo’s identifier (ID) number, along with other servo information and settings. On the other hand,

data registers in the RAM area are reset to an initial value when powering on the servo. Examples of

information stored in the RAM area include position or speed instructions, as well as feedback

measurement values.

A noteworthy advantage of the AX-12A’s angular position feedback, pointed out by Lubbe [14], is that

the resistive potentiometer which measures angular displacement is mounted on the output shaft of

the actuator, rather than on that of the motor (before the gearbox). The result is that the actual output

of the actuator is used for feedback, accounting for factors such as play in the gearbox, which affect

the motion of the actuator.

Figure 4.4: Dynamixel AX-12A servo motor used as joint actuators for the PhantomX MK-II [78]

 Chapter 4: Description of Robot Platform

83

Figure 4.5: Mapping between angular output and digital position values of AX-12A servo motor

4.2.2 Inertial Measurement Unit
For inertial sensing, the PhantomX platform was equipped by Lubbe [14] with a LORD MicroStrain®

3DM-GX3® -25 miniature Attitude Heading Reference System (AHRS) (see Figure 4.6). The

3DM-GX3® -25 combines a triaxial accelerometer, a triaxial gyroscope, a triaxial magnetometer, and

temperature sensors, along with an onboard processor running a sensor fusion algorithm to provide

orientation and inertial measurements [82]. The inertial measurements are fully calibrated and

include acceleration, angular rate, magnetic field, deltaTheta, and deltaVelocity vectors, while the

computed orientation estimates can be output as Euler angles, a rotation matrix, or a quaternion, at

rates of up to 1000 Hz [82].

Figure 4.6: LORD MicroStrain® 3DM-GX3® -25 miniature Attitude Heading Reference System [82]

 Chapter 4: Description of Robot Platform

84

Having such extensive measurement capabilities, the 3DM-GX3® -25 AHRS is effectively a combination

of an IMU and a heading sensor. At this point, the astute reader may point out that heading sensors

such as the magnetometer in the 3DM-GX3® -25 are, in fact, exteroceptive sensors, as they depend

on the Earth’s magnetic field for heading measurements. However, the magnetometer measurements

were neither used by Lubbe [14], nor will they be used in this study, relying only on measurements

made by the IMU and thus adhering to the choice of proprioceptive sensing.

4.2.3 Foot Force Sensors
In the study by Lubbe [14], FlexiForce™ A201 force sensors were used on the feet to determine their

ground contact status. Although they were used only in a binary, on-off fashion, to determine whether

or not there was contact, these resistive sensors have the ability to measure forces up to 100 N, as

their resistance decreases with increasing force applied to them. However, the accuracy and

robustness of these sensors were simply insufficient for continued use on the hexapod, especially for

the task of posture control. In fact, the sensors on most of the feet had already incurred significant

damage and were splitting apart at the onset of the current study, having not managed to hold up to

the impact between the robot’s feet and ground, during walking motions in the study by Lubbe [14].

For these reasons, it was necessary to equip the robot with new force sensors which would be more

appropriate for the application.

4.2.3.1 OptoForce 3D Force Sensors

Accurate and sensitive foot force measurements are required for posture control, while the sensing

equipment used is required to withstand the cyclical loading and striking impacts experienced by the

feet throughout walking motion. Taking these factors into account, 3D optical force sensors from

OptoForce were selected for use on the PhantomX.

These OptoForce 3D sensors measure force magnitudes in three axes and are developed primarily

with robotics applications in mind, especially geared toward low budget research programmes [83].

While traditional force sensing technology, such as strain gauges, can be limiting for robotics use, due

to bulky construction, inadequate robustness, and high costs, among other factors, the unique design

of OptoForce’s optical, silicon based force sensors addresses just these issues [84].

OptoForce sensors make use of a single deformable structure, made of silicon, to measure forces in

all three axes [84]. A photodiode is located within the structure, emitting light onto a reflective layer

on the underside of the sensing surface. By measuring the reflection of the light as the silicon surface

deforms, both the magnitudes and directions of the imparted forces can be reconstructed. This

effectively decouples the sensing elements from the contact surface, greatly improving robustness

and reliability of the sensor, which is able to withstand overloading as high as 200% of the nominal

 Chapter 4: Description of Robot Platform

85

capacity. Furthermore, the silicon materials used by OptoForce have Shore A hardness ratings

between 50 and 87, making them as abrasion resistant as typical shoe heels2.

The design also results in a compact sensor, which measures the necessary forces without adding

unnecessary bulk and weight to the robotic platform. Figure 4.7 illustrates the construction of an

OptoForce 3D sensor with a semi-spherical contact surface, like the ones used on the PhantomX.

OptoForce also offers flat-top sensors, but these are only available for nominal capacities of 100 N and

larger [85].

Figure 4.7: Construction of semi-spherical OptoForce 3D force sensor [84]

Semi-spherical 3D force sensors are available from OptoForce, as standard, in nominal capacities of

10 N, 40 N, and 100 N [85] (the 40 N sensor is used in this study). Considering that only statically stable

walking will be utilized in this study, the robot’s weight is expected to be supported by at least three

legs at all times. Since the PhantomX platform weighs approximately 20 N, if the weight is distributed

more or less evenly among at least three legs, the load on each foot is not expected to exceed about

7 N, which might suggest that 10 N force sensors would be appropriate for the application. However,

it is important to take into account that, especially on uneven terrain, a situation may arise in which

one or more feet do not have a foothold on the ground, resulting in the entire weight being briefly

loaded onto only one or two of the legs. Even in the case of three legs supporting the robot, the weight

may certainly not be distributed evenly, possibly resulting in more than 10 N of load being supported

by a single foot.

Another factor to consider, which is perhaps even more pertinent, is that the robot’s weight is hardly

ever supported in a steady state manner. As the robot walks, the legs constantly switch between swing

and stance phases, resulting in large forces being experienced by the feet when touching down onto

the ground. This is particularly pronounced during uneven terrain walking, as a foot may strike into an

obstacle, or slightly elevated section of terrain, earlier in the swing phase than expected, inducing a

2 More information on the Shore hardness scale can be found at [124].

 Chapter 4: Description of Robot Platform

86

high-speed impact (and thus significantly larger force) onto the foot than in the case of just supporting

a portion of the robot’s weight while standing. Not only should the force sensor be able to measure

these larger forces, but it should also be able to withstand these large impacts and overloads without

incurring damage. Although the 10 N sensor would be able to handle up to 20 N of overload, the

considerations above suggest that in certain situations a foot may instantaneously experience even

larger forces, and the sensor should be sufficiently robust to withstand them. It is thus apparent that

the 40 N 3D force sensor is the appropriate choice for use on the PhantomX, in terms of both sensing

capacity and robustness.

An option which was offered by OptoForce during personal e-mail communication with a Product

Consultant at OptoForce, in February 2016, was to custom manufacture semi-spherical, 3D force

sensors with a nominal capacity of 20 N, if required. However, it was advised that the cost per sensor

would be significantly higher and assured that that the accuracy and reliability of the 40 N sensor

measurements would be more than sufficient for the application, even at loads much smaller than the

nominal capacity, owing to the full-scale nonlinearity not exceeding 2 – 3%. This discussion affirmed

the choice of the 40 N nominal capacity force sensors, and they were thus procured by TSO, not only

for this study, but also for future research to be conducted using the PhantomX robotic platform.

The OptoForce 3D force sensor, model OMD-20-SE-40N, which is utilized in this study, is depicted in

Figure 4.8 with the coordinate frame in which forces are measured. Having a semi-spherical contact

surface means that the sensor can only measure compressive forces in the z-direction, with a nominal

capacity of 40 N, while both magnitudes and directions of forces in the xy-plane can be measured with

nominal capacities of ± 10 N (i.e. 10 N in either direction of applied force) [83]. Furthermore, typical

deformations of the contact surface at nominal capacity are 2 mm in the z-direction and ± 1.5 mm in

the xy-plane, with the diameter of the semi-sphere being 20 mm.

Figure 4.8: Model of OptoForce 3D force sensor (OMD-20-SE-40N), indicating coordinate frame of measured forces [83]

 Chapter 4: Description of Robot Platform

87

According to the product datasheet [83], the OMD-20-SE-40N sensor exhibits a full-scale nonlinearity

value of 2%, in both the z- and xy-directions, and has measurement resolutions of 2.5 mN and 2 mN

in the z- and xy-directions, respectively. The sensors also feature low crosstalk and hysteresis values

of <5% and <2%, respectively, and can operate in temperatures between -40 °C and +80 °C. In addition,

the sensors have an IP65 rating for being dust and water proof, further increasing their robustness.

Data acquisition (DAQ) units are supplied with the sensors, with each DAQ having the capacity to

connect up to four sensors, which cannot be detached from the DAQ [83]. A variety of interface types

can be used to communicate with the DAQ, including Universal Serial Bus (USB) and Ethernet (multiple

protocols supported), at sampling frequencies of up to 1000 Hz. More detailed information on the

OMD-20-SE-40N sensors can be found in the datasheet [83], attached in Appendix A-1.

While only six force sensors are required for the six feet of the PhantomX, a total of eight sensors were

acquired, for redundancy and future use. These eight sensors were supplied connected to two DAQs

(four sensors per DAQ), along with two USB cables (Mini Type B male to Type A male) and sensitivity

reports from the calibration process of each sensor (in the compressive z-direction only), which can

be found in Appendix A-2.

4.2.3.2 Force Sensor Testing

The force sensors are calibrated by OptoForce, at nominal capacity in the z-direction, before supplying

them. However, it was deemed appropriate to carry out a basic test of the sensors to evaluate their

accuracy across their measurement range and ensure that the sensitivity values provided by the

manufacturer are suitable for use.

This testing is reported comprehensively in Appendix A-3 and all test data are provided in Appendix

A-4. Based on the analysis of these results, it was concluded that the force measurements provided

by the OptoForce 3D force sensors, using the manufacturer provided sensitivity values for each sensor,

are repeatable, reproducible, and sufficiently accurate for use on the PhantomX robot platform.

4.2.3.3 Integration of Force Sensors onto Robotic Platform

Having determined the suitability of the OptoForce sensors for the PhantomX, it was necessary to

mount them to the robot’s feet. Since they could not be mounted to the original feet, new feet were

required to be designed and manufactured for the PhantomX MK-II, as discussed in Appendix B.

The newly designed foot can be seen attached to the PhantomX leg in Figure 4.9, with the OptoForce

sensor mounted. The two DAQs were mounted onto the main body of the hexapod (these can just be

made out in Figure 4.15).

 Chapter 4: Description of Robot Platform

88

Figure 4.9: Tibia segment of PhantomX with new foot and OptoForce sensor in contact with ground

4.3 Software
While the ArbotiX-M Robocontroller works well to control servos for locomotion of legged robots, it

becomes limiting when performing more advanced or complex tasks, such as hierarchical, closed-loop

control of the robot, which requires feedback of the servo positions (among other sensor data).

In the study by Lubbe [14], servo position feedback was also required for the state estimation. Given

that the servos were being controlled with the ArbotiX-M, it was necessary to modify the Phoenix

Code to read the “Present Position” RAM registers of the built-in microcontrollers in each of the

Dynamixel servo motors, at a set frequency. This array of servo positions was also required to be sent

via a serial communication link to a single board computer on the robot, which was used for data

acquisition of all the sensory feedback.

A significant issue which was encountered by Lubbe [14] was that the highest frequency at which the

servo positions could be read was 20 Hz. Attempting to request servo positions at any higher

frequency would start interrupting the robot’s motion, causing it to become intermittent and “jerky.”

 Chapter 4: Description of Robot Platform

89

Another factor contributing to the intermittent motion observed by Lubbe [14] was the amount of

data being transferred through the Arbotix-M to retrieve the servo positions. As a remedy, before

publishing them over the serial port, the servo position values were divided by four to reduce the

measurement range to 0 – 255, resulting in 256 possible values which could then be represented by a

1-byte integer, rather than the standard 2-byte integer used by the servos. Consequently, the position

feedback resolution was reduced by a factor of four (despite only reducing the size of the data being

transferred by a factor of two), while the accuracy of feedback was also affected by rounding the result

of the division, as an integer value was required.

For more advanced control tasks, these factors would undoubtedly be problematic. In addition to

reading servo positions, control commands would need to be communicated to the ArbotiX-M and

executed by the Phoenix Code. Having all this additional servo communication hamper the robot’s

motion would be of no use, while being confined to use small data types would limit the control

capability which could be achieved.

Furthermore, Trossen Robotics themselves declare that the Phoenix Code base is quite complex and

can be difficult to customize and integrate into other projects [81]. In personal communication, over

the Trossen Robotics Forum portal’s private messenger, in April 2016, Kevin Ochs also highlighted

some inadequacies with the Phoenix Code firmware, including a lack of consistent coding standards

and a poorly structured code base, with insufficient comments or algorithmic clarity.

It was evident from the above considerations that the ArbotiX-M Robocontroller and Phoenix Code

would not be suitable for this study. It was, therefore, decided to port the platform over to ROS for all

the locomotion and control. Some of the advantages of ROS were highlighted in Section 3.5, while

Section 2.5.3 introduced the locomotion software stack for ROS, available for hexapods such as the

PhantomX. ROS was thus a clear choice for bringing together the tasks of locomotion, sensor data

acquisition, posture estimation, and posture control for the robotic platform in this study.

4.3.1 ROS Locomotion Software Stack: hexapod_ros

The ROS hexapod locomotion software stack introduced in Section 2.5.3 is referred to as

hexapod_ros and can be found on GitHub at [17]. This software stack, coded in C++, is a

combination of various ROS packages, each dedicated to a particular function of the robot or aspect

of the firmware, which includes nodes that execute the main locomotion control and handle

communication with a wireless controller for teleoperation.

The main node, hexapod_controller, implements the gait and IK engines, as well as managing

servo communication for the joint actuators [17]. Currently, the gait engine only offers a sinusoidal

tripod gait (i.e. during walking, the trajectories of the swing legs are defined by sinusoidal curves)

 Chapter 4: Description of Robot Platform

90

which was chosen for its simplicity and smooth transitions between steps. Although it is unfortunate

that more gaits are not available, the tripod gait is sufficient for use in this study.

All the above functions were clustered into a single ROS node in order to achieve minimal servo

communication latency, keeping the gait smooth [17]. During the personal communication mentioned

above, Kevin Ochs also pointed out the low latency realized when communicating with the servos,

especially when using a USB2AX [86] serial communication device, which acts as a Dynamixel servo

interface over USB (see Section 4.4).

With regard to teleoperation, the hexapod_teleop_joystick node handles communication

between the remote controller and the hexapod_controller node via Bluetooth, translating

joystick commands into ROS messages, which act as control instructions for the

hexapod_controller node. This teleoperation node is primarily set up to make use of a

PlayStation® 3 (PS3) controller, but it can also be used with a PlayStation® 4 (PS4) controller.

As mentioned in Section 2.5.2, the hexapod_ros stack is agnostic to 3 DOF and 4 DOF hexapods.

This is achieved by defining the properties and settings for the hexapod being used in configuration

files and only loading these parameters into the locomotion node at runtime (via the ROS Parameter

Server). These parameter files, saved in the hexapod_description package, are defined in

YAML3 syntax and include properties related to the robot’s dimensions and kinematics, servo settings

and configuration, and gait engine settings such as walking speed and leg lift height, among others.

Although a parameter file is included as standard for the PhantomX MK-II, based on the work by Renée

Love (see Section 2.5.2), small measurement errors of the hexapod’s kinematics were noticed. In

addition to these dimensions which required correction, the tibia length (see link length description

in Section 3.2.2.1) of the PhantomX leg was required to be revised, taking into account the new feet

and force sensors. The dimensions in the PhantomX parameter file were accordingly updated for this

study.

Another property required to be updated was the “servo offset” value for each joint actuator. The

servo offset represents the angular position of the servo motor when the joint angles, relative to the

coordinate frames used in the kinematic model, are at 0° (see discussion on kinematic description

mappings in Section 3.2.2.2). Since the IK engine does not use DH notation to define the leg’s kinematic

model, the servo offset values used by Lubbe [14] could not be used directly with the hexapod_ros

stack. Figure 4.10 shows the configuration of the leg when the joint angles are 0° in the IK engine.

3 The acronym YAML originally stood for “Yet Another Markup Language,” but was later redefined as a
recursive acronym “YAML Ain’t Markup Language.”

 Chapter 4: Description of Robot Platform

91

Figure 4.10: Default PhantomX leg configuration for hexapod_ros IK engine, with offsets between link lines and servo

centre planes indicated for femur and tibia leg segments

It should be noted that the hexapod_controller node treats the centre position of the servo as

the reference, hence using a range of -150° – +150°, rather than 0° – 300°. For this reason, the coxa

servos have a servo offset parameter of 0°. Based on the figure above and the mounting of the servos

on the coxa and femur brackets, the servo offsets for the femur and tibia joints, relative to the centre

position of the servos, were calculated as follows:

𝐹𝑒𝑚𝑢𝑟⁡𝑠𝑒𝑟𝑣𝑜⁡𝑜𝑓𝑓𝑠𝑒𝑡 = ⁡−13.09°

𝑇𝑖𝑏𝑖𝑎⁡𝑠𝑒𝑟𝑣𝑜⁡𝑜𝑓𝑓𝑠𝑒𝑡⁡⁡⁡ = 13.09° + (90° − 45.49°) = 57.6°.
(4.1)

Furthermore, the walking parameters, such as initial foot positions, standing height, and leg lift height,

were updated to be more consistent with the default gait behaviour when using the Phoenix Code, as

the original hexapod_ros parameters resulted in a less natural walking motion. These settings were

determined through manual measurements made of the robot, when running on the Phoenix Code

(with the ArbotiX-M Robocontroller). Updating the initial foot positions also aligned the tibias to be

more perpendicular to the ground while the robot is standing up, allowing for virtually all of the

contact force to act along the z-direction of the force sensors (on flat terrain). The updated values of

all the parameters and settings discussed above are presented in Appendix C.

 Chapter 4: Description of Robot Platform

92

In order to control the robot’s locomotion with the hexapod_ros software, the necessary nodes

are required to be run in a ROS core. The Indigo Igloo distribution of ROS was used for this study, as

hexapod_ros was developed in this distribution and has full compatibility with it. ROS and the

necessary packages are installed and operated on a laptop computer running the Ubuntu 14.04

(“Trusty Tahr”), Linux-based operating system.

Having set up the robot platform for locomotion with ROS, it was necessary to also establish sensor

communication in ROS. The necessary drivers used for sensor feedback are outlined in the following

section.

4.3.2 Sensor Feedback in ROS
Minor modifications made to the hexapod_ros software to obtain servo position readings, along

with the ROS drivers used for IMU and force sensor feedback, are discussed separately in the three

sections that follow.

4.3.2.1 Dynamixel Servo Position Feedback

With servo communication being managed by the hexapod_controller node, servo position

feedback would be required to be established through this node. Originally, the node only reads servo

positions before making the hexapod stand up, in order to determine the current leg positions so they

can be brought to the correct initial positions (as they may have been manually moved since the robot

was last made to sit down, for example if the robot was lifted up and carried to a different location).

During walking, however, the current servo positions at any given iteration of the locomotion loop are

assumed to be equal to the position commands sent out in the previous loop iteration. Thus, rather

than feeding back the actual positions and controlling the legs in a closed-loop manner, the gait steps

are simply executed in an open-loop sequence. Furthermore, when the actual servo positions are read

in the beginning, they are requested sequentially over the serial port, one servo at a time, resulting in

a relatively slow read process when querying eighteen servos for their positions.

While not originally implemented in hexapod_ros, the USB2AX device does offer a synchronized

reading feature, referred to as “SYNC_READ” [87]. This function can be used to read data from multiple

Dynamixel servos at once, with one command, resulting in a significant boost in performance when

reading the same data values from a large number of devices. The USB2AX controller achieves this by

converting SYNC_READ commands into multiple, separate read commands to retrieve the necessary

data from each servo, then packing this data into a single packet which is sent back to the computer.

As a result, the effect of USB latency is decreased substantially.

Therefore, the ServoDriver class of the hexapod_controller package was modified to

include a ROS Timer object [88], which is set to execute its callback function every 0.01 s, in which a

 Chapter 4: Description of Robot Platform

93

readServoPositions function is called. The readServoPositions function was written to

set up the SYNC_READ instruction packet to read the “Present Position” RAM registers from the

servos. Once the result is received from the serial port, the individual servo position values are

extracted from the status, or return, packet and published as ROS messages (by calling another custom

function called publishServoPositions), for use by other nodes.

It should be noted that the locomotion engine was not updated to use the actual position feedback

for controlling the leg motions, as it was not originally coded to operate this way. Therefore,

considering how the gait engine was originally designed, simply feeding it the actual servo positions

would not even be very useful. In fact, attempting to use this feedback without making fundamental

changes to the motion control algorithm would result in undesirable behaviour.

In addition to modifying the locomotion code to execute timed SYNC_READs of the servo positions, it

was required to update the “Return Delay Time” EEPROM register of each servo, to ensure that the

data can be read fast enough from all the servos. This setting defines the delay time taken from the

transmission of an instruction packet until the return of a status packet [78]. It is represented by a

1-byte integer which can take on values from 0 to 254, with each data value corresponding to a 2 µs

delay time. The default value is 250, resulting in a 0.5 ms delay. If a SYNC_READ is attempted without

changing this value, each servo has a 0.5 ms delay before responding. In addition to blocking the serial

port and affecting the robot’s motion, this results in the SYNC_READ command timing out and no

servo position readings being received.

Therefore, to minimize the delay and ensure that the servo positions could be read at a frequency of

100 Hz, without affecting locomotion, the “Return Delay Time” registers were set to a value of 0 for

all eighteen Dynamixel actuators. While this should, in theory, result in no delay at all, Kevin Ochs

mentions (in a comment in the source code of the ServoDriver class [17]) that a value of 0 actually

results in a 1 µs delay time. However, this is still incredibly small and it was found that, using this

setting, the servo positions can be consistently read without negatively affecting the PhantomX’s

locomotion.

An important point to be noted is that the use of the USB2AX, with the above software modifications,

has allowed for servo positions to be fed back at a much faster rate and a considerably higher

resolution than when the ArbotiX-M Robocontroller was used. Specifically, the feedback rate has been

increased to 100 Hz, from just 20 Hz, while the full position measurement range of 0 – 1023 counts is

now usable, rather than only values in the range 0 – 255.

 Chapter 4: Description of Robot Platform

94

4.3.2.2 MicroStrain® Inertial Measurement Unit Feedback

The advantages of using ROS really start to shine through when looking at adding functionality to a

project. If the MicroStrain® 3DM-GX3® -25 IMU were to be used with another software framework, a

custom program would likely need to be written to establish serial communication with the sensor,

extract the necessary information and pass it onto the relevant control software. With ROS, however,

a driver is available for IMUs compatible with the MicroStrain® 3DM-GX2® and 3DM-GX3®

communication protocols.

This ROS driver is distributed as the microstrain_3dmgx2_imu package, which includes a

standalone driver and a ROS node [89], as well as a C++ application programming interface (API) for

advanced users who require lower-level access to the IMU [89]. The ROS node, imu_node, publishes

IMU data, including acceleration, angular rates, and orientation (in the form of a quaternion), over a

ROS topic, with additional topics also publishing diagnostic information and calibration status. ROS

services for IMU self-testing and gyroscope bias calibration are also provided, while a variety of IMU

settings can be adjusted via ROS parameters.

For this study, the microstrain_3dmgx2_imu package was installed on the Ubuntu system and

used to obtain orientation estimates from the IMU’s sensor fusion algorithm at the default driver rate

of 100 Hz.

4.3.2.3 OptoForce Foot Force Sensors Feedback

The OptoForce Data Visualization (ODV) software used for testing the force sensors provides a great

interface for visualizing and recording the force data, but offers no functionality for continuously

streaming that data to other programs for “live” use. Furthermore, while a variety of communication

interfaces and operating systems are supported by OptoForce for their 3D force sensors, the only

official ROS driver made available by them makes use of Ethernet communication with the DAQ. Since

it was preferred to utilize the USB interface, an alternative was required.

Fortunately, with ROS becoming so prevalent in the robotics industry, a number of third-party ROS

drivers are available for OptoForce sensors. One of the most prominent of these is the optoforce

package created by the Shadow Robot Company, which is made available by them on GitHub [90].

The driver is coded in Python, using the rospy client library for ROS integration, and communicates

with a variety of OptoForce sensors through USB by means of the “pySerial” library. YAML parameter

files are used to define the sensitivity values of the particular sensors in use, and the resulting force

measurements are published on individual ROS topics for each sensor. Other parameters, such as

sampling and DAQ filter frequencies, among others, can also be specified when launching the

optoforce node.

 Chapter 4: Description of Robot Platform

95

For the PhantomX, two separate optoforce nodes are launched, one for each of the two DAQs,

with the sampling and filter frequencies set to 1000 Hz and 15 Hz, respectively. Reasons for using this

sampling frequency will be elaborated in Chapter 6.

4.4 Other Hardware Required for ROS Integration
In Section 4.1.1 it was mentioned that updates were made to the hardware system of the PhantomX

in this study. The main reasons for this were related to the inadequacies of the Arbotix-M

Robocontroller and the use of ROS in this study, as discussed in the previous section. The primary

components incorporated into the hexapod platform are described below. In addition to these

components, the Arbotix Commander was replaced with a PS3 controller to provide user inputs to the

locomotion engine.

4.4.1 USB2AX Servo Communication Interface
As discussed above, servo communication is now established through USB using the USB2AX device.

The USB2AX has an extremely small form factor (16 mm × 36 mm) and plugs directly into a USB port,

connecting to the servo chain with a standard, 3-pin Dynamixel connector [86]. It can communicate

with a range of Dynamixel servos using the half-duplex, transistor-transistor logic (TTL) [91] interface,

at baud rates of up to 1 Mbps [86]. Other features offered by the USB2AX include surge protection

and compatibility with an assortment of operating systems and programming languages. Figure 4.11

shows the USB2AX device, with the major components of interest labelled.

Figure 4.11: USB2AX – Dynamixel servo communication interface for USB [86]

4.4.2 AX/MX Power Hub
On the original PhantomX platform, both servo communication and power distribution were handled

by the ArbotiX-M, which is no longer being used. Servo communication has been accounted for by

means of the USB2AX, but an additional electronic component is required to power the Dynamixel

actuators. For this purpose, the 6 Port AX/MX Power Hub [92], displayed in Figure 4.12, was purchased

for the PhantomX. The AX/MX Power Hub allows for multiple Dynamixel servos, using the 3-pin TTL

connector, to be connected and powered up. Power can be supplied to the board via the screw

 Chapter 4: Description of Robot Platform

96

terminal block or the DC barrel jack, allowing for an array of power supplies or batteries to be used.

On the PhantomX, the onboard battery is connected to the AX/MX Power Hub through the barrel jack

connector, using the wiring harness originally supplied with the robot.

Figure 4.12: 6 Port AX/MX Power Hub used to power Dynamixel servos [92]

One port of the hub is connected to the USB2AX controller with a 3-pin Dynamixel cable, leaving the

other five ports open for connecting servos. This, however, does not limit the setup to only include

five actuators, since Dynamixel servos have the ability to be “daisy chained” on a single

communication bus, with the power hub simply facilitating better management of the cables and

wiring. A second 6 port hub (without power connectors), which was originally supplied with the

PhantomX kit, is also utilized to split the wiring between the rear legs of the robot.

4.4.3 USB Hub
Along with the USB2AX, the IMU and two force sensor DAQs are also connected to the laptop

computer through USB. Therefore, a Trascend® 4 port, USB 3.0 hub (model TS-HUB3K) [93] is mounted

on the robot. This hub supports high speed data transfer and most operating systems, including Linux.

While the hub can be used either powered or unpowered, it was found that the USB2AX and all sensors

could be powered using just the laptop’s USB port, so no power was required to be connected to the

hub on board the robot. An image of the TS-HUB3K USB hub can be seen in Figure 4.13. A USB 3.0

extension cable connects the USB hub to the laptop’s USB port, acting as a “tether” for the PhantomX

robotic platform.

 Chapter 4: Description of Robot Platform

97

Figure 4.13: Transcend® 4 Port USB 3.0 Hub (TS-HUB3K) [93]

4.5 Fully Equipped Platform
An image of the fully equipped PhantomX hexapod robot platform, utilized in this study, is presented

in Figure 4.14 below. Figure 4.15 also provides a closer view of the electronic equipment mounted on

the robot’s body, with the USB hub and USB2AX module clearly visible, as well as a voltage monitor

for the onboard battery. Reflective, spherical markers can be seen mounted on the robot body in both

of these figures. These are utilized for motion capture, discussed in more detail in Section 6.2.4.

Figure 4.14: Fully equipped PhantomX hexapod robot platform utilized in this study

 Chapter 4: Description of Robot Platform

98

Figure 4.15: Electronic equipment mounted onboard the PhantomX platform

4.6 Conclusion
This chapter introduced the legged robotic platform utilized in this study, including the hexapod robot

and a proprioceptive sensory system. The discussion on the sensory system was especially focussed

on the new foot force sensors. Through experimental tests performed with the sensors, the force

measurements provided by them were deemed to be sufficiently accurate for the application at hand.

Newly designed feet for the PhantomX were also presented, which allow for the new force sensors to

be mounted on the platform.

Furthermore, modifications and updates made to the platform to utilize ROS-based software for

locomotion and control were also discussed. These included additional hardware components and

appropriate sensor driver software, along with modifications to the ROS locomotion engine settings

for this platform. The final platform provides a foundation for implementing and testing the control

algorithms developed in this study, which are the subject of the chapters that follow.

99

Chapter 5: Preliminaries for

Control

Before proceeding with the development of a posture control system for the hexapod, some

preliminary analyses and derivations are necessary. In particular, the controllability of the system will

be analysed in Section 5.1 below, after which Section 5.2 discusses the calculation of the robot’s

posture components, based on the data obtained from sensor feedback. Finally, Section 5.3 provides

a brief overview of frequency domain concepts, related to the mathematical representation of linear

systems, that are used for controller design and analysis in the next chapter.

5.1 Controllability Analysis
Prior to designing and implementing a control strategy for a dynamic system, it is instructive to analyse

whether all the output modes of the system are capable of being affected by the inputs as required.

For this reason, it is necessary to perform a controllability analysis on the system to be controlled.

It should be declared that a full, nonlinear controllability analysis of the entire hexapod robot is outside

of the scope of this study. However, a linear controllability analysis of the simplified system to be used

for posture control (comprised of the height, roll, and pitch posture components as states to be

controlled, with foot contact forces acting as the inputs to the system) is still valid and provides useful

insights into the conditions required for controllability. The following sections describe just such an

analysis.

5.1.1 Simplified Dynamic Model of Hexapod
In Section 3.3, a virtual model of a hexapod robot body was introduced, for the purposes of posture

control. However, given that the elements imparting forces on the body in this model are virtual, it is

important to realize that, on the actual robot, the full posture control system will utilize contact forces

at the feet to affect the desired motion. Accordingly, to analyse controllability it is necessary to model

 Chapter 5: Preliminaries for Control

100

the robot body in space with the foot contact forces as inputs, while the motions of the posture

components are the modes to be controlled.

Figure 5.1 below illustrates a simplified model of the hexapod body in free space, acted upon by gravity

and the foot contact forces from the ground. A world-fixed coordinate frame is also indicated in the

top left of the figure. Since only the vertical translation, as well as roll and pitch rotations, are to be

controlled, only the z-components of the contact forces will be assumed to act as inputs, for simplicity

(a common assumption used in literature, e.g. [10], [13]). In fact, even though there are also x- and y-

components of force which arise from friction at the foot while walking, these are used to attain

locomotion and should not be tampered with for posture control. Adjusting the x- and y-positions of

the feet to control posture would inadvertently result in undesired x- and y-direction (and yawing)

motions of the robot!

The robot’s legs are indicated in Figure 5.1 (by dashed lines) to show the relationship between the

body and the contact force positions (also indicated in the figure as labelled dots at the ends of the

legs). However, it should be noted that the dynamic model does not account for these as separate

bodies, considering only the main body of the robot as a rigid body, with the COM, 𝐺, acted upon by

the contact forces.

Figure 5.1: Simplified model of hexapod robot body, acted on by gravitational force and foot contact forces (a world-fixed
coordinate frame is indicated in the top left)

 Chapter 5: Preliminaries for Control

101

Summing the forces in the z-direction (Σ𝐹𝑧) and the moments about the x- and y-axes (Σ𝑀𝑥 and Σ𝑀𝑦),

for 𝑛 arbitrary feet in contact with the ground (1 ≤ 𝑛 ≤ 𝑁, where 𝑁 is the number of legs on the

robot), results in the following equations of motion describing the simplified body model:

𝑀𝑝̈𝐺,𝑧 = Σ𝐹𝑧 ⁡⁡= ∑𝑓𝑖,𝑧

𝑛

𝑖=1

−𝑀𝑔

𝐼𝜙𝜙̈ ⁡⁡⁡⁡= Σ𝑀𝑥 =∑−(𝑝𝐺,𝑦 − 𝑝𝑖,𝑦)𝑓𝑖,𝑧

𝑛

𝑖=1

𝐼𝜃𝜃̈ ⁡⁡⁡⁡= Σ𝑀𝑦 =∑(𝑝𝐺,𝑥 − 𝑝𝑖,𝑥)𝑓𝑖,𝑧

𝑛

𝑖=1

⁡⁡,

(5.1)

where 𝑀 ≡ Mass of the robot,

 𝐼𝜙 ≡ Moment of inertia about the body’s local x-axis (as in Figure 3.14),

 𝐼𝜃 ≡ Moment of inertia about the body’s local y-axis (as in Figure 3.14),

 𝒑𝐺 ≡ Position vector of 𝐺 (relative to the world frame indicated in Figure 5.1),

 𝜙 ≡ Angular displacement about the body’s local x-axis (as in Figure 3.14),

 𝜃 ≡ Angular displacement about the body’s local y-axis (as in Figure 3.14),

 𝑓𝑖,𝑧 ≡ z-component of contact force at foot 𝑖,

 𝒑𝑖 ≡ Position vector of foot 𝑖 (relative to the world frame indicated in Figure 5.1),

 𝑔 ≡ Gravitational acceleration (9.81 m/s2),

and as is commonly used throughout this dissertation, single and double overdots denote the first and

second time derivatives, respectively, of the symbols they modify.

In order to analyse controllability, it is necessary to write the dynamic equations in the standard

state-space form [94],

 𝒙̇ = 𝑨𝒙 + 𝑩𝒖, (5.2)

where 𝒙 represents the state vector, 𝒙̇ indicates the first time derivative of 𝒙, 𝒖 represents the control

input vector, and 𝑨 and 𝑩 are the coefficient matrices of 𝒙 and 𝒖, respectively.

 Chapter 5: Preliminaries for Control

102

Then, the algebraic controllability theorem states that the time-invariant system, as described by

Equation (5.2), is controllable if and only if the rank, 𝑟(𝑸), of the controllability test matrix,

 𝑸 = [𝑩 𝑨𝑩 ⋯ 𝑨𝑘−1𝑩], (5.3)

is equal to the order of the system, 𝑘 [94].

Clearly, the matrix Equation (5.2) represents a system of first order differential equations, while

Equations (3.28) are all second order differential equations. Therefore, by introducing the following

relations,

𝑝̈𝐺,𝑧 = 𝑝̇𝐺,𝑧

𝜙̈ = 𝜙̇

𝜃̈ = 𝜃̇,

(5.4)

and defining the state vector as

 𝒙 = [𝑝𝐺,𝑧 𝜙 𝜃 𝑝̇𝐺,𝑧 𝜙̇ 𝜃̇]
𝑇
, (5.5)

with corresponding derivative vector

 𝒙̇ = [𝑝̇𝐺,𝑧 𝜙̇ 𝜃̇ 𝑝̈𝐺,𝑧 𝜙̈ 𝜃̈]
𝑇
, (5.6)

the dynamic equations can be put into the standard, state-space matrix form:

𝒙̇ = [
𝟎 𝑰
𝟎 𝟎

] 𝒙 +⁡

[

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0
1

𝑀

1

𝑀
⋯

1

𝑀

−
(𝑝𝐺,𝑦 − 𝑝1,𝑦)

𝐼𝜙
−
(𝑝𝐺,𝑦 − 𝑝2,𝑦)

𝐼𝜙
⋯ −

(𝑝𝐺,𝑦 − 𝑝𝑛,𝑦)

𝐼𝜙

(𝑝𝐺,𝑥 − 𝑝1,𝑥)

𝐼𝜃

(𝑝𝐺,𝑥 − 𝑝2,𝑥)

𝐼𝜃
⋯

(𝑝𝐺,𝑥 − 𝑝𝑛,𝑥)

𝐼𝜃]

[

𝑓1,𝑧
𝑓2,𝑧
⋮
𝑓𝑛,𝑧]

+

[

0
0
0
−𝑔
0
0]

, (5.7)

where 𝑰 is the 3 × 3 identity matrix, 𝟎 is the 3 × 3 zero matrix,

 𝑨 = [
𝟎 𝑰
𝟎 𝟎

] (5.8)

 Chapter 5: Preliminaries for Control

103

 𝑩 =

[

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0
1

𝑀

1

𝑀
⋯

1

𝑀

−
(𝑝𝐺,𝑦 − 𝑝1,𝑦)

𝐼𝜙
−
(𝑝𝐺,𝑦 − 𝑝2,𝑦)

𝐼𝜙
⋯ −

(𝑝𝐺,𝑦 − 𝑝𝑛,𝑦)

𝐼𝜙

(𝑝𝐺,𝑥 − 𝑝1,𝑥)

𝐼𝜃

(𝑝𝐺,𝑥 − 𝑝2,𝑥)

𝐼𝜃
⋯

(𝑝𝐺,𝑥 − 𝑝𝑛,𝑥)

𝐼𝜃]

 (5.9)

 𝒖 =

[

𝑓1,𝑧
𝑓2,𝑧
⋮
𝑓𝑛,𝑧]

, (5.10)

and [0⁡0⁡0 − 𝑔⁡0⁡0]𝑇 represents an exogenous input.

5.1.2 A Note on Using Algebraic Controllability Theorem
In order to make use of the algebraic controllability theorem, it is necessary that the system being

analysed is both linear and time-invariant [94]. While the system described above is linear, it should

be noted that the number of contact legs, as well as the foot positions, do vary with time as the robot

walks. However, the algebraic controllability theorem may still be able to be used to gain the insights

required of this analysis.

To aid this idea, it is useful to consider the following conservative statements about the controllability

of nonlinear systems made by Blösch [11]:

• If the controllability matrix, evaluated for a system linearized about some state 𝒙∗, has full

rank, then the system can be said to be locally controllable at 𝒙∗.

• If a system is locally controllable for every 𝒙∗, then the system can be deemed globally

controllable.

A similar conjecture is made in this study about time-varying systems as follows:

If the controllability matrix of a time-variant system has full rank for every time instant, 𝑡∗, the

system can be considered controllable at all times.

This is, by no means, stated as a formal theorem, and will thus not be supported by a proof. Although,

the philosophy will be carried forward in order to utilize the algebraic controllability theorem, to

determine the conditions which are required for the inputs to affect the state as desired, as well as

assess what situations may lead to a loss of controllability.

 Chapter 5: Preliminaries for Control

104

5.1.3 Algebraic Controllability Analysis at an Arbitrary Time Instant
Now, considering that the system described in Equation (5.7) is of order 𝑘 = 6, the controllability

matrix is calculated as

 𝑸 = [𝑩⁡⁡𝑨𝑩⁡⁡⁡𝑨2𝑩⁡⁡⁡𝑨3𝑩⁡⁡⁡𝑨4𝑩⁡⁡⁡𝑨5𝑩]. (5.11)

It should be noted that the exogenous input in Equation (5.7) does not affect the controllability matrix,

and will be compensated for directly using a feedforward term in the controller (see Chapter 6).

Looking at 𝑨 in Equation (5.8), the following holds true:

𝑨2 = [

𝟎 𝑰
𝟎 𝟎

] [
𝟎 𝑰
𝟎 𝟎

] = [
𝟎 𝟎
𝟎 𝟎

] = 𝟎6×6

∴ 𝑨𝑚 = 𝟎6×6, ∀⁡⁡𝑚 ≥ 2.

(5.12)

As a result,

 𝑨𝑚𝑩 = 𝟎6×𝑛, ∀⁡⁡⁡𝑚 ≥ 2. (5.13)

Hence, the last four terms in Equation (5.11) all evaluate to zero matrices, which leaves 𝑨𝑩. At a

particular time instant, 𝑡∗, with 𝑛 legs in contact with the ground, the multiplication of 𝑨 and 𝑩 is

evaluated as follows:

𝑨𝑩 = [
𝟎 𝑰
𝟎 𝟎

]

[

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0
1

𝑀

1

𝑀
⋯

1

𝑀

−
(𝑝𝐺,𝑦 − 𝑝1,𝑦)

𝐼𝜙
−
(𝑝𝐺,𝑦 − 𝑝2,𝑦)

𝐼𝜙
⋯ −

(𝑝𝐺,𝑦 − 𝑝𝑛,𝑦)

𝐼𝜙

(𝑝𝐺,𝑥 − 𝑝1,𝑥)

𝐼𝜃

(𝑝𝐺,𝑥 − 𝑝2,𝑥)

𝐼𝜃
⋯

(𝑝𝐺,𝑥 − 𝑝𝑛,𝑥)

𝐼𝜃]

∴ 𝑨𝑩 =

[

1

𝑀

1

𝑀
⋯

1

𝑀

−
(𝑝𝐺,𝑦 − 𝑝1,𝑦)

𝐼𝜙
−
(𝑝𝐺,𝑦 − 𝑝2,𝑦)

𝐼𝜙
⋯ −

(𝑝𝐺,𝑦 − 𝑝𝑛,𝑦)

𝐼𝜙

(𝑝𝐺,𝑥 − 𝑝1,𝑥)

𝐼𝜃

(𝑝𝐺,𝑥 − 𝑝2,𝑥)

𝐼𝜃
⋯

(𝑝𝐺,𝑥 − 𝑝𝑛,𝑥)

𝐼𝜃
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0]

.

(5.14)

Thus, the rank of 𝑸 is comprised of the ranks of both 𝑩 and 𝑨𝑩, such that

 𝑟(𝑸) = 𝑟(𝑩) + 𝑟(𝑨𝑩). (5.15)

 Chapter 5: Preliminaries for Control

105

Comparing Equations (5.9) and (5.14), it is apparent that

 𝑟(𝑩) = 𝑟(𝑨𝑩). (5.16)

Substituting Equation (5.16) into Equation (5.15) leads to

 𝑟(𝑸) = 2𝑟(𝑩). (5.17)

Considering that 𝑘 = 6, for full controllability it is required that 𝑟(𝑸) = 6. From Equation (5.17), this

is equivalent, in this case, to requiring that 𝑟(𝑩) = 3. Looking at 𝑩 in Equation (5.9), it is clear that it

can only have at most three linearly independent rows, regardless of the number of columns, 𝑛, but

that the rank would be limited by the number of columns if 𝑛 < 3, i.e.

𝑟(𝑩) ≤ 3, 𝑛 ≥ 3

𝑟(𝑩) < 3, 𝑛 < 3.
(5.18)

This leads to the first, and possibly most, important observation from the controllability analysis: the

hexapod is required to have at least three feet in contact with the ground to ensure full controllability

of the three posture components (height, roll, and pitch), when foot contact forces are used as control

inputs.

In fact, since the analysis has been based on the number of contact legs, making no assumption about

the total number of legs on the robot, it is equally valid for robots with more or less than six legs. The

statement above can thus be generalized to any 𝑁-legged, statically stable robot, for which the three

posture components examined here are to be controlled through foot force control inputs.

While the above condition is necessary for static controllability, it is certainly not sufficient, as even

with three or more contact legs, singular configurations may arise. Inspection of 𝑩 makes it evident

that if all the feet were to lie directly beneath the COM (if physically possible), the numerators in the

terms appearing in the last two rows of 𝑩 would all evaluate to 0, resulting in a loss of row rank. In

fact, if some, or all, the feet were to merely lie on the same point (again, if possible), not necessarily

beneath the COM, then multiple columns of 𝑩 would become equivalent, which would result in a loss

of column rank.

Further scrutiny of the elements of 𝑩 reveals that if all the contact legs were to be collinear, or lie

along the same straight line, the last two rows of 𝑩 would become linear combinations of each other,

resulting in a loss of rank. The physical reason for the loss of controllability in this situation is that the

robot’s base of support is reduced to a line. Consequently, the contact forces are able to impart

moments not about this line, but only about an axis perpendicular to it, resulting in the loss of one

rotational degree of freedom in the control.

 Chapter 5: Preliminaries for Control

106

Therefore, a more general condition for posture controllability, at any point in time, can be stated:

For the posture of an 𝑁-legged robot (as described by its body height, roll, and pitch) to be

fully controllable with statically stable motion, using foot contact forces as control inputs, at

least three, unique, non-collinear ground contact points are required.

5.1.4 A Note on Controllability with Dynamic Motion
In addition to the above singular configurations, another peculiar situation is prudent to contemplate.

If the contact feet are positioned such that the vertical projection of the COM lies outside of the base

of support, a situation of instability occurs. Theoretically, however, this does not show up as a loss of

controllability in the form of reduced rank of the controllability matrix. The reason for this is that, from

a mathematical perspective, the posture could still be controlled by applying negative vertical forces

at certain contact points. Of course, in practice this is not possible with the robot as forces can only

be imparted by pushing the legs against the terrain, and so situations such as these are not practically

controllable, at least with leg configurations such as that on the PhantomX used in this study.

However, it is known (and some examples were provided in Chapter 2) that walking robots with less

than three legs can achieve locomotion without falling over, despite the lack of a base of support, and

that robots with more legs can also recover from situations of instability. Not surprisingly, this is

attributed to the use of dynamically stable locomotion and dynamic manoeuvres, in which the contact

leg positions are continually readjusted to attain the desired motion without allowing the robot to fall

over.

While dynamic manoeuvres do prevent total instability, it is important to keep in mind that this only

results in a stabilizable system. In other words, the modes of a dynamically stable robot are still not

all controllable. This fact is made vividly clear when considering that a robot executing a dynamic gait

or motion (for example, hopping) cannot achieve or maintain a particular, desired posture, due to the

very nature of its continuously dynamic motion.

5.1.5 Concluding Remark
The simplified controllability analysis presented in this section has revealed conditions which would

result in a loss of posture controllability for a multi-legged robot. While it would be preferable for

these situations to be avoided completely during locomotion, this is not always possible, especially

when utilizing a purely proprioceptive sensory system while walking on uneven terrain, as will be

exposed in Chapter 7.

 Chapter 5: Preliminaries for Control

107

5.2 Posture Calculation
In Section 4.3, mention was made of the work done by Lubbe [14] on a state estimation algorithm for

the PhantomX hexapod. It would have been ideal to utilize this state estimation to determine the

robot’s posture for the task of control in the present study. However, that particular implementation

was coded in MATLAB to run offline, as a post processing step on sensor data recorded from the robot

during motion, with the idea being simply to test and validate the algorithm. Of course, this would not

be useful for the task of control, as state estimates are required in real-time, or “on-the-fly,” in order

to be able to compensate for deviations in the posture. While some work was done, at a later stage,

by the original author, on porting the state estimation code over to C++ for an online, real-time

implementation, this was never fully brought to fruition or tested.

Nevertheless, the current study only deals with controlling the posture and is thus only focussed on

the height of the body above the ground, along with its roll and pitch angles. Thus, simpler methods

of calculating the posture can be employed, without warranting an investigation into implementing a

full state estimation algorithm to run online. These posture calculations will be elaborated in more

detail in the following sections.

5.2.1 Body Coordinate Frame
In this study, the coordinate frame used for controlling the robot’s posture is fixed to the main body

and rotates with it. This body coordinate frame is denoted as {𝑩} and is located such that its origin is

coincident with that of the IMU’s internal coordinate frame, having its z-axis aligned with the centre

of the body’s horizontal plane [19] (specific details regarding the mounting of the IMU on the body

can be found at [14]). A schematic diagram of the PhantomX hexapod is shown in Figure 5.2, where

the body coordinate frame can be seen in the described location, with the x-axis pointing forward and

z-axis pointing upward. It should be noted that while the origins of {𝑩} and the IMU frame coincide,

the directions of the various axes do not, as explained in more detail in Section 5.2.3 below. Figure 5.2

also indicates the leg (and foot) numbering convention that will be used throughout this dissertation.

Furthermore, since the z-axis points upward, the y-axis points to the left of the robot, resulting in

positive pitch angles corresponding to pitching the front, or “nose,” of the robot downward. This is

contrary to the case of aircrafts, in which it is customary to make use of a downward-pointing z-axis

so that positive pitch angles (using the ZYX Euler angle sequence) correspond to pitching the vehicle’s

nose upward [65].

 Chapter 5: Preliminaries for Control

108

Figure 5.2: Schematic of PhantomX hexapod with body coordinate frame, {𝑩}, and leg numbers [19]

With regards to this body coordinate frame, the posture of the robot is defined as the z-position of

{𝑩} above the ground, i.e. height, as well as the orientation of its xy-plane relative to the horizontal

plane of the Earth (perpendicular to the gravity vector), i.e. roll and pitch angles about the x- and

y-axes, respectively [19]. The sections that follow describe the calculations of these specific quantities,

based on the data obtained from the robot’s sensory system.

5.2.2 Height Calculation
Estimating the height of the robot above the terrain on which it stands is not as straightforward as it

may initially seem. This is especially true when the terrain beneath the robot is not flat and level, as

there is no single point which can be used as a definite reference against which to measure the height.

In fact, even if there was a well-defined reference point, it may not be possible to measure the height

relative to this point without exteroceptive sensing equipment.

For these reasons, and considering that the use of proprioceptive sensing is generally preferable for

posture measurements (as discussed in Section 2.3.5.2), it is common to use the individual positions

of the feet to estimate the robot’s height. Some studies in the literature, covered in Chapter 2,

employed this type of approach, either by calculating an average of the foot heights, e.g. [4], or by

using a least squares fit of the individual heights, to obtain an equivalent “ground plane” off which

 Chapter 5: Preliminaries for Control

109

measurements can be made, e.g. [9]. While fitting a plane can be useful for estimating the ground

slope and utilizing that information in higher levels of planning and control, it is not really necessary

for the posture calculation required in this study. Therefore, the average of the individual heights of

the 𝑛 feet in contact with the ground is used as a measure of the robot height, ℎ:

 ℎ = −
∑ 𝑝𝑖,𝑧

′𝑛
𝑖=1

𝑛
, 1 ≤ 𝑛 ≤ 𝑁, (5.19)

with 𝑁 = 6 for a hexapod robot. It should also be noted that the range of 𝑛 above assumes at least

one foot in contact with the ground, since without any contact feet there would be no way of

proprioceptively estimating the height of a legged robot.

In Equation (5.19), 𝑝𝑖,𝑧
′ refers to the z-position of the 𝑖th foot, as calculated in {𝑩}. The negative of the

mean value of these vertical positions is taken in the above equation because the z-axis of {𝑩} points

upward, resulting in negative z-position values when the feet are below the body.

Of course, in order to actually use the above equation to estimate the height, it is necessary to

calculate the foot positions. Fortunately, the functions written to implement the PhantomX’s

kinematic model in the C++ port of the state estimation code (discussed above) can be used

independently of the state estimation algorithm. Thus, the individual foot positions can be calculated

by feeding the servo position measurements into the robot’s forward kinematic model, the detailed

derivation of which can be found at [67].

Initially, the kinematic model mapped the servo position values to joint position displacements based

on a servo position value range of 0 – 255. Since then, the servo communication hardware has been

upgraded for this study, allowing for the full measurement range of 0 – 1023 counts to be retrieved

from the actuators (as discussed in Section 4.3.2.1). Therefore, the kinematic model was updated to

accordingly make use of the full measurement range, allowing for increased measurement resolution

and hence improved calculation accuracy. In addition, the link length and servo offset values for the

tibia were updated to account for the new foot and force sensor, as was done for the locomotion

engine (see Section 4.3.1).

In order to utilize this kinematic model with the control software, the C++ functions were wrapped

into a ROS node. This was done in the main posture_control node which implements the VMC

algorithm (discussed in more detail in Chapter 6). A subscriber was created to receive the servo

position readings published by the hexapod_controller node (see Section 4.3.2.1). In this

subscriber’s callback function, the servo position measurement values are extracted from the received

message and the kinematic model functions are called to calculate each foot position. Furthermore,

 Chapter 5: Preliminaries for Control

110

Equation (5.19) is employed in the abovementioned callback function to calculate the mean height of

{𝑩}, which is then stored for use in the VMC controller, while also being published out so it can be

viewed or recorded for later analysis.

5.2.3 Orientation Calculation
In addition to joint position and foot force sensors, the robot was equipped with an IMU, for the exact

purpose of measuring orientation. The MicroStrain® 3DM-GX3® -25 was presented in Section 4.2.2,

where it was stated that the IMU provides orientation estimates calculated by its onboard sensor

fusion algorithm.

Therefore, in the posture_control node, a subscriber was created to receive IMU data messages,

published by imu_node in the ROS MicroStrain® driver (see Section 4.3.2.2), and use the included

quaternion to determine the robot’s roll and pitch angles. However, extracting the robot’s orientation

was not as simple as converting the quaternion values, provided by the ROS driver, to Euler angles

using the mapping functions presented in Equation (3.26) of Chapter 3. These complications arose

from transformations performed by the ROS driver on the IMU rotation, as well as the use of different

rotation matrix conventions in the IMU hardware and the ROS driver.

Accounting for the differences between the orientations provided the IMU and ROS driver, and letting

the quaternion provided by the ROS driver be denoted by 𝒒, as described in Equation (3.21), the Euler

angles describing the rotation of the IMU can be computed as

 𝒖𝐼𝑀𝑈(𝒒) = [

𝜙𝐼𝑀𝑈(𝒒)
𝜃𝐼𝑀𝑈(𝒒)
𝜓𝐼𝑀𝑈(𝒒)

] = [

atan2(−2𝑞2𝑞3 − 2𝑞0𝑞1, −𝑞0
2 + 𝑞1

2+𝑞2
2−𝑞3

2)

asin(2𝑞1𝑞3 − 2𝑞0𝑞2)

atan2(2𝑞1𝑞2 + 2𝑞0𝑞3, −𝑞0
2 − 𝑞1

2+𝑞2
2+𝑞3

2)

]. (5.20)

Details of the transformations applied to derive this mapping can be found in Appendix D.

Although the necessary angles were computed slightly differently in the posture_control node,

using the tf4 package to simplify the coding, the mapping of Equation (5.20) is suggested as it adheres

to a single convention (that of [65]), eliminating any confusion or ambiguity.

Another mapping was also required to be made to obtain the roll and pitch angles of the robot’s body

frame, {𝑩}, in view of the fact that the IMU is actually mounted on the robot with its y-axis pointing

forward and x-axis to the left. Consequently, the x-axis of {𝑩} aligns with the y-axis of the IMU and

vice versa. Therefore, the roll angle, 𝜙, of the robot about the x-axis and the pitch angle, 𝜃, about the

4 The ROS tf package allows users to keep track of multiple coordinate frames over time, offering them the

relevant functions to transform points and vectors between coordinate frames. More information about this
package can be found at [125].

 Chapter 5: Preliminaries for Control

111

y-axis can be obtained by simply swapping the roll and pitch angle values of the IMU calculated above.

That is

 𝜙 = 𝜃𝐼𝑀𝑈 (5.21)

 𝜃 = 𝜙𝐼𝑀𝑈. (5.22)

While this is sufficient for obtaining the roll and pitch of {𝑩} for posture control, it is important that

this swap is kept in mind, if the Euler angles are to be used to reconstruct the rotation matrix or

quaternion using the ZYX rotation sequence. In such a case, the two angles must be swapped back

before using the reverse mappings provided in [65]5.

Furthermore, it should be noted that the yaw angle of the IMU, 𝜓𝐼𝑀𝑈, does not correspond with the

heading of the actual robot body. This is because yaw angle provides the heading in the x-direction of

the frame it is calculated for. Since the roll angle is the last rotation in the sequence and is actually

applied about the IMU’s x-axis, it acts to “roll out” the IMU’s y-axis (see Figure 3.11), which

corresponds to the x-axis of {𝑩}. This additional yawing action is not accounted for in 𝜓𝐼𝑀𝑈.

Of course, this is of no consequence to the present study on posture control, as yaw is not used.

However, in the event that the yaw of the robot is also required, the most straightforward way to

determine all the Euler angles would be to use the ZXY rotation sequence mappings, based on the

rotation matrix of the IMU6. The relevant mapping equations for the ZXY rotation sequence can be

found at [65]7. This mapping would yield the same 𝜙 and 𝜃 values as Equations (5.21) and (5.22), while

the resulting yaw angle, 𝜓, would correspond to the actual heading of the robot. The reason this

sequence was not used in this study is that it is preferable to maintain use of the standard convention

of the field (mobile robotics) as far as possible, to avoid any further confusion.

5.2.4 Concluding Remark
This section presented the computations necessary to calculate the three posture components of the

robot body using the available sensor data. The particular implementation of these computations, in

ROS, was also briefly discussed. It should be noted that, while the posture calculations were

incorporated into the posture_control node in this study for the sake of simplicity, in future it

would likely be preferable to implement this functionality as a node on its own. Especially if the

posture calculation becomes more complex, or if full state estimation is utilized, this task should be

5 When referring to [65] for the necessary Euler angle mappings, the reader should note that the ZYX rotation
sequence is denoted as the (1,2,3) Euler angle sequence in [65].
6 See Appendix D for the computation of the IMU rotation matrix, denoted as 𝑴, from the rotation provided
by the ROS driver (specifically Equation (D.7)).
7 The ZXY rotation sequence is referred to as Euler angle sequence (2,1,3) in [65].

 Chapter 5: Preliminaries for Control

112

separated from the control tasks, both for an improved, modular software architecture and to prevent

either of these processes from holding the other up during computation. However, for this study the

computation of posture is not very intensive and was found to not have a significant effect on the

frequency of execution of the posture_control node (discussed in more detail in the next

chapter).

5.3 Frequency Domain Representations of Linear Systems
This section provides a brief overview of frequency domain concepts used in Chapters 6 and 7. This is

meant only to aid the discussions in the next chapters. For a more comprehensive coverage of these

concepts, as well as many of the fundamental concepts related to control theory, the reader is referred

to the informative textbook Modern Control Systems by Dorf and Bishop [95], from which most of the

information presented below was obtained.

The mathematical description of a linear system can be converted from a time domain representation,

to a frequency domain representation, by means of a Laplace transformation. The primary advantage

of this conversion is that differential equations, which are not as easy to solve, are substituted by

relatively easily solved algebraic equations.

Mathematically, the Laplace transform of a function of time, 𝑓(𝑡), is described as

 ℒ{𝑓(𝑡)} = 𝐹(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0−
⁡, (5.23)

where 𝐹(𝑠) is the frequency domain representation of 𝑓(𝑡), in the form of a function of the Laplace

variable, 𝑠, and 0− indicates that the integral should include any discontinuity at 𝑡 = 0. A list of

important Laplace transform pairs (𝑓(𝑡) and the associated transform 𝐹(𝑠)) are provided in [95].

Another important frequency domain concept is that of a transfer function, detailed information on

which can be found at [95], if necessary. A useful example of a transfer function pertinent to this study

is that of a first-order system, with time constant 𝜏𝑐, given by [96]

 𝐻(𝑠) =
1

1 + 𝑠𝜏𝑐
⁡. (5.24)

The use of such a system as a filter will be discussed in the next chapter, while the relationship

between 𝜏𝑐 and the filter frequency will be illuminated in Chapter 7.

5.4 Conclusion
This chapter presented preliminary analyses and derivations required for developing a posture control

system for the hexapod robot. In particular, a simplified, linear controllability analysis was conducted

for the posture of the hexapod robot at any given time, 𝑡∗. While this is not a substitute for a full,

 Chapter 5: Preliminaries for Control

113

nonlinear, and time-varying controllability analysis of a hexapod robot system, the exercise has been

a fruitful one, as it yielded meaningful insights about the situations and configurations of the robot

which would result in a loss of controllability. In particular, the main finding of the controllability

analysis was that a general condition for the posture of an 𝑁-legged robot (as described by its body

height, roll, and pitch) to be fully controllable, with foot contact forces as control inputs, is that at least

three, unique, non-collinear ground contact points are required.

Furthermore, the procedures used for calculating the height and orientation of the robot body, for

the purpose of posture control, were described. Methods for obtaining the necessary information

from the sensor data, as well as computations carried out on these data, were discussed, while also

touching on the particular implementations of these methods in ROS.

Additionally, a brief overview of frequency domain concepts used in this study was provided, along

with an example of a transfer function relevant to this study. These concepts will used in the

discussions on the control system design, in upcoming chapters.

Having fulfilled these prerequisites, the posture control system for the hexapod can be developed and

tested. Hence, the chapters that follow present the detailed development and implementation of the

posture control system designed in this study.

114

Chapter 6: Standing Posture

Control

While controlling the posture of the robot is no trivial task, the entire undertaking is made

substantially more complicated by the constant motion and continually changing kinematic

configurations experienced by the robot during walking. Therefore, it was decided to first consider

only the case of the robot standing on all six legs, without walking, to be able to establish the

foundations of the posture control system, before having to also deal with the added complexities

introduced by walking.

This chapter is dedicated to presenting the methods used in designing and implementing the

“Standing Posture Controller,” along with results of experimental tests carried out to assess this

controller’s performance on the PhantomX platform. The methods and results discussed in this

chapter were published in [19] and presented at the 2017 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2017), at Vancouver, Canada, in September 2017. This work

demonstrated the implementation of a Standing Posture Control system, in the form of VMC, on a

low-cost, commercially available hexapod robot (the PhantomX). A further contribution of this study

was the implementation of a direct force control method to control foot forces, using low-cost

actuators which can only be position controlled. To the best of the authors’ knowledge, this

combination of control techniques, implemented on a low-cost, commercially available platform, has

not been previously tested.

6.1 Control Structure
It has already been stated that the Virtual Model Control strategy will be employed in this study.

Therefore, this section presents the implemented control system, consisting of the higher level VMC

controller and foot force distribution, as well as the lower level single leg force controller, used to

achieve the contact forces commanded by the higher-level posture control elements.

 Chapter 6: Standing Posture Control

115

6.1.1 A Note on Posture Calculation
In Section 5.2.2, the generalized formula for calculating the height of the robot body was provided

(see Equation (5.19)). The reader will likely recall that this calculation relied on information regarding

the number of legs in contact with the terrain. However, considering that, for the Standing Posture

Controller implementation, the robot is assumed to be standing on all six legs at all times, all of these

can be assumed to be contact legs. Hence, the height, ℎ, is calculated as follows, for the specific case

of Standing Posture Control:

 ℎ = −
∑ 𝑝𝑖,𝑧

′𝑁
𝑖=1

𝑁
, (6.1)

where, once again, 𝑁 = 6 for the hexapod.

6.1.2 Virtual Model Control Strategy
The basic premise behind VMC was explained in Section 3.3, along with presenting the equations of

motion for a model of the hexapod body with virtual springs and dampers attached to it. These

equations of motion are restated here to more easily facilitate the discussion which follows:

𝑀𝑝̈𝐺,𝑧 = Σ𝐹𝑧 ⁡⁡= −𝐾𝑧Δ𝑝𝑔,𝑧 − 𝐶𝑧Δ𝑝̇𝐺,𝑧

𝐼𝜙𝜙̈ ⁡⁡⁡⁡= Σ𝑀𝑥 = −𝐾𝜙Δ𝜙 − 𝐶𝜙Δ𝜙̇

𝐼𝜃𝜃̈ ⁡⁡⁡⁡⁡= Σ𝑀𝑦 = −𝐾𝜃Δ𝜃 − 𝐶𝜃Δ𝜃̇.

(6.2)

6.1.2.1 Virtual Model Controller Design

For the virtual model controller to regulate body posture with the dynamics described by Equations

(6.2), it needs to be set up to apply control actions, in the form of forces, equivalent to those applied

by the virtual elements, i.e. the terms on the right-hand sides of the above equations.

Thus, letting the control outputs be defined by the vertical (z-direction) force, 𝐹𝑉𝑀𝐶, roll moment, 𝑀𝜙,

and pitch moment, 𝑀𝜃, to be applied to the robot, then theoretically the control actions should be

equivalent to

𝐹𝑉𝑀𝐶 ≡ −𝐾𝑧Δ𝑝𝐺,𝑧 − 𝐶𝑧Δ𝑝̇𝐺,𝑧

𝑀𝜙 ⁡⁡⁡≡ −𝐾𝜙Δ𝜙 − 𝐶𝜙Δ𝜙̇

𝑀𝜃 ⁡⁡⁡⁡≡ −𝐾𝜃Δ𝜃 − 𝐶𝜃Δ𝜃̇,

(6.3)

to achieve the desired dynamic response.

However, the virtual model was derived for displacement deviations from the static position, but the

posture components on the actual robot are measured relative to different reference values.

Therefore, the deviation values in the above model must be replaced by error values computed

between the desired and actual positions.

 Chapter 6: Standing Posture Control

116

That is,

−Δ𝑝𝐺,𝑧 ≡ 𝑒𝑧 = ℎ𝑑 − ℎ

−Δ𝜙⁡⁡⁡⁡ ≡ 𝑒𝜙 = 𝜙𝑑 −𝜙

−Δ𝜃⁡⁡⁡⁡⁡ ≡ 𝑒𝜃 = 𝜃𝑑 − 𝜃,

(6.4)

where 𝑒𝑧, 𝑒𝜙, and 𝑒𝜃 are the height, roll, and pitch errors, respectively, while ℎ𝑑, 𝜙𝑑, and 𝜃𝑑 represent

the height, roll, and pitch reference values, or setpoints, respectively. The quantities ℎ, 𝜙, and 𝜃, are

the posture components, or control variables, as defined in Section 5.2. It is important to note that,

for the equivalence relations in Equations (6.4) to be applicable, it is necessary to make the assumption

that the position of the robot’s COM coincides with the origin of the body frame, {𝑩}. The reason for

this is that the posture components are calculated with respect to {𝑩}, while Δ𝑝𝐺,𝑧 represents the

vertical deviation of the COM. This assumption will be further elaborated in Section 6.1.3 below.

It may be appealing to subsequently assign the velocity terms in the controller to the derivatives of

these error values, given by

𝑒̇𝑧 ⁡= ℎ̇𝑑 − ℎ̇

𝑒̇𝜙 = 𝜙̇𝑑 − 𝜙̇

𝑒̇𝜃 = 𝜃̇𝑑 − 𝜃̇,

(6.5)

where, as usual, single overdots indicate the first time derivatives of the symbols they modify.

Taking into account the terms appearing on the right-hand sides of Equations (6.5), it should be

realized that these derivatives should not naively be used as the velocity terms in the controller. More

specifically, the derivatives of the reference values are subject to spiking, to extremely large

magnitudes, when step changes are applied to the references, causing the phenomenon of “derivative

kick” [97]. In order to avoid this, only the derivatives of the position values should be utilized. This is,

in any case, more consistent with the behaviour of a physical damper, which applies retarding forces

to an object at any non-zero velocity, as opposed to being based on an error from a certain reference

velocity.

Furthermore, Åström [98] explains that differentiation is always sensitive to noise, especially high-

frequency noise in a signal, which can be significantly amplified in the derivative of the signal. This is

distinctly illustrated by the transfer function of a differentiator, 𝐺(𝑠) = 𝑠, which grows infinitely with

increasing values of 𝑠:

 lim
𝑠→∞

𝐺(𝑠) = lim
𝑠→∞

𝑠 = ∞. (6.6)

 Chapter 6: Standing Posture Control

117

Therefore, in the practical implementation of a controller with derivative action, it is necessary to limit

the high frequency gain of the derivative term, by filtering the signal. Traditionally, the derivative term,

𝐷 = 𝐷(𝑠) (represented in the frequency domain), in a controller is computed by simply differentiating

the input signal, 𝑌 = 𝑌(𝑠), and multiplying it by the derivative gain, 𝐾𝑑. This is mathematically defined

as

 𝐷 = −𝑠𝐾𝑑𝑌, (6.7)

where the negative of the derivative is used so that the control action acts to dampen or retard

motion.

In order to limit the high frequency gain, the derivative term can be implemented as [98]

𝐷 = −

𝑠𝐾𝑑

(1 + 𝑠
𝐾𝑑
𝐾𝑝𝑁𝑓

)
𝑌 = −

𝑠𝐾𝑝𝑇𝑑

(1 + 𝑠
𝑇𝑑
𝑁𝑓
)
𝑌,

(6.8)

where 𝐾𝑝 is the proportional gain of the controller, 𝑇𝑑 = 𝐾𝑑 𝐾𝑝⁄ is defined as the derivative time

constant, and 𝑁𝑓 is a parameter related to the filter cut-off frequency.

The term in Equation (6.8) can be interpreted as the ideal derivative of Equation (6.7) filtered by a

first-order system, 𝐻(𝑠), with the time constant 𝜏𝑐 = 𝑇𝑑/𝑁𝑓, the transfer function of which is given

by [96]

𝐻(𝑠) =

1

1 + 𝑠𝜏𝑐
=

1

1 + 𝑠
𝑇𝑑
𝑁𝑓

.
(6.9)

This approximation (Equation (6.8)) acts as a derivative for low-frequency signal components, but the

gain is limited to 𝐾𝑝𝑁𝑓. As a result, high-frequency measurement noise in the signal is amplified, at

most, by a factor 𝐾𝑝𝑁𝑓 [98], [99]. This can be demonstrated mathematically by individually considering

the derivative action gains at the limits of low- and high-frequency signal components.

For low frequencies, 𝑠 ≪ 1; thus, considering that the ratio 𝐾𝑑/(𝐾𝑝𝑁𝑓) would generally not be many

orders of magnitude larger than 1, especially for practical controller gains, it follows that

𝑠
𝐾𝑑
𝐾𝑝𝑁𝑓

≪ 1, 𝑠 ≪ 1

∴ 1 + 𝑠
𝐾𝑑
𝐾𝑝𝑁𝑓

≈ 1, 𝑠 ≪ 1.

(6.10)

 Chapter 6: Standing Posture Control

118

Subsequently,

𝑠𝐾𝑑

(1 + 𝑠
𝐾𝑑
𝐾𝑝𝑁𝑓

)
≈
𝑠𝐾𝑑
1
, 𝑠 ≪ 1

∴ 𝐷 = −
𝑠𝐾𝑑

(1 + 𝑠
𝐾𝑑
𝐾𝑝𝑁𝑓

)
𝑌 ≈ −𝑠𝐾𝑑𝑌, 𝑠 ≪ 1,

(6.11)

showing that the derivative term of Equation (6.8) closely approximates the ideal derivative in

Equation (6.7), for low-frequency signal components.

The high-frequency case can be assessed by computing the limit of the derivative gain when 𝑠 → ∞:

𝑠𝐾𝑑

(1 + 𝑠
𝐾𝑑
𝐾𝑝𝑁𝑓

)
=

𝑠𝐾𝑑

𝑠 (
1
𝑠 +

𝐾𝑑
𝐾𝑝𝑁𝑓

)

=
𝐾𝑑

(
1
𝑠 +

𝐾𝑑
𝐾𝑝𝑁𝑓

)
.

(6.12)

Hence,

lim
𝑠→∞

𝑠𝐾𝑑

(1 + 𝑠
𝐾𝑑
𝐾𝑝𝑁𝑓

)
= lim

𝑠→∞

𝐾𝑑

(
1
𝑠 +

𝐾𝑑
𝐾𝑝𝑁𝑓

)

=
𝐾𝑑

𝐾𝑑
1

𝐾𝑝𝑁𝑓

= 𝐾𝑝𝑁𝑓

∴ lim
𝑠→∞

𝑠𝐾𝑑

(1 + 𝑠
𝐾𝑑
𝐾𝑝𝑁𝑓

)
= 𝐾𝑝𝑁𝑓 ,

(6.13)

clearly demonstrating that high-frequency noise is amplified, in the derivative action, by a factor of no

more than 𝐾𝑝𝑁𝑓.

On account of the reasons provided above, the derivative terms in the virtual model controller are to

be set to use the derivatives of filtered position signals, rather than simply the derivatives of the

position values. Additionally, one more factor needs to be accounted for in implementing a controller

to emulate the behaviour of the desired virtual model.

In the z-direction equation of motion of (6.2), the virtual spring is specified to support the robot’s

weight at the static position, thus resulting in the presence of only restorative forces for deviations

from this static position (i.e. the terms in the equation arising from the robot’s weight and the static

 Chapter 6: Standing Posture Control

119

force of the spring “cancel” each other out). When emulating the virtual spring with a control system,

it is important to remember to also add this static force, allowing the robot’s weight to be supported

when the height is kept at its reference value.

Taking all of the above into consideration, the three individual control equations become

𝐹𝑉𝑀𝐶 = 𝐾𝑧𝑒𝑧 − 𝐶𝑧ℎ̇𝑓 + 𝑓𝑠

𝑀𝜙 ⁡⁡⁡= 𝐾𝜙𝑒𝜙 − 𝐶𝜙𝜙̇𝑓

𝑀𝜃 ⁡⁡⁡= 𝐾𝜃𝑒𝜃 − 𝐶𝜃𝜃̇𝑓 ,

(6.14)

where ℎ̇𝑓, 𝜙̇𝑓, and 𝜃̇𝑓 are the filtered derivatives of the measured height, roll, and pitch signals,

respectively, and 𝑓𝑠 is the static force employed to counteract the robot’s weight.

Equations (6.14) can be written in matrix form as

 𝑭𝑽𝑴𝑪 = 𝑲𝒆 − 𝑪𝒆̇ + 𝑭𝑠, (6.15)

where

 𝑭𝑽𝑴𝑪 = [

𝐹𝑉𝑀𝐶
𝑀𝜙
𝑀𝜃

] (6.16)

is the virtual model controller output, and the position and velocity error states, 𝒆 and 𝒆̇, respectively,

are defined as

 𝒆 = [

𝑒𝑧
𝑒𝜙
𝑒𝜃
] (6.17)

 𝒆̇ = [

ℎ̇𝑓

𝜙̇𝑓

𝜃̇𝑓

]. (6.18)

The proportional and derivative gain matrices are denoted by 𝑲 and 𝑪, respectively, such that

 𝑲 = [

𝐾𝑧 0 0
0 𝐾𝜙 0

0 0 𝐾𝜃

] (6.19)

 𝑪 = [

𝐶𝑧 0 0
0 𝐶𝜙 0

0 0 𝐶𝜃

], (6.20)

 Chapter 6: Standing Posture Control

120

while

 𝑭𝑠 = [
𝑓𝑠
0
0
] (6.21)

is a feedforward term in the controller representing the static force for gravity compensation.

As suggested in Section 3.3, it can be seen that controller gains, 𝑲 and 𝑪, are equivalent to the

mechanical characteristics of the virtual elements chosen for the virtual model. The diagonal

structures of the gain matrices explicitly indicate that the three control variables are decoupled (this

decoupling effect is demonstrated in Section 6.3.1). Furthermore, from the structure of the control

Equation (6.15) it can be recognized that the use of springs and dampers in the virtual model

effectively equates to proportional-derivative, or PD, control, which is a simple and well known, linear

control strategy8.

Based on measurements of the contact forces when the robot is standing up, obtained using the

OptoForce sensors, a static force value of 𝑓𝑠 = 20.9⁡N was found to be appropriate to compensate for

the weight of the robot. It should be noted that the static force is sensitive to changes in the

configuration of the robot platform, such as, for instance, the addition or removal of equipment and

hardware from the body. Even changing the onboard battery results in changes in weight, as the exact

mass of the battery varies from one battery to another. However, it is preferable to design the

controller to be fairly robust to this type of change in configuration, rather than having it rely on an

extremely precise value of static force to operate satisfactorily. This is of particular significance when

considering that during the employment of a legged robot in field-use, it would be expected that the

robot be able to carry payloads or have onboard equipment changed as desired. Thus, the static force

of 𝑓𝑠 = 20.9⁡N was found to be a good overall value for general use on the robot, with small changes

in its weight being compensated for by specifying a sufficiently “stiff” proportional gain in the

z-direction.

Of course, the control equations above describe a continuous system. To be implemented digitally, it

is necessary for them to be discretized. Since the control equations for the three posture components

are decoupled, as described in Section 3.3, they can be implemented as three individual controllers.

Hence, the discretization process for a generic PD control equation, representative of those in

Equations (6.14), will be presented below.

8 More information on PD control can be found at [95].

 Chapter 6: Standing Posture Control

121

The continuous, generic control equation, in the time domain, takes the form

 𝑢(𝑡) = 𝑃(𝑡) + 𝐷(𝑡) + 𝐹𝑓𝑓(𝑡), (6.22)

where 𝑢(𝑡) is the control signal (or controller output), 𝑃(𝑡) and 𝐷(𝑡) are the proportional and

derivative parts, respectively, and 𝐹𝑓𝑓(𝑡) is a feedforward signal.

The proportional part of the controller acts on the error, 𝑒(𝑡), between the reference and measured

values of the input signal, 𝑟(𝑡) and 𝑦(𝑡), respectively. Thus,

 𝑃(𝑡) = 𝐾𝑝𝑒(𝑡) = 𝐾𝑝(𝑟(𝑡) − 𝑦(𝑡)). (6.23)

This term can be discretely implemented by simply replacing the continuous signals with their sampled

equivalents. Thus, for a particular sampling instant, 𝑡𝑘,

 𝑃(𝑡𝑘) = 𝐾𝑝(𝑟(𝑡𝑘) − 𝑦(𝑡𝑘)). (6.24)

On the other hand, the derivative part is not as straightforward. In the frequency domain, the

derivative part of the controller is described by Equation (6.8), which can be rearranged as follows:

𝐷(𝑠) = −
𝑠𝐾𝑝𝑇𝑑

(1 + 𝑠
𝑇𝑑
𝑁𝑓
)
𝑌(𝑠)

𝐷(𝑠) (1 + 𝑠
𝑇𝑑
𝑁𝑓
) = −𝑠𝐾𝑝𝑇𝑑𝑌(𝑠)

𝐷(𝑠) + 𝑠𝐷(𝑠)
𝑇𝑑
𝑁𝑓
= −𝑠𝐾𝑝𝑇𝑑𝑌(𝑠).

(6.25)

Therefore, in the time domain, the derivative part can be written as the following differential

equation:

 𝐷(𝑡) +
𝑇𝑑
𝑁𝑓
⁡
𝑑𝐷(𝑡)

𝑑𝑡
= −𝐾𝑝𝑇𝑑

𝑑𝑦(𝑡)

𝑑𝑡
. (6.26)

A discrete version of this equation can be obtained by approximating the derivatives with a backward

difference, which gives [98], [99]

 𝐷(𝑡𝑘) +
𝑇𝑑
𝑁𝑓
⁡
𝐷(𝑡𝑘) − 𝐷(𝑡𝑘−1)

Δ𝑡𝑘
= −𝐾𝑝𝑇𝑑

𝑦(𝑡𝑘) − 𝑦(𝑡𝑘−1)

Δ𝑡𝑘
, (6.27)

where Δ𝑡𝑘 = (𝑡𝑘 − 𝑡𝑘−1) is the duration between the previous and current sampling instants.

 Chapter 6: Standing Posture Control

122

Solving Equation (6.27) for 𝐷(𝑡𝑘) yields the derivative part of the discretized controller, for sampling

instant 𝑡𝑘, as

 𝐷(𝑡𝑘) =
𝑇𝑑

𝑇𝑑 +𝑁𝑓Δ𝑡𝑘
𝐷(𝑡𝑘−1) −

𝑇𝑑
𝑇𝑑 +𝑁𝑓Δ𝑡𝑘

𝐾𝑝𝑁𝑓(𝑦(𝑡𝑘) − 𝑦(𝑡𝑘−1)). (6.28)

Åström [98] highlights that using a backward difference to approximate the derivatives is

advantageous in that the parameter 𝑇𝑑/(𝑇𝑑 +𝑁𝑓Δ𝑡𝑘), in Equation (6.28), is in the range of 0 to 1 for

all values of the constituent parameters, thus guaranteeing that the difference equation is stable.

 As a result, the discrete control signal, 𝑢(𝑡𝑘), is digitally computed at every sampling instant 𝑡𝑘 by the

following mathematical algorithm:

𝑃(𝑡𝑘) = 𝐾𝑝(𝑟(𝑡𝑘) − 𝑦(𝑡𝑘));

𝐷(𝑡𝑘) =
𝑇𝑑

𝑇𝑑 +𝑁𝑓Δ𝑡𝑘
(𝐷(𝑡𝑘−1) − 𝐾𝑝𝑁𝑓(𝑦(𝑡𝑘) − 𝑦(𝑡𝑘−1))) ;

𝑢(𝑡𝑘) = 𝑃(𝑡𝑘) + 𝐷(𝑡𝑘) + 𝐹𝑓𝑓(𝑡𝑘);

(6.29)

where 𝐹𝑓𝑓(𝑡𝑘) = 𝑓𝑠 for the height controller, 𝐹𝑓𝑓(𝑡𝑘) = 0 for both the roll and pitch controllers, and

𝐾𝑝 and 𝐾𝑑 are replaced by the relevant proportional and derivative gain terms from 𝑲 and 𝑪,

respectively.

6.1.2.2 Virtual Model Controller Implementation

The discrete control equations in (6.29) were implemented for each posture control variable in ROS

as a C++ function (updateController), as part of the posture_control node. A ROS Timer

object was used to execute the posture control algorithm at a set frequency of 20 Hz, by calling the

updateController function in its callback (which was set to trigger every 0.05 s). A fixed timestep

value of 0.05 s was used in place of Δ𝑡𝑘 in the code implementing Equation (6.29), with satisfactory

results. The standard, single threaded ROS spinner was utilized for the posture_control node, to

continuously pump callbacks until the node is shutdown.

Merely calculating net force and torque components to apply on the robot does not induce any

physical control action on it. It is subsequently required to determine the forces needed to be applied

by the legs, to achieve the desired force and torques on the body as calculated above, which is the

focus of the section that follows.

6.1.3 Foot Force Distribution
Based on the contact and position information of each foot, the force and torques calculated above

can be distributed among the individual feet to attain the same resultant force and torque

components on the body.

 Chapter 6: Standing Posture Control

123

6.1.3.1 Foot Force Distribution Theory

For 𝑛 legs in contact with the ground (1 ≤ 𝑛 ≤ 𝑁), the force and torque equilibrium equations are

𝐹𝑉𝑀𝐶 =∑𝑓𝑖,𝑧

𝑛

𝑖=1

𝑀𝜙 =∑𝑝𝑖,𝑦
′ ∙ 𝑓𝑖,𝑧

𝑛

𝑖=1

𝑀𝜃 =∑−𝑝𝑖,𝑥
′ ∙ 𝑓𝑖,𝑧

𝑛

𝑖=1

.

(6.30)

As with Equations (5.1) of the controllability analysis, 𝑓𝑖,𝑧 represents the z-component of the contact

force at foot 𝑖. Unlike those equations though, the x- and y-direction position values for foot 𝑖 in

Equations (6.30) above, 𝑝𝑖,𝑥
′ and 𝑝𝑖,𝑦

′ , respectively, are those calculated in the body-frame {𝑩} by the

kinematic model (indicated explicitly by the prime symbols), rather than being calculated relative to

the world frame (hence the negative in the pitch moment equation of (6.30), instead of in the roll

moment equation as in (5.1)).

The system of Equations (6.30) represented as a matrix equation becomes

 𝑭𝑽𝑴𝑪 = 𝑷𝑭𝑖,𝑧, (6.31)

with 𝑷 and 𝑭𝑖,𝑧 being defined as

 𝑷 = [

1 1 ⋯ 1
𝑝1,𝑦
′ 𝑝2,𝑦

′ ⋯ 𝑝𝑛,𝑦
′

−𝑝1,𝑥
′ −𝑝2,𝑥

′ ⋯ −𝑝𝑛,𝑥
′
] , 1 ≤ 𝑛 ≤ 𝑁 (6.32)

 𝑭𝑖,𝑧 =

[

𝑓1,𝑧
𝑓2,𝑧
⋮
𝑓𝑛,𝑧]

, 1 ≤ 𝑛 ≤ 𝑁. (6.33)

Since this system has three equations, when 𝑛 = 3, i.e. three legs are in contact with the ground, the

system also has three unknowns (the required forces for the three contact legs). Thus, Equation (6.31)

has a unique solution, and the three individual foot forces can be computed directly as

 𝑭𝑖,𝑧 = 𝑷
−1𝑭𝑽𝑴𝑪. (6.34)

However, when there are more than three contact feet (𝑛 > 3), the solution is not unique and the

equilibrium equations in (6.30) are typically used as equality constraints for an optimization problem,

which minimizes some objective function involving the foot forces, for example [6], [10], [11]. In the

 Chapter 6: Standing Posture Control

124

case of 𝑛 < 3, there is no solution to Equation (6.31), but this scenario is generally avoided when using

statically stable gaits.

In the present application of Standing Posture Control, the hexapod is always standing on all six legs,

so a much simpler force distribution method can be employed, simply to divide the virtual forces

evenly amongst all the feet, rather than employing an optimization algorithm. Along with reducing

complexity, this approach also significantly reduces the computational expense of the controller,

leaving open the potential for implementation on less powerful computer hardware, which could run

onboard the robot.

In fact, a similar technique was exploited by Ridderström and Ingvast [4] to distribute the vertical leg

forces for the Warp1 quadruped platform. This decision was informed by their review of literature on

the Spring Flamingo biped [100], where the authors argued that it is not necessary to solve the force

distribution problem exactly, in practice. Ridderström and Ingvast [4] also then found that their

posture controller worked quite well without a more advanced implementation.

Proceeding with this simple force distribution approach for the Standing Posture Controller on the

PhantomX, the vertical force, 𝐹𝑉𝑀𝐶, and roll moment, 𝑀𝜙, are evenly divided between all six legs. The

pitch moment, 𝑀𝜃, on the other hand, is only distributed between the front and back leg pairs, as the

central legs, numbered 3 and 4 (see Figure 5.2), are collinear with the y-axis of {𝑩} (in the case of

standing) and thus cannot apply a torque about this axis. The resulting force distribution rule

calculates the contact forces of each foot of the robot, for the standing case, as follows [19]:

 𝑓𝑖,𝑧 =

{

 𝐹𝑎𝑣𝑔 +

𝑀𝜙,𝑎𝑣𝑔

𝑝𝑖,𝑦
′ −

𝑀𝜃,𝑎𝑣𝑔

𝑝𝑖,𝑥
′ , 𝑖 ∈ [1, 2, 5, 6]

𝐹𝑎𝑣𝑔 +
𝑀𝜙,𝑎𝑣𝑔

𝑝𝑖,𝑦
′ ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖 ∈ [3, 4]⁡⁡⁡⁡⁡⁡⁡⁡

, (6.35)

where

𝐹𝑎𝑣𝑔 =
𝐹𝑉𝑀𝐶
6

𝑀𝜙,𝑎𝑣𝑔 =
𝑀𝜙

6

𝑀𝜃,𝑎𝑣𝑔 =
𝑀𝜃
4
.

(6.36)

It should be noted that this calculation is performed in the body coordinate frame, {𝑩}. It is, therefore,

accurate when the body is level, but when the orientation is not horizontal the gravitational force of

the robot (which was added directly into the vertical component, 𝐹𝑉𝑀𝐶) actually acts at an angle

relative to the body, resulting in the z-direction force equilibrium not being exact. However, the

 Chapter 6: Standing Posture Control

125

controller usually acts to restore the body to a horizontal attitude in any case, and when non-zero

pitch or roll angles are commanded they are generally kept rather small, so the errors in the above

calculations should, for the most part, remain negligible.

A further simplification which is made, as mentioned in the previous section, is that the COM is

assumed to be coincident with the origin of {𝑩}, rather than taking into account its offset in the

xy-plane. In principle, this should be included in the equilibrium equations as the offset causes

additional moments about the x- and y-axes. However, practically speaking, it is more prudent to

consider these additional moments as external disturbances, to be counteracted by the controller.

Similar to the case of the mass, discussed earlier, in a real-world situation the position of the COM is

not straightforward to measure precisely. It is also sensitive to small changes in the configuration of

the robot, such as changing the battery and adjusting or mounting different components on the body.

Furthermore, if the robot is to be used to carry a payload, the COM position is virtually guaranteed to

be affected. For these reasons it is not desirable for the controller to rely on knowledge of the COM

position in order to perform well; it should be able to exhibit satisfactory performance in the presence

of any general disturbance forces. Moreover, inclusion of the COM offset introduces both nonlinear

terms and coupling between control variables to the system, monumentally increasing the complexity

for control.

6.1.3.2 Foot Force Distribution Implementation

The foot force distribution rule described by Equations (6.35) and (6.36) was implemented in ROS as

a function, named distributeStandingFootForces, in the posture_control node. This

function is called in the main timer callback, immediately after calling the updateController

function. As such, the VMC outputs are distributed among the feet at every iteration of the posture

controller update. The resulting force setpoints for each leg are published over a relevant topic.

Having determined the desired foot contact forces for each leg, the next step is to devise a leg control

scheme to achieve these forces.

6.1.4 Single Leg Force Controller
When the Dynamixel AX-12A joint actuators were introduced in Section 4.1.1, it was stated that they

do not provide the capability to directly control output torque and are thus only used to track desired

positions. Other ranges of Dynamixel servo motors are available which can be torque controlled [101];

however, these cost more than the AX-12A series and are also incompatible with the PhantomX leg

brackets. Consequently, achieving the desired foot forces by controlling the joints to output equivalent

torques, calculated using the leg Jacobian, is not an option on the robotic platform being used in this

study.

 Chapter 6: Standing Posture Control

126

Therefore, a force control strategy is required to be implemented for each leg to regulate the foot

contact forces to the desired values by appropriately modifying the motion of the leg. Given that the

desired leg positions can be fed into the IK engine, it would be ideal to influence the foot forces

through appropriate adjustments to the leg position commands.

Methods such as these were presented in Section 3.4, for the task of interaction control in manipulator

robots. Two main categories were discussed, namely indirect and direct force control. It was indicated

that the former is useful for controlling the static and dynamic behaviour of the manipulator when

experiencing external forces, while the latter category allows for the regulation of contact forces to

desired values, in the constrained directions of the manipulator’s motion.

Specifically considering the stance legs of the robot, to be used to invoke the necessary forces on the

body to control its posture, it becomes apparent that this case corresponds to regulation of force in a

constrained direction, pointing to the use of direct force control being appropriate. It is true that,

technically speaking, the legs are not completely constrained as their movement does cause motion

on the body that they are attached to. However, the feet can be seen as being constrained to stay in

contact at a particular point on the ground, unlike the stance legs which move around in free space.

6.1.4.1 Single Leg Force Controller Design

With the above discussion in mind, a direct force control strategy, in the form of a simple PI controller,

can be implemented for a single leg, 𝑖, according to the following control law:

 Δ𝑝𝑖,𝑧 = −𝐾𝑃𝑒𝑓,𝑖 − 𝐾𝐼∫ 𝑒𝑓,𝑖⁡𝑑𝜏
𝑡

0

, (6.37)

where

 𝑒𝑓,𝑖 = (𝑓𝑖,𝑧 − 𝑓𝑚,𝑖), (6.38)

and Δ𝑝𝑖,𝑧 ≡ Adjustment value for z-position of the 𝑖th foot (controller output),

 𝑒𝑓,𝑖 ≡ Force error of the 𝑖th foot,

 𝑓𝑖,𝑧 ≡ Commanded vertical force on the 𝑖th foot, as calculated in Equation (6.35),

 𝑓𝑚,𝑖 ≡ z-component of the force measured on the 𝑖th foot (by the force sensor),

 𝐾𝑃 ≡ Proportional gain of force controller, and

 𝐾𝐼 ≡ Integral gain of force controller.

Effectively, this results in the leg being pushed downward (against the terrain) if an increase in force

is required, while a reduction in the contact force is achieved by retracting the leg upward.

 Chapter 6: Standing Posture Control

127

In Equation (6.37) the integration of the force error acts to adjust the foot position until the desired

force is met, contrary to its use in physically constrained directions for robotic manipulators, where

the output creates a position error, to adjust forces with no actual, resultant motion [68]. On the

hexapod robot, although the vertical leg motions are not constrained, the VMC adjusts the force

reference values based on the motion of the robot. The result is not only force control of the feet, but

also control of the desired dynamic response of the robot, without the need for impedance control on

the stance legs.

Although the control law described above provides the foundation of the force controller, for practical

implementation on the robot some modifications need to be made. Firstly, to prevent the controller

from pulling the leg up until the femur servo hits the coxa bracket or attempting to push the leg down,

outside of its kinematic range, artificial saturation limits were required to be introduced to the control

algorithm. Based on the standing height of the robot, saturation limits of +5 cm and -5 cm were found

to be appropriate for use on the PhantomX.

However, integral controllers have the drawback of “winding up” when actuators are saturated, as

the resultant, non-zero error signal is continually integrated [98], [99]. The error is then required to

have the opposite sign for a long period of time before normal operation of the controller can be

restored, which is highly undesirable as it effectively renders the controller useless for that time

period. As a remedy to this problem, an anti-windup mechanism, based on back-calculation and

tracking, is also implemented in the single leg force control structure.

The principal of this mechanism’s operation is to create an extra feedback path around the integrator,

in order to drive its input to zero, when the normal feedback path around the process is broken by

saturation of the controller output [98], [99]. In particular, when the controller output in Equation

(6.37), Δ𝑝𝑖,𝑧, exceeds the saturation limits, the actual output adjustment value, Δ𝑧𝑖, is set to the

limiting value. This breaks the feedback path around the leg’s motion control process, as the process

input remains constant (at the saturation value).

To create the additional feedback path required around the integrator, a tracking error signal, 𝑒𝑠,𝑖, is

formed as the difference between the controller output and actual output. That is,

 𝑒𝑠,𝑖 = (Δ𝑧𝑖 − Δ𝑝𝑖,𝑧). (6.39)

This error signal is then fed back into the input of the integrator through a gain 1/𝑇𝑡 (see the block

diagram in Figure 6.1). When the controller output is within the saturation limits, then Δ𝑧𝑖 = Δ𝑝𝑖,𝑧

and the tracking error, 𝑒𝑠,𝑖, is accordingly zero, leaving the normal operation of the controller

unaffected. However, when the leg position saturates, Δ𝑧𝑖 is set to the limit value while Δ𝑝𝑖,𝑧

 Chapter 6: Standing Posture Control

128

continues to grow in magnitude, resulting in a non-zero value of 𝑒𝑠,𝑖. This creates the additional

feedback to the integrator, which acts to drive the integrator’s output to a value such that the

integrator input becomes zero.

Thus, the input to the integrator takes the form −𝐾𝐼𝑒𝑓,𝑖 + (1 𝑇𝑡⁄)𝑒𝑠,𝑖. During conditions of saturation,

the aim is to drive this input to zero at steady state. Hence,

−𝐾𝐼𝑒𝑓,𝑖 +

1

𝑇𝑡
𝑒𝑠,𝑖 = 0

∴ 𝑒𝑠,𝑖 = 𝐾𝐼𝑇𝑡𝑒𝑓,𝑖.

(6.40)

Given that 𝑒𝑠,𝑖 = (Δ𝑧𝑖 − Δ𝑝𝑖,𝑧), it follows that, at steady state

Δ𝑧𝑙𝑖𝑚 − Δ𝑝𝑖,𝑧 = 𝐾𝐼𝑇𝑡𝑒𝑓,𝑖

∴ Δ𝑝𝑖,𝑧 = Δ𝑧𝑙𝑖𝑚 − 𝐾𝐼𝑇𝑡𝑒𝑓,𝑖,
(6.41)

where Δ𝑧𝑙𝑖𝑚 represents the saturation limit value of the output.

The sign of 𝑒𝑓,𝑖 acts in the opposite direction of Δ𝑝𝑖,𝑧, i.e. negative force errors correspond to positive

foot position adjustments (to retract the foot upward) and vice versa. Thus, the result of Equation

(6.41) implies that, when the leg motion is saturated, the controller output signal, Δ𝑝𝑖,𝑧, settles on a

value just outside of the saturation limit, allowing the control signal to react as soon as the error

changes sign, rather than having to first wind down over a long time.

How far outside the saturation limit the controller output settles, as well as how quickly it is reset, are

dictated by the feedback gain 1 𝑇𝑡⁄ . Suitably, the parameter 𝑇𝑡 can be interpreted as the “time

constant” related to the rate at which the integral is reset, and it is thus aptly referred to as the

tracking time constant.

Incorporating the abovementioned saturation and anti-windup mechanisms into the force controller

leads to a control law, for a single leg 𝑖, which is described mathematically as

 Δ𝑝𝑖,𝑧 = −𝐾𝑃𝑒𝑓,𝑖 +∫ (−𝐾𝐼𝑒𝑓,𝑖 +
1

𝑇𝑡
𝑒𝑠,𝑖) 𝑑𝜏

𝑡

0

. (6.42)

The controller output is fed through an artificial saturation block to yield the commanded position

adjustment, Δ𝑧𝑖, which is required to modify the z-component of the foot position commanded by the

gait engine (denoted 𝑧𝑑,𝑖), creating the adjusted reference position, 𝑧𝑟,𝑖, for the IK engine. As such,

 𝑧𝑟,𝑖 = 𝑧𝑑,𝑖 + Δ𝑧𝑖 . (6.43)

 Chapter 6: Standing Posture Control

129

This control structure is illustrated more clearly in the block diagram in Figure 6.1 below, where the

Foot Force Controller for a single leg 𝑖 (indicated in blue) can be seen integrated into the greater

motion control system for that leg.

For the sake of simplicity, only the z-component of the force sensor measurement (relative to the

force sensor’s coordinate frame) is used, and the force controller acts only in the body frame, adjusting

the z-positions of the feet relative to {𝑩}. It is for this reason that the x- and y-position commands

from the gait engine can be seen, in Figure 6.1, being fed directly into the gait engine, without any

adjustment.

Figure 6.1: Block diagram of Foot Force Controller for a single leg 𝑖, indicated in blue (adapted from [19])

When the robot is simply standing, the gait engine outputs are constant. As a result, all the vertical

motion of the legs occurs as a result of the force controller. Hence, the control structure described

above, can be viewed as a hybrid position/force controller (see Section 3.4.1), in which the x- and

y-directions of motion are controlled purely for position, while the z-direction motion is exclusively

governed by force control. However, for the z-direction, the command from the position control (gait

engine) is still factored in, similar to the parallel control composition described in Section 3.4.3, in

which both force and motion control influence the motion (with the former dominating the latter in

constrained directions). The reason for this composition of the control structure will become more

transparent in Chapter 7, when the situation of walking is also to be handled.

 Chapter 6: Standing Posture Control

130

As with the virtual model controller, it is required to discretize the continuous force control Equation

(6.42), for digital implementation on a computer. The proportional part of the controller is discretized

in the same way as for VMC and is quite straightforward. On the other hand, from Equation (6.42) it

can be deduced that the integral action, 𝐼𝑖(𝑡), is given by

 𝐼𝑖(𝑡) = ∫ (−𝐾𝐼𝑒𝑓,𝑖(𝜏) +
1

𝑇𝑡
𝑒𝑠,𝑖(𝜏)) 𝑑𝜏.

𝑡

0

 (6.44)

Differentiating Equation (6.44) produces

𝑑𝐼𝑖(𝑡)

𝑑𝑡
= −𝐾𝐼𝑒𝑓,𝑖(𝑡) +

1

𝑇𝑡
𝑒𝑠,𝑖(𝑡). (6.45)

Approximating the derivative by a forward difference [98] at a particular sampling instant, 𝑡𝑘, results

in

𝐼𝑖(𝑡𝑘+1) − 𝐼𝑖(𝑡𝑘)

𝑡𝑘+1 − 𝑡𝑘
= −𝐾𝐼𝑒𝑓,𝑖(𝑡𝑘) +

1

𝑇𝑡
𝑒𝑠,𝑖(𝑡𝑘), (6.46)

which can be rearranged to form a recursive equation for digitally computing the integral action:

 𝐼𝑖(𝑡𝑘+1) = 𝐼𝑖(𝑡𝑘) + Δ𝑡𝑘+1 (−𝐾𝐼𝑒𝑓,𝑖(𝑡𝑘) +
1

𝑇𝑡
𝑒𝑠,𝑖(𝑡𝑘)), (6.47)

where Δ𝑡𝑘+1 = (𝑡𝑘+1 − 𝑡𝑘).

The resulting mathematical algorithm for computing the force control action, for a single leg 𝑖, looks

as follows:

Δ𝑡𝑘 = 𝑡𝑘 − 𝑡𝑘−1;

𝐼𝑖(𝑡𝑘) = 𝐼𝑖(𝑡𝑘−1) + Δ𝑡𝑘 (−𝐾𝐼𝑒𝑓,𝑖(𝑡𝑘−1) +
1

𝑇𝑡
𝑒𝑠,𝑖(𝑡𝑘−1)) ;

𝑒𝑓,𝑖(𝑡𝑘) = (𝑓𝑖,𝑧(𝑡𝑘) − 𝑓𝑚,𝑖(𝑡𝑘)) ;

𝑃𝑖(𝑡𝑘) = −𝐾𝐼𝑒𝑓,𝑖(𝑡𝑘);

Δ𝑝𝑖,𝑧(𝑡𝑘) = 𝑃𝑖(𝑡𝑘) + 𝐼𝑖(𝑡𝑘);

Δ𝑧𝑖(𝑡𝑘) = outputSaturation (Δ𝑝𝑖,𝑧(𝑡𝑘)) ;

𝑧𝑟,𝑖(𝑡𝑘) = 𝑧𝑑,𝑖(𝑡𝑘) + Δ𝑧𝑖(𝑡𝑘);

𝑒𝑠,𝑖(𝑡𝑘) = Δ𝑧𝑖(𝑡𝑘) − Δ𝑝𝑖,𝑧(𝑡𝑘);

(6.48)

where outputSaturation() represents a function that applies the artificial saturation limits to the

controller output.

 Chapter 6: Standing Posture Control

131

6.1.4.2 Single Leg Force Controller Implementation

In the ROS locomotion stack, the gait and IK engines are both encompassed in the

hexapod_controller node, where they are updated at every iteration of this node’s main loop,

sending the relevant commands to the joint actuators. Therefore, in order for the force controller to

be able to intercept the gait commands and adjust them at every iteration, it was necessary to

incorporate the force control system into the same node.

Thus, a C++ class (ForceController) was written and included into the hexapod_controller

package. This class implements a stack of 𝑁 identical, single leg force controllers, one for each of the

𝑁 legs of the robot (six in the case of the hexapod). The main function of this class, named

updateController, executes the algorithm described in Equations (6.48) for each leg, generating

the set of six position adjustment values. Subscribers are also included to receive force sensor data,

as well as the desired contact force values, or setpoints, from the force distribution module. All

relevant controller parameters are loaded at runtime from the YAML configuration file for the

PhantomX.

The source code of the main hexapod_controller node was modified to instantiate an object of

the ForceController type. This object’s update function is called at every loop iteration,

immediately after the gait positions have been calculated. Once the adjusted reference positions are

received from the force controller stack, they are fed into the IK engine (instead of the gait commands)

to determine the required joint positions.

While embedding the contact force control system into the hexapod_controller node allows

for it to update the foot position commands at every iteration, it does subject the controller to

inconsistent execution frequencies. This is not only caused by the fact that the locomotion package

was not coded to follow strict “real-time” constraints, but also by the presence of an inner loop in the

servo communication object, which executes within the main loop of the node in a blocking fashion.

Perusal of the source code of the classes, making up the various functionalities of the

hexapod_controller node, revealed this anomaly in the ServoDriver class (mentioned

briefly in Section 4.3.2.1). This class handles the mapping between joint angles and servo positions,

along with all the serial communication with the joint actuators. In this class, the main function which

transmits the position commands to the servos (transmitServoPositions) contains a loop

that, at each iteration, increments the relevant servo position commands by a single integer value at

a time and transmits these to the servos. Thus, the loop is executed until all the servo position

commands reach the goal positions associated with the joint angles requested by the IK engine. The

purpose behind using this interpolation loop was to smooth the motions of the legs.

 Chapter 6: Standing Posture Control

132

This inner loop is set to run at a particular frequency, referred to as the interpolation loop rate, by

using the sleep function of a ROS Rate object [102]. The Rate object in ROS does not merely execute

a sleep by pausing the process for a set amount of time, like most implementations of these functions

do. Instead, the Rate instance attempts to keep a loop at a particular frequency, by accounting for the

time already spent on the processes in the loop and pausing the process for the remainder of the time

in the desired loop period. If the time already used by the loop exceeds the desired period, the sleep

function simply does not pause the process at all. Thus, no real-time constraints are imposed on the

program, but an attempt is made to achieve a desired execution frequency.

In the context of the hexapod_controller node, such a Rate instance is also used to limit the

maximum loop execution rate to 500 Hz for the PhantomX. During this main loop, the

transmitServoPositions function of the ServoDriver instance is called after the IK engine

calculates the desired joint angles. This function call executes the interpolation loop, at a maximum

rate of 550 Hz, until the desired joint angles have been commanded from the actuators, thus blocking

the execution of the main loop while interpolating. As a result, if very small changes in foot positions

are required, corresponding to small changes in the servo positions, then the interpolation loop only

executes a few times and the main loop is not blocked for too long, allowing it to run at rates relatively

close to the maximum of 500 Hz. However, considering that a single integer value increment to the

servo position command corresponds to an angular increment of only 0.29° (see Section 4.2.1), it

rarely occurs that only a few iterations of the interpolation loop are required. If a significant change

in position is required for even one servo, the interpolation loop blocks the main loop for a

considerable amount to time, dropping its execution rate to well below 500 Hz.

Some measurements of the time taken between main loop iterations, while making the robot walk

around (using just the gait engine, without posture control), revealed that the necessary leg motions

resulted in the loop durations often being as large as 15 – 20 ms, sometimes larger. This indicates that

the main loop frequency can even drop below 50 Hz, on occasion.

As a side note, it should be mentioned that although the main loop of the node can become this slow,

the frequency of execution of SYNC_READs (to obtain servo position feedback) is not generally

affected by this drop in the main loop rate, despite the readServoPositions function being

coded as a part of the ServoDriver (see Section 4.3.2.1). The reason for this is that the

readServoPositions function is called inside of a timed callback, and the

hexapod_controller makes use of an asynchronous, non-blocking spinner [77]. Two threads are

utilized by the spinner for pumping callbacks, without any interruption from the processes running in

the node’s main loop.

 Chapter 6: Standing Posture Control

133

While the software architecture described above (with a main control loop and inner interpolation

loop) could be adequate for the open-loop control of gaits (which the hexapod_controller node

manages to achieve quite effectively), the inconsistent execution frequency can certainly become

problematic for feedback control systems, such as the force controller being implemented here. For

the standing case, however, the only motion demanded of the legs is from the force controllers

themselves, which do not generally command enormous position changes in a single time step.

Therefore, the variable loop frequency did not pose a significant problem, with the execution rate

being considerably faster than 50 Hz, in general. However, this issue becomes more significant in the

walking case, as will be discussed in more detail in Chapter 7.

Another point to be drawn out of this discussion is that, since the force controller frequency mostly

stays above 50 Hz, but can sometimes drop lower, the posture_control node frequency was kept

to 20 Hz. There would be no point executing the VMC, with force distribution, and transmitting the

foot force commands faster than the force controller can act on them.

Moreover, considering that the theoretical maximum frequency for this loop is 500 Hz, it was

necessary to receive force sensor measurements at a higher rate, so as to not use “stale”

measurements for the task of control. The OptoForce DAQs offer four sampling rates of 30 Hz, 100 Hz,

333 Hz, and 1000 Hz. Evidently, the only option faster than 500 Hz is 1000 Hz, hence the use of this

sampling frequency for force measurements, as expressed in Section 4.3.2.3.

The full stack of 𝑁 single leg Force Controllers are shown integrated into the greater control structure

of the hexapod platform in the following section.

6.1.5 Overall Control Structure
A high-level block diagram illustrating the overall control structure is presented in Figure 6.2 below.

The diagram shows how the implemented posture control system, comprised of Posture Calculation,

VMC, Foot Force Distribution, and six, individual Foot Force Controllers, fits into the larger robotic

system, which includes the locomotion generation software stack.

 Chapter 6: Standing Posture Control

134

Figure 6.2: High-level block diagram depicting overall control structure on hexapod robot; posture control system is
indicated by blue blocks (adapted from [19])

In the block diagram above, the posture control system, indicated by blue blocks, can be seen closing

a feedback loop around the robotic system, or process, by feeding back measurements from the

sensory system and making appropriate adjustments to the foot position commands used for motion

control. The entire posture control system has essentially been “bolted on” to the existing control

software, with minimal changes to the locomotion engine being required in order to incorporate

closed-loop posture control functionality. This is an important feature for developing control systems

which can easily be used with a wide variety of commercial robotic platforms and commonly available

locomotion software suites.

For this study, all the necessary controller gains and parameters were determined through manual

tuning. It would be possible to select the gains by, for example, utilizing techniques to place the closed-

loop poles at desired locations and accordingly shape the dynamic response, such as those described

in [11], or making use of optimal control theory to determine the gains which yield a linear quadratic

regulator (LQR) [94]. However, further investigation into the dynamic process would be required to

make effective use of such methods. For these particular methods, the former would warrant a more

thorough analysis of the physical and mechanical properties of the robot so that appropriate

closed-loop pole locations could be chosen. Similarly, the latter method of LQR design would only

 Chapter 6: Standing Posture Control

135

really return a superior controller if the designer has a good idea of how to suitably select the state-

and control-weighting matrices.

It must be kept in mind that this study is the first iteration of controller design for the robotic platform

in use, and the focus is geared towards developing, and investigating the viability of, these control

strategies on the platform, rather than on optimizing the design or obtaining the perfect parameters.

By forming a foundation of the control systems on the robot being used, this study creates a platform

for subsequent investigations to look deeper into the matters related to designing said control

systems. In fact, this type of iterative controller design is often observed in the literature, such as the

example of the virtual model control system used on the legged robots at ETH Zurich’s Autonomous

Systems Lab. In this case, the study in [103] aimed to initially implement a simple, manually tuned

VMC strategy on the ALoF quadruped, forming the basis for progressively more advanced

implementations on StarlETH, in studies such as [6], [11].

Furthermore, Ridderström and Ingvast [4] maintain that excessive parameter tweaking is not

imperative, as a useful posture controller should be able to operate with a wide range of parameters

for robustness.

For the reasons mentioned above, manual parameter selection was deemed sufficient for this study.

A fairly standard parameter tuning method was carried out. Firstly, initial parameters were obtained

by considering the orders of magnitude of the errors, and other terms, in the controller equations and

selecting the orders of magnitude of the gains to yield realistic controller output magnitudes. Gains

were subsequently increased until the dynamic behaviour of the system, in response to step changes

in the reference values, approached unstable conditions, thus determining maximum values of the

gains. These were then decreased, or “detuned,” by a fair amount, to keep the system well within the

stable region. Finally, adjustments were made by testing the step responses as parameters were

tweaked, until a satisfactory compromise between accuracy, speed, and smoothness of the response

was achieved.

Tables 6.1 and 6.2 provide the final parameter values used for the Standing Posture Control system.

 Chapter 6: Standing Posture Control

136

Table 6.1: Parameter values used for VMC in Standing Posture Control system

Posture Component Symbol (𝑿)
Parameter Values

𝑲𝑿 𝑪𝑿 𝑵𝒇,𝑿

Height 𝑧 1500.0 N/m 15.0 N·s/m 2.0

Roll 𝜙 90.0 Nm/rad 1.5 Nm·s/rad 2.0

Pitch 𝜃 90.0 Nm/rad 1.5 Nm·s/rad 2.0

Table 6.2: Parameter values used for Single Leg Force Controller in Standing Posture Control system

Parameter Value

𝑲𝑷 5.0e-3 m/N

𝑲𝑰 7.0e-3 m/(N·s)

𝑻𝒕 1.0 s

While contact force setpoints are continuously updated by the VMC, default posture setpoints are

required for when the robot is simply standing in its normal configuration. The default height setpoint

of the body frame, {𝑩}, was calculated based on the standing height which was set for the robot, as

well as the vertical position of {𝑩} relative to the robot’s body. Roll and pitch angle setpoints of 0°

were selected to maintain a horizontal orientation of the robot’s body, as standard. These default

posture setpoints are summarized in Table 6.3.

Table 6.3: Default posture setpoint values for Standing Posture Controller

Setpoint Component Value

Height, 𝒉𝒅 0.123 m

Roll angle, 𝝓𝒅 0°

Pitch angle, 𝜽𝒅 0°

6.2 Experimental Setup and Tests
A variety of experimental tests were carried out to evaluate the effectiveness and performance of the

implemented posture control system. Controller speed and accuracy were tested through a series of

escalating step tests, on flat and level terrain, in which step changes of increasing magnitude were

applied independently to the height, pitch, and roll references. Each step test was repeated at least

three times, and the results compared, in order to assess the precision of the control system. These

various step tests are described in more detail in Section 6.2.1 below.

While step tests on a level surface are useful for evaluating the ability of the controller to track the

desired reference, it is also important to investigate whether the control system can regulate the

 Chapter 6: Standing Posture Control

137

robot’s posture on uneven terrain and in the presence of disturbances, since these are the key

situations which necessitate posture control in walking robots in the first place. Therefore, the control

system was tested with the robot standing on artificial rocks (uneven terrain) as well as on a dynamic

balance board, described in more detail in Sections 6.2.2 and 6.2.3, respectively.

A Vicon motion capture system [16] was used to track the robot and balance board during the

experimental tests, thereby allowing the posture estimates used by the controller to be compared to

ground truth measurements, as well as providing an indication of the magnitudes of the disturbances

induced by tilting the balance board. Specific details regarding the Vicon object models and processing

of Vicon data are discussed in Section 6.2.4 below.

6.2.1 Step Tests on Flat, Level Terrain
Individual step tests were carried out for the three control variables, namely height, pitch, and roll, so

that their responses could be analysed independently, while also inspecting how significantly the

“unstepped” control variables are disturbed by adjustment of a single control variable. Escalating

steps, of positive and negative magnitudes, were used so that a single test procedure would evaluate

controller performance for various step magnitudes, setpoint values at various distances away from

the nominal value, and both positive and negative steps.

In view of the fact that the force controller saturates the leg motion at ±5 cm, the height setpoint was

limited to 4.5 cm above and below the nominal value of 12.3 cm, i.e. the maximum and minimum

values used for the height setpoint were 16.8 cm and 7.8 cm, respectively. Successive step magnitudes

were incremented by 1 cm at a time, changing step direction each time.

Saturating the vertical leg motion also limits the orientation that the robot body can achieve. The

maximum roll and pitch angles achievable by the control system before saturating were calculated to

be approximately 11.65° and 12.75°, respectively. Maximum and minimum setpoints of 0.15 rad

(approximately 8.6°) and -0.15 rad, respectively, were thus used for both roll and pitch, ensuring that

the robot stayed well clear of the saturation limits. In this case, the magnitudes were increased in

increments of 0.03 rad, starting at the nominal values of 0 rad.

6.2.2 Uneven Terrain Tests
Artificial rocks were arranged in a manner which emulated uneven terrain conditions (see Figure 6.3

below). The robot was made to stand up on these rocks with the controller disabled and, alternately,

enabled, so that the uncompensated and compensated postures could be compared. This test was

vital to determine whether the controller can handle general uneven terrain conditions, where the

footholds will not necessarily be on a planar surface.

 Chapter 6: Standing Posture Control

138

A step test of the height controller was also carried out while standing on the rocks, to assess the

performance with the legs being at various heights and the contact planes of some feet being at slight

angles to the horizontal. Since the height difference between the highest and lowest footholds on this

rock configuration was in the region of 0.07 m, some of the legs were already quite close to their

saturation limits. Thus, the step size was limited to 0.03 m for this test.

Figure 6.3: PhantomX hexapod robot platform standing on artificial rocks

6.2.3 Balance Board Tests
Tilting a balance board on which the robot is standing is an effective means of inducing force

disturbances on the legs and, thus, disturbances to the robot’s posture. Consequently, the controller’s

effectiveness to regulate the robot’s posture can be tested both in the presence of disturbances and

under dynamic terrain conditions, by conducting balance board tests.

For this purpose, a tripod mount plate was attached to the underside of a wooden board, allowing it

to be mounted onto a tripod. A ball and socket joint on the tripod provided sufficient rotational

freedom to tilt the board as desired.

The balance board was gradually tilted back and forth manually, first in the roll and pitch directions

independently, then in a circular motion, both clockwise and anticlockwise, to create coupled roll and

pitch disturbances. Taking into account the controller saturation limits, the magnitudes of the board

roll and pitch angles were limited to approximately 10.5° and 11.5°, respectively. Tilting rates of up to

roughly 10.5°/s were applied to the board.

 Chapter 6: Standing Posture Control

139

In Figure 6.4 below, the PhantomX can be seen standing on the balance board, mounted atop the

tripod.

Figure 6.4: PhantomX hexapod robot platform standing on balance board

6.2.4 Vicon Setup and Data Processing
This study made use of a Vicon motion capture system belonging to the Mobile Intelligent

Autonomous Systems (MIAS) research group at the CSIR. It consists of twelve cameras that track

objects, to provide ground truth measurements of their position and orientation. The cameras are

attached to two data acquisition machines, connected to a desktop computer on which the Vicon

Tracker software package is installed. Vicon Tracker provides a graphical user interface (GUI) which is

used to calibrate the Vicon system, set the location and orientation of its world frame, create masks

to remove noise detected by the cameras, and create object models, which are discussed below.

Both the PhantomX and the balance board were tracked using the Vicon. Not only was the balance

board tracked to obtain its roll and pitch information during the dynamic balancing tests, but it was

also used as a reference against which the height of the robot could be measured during the flat

terrain step tests, as can be seen in Figure 6.5.

 Chapter 6: Standing Posture Control

140

Figure 6.5: PhantomX standing on level balance board for height reference in Vicon measurements of flat terrain step tests

In order for the Vicon to be able to track the robot and balance board, it was necessary to place

reflective markers on them (using the double-sided tape provided with the markers). On the

PhantomX, markers were attached only to the main body, as this is the rigid body whose motion is of

interest, while markers on the balance board were only attached along the edges, leaving sufficient

room on the board for the PhantomX. To avoid ambiguity in the orientations of the bodies, the

markers were required to be arranged in a non-symmetric and non-planar configuration around each

body. The markers can be seen attached to the robot and balance board in the above figures, as well

as in Figures 4.14 and 4.15 of Chapter 4 in the case of the PhantomX.

For the Vicon system to be able to recognize these marker configurations as rigid bodies, object

models had to be created defining the relationships between the markers. This was accomplished with

the Vicon Tracker software package. In Vicon Tracker, the marker configurations for the PhantomX

and balance board were created as separate objects, each with their own coordinate frames. The

PhantomX object frame was orientated the same way as the body frame, {𝑩}, i.e. with the x-axis

pointing forward and z-axis upward. Since the software only allows for the frames to be “snapped” to

coincide or align with specific markers, the origin of the PhantomX object frame was able to be located

such that it is coincident with the z-axis of {𝑩}, but slightly higher than the origin of {𝑩}. Furthermore,

the limited ability to align the axes of the object frame meant that a small deviation between the

orientations of this object frame and {𝑩} were indeed present. Figure 6.6 shows a screenshot of the

GUI of Vicon Tracker, in which the PhantomX object model and its coordinate frame can be seen. As

 Chapter 6: Standing Posture Control

141

in Figure 5.2 which showed the body coordinate frame, {𝑩}, the x-, y-, and z-axes of the Vicon object

coordinate frame are indicated in red, green, and blue, respectively, in the figure below.

Figure 6.6: Screenshot of Vicon Tracker GUI, showing PhantomX object model and coordinate frame (x-, y-, and z-axes are
indicated in red, green, and blue, respectively)

Similarly, the coordinate frame for the balance board object was located in the middle of the board,

slightly above its surface (in line with the centres of the Vicon markers placed on the board). It was

orientated to have its xy-plane as close to being parallel to the board surface as possible, with the

z-axis pointing upward. When the PhantomX was made to stand on the board, it was orientated such

that its x- and y-axes pointed in the same directions as those of the balance board, so that the roll and

pitch directions for the two bodies would correspond.

Ground truth measurements of these two objects were recorded as rosbags, through the use of the

vicon_bridge driver package in ROS [104]. For each object, the Vicon provides a translation, which

represents the position of its frame’s origin, along with a rotation, in the form of a quaternion vector.

MATLAB scripts were written to convert the various rosbags into MATLAB-readable data, using the

open source matlab_rosbag [105] library, in a MATLAB environment installed on an Ubuntu

machine. This allowed for all the post-processing of the Vicon data to be performed in MATLAB.

 Chapter 6: Standing Posture Control

142

In view of the discrepancies between the orientations of the Vicon object frames and the actual bodies

at their null positions, described above, post-processing of the Vicon data included the removal of

these small, constant offsets. In addition, the height offsets of the object frames meant that the points

in space corresponding to the origin of {𝑩} and the centre of the balance board surface were required

to be transformed into the world frame description, according to the transformation Equation (3.15)

given in Section 3.2.1.3. This transformation equation is repeated here for convenience:

 𝒑 = 𝑹𝒑′ + 𝒑𝑏 . (6.49)

In the context of a Vicon object, 𝒑𝑏 and 𝑹 refer to the position and orientation, respectively, of the

object frame, relative to the world frame, as measured by the Vicon. With 𝒑 being the position of the

desired point described in the world frame, 𝒑′ describes the offset between the object frame and the

desired point, relative to the object frame. Hence, for the two Vicon objects which only have height

offsets between the frame origins and the desired points,

 𝒑′ = [
0
0
𝑝𝑧
′
], (6.50)

where 𝑝𝑧
′ represents this height offset. Based on the size of the Vicon markers and their distances to

{𝑩} and the balance board surface, specific height offset values of -7.539 mm and -9 mm were

required to be used for the PhantomX and balance board, respectively.

While the transformations above yield the position measurements of the two bodies being tracked,

the Euler angles corresponding to the orientation were calculated using the mapping from a

quaternion, provided in Equation (3.26) of Section 3.2.1.4.2. In MATLAB, the functions quatinv,

quatrotate, quat2angle, and angle2quat, which are included in the Aerospace Toolbox,

were utilized to manipulate the quaternion provided by the Vicon, as well as to convert between

quaternion and Euler angle representations. Thus, the computations above yield the ground truth

values of the posture components of the robot, as measured by the Vicon system.

6.3 Results and Discussion
The results of the experimental tests described above are presented and discussed in the sections that

follow. It should be noted that, while multiple runs of the tests were conducted, the results were

found to compare very well between runs, suggesting that the controller performance is remarkably

consistent. Thus, for the sake of brevity, only representative plots of the typical response are

presented below, rather than the results of all the runs.

 Chapter 6: Standing Posture Control

143

6.3.1 Step Tests on Flat, Level Terrain
Results of the three individual step tests, corresponding to the three posture control variables, are

presented and discussed separately below.

6.3.1.1 Height Step Response

Figure 6.7 shows the response of the robot to step changes in the reference height. In the figure, the

height, roll, and pitch responses are plotted separately, with ground truth measurements from the

Vicon indicated in blue, the posture estimates calculated from sensor measurements indicated in red,

and the posture reference values, or setpoints, indicated by black dashed lines.

Figure 6.7: Posture response of system to step changes in reference height [19]

Firstly, it can be seen that the Vicon measurements of orientation compare favourably to the

orientation estimates from the IMU. There is, however, a small offset, of up to 2 – 3 mm, between the

estimated height and that measured by the Vicon system. It is likely that this offset is a result of small

errors in the kinematic model, as well as inaccuracies in the servo position readings which have a finite

resolution, giving rise to cumulative round off errors. Another source of error is the tiny deformation

experienced by the force sensors under load. Although, the magnitude of these deformations would

 Chapter 6: Standing Posture Control

144

only be a fraction of a millimetre under the static loads experienced by the sensors in these tests and

would thus only have a minor contribution to the height errors observed (as compared to the other

sources of error). Yet another factor which could play a role is a potential error in the vertical

feedforward force value used in the controller, as the weight of the robot is affected by an assortment

of aspects, such as the pull of the tether between the computer and laptop, the particular battery

pack being used at the time, and the placement of Vicon markers on the body, among others. Again,

this source of error is not expected to play as large a role as the errors from the kinematic calculations,

but it should be kept in mind.

Furthermore, the momentary spikes observed in the sensor-measured height are attributed to

occasional errors in reading the servo positions (which are used to calculate height through the

kinematic model), such as corrupt return packets received from the hardware. These hardly have any

significant impact on the overall response of the robot though, evidenced by the fact that the Vicon

measurements of posture are unperturbed when these sensor measurement errors occur.

Despite the small height measurement errors described above, the height response is sufficiently

accurate, usually settling to within 1.5 mm of the reference value. The magnitude of the maximum

steady state error is approximately 2 mm for large steps, as measured by the Vicon, and slightly more

than 0.5 mm for the estimated height.

Given that only PD control is used by the VMC for controlling posture, without an integration term

(see Equation (6.15)), some steady state error is expected. It also seems sensible that the error would

be larger for reference values further away from the nominal pose, as the orientation of the foot

sensors would become increasingly less vertical the more the legs are raised or lowered, resulting in

misalignment of the force sensor measurement frame with respect to {𝑩}. This effectively decreases

the measured forces used by the force controllers on each leg, resulting in tracking errors. It is, in fact,

quite gratifying that the response shows such a small steady state error in spite of these factors.

The speed of the height response is also quite good, generally having a 10% – 90% rise time of

approximately 0.9 s. The response does not overshoot the reference, settling smoothly without any

significant oscillation. Of course, the controller could be tuned for an even faster response, but this

would result in more oscillatory, and possibly jerky, motion, which would be undesirable.

Both [4] and [11] obtained considerably larger steady state height errors in their experimental tests,

despite using smaller step sizes, as well as an integration term in the controller in the case of [4].

Additionally, the plots in Figure 6.7 indicate that the roll and pitch angles only experience small

perturbations (<0.6°) when a height step is applied, and these are reduced quickly by the controller.

 Chapter 6: Standing Posture Control

145

Also, the steady state error values of roll and pitch when the height reference has been stepped are

exceptionally small, with a maximum magnitude in the region of 0.3° at large step sizes. As with the

height error, the larger roll and pitch errors at larger step sizes can be explained by the errors in force

measurements in these poses.

6.3.1.2 Roll and Pitch Step Responses

Posture response plots for escalating roll setpoint steps are presented in Figure 6.8, while those for

pitch angle steps are depicted in Figure 6.9.

Figure 6.8: Posture response of system to step changes in reference roll angle [19]

 Chapter 6: Standing Posture Control

146

Figure 6.9: Posture response of system to step changes in reference pitch angle [19]

In both cases above, the responses are remarkably fast and accurate, having 10% – 90% rise times in

the region of 0.5 s and steady state error magnitudes which remain below 0.3°. Little oscillation is

observed in the responses, only really becoming noticeable for large step sizes. For roll angle steps,

the steady state errors are much smaller for positive reference values than negative ones. A possible

cause could be an offset of the COM towards the left of the robot body. Considering that the COM

position offset (in both the x- and y-directions) has not been taken into account in the control

algorithm, the errors of the steady state responses in the above plots are actually extremely small.

With regard to the response of Figure 6.8, it is apparent that pitch angle perturbations are kept small

by the controller when stepping the roll angle, with the pitch angle errors not exceeding 0.3°. Similarly,

Figure 6.9 indicates that roll angle perturbations are kept below 0.5° when stepping pitch.

However, the height responses in both of these tests show a slightly more notable steady state error

at large roll and pitch angles, particularly for the Vicon measurements. The reason that the estimated

height values start deviating from the actual height at larger angular displacements is that they are

calculated in the body frame, {𝑩}, which rotates with the robot body, thus resulting in a misalignment

 Chapter 6: Standing Posture Control

147

between {𝑩} and the world frame. Nevertheless, the actual (ground truth) height of the robot stays

within about 3 mm of the reference value, at steady state.

Figure 6.8 also reveals that the transient response of the height exhibits momentary jumps, of up to

11 mm at most, when applying large roll angle steps. The most probable cause of this is the slight leg

lift observed as the robot initially starts adjusting the roll angle, in response to large reference step

changes. This likely happens because the VMC initially commands negative forces from some of the

legs in an attempt to achieve a large enough roll moment. It would be possible to eliminate this

behaviour by constraining the foot force commands to positive values, but this is likely to slow down

the roll response slightly. Moreover, since the lifting of the legs does not appear to have any severely

negative effects on the response of the robot, it was left as is.

Overall, the roll and pitch step response results are comparable to the experimental results obtained

in [4], [11]. Furthermore, the fact that the perturbations observed in the unstepped posture

components have very small magnitudes (in all three of the above tests), indicates that the posture

controller is quite effective at decoupling the three posture components in spite of the actual coupling

present in the dynamics of the system (as alluded to in Section 6.1.2).

6.3.2 Uneven Terrain Tests
As described previously, the uneven terrain tests comprised of comparing the uncompensated and

compensated postures of the robot while standing on an artificial rock arrangement, as well as a step

test of the height while also standing on these rocks (with posture control enabled). The results of

these tests are presented and discussed below.

6.3.2.1 Uncompensated vs. Compensated Postures While Standing on Uneven

Terrain

Figure 6.10 demonstrates the robot standing on the rock arrangement in both the uncompensated

and compensated states. It is quite evident from the images that, without compensation, the robot

posture is unfavourable, having roll and pitch angle magnitudes of approximately 9.5° and 1°,

respectively. Furthermore, while not being clearly visible in the image, it must be noted that not all

the feet were in contact with the terrain when the posture controller was disabled.

On the other hand, with active posture control the body of the robot is kept level, exhibiting maximum

roll and pitch magnitudes of around 0.3° and 0.06°, corresponding to improvements of approximately

96.8% and 94.0%, respectively. Furthermore, all six feet were also observed to be in firm contact with

the terrain. This condition is preferable for a legged robot as it improves “traction” when walking,

while also improving the weight distribution among the legs, and thus the energy efficiency as well.

These results show a very clear improvement over the uncompensated case, as expected.

 Chapter 6: Standing Posture Control

148

Figure 6.10: Comparison of PhantomX hexapod robot platform standing on uneven terrain, with (right) and without (left)
posture control activated [19]

6.3.2.2 Height Step Test on Uneven Terrain

Plots of the height step response of the robot while standing on the same uneven terrain as above are

illustrated in Figure 6.11. Only the estimated height is shown here, as there is no single reference

height from which to calculate the robot height from Vicon measurements, for this test.

Figure 6.11: Posture response of system to step changes in reference height, while standing on uneven terrain [19]

 Chapter 6: Standing Posture Control

149

The height response is very similar to that of the step tests conducted on flat and level terrain, with

the largest observed steady state error magnitude being close to 2 mm. Roll and pitch angle

magnitudes are limited to less than 1° and 0.4°, respectively, with the roll having a constant offset of

approximately 0.5° in magnitude. Larger roll and pitch angle errors than those seen earlier are to be

expected, as most of the feet are significantly higher or lower than their nominal height. In addition,

the inclination of the contact surface beneath some of the feet results in vertical force measurement

errors. Overall, the performance of the controller on uneven terrain compares satisfactorily with its

performance on flat and level terrain.

6.3.3 Balance Board Tests
The results of the balance board test are presented in the form of roll and pitch angle plots in Figure

6.12. Both the board and robot orientations, as measured by the Vicon system, are displayed for

comparative purposes, with the robot orientation indicated in blue and the board orientation denoted

by magenta lines.

Clearly, disturbances induced by tilting the board are responded to well by the robot. The roll and

pitch angle magnitudes are kept well below 4°, which is approximately one third of the maximum

angular displacement of the board. These results appear to be comparable to those obtained in [4] for

a similar test using the Warp1 quadruped platform.

Figure 6.12: Roll and pitch response of the robot to tilting of balance board, as measured by Vicon [19]

 Chapter 6: Standing Posture Control

150

A point to be noted is that since the posture controller’s bandwidth causes a slight delay in responding

to disturbances from the board, changes in the direction of the board’s motion actually act to restore

the robot’s orientation. This restorative effect from the board, coupled with the delayed response of

the controller, results in the robot’s orientation response appearing to lead that of the balance board

in Figure 6.12. This is likely also the reason that larger peak values of the robot’s response are observed

later in the test, when coupled roll and pitch motions are induced on the board, rather than sudden

changes in one direction only, which have a greater restorative effect on the robot’s orientation.

It is also worth pointing out that this was the only test in which the legs approached their saturation

limits, and saturation conditions were only experienced momentarily, if at all. Therefore, the relatively

large tracking time constant of 1 s (corresponding to a gain of 1 𝑇𝑡⁄ = 1⁡s−1) was sufficient for these

tests. However, it was mentioned in Section 6.1.4.1 that 𝑇𝑡 determines how far outside the saturation

limits the controller output can wind up and how fast it is restored after the saturating conditions

cease. Thus, if the legs were to operate near saturation more often (as in the case of walking on highly

uneven terrain), a smaller tracking time constant (corresponding to a higher gain 1 𝑇𝑡⁄) would be

preferable, to keep the posture control system sufficiently responsive. Of course, the gain cannot be

made arbitrarily high, as a very potent response from the anti-windup mechanism could cause

undesired behaviour in the leg motion, such as oscillations or instability. These factors are taken into

consideration when selecting 𝑇𝑡 in Section 7.2.5.

6.4 Conclusion
A Standing Posture Control algorithm was successfully implemented and tested on a low-cost,

commercially available hexapod robot. The experimental results exhibited controller performance

comparable to that achieved on more sophisticated, custom designed robotic platforms.

Moreover, the use of only one component of the foot force measurements to achieve this

performance indicates that one-dimensional force sensors could be employed, reducing the costs and

complexity of the platform even further. This is discussed in more detail in Section 8.3.2.

Some modifications could be made to the control system, such as including an integration term to

eliminate, or at least reduce, steady state tracking error. However, the improvements in performance

would likely be minor.

The next step in the development of this posture control system is to implement it on the PhantomX

hexapod while walking on uneven terrain. This is precisely the topic to which the next chapter is

dedicated.

151

Chapter 7: Walking Posture

Control

In Chapter 6 the implementation of a posture controller for the specific case of the robot standing on

all six legs was discussed. Experimental tests revealed that the implemented controller worked well

to regulate posture while the robot stood on even, uneven, and dynamically varying terrain conditions.

Of course, for the robot to be practically useful, it will be required to perform posture control not only

while standing, but also while walking on uneven terrain.

Therefore, this chapter discusses the shortcomings of the Standing Posture Controller when walking

is brought back into view, as well as modifications which were made to the control structure to address

those drawbacks. The resulting “Walking Posture Control” system continues to distribute foot forces

using simple strategies, even during walking. Furthermore, the new control system introduced in this

study successfully achieves active compliance for legs in the swing phase, while still providing direct

force control during the stance phase, with a simple switching strategy. It uses essentially the same

overall Single Leg Force Control structure as the Standing Posture Controller, without requiring any

modification to the underlying position control method utilized by the locomotion engine.

Furthermore, an artificial, uneven terrain setup developed for this study is introduced, followed by

the presentation and discussion of results of experimental tests performed with the Walking Posture

Control system.

7.1 Shortcomings of Standing Posture Control System for Walking
In this section the various components making up the Standing Posture Control structure will be

reviewed, to determine the modifications required for posture control while walking.

 Chapter 7: Walking Posture Control

152

7.1.1 Posture Calculation
Most of the posture calculation methods described in Section 5.2 were derived for general

applicability, regardless of whether the robot was in motion or not. Therefore, the principles of the

height and orientation calculations are still valid for use while walking.

However, a simplification was made for the implementation of height calculation for Standing Posture

Control, wherein the positions of all six legs were always used, as they were always assumed to be in

contact with the terrain (see Equation (6.1), Section 6.1.1). During walking, though, it is necessary to

determine the ground contact status of each leg and use only the contact legs when calculating height,

as per Equation (5.19) of Section 5.2.2. Specifics regarding the determination of the legs’ contact

statuses during practical implementation will be discussed in Section 7.2.1 below.

7.1.2 Virtual Model Controller
Since the virtual model controller takes estimations of the posture as its inputs and calculates only the

required overall force and moments to be applied to the main body, this control structure is

unaffected by the robot’s motion and number of contact legs. Therefore, it can still be used as is, save

for some retuning of the parameters to values more applicable for uneven terrain walking.

7.1.3 Foot Force Distribution
Basing the foot force distribution rule on an assumption of all six legs participating in the control of

the robot, as was done for the Standing Posture Controller, is insufficient when the robot walks. It is

thus more appropriate to consider the phases of the legs and utilize only the stance legs for

distributing the required forces. Section 7.2.3 will describe the procedure employed to determine the

leg phases, along with a revised foot force distribution methodology for walking with the PhantomX.

7.1.4 Single Leg Force Controller
While walking, the legs will be required to switch between force and position control regimes, with

only some of the legs partaking in posture control at any given time. Therefore, the following factors

are required to be taken into account for the force controller:

1. Since the gait engine commands will no longer be constant at all times, as was the case for

the Standing Posture Controller, the saturation and anti-windup mechanisms are required to

account for the actual position of the foot, rather than just the position adjustment value

output by the force controller.

2. A smooth transition would be required when switching from direct force control, in the leg’s

stance phase, to motion control, in the swing phase. In particular, the position adjustment,

Δ𝑧𝑖, present from the previous stance phase would need to be “wound down” gradually in the

 Chapter 7: Walking Posture Control

153

swing phase, rather than performing a sudden, “hard reset” of this value to zero, as this would

induce significant disturbances on the robot’s motion.

3. The gait engine assumes the ground to be flat; thus, environmental modelling errors and

uncertainties, in the form of unevenness in the terrain, would result in undesired contact

between the ground and the foot of a swing leg, during motion. Hence, the interaction of the

swing leg with the environment would need to be controlled, in the presence of external

forces.

4. It would be preferable to achieve the differing interaction control schemes, in the different

leg phases, with the same general force control structure, avoiding the complexities involved

with introducing a completely different force controller to the system for the swing phase,

such as:

a. having to intelligently and seamlessly switch between the different force controllers;

b. a significant increase in the number of parameters to be determined and tuned; and

c. most likely increased computational load.

Points 3 and 4 above culminate in the idea that the ideal solution would lie in simple modifications,

which could be made to the existing force control structure, allowing the legs to,

a) still operate under direct force control during the stance phase, but

b) undergo motion control from the gait engine during the swing phase, with adjustments from

indirect force control to achieve compliant behaviour when interacting with the environment.

The resulting modifications made to the Single Leg Force Controller, in harmony with this philosophy,

are presented in Section 7.2.4 below.

7.2 Modifications Made to Control Structure for Walking
Based on the considerations outlined in the previous section, relevant modifications were made to

various components of the posture control structure. These modifications are discussed below, and

the updated control strategies are presented.

7.2.1 Height Calculation
To account for the more general case where not all legs are in contact with the terrain, the height

calculation in the posture_control node was updated according to Equation (5.19) of Section

5.2.2, which is repeated here:

 ℎ = −
∑ 𝑝𝑖,𝑧

′𝑛
𝑖=1

𝑛
, 1 ≤ 𝑛 ≤ 𝑁. (7.1)

The number of contact legs, 𝑛, to be used in this calculation is determined from the force information

provided by the OptoForce sensors. For this, the posture_control node was also made to

 Chapter 7: Walking Posture Control

154

subscribe to the force data published by the OptoForce driver, with the subscriber’s callback saving

the sensors’ z-direction readings as the measured contact force values for the associated feet. Each

foot’s contact status is determined using a threshold force of 0.5 N, a value which was found to be

small enough to quickly detect contact, while also being large enough to not misinterpret noise and

measurement drift as contact.

7.2.2 Virtual Model Controller
As mentioned in Section 7.1.2 above, the virtual model control structure remains unchanged during

walking. This ability to carry the high-level control structure forward, when making changes to the

lower levels of the control system, distinctly highlights the advantages of using a modular, hierarchical

control structure.

Updated VMC gains are presented in Section 7.2.5 below, while updates to the posture setpoints for

experimental testing are discussed in Section 7.3.2.

7.2.3 Foot Force Distribution
As discussed in Section 7.1.3 above, the leg phases are required to be determined before being able

to update the force distribution rule.

7.2.3.1 Foot Force Distribution Theory

While the most straightforward option would be to extract the leg phases from the internal workings

of the gait engine, by modifying it to output this information, doing so would make the posture

controller intrinsically linked to this particular gait engine. Since it would be preferable to have the

control structure be as easily adaptable to a variety of locomotion engines as possible, as well as

having the potential to be gait agnostic, it would be more suitable to estimate the phase information

only from the standard outputs of the gait engine, i.e. the foot position commands.

In view of the fact that most standard gait engines command a constant vertical position during the

stance phase, the z-position is sufficient to determine the leg’s phase. In this study, a leg is considered

to be in stance if the z-position command from the gait engine is below a threshold value of 0.001 m

larger than the nominal standing height (a threshold value is used, rather than the exact nominal

height, to account for small amounts of numerical noise which may be present in the position

command signal). A threshold of just 1 mm may appear too small, as this is certainly within the margin

of error that could be expected from the foot tip of the PhantomX, using AX-12A servos. However, this

threshold value is applied only to the gait command signal, to determine when the gait engine has

switched a leg into the stance phase. Therefore, the threshold value does not deal with the actual

position of the foot at all, and so, for the determination of leg phase, it does not matter how accurately

the foot is tracking the commanded position.

 Chapter 7: Walking Posture Control

155

Another point to note is that although a derivative of the z-position command signal could also be

used to infer the leg phase (identifying a stance phase when a zero derivative is obtained), in practical

implementation the computation of a derivative as a backward difference would result in slight delays

in determining the change of a phase. In addition, the possibility of obtaining a zero derivative at the

top of the swing phase, before the leg changes direction, would also have to be accounted for. Since

the former option (using a threshold value on the position command signal) is both simpler and, in

most cases, more accurate, it was decided to be used for this study.

7.2.3.1.1 Tripod Gait

Moving on to the actual distribution of foot forces to the stance legs, the reader is reminded that the

force-torque equilibrium equations can only be solved directly when 𝑛 = 3 (see Section 6.1.3.1), while

force distribution cases involving more contact legs are usually solved using an optimization method.

This is still not desirable in the current study, on account of the computational load this will place on

each iteration of the VMC loop. However, in this particular case, since the hexapod_ros gait engine

currently only provides the tripod gait, the only scenarios which require force distribution involve

either three contact legs, which can be solved directly, or six contact legs, a solution to which has been

developed for the Standing Posture Controller.

7.2.3.2 Foot Force Distribution Implementation

In the ROS software, the outputs of the gait engine were set to be published from the

hexapod_controller node, allowing the posture_control node to subscribe to them and

compute the leg phases during the main control callback. For the scenario of six stance legs, the same

force distribution rule as the Standing Posture Controller is employed. On the other hand, when the

number of legs in stance phase is found to be three, the force-torque equilibrium equation, in matrix

form, is solved as (see Equation (6.34) of Section 6.1.3.1)

 𝑭𝑖,𝑧 = 𝑷
−1𝑭𝑽𝑴𝑪, (7.2)

for the relevant tripod of stance legs, using the functions built into the Eigen library for C++. In

particular, the colPivHouseholderQr method (which carries out Householder rank-revealing QR

decomposition of a matrix with column-pivoting) is used to solve the linear system. This method

provides a good compromise between solution speed and accuracy for small-to-medium sized

matrices, without imposing any requirements on the structure of the matrix [106]. The force setpoints

of all swing legs are set to zero, the reason for which will become more apparent in the next section.

As before, all six force setpoints are published by the posture_control node, for use by the Single

Leg Force Controllers.

 Chapter 7: Walking Posture Control

156

Some situations do arise when stance phase calculations do not coincide precisely with the tripod

model. For example, when changing between stance tripod sets, the phase calculation sometimes

yields a momentary result of less than three stance legs. This occurs regardless of how small the

threshold for stance is set to, indicating that the primary cause lies in the method used by the gait

sequencer to generate foot trajectories. More specifically, in this gait engine the gait commands are

calculated purely based on sinusoidal trajectories, without having any dedicated phase switching

mechanism. As a result, numerical and round-off errors can sometimes cause some legs in a stance

tripod to start lifting off just before the legs in the swing tripod have touched down. This is most likely

also the cause of the slight drift over time in the yaw angle, or heading, that can sometimes be

observed when the robot is commanded to walk in a straight line. A similar situation occurs just as the

robot starts walking, or just before it stops, in which case the number of stance legs briefly registers

in the range 3 < 𝑛 < 6.

Therefore, for the purposes of foot force distribution, these anomalies are accounted for by a series

of checks on the number of stance legs. If 𝑛 is found to be smaller than three, i.e. 𝑛 < 3, the previous

set of legs used for force distribution is used once more. On the other hand, if 3 < 𝑛 ≤ 6, the full set

of all six legs is used for force distribution. Of course, in the event that 𝑛 = 3, the particular tripod of

legs found to be in contact is used for force distribution. These occasional situations only occur

momentarily, for a single time step, and thus do not have any notable, negative impact on the

performance of the posture controller.

It may appear as though the use of a tripod gait model destroys the point of ensuring that the posture

controller implementation is not inextricably linked to the gait engine in use. However, the

assumptions discussed above are based on high-level concepts and outputs of the gait engine. As such,

they do not bind the leg phase calculations or force distribution to this particular implementation of a

gait engine. Since the leg phase information is inferred from the gait output, these force distribution

calculations could hypothetically be performed using any hexapod gait engine providing a tripod gait,

without having to delve into its internal workings to determine how it computes and stores phase

information. Their usage is also likely to remain unaffected by a change in the implementation of the

existing gait engine. Furthermore, if different gaits are provided by the engine, the force distribution

method needs to just be updated to handle different numbers of contact legs, after which the inferred

leg phase information can still be used to distribute the forces accordingly. Hence, despite the

simplifications made in the current implementation, the potential for broader application to other gait

engines, along with gait agnosticism, is still prevalent in this posture control system.

 Chapter 7: Walking Posture Control

157

7.2.4 Single Leg Force Controller
The various modifications made to the Single Leg Force Controller structure, to address the issues

outlined in Section 7.1.4, will first be discussed individually in this section, before presenting the final,

designed controller and its implementation.

7.2.4.1 Single Leg Force Controller Modifications

This section individually describes the various modifications made to the Single Leg Force Controller

for use during walking.

7.2.4.1.1 Saturation and Anti-Windup

As discussed in Section 7.1.4 above, the first modification to make to the Single Leg Force Control

structure is to move the artificial saturation and anti-windup mechanisms further downstream when

compared to that used in the Standing Posture Controller (see Figure 6.1), to account for the position

command from the gait engine. A block diagram of the force controller for a single leg 𝑖, incorporating

this change, can be seen in Figure 7.1 below.

Figure 7.1: Block diagram of Foot Force Controller for a single leg i, with saturation and anti-windup mechanisms moved
further downstream

Rather than saturating the force controller output, Δ𝑝𝑖,𝑧, before adding it to the gait command, this

output is added directly into the gait command to yield a temporary reference position, 𝑧𝑡,𝑖. That is,

 𝑧𝑡,𝑖 = 𝑧𝑑,𝑖 + Δ𝑝𝑖,𝑧. (7.3)

 Chapter 7: Walking Posture Control

158

This temporary reference position is then fed through the artificial saturation model to obtain the

actual, adjusted reference position, 𝑧𝑟,𝑖. As a result, the tracking error, 𝑒𝑠,𝑖, is computed as

 𝑒𝑠,𝑖 = (𝑧𝑟,𝑖 − 𝑧𝑡,𝑖). (7.4)

During normal operation, the result of this computation is equivalent to that of Equation (6.39) in the

case of the Standing Posture Controller, and produces effectively the same outcome during saturation.

However, it should be kept in mind that feeding back 𝑒𝑠,𝑖, as calculated in Equation (7.4) above, does

introduce 𝑧𝑑,𝑖 as an additional, almost hidden, input to the force controller’s integrator. This can be

seen more clearly when analysing the integrator input:

−𝐾𝐼𝑒𝑓,𝑖 +
1

𝑇𝑡
𝑒𝑠,𝑖 = −𝐾𝐼𝑒𝑓,𝑖 +

1

𝑇𝑡
(𝑧𝑟,𝑖 − 𝑧𝑡,𝑖)

= −𝐾𝐼𝑒𝑓,𝑖 +
1

𝑇𝑡
(𝑧𝑟,𝑖 − 𝑧𝑑,𝑖 − Δ𝑝𝑖,𝑧).

(7.5)

Of course, when the output is within its saturation limits, the expression in brackets in this equation

evaluates to zero. However, during saturation, this expression does act as an input to the integrator,

affecting the controller output, Δ𝑝𝑖,𝑧, to drive the integrator input to zero.

Ordinarily, especially when the leg is in the stance phase, the gait command, 𝑧𝑑,𝑖, is well within the

saturation limit, 𝑧𝑙𝑖𝑚, thus |𝑧𝑑,𝑖| < |𝑧𝑟,𝑖| (since 𝑧𝑟,𝑖 = 𝑧𝑙𝑖𝑚 at saturation). Therefore, during saturation,

the effect of 𝑧𝑑,𝑖 is, in essence, “cancelled out” in the difference equation 𝑧𝑟,𝑖 − 𝑧𝑑,𝑖 (which appears

when 𝑧𝑟,𝑖 − 𝑧𝑡,𝑖 is expanded in Equation (7.5)), resulting in only Δ𝑝𝑖,𝑧 contributing to the excess

between 𝑧𝑡,𝑖 and 𝑧𝑟,𝑖. Feeding back 𝑒𝑠,𝑖 into the integrator thus just acts to wind-down the output,

Δ𝑝𝑖,𝑧, which is too large during saturation anyway, exactly as in the case of the Standing Posture

Controller.

However, considering a hypothetical situation in which Δ𝑝𝑖,𝑧 = 0, but 𝑧𝑑,𝑖 is made large enough to

exceed the saturation limit (of course this could only happen if the leg is in the swing phase, as 𝑧𝑑,𝑖 is

constant during stance), i.e. |𝑧𝑑,𝑖| > |𝑧𝑟,𝑖|, the tracking error then becomes

 𝑒𝑠,𝑖 = 𝑧𝑟,𝑖 − 𝑧𝑑,𝑖 = 𝑧𝑙𝑖𝑚 − 𝑧𝑑,𝑖. (7.6)

Clearly, the only contributor to the excess of 𝑧𝑡,𝑖 above 𝑧𝑙𝑖𝑚 is the gait command. Feeding back this

tracking error effectively makes 𝑧𝑑,𝑖 the only input signal affecting the integrator (Δ𝑝𝑖,𝑧 = 0 before

saturation naturally implies that 𝑒𝑓,𝑖 = 0), and as a result the controller is forced to output a Δ𝑝𝑖,𝑧

value equal in magnitude, but opposite in sign, to the amount by which 𝑧𝑑,𝑖 exceeds 𝑧𝑙𝑖𝑚, so that 𝑒𝑠,𝑖

will be driven to zero. With both 𝑒𝑠,𝑖 and 𝑒𝑓,𝑖 being zero, there is now no input to reduce Δ𝑝𝑖,𝑧 back to

zero once the gait command is brought back within the saturation limits. The result is a constant

 Chapter 7: Walking Posture Control

159

deviation of Δ𝑝𝑖,𝑧 between the actual position of the leg and that commanded by the gait engine,

while the leg moves through space. This suggests that the wind-down mechanism for the controller

output, proposed in Section 7.1.4, should operate throughout the entire swing phase of the leg, rather

than only when switching from stance to swing.

It is prudent to point out that while the above consideration is mostly academic (as the gait engine

generally does not command positions outside of the saturation limits), changes in the

implementation of the gait engine, or physical changes to the robot that affect the saturation limits,

could potentially lead to this issue becoming a reality. Hence, the controller design should be robust

to such an eventuality. Furthermore, irrespective of whether this particular issue does arise, the

considerations above do emphasize the importance of a vital feature necessary in the control system,

especially if the existing force controller is desired to be utilized for the swing legs as well.

7.2.4.1.2 Controller Output Feedback

In order to address the issues pointed out in the above section, as well as those discussed previously,

including the need for compliance control with minimal changes to the overall control structure, a

modified force controller for a swing leg 𝑖 is introduced, in block diagram form, in Figure 7.2. For the

sake of simplicity and clarity, the saturation and anti-windup mechanisms are not indicated in the

diagram at this stage, focussing only on the actual force controller from the input force to the output

position adjustment.

Figure 7.2: Block diagram of modified Foot Force Control structure for a single, swing leg i, providing output wind-down and
active compliance during interaction

In the block diagram of Figure 7.2, it can be seen that the only significant modification made to the

controller, as compared to the block diagram of Figure 6.1, is the addition of a negative feedback path

from the controller output, Δ𝑝𝑖,𝑧, to the input of the integrator, through a gain 𝐾𝐶. While this

 Chapter 7: Walking Posture Control

160

modification may initially appear to be deceptively simple, it does, in fact, address many of the

requirements identified in Section 7.1.4.

The first, and most obvious, advantage of closing this controller output feedback loop is that, in free

space with no force error (or leg saturation), the controller output is driven to zero, achieving the

crucial wind-down effect required during the swing phase. Given that, in free space, no contact force

is exerted onto the foot-tip, having a force setpoint of zero is necessary to ensure zero force error

during swing. This explains the decision to set the force setpoint to zero for all swing legs in the foot

force distribution process, as mentioned in the preceding section.

Although this works to set the force error, 𝑒𝑓,𝑖, to zero in theory, it is important to consider that, in

practice, small magnitudes of measurement noise do exist in the force feedback signal, creating small

force errors even when no contact is exerted on the foot. Left unchecked, these small errors would be

integrated over time and eventually result in a large enough Δ𝑝𝑖,𝑧 value to create a noticeable drift in

the position of the foot. Here, once again, the feedback loop of the controller output comes in handy

to ensure that undesired force controller outputs do not linger in the reference position of the foot,

during the swing phase.

In order to observe the other advantage of this controller formulation, it is enlightening to consider

the situation of a contact force being exerted onto the foot (for example, when the swing leg contacts

the terrain earlier than expected). Since the force setpoint is zero during the swing phase (and hence

indicated by a light, dotted arrow in Figure 7.2), the negative of the measured force is transmitted

directly into the force controller as an input. As it goes through the negative controller gains, the effect

is comparable to the feedback of force used in the indirect force controller structures discussed in

Section 3.4.2. The resulting control action is described mathematically as follows:

 Δ𝑝𝑖,𝑧 = −𝐾𝑃𝑒𝑓,𝑖 +∫ (−𝐾𝐼𝑒𝑓,𝑖 − 𝐾𝐶Δ𝑝𝑖,𝑧)𝑑𝜏
𝑡

0

, (7.7)

and since 𝑒𝑓,𝑖 = (𝑓𝑖,𝑧 − 𝑓𝑚,𝑖) = (0 − 𝑓𝑚,𝑖) = −𝑓𝑚,𝑖, it follows that

 Δ𝑝𝑖,𝑧 = 𝐾𝑃𝑓𝑚,𝑖 +∫ (𝐾𝐼𝑓𝑚,𝑖 − 𝐾𝐶Δ𝑝𝑖,𝑧)𝑑𝜏
𝑡

0

. (7.8)

At steady state, the controller output remains constant and hence the integrator input is zero.

 Chapter 7: Walking Posture Control

161

Therefore,

𝐾𝐼𝑓𝑚,𝑖 −𝐾𝐶Δ𝑝𝑖,𝑧 = 0

∴ 𝑓𝑚,𝑖 =
𝐾𝐶
𝐾𝐼
Δ𝑝𝑖,𝑧.

(7.9)

The result of Equation (7.9) demonstrates that, at steady state, the new force controller allows a leg

in the swing phase to act as a generalized spring, with stiffness 𝐾𝐶/𝐾𝐼, in respect of the applied contact

force. This is exactly the steady state behaviour observed in manipulators under compliance control,

as described in [68], indicating that the direct force controller has successfully been modified to

provide active compliance to a leg in the swing phase, without having to modify the underlying motion,

or position, control method utilized by the locomotion engine.

Although the dynamic behaviour of the leg may differ slightly from that of a manipulator under

compliance control, the overall effect is still as desired, in that the reference position of a swing leg is

adjusted to retract it in the presence of an external force, so as to limit the disturbance induced onto

the robot’s body.

An additional observation from Equation (7.9) is that, at steady state, a non-zero force will still be

present if the foot of a leg in swing phase is in contact with the terrain. Given that the setpoint is zero,

a non-zero force at steady state means the controller does not precisely regulate force to the desired

value and is thus definitely no longer a direct force controller. A non-zero force in steady state further

implies that, while active compliance does attenuate the disturbance to the body, it cannot be

eliminated completely.

This points to a requirement of high compliance, or low stiffness, in the behaviour of the leg, to reduce

disturbances as much as possible. More specifically, if Equation (7.9) is rearranged as

 Δ𝑝𝑖,𝑧 =
𝐾𝐼
𝐾𝐶
𝑓𝑚,𝑖, (7.10)

it can be seen that 𝐾𝐶 should be as small as possible for a given contact force, to allow the leg’s position

to be retracted as much as possible, thus inducing as little motion onto the main body as possible

when the swing leg interacts with the ground. Alternatively, Equation (7.9) can be seen to suggest that

the smaller the value of 𝐾𝐶, the smaller the disturbance force exerted for a given steady state position

of the leg. It is thus clear that a small 𝐾𝐶 value is desired to achieve highly compliant behaviour. Since

𝐾𝐶 dictates the amount of compliance (assuming that the value of 𝐾𝐼 is governed by the direct force

controller requirements), it will be referred to as the compliance gain hereafter.

 Chapter 7: Walking Posture Control

162

Unfortunately, the compliance gain cannot be made arbitrarily small to achieve unlimited compliance,

as the smaller it is made the more the wind-down action in free space is reduced. In other words, if

𝐾𝐶 is too small, the rate at which Δ𝑝𝑖,𝑧 winds down when the leg is unforced would become

impractically slow. Therefore, a compromise needs to be attained between compliance and

wind-down speed when tuning the controller.

Now that the modified control structure has been analysed for its applicability to a leg in the swing

phase, it is useful to reintroduce the saturation and anti-windup mechanisms, as well as consider the

task of switching between direct force control and active compliance control. While the saturation

and anti-windup mechanisms can be incorporated into the modified controller just as described earlier

this section, switching control regimes requires a further addition to the controller.

In particular, since the only major modification to the force control structure during the swing phase

is the output feedback loop, switching between control strategies essentially entails enabling or

disabling this feedback, depending on the current phase of the leg. This can be simply accomplished

by multiplying the feedback through an additional gain of either 1, for the swing phase, or 0, for the

stance phase. Since the leg phases are being determined for force distribution anyway, this

information is available to the force controller. Thus, the use of a gain as described here presents a

simple method of mathematically switching control regimes. Of course, the other necessity when

changing from stance to swing is to set the force setpoint to zero, but this has already been taken care

of in the foot force distribution procedure.

7.2.4.2 Single Leg Force Controller Design

All the modifications discussed above are brought together to form the new Single Leg Force

Controller introduced in this study, which achieves both direct force control during the stance phase

and compliance control during the swing phase, with a simple switching strategy. This controller is

presented in block diagram form in Figure 7.3 for a single leg, 𝑖, in which the switching gain, 𝐾𝑆,𝑖, can

be seen multiplied by the feedback of the controller output, Δ𝑝𝑖,𝑧, to yield the compliance error, 𝑒𝑐,𝑖.

 Chapter 7: Walking Posture Control

163

Figure 7.3: Block diagram of Foot Force Controller for single leg i, for both stance (direct force control) and swing
(compliance control) phases during walking

The control law describing the system illustrated in Figure 7.3 is represented mathematically as

 Δ𝑝𝑖,𝑧 = −𝐾𝑃𝑒𝑓,𝑖 +∫ (−𝐾𝐼𝑒𝑓,𝑖 − 𝐾𝐶𝑒𝑐,𝑖 +
1

𝑇𝑡
𝑒𝑠,𝑖) 𝑑𝜏

𝑡

0

, (7.11)

where 𝑒𝑠,𝑖 is as defined in Equation (7.4) above, and

 𝑒𝑐,𝑖 = 𝐾𝑆,𝑖Δ𝑝𝑖,𝑧. (7.12)

Given that

 𝐾𝑆,𝑖 = {
1, 𝑝ℎ𝑎𝑠𝑒𝑖 ≡ 𝑠𝑤𝑖𝑛𝑔
⁡0, 𝑝ℎ𝑎𝑠𝑒𝑖 ≡ 𝑠𝑡𝑎𝑛𝑐𝑒

⁡⁡, (7.13)

it follows that

 𝑒𝑐,𝑖 = 𝐾𝑆,𝑖Δ𝑝𝑖,𝑧 = {
Δ𝑝𝑖,𝑧, 𝑝ℎ𝑎𝑠𝑒𝑖 ≡ 𝑠𝑤𝑖𝑛𝑔

⁡⁡⁡⁡0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑝ℎ𝑎𝑠𝑒𝑖 ≡ 𝑠𝑡𝑎𝑛𝑐𝑒
⁡⁡. (7.14)

An advantage of having the switching mechanism operate through the integrator is the “filtering”

effect that integration has on the discontinuities in the signal. In the deliberations of Section 7.1.4, it

 Chapter 7: Walking Posture Control

164

was alluded to that performing a hard switch between control regimes, by suddenly resetting or

introducing signals, would generally produce undesirable behaviour, such as abrupt changes in leg

position. Of course, the switching gain does indeed result in the Δ𝑝𝑖,𝑧 feedback loop being suddenly

enabled or disabled when changing phase, creating discontinuities in the form of steps in the signal.

However, integration over such discontinuities yields a continuous integral. Thus, feeding this

discontinuous feedback signal into the integrator input results in a continuous signal being observed

in the controller output, effectively providing a smoothed transition from one control regime to

another.

Once more, it is necessary to discretize the updated control equation for digital implementation. Since

the proportional action of the controller has remained unchanged (see 𝑃𝑖(𝑡𝑘) in Equation (6.48)), the

discretization process of only the integral part will be presented. From Equations (7.11) and (7.12), the

integral action of the continuous system, 𝐼𝑖(𝑡), takes the form

 𝐼𝑖(𝑡) = ∫ (−𝐾𝐼𝑒𝑓,𝑖(𝜏) − 𝐾𝐶𝑒𝑐,𝑖(𝜏) +
1

𝑇𝑡
𝑒𝑠,𝑖(𝜏)) 𝑑𝜏

𝑡

0

, (7.15)

where

 𝑒𝑐,𝑖(𝜏) = 𝐾𝑆,𝑖(𝜏)Δ𝑝𝑖,𝑧(𝜏). (7.16)

Differentiation of Equation (7.15) leads to

𝑑𝐼𝑖(𝑡)

𝑑𝑡
= −𝐾𝐼𝑒𝑓,𝑖(𝑡) − 𝐾𝐶𝑒𝑐,𝑖(𝑡) +

1

𝑇𝑡
𝑒𝑠,𝑖(𝑡). (7.17)

As before, using a forward difference to approximate the derivative at a particular sampling instant,

𝑡𝑘, results in

𝐼𝑖(𝑡𝑘+1) − 𝐼𝑖(𝑡𝑘)

𝑡𝑘+1 − 𝑡𝑘
= −𝐾𝐼𝑒𝑓,𝑖(𝑡𝑘) − 𝐾𝐶𝑒𝑐,𝑖(𝑡𝑘) +

1

𝑇𝑡
𝑒𝑠,𝑖(𝑡𝑘). (7.18)

Letting Δ𝑡𝑘+1 = (𝑡𝑘+1 − 𝑡𝑘) and rearranging Equation (7.18) gives the following discrete equation for

the integral action:

 𝐼𝑖(𝑡𝑘+1) = 𝐼𝑖(𝑡𝑘) + Δ𝑡𝑘+1 (−𝐾𝐼𝑒𝑓,𝑖(𝑡𝑘) − 𝐾𝐶𝑒𝑐,𝑖(𝑡𝑘) +
1

𝑇𝑡
𝑒𝑠,𝑖(𝑡𝑘)), (7.19)

with

 𝑒𝑐,𝑖(𝑡𝑘) = 𝐾𝑆,𝑖(𝑡𝑘)Δ𝑝𝑖,𝑧(𝑡𝑘). (7.20)

 Chapter 7: Walking Posture Control

165

A noteworthy observation can be made from Equations (7.19) and (7.20): the use of a forward

difference to approximate the derivative allows for the computation of the control law at the current

time instant, despite the recursive nature of Equation (7.11), in which the current controller output is

required in order to calculate the current controller output itself! This is not an issue in the discretized

equations above, as the controller output from the previous sampling instant is used to compute the

integral action for the current sampling instant. If a backward difference were used for approximating

the derivative in Equation (7.17), however, the signal values at the current sampling instant would be

propagated backward over the time difference, Δ𝑡𝑘, resulting in the computation of Δ𝑝𝑖,𝑧(𝑡𝑘)

requiring the value of Δ𝑝𝑖,𝑧(𝑡𝑘) itself – clearly a practically unachievable computation.

7.2.4.3 Single Leg Force Controller Implementation

Before presenting the updated digital computation algorithm, it is apt to discuss some additional

modifications made to the control system, to overcome issues arising from its practical

implementation. When performing tests with the robot running the updated force controller as

described above, peculiar behaviour was observed on occasion, especially when walking on uneven

terrain or over obstacles. During these occurrences, one, or some, of the legs would go into a state of

indefinite oscillation between the upper and lower saturation limits, rendering the robot essentially

uncontrollable. This was potentially indicative of a condition of instability in the closed-loop response

of the leg.

Upon further investigation and inspection of the various signals acting as inputs and outputs of the

control system, it was found that, when this phenomenon occurred, the force controller output, Δ𝑝𝑖,𝑧,

was indeed exhibiting unstable behaviour, oscillating between positive and negative values with an

exponentially growing magnitude. This observation clearly pointed to undesirable negative feedback

action, causing instability in the controller.

Since the instability only manifested in stance legs, it was definitely not being caused by the output

feedback loop used for compliance and wind-down in the swing phase, leaving only the tracking error

feedback signal as the possible culprit. Scrutiny of the controller block diagram (Figure 7.3) and

Equations (7.3), (7.4), (7.5), and (7.11) reveals that, during conditions of saturation, there does indeed

exist a path of negative feedback of Δ𝑝𝑖,𝑧 in the control structure, through the integrator input. As a

result, large values of 𝑒𝑠,𝑖, especially when integrated over time, could, in theory, lead to large

controller outputs in the opposite direction – so large in fact, that they cause larger magnitudes of 𝑒𝑠,𝑖

at the other saturation limit. Subsequently, the effect would be the same once again, but more

pronounced, and this cycle would continue, causing larger and larger magnitudes of the controller

output being “thrown” back and forth. Naturally, the commanded position of the leg would oscillate

 Chapter 7: Walking Posture Control

166

between the saturation limits, causing the legs to continually be raised and lowered over the entire

range of motion.

Now, in a continuous system, the appropriate selection of gains would prevent such an eventuality,

with the controller output never reaching large enough magnitudes to experience exponential,

“runaway” growth from negative feedback. From a theoretical perspective, this would be tantamount

to the gains being selected so as to keep the real parts of all the closed-loop poles negative, ensuring

stability [94], [97]. Similarly, in a digital system, with a (relatively) constant sampling frequency, the

gains would be selected for that particular frequency, limiting the feedback magnitudes for stability.

However, in Section 6.1.4.2 the issue of variable controller loop frequency in the

hexapod_controller node was illuminated. The consequence of this to the force controller is

that, if the control frequency drops significantly, the time over which error signals are integrated is

significantly larger than expected, which effectively produces the same outcome as an exceedingly

large gain in the integral action.

In the particular case of the current force controller implementation, the onset of this unstable

occurrence is initiated by a large force error on a specific leg, causing a large controller output beyond

the saturation limit. Accordingly, the leg is commanded to move to the limiting position. This usually

means that a substantial change in position is required, causing the interpolation loop of the servo

driver to execute over a long time, blocking the main control loop, as described previously. At the next

sampling instant, the (possibly small) tracking error is integrated over the large time difference,

leading to the leg being commanded to move across its entire range of motion at once, to the other

saturation point. Of course, the time taken by the interpolation loop is then even larger and the cycle

continues, resulting in the controller output quickly becoming unbounded.

Thus, the emergence of instability in this controller implementation can be attributed to a

combination of factors. The two main problems identified from the above considerations are:

1. Enormous force errors, arising from large force setpoints; and

2. Feedback of immense values of the tracking error, further amplified by integration over large

time periods arising from drops in the controller frequency.

A possible remedy to the first problem would be to “detune” the VMC gains, resulting in smaller forces

being demanded of the legs. However, this would impact on overall performance, even in cases when

smaller posture errors are measured and the resulting force setpoints would not have led to instability.

Therefore, the solution opted for in this study was to introduce force setpoint limits in the foot force

distribution rule. That way, the desired dynamic behaviour would still be achieved during normal

 Chapter 7: Walking Posture Control

167

operation, with only extreme cases being affected by setpoint limitation. Of course, this setpoint

limitation does not guarantee that unstable behaviour would never arise; however, it does benefit the

controller by reducing the occurrences of extremely large controller outputs being generated. The

second of the two problems, on the other hand, more directly influences the unstable growth of the

controller output, and it is thus imperative for it to be counteracted.

Since modification of the entire locomotion generation engine is outside of the scope of this study,

the problem of inconsistent controller frequency will need to be “circumnavigated,” so to speak, for

the time being. Thus, an option for limiting the growth of the controller output from feedback is to

introduce bounds on the magnitude of the tracking error signal. This would keep the integration, and

hence the controller output, in check, not allowing it to grow unstably. For this reason, limiting bounds

were applied for both positive and negative magnitudes of 𝑒𝑠,𝑖.

Technically, limiting the value of 𝑒𝑠,𝑖 limits the anti-windup capability of the control system. The

tracking gain itself becomes saturated when reaching its limit, allowing large enough force errors to

continue winding up the controller output further. However, in a practical situation, the continued

application of such large forces to the foot would most likely result in damage to the force sensors or

even the robot itself. In fact, such a force would not even occur when the robot walks on most terrains,

unless the terrain was dynamically changing in an extreme manner, in which case the robot would

likely be lifted or overturned and posture control would not be possible anyway. Obviously, such

conditions or applications of the robot would be avoided as far as possible. In a real-world

implementation, rather than attempting to prevent such unlikely eventualities, it is much more critical

to ensure stability during operation.

It is also important to keep in mind that this limitation of 𝑒𝑠,𝑖 only forms part of the controller design

for this particular implementation. This feature would not be necessary in an implementation where

the time periods between controller loop iterations are kept relatively consistent, or real-time

constraints are enforced.

It should also be noted that since there is kinematic dependency between the foot force and position,

an anti-windup mechanism, for saturation at the kinematic limits, could cause instability even in a

system with a consistent execution frequency. This is particularly true in the case of improper gain

selection (as mentioned earlier), which could also result in the inner control loops having slower

bandwidths than outer control loops. However, in this case, the drops in controller frequency from

the “blocking interpolation loop” of the locomotion engine, rather than poor selection of controller

gains, are the cause of excessively large signals and an inappropriate inner control loop bandwidth.

 Chapter 7: Walking Posture Control

168

Accordingly, the modifications described above are necessary to avoid instability in the current

implementation. Hence, for this study, the mathematical algorithm which digitally implements the

modified force controller for a single leg 𝑖 becomes:

Δ𝑡𝑘 = 𝑡𝑘 − 𝑡𝑘−1;

𝐼𝑖(𝑡𝑘) = 𝐼𝑖(𝑡𝑘−1) + Δ𝑡𝑘 (−𝐾𝐼𝑒𝑓,𝑖(𝑡𝑘−1) − 𝐾𝐶𝑒𝑐,𝑖(𝑡𝑘−1) +
1

𝑇𝑡
𝑒𝑠,𝑖(𝑡𝑘−1)) ;

𝑒𝑓,𝑖(𝑡𝑘) = (𝑓𝑖,𝑧(𝑡𝑘) − 𝑓𝑚,𝑖(𝑡𝑘)) ;

𝑃𝑖(𝑡𝑘) = −𝐾𝐼𝑒𝑓,𝑖(𝑡𝑘);

Δ𝑝𝑖,𝑧(𝑡𝑘) = 𝑃𝑖(𝑡𝑘) + 𝐼𝑖(𝑡𝑘);

𝑧𝑡,𝑖(𝑡𝑘) = 𝑧𝑑,𝑖(𝑡𝑘) + Δ𝑝𝑖,𝑧(𝑡𝑘);

𝑧𝑟,𝑖(𝑡𝑘) = simulateSaturation (𝑧𝑡,𝑖(𝑡𝑘)) ;

𝑒𝑠,𝑖(𝑡𝑘) = limitTrackingError (𝑧𝑟,𝑖(𝑡𝑘) − 𝑧𝑡,𝑖(𝑡𝑘)) ;

𝐾𝑆,𝑖(𝑡𝑘) = {
1, 𝑝ℎ𝑎𝑠𝑒𝑖(𝑡𝑘) ≡ 𝑠𝑤𝑖𝑛𝑔

⁡0, 𝑝ℎ𝑎𝑠𝑒𝑖(𝑡𝑘) ≡ 𝑠𝑡𝑎𝑛𝑐𝑒
;

𝑒𝑐,𝑖(𝑡𝑘) = 𝐾𝑆,𝑖(𝑡𝑘)Δ𝑝𝑖,𝑧(𝑡𝑘);

(7.21)

where limitTrackingError() represents a function that applies the limiting values to the tracking

error, yielding a bounded 𝑒𝑠,𝑖(𝑡𝑘).

The ForceController class in the hexapod_controller package was updated to execute the

algorithm described above, independently for each leg. A subscriber was also created to receive the

leg phase information from the force distribution process. Accordingly, the posture_control

node was also updated with two modifications, one to apply the force setpoint limits before publishing

them and the other to publish the leg phase information for each leg together with the force setpoints.

In the section that follows, the updated Foot Force Controllers are shown integrated into the greater

robotic control structure.

7.2.5 Overall Control Structure
While the individual components of the control system have been modified to handle walking, the

overall control structure still takes the same general form as the Standing Posture Controller. An

updated block diagram of this structure is illustrated in Figure 7.4 below, with only a few significant

changes visible, as compared to Figure 6.2 for the Standing Posture Control system. In particular, the

foot force measurements are now also fed into the Posture Calculation block, where they are used to

assist the height calculation. In addition, the z-position command from the gait engine also gets fed

into the Foot Force Distribution block, so that the leg phases can be determined. Subsequently, the

 Chapter 7: Walking Posture Control

169

leg phase information is transmitted from the Foot Force Distribution block to the stack of Foot Force

Controllers, along with their setpoints.

Furthermore, the outputs of the main control blocks have been indicated on the diagram, for clarity.

It should be noted that the individual gait engine outputs (𝑥𝑑,𝑖, 𝑦𝑑,𝑖, and 𝑧𝑑,𝑖) and Foot Force Controller

output (𝑧𝑟,𝑖) have been replaced by their vector equivalents, 𝒙𝑑, 𝒚𝑑, 𝒛𝑑, and 𝒛𝑟, which include the

relevant signals for all six legs of the robot.

Figure 7.4: High-level block diagram depicting overall control structure on hexapod robot, incorporating Walking Posture
Control system

Existing controller gains were also updated for the walking case. For the VMC and main force controller

gains, the posture response while walking on both flat and uneven terrain (emulated using a variety

of obstacles and contoured surfaces, over which the robot was made to walk) were used to adjust the

gains, rather than step responses as in the case of the Standing Posture Controller. To update the

tracking time constant, 𝑇𝑡, saturating scenarios were observed both while walking the robot and while

manually applying a force to a foot until its position became saturated. The parameter was adjusted

so as to ensure that the controller output could be restored quickly enough when the saturating force

was removed, while also not resulting in undesirably large values of the tracking error, which cause

oscillatory motion and, as described earlier, more easily lead to instability.

 Chapter 7: Walking Posture Control

170

As mentioned previously, the selection of the compliance gain, 𝐾𝐶, requires a compromise between

the virtual stiffness of the swing leg and the wind-down speed of the force controller output.

Therefore, with respect to the posture response while walking, the effects of choosing the gain for

stiffer leg behaviour were compared to those for a more compliant swing leg motion. Additionally, the

wind-down speed of the reference position, 𝑧𝑟,𝑖, was examined for various values of 𝐾𝐶, when

switching a leg from the stance phase to the swing phase while walking on uneven terrain. Values of

𝐾𝐶 that could return the reference position to the same trajectory as that commanded by the gait

engine (𝑧𝑑,𝑖), before the end of the swing phase, were favoured over values which resulted in slower

wind-down. The final value that was used provided a fairly good compromise between these criteria.

Limiting values for the force setpoints were based on typical values demanded by the force

distribution, as well as measurements of the actual contact forces experienced by the legs while

walking on uneven terrain, with posture control enabled. Similarly, tracking error limits were selected

by taking into account conservative values for the lowest control loop frequency which can typically

be expected, as well as the largest magnitudes of integral action which can be handled before

instability becomes a possibility. The limiting values selected for these signals successfully prevented

the occurrence of unstable behaviour for the duration of the study.

A final note should be made on the selection of the 𝑁𝑓 parameter, which determines the frequency of

the derivative filter used in the virtual model controller. From Equation (6.9) in Section 6.1.2.1, the

controller parameters were related to the filter time constant, 𝜏𝑐, as

 𝜏𝑐 =
𝑇𝑑
𝑁𝑓
. (7.22)

Since the time constant is the inverse of the filter cut-off frequency, that is [96]

 𝜔𝑐 =
1

𝜏𝑐
, (7.23)

and that 𝑇𝑑 = 𝐾𝑑 𝐾𝑝⁄ , it follows that

 𝜔𝑐 =
𝐾𝑝𝑁𝑓

𝐾𝑑
⁡[rad s⁄]. (7.24)

This value must be divided by 2𝜋 rad to obtain the frequency in units of Hertz. Thus,

 𝑓𝑐 =
𝐾𝑝𝑁𝑓

2𝜋𝐾𝑑
⁡[Hz], (7.25)

which shows how 𝑁𝑓 determines the filter cut-off frequency, for given values of proportional and

damping gains.

 Chapter 7: Walking Posture Control

171

In the Walking Posture Controller, the filter was used mainly to limit the influence of noise occurring

from external disturbances and anomalies, as most of the measurement noise in the signals already

gets filtered by the sensor DAQs, as well as by the averaging operation in the case of the height

calculation. Frequency response function (FRF) plots of posture estimate signals, recorded while

walking on both flat and uneven terrain, confirmed that the only significant magnitudes in the signal

were of relatively low frequencies, with most of the high frequency noise already having been

appreciably attenuated.

The various parameter values selected for walking posture control are summarized in Tables 7.1 to

7.3 below. Table 7.1 also includes the derivative filter cut-off frequencies corresponding to the VMC

parameter values selected.

Table 7.1: Parameter values used for VMC in Walking Posture Control system

Posture

Component
Symbol (𝑿)

Parameter Values

𝑲𝑿 𝑪𝑿 𝑵𝒇,𝑿 𝒇𝒄,𝑿

Height 𝑧 1000.0 N/m 30.0 N·s/m 7.5 rad 39.79 Hz

Roll 𝜙 90.0 Nm/rad 1.5 Nm·s/rad 4.5 rad 42.97 Hz

Pitch 𝜃 90.0 Nm/rad 1.5 Nm·s/rad 4.5 rad 42.97 Hz

Table 7.2: Parameter values used for Single Leg Force Controller in Walking Posture Control system

Parameter Value

𝑲𝑷 2.0e-4 m/N

𝑲𝑰 1.0e-2 m/(N·s)

𝑲𝑪 0.3 s-1

𝑻𝒕 0.1 s

Table 7.3: Limiting values used to prevent instability in Single Leg Force Controller

Signal Upper Limit Lower Limit

Force setpoint, 𝒇𝒊,𝒛 45.0 N -5.0 N

Tracking error, 𝒆𝒔,𝒊 0.015 m -0.015 m

 Chapter 7: Walking Posture Control

172

7.3 Experimental Setup and Testing
While the Standing Posture Controller was evaluated primarily with step tests, the performance of the

Walking Posture Controller system is, of course, required to be evaluated while the robot walks. Since

the aim of the control system is to improve posture on uneven terrain, it was necessary to test its

performance on a setup which emulated uneven terrain conditions. In addition, testing on flat, level

terrain was also carried out, to obtain a baseline for the performance.

The uneven terrain “testbed” developed in this study is presented in the following section.

7.3.1 Uneven Terrain Test Setup
The term “uneven terrain” is quite broad and not very specifically defined. Before being able to create

an artificial terrain setup, it is necessary to consider what characteristics such a terrain ought to have,

to suitably test a walking robot’s capabilities. In addition, it is important to identify an appropriate

measure or description of the unevenness of the terrain, or consider whether any standards exist in

this regard. These considerations are essential for reproducibility of the same, or similar, testing

conditions, both for follow up studies to this one and for other researchers wishing to compare their

results to those obtained on the platform being used herein.

In an attempt to seek answers to these contemplations, a brief investigation was conducted on the

existing methods used for testing, as well as on possible measures and standards available to

described terrain unevenness. For the sake of brevity, this investigation is discussed in detail in

Appendix E-1, and only the main findings will be outlined here.

It was found that most of the existing test setups used with quadruped and hexapod robots in the

literature are not created to any set standards. The height variations and unevenness of many of them

are not easily measurable and the majority cannot be replicated exactly by other researchers, for

comparative studies. Terrain unevenness measurement methods utilized in other fields were also

explored, such as vehicles dynamics, where road roughness is generally classified using Power Spectral

Density (PSD) functions. However, it was found that such methods are not very applicable to legged

robot locomotion studies.

As a result of the findings arising from this investigation, recommendations for uneven terrain testing

of legged robots are discussed in Section 8.3.4. Furthermore, it was decided to create a “field” of

closely packed blocks, of varying heights, for use as the uneven terrain in the experiments conducted

in this study. This block field type of terrain is quite popularly used in legged robot literature. However,

the methods used to generate the layout of the block field created in this study attempt to overcome

some of the drawbacks of similar terrains encountered in the literature. Appendix E-2 explains the

 Chapter 7: Walking Posture Control

173

design and development of this uneven terrain testbed in detail, including the specification of the

heights of each block in the field, for easier replication in other studies.

The resulting testbed consists of a 10 × 10 field of square blocks of length 7.5 cm, for a block field size

of 75 cm × 75 cm, which is located in the centre of a larger platform on which the robot can walk. The

maximum height difference in the block field is 8 cm. An image of the test platform is presented in

Figure 7.5.

Figure 7.5: Uneven terrain test platform with 10 × 10 block field in the centre

7.3.2 Test Procedure
As mentioned above, experimental tests to evaluate the walking posture controller performance were

conducted on both flat and uneven terrain. For flat terrain, the robot was made to walk on the floor

of the Vicon arena, in the lab at MIAS, CSIR. This floor is covered in tiles made of a hard, rubber-like

material, laid flush against each other (visible in Figure 7.5 above). Although minute height variations

are present along the edges where some tiles meet, these were deemed small enough to hardly have

any effect on the robot’s posture while walking. Of course, for uneven terrain, the robot was made to

walk back and forth on the developed testbed, presented in the previous section.

On both terrain types, tests were performed with the posture control system both disabled

(uncompensated condition) and enabled (compensated condition), to analyse the effects the posture

 Chapter 7: Walking Posture Control

174

control system has on the robot’s motion. Three runs of walking forward and backward were

performed for each control condition on each of the terrains.

The robot’s locomotion was controlled with manual inputs from the PS3 remote control. However,

care was taken to not influence the motion to improve uneven terrain traversability in any way.

Remote control inputs were given to primarily make the robot walk forward and backward at full

speed. Occasionally, very small sideward motions were required to ensure that the robot did not walk

off the edge of the test platform, when it started veering away from the straight path of motion

desired. No yawing motion or speed modulation were induced, so that the robot was not assisted in

navigating over the uneven terrain. Furthermore, the robot was made to start walking from a different

position in each run, to ensure that it was exposed to various sections of the uneven terrain, rather

than, for instance, taking only the path that worked best.

For all tests, the Vicon motion capture system was used to obtain ground truth measurements, as in

the case of the Standing Posture Controller. Specific details regarding the setup of the Vicon system

are discussed in the next section.

A final note should be made on the posture setpoints used during testing. Considering that the robot

could encounter steps as large as 8 cm on the block field, it was necessary to increase the leg lift

height, and subsequently its standing height, accordingly in the gait engine settings. Exposing the

robot to terrain which it cannot even traverse would destroy the point of testing the performance of

the controller. Therefore, the standing height and leg lift height settings of the locomotion engine

were updated to the values indicated at the end of Appendix C, while the corresponding, updated

height setpoint for VMC is provided in Table 7.4 below.

Table 7.4: Default posture setpoint values for Walking Posture Controller

Setpoint Component Value

Height, 𝒉𝒅 0.153 m

Roll angle, 𝝓𝒅 0°

Pitch angle, 𝜽𝒅 0°

While smaller values could possibly have been used with posture control enabled, the uncompensated

locomotion would not be able to get the robot across the block field with a lower standing height and

leg lift. In order to effectively compare the differences in performance with and without posture

control, it is more appropriate to have a test case in which the robot is able to traverse the terrain in

both of these control conditions.

 Chapter 7: Walking Posture Control

175

Changing the nominal standing height of the robot naturally changes the amount by which the legs

can be raised or lowered before reaching the ends of their kinematic ranges. Consequently, the

saturation limits were required to be adjusted to values of +8 cm and -2 cm. It should be noted that

these values are relative to the vertical position of the leg when the robot stands at its nominal height.

7.3.3 Vicon Setup and Data Processing
Reflective Vicon markers were placed on the uneven terrain test platform, in a similar configuration

as the balance board used for the Standing Posture Control tests. As before, a Vicon object model was

created for the platform using these markers. The coordinate frame of this model was positioned in

the centre of the platform’s horizontal plane. In the vertical direction the frame origin was aligned

with the central markers on either side of the platform. Additionally, the frame was orientated with

its x-axis pointing along the length of the platform, while the z-axis points upward.

The platform was tracked with the Vicon system in an attempt to obtain a reference against which to

measure the motion of the PhantomX, by translating its frame down in the z-direction to obtain the

height at the centre of the platform’s surface, as was done for the balance board in the Standing

Posture Controller tests (Figure 7.6 shows the Vicon object models of the PhantomX and test platform,

when the PhantomX was standing on the platform).

Unfortunately, this did not provide as useful a height reference as the balance board did in the

previous tests. The reasons for this are elaborated in more detail in the next section.

The same model as described in Section 6.2.4 (and shown in Figure 6.6) was used for the PhantomX,

and the same procedures were followed for recording and processing the data measured with the

Vicon motion system.

 Chapter 7: Walking Posture Control

176

Figure 7.6: Screenshot of Vicon Tracker GUI, showing the PhantomX object model above the uneven terrain test platform
object model

7.4 Results and Discussion
Results of the experimental tests described above, for walking on both flat and uneven terrain, are

presented in the following sections. As in Chapter 6, the results of multiple runs were found to

compare well with each, and so only representative plots of a single run of each test are presented

below, for the sake of brevity. The discussions of the various results do, however, take into account

data obtained from all the test runs conducted.

Furthermore, although the position of the uneven terrain platform was tracked with the Vicon system,

to be used as a reference for the PhantomX, the local height of the robot above the terrain, at any

given point, cannot really be measured relative to a single, fixed reference frame somewhere in space.

As the robot walks over obstacles its vertical position in the world changes significantly, resulting in

ground truth measurements indicating large variations in height, rather than providing a measure of

the actual height of the body above the terrain which it stands over. Even on flat terrain, any small

changes in elevation across the test area result in a perceivable drift in the vertical position of the

robot as it walks.

 Chapter 7: Walking Posture Control

177

Additionally, since the plywood sheets of the test platform underwent some warping during

manufacturing, the two ends along the length of the platform are raised slightly higher than the

centre. Consequently, the Vicon measurements pertaining to height were found to not be particularly

useful in analysing the height controller’s performance. The results presented below thus only show

the estimated height values, using sensor measurements.

In fact, it should be kept in mind that, when the robot walks, the contact legs continually change,

coming into contact with points on the terrain at different elevations, resulting in abrupt changes to

the calculated height of the robot. This measure essentially just gives an idea of the ground clearance

of the body, rather than information about its absolute position and motion in space. Thus, the control

of the height during walking only really acts to ensure that the robot maintains sufficient ground

clearance as it walks, without the legs eventually being pushed too far down or retracted too high up

in trying to control orientation. The discussions that follow will, therefore, focus predominantly on the

orientation response of the robot.

7.4.1 Walking on Flat Terrain
The posture response of the robot when walking on flat terrain, without posture control

(uncompensated), is plotted separately for walking forward and backward in Figures 7.7 and 7.8,

respectively. Similarly, results of the response when walking on flat terrain with posture control

(compensated) are plotted in Figures 7.9 and 7.10.

Figure 7.7: Posture response while walking forward on flat terrain, with posture control disabled

 Chapter 7: Walking Posture Control

178

Figure 7.8: Posture response while walking backward on flat terrain, with posture control disabled

Figure 7.9: Posture response while walking forward on flat terrain, with posture control enabled

 Chapter 7: Walking Posture Control

179

Figure 7.10: Posture response while walking backward on flat terrain, with posture control enabled

Firstly, it should be mentioned that the Vicon and sensor measurements compare favourably, as in

the case of the Standing Posture Controller experiments. In addition, momentary spikes are observed

in the sensor measurements of height, once again. As discussed in Section 6.3.1.1, these result from

occasional errors in reading the servo positions, due to corrupted data packets returned by the servos.

Another anomaly observed in the above results is an occasional spike in the Vicon measurements,

such as those visible in the roll and pitch plots of Figure 7.7, at approximately 16.7 s. This possibly

occurs when the object being tracked is partially occluded from the Vicon cameras, by the operator of

the robot or large objects present in the Vicon arena, resulting in erroneous estimations of its position

and orientation.

When inspecting the estimated height values in the uncompensated tests, it can be seen that the

estimated height almost always drops below the height setpoint while the hexapod walks. This is due

to the fact that the gait engine only lifts the legs above their nominal height during walking, resulting

in the average robot height being reduced when legs contact the terrain before the end of their swing

phase (which occurs on flat terrain because of the variations in pitch and roll as the robot walks).

With compensation, however, the stance legs can be pushed further down, past the nominal position,

resulting in the average height values fluctuating both above and below the setpoint value. These

 Chapter 7: Walking Posture Control

180

fluctuations rarely exceed a 5 mm band above and below the setpoint, while the steady state error,

when standing still, remains below 1 mm. Similar steady state errors are also observed in the

uncompensated results, suggesting that small foot position errors occur from the commanded values.

These likely result from numerical errors in the inverse kinematics calculations and mappings from

joint angles to servo positions, as well as errors between the commanded and actual servo positions.

During the uncompensated tests, the magnitude of the largest roll angle deviation observed is

approximately 1.8°, while pitch angle magnitudes of up to 1.4° are observed. It should also be noted

that the roll and pitch responses deviate from the setpoint value quite consistently, experiencing a

general, back-and-forth drift over time. Furthermore, the largest steady state error magnitudes

observed are in the region of 0.3° and 0.4° for roll and pitch, respectively.

With compensation, the largest roll angle deviations observed are approximately 1.4°, while pitch

angle magnitudes rarely exceed 1.5°. One extreme value with a magnitude of 3.3° was observed in the

pitch angle, as can be seen in Figure 7.10. However, this perturbation occurred immediately after a

particularly unpleasant servo read error at around 4.49 s, which resulted in the height estimation

momentarily dropping to only 0.047 m, causing the controller to react extensively, thus inducing an

inadvertent pitching motion. This type of rare occurrence could be prevented by making appropriate

provisions in the control software to deal with servo read errors.

In addition, the largest steady state error magnitudes observed for both roll and pitch are

approximately 0.2°. It is also clear from the above plots that, with compensation, the roll and pitch

angles oscillate more uniformly about the setpoint of 0°, as compared with the uncompensated

responses, which exhibit consistent deviations for longer periods of time.

Apart from the one anomaly with pitch, in general the roll and pitch response are observed to have

been improved slightly over the uncompensated case, even though the robot is only walking on flat

terrain.

7.4.2 Walking on Uneven Terrain
Plots of the posture response of the robot, while walking on uneven terrain, are presented in Figures

7.11 and 7.12 for the uncompensated case, with posture control disabled, while those for the

compensated case, with posture control enabled, are presented in Figures 7.13 and 7.14.

 Chapter 7: Walking Posture Control

181

Figure 7.11: Posture response while walking forward on uneven terrain, with posture control disabled

Figure 7.12: Posture response while walking backward on uneven terrain, with posture control disabled

 Chapter 7: Walking Posture Control

182

Figure 7.13: Posture response while walking forward on uneven terrain, with posture control enabled

Figure 7.14: Posture response while walking backward on uneven terrain, with posture control enabled

 Chapter 7: Walking Posture Control

183

When comparing the uncompensated height response on uneven terrain to that obtained on flat

terrain, it can be seen that the general shape is similar, with the height values mostly dropping below

the setpoint. The magnitudes of these drops are considerably larger (up to approximately 15 mm

larger) on uneven terrain. This is to be expected, as the legs come into contact with blocks of significant

heights, resulting in the perceived ground clearance upon contact being reduced by a greater amount

than on flat terrain. Steady state height values, when the robot stops walking on the flat sections of

the terrain setup, still remain within 1 mm of the desired height.

Likewise, the compensated height response on uneven terrain demonstrates a similar shape to that

on flat terrain, with the magnitudes of deviations increasing. Height deviations as large as 30 mm from

the setpoint are observed in the results, once again being expected due to the highly varying elevation

of the terrain. Steady state error magnitudes for the height response are found to remain considerably

smaller than 1 mm.

With regard to the orientation response, however, it is clear from the above plots that the

uncompensated roll and pitch response of the robot is far worse on uneven terrain than on even

terrain. Maximum roll and pitch angle deviation magnitudes of 8.4° and 8.9°, respectively, are

observed across the runs. In addition to the maximum values being significantly larger, the plots above

demonstrate that the roll and pitch angles deviate far from the setpoint for long periods of time, with

the robot body having a notably undesirable orientation throughout most of its locomotion across

uneven terrain. Furthermore, during testing the robot was sometimes observed to be lifted to such

an extent when a leg stepped onto a high block, that many of the legs could not make contact with

the terrain, resulting in a temporary loss of “traction” until the robot tipped over the other way and

enough legs made contact again. Such an instance can be seen in Figure 7.12, at approximately 6 s,

when all three posture components exhibit appreciably large deviations.

Steady state error magnitudes for the uncompensated tests are found to be as large as 0.7° and 0.8°

for roll and pitch, respectively. The reason for these values being larger than those obtained in the flat

terrain tests can most likely be attributed to the fact that the slight warping of the test platform results

in the flat sections not being completely level.

When posture control is enabled, the difference in the orientation response on uneven terrain is easily

perceptible. Roll and pitch angles both oscillate more consistently about the setpoint value of 0°,

spending less time at extreme values of deviation. Maximum magnitudes of roll and pitch across the

runs are found to be around 6° and 6.4°, corresponding to improvements of 28.6% and 28.1%,

respectively, from the maximum values observed on uneven terrain with posture control disabled.

However, it should be noted that such large deviations were quite rare, unlike in the uncompensated

 Chapter 7: Walking Posture Control

184

case where the response frequently approached values close to the observed maximums. The cases

of the maximum roll and pitch values quoted here, for the compensated tests, both occurred when

the robot had most of its stance legs on high blocks and one of the swing legs stepped onto a low

block, or a “dip” in the terrain (such an incident can be seen in the pitch response of Figure 7.14, at

approximately 12.5 s). Naturally, this would have initially resulted in only two of the new stance legs

having contact, causing the robot to tip over briefly until the other stance leg managed to make

contact with the low section of terrain.

It was discussed in Section 5.1 that such an incident results in a temporary loss of posture

controllability, which is exactly the effect observed here. Such occurrences are unavoidable when

using a purely proprioceptive posture control system, as the robot has no knowledge of the elevation

of the terrain at the planned foothold position. Despite these momentary losses in controllability, the

plots above demonstrate that the controller does well to quickly restore the posture of the robot, as

soon as it regains controllability. The posture deviations are limited and sufficient traction is

maintained as the robot traverses the uneven terrain, unlike the behaviour observed in the

uncompensated tests.

Much of the time, the roll and pitch responses remain well within a ±2° band with posture control

enabled, resulting in the response being much closer to that observed on flat terrain. Larger deviations

in orientation are restored quickly and it is evident from the above results that the overall response is

improved notably from the uncompensated response. Also, the steady state error magnitudes for

these tests remained below 0.3°.

Although the tests conducted and reported on formally here were designed to allow for locomotion

over the terrain in both the uncompensated and compensated conditions, for comparative purposes,

it is valuable to also mention that the differences in the two control conditions were sometimes

observed to be even more drastic on other uneven terrains. For instance, when walking the robot over

obstacles and artificially contoured terrains (used for controller tuning) with posture control disabled,

considerably larger maximum orientation deviations were observed and the effects of a loss of

traction without compensation were much more severe. In many cases, the robot would get into a

situation where it simply could not regain sufficient ground contacts to proceed with locomotion in

the uncompensated state. With posture control enabled, however, this problem was easily overcome

and the robot managed to traverse the terrains without any difficulty. Therefore, the presence of

posture control not only improves the posture response on uneven terrain, but, in some cases, it also

improves the robot’s ability to traverse terrains it otherwise might not have been able to.

 Chapter 7: Walking Posture Control

185

To put the results obtained in these experimental tests into context with the literature, it is useful to

compare them to those obtained in similar tests with other hexapods. For experiments performed

with the HITCR-II hexapod walking on artificial uneven terrain with a tripod gait, Zhang et al. [10]

reported roll and pitch angle plots that exhibited maximum deviation magnitudes of approximately 6°

and 3°, respectively. It is important, however, to keep in mind that the terrain irregularities used in

their experiment were simply a few rectangular blocks of 50 mm height, scattered in the hexapod’s

path of motion, as depicted previously in Figure 2.16. This is a much less severe uneven terrain

condition than that used for the experiments in this study. Furthermore, HITCR-II was made to walk

significantly more slowly, with the period of each phase set to 5 s. To put this into perspective, at the

speed that the PhantomX was made to walk, the leg phases changed roughly every 0.8 s, meaning the

PhantomX experienced disturbances from the terrain approximately six times more frequently than

HITCR-II while walking. It should also be remembered that HITCR-II is a much more sophisticated,

custom designed platform, with smoother and more accurate joint actuators, as well as a slightly more

complex control structure, which includes optimization methods for foot force distribution. Taking all

of the above factors into account, it is quite clear that the results obtained with the PhantomX in this

study compare well to those reported in [10].

Another recent study worth comparing to is the one conducted by Bjelonic et al. [13] with the Weaver

hexapod. As mentioned previously, the proprioceptive control system implemented on Weaver in [13]

was experimentally tested on a block field, such as that used in this study, as well as on more natural

terrain conditions consisting of actual rocks and stones. While the maximum heights of the blocks

used in their testbed appear to be greater than those used in this study, it should be realized that

Weaver’s body is approximately one and a half times larger than the PhantomX, and it also has a mass

of 7.03 kg, which is more than three times that of the PhantomX platform used in this study.

Furthermore, the 5 DOF legs are considerably longer than those of the PhantomX, having improved

reach and higher leg lift heights, while also giving Weaver a higher nominal standing height. Based on

the results reported by them, for walking on the block field with a tripod gait at similar speeds to the

PhantomX, Weaver appeared to experience roll and pitch angle deviations as large as approximately

5° and 10°, respectively. Considering that Weaver makes use of impedance controllers in the legs, as

well as an inclination controller that adjusts the two additional joints in each leg to improve the robot’s

orientation, the results obtained in the current study on the PhantomX are evidently favourable when

compared to those obtained in [13].

7.5 Conclusion
The Standing Posture Controller described in Chapter 6 was modified for walking on uneven terrain.

Modifications were made to the Single Leg Foot Force Controller, to provide active compliance during

 Chapter 7: Walking Posture Control

186

the swing phase, using the same general control structure used for direct force control in the stance

phase, with a simple switching strategy between phases. Furthermore, the foot force distribution

procedure was updated to distribute forces to only the stance tripod of legs when walking.

An uneven terrain testbed, in the form of a block field, was developed and used to experimentally test

the performance of the Walking Posture Controller. The results of these tests revealed that the

controller significantly improves the robot’s posture response when walking on uneven terrain, as

compared to the case of walking without any posture control. Furthermore, the results were found to

compare favourably to those obtained in the literature, for similar tests performed with custom

designed hexapod platforms.

Additional modifications which could be made to improve the performance further include making

provisions in the control software to better handle servo read errors, adjusting parameters such as

walking speed on highly uneven terrain, improving the foot force distribution rule, and expanding the

force controller to allow for dynamic behaviour to be influenced during interaction in the swing phase

(for example, by using techniques similar to impedance control), among others.

It is worth pointing out that although the control system design in this study was targeted toward

commercially available platforms (primarily due to their cost advantages and potential to reduce

barriers to entry in the related research field), it could conceivably also be applied on more expensive

robotic systems. One of the key limitations overcome by the design is the lack of torque controllability

in the joint actuators. Therefore, this particular design could also be useful on other, possibly more

expensive, robotic platforms that make use of position-controlled actuators.

187

Chapter 8: Conclusion

Having completed the requirements of the study, the sections that follow summarize the

implemented methods and main findings, discuss recommendations for future improvements and

developmental studies, and assess whether the aim of the investigation has been accomplished.

8.1 Summary of Implemented Methods
In reviewing the literature pertaining to uneven terrain locomotion of multi-legged robots, it was

found that posture control is a vital component in realizing such locomotion. Furthermore, the

majority of this research was found to have been implemented on specialized, custom designed

robotic platforms, with very little development and implementation having taken place on low-cost,

commercially available robots. These findings provided the primary motivation for the study, while

also identifying the most applicable posture control method to be implemented in this study.

The first step taken in addressing the issues identified above was to upgrade the PhantomX MK-II

based hexapod robot platform available for this study. In particular, OptoForce sensors were

incorporated into the platform to measure contact forces at the feet. Basic tests were conducted to

validate the measurements provided by these sensors, while new feet were also designed and

manufactured for the platform, to be able to mount these sensors on the robot’s legs. Further updates

were made to the platform to utilize ROS-based locomotion software, by equipping it with the

necessary hardware and making minor modifications to the locomotion engine settings.

Thereafter, a simplified controllability analysis was performed on the robotic system, from which the

main scenarios that would lead to a loss of posture controllability were identified. The study then

proceeded on to matters more closely related to the actual implementation of a posture control

system, by deriving the methods used to calculate the robot’s posture, in the form of the body’s height

above the ground, as well as roll and pitch angles relative the horizontal plane of the Earth. This

included computation of the individual foot positions (for height estimation), by feeding the joint

 Chapter 8: Conclusion

188

position readings from the actuators into a kinematic model of the PhantomX, as well as

transformation of the orientation estimate provided by the IMU driver, in order to obtain the relevant

roll and pitch angles of the robot body.

It was then possible to begin developing and implementing the posture control system for the

hexapod robot. Firstly, the case of the robot standing on all six legs, without walking, was considered.

For this case, a high-level Virtual Model Control system was derived, which calculates the necessary

vertical force, as well as roll and pitch moments, required to restore the body’s posture to the desired

state. A simple foot force distribution rule was also employed to divide these forces evenly among the

six stance legs. In order to control each leg to achieve these forces, a lower level Single Leg Foot Force

Controller was formulated, based on a direct force control method typically used in manipulators,

which provides position adjustments to the leg’s position control system, to regulate contact forces

without the need for torque controllable joint actuators. The resulting Standing Posture Control

system is founded on simple, well understood control laws, specifically PD control in the case of VMC

and PI control for the Foot Force Controller.

This control system was implemented digitally in ROS, on a laptop computer to which the robot was

tethered. A variety of experimental tests were conducted to assess the performance of the system,

including step tests on both flat and uneven terrain, as well as dynamic tests with the robot on a

balance board. During all these tests, a Vicon motion capture system was utilized to obtain ground

truth measurements of the robot’s pose, for the dual purposes of analysing controller performance

and also validating posture measurements calculated from sensor data.

Reflecting on the insights gained from implementing and testing the Standing Posture Control system,

modifications were made to enable uneven terrain walking with the hexapod platform. While the VMC

structure remained unchanged, the foot force distribution method was expanded to also distribute

forces to a tripod of legs, which is necessary during walking as the PhantomX uses a tripod gait for

locomotion. The other major update to the control system was the addition of an output feedback

path in the Foot Force Controller. This allows for the force control system to be utilized during the

leg’s swing phase, providing wind-down action on the position adjustment during free-space

locomotion, as well as active compliance during interaction with the environment, to absorb impacts

from contacting the uneven terrain earlier than expected. A simple switching strategy is used to

transition between direct force control and compliance control, when the leg’s phase changes from

stance to swing and vice versa.

An uneven terrain testbed, in the form of a block field, was designed and manufactured for testing the

Walking Posture Control system. Experimental testing of the robot involved walking on both flat and

 Chapter 8: Conclusion

189

uneven terrain, with the posture control system both enabled and disabled. Once again, the Vicon

motion capture system was used for ground truth measurements, and the results were analysed to

gauge the controller’s performance and ability to improve posture during locomotion.

8.2 Main Findings of the Study
One of the primary, meaningful findings of the study came from the controllability analysis, which

revealed that a general condition required for posture controllability (of height, roll, and pitch) of an

𝑁-legged robot, with statically stable motion, is that it must have at least three, unique, non-collinear

ground contact points. It was later found that it is not always possible to avoid violating this condition

during uneven terrain locomotion, especially when using a purely proprioceptive control system.

However, the implemented posture control system was observed to be able to quickly restore

significant deviations in posture arising from the temporary loss of controllability during locomotion.

Furthermore, analysis of the experimental test results revealed that the sensor measurements of

posture compare well with ground truth measurements, validating their use for posture control. In

this regard, the Standing Posture Control system was found to be able to track step changes in the

posture setpoints quickly and accurately. The steady state height response remained within 2 mm of

the reference value, while a 10% – 90% rise time of approximately 0.9 s was exhibited. Steady state

error magnitudes for roll and pitch remained below 0.3°, with the 10% – 90% rise time for these

posture components being in the region of 0.5 s. In addition, the control system was observed to

effectively decouple the three posture components during testing, despite the actual coupling present

in the robot’s nonlinear dynamics. These results were found to compare favourably with those

obtained in similar tests with more sophisticated, custom designed platforms, such as Warp1 [4] and

StarlETH [11].

While standing on a particular configuration of artificial rocks, which emulated uneven terrain

conditions, the robot exhibited roll and pitch angle magnitudes of approximately 9.5° and 1°,

respectively, when posture control was disabled. Enabling posture control reduced the roll and pitch

magnitudes to roughly 0.3° and 0.06°, corresponding to improvements of approximately 96.8% and

94.0%, respectively. During a height step test on this rock arrangement, steady state height errors

were observed to still remain below 2 mm, while sufficient decoupling of the posture components

also took place. Moreover, on the dynamic balance board, the robot’s roll and pitch angle magnitudes

were kept smaller than 4°, approximately one third of the maximum angular displacement induced on

the board. This result is comparable to that reported in [4], for a similar test using the Warp1

quadruped platform.

 Chapter 8: Conclusion

190

When walking, especially on uneven terrain, the robot’s height naturally varies quite considerably over

time. Nonetheless, the posture controller was observed to keep the height oscillating about the

setpoint, rather than drifting off indefinitely throughout the robot’s locomotion. Experimental testing

of the Walking Posture Control system also demonstrated that similar maximum magnitudes of roll

and pitch deviations occurred when walking on flat terrain, with posture control both disabled and

enabled. However, with posture control, these deviations oscillated more consistently about the

setpoints than when not using posture control. This, coupled with the improved steady state response

with posture control, suggested that the posture control system improves the robot’s response slightly

on flat terrain.

On uneven terrain, the difference made by posture control was found to be much more distinct. The

maximum roll and pitch angle deviations demonstrated were observed to be reduced, by the Walking

Posture Controller, by as much as 28.6% and 28.1%, respectively, from the uncompensated case. In

fact, the robot spent a large portion of its time with its orientation at values close to the observed

maximums when posture control was disabled. On the other hand, the maximum deviations exhibited

with posture control enabled only occurred rarely, in scenarios when controllability was momentarily

lost as a result of insufficient ground contact points. In these occasional situations, the posture

deviated by considerable magnitudes only briefly, being restored quickly by the control system when

controllability was regained. In general, the Walking Posture Control system managed to keep the roll

and pitch angles well within a ±2° band for much of the time while walking on uneven terrain, resulting

in a response fairly similar to that observed on flat terrain.

When comparing these results to those obtained on other, custom designed hexapod platforms, such

as HITCR-II [10] and Weaver [13], and considering the differences between those platforms and the

PhantomX, as well as the test conditions used, it was concluded that the Walking Posture Control

system exhibited favourable performance.

Therefore, it has been shown that a low-cost, commercially available hexapod robot, using only

position control of the joints, i.e. without the joint torque control available on more sophisticated

legged robot platforms, can be endowed with effective posture control. Thus, the potential to increase

its usefulness as a low-cost research and development platform for legged robotic work should be

further investigated.

 Chapter 8: Conclusion

191

8.3 Recommendations
Suggestions for improvements on the methods presented in this study, as well as potential focus areas

for future studies, are highlighted in the sections that follow.

8.3.1 Locomotion Engine
The most significant issue that is required to be overcome in the hexapod_ros locomotion

software, used in this study, is the blocking, inner interpolation loop present in the main control loop.

Resolving this problem would likely require significant refactoring of the software implementing the

locomotion engine. Considering the large amount of modification this will entail, it is recommended

that the motion control system also be updated to implement closed-loop position control of the legs,

at the same time, which would improve the robot’s locomotion, along with increasing both the motion

and interaction control capabilities of the legs.

Another useful modification is also required for the gait engine, in the form of implementing additional

gaits to be used for locomotion with a hexapod.

8.3.2 Robotic Platform
It was mentioned in Chapter 6 that since only one component of the foot force measurements was

used in the posture control systems designed in this study, one-dimensional force sensors could

potentially be employed to further reduce the costs and complexity of the robotic platform. Of course,

the force measurements from extremely low-cost sensors, such as the FlexiForce™ A201 force sensors

discussed in Section 4.2.3, would be inadequate. Therefore, 1D force sensing equipment that could

provide a similar quality of measurements to that of the OptoForce z-axis measurements (or, at least,

satisfactory quality measurements) would need to be utilized. As OptoForce can design sensors

tailored to a customer’s requirements, one option could possibly be to approach them to design a 1D

sensor using similar technology to their 3D sensors, especially if the market is large enough for them

to manufacture sufficient quantities of such sensors at an affordable price. Alternatively, an example

of already available force sensing equipment that could be considered is micro load cells, which are

available at a fraction of the cost of OptoForce 3D sensors.

This should be investigated in the future and possibly tested, to compare the performance attainable

with less expensive force sensors. Methods of estimating contact forces, based on the joint current

feedback available from the Dynamixel servos, should also be investigated, as well as potentially

combining these estimates with measurements from simpler force sensors.

Another important factor related to the real-world application of a low-cost hexapod platform is the

issue of onboard computing. Throughout this study, emphasis was made on keeping the

computational requirements of the control algorithms relatively inexpensive. It will be vital to further

 Chapter 8: Conclusion

192

modify and optimize the control software to be implemented on less powerful computing hardware,

that could be mounted onto the robot and powered by an onboard battery, eliminating the need for

a wired tether in favour of a wireless “tether” (using wireless communication such as Wi-Fi, for

instance).

Furthermore, improvements should be made in the software to better handle the occurrences of

servo position read errors. This would reduce undesired posture perturbations when using the posture

control system.

Later studies could also be dedicated to equipping the hexapod platform with exteroceptive sensing

capabilities, especially for the implementation of some of the suggestions presented for the posture

control system, in the next section.

8.3.3 Posture Control System
Firstly, it was mentioned in the previous section that the use of 1D force sensors should be

investigated. Of course, already having the 3D force sensors means that it is equally instructive to

investigate the use of all three components of the force measurements, to improve performance.

Comparing this to the current implementation could provide useful insights for future development

of the posture control system.

An improvement which could be made to the control system, without much additional development,

is to update the controller gains and parameters. Some of the methods outlined in Chapter 6 could be

considered, along with more formalized trial-and-error methods, such as Monte Carlo simulation with

varying parameters.

Another modification that could be investigated is to change the parameter values when switching

between stance and swing phases. This could allow for the direct force control and compliance control

actions to be tuned independently, for the desired behaviour. An example would be to keep 𝐾𝐶 large

to improve output wind-down speed, while increasing the value of 𝐾𝐼 in the swing phase to still

achieve sufficient compliance.

This approach of dynamically changing parameters could be taken a step further, as in a study with

the Weaver hexapod where parameters such as duty factor, leg lift height, and leg stiffness

(compliance) were dynamically, and automatically, adjusted throughout locomotion, depending on

vision-based estimates of the degree of terrain roughness [107]. Of course, such an approach would

require exteroceptive sensing on the platform, to assess the unevenness of the terrain.

 Chapter 8: Conclusion

193

More detailed measurements could also be taken of the hexapod platform in use, to reduce errors in

the kinematic model, improving posture measurements used for control. Some provision could also

be included to account for the deformation of the force sensor contact surfaces under load.

Regarding the actual control algorithms, the addition of an integral term in the VMC strategy could

possibly be considered, to further improve steady state behaviour by reducing, if not eliminating,

steady state errors. A more useful modification would be to improve the foot force distribution

method, especially by allowing for any number of legs to be used for force distribution, so that the

control system could be used with any gait. If additional gaits are developed for the locomotion

engine, as suggested in Section 8.3.1 above, the updated foot force distribution could be tested on a

variety of gaits.

A more drastic improvement to the control system, that could be considered, is the modification of

the Foot Force Controller to allow dynamic interaction behaviour to be specified, by means of, for

example, impedance control during the swing phase. Inspiration for the design of such a force control

system could be gained from [108], in which a force-impedance controller was developed for

manipulators, that achieves “force limited impedance control” and “position limited force control,”

without the need for a supervising switching strategy.

Eventually, taking the research initiated in this study forward will entail combining posture control

with higher level tasks such as foothold and path planning, with the use of exteroceptive sensing.

8.3.4 Uneven Terrain Testing of Legged Robots
In Chapter 7, limitations in the existing uneven terrain test setups used in legged robot literature were

discovered (these are discussed in more detail in Appendix E-1). A significant outcome of these

findings is a suggestion for future research to be carried out, on creating standardized test setups that

could be manufactured and used by researchers throughout the field. These setups would need to be

designed such that they could be scaled to present the same relative terrain unevenness to legged

robots of different sizes.

Furthermore, standardized methods of measuring and characterizing uneven terrain more

appropriately should be investigated, based on the elevation variations across their areas, rather than

only the height differences at their maximum and minimum points of elevation. Potential ideas for

this would be to specify heights at multiple points on the terrain (i.e. divide the area into a grid), or

possibly utilize a two-dimensional equivalent of a PSD, that operates on the entire terrain surface, as

opposed to a one-dimensional function as in the case of analysing road roughness for wheeled

vehicles.

 Chapter 8: Conclusion

194

Another option would be for researchers to gather point cloud or 3D scan data of their uneven terrain

testbeds and make that data available, allowing for the setups to be reproduced with 3D printing, or

other manufacturing techniques.

In addition to development of uneven terrain testing standards, it is also recommended that the

PhantomX platform and posture control system used in this study are tested on a multitude of other

terrains, to assess wider applicability and improve the overall performance of the controller.

8.4 Study Aim Fulfilment
A posture control system was successfully implemented on the low-cost, commercially available

hexapod robot platform available for this study, for the cases of standing on all six legs and walking

on uneven terrain. Experimental tests of both of these cases confirmed the usefulness of the control

system in improving the robot’s response, especially on uneven terrain, while also demonstrating

satisfactory performance comparable to that displayed on more sophisticated, custom designed

platforms. Accordingly, the aim of the study has undoubtedly been fulfilled.

195

Bibliography

[1] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, “BigDog , the Rough-Terrain Quadruped

Robot,” in Proceedings of the 17th World Congress: The International Federation of Automatic

Control (IFAC), 2008, pp. 10822–10825.

[2] J. Machado and M. Silva, “An overview of legged robots,” in Proceedings of the International

Symposium on Mathematical Methods in Engineering (MME), 2006.

[3] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots, 1st ed.

Cambridge, MA: The MIT Press, 2004.

[4] C. Ridderström and J. Ingvast, “Quadruped posture control based on simple force distribution

– a notion and a trial,” in Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2001, vol. 4, pp. 2326–2331.

[5] X. Ding, Z. Wang, A. Rovetta, and J. M. Zhu, “Locomotion analysis of hexapod robot,” in

Climbing and Walking Robots, B. Miripour, Ed. InTech, 2010, ch. 18, pp. 291–311 [Online].

Available:

http://cdn.intechopen.com/pdfs/10075/InTech-Locomotion_analysis_of_hexapod_robot.pdf.

[Accessed: 16-Jan-2018]

[6] M. Hutter, C. Gehring, M. Hoepflinger, M. Blösch, and R. Siegwart, “Towards Combining Speed,

Efficiency, Versatility and Robustness in an Autonomous Quadruped,” IEEE Trans. Robot., vol.

30, no. 6, pp. 1427–1440, 2014.

[7] H. Uchida and N. Shimoi, “Force/attitude control of mine detecting six-legged locomotion

robot,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2000, vol. 1, pp. 780–785.

[8] A. Irawan and K. Nonami, “Optimal impedance control based on body inertia for a hydraulically

driven hexapod robot walking on uneven and extremely soft terrain,” J. Field Robot., vol. 28,

no. 5, pp. 690–713, 2011.

[9] A. Roennau, G. Heppner, M. Nowicki, J. M. Zoellner, and R. Dillmann, “Reactive posture

behaviors for stable legged locomotion over steep inclines and large obstacles,” in Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2014, pp.

4888–4894.

 Bibliography

196

[10] H. Zhang, Y. Liu, J. Zhao, J. Chen, and J. Yan, “Development of a bionic hexapod robot for

walking on unstructured terrain,” J. Bionic Eng., vol. 11, no. 2, pp. 176–187, 2014.

[11] M. Blösch, “State Estimation and Robust Control for a Quadruped Robot,” Master-Thesis,

Autonomous Syst. Lab, ETH Zurich, Switzerland, 2011.

[12] G. M. Nelson and R. D. Quinn, “Posture control of a cockroach-like robot,” in Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA), 1998, vol. 1, pp. 157–

162.

[13] M. Bjelonic, N. Kottege, and P. Beckerle, “Proprioceptive control of an over-actuated hexapod

robot in unstructured terrain,” in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2016, pp. 2042–2049.

[14] E. Lubbe, “State estimation of a hexapod robot using a proprioceptive sensory system,” MEng

Dissertation, North-West University, South Africa, 2014 [Online]. Available:

https://repository.nwu.ac.za/handle/10394/15374. [Accessed: 21-May-2018]

[15] Trossen Robotics, “PhantomX AX Hexapod Mark II.” [Online]. Available:

http://www.trossenrobotics.com/hex-mk2. [Accessed: 09-Nov-2017]

[16] “What is motion capture | VICON.” [Online]. Available: https://www.vicon.com/what-is-

motion-capture. [Accessed: 15-Nov-2017]

[17] K. Ochs, “hexapod_ros,” GitHub. [Online]. Available:

https://github.com/KevinOchs/hexapod_ros. [Accessed: 16-Jan-2018]

[18] J. Zhao, H. Zhang, Y. Bin Liu, and Z. W. Zhou, “Active Compliance Control for the Leg of Hexapod

Robot HITCR-II,” Appl. Mech. Mater., vol. 201–202, pp. 578–581, 2012.

[19] M. Tikam, D. Withey, and N. J. Theron, “Standing Posture Control for a Low-Cost Commercially

Available Hexapod Robot,” in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2017, pp. 3379–3385.

[20] KUKA AG, “Automation in the automotive industry.” [Online]. Available:

https://www.kuka.com/en-de/industries/automotive. [Accessed: 05-Nov-2017]

[21] NASA, “Curiosity Overview.” [Online]. Available:

https://www.nasa.gov/mission_pages/msl/overview/index.html. [Accessed: 06-Nov-2017]

 Bibliography

197

[22] D. Carvajal, “Let a Robot Be Your Museum Tour Guide,” The New York Times, New York, 14-

Mar-2017 [Online]. Available: https://www.nytimes.com/2017/03/14/arts/design/museums-

experiment-with-robots-as-guides.html. [Accessed: 16-Jan-2018]

[23] M. H. Raibert, “Legged robots,” Communications of the ACM, vol. 29, no. 6, pp. 499–514, 1986.

[24] P. Gonzalez de Santos, J. A. Cobano, E. Garcia, J. Estremera, and M. A. Armada, “A six-legged

robot-based system for humanitarian demining missions,” Mechatronics, vol. 17, no. 8, pp.

417–430, 2007.

[25] R. Campos, V. Matos, and C. Santos, “Hexapod locomotion: A nonlinear dynamical systems

approach,” in Proceedings of the 36th Annual Conference of IEEE Industrial Electronics (IECON),

2010, pp. 1546–1551.

[26] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can adapt like natural animals,”

Nature, vol. 521, no. 7553, pp. 503–507, 2015.

[27] J. Z. Kolter, M. P. Rodgers, and A. Y. Ng, “A control architecture for quadruped locomotion over

rough terrain,” in Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA), 2008, pp. 811–818.

[28] D. Belter and P. Skrzypczynski, “Posture optimization strategy for a statically stable robot

traversing rough terrain,” in Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2012, pp. 2204–2209.

[29] Boston Dynamics, “WildCat.” [Online]. Available: https://www.bostondynamics.com/wildcat.

[Accessed: 06-Nov-2017]

[30] American Honda Motor Co. Inc., “ASIMO.” [Online]. Available: http://asimo.honda.com/.

[Accessed: 06-Nov-2017]

[31] A. Preumont, P. Alexandre, and D. Ghuys, “Gait analysis and implementation of a six leg walking

machine,” in Proceedings of the 5th International Conference on Advanced Robotics (ICAR)

“Robots in Unstructured Environments,” 1991, pp. 941–945.

[32] DFKI GmbH: Robotics Innovation Center, “SCORPION.” [Online]. Available:

https://robotik.dfki-bremen.de/en/research/robot-systems/scorpion.html. [Accessed: 06-

Nov-2017]

[33] F. Tedeschi and G. Carbone, “Design Issues for Hexapod Walking Robots,” Robotics, vol. 3, no.

2, pp. 181–206, 2014.

 Bibliography

198

[34] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, “Fast, robust quadruped

locomotion over challenging terrain,” in Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), 2010, pp. 2665–2670.

[35] K. Walas and D. Belter, “Messor – Versatile Walking Robot For Search and Rescue Missions,”

Journal of Automation, Mobile Robotics & Intelligent Systems, vol. 5, no. 2, pp. 28–34, 2011.

[36] A. Roennau, T. Kerscher, and R. Dillmann, “Design and Kinematics of a Biologically-Inspired Leg

for a Six-Legged Walking Machine,” in Proceedings of the 3rd IEEE RAS and EMBS International

Conference on Biomedical Robotics and Biomechatronics (BioRob), 2010, pp. 626–631.

[37] Australian UAV, “Drone Data vs LIDAR: Clarifying Misconceptions.” [Online]. Available:

https://www.auav.com.au/articles/drone-data-vs-lidar/. [Accessed: 06-Nov-2017]

[38] N. Rotella, M. Bloesch, L. Righetti, and S. Schaal, “State Estimation for a Humanoid Robot,” in

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2014, pp. 952–958.

[39] L. Gyeong-Mok, Y. Seongyeol, S. Hyungwon, J. Bong-Huan, K. Hangoo, and L. Pan-Mook,

“Kinematic walking and posture control of CR200 for subsea exploration in high tidal current,”

in Oceans - San Diego, 2013, pp. 1–6.

[40] P. Arena, L. Fortuna, and M. Frasca, “Attitude control in walking hexapod robots: an analogic

spatio-temporal approach,” Int. J. Circuit Theory Appl., vol. 30, no. 2–3, pp. 349–362, 2002.

[41] K. Yoneda, H. Iiyama, and S. Hirose, “Sky-Hook Suspension control of a quadruped walking

vehicle,” in Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA), 1994, vol. 2, pp. 999–1004.

[42] H. Qingjiu and Y. Fukuhara, “Posture and Vibration Control Based on Virtual Suspension Model

Using Sliding Mode Control for Six-Legged Walking Robot,” in Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2006, pp. 5232–5237.

[43] P. Arena, L. Fortuna, M. Frasca, L. Patane, and M. Pavone, “Climbing obstacles via bio-inspired

CNN-CPG and adaptive attitude control,” in Proceedings of the IEEE International Symposium

on Circuits and Systems (ISCAS)., 2005, pp. 5214–5217.

[44] FZIchannel, “Walking Robot LAURON V - Hexapod on Wooden Slope,” 2013. [Online].

Available: http://www.youtube.com/watch?v=sYrhI1pSpyQ. [Accessed: 07-Nov-2017]

 Bibliography

199

[45] P. Cizek and J. Faigl, “On localization and mapping with RGB-D sensor and hexapod walking

robot in rough terrains,” in Proceedings of the IEEE International Conference on Systems, Man,

and Cybernetics (SMC), 2016, pp. 2273–2278.

[46] T. Fischer, T. Pire, P. Cizek, P. De Cristoforis, and J. Faigl, “Stereo vision-based localization for

hexapod walking robots operating in rough terrains,” in Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 2492–2497.

[47] J. Christie and N. Kottege, “Acoustics based terrain classification for legged robots,” in

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2016, pp.

3596–3603.

[48] D. Williamson, N. Kottege, and P. Moghadam, “Terrain Characterisation and Gait Adaptation

by a Hexapod Robot,” in Proceedings of the Australasian Conference on Robotics and

Automation (ACRA), 2016.

[49] M. Stejskal, J. Mrva, and J. Faigl, “Road following with blind crawling robot,” in Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 3612–3617.

[50] M. Hörger, N. Kottege, T. Bandyopadhyay, A. Elfes, and P. Moghadam, “Real-Time Stabilisation

for Hexapod Robots,” in Proceedings of the 14th International Symposium on Experimental

Robotics (ISER), 2016, pp. 729–744.

[51] J. Mrva, “Adaptive Body Motion for Blind Hexapod Robot in a Rough Environment,” in 19th

International Student Conference on Electrical Engineering (POSTER 2015), 2015.

[52] R. Love, “Project Thread: ROS enabled PhantomX Hexapod,” Trossen Robotics Community

Forum, 2015. [Online]. Available: http://forums.trossenrobotics.com/showthread.php?7411-

ROS-enabled-PhantomX-Hexapod. [Accessed: 07-Nov-2017]

[53] K. Ochs, “Project Thread: ROS Hexapod project Golem: MX-64 4dof,” Trossen Robotics

Community Forum, 2014. [Online]. Available:

http://forums.trossenrobotics.com/showthread.php?6725-ROS-Hexapod-project-Golem-MX-

64-4dof. [Accessed: 07-Nov-2017]

[54] “ROS.” [Online]. Available: http://www.ros.org/. [Accessed: 16-Jan-2018]

[55] Love Robotics, “PhantomX ROS IMU Auto Levelling,” 2015. [Online]. Available:

https://www.youtube.com/watch?v=HOGOEA_taK8. [Accessed: 07-Nov-2017]

 Bibliography

200

[56] K. Halvorsen, “Zenta Robotic Creations | About Me,” 2015. [Online]. Available:

http://zentasrobots.com/about-me/. [Accessed: 07-Nov-2017]

[57] K. Halvorsen, “Zenta Robotic Creations | The MX-Phoenix hexapod robot project,” 2016.

[Online]. Available: http://zentasrobots.com/mx-phoenix-hexapod/. [Accessed: 07-Nov-2017]

[58] Zenta, “MX-Phoenix hexapod robot outdoor part II,” 2017. [Online]. Available:

https://www.youtube.com/watch?v=aH07qF_bhgA. [Accessed: 07-Nov-2017]

[59] Zenta, “Project Thread: MX-Phoenix hexapod and some more,” Trossen Robotics Community

Forum, 2016. [Online]. Available: http://forums.trossenrobotics.com/showthread.php?8497-

MX-Phoenix-hexapod-and-some-more. [Accessed: 07-Nov-2017]

[60] A. Schneider and U. Schmucker, “Force Sensing for Multi-legged Walking Robots : Theory and

Experiments – Part 1 : Overview and Force Sensing,” in Mobile Robotics, Moving Intelligence,

J. Buchli, Ed. InTech, 2006, ch. 23, pp. 447–470 [Online]. Available:

https://www.intechopen.com/books/mobile_robotics_moving_intelligence/force_sensing_fo

r_multi-legged_walking_robots__theory_and_experiments_part_1__overview_and_force_se

n. [Accessed: 12-Jan-2018]

[61] M. Palankar and L. Palmer, “A force threshold-based position controller for legged locomotion:

Toward local leg feedback algorithms for robust walking on uneven terrain,” Autonomous

Robots, vol. 38, no. 3, pp. 301–316, 2014.

[62] “Coxa - Entomologists’ glossary | Amateur Entomologists’ Society (AES).” [Online]. Available:

https://www.amentsoc.org/insects/glossary/terms/coxa. [Accessed: 04-Dec-2017]

[63] M. Schilling, T. Hoinville, J. Schmitz, and H. Cruse, “Walknet, a bio-inspired controller for

hexapod walking,” Biological Cybernetics, vol. 107, no. 4, pp. 397–419, 2013.

[64] J. J. Craig, Introduction to Robotics: Mechanics and Control, 3rd ed. New Jersey: Pearson

Prentice Hall, 2005.

[65] J. Diebel, “Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors,”

Stanford University, CA, USA, 2006.

[66] N. Trawny and S. I. Roumeliotis, “Indirect Kalman Filter for 3D Attitude Estimation: A Tutorial

for Quaternion Algebra,” Technical Report, no. 2005–2, MARS Lab, University of Minnesota,

2005.

 Bibliography

201

[67] E. Lubbe, D. Withey, and K. R. Uren, “State estimation for a hexapod robot,” in Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp.

6286–6291.

[68] B. Siciliano and L. Villani, “From Indirect to Direct Force Control : A Roadmap for Enhanced

Industrial Robots,” Invited Paper, Robótica, 2000.

[69] Open Source Robotics Foundation, “About ROS | ROS.org.” [Online]. Available:

http://www.ros.org/about-ros/. [Accessed: 14-Nov-2017]

[70] Open Source Robotics Foundation, “History | ROS.org.” [Online]. Available:

http://www.ros.org/history/. [Accessed: 14-Nov-2017]

[71] Open Source Robotics Foundation, “Is ROS For Me? | ROS.org.” [Online]. Available:

http://www.ros.org/is-ros-for-me/. [Accessed: 14-Nov-2017]

[72] Open Source Robotics Foundation, “ROS/ Introduction | ROS Wiki.” [Online]. Available:

http://wiki.ros.org/ROS/Introduction. [Accessed: 15-Nov-2017]

[73] Open Source Robotics Foundation, “Core Components | ROS.org.” [Online]. Available:

http://www.ros.org/core-components/. [Accessed: 15-Nov-2017]

[74] Open Source Robotics Foundation, “Client Libraries | ROS Wiki.” [Online]. Available:

http://wiki.ros.org/Client Libraries. [Accessed: 15-Nov-2017]

[75] Open Source Robotics Foundation, “Documentation | ROS Wiki.” [Online]. Available:

http://wiki.ros.org/. [Accessed: 15-Nov-2017]

[76] Open Source Robotics Foundation, “ROS/ Concepts | ROS Wiki.” [Online]. Available:

http://wiki.ros.org/ROS/Concepts. [Accessed: 15-Nov-2017]

[77] Open Source Robotics Foundation, “roscpp/ Overview/ Callbacks and Spinning | ROS Wiki.”

[Online]. Available: http://wiki.ros.org/roscpp/Overview/Callbacks and Spinning. [Accessed:

15-Nov-2017]

[78] ROBOTIS, “AX-12/ AX-12+/ AX-12A | ROBOTIS e-Manual.” [Online]. Available:

http://support.robotis.com/en/product/actuator/dynamixel/ax_series/dxl_ax_actuator.htm.

[Accessed: 09-Nov-2017]

[79] Trossen Robotics, “ArbotiX-M Robocontroller.” [Online]. Available:

http://www.trossenrobotics.com/p/arbotix-robot-controller.aspx. [Accessed: 13-Nov-2017]

 Bibliography

202

[80] Trossen Robotics, “ArbotiX Commander v2.0 Kit.” [Online]. Available:

http://www.trossenrobotics.com/p/arbotix-commander-gamepad-v2.aspx. [Accessed: 12-

Nov-2017]

[81] “PhantomX Hexapod Phoenix Code.” [Online]. Available: http://learn.trossenrobotics.com/10-

interbotix/crawlers/phantomx-hexapod/68-phoenix-code.html. [Accessed: 12-Nov-2017]

[82] LORD Corporation, “3DM-GX3® -25 Miniature Attitude Heading Reference System,” Product

Datasheet, no. 8400–33, 2014. [Online]. Available: http://files.microstrain.com/3DM-GX3-25-

Attitude-Heading-Reference-System-Data-Sheet.pdf. [Accessed: 09-Nov-2017]

[83] OptoForce, “3-Axis Force Sensor: OMD-20-SE-40N,” Product Datasheet, no. V2.2, 2016.

[Online]. Available: https://optoforce.com/file-contents/omd-20-se-40n-datasheet-v2-

1.2.pdf?v11. [Accessed: 10-Nov-2017]

[84] OptoForce, “Optical Force Sensors – Introduction To The Technology,” White Paper, 2015.

[Online]. Available:

https://optoforce.com/file-contents/optoforcewhitepaperopticalforcesensors-0.pdf?v11%0A.

[Accessed: 10-Nov-2017]

[85] OptoForce, “3D Force Sensor (OMD).” [Online]. Available: https://optoforce.com/3d-force-

sensor-omd. [Accessed: 10-Nov-2017]

[86] Xevelabs, “Product: USB2AX.” [Online]. Available:

http://www.xevelabs.com/doku.php?id=product:usb2ax:usb2ax. [Accessed: 13-Nov-2017]

[87] Xevelabs, “USB2AX: Advanced instructions.” [Online]. Available:

http://www.xevelabs.com/doku.php?id=product:usb2ax:advanced_instructions. [Accessed:

13-Nov-2017]

[88] Open Source Robotics Foundation, “roscpp/Overview/Timers | ROS Wiki.” [Online]. Available:

http://wiki.ros.org/roscpp/Overview/Timers. [Accessed: 08-Dec-2017]

[89] J. Leibs and B. Gassend, “microstrain_3dmgx2_imu | ROS Wiki.” [Online]. Available:

http://wiki.ros.org/microstrain_3dmgx2_imu. [Accessed: 13-Nov-2017]

[90] Shadow Robot Company, “optoforce,” GitHub. [Online]. Available:

https://github.com/shadow-robot/optoforce. [Accessed: 13-Nov-2017]

 Bibliography

203

[91] SparkFun Electronics, “Serial Communication.” [Online]. Available:

https://learn.sparkfun.com/tutorials/serial-communication/wiring-and-hardware. [Accessed:

13-Nov-2017]

[92] Trossen Robotics, “6 Port AX/MX Power Hub.” [Online]. Available:

http://www.trossenrobotics.com/6-port-ax-mx-power-hub. [Accessed: 13-Nov-2017]

[93] Transcend, “Accessories | HUB3.” [Online]. Available: https://www.transcend-

info.com/Products/No-402. [Accessed: 13-Nov-2017]

[94] B. Friedland, Control System Design: An Introduction to State-Space Methods, 1st ed. Mineola,

NY: Dover, 2005.

[95] R. C. Dorf and R. H. Bishop, Modern Control Systems, 12th ed. New Jersey: Pearson Prentice

Hall, 2011.

[96] M. Kamenetsky, “Filtered Audio Demo,” Course Notes: EE102, Stanford University. [Online].

Available: https://web.stanford.edu/~boyd/ee102/conv_demo.pdf. [Accessed: 10-Dec-2017]

[97] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, 2nd ed.

West Sussex: Wiley, 2005.

[98] K. J. Åström, “PID Control,” in Control System Design, 2002, ch. 6, pp. 216–251 [Online].

Available: https://www.cds.caltech.edu/~murray/courses/cds101/fa02/caltech/astrom-

ch6.pdf. [Accessed: 16-Jan-2018]

[99] K. J. Åström and R. M. Murray, “PID Control,” in Feedback Systems: An Introduction for

Scientists and Engineers, 1st ed., New Jersey: Princeton University Press, 2008, ch. 10, pp. 293–

314 [Online]. Available: http://www.cds.caltech.edu/~murray/books/AM08/pdf/am08-

pid_28Sep12.pdf. [Accessed: 20-May-2018]

[100] J. Pratt and G. Pratt, “Intuitive control of a planar bipedal walking robot,” in Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA), 1998, pp. 2014–2021.

[101] ROBOTIS, “DYNAMIXEL.” [Online]. Available:

http://en.robotis.com/index/product.php?cate_code=101010. [Accessed: 11-Dec-2017]

[102] Open Source Robotics Foundation, “roscpp/Overview/Time | ROS Wiki.” [Online]. Available:

http://wiki.ros.org/roscpp/Overview/Time. [Accessed: 25-Nov-2017]

[103] A. Lauber, “Virtual Model Control on ALoF,” Master-Thesis, ETH Zurich, Switzerland, 2011.

 Bibliography

204

[104] “vicon_bridge | ROS Wiki.” [Online]. Available: http://wiki.ros.org/vicon_bridge. [Accessed:

25-Nov-2017]

[105] B. Charrow, “matlab_rosbag,” GitHub. [Online]. Available:

https://github.com/bcharrow/matlab_rosbag. [Accessed: 25-Nov-2017]

[106] “Eigen: Linear algebra and decompositions.” [Online]. Available:

https://eigen.tuxfamily.org/dox/group__TutorialLinearAlgebra.html.

[Accessed: 27-Nov-2017]

[107] T. Homberger, M. Bjelonic, N. Kottege, and P. V. K. Borges, “Terrain-dependant Control of

Hexapod Robots using Vision,” in Proceedings of the International Symposium on Experimental

Robotics (ISER), 2016, pp. 92–102.

[108] F. Almeida, A. Lopes, and P. Abreu, “Force-Impedance Control : a new control strategy of

robotic manipulators,” in Recent Advances in Mechatronics, 1st ed., O. Kaynak, S. Tosunoglu,

and M. H. Ang, Jr., Eds. Singapore: Springer-Verlag, 1999, ch. 2, pp. 126–137.

[109] “NMISA National Metrology Institute of South Africa.” [Online]. Available:

http://www.nmisa.org/. [Accessed: 10-Nov-2017]

[110] MicroStrain Inc., “3DM-GX3® -25 Single Byte Data Communications Protocol,” DCP Manual, no.

8500–15, 2012. [Online]. Available: http://files.microstrain.com/3DM-GX3-25 Single Byte Data

Communications Protocol.pdf. [Accessed: 10-Dec-2017]

[111] J. Leibs and B. Gassend, “microstrain_3dmgx2_imu,” GitHub. [Online]. Available:

https://github.com/ros-drivers/microstrain_3dmgx2_imu. [Accessed: 10-Dec-2017]

[112] Open Source Robotics Foundation, “tf API Overview: Coordinate Frames, Transforms, and TF |

ROS Wiki.” [Online]. Available: http://wiki.ros.org/tf/Overview/Transformations. [Accessed:

10-Dec-2017]

[113] C. Gehring, S. Coros, M. Hutter, M. Bloesch, M. A. Hoepflinger, and R. Siegwart, “Control of

Dynamic Gaits for a Quadrupedal Robot,” in Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), 2013, pp. 3287–3292.

[114] W. H. Chen, G. J. Ren, J. H. Wang, and D. Liu, “An adaptive locomotion controller for a hexapod

robot : CPG , kinematics and force feedback,” Science China Information Sciences, vol. 57, no.

11, pp. 1–18, 2014.

 Bibliography

205

[115] C. Li, S. Dong, and G. Zhang, “Evaluation of the root-mean-square slope of 3D surface

topography,” International Journal of Machine Tools and Manufacture, vol. 40, no. 3, pp. 445–

454, 2000.

[116] A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, and J. M. Bennett, “Surface

characterization techniques for determining the root-mean-square roughness and power

spectral densities of optical components,” Applied Optics, vol. 41, no. 1, pp. 154–171, 2002.

[117] The Membranes Research Environment, “Surface Roughness.” [Online]. Available:

http://membranes.edu.au/wiki/index.php/Surface_Roughness. [Accessed: 12-Dec-2017]

[118] The Planetary Society, “Wentworth (1922) grain size classification.” [Online]. Available:

http://www.planetary.org/multimedia/space-images/charts/wentworth-1922-grain-

size.html. [Accessed: 12-Dec-2017]

[119] T. D. Gillespie, Fundamentals of Vehicle Dynamics, 2nd ed. Warrendale, PA: Society of

Automotive Engineers, 1992.

[120] C. M. Becker and P. S. Els, “Profiling of rough terrain,” International Journal of Vehicle Design,

vol. 64, no. 2–4, pp. 240–261, 2014.

[121] A. S. Voloshina, A. D. Kuo, M. A. Daley, and D. P. Ferris, “Biomechanics and energetics of walking

on uneven terrain,” The Journal of Experimental Biology, vol. 216, no. 21, pp. 3963–3970, 2013.

[122] S. Sponberg and R. J. Full, “Neuromechanical response of musculo-skeletal structures in

cockroaches during rapid running on rough terrain,” The Journal of Experimental Biology, vol.

211, no. 3, pp. 433–446, 2008.

[123] Sondor, “SPX 45,” Product Datasheet, no. 13, 2014. [Online]. Available:

https://www.sondor.co.za/files/fileuploads/file/005311fd-dfbd-4b1e-8afc-

ad314de34454/spx45rev 13.pdf. [Accessed: 12-Dec-2017]

[124] Smooth On Inc., “Durometer Shore Hardness Scale.” [Online]. Available: https://www.smooth-

on.com/page/durometer-shore-hardness-scale/. [Accessed: 08-Dec-2017]

[125] T. Foote, E. Marder-Eppstein, and W. Meeussen, “tf | ROS Wiki.” [Online]. Available:

http://wiki.ros.org/tf. [Accessed: 10-Dec-2017]

206

Appendix A: Foot Force

Sensor

 Appendix A: Foot Force Sensor

207

A-1 OptoForce 3-Axis Force Sensor OMD-20-SE-40N Datasheet [83]

 Appendix A: Foot Force Sensor

208

 Appendix A: Foot Force Sensor

209

A-2 Force Sensor Sensitivity Reports

 Appendix A: Foot Force Sensor

210

 Appendix A: Foot Force Sensor

211

 Appendix A: Foot Force Sensor

212

 Appendix A: Foot Force Sensor

213

 Appendix A: Foot Force Sensor

214

 Appendix A: Foot Force Sensor

215

 Appendix A: Foot Force Sensor

216

 Appendix A: Foot Force Sensor

217

A-3 Force Sensor Testing
In order to assess the accuracy of the measurements provided by the OptoForce 3D foot force sensors,

a simple dead weight test was carried out on each sensor, for compression in the z-direction. The

setup involved balancing a cradle on the sensor, onto which weights could be placed to exert a

compressive load on the sensor.

A-3.1 Apparatus and Test Setup
The following is a list of apparatus used for the testing procedure:

• Wall mounted platform onto which sensor is placed;

• Cradle;

• Weights, calibrated for a particular total force;

• OptoForce OMD-20-SE-40N 3D force sensors (×8);

• Data acquisition units (×2);

• USB cables – Mini Type B male to Type A male (×2);

• USB extension cable – Type A male to Type A female;

• Laptop with sensor drivers and OptoForce Data Visualization (ODV) software installed.

The main pieces of apparatus from the above list are indicated on the test setup displayed in Figure

A.2.

While the weights were originally calibrated for the Mass Laboratory of the National Metrology

Institute of South Africa (NMISA) [109], the tests were carried out in NMISA's Force Laboratory. Since

the two labs are in close proximity at the Pretoria campus of CSIR, the geographical location should

have a negligible effect on the weight. Furthermore, during personal e-mail communication in

September 2016, Corne Gouws (cgouws@nmisa.org), from the Force Laboratory at NMISA, explained

that the Mass Laboratory uses Primary Standards for calibration which are of high accuracy and

quality, having controlled conditions such as a sealed room with climate control. The Force Laboratory,

on the other hand, uses Working Standards for their tests, which, although being typically of high

accuracy, are less accurate than Primary Standards. The differences in weight created by the

geographical differences are therefore insignificant when compared to the differences in calibration

standards used in the two laboratories.

It should also be noted that the weights were wiped down with tissue paper before testing, to remove

any dirt, dust and oils which could affect their weight. In addition, they were handled with clean gloves

at all times to ensure no oils were transferred to them during testing. Taking the above factors into

account, it can be concluded that the accuracy of the weights was sufficient for the purposes of this

 Appendix A: Foot Force Sensor

218

basic test procedure. A collection of these weights, used by the Force Laboratory at NMISA, is depicted

in Figure A.1.

Figure A.1: Weights of various sizes, used for calibration and testing at NMISA's Force Laboratory

The setup for the force sensor testing is depicted in Figure A.2 below, with the cradle suspended from

one of the sensors and 40 N of weight loaded onto it (see Figure A.3 for close up view of sensor).

Figure A.2: Force sensor test setup with main apparatus labelled

 Appendix A: Foot Force Sensor

219

Figure A.3: Close up view of loaded cradle balanced on OptoForce sensor

Given that the sensors can be safely loaded to 200% of nominal capacity, the additional weight of the

cradle (approximately 5N) poses no problem to the sensor and was simply zeroed, or “tared”, out

before applying additional load.

A-3.2 Testing Procedure
Each DAQ was connected individually to the laptop computer through USB cable and the ODV

software was started up. The default sampling and filter frequencies of 100 Hz and 15 Hz, respectively,

were used, and the following testing procedure was carried out for each of the eight sensors:

Step 1: Place sensor on platform and balance cradle on sensor surface. Take note to align the

small hole on the underside of the cradle bar (see Figure A.4) as close to the centre of the

sensor surface as possible.

Step 2: Warm up the sensor with a preload, by loading it up to 40 N, in two steps of 20 N each,

then unloading. Repeat three times.

Step 3: Zero, or tare, the measurements, to remove the cradle weight and measurement offset.

Step 4: Load up to 40 N, in two steps of 20 N each. When loading, wait long enough for

measurement to settle at each step, accounting for factors such as hysteresis and swinging

of cradle. Unload sensor once measurement has settled with 40 N load. Ensure the ODV

software is recording measurement data throughout this step.

Step 5: Once sensor measurements have settled, zero measurement and repeat step 4 once

more, in order to test the repeatability of the sensor measurements.

 Appendix A: Foot Force Sensor

220

Step 6: Rotate sensor by 180°, in the xy-plane, and balance cradle on sensor again. “Seat” sensor

by preloading again, carrying out the procedure in step 2 (only once, no need to repeat

three times), then zero the measurement.

Step 7: Load the sensor again as in step 4 (repeating the test with the sensor rotated by 180° tests

the reproducibility of the sensor measurements).

In order to analyse the sensor accuracy in between the loading steps of 20 N and 40 N, one of the

sensors (serial number ISE0A024) was loaded in eight steps, of 5 N each, during test Steps 5 and 7 in

the above procedure.

All the data recorded from the tests above were processed and analysed using MATLAB, as described

in the following section.

Figure A.4: Underside of cradle bar, showing chamfered hole (circled in red) where cradle is to be rested on force sensor

A-3.3 Post-processing of Measured Data
The OptoForce sensor measurements are sent out as integer ticks by the DAQs and recorded in this

manner by the ODV software. In order to convert these recorded data to force measurements, they

were divided, during post-processing, by the sensitivity values provided by the manufacturer for each

individual sensor, resulting in force data for compressive z-direction measurements such as those

illustrated in the next section.

As alluded to in the testing procedure above, as well as visible in the plots of the next section, the

force measurements are not constant over time for a particular loading condition. Some reasons, such

as swinging of the cradle, were already discussed, but another factor is the constant presence of small

 Appendix A: Foot Force Sensor

221

magnitudes of measurement noise (even with the DAQ filtering the data), resulting in the

measurement never being a constant value. Thus, rather than picking a single data point as the force

measurement at a particular load, a MATLAB script was setup, to allow the user to select a range over

which the measurements were to be used for each loading step, and the mean values of these ranges

were calculated as the force measurements for the various loads. When selecting measurement

ranges, care was taken not to include regions in which the measurements were varying significantly

(for example, where the measurement exhibited small oscillations from the swinging of the cradle),

rather using measurements which were well settled and fairly constant.

From the z-direction measurement value calculated above, the corresponding error value for each

loading condition was calculated as the difference between measured value and applied load.

Percentage error was calculated by taking the error value as a percentage of the applied load, while

full scale error percentage was calculated from the error value as a percentage of the full scale,

nominal sensor capacity of 40 N. These calculations are represented mathematically by the following

equations:

 𝐸𝑟𝑟𝑜𝑟 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑⁡𝐹𝑜𝑟𝑐𝑒 − 𝐿𝑜𝑎𝑑 (A.1)

 𝐸𝑟𝑟𝑜𝑟⁡[%] =
𝐸𝑟𝑟𝑜𝑟

𝐿𝑜𝑎𝑑
× 100 (A.2)

 𝐹𝑢𝑙𝑙⁡𝑆𝑐𝑎𝑙𝑒⁡𝐸𝑟𝑟𝑜𝑟⁡[%] =
𝐸𝑟𝑟𝑜𝑟

40
× 100 (A.3)

All calculated measurements and error values were tabulated, along with the applied loads, and

written to Excel spreadsheet files for each sensor, by the same MATLAB script. These results are

presented in the section which follows.

A-3.4 Test Results
Compressive z-direction force measurement results of particular note are presented in this section,

along with summaries of the maximum errors obtained across the various tests performed with the

eight sensors. Detailed results for each run of the multitude of tests are reported in Appendix A-4.

A-3.4.1 Eight Step Test

Plots of the z-direction force measurements using sensor ISE0A024 are presented in Figures A.5 to

A.7, while the mean measured forces and corresponding errors, as calculated with Equations (A.1) –

(A.3), are presented in Tables A.1 to A.3 for the three runs of the test. It should be noted that the two

repeatability tests are referred to as “run 1” and “run 2,” while the reproducibility test, in which the

sensor was rotated by 180°, is referred to as “run 180,” for clarity. Furthermore, all values presented

 Appendix A: Foot Force Sensor

222

in the tables have been rounded to two decimal places and are thus not the exact values used during

the calculations.

Figure A.5: Force sensor (ISE0A024) test measurements – “run 1” (using only 2 loading steps)

Figure A.6: Force sensor (ISE0A024) test measurements – “run 2” (repeatability test; using 8 loading steps)

 Appendix A: Foot Force Sensor

223

Figure A.7: Force sensor (ISE0A024) test measurements – “run 180” (reproducibility test; using 8 loading steps)

Table A.1: Force sensor (ISE0A024) test measurement results – “run 1”

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 19.47 -0.53 -2.63 -1.31

40 37.43 -2.57 -6.42 -6.42

Table A.2: Force sensor (ISE0A024) test measurement results – “run 2” (repeatability test)

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

5 4.81 -0.19 -3.84 -0.48

10 9.74 -0.26 -2.65 -0.66

15 14.68 -0.32 -2.16 -0.81

20 19.50 -0.50 -2.51 -1.25

25 24.27 -0.73 -2.92 -1.82

30 28.80 -1.20 -4.00 -3.00

35 33.26 -1.74 -4.97 -4.35

40 37.49 -2.51 -6.29 -6.29

 Appendix A: Foot Force Sensor

224

Table A.3: Force sensor (ISE0A024) test measurement results – “run 180” (reproducibility test)

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

5 4.90 -0.10 -1.97 -0.25

10 9.96 -0.04 -0.40 -0.10

15 15.04 0.04 0.26 0.10

20 20.10 0.10 0.48 0.24

25 24.96 -0.04 -0.17 -0.11

30 29.75 -0.25 -0.84 -0.63

35 34.33 -0.67 -1.92 -1.68

40 38.80 -1.20 -2.99 -2.99

The results of this test are of particular interest, as they show the sensor behaviour across the

measurement range with higher resolution than the tests using only two loading steps. However, the

plots and results of these runs (for 20 N and 40 N loads) are quite typical for the entire set of sensors.

Therefore, only the maximum errors for the eight sensors are summarized in the following section,

while detailed measurement results can be found tabulated in Appendix A-4.

A-3.4.2 Results Summary

Table A.4 summarizes the largest errors observed for the eight sensors across the three runs of the

tests, for loads of 20 N and 40 N.

Table A.4: Maximum measurement errors of force sensor tests for loads of 20 N and 40 N

Sensor
Max. Error [N] Max. Error [%] Max. Full Scale Error [%]

20 N 40 N 20 N 40 N 20 N 40 N

ISE0A019 -1.65 -4.56 -8.26 -11.41 -4.13 -11.41

ISE0A020 -1.22 -3.65 -6.09 -9.13 -3.05 -9.13

ISE0A023 -0.27 -2.42 -1.35 -6.04 -0.68 -6.04

ISE0A024 -0.53 -2.57 -2.63 -6.42 -1.31 -6.42

ISE0A025 -0.34 -2.02 -1.70 -5.04 -0.85 -5.04

ISE0A026 0.54 -1.84 2.69 -4.60 1.35 -4.60

ISE0A027 -0.60 -3.15 -2.99 -7.89 -1.49 -7.89

ISE0A028 -0.39 -2.53 -1.94 -6.32 -0.97 -6.32

 Appendix A: Foot Force Sensor

225

A-3.5 Discussion of Results
The plots in Figures A.5 to A.7 show that the sensors typically measure the load values quite accurately.

Table A.4 indicates that the error magnitudes are generally below 3% for 20 N loads and 7% for 40 N

loads on most of the sensors, although the maximum error magnitudes observed are 8.26% at 20 N

and 11.41% at 40 N. Full-scale error percentage magnitudes usually remain below 1.5% at 20 N for the

majority of sensors, reaching maximums of 4.13% at 20 N and 11.41% at 40 N, for sensor ISE0A019.

A consistent observation across the sensors is that these error values appear to increase

proportionally with the applied load, which is also demonstrated more clearly in Figure A.6, Figure

A.7, Table A.2, and Table A.3, where the load is increased in smaller steps.

While these error values come across as being larger than those quoted by the manufacturer, as well

as undesirably becoming larger as the load approaches the nominal capacity of the sensors (where

they are expected to be more accurate), it is important to keep in mind the conditions under which

these tests were performed. Firstly, the experimental setup was not perfect, with the cradle not

necessarily always being perfectly lined up with the centre of the sensor. The small hole in the cradle

bar (Figure A.4) is also not perfectly in the centre of the cradle, resulting in small offsets of the applied

load from the centre of the sensor. This results in load components being exerted in the x- and

y-directions of the sensor, to counter the moments occurring at the sensor contact surface from the

load offset. Another factor which contributed to the load offsets and moments was the fact that the

gaps in the loading weights could not always be perfectly counterbalanced between each other. Thus,

the measured z-component of force does not account for the full load on the sensor. Since the sensor

measurements had to be zeroed during testing, the small x- and y-components were not even reliable

enough to be used to correct the effects of load offsets.

This explanation is further corroborated by the fact that the results of the repeatability runs are quite

consistent, while in some cases the reproducibility runs exhibited slightly different results. The reason

for this is that rotating the sensors required the cradle to be repositioned and seated on the sensors

again. Consequently, the cradle may not have always been balanced in exactly the same position in

both cases, causing differences in the loading conditions, resulting in slight differences in

measurements for these cases.

Additionally, as the load is increased, the moments and offset effects increase, resulting in more

significant force components away from the z-direction, along with more significant, undesirable

deformations of the sensor contact surface, explaining the increase in error values with increasing

loads. This is further supported by the fact that in the few cases where the cradle was managed to be

aligned quite well and the load acted almost completely in the z-direction of the sensor, such as in

 Appendix A: Foot Force Sensor

226

“run 180” of the test with sensor ISE0A024, the results were very accurate and the errors did not grow

as significantly with load as in other runs. Thus, the sensitivity slopes for each sensor, provided by the

manufacturer, are likely quite accurate, with imperfections in the tests discussed here being a more

probable cause of the observed deviations from the expected measurements.

Nevertheless, some noteworthy findings were made from this investigation. For instance, the results

for sensors ISE0A019 and ISE0A020 exhibited significantly larger errors than the rest of the sensors.

These two sensors seem to have slightly softer contact surfaces than the rest and thus deform slightly

more under load, amplifying the effects of loading misalignments in these tests. Consequently, it was

decided to use the other six sensors on the PhantomX, for more consistent sensor behaviour and

measurements across the six feet.

Furthermore, the results of the repeatability tests were observed to be quite consistent for most of

the sensors. The differences in the results for the reproducibility runs were also generally small, with

reasons for the larger differences observed in some sensors having been discussed above. Taking

these factors into account, the findings of these tests indicate that the force sensors provide

sufficiently repeatable and reproducible measurements.

A-3.6 Conclusion
Overall, the results obtained from the dead weight experiments are reasonably satisfactory, exhibiting

sufficiently small error magnitudes between the measurements and applied loads. Although the

manufacturer claims a maximum full-scale error of 2%, the results obtained in these tests suggest

slightly larger measurement errors. However, the effects of inaccuracies and imperfections in the

experiment dominate the errors in the force measurements. These experimental imperfections are

not detrimental to the tests performed, as it should be kept in mind that these tests were simply

meant to be a quick check of the accuracy of the sensors and the provided sensitivity values, rather

than a full sensor calibration procedure.

Taking the above into account, the observed full-scale error magnitudes, generally being well below

7%, are acceptable. They are definitely not large enough to invalidate or discard the sensitivities given

by the manufacturer (which would have been calibrated using a much more comprehensive and

accurate procedure and setup) and perform a recalibration of the sensors. Furthermore, for the

application at hand, the sensor accuracy indicated by the results of the above tests is certainly

sufficient. It can, therefore, be concluded that the force measurements provided by the OptoForce 3D

Force sensors, using the manufacturer provided sensitivity values for each sensor, are sufficiently

accurate for use on the PhantomX robot platform.

 Appendix A: Foot Force Sensor

227

A-4 Results of Force Sensor Tests

ISE0A019

Table A-5: Force sensor (ISE0A019) test measurement results – “run 1”

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 19.15 -0.85 -4.24 -2.12

40 37.28 -2.72 -6.81 -6.81

Table A-6: Force sensor (ISE0A019) test measurement results – “run 2” (repeatability test)

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 19.13 -0.87 -4.35 -2.18

40 37.27 -2.73 -6.83 -6.83

Table A-7: Force sensor (ISE0A019) test measurement results – “run 180” (reproducibility test)

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 18.35 -1.65 -8.26 -4.13

40 35.44 -4.56 -11.41 -11.41

ISE0A020

Table A-8: Force sensor (ISE0A020) test measurement results – “run 1”

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 19.10 -0.90 -4.49 -2.25

40 36.80 -3.20 -8.00 -8.00

Table A-9: Force sensor (ISE0A020) test measurement results – “run 2” (repeatability test)

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 19.08 -0.92 -4.60 -2.30

40 36.91 -3.09 -7.73 -7.73

Table A-10: Force sensor (ISE0A020) test measurement results – “run 180” (reproducibility test)

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 18.78 -1.22 -6.09 -3.05

40 36.35 -3.65 -9.13 -9.13

 Appendix A: Foot Force Sensor

228

ISE0A023

Table A-11: Force sensor (ISE0A023) test measurement results – “run 1”

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 19.74 -0.26 -1.28 -0.64

40 37.66 -2.34 -5.84 -5.84

Table A-12: Force sensor (ISE0A023) test measurement results – “run 2” (repeatability test)

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 19.73 -0.27 -1.35 -0.68

40 37.58 -2.42 -6.04 -6.04

Table A-13: Force sensor (ISE0A023) test measurement results – “run 180” (reproducibility test)

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 19.87 -0.13 -0.63 -0.32

40 37.82 -2.18 -5.44 -5.44

ISE0A024

Table A-14: Force sensor (ISE0A024) test measurement results – “run 1”

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 19.47 -0.53 -2.63 -1.31

40 37.43 -2.57 -6.42 -6.42

Table A-15: Force sensor (ISE0A024) test measurement results – “run 2” (repeatability test)

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

5 4.81 -0.19 -3.84 -0.48

10 9.74 -0.26 -2.65 -0.66

15 14.68 -0.32 -2.16 -0.81

20 19.50 -0.50 -2.51 -1.25

25 24.27 -0.73 -2.92 -1.82

30 28.80 -1.20 -4.00 -3.00

35 33.26 -1.74 -4.97 -4.35

40 37.49 -2.51 -6.29 -6.29

 Appendix A: Foot Force Sensor

229

Table A-16: Force sensor (ISE0A024) test measurement results – “run 180” (reproducibility test)

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

5 4.90 -0.10 -1.97 -0.25

10 9.96 -0.04 -0.40 -0.10

15 15.04 0.04 0.26 0.10

20 20.10 0.10 0.48 0.24

25 24.96 -0.04 -0.17 -0.11

30 29.75 -0.25 -0.84 -0.63

35 34.33 -0.67 -1.92 -1.68

40 38.80 -1.20 -2.99 -2.99

ISE0A025

Table A-17: Force sensor (ISE0A025) test measurement results – “run 1”

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 19.66 -0.34 -1.70 -0.85

40 38.06 -1.94 -4.85 -0.85

Table A-18: Force sensor (ISE0A025) test measurement results – “run 2” (repeatability test)

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 19.66 -0.34 -1.69 -0.85

40 37.98 -2.02 -5.04 -5.04

Table A-19: Force sensor (ISE0A025) test measurement results – “run 180” (reproducibility test)

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 20.08 0.08 0.40 0.20

40 38.84 -1.16 -2.90 -2.90

 Appendix A: Foot Force Sensor

230

ISE0A026

Table A-20: Force sensor (ISE0A026) test measurement results – “run 1”

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 20.10 0.10 0.50 0.25

40 38.16 -1.84 -4.60 -4.60

Table A-21: Force sensor (ISE0A026) test measurement results – “run 2” (repeatability test)

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 20.14 0.14 0.72 0.36

40 38.17 -1.83 -4.58 -4.58

Table A-22: Force sensor (ISE0A026) test measurement results – “run 180” (reproducibility test)

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 20.54 0.54 2.69 1.35

40 38.92 -1.08 -2.71 -2.71

ISE0A027

Table A-23: Force sensor (ISE0A027) test measurement results – “run 1”

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 19.41 -0.59 -2.94 -1.47

40 36.85 -3.15 -7.89 -7.89

Table A-24: Force sensor (ISE0A027) test measurement results – “run 2” (repeatability test)

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 19.40 -0.60 -2.99 -1.49

40 36.86 -3.14 -7.85 -7.85

Table A-25: Force sensor (ISE0A027) test measurement results – “run 180” (reproducibility test)

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 19.65 -0.35 -1.74 -0.87

40 37.80 -2.20 -5.50 -5.50

 Appendix A: Foot Force Sensor

231

ISE0A028

Table A-26: Force sensor (ISE0A028) test measurement results – “run 1”

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 19.93 -0.07 -0.33 -0.17

40 37.96 -2.04 -5.09 -5.09

Table A-27: Force sensor (ISE0A028) test measurement results – “run 2” (repeatability test)

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 19.95 -0.05 -0.26 -0.13

40 37.96 -2.04 -5.10 -5.10

Table A-28: Force sensor (ISE0A028) test measurement results – “run 180” (reproducibility test)

Load [N] Measured Force [N] Error [N] Error [%] Full Scale Error [%]

20 19.61 -0.39 -1.94 -0.97

40 37.47 -2.53 -6.32 -6.32

232

Appendix B: New Foot for

PhantomX MK-II

 Appendix B: New Foot for PhantomX MK-II

233

B-1 Design of New Foot for PhantomX MK-II
A computer-aided design (CAD) model of the original foot of the PhantomX MK-II is displayed in Figure

B.1.

Figure B.1: CAD model of original foot assembly of PhantomX MK-II hexapod

These original feet are assembled from Plexiglas plates and have a small rubber pad, or “toe,” on the

end, where the foot contacts the ground. Clearly, there is no means to mount an OptoForce 3D force

sensor to this foot, nor is there a straightforward manner in which the foot could be minimally

modified to integrate the sensor. New feet were thus required to be designed, onto which the

OptoForce sensors could be mounted.

An important consideration in the design was the ability to mount and unmount the sensors from the

robot’s leg. In Figure B.2 it can be seen that the original foot is held on the leg by slots in the two tibia

plates. The foot is, therefore, fixed to the tibia segment of the leg and can only be removed by

disassembling this whole leg segment. This would certainly have to be addressed in the design,

allowing for the sensors to be separated from the leg whenever required, without having to

disassemble the tibia segment.

 Appendix B: New Foot for PhantomX MK-II

234

(a) (b)

Figure B.2: Model of original PhantomX MK-II foot (a) mounted in tibia; (b) partially exploded view showing slot in tibia
plate which holds foot in place

It was thus decided to separate the foot into two parts: a centreplate, which is fixed into the tibia

segment of the leg, and a sensor mount, which is fastened onto the centreplate after assembling the

tibia, allowing it to be detached from the leg at any time. CAD models of the two parts are depicted in

Figures B.3 and B.4, while the foot assembly, including the OptoForce sensor, is displayed in Figure

B.5. Figure B.6 also depicts the ability to detach the force sensor from the robot leg without

disassembling the entire tibia segment. Detailed drawings of the centreplate and sensor mount, as

well as the foot assembly, are provided in Appendix B-2.

Figure B.3: Centreplate part of new PhantomX foot

 Appendix B: New Foot for PhantomX MK-II

235

Figure B.4: Multiple views of sensor mount part of new PhantomX foot

(a) (b)

Figure B.5: Assembly of new PhantomX foot with OptoForce sensor: (a) fully assembled view; (b) exploded view

 Appendix B: New Foot for PhantomX MK-II

236

(a) (b)

Figure B.6: Models of OptoForce sensor (a) mounted onto robot foot, and (b) being detached from leg without
disassembling entire tibia segment

These newly designed feet were manufactured by 3D printing, using plastic materials with similar

properties to ABS plastic. Images of the feet attached to the PhantomX legs, with the OptoForce

sensors mounted, can be seen in Figures B.7 and 4.9.

Figure B.7: Frontal view of new PhantomX foot with OptoForce sensor, mounted onto tibia segment

 Appendix B: New Foot for PhantomX MK-II

237

B-2 Manufacturing Drawings of Newly Designed Foot
Manufacturing drawings of the centreplate and sensor mount parts, as well as the foot assembly, are

presented below.

 Appendix B: New Foot for PhantomX MK-II

238

 Appendix B: New Foot for PhantomX MK-II

239

 Appendix B: New Foot for PhantomX MK-II

240

241

Appendix C: Updates to

PhantomX Parameters for

hexapod_ros

 Appendix C: Updates to PhantomX Parameters for hexapod_ros

242

Updates were made to some of the parameter values for the PhantomX hexapod, in the relevant YAML

configuration file in the hexapod_description package of the hexapod_ros locomotion

software stack. These updated values are listed below.

Details about the definitions of these parameters and their usage can be found in the YAML

configuration files of the hexapod_ros source code [17]. All length and position values listed below

are in units of meters, while angle quantities are measured in degrees.

INIT_FOOT_POS_X: [-0.1004, 0.0, 0.1004, -0.1004, 0.0, 0.1004]

INIT_FOOT_POS_Y: [0.1004, 0.142, 0.1004, 0.1004, 0.142, 0.1004]

INIT_FOOT_POS_Z: [0.055, 0.055, 0.0550, 0.0550, 0.0550, 0.0550]

COXA_LENGTH: 0.052

FEMUR_LENGTH: 0.0662

TIBIA_LENGTH: 0.13901

STANDING_BODY_HEIGHT: 0.042

LEG_LIFT_HEIGHT: 0.038 (kept as default value used in hexapod_ros)

For all femur servos:

offset: 13.09

For all tibia servos:

offset: -57.6

It should be noted that the negatives of the values calculated in Equation (4.1), Section 4.3.1, are set

as the servo offsets here, as these values are subtracted from the desired joint angles, when mapping

between joint space and actuator space in the source code of the ServoDriver class.

The following two modifications were made to the above values during the experimental tests of the

Walking Posture Controller:

STANDING_BODY_HEIGHT: 0.072

LEG_LIFT_HEIGHT: 0.075

243

Appendix D: Computation

of IMU Orientation from

ROS Driver Output

 Appendix D: Computation of IMU Orientation from ROS Driver Output

244

The orientation estimate provided by the MicroStrain® 3DM-GX3® -25 IMU’s onboard sensor fusion

algorithm represents the rotation of the IMU’s internal coordinate frame, relative to an Earth-fixed

frame which has its z-axis pointing downward (in the direction of the gravity vector) [110].

However, the ROS MicroStrain® driver, discussed in Section 4.3.2.2, manipulates the rotation matrix

returned by the IMU, so as to transpose it and rotate it about the y-axis by 180°, with the intention of

providing a rotation that corresponds to a transformation from the IMU’s internal frame to a world

frame which has an upward-pointing z-axis [89]. This complicates the matter unnecessarily, as,

a) the IMU’s coordinate frame has its z-axis pointing downward, even when mounted to the

robot, and

b) the orientation of the body is required relative to the world, not the other way around.

While a simple transpose would solve the latter issue, the former would still mean that calculating

Euler angles from the resulting, transposed transformation would yield yaw and roll angle values with

180° offsets from the actual yaw and roll of the robot body, as well as a pitch angle value which is the

negative of the actual pitch of the robot.

In an attempt to remedy these issues, the necessary transposes and rotations were applied to the

orientation from the driver, to reverse the transformations described at [89] and revert to the original

rotation provided by the hardware. However, the resulting orientation measurements were still found

to be incorrect. After thorough investigation the reasons for these errors were eventually discovered:

1. The IMU data communications protocol [110] uses the convention presented by Diebel [65]

to represent rotation matrices.

2. On the other hand, inspection of the source code of the ROS driver [111] revealed that it uses

functions from the standard ROS tf package (see Footnote 4 in Section 5.2.3) to compute the

conversions between quaternions and rotation matrices. It turns out that the tf package

follows the rotation matrix conventions presented by Craig [64], as illuminated by the tf API

documentation [112].

As a consequence, converting the transformed rotation matrix to a quaternion using the function from

tf has the inadvertent effect of transposing the rotation, resulting in the quaternion from the driver

actually describing the rotation of the IMU relative to the new world frame (with z-axis up), rather

than the rotation of the world frame relative to the IMU (as described at [89]). This type of confusion

is precisely the reason why the importance of being aware of, and using consistent, conventions when

working with rotation matrices is vehemently stressed in Chapter 3.

 Appendix D: Computation of IMU Orientation from ROS Driver Output

245

Knowing what rotation the driver’s quaternion actually describes clears up the path for transforming

this rotation back to the original orientation estimate provided by the IMU. The orientation matrix

returned by the IMU’s sensor fusion algorithm is represented as

 𝑴 = [

𝑚11 𝑚12 𝑚13

𝑚21 𝑚22 𝑚23

𝑚31 𝑚32 𝑚33

], (D.1)

while the quaternion provided by the ROS driver can be denoted by

 𝒒 = [𝑞0 𝑞1 𝑞2 𝑞3]𝑇 . (D.2)

Using the convention of Diebel [65], the rotation matrix describing the orientation represented by 𝒒

(computed using the mapping of Equation (3.23)) can be denoted by

 𝑹 = [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

]. (D.3)

In other words, 𝑹 represents the rotation provided by the ROS driver.

Based on the description of the transformations performed by the ROS driver (including the

inadvertent transpose effect when converting to a quaternion), the relationship between 𝑹 and the

original IMU orientation 𝑴 is described mathematically as

 𝑹 = (𝑹𝑦(180°)𝑴
𝑇)
𝑇
, (D.4)

where

 𝑹𝑦(180°) = [
−1 0 0
0 1 0
0 0 −1

] (D.5)

is the coordinate rotation matrix representing a rotation of 180° about the y-axis.

Equation (D.4) can be solved for 𝑴 as follows:

𝑹𝑇 = 𝑹𝑦(180°)𝑴
𝑇

𝑹𝑦(180°)
𝑇𝑹𝑇 = 𝑴𝑇

∴ 𝑴 = (𝑹𝑦(180°)
𝑇𝑹𝑇)

𝑇
.

(D.6)

 Appendix D: Computation of IMU Orientation from ROS Driver Output

246

From linear algebra, it follows that

𝑴 = 𝑹 ∙ 𝑹𝑦(180°)

= [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] [
−1 0 0
0 1 0
0 0 −1

]

∴ 𝑴 = [

−𝑟11 𝑟12 −𝑟13
−𝑟21 𝑟22 −𝑟23
−𝑟31 𝑟32 −𝑟33

].

(D.7)

Geometrically, this signifies a rotation of the initial world frame (with z-axis pointing downward) about

the y-axis by 180° into the ROS driver world frame (with z-axis point upward), followed by the rotation

from the driver’s world frame into the IMU frame as described by the driver’s quaternion. The overall

result is a rotation from the initial world frame into the IMU frame, which is equivalent to the rotation

matrix returned by the IMU hardware.

By making use of Equation (D.7) in the mapping of Equation (3.19), the ZYX Euler angles describing the

rotation of the IMU (𝒖𝐼𝑀𝑈) are calculated as

 𝒖𝐼𝑀𝑈(𝑹) = [

𝜙𝐼𝑀𝑈(𝑹)
𝜃𝐼𝑀𝑈(𝑹)
𝜓𝐼𝑀𝑈(𝑹)

] = [

atan2(−𝑟23, −𝑟33)

asin(𝑟13)

atan2(𝑟12, −𝑟11)
]. (D.8)

Thus, calculating the elements of 𝑹 based on Equation (3.23), the Euler angles can be computed

directly from the elements of 𝒒 as

 𝒖𝐼𝑀𝑈(𝒒) = [

𝜙𝐼𝑀𝑈(𝒒)
𝜃𝐼𝑀𝑈(𝒒)
𝜓𝐼𝑀𝑈(𝒒)

] = [

atan2(−2𝑞2𝑞3 − 2𝑞0𝑞1, −𝑞0
2 + 𝑞1

2+𝑞2
2−𝑞3

2)

asin(2𝑞1𝑞3 − 2𝑞0𝑞2)

atan2(2𝑞1𝑞2 + 2𝑞0𝑞3, −𝑞0
2 − 𝑞1

2+𝑞2
2+𝑞3

2)

]. (D.9)

Although other rotations could be applied and the necessary angles could be extracted in different

ways, the mappings presented above are suggested as they adhere to a single convention, eliminating

any confusion or ambiguity. It also seems more appropriate to use the driver to simply obtain the

original orientation estimate provided by the IMU, leaving the tasks of further manipulation and

extraction of the desired information to the program executing the specific application, rather than

having such conversions carried out by the driver itself.

247

Appendix E: Uneven

Terrain Test Setup

 Appendix E: Uneven Terrain Test Setup

248

E-1 Investigation on Existing Uneven Terrain Testing Methods
In Section 2.5, a wide variety of studies using quadruped and hexapod robots were discussed, including

mention of experimental tests conducted by many of them. One of the frequently employed methods

of introducing irregularity to the terrain, in these studies as well as others, is to simply have a single

step or obstacle, often in the form of a block, in the robot’s path of motion, such as in [7], [9], [35],

[41], [113]. In the case of the experimental tests performed with the HITCR-II hexapod, multiple

rectangular blocks were used as obstacles [10] (see Figure 2.16).

In some cases, many obstacles are scattered or arranged in a less ordered manner, such as in the tests

with StarlETH [6] depicted in Figure 2.14, or those performed with BigDog [1], which can be seen

walking on a “rubble pile” in Figure E.1 below.

Figure E.1: Experimental test of BigDog walking on a rubble pile [1]

Another test setup involving blocks, which can be found fairly frequently in the literature, is a grid, or

“field,” of closely packed blocks, of various heights. In Figure 2.27, the Weaver hexapod [13] was

demonstrated standing on such a “block field” (which can also be seen as segment A in Figure E.3

below). Other examples of studies using this type of terrain to test hexapods include [51], [61].

In many cases, much less structured terrain setups with more natural characteristics are utilized. One

example is a study with the LittleDog quadruped, where models of rock-like terrains, of varying

difficulty levels [27], were utilized, as can be seen in Figure E.2 below.

 Appendix E: Uneven Terrain Test Setup

249

(a)

(b)

Figure E.2: (a) Various uneven terrain models, and (b) typical experimental test setup with LittleDog quadruped [27]

Other attempts to emulate more realistic terrain conditions involve using a mixture of actual rocks,

stones, pebbles, sand, and gravel in the testbed, such as in segments B–D of the multi-terrain testbed

used for Weaver [13], portrayed in Figure E.3 below.

Figure E.3: Multi-terrain testbed, with four segments, used in experimental tests with Weaver hexapod [13]

Many studies even go further and opt to conduct tests in authentic, natural environments, instead of

using artificial uneven terrain setups. Examples of studies which carried out experiments on outdoor

terrains include [1], [8], [28], [114], two of which can be seen in Figures 2.7 and 2.12.

It appears that the variety of approaches taken for testing legged robots on uneven terrain is

considerably wide-ranging. There does not seem to be a set standard to which these terrains are

created, with many of them not even being easily measurable or straightforward to recreate. This is

especially true for more natural terrains and ones in which obstacles or objects are simply scattered

or piled together.

 Appendix E: Uneven Terrain Test Setup

250

Even the more structured terrain types are often only described by their maximum height difference,

as measured between the highest and lowest points occurring on them. Examples of terrain setups

specified with such measures include the uneven models used with LittleDog [27] and the block fields

used in [13], [51]. Clearly, this measure provides no information about the height variations in the

terrain between the highest and lowest points, nor how these variations are distributed throughout

the terrain area. Furthermore, in most cases it cannot even be said whether the robot will take

footholds on the highest or lowest points, especially at the same time or consecutively (situations in

which the maximum height difference becomes important). It may be that these points occur very far

away from each other, or that they both lie somewhere on the extreme edge of the test setup where

the robot’s feet might not be placed during the test procedure. Moreover, it is hardly ever reported if

the terrain variations were assigned purely at random, or if they were manually arranged (especially

in the case of the block field), in a trial-and-error manner, to ensure that the robot would be able to

achieve motion over the terrain.

Having said that the existing measures provided for most uneven terrain setups may be inadequate,

or at least not completely sufficient, the question still stands – how is terrain unevenness actually

classified, or what measures do, in fact, exist for quantifying or describing terrain variations?

Perusal of the literature seems to suggest that there is no straightforward answer. Natural terrains

vary so much and their irregularities can be spread over such vast three-dimensional spaces that

classifying them into set categories is not a trivial task. Measures of the magnitudes of the height

difference are quite an intuitive gauge for how uneven a particular terrain is, but this suffers from the

shortcomings described above. Other methods could possibly be used to obtain a quantitative

measure of roughness using many points on the terrain. For instance, average or root-mean-square

(RMS) values across a surface could be computed; however, these are generally more applicable to

measuring the microscopic roughness of well controlled and engineered surfaces, such as those found

on precision manufactured equipment, membranes, and optical components, among others [115]–

[117]. On naturally occurring, and sometimes highly varying, surfaces such as the uneven terrains

legged robots are typically expected to walk on, these single-value measures of roughness would still

be limited by similar drawbacks as the maximum height difference. This is especially true because of

the fact that legged robots use discrete footholds when moving, rather than experiencing the

variations of the terrain in a continuous manner.

When using irregularities such as gravel or stones, the grade or classification of the particle sizes could

be provided, based on a grain size classification scale. An example of this would be the Wentworth

scale [118], which provides grain size classification grades for sediments ranging from clay with

 Appendix E: Uneven Terrain Test Setup

251

microscopic particles, through multiple grades of silt and sand, all the way to large objects such as

cobblestones and pebbles. Using one particular grade of stones or gravel would allow for fairly similar

test setups to be created. However, when using a mixture of different grades, as in the multi-terrain

testbed depicted in Figure E.3, reproducing the same test conditions becomes a problem once again.

Even if a statistical distribution of the amounts of the various grades used is provided, recreating a

terrain setup based on that statistical distribution would not necessarily result in the stones and rocks

being distributed or laid out in the same way across the terrain area. With legged robots using discrete

footholds, changes in the configuration of the terrain could have significant effects on the robot’s

behaviour. Furthermore, an assortment of other factors, apart from just the general size range of the

particles, could play a vital role in the unevenness of the terrain, such as whether the individual stones

and rocks are flatter or rounder, smoother or more jagged, uniform or irregular in shape, and many

others.

Another subject area which could provide insights into terrain roughness measurements is vehicle

dynamics, where analyses related to factors such as ride comfort and suspension performance rely on

estimates of road roughness. By considering the road elevation profile, as a function of the

longitudinal displacement along the road, to be a broad-band random signal, statistical properties of

the profile can be used to describe it, with the primary representations being the Power Spectral

Density (PSD) function [119]. By decomposing an elevation profile into a series of sinusoidal waves

with varying amplitudes and phase relationships, the PSD can be determined as a plot of these

amplitudes against their corresponding spatial frequencies, with spatial frequency being the inverse

of the sinusoid’s wavelength.

Road profiles are then classed based on the general amplitude level of their PSD plots. The PSD

provides useful information of road roughness for vehicles, because they travel over long distances

and experience elevation variations with wavelengths ranging from a few centimetres to many

kilometres. Furthermore, the road profile in the longitudinal direction of motion is generally of

significance in vehicle dynamics analyses, with lateral variations not being too common on most road

surfaces, unlike uneven terrains on which legged robots are usually required to operate. In addition,

road profiles can be considered as continuous signals because the wheeled vehicles that travel over

them have predominantly continuous contact with the surface, experiencing the disturbances in a

continuous manner, unlike legged robots which make contact with the terrain at discrete points.

Some surfaces of fairly significant unevenness are used quite commonly around the world for vehicle

suspension testing, such as the “Belgian paving” surface which is constructed with cobblestones of

varying heights and spacings [120]. However, even this surface is not constructed to any particular

 Appendix E: Uneven Terrain Test Setup

252

standard or regulation across different vehicle test facilities, meaning that it would not be able to be

used by others to reproduce the exact same testing conditions either.

These findings make it quite clear that no current method provides a complete solution to the issues

of standardized uneven terrain testing of legged robots. Of course, the development of such methods

is well outside of the scope of this study. Therefore, the best compromise would be to use a terrain

type for which the height variations can be distinctly specified and controlled, providing precise

information to be able to recreate the terrain, or at least compare setups used in later studies to the

one used here. Hence, it was decided to create a block field. Although, to overcome some of the

drawbacks of existing setups like this encountered in the literature, a workable option would be to

randomly generate the block layout, while also specifying the individual heights of each block in the

field. The development of this block field test setup is outlined in the section that follows.

E-2 Development of Test Setup for this Study
Before specifying the heights of the blocks to be used for the uneven terrain setup, it was necessary

to determine an appropriate horizontal size for the blocks. In a study on the biomechanics and

energetics of walking on uneven terrain [121], the human subjects were made to walk over blocks of

varying heights to emulate uneven terrain conditions. Although the blocks were arranged in a

repeating pattern, the researchers ensured that their length was not an integer fraction of the typical

step length, so that the subjects were not able to learn or adopt a periodic compensation for the

unevenness.

While the legged robot in this study is not selecting footholds based on the terrain and cannot learn a

pattern, it is important to ensure that the block length does not correspond with an integer fraction

of the step length so that the robot does not consistently step over, and thus avoid, certain sections

of the terrain. Such a condition could potentially lead to the robot not experiencing the unevenness

of the terrain sufficiently, thus skewing the results or making it appear to perform better than it

actually would in a real-world situation.

Therefore, some measurements of typical stride lengths and distances between footholds were taken

while the PhantomX walked around in different directions and at slightly varying speeds. It was found

that the stride length is typically around 20 cm, with slight variations especially when changing

directions. Thus, a block length of 10 cm would be inappropriate, and so a square block size of

7.5 cm × 7.5 cm was selected. With integer multiples being 15 cm, 22.5 cm, and so on, this length

would ensure that approaching the terrain from slightly different starting positions would result in the

robot’s feet encountering different blocks, and hence height variations, rather than consistently

stepping over the same ones. Furthermore, when comparing the block dimensions to the robot’s feet,

 Appendix E: Uneven Terrain Test Setup

253

this size is large enough for the robot to comfortably place its foot on, while still being small enough

to provide sufficient variation and irregularity across the terrain. A 10 × 10 field of square blocks of

length 7.5 cm, resulting in a field size of 75 cm × 75 cm, was thus deemed suitable for testing posture

control with the PhantomX.

Having selected the block sizes, it was necessary to specify their heights across the terrain section.

Based on the size of the robot, a maximum height of 8 cm was deemed appropriate. It was decided to

divide the height range of 0 – 8 cm into 1 cm steps, resulting in nine different heights, or levels, of

blocks throughout the one hundred blocks making up the field. To create a random instance of such a

field, the random function, in the Statistics and Machine Learning Toolbox of MATLAB, was used to

auto-generate a 10 × 10 matrix of random values, sampled from a normal, or Gaussian, distribution.

This is similar to the method used in [122] to generate a random block field utilized in a study involving

cockroaches running on rough terrain. For a range of 0 – 8 cm, a mean, 𝜇, of 4 cm and standard

deviation, 𝜎, of 1.8 cm were specified for the normal distribution from which to be sampled. The

resulting random values were rounded off to the nearest whole number, to generate discrete heights

in 1 cm steps.

While a few iterations of the above method were computed and compared, it was found that an

instance which created a slightly flatter discrete distribution, compared to the continuous normal

distribution sampled from, resulted in greater variation in the terrain. This prevented too many of the

blocks being at the mean height and reduced the number of “plateaus,” or areas in which adjacent

blocks on the terrain are at the same height. Therefore, this flatter distribution, with larger numbers

of block heights just slightly off the mean, was opted for in this study. Figure E.4 below shows the

resulting discrete distribution of block heights, over which the continuous normal distribution used

for sampling is superimposed in red. A 3D bar plot of the associated block field is illustrated in Figure

E.5, where the colours of the blocks are indicative of their heights.

 Appendix E: Uneven Terrain Test Setup

254

Figure E.4: Discrete distribution of block heights used in uneven terrain test setup (continuous normal distribution with 𝜇 =
4 cm and 𝜎 = 1.8 cm shown in red)

Figure E.5: 3D bar plot of 10 × 10 block field generated for uneven terrain test setup

 Appendix E: Uneven Terrain Test Setup

255

Exact height values of each block in the field displayed above are presented in the form of Table E.1.

Table E.1: Height values of individual blocks making up the uneven terrain test setup (measured in units of centimeters)

 1 2 3 4 5 6 7 8 9 10

1 3 7 4 3 6 4 5 6 8 5

2 3 4 5 5 4 5 5 5 1 6

3 6 7 5 8 4 4 5 2 6 5

4 4 7 4 4 3 3 6 2 5 6

5 7 3 2 2 3 4 6 5 2 0

6 4 2 2 3 6 2 2 3 6 3

7 7 6 5 5 3 3 4 2 2 3

8 0 3 0 6 4 8 4 4 1 4

9 5 4 2 3 2 7 3 2 2 6

10 5 3 1 4 5 6 2 6 5 3

For the construction of this block field, the use of a hard material with sharp edges, such as wood

(which is commonly used in the literature), was undesirable, as the edges could potentially cause

damage to the OptoForce sensors if stepped on. Instead, high density foam was chosen for the blocks

in this study. In particular, Sondor SPX 45, a Polyethylene foam that has a density of 45 kg/m3 and a

Shore 00 hardness of 65 [123] (see datasheet in Appendix E-3), was selected. Under the typical forces

exerted by the robot foot, the foam experiences extremely small deformations, thus having a minimal

effect on the robot’s motion or posture response. However, in the few cases when the foot steps onto

the edge of the foam block, the load is concentrated onto a small area and sufficient deformation

takes place to prevent any damage to the force sensors, which is the exact behaviour desired.

To create the various heights of blocks required, a waterjet cutter was used to cut 7.5 cm squares out

of SPX 45 foam sheets of three thicknesses (10 mm, 30 mm, and 50 mm). These squares were bonded

 Appendix E: Uneven Terrain Test Setup

256

together, using contact adhesive, in the combinations necessary to produce the required numbers of

blocks of various heights.

The resulting blocks, arranged in a grid as specified in Table E.1, were housed in a platform constructed

from two sheets of 6 mm thick plywood, in between which a sheet of 10 mm thick polystyrene was

sandwiched (by bonding it to the plywood using polystyrene adhesive), to increase the elevation of

the platform without adding too much mass. A 75 cm × 75 cm square cavity was cut out of the centres

of the top plywood sheet and the polystyrene sheet, into which the foam blocks were assembled. The

height of the polystyrene and top layer of plywood acted as a frame, to hold the blocks together in

the grid. An image of the 2.4 m × 1.2 m test platform, with the foam block field in the centre, is

presented in Figure E.6. The flat, wooden sections alongside the block field provide an even base for

the robot to start walking on, before encountering the uneven section, and to stop on after it passes

completely over the uneven terrain.

Figure E.6: Uneven terrain test platform with 10 × 10 block field in the centre

 Appendix E: Uneven Terrain Test Setup

257

E-3 Sondor SPX 45 Foam Datasheet [123]

 Appendix E: Uneven Terrain Test Setup

258

	Abstract
	Acknowledgements
	Table of Contents
	Lists of Figures
	List of Tables
	Nomenclature
	List of Acronyms
	List of Symbols

	Chapter 1: Introduction
	1.1 Background
	1.2 Problem Statement
	1.3 Aim
	1.4 Methodology
	1.5 Scope
	1.6 Validation and Verification Methods
	1.7 Contributions of the Study
	1.8 Dissertation Overview

	Chapter 2: Literature Review
	2.1 The Field of Robotics
	2.2 Mobile Robots
	2.2.1 Types of Locomotion
	2.2.2 Wheeled Robots

	2.3 Legged Robots
	2.3.1 Advantages of Legged Robots
	2.3.2 Disadvantages of Legged Robots
	2.3.3 Types of Legged Robots
	2.3.4 Gaits and Stability
	2.3.5 Legged Robot Sensory Systems
	2.3.5.1 Types of Sensors
	2.3.5.2 Proprioceptive versus Exteroceptive Sensors

	2.3.6 Applications of Legged Robots

	2.4 Control Considerations for Uneven Terrain Walking
	2.5 Previous Work on Posture Control for Hexapod and Quadruped Robots
	2.5.1 Virtual Model Control Strategies
	2.5.2 Other Posture Control Strategies
	2.5.3 Work on Commercially Available Platforms
	2.5.4 Review of Strategies Used in the Literature

	2.6 Conclusion

	Chapter 3: Background Theory
	3.1 Hexapod Robots
	3.1.1 Body Structures
	3.1.2 Leg Configurations
	3.1.3 Gaits

	3.2 Transformation Mathematics and Kinematics
	3.2.1 Frame Descriptions
	3.2.1.1 Position Vectors
	3.2.1.2 Rotation Matrices
	3.2.1.3 General Coordinate Frame Transformations
	3.2.1.4 Other Parameterizations of Attitude
	3.2.1.4.1 Euler Angles
	3.2.1.4.2 Quaternions

	3.2.1.5 Final Note on Conventions

	3.2.2 Kinematics
	3.2.2.1 Link Descriptions
	3.2.2.2 Kinematic Description Mappings

	3.3 Virtual Model of a Hexapod Robot
	3.4 Interaction Control Methods in Manipulator Robotics
	3.4.1 Interaction Tasks with Manipulators
	3.4.2 Indirect Force Control
	3.4.3 Direct Force Control
	3.4.4 Final Note on Motion-Based Force Control

	3.5 The Robot Operating System (ROS)
	3.5.1 A Brief History of ROS
	3.5.2 Fundamental Features and Core Components

	Chapter 4: Description of Robot Platform
	4.1 PhantomX MK-II Hexapod Robot
	4.1.1 Original Hardware
	4.1.2 Original Software

	4.2 Sensory System
	4.2.1 Joint Position Sensors
	4.2.2 Inertial Measurement Unit
	4.2.3 Foot Force Sensors
	4.2.3.1 OptoForce 3D Force Sensors
	4.2.3.2 Force Sensor Testing
	4.2.3.3 Integration of Force Sensors onto Robotic Platform

	4.3 Software
	4.3.1 ROS Locomotion Software Stack: hexapod_ros
	4.3.2 Sensor Feedback in ROS
	4.3.2.1 Dynamixel Servo Position Feedback
	4.3.2.2 MicroStrain® Inertial Measurement Unit Feedback
	4.3.2.3 OptoForce Foot Force Sensors Feedback

	4.4 Other Hardware Required for ROS Integration
	4.4.1 USB2AX Servo Communication Interface
	4.4.2 AX/MX Power Hub
	4.4.3 USB Hub

	4.5 Fully Equipped Platform
	4.6 Conclusion

	Chapter 5: Preliminaries for Control
	5.1 Controllability Analysis
	5.1.1 Simplified Dynamic Model of Hexapod
	5.1.2 A Note on Using Algebraic Controllability Theorem
	5.1.3 Algebraic Controllability Analysis at an Arbitrary Time Instant
	5.1.4 A Note on Controllability with Dynamic Motion
	5.1.5 Concluding Remark

	5.2 Posture Calculation
	5.2.1 Body Coordinate Frame
	5.2.2 Height Calculation
	5.2.3 Orientation Calculation
	5.2.4 Concluding Remark

	5.3 Frequency Domain Representations of Linear Systems
	5.4 Conclusion

	Chapter 6: Standing Posture Control
	6.1 Control Structure
	6.1.1 A Note on Posture Calculation
	6.1.2 Virtual Model Control Strategy
	6.1.2.1 Virtual Model Controller Design
	6.1.2.2 Virtual Model Controller Implementation

	6.1.3 Foot Force Distribution
	6.1.3.1 Foot Force Distribution Theory
	6.1.3.2 Foot Force Distribution Implementation

	6.1.4 Single Leg Force Controller
	6.1.4.1 Single Leg Force Controller Design
	6.1.4.2 Single Leg Force Controller Implementation

	6.1.5 Overall Control Structure

	6.2 Experimental Setup and Tests
	6.2.1 Step Tests on Flat, Level Terrain
	6.2.2 Uneven Terrain Tests
	6.2.3 Balance Board Tests
	6.2.4 Vicon Setup and Data Processing

	6.3 Results and Discussion
	6.3.1 Step Tests on Flat, Level Terrain
	6.3.1.1 Height Step Response
	6.3.1.2 Roll and Pitch Step Responses

	6.3.2 Uneven Terrain Tests
	6.3.2.1 Uncompensated vs. Compensated Postures While Standing on Uneven Terrain
	6.3.2.2 Height Step Test on Uneven Terrain

	6.3.3 Balance Board Tests

	6.4 Conclusion

	Chapter 7: Walking Posture Control
	7.1 Shortcomings of Standing Posture Control System for Walking
	7.1.1 Posture Calculation
	7.1.2 Virtual Model Controller
	7.1.3 Foot Force Distribution
	7.1.4 Single Leg Force Controller

	7.2 Modifications Made to Control Structure for Walking
	7.2.1 Height Calculation
	7.2.2 Virtual Model Controller
	7.2.3 Foot Force Distribution
	7.2.3.1 Foot Force Distribution Theory
	7.2.3.1.1 Tripod Gait

	7.2.3.2 Foot Force Distribution Implementation

	7.2.4 Single Leg Force Controller
	7.2.4.1 Single Leg Force Controller Modifications
	7.2.4.1.1 Saturation and Anti-Windup
	7.2.4.1.2 Controller Output Feedback

	7.2.4.2 Single Leg Force Controller Design
	7.2.4.3 Single Leg Force Controller Implementation

	7.2.5 Overall Control Structure

	7.3 Experimental Setup and Testing
	7.3.1 Uneven Terrain Test Setup
	7.3.2 Test Procedure
	7.3.3 Vicon Setup and Data Processing

	7.4 Results and Discussion
	7.4.1 Walking on Flat Terrain
	7.4.2 Walking on Uneven Terrain

	7.5 Conclusion

	Chapter 8: Conclusion
	8.1 Summary of Implemented Methods
	8.2 Main Findings of the Study
	8.3 Recommendations
	8.3.1 Locomotion Engine
	8.3.2 Robotic Platform
	8.3.3 Posture Control System
	8.3.4 Uneven Terrain Testing of Legged Robots

	8.4 Study Aim Fulfilment

	Bibliography
	Appendix A: Foot Force Sensor
	A-1 OptoForce 3-Axis Force Sensor OMD-20-SE-40N Datasheet [83]
	A-2 Force Sensor Sensitivity Reports
	A-3 Force Sensor Testing
	A-3.1 Apparatus and Test Setup
	A-3.2 Testing Procedure
	A-3.3 Post-processing of Measured Data
	A-3.4 Test Results
	A-3.4.1 Eight Step Test
	A-3.4.2 Results Summary

	A-3.5 Discussion of Results
	A-3.6 Conclusion

	A-4 Results of Force Sensor Tests

	Appendix B: New Foot for PhantomX MK-II
	B-1 Design of New Foot for PhantomX MK-II
	B-2 Manufacturing Drawings of Newly Designed Foot

	Appendix C: Updates to PhantomX Parameters for hexapod_ros
	Appendix D: Computation of IMU Orientation from ROS Driver Output
	Appendix E: Uneven Terrain Test Setup
	E-1 Investigation on Existing Uneven Terrain Testing Methods
	E-2 Development of Test Setup for this Study
	E-3 Sondor SPX 45 Foam Datasheet [123]

