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ABSTRACT 

The focus of this research was to determine the multi-temporal land cover changes (LCC) of 

the Hartebeesthoek Radio Astronomy Observatory (HartRAO) environment over 5 decades.  

The HartRAO site is a strategic point in the mapping system of South Africa and acts as 

fundamental reference node in the International Terrestrial Reference Frame (ITRF).  In this 

study, the conducted field assessments determined the land cover type of the study area and 

its environment. The use of aerial photographs, Google Earth images, satellite images and 

climate data were platforms to assess the LCC of the area and surroundings. The ENVI 5.1 

software package was used to determine the LCC of the area from the Landsat TM and 

Landsat OLI satellites using image analysis. In addition, ArcGIS 10.2 was used to determine 

the hydrology of the area from the SRTM DEM file, provide a platform to view aerial 

photographs, and map out LC images determined from ENVI 5.1. Field assessments and 

demarcation of the study area were conducted using Google Earth images. The e-Water 

TREND software proved useful in determining the statistical significance of climate data 

over 5 the decade period. Microsoft Excel software was used to tabulate, generate graphs and 

charts from satellite image and climate data analysis. 

According to the first objective the delineation of land cover types in the area was done using 

aerial photographs and field assessments of the study provided pictorial information to 

interpret land cover changes over the years of the study. Analysis of satellite data for the last 

19 years also showed the changes in the land cover type and this was used to delineate land 

cover types. This was followed by satellite image processing and analysis over the last 19 

years involving: image ratioing, image classification, change detection and accuracy 

assessment.  Trends in rainfall and temperature of the area over period in the study area were 

determined using climatic data. Combining primary and secondary data to provide visual 

interpretation on the changes in land cover type and the seasonal variability were tools 

identified for the study. Hence there is a note that there is an increase in woody vegetation 

within HartRAO and changes in land cover and land use activity which does affect the 

changes in climate and land cover type.  

Image processing: image ratioing of the Landsat TM and Landsat OLI images, the EVI, 

NDVI, NDBI and NDBaI spectral indices were used to give an overview of the land cover 

type and coverage in the area using the ENVI 5.1 software.  A supervised image 

classification technique (pixel-based) was the ideal method for the Landsat images in this 

study this is because of the variability of the land cover type and when analysing will depend 
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on spectral information. The second and third objective focuses on remote sensing 

techniques, where there is an importance in removing biasness when comparing of 

classification algorithms to determine the most suitable algorithm for  image classification. 

Therefore in the study maximum-likelihood (parametric) and support vector machine (non-

parametric) classification algorithms were used to determine the extent of the land cover type 

in the area. Change detection in the study was used to determine the level of changes within 

and between the land cover type in the area of study. The aim of accuracy assessment is to 

determine the performance of the classification algorithms based on the land cover type. This 

proved that both performed well but SVM had a slightly higher accuracy with most land 

cover types and as part of the study, classification algorithms can be used individually while 

assessing specific land cover types.  

By combining the first three objectives together, the results and discussion draw us to the 

fourth objective which brings us to what the changes in the land cover are caused by, and the 

rate of changes. In the results and discussion chapter by interpreting aerial photographs, 

Google Earth images and field assessment images and data illustrate there is an increase of 

vegetation within the immediate HartRAO environment. Surrounding areas of HartRAO 

indicate an increase in the proportion of agricultural land, and an increase of bare-lands due 

to mining activities within the surrounding areas. Outcomes from climatic data analysis 

conducted through the Mann-Kendall test using the e-Water TREND software indicated an 

increasing trend (mean annual temperatures) for the first normal of the years in the study. 

Climate data analysis of the second normal indicates that MATmax has an increasing trend. 

While MATmin and TAR are decreasing with a statistical significance at 95% confidence 

interval of Z = -2.194 and -1.998 respectively. 

Utilizing satellite image analysis, image ratioing shows that there is an increase in vegetation 

ratio results in both NDVI and EVI. The NDVI images have higher values than EVI images 

for the Landsat TM while EVI have higher values in Landsat OLI as recognized in the 

summer images and winter images. The NDBI is higher which does not depict what the area 

is, as the built-up index reflects the milky-quartz rocks as built-up structures. The NDBaI is 

lower in the study. From the image classification results, the ML classification algorithm 

classifies forests and grasslands well. In SVM the scattered vegetation and grasslands are 

classified well.  Both classification algorithms provide poor results for the milky-quartz with 

scattered vegetation and shale-rock with scattered vegetation.  In relation to the accuracy of 

the ML and SVM classification, both had higher accuracies when classifying the Landsat 
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summer images with values above 90% and overall accuracy for winter images was between 

82% - 90%. However, the July 2007 satellite images had the lowest overall accuracies for 

both ML and SVM classification algorithms.  There is a negative annual rate of change for all 

the land cover types throughout the years (1960 - 2017) the study covers. A higher negative 

value from the rate of change is illustrated from the grassland cover type for all summer and 

winter images used in the study. The forestland cover and built-up land cover type has an 

increase in negative change noted from the classification of the winter images. Comparison of 

both classification algorithms using Chi-square test illustrate no statistical significance, which 

concludes that both perform equally well in terms of overall accuracy and land cover.  
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1 INTRODUCTION 

 

This chapter introduces effects of land cover analysis on a spatial, temporal and magnitude 

aspect. It focuses on the issues that affect land cover changes and specific land-use activities 

in an area. The intention is to look at the historical changes and the impact that the 

Hartebeesthoek Radio Astronomy Observatory (HartRAO) now South African Radio 

Astronomy Observatory (SARAO) has had on the area. It also focusses on the importance of 

HartRAO in South Africa and internationally as an observatory and why the land cover 

change analysis is necessary for the area as noted in the problem statement and the aim and 

objectives 

1.1 Introduction 

Multi-temporal  land cover change (LCC) analysis has become a vital aspect of resource 

planning, allocation and development (Yang and Lo, 2002). The function of multi-temporal 

land cover change analysis is to monitor impacts of land cover (LC) changes that occur with 

regards to its  spatial extent and magnitude (Sakai et al., 2015). The spatial extent of land 

cover change is usually determined by how much impact there is from anthropogenic or 

natural activities which gradually have effects on  the landscape. The extent and impact of 

natural and anthropogenic forces on the land cover also  determine the  magnitude of the land 

cover change with concomitant effects on terrestrial ecosystems (Abbas, 2012; Badreldin, 

Frankl and Goossens, 2013). Spatial and magnitude factors influence the original landscape, 

which leads to land cover transformations, that could be beneficial or detrimental depending 

on the land use at a given time on a landscape extent (Hlatywayo and Masvosve, 2015). Some 

land cover transformations can lead to regeneration and degradation of forest landscapes 

(Southworth, 2004), species movement (Gillespie et al., 2008; Jones et al., 2009), 

biodiversity and ecological changes (Pettorelli et al., 2005), and socio-economic impacts 

(Xiuwan, 2002; Butt et al., 2015) just to name a few,  which usually have effects on habitats. 

As suggested, land cover transformations  usually result in a local and even global 

environmental change (Latham, 2008). Researchers, land planners and policy makers have 

noted that with land cover changes, which leads to environmental change, there is a need to 

monitor, detect and manage resources through land cover change analysis (Xu, 2007). Thus it 

is important to carry out land cover analysis on the Earth’s surface, for the purpose of 

observing modifications of the landscape; to evaluate, monitor and plan the resources in the 

environment (Kennedy et al., 2009).  
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Numerous multi-agencies have established projects with long-term operational systems for 

land cover monitoring (Turner II, Lambin and Reenberg, 2007). In addition to acquiring 

information from these long term operational systems, the data becomes beneficial when 

predicting natural disasters (Yang, Weisberg and Bristow, 2012) and during ecological 

studies focussing on the improvement of vegetation growth and re-growth (Nagendra, 

Munroe and Southworth, 2004). Land cover change monitoring and data capturing also 

provide more accurate datasets that assist in describing the geographical distribution of the 

LC at different scales (Tilahun, 2015) while at the same time reducing costs for monitoring 

land cover locally, regionally and globally (Dwivedi, Sreenivas and Ramana, 2005; Gong et 

al., 2013). 

Techniques and instrumentation of LCC analysis are continuously improving. Two 

techniques and their continuous development that allowed for major progress in this field 

have been the evolution and use of aerial photographs and satellite imagery using remote 

sensing techniques.  Capturing land cover images through aerial photography using aircraft 

and unmanned aerial vehicles (UAV’s), and application of photogrammetry have illustrated 

the use of ancillary data for data collection and evidence based analysis (Chen et al., 2012). 

In turn, the development of satellite imagery as a logical consequence of aerial photography 

has helped to form a strong basis for various LCC analyses (Aguirre-Gutiérrez, 

Seijmonsbergen and Duivenvoorden, 2012). 

Using remote sensing techniques and technology, there has been improvement in updating 

land cover change information analysis, due to availability and the authenticity of more 

accurate and higher resolution data (Li, Jiang and Feng, 2013; Li and Chen, 2014). Multi-

temporal and multi-spectral datasets are used in LCC studies, where satellite imagery varies 

in terms of the spatial spectral and temporal attributes. Utilisation of different satellite 

imagery types (hyper-spectral, multi-spectral), have allowed researchers and analysts to 

derive different classification and change detection algorithms of which each has their own 

merits and demerits, and there is no single optimal approach that is applicable to all the cases 

in LCC studies (Wedderburn-bisshop et al., 2001; Lu et al., 2004a; Vicente-Serrano, Pérez-

Cabello and Lasanta, 2008). To obtain information with regards to an area, one should 

consider the land cover of the area, type of analysis envisaged, the availability of satellite 

data and other resources (Lu et al., 2004a). After this process, remote sensing techniques can 

be applied and a final product generated to predict the state of the environment (Almeida-

Filho and Shimabukuro, 2002; Tewkesbury et al., 2015). 



16 
 

Through routine updates of satellite information and improvement of satellite image data, 

researchers have been able to develop LCC techniques from pre-to post-classification. Pre-

processing techniques include ancillary data collection, field assessment, geometric 

correction (Vogelmann et al., 2001; Vicente-Serrano, Pérez-Cabello and Lasanta, 2008; Roy 

et al., 2014), radiometric correction (Song et al., 2001; Schroeder et al., 2006; Roy et al., 

2014) and calibration (Vogelmann et al., 2001; Chander, Markham and Helder, 2009; Roy et 

al., 2014). Classification techniques include unsupervised (computer based  and automated) 

(Duda and Canty, 2002) and supervised classification (computer based but human 

interpretation/intervention included) techniques and post classification techniques include 

change detection (Berberoglu and Akin, 2009; Huang et al., 2015)  and accuracy assessments 

(Foody, 2002, 2008, 2010a, 2010b; Foody and Mathur, 2004; Foody, Mathur, et al., 2006). 

1.2 Problem Statement 

Changes in LC can be attributed to Land Use (LU) changes and climate conditions (Mas, 

1999a; Lu et al., 2004a; Chen et al., 2006). Land use activities include agricultural activities 

(Kalnay and Cai, 2003; Vancutsem et al., 2010; Atzberger, 2013; Latham et al., 2014; Akar 

and Güngör, 2015), mining, industrial and residential built-up areas (Townsend et al., 2009; 

Adam, Mutanga and Rugege, 2010), which have both an effect on the livelihood of humans 

and the ecological footprint of an area (Herold, Scepan and Clarke, 2002; Hlatywayo and 

Masvosve, 2015; Khaing, Htun and Lwin, 2016). Studies have shown that a change in land 

use can be beneficial and detrimental (Giordano and Filippi, 1993; Wu, 2008). This of course 

depends on one’s point of view, e.g. an economist and a conservationist will interpret the 

question whether an increase in food production versus the reduction of natural habitat is 

beneficial, differently. For example, an increase in agricultural land leads to more production 

of food and resources to the community (Pinstrup-Andersen, 2009; Godfray et al., 2012), 

while mining and other industrial activities have increased the economical capacity of an area 

(Si et al., 2010). Increase in residential and recreational places have provided homes for 

people in urban and rural areas (Quigley, 1998). However the detrimental aspect is that the 

use of the specific land use activities and the ability to restore it to the original land cover has 

proved to be a challenge amongst the land users and land cover resource users (Foley, 2005).  

The Gauteng Province contains highly urbanised areas especially within Pretoria and 

Johannesburg. The vegetation type is mainly Highveld, covered with grassland, acacia trees, 

and low shrubs. The north-western parts of the province include the Witswatersberg. Towards 
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the north-west side of the Gauteng Province, the land changes to vast agricultural land. The 

location of the Hartebeesthoek Radio Astronomy Observatory (HartRAO), a National 

Research Facility operated under the auspices of South Africa’s National Research 

Foundation and currently the only major radio astronomy facility in Africa, is 50 km west of 

Johannesburg and north of Krugersdorp, in the foothills of the Witwatersberg. HartRAO is 

merging with SKA-SA, the South African component of the Square Kilometre Array (SKA) 

and will be merged to create the South African Radio Astronomy Observatory (SARAO) 

during 2017. 

1.3 Significance of the Research 

HartRAO was built in 1961 by the National Aeronautics and Space Administration (NASA) 

and was then known as Deep Space Instrumentation Facility 51 (DSIF51). It used to be 

operated by the South African Council for Scientific and Industrial Research (CSIR) on 

behalf of NASA, and in 1974, after its closure it became a radio astronomy observatory. 

Before the construction of HartRAO, the land on which the radio astronomy observatory is 

situated used to be agricultural land. Instead of mainly agricultural use, the use has changed 

to hosting radio telescopes for astronomy and space geodesy, as well as other equipment. 

Over the years, the surrounding area (outside the main observatory fenced-in area) has 

recovered to natural vegetation; however it is composed of woody vegetation mostly 

comprising the acacia species and natural Highveld grass. There is a reduction of naturally 

occurring veld fires in this area (burning is now controlled by yearly firebreaks), which may 

have resulted in more woody vegetation cover and less presence of grassland. Vegetation 

cover has shifted in some areas from mostly grass to bare-soil and bare-rock in close 

proximity to woody areas. This paves the way to soil erosion and presence of exposed 

sedimentary rocks and gully formations along the streams.  

Researchers have more often analysed land cover changes on areas where the terrain is fairly 

level. Hilly landscapes prove to be a challenge in mapping out land cover. There is a need to 

determine the necessary methods and importance of mapping land cover across all types of 

terrain.  The use of optical sensors has made it easier to study land cover changes due to the 

spectral resolution of the sensors. Mapping multi-temporal changes also assists planners to 

know the difference between historical and current land cover.  Apart from human induced 

land cover changes, it is necessary to also know the impact of climatic variables on specific 

land cover and their effects. Climatic variables such as rainfall and temperature influence the 

biophysical components of varying land cover types. Determining the land cover changes at 
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HartRAO in relation to climatic variability, will allow us to ascertain the climatic trends that 

have influenced the land cover type over five decades. Comparisons of parametric and non-

parametric classification algorithms are used to illustrate which classification method best 

suits the HartRAO specific land cover change study. The study focusses on assessing land 

cover changes with relation to climate variability as well as human activities and determines 

the best-suited classification algorithms to delineate and detect land cover changes. This is 

attained through the aims and objectives listed in Section 1.4. 

1.4 Aims and Objectives 

1.4.1 Aims 

The aim of this research is to determine multi-temporal land cover changes over the period of 

5 decades at the HartRAO site. We assessed the land cover changes in relation to climate 

variability and human induced changes This was done through the comparison of 

classification algorithms on satellite imagery to determine land cover and using change 

detection analysis and statistical analytical methods to determine the best classification 

algorithms. Climate data analysed in the study was to show the effect of climate on the area 

as land cover changes. The seasonal variabilities also affect the land cover type in the 

area.The HartRAO site is a strategic point for mapping in South Africa. The position of 

HartRAO acts as fundamental node in the International Terrestrial Reference Frame (ITRF). 

The location of the observatory is within the Maropeng area, which has been named the 

“Cradle of Human Kind”. This area is rich in flora and fauna and considered part of the 

conservation initiative within the Gauteng region. Mapping the HartRAO provides 

information about vegetation regeneration within the area. 

1.4.2 Objectives 

1. Delineate land cover types and their variability, spanning a period of 5 decades, using 

satellite image analysis and climatic variability. 

2. Compare the performance of parametric and non-parametric pixel-based classification 

algorithms on Landsat TM and Landsat 8 imagery in change detection. 

3. Determine which classification techniques used in the study works best for hilly 

landscapes, as this is the prevalent landscape type of the area of investigation. 

4. Establish the relationship between the rate of land cover change in relation to climate 

and land use at the HartRAO site. 
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2  LITERATURE REVIEW 

 

This chapter describes what land cover is and defines it contextually according to land cover 

changes within a remote sensing field. It also establishes the differences between land use 

and land cover which are terminologies used interchangeably in multi-disciplinary fields. 

These terms are still discussed on every interdisciplinary level as they are interpreted 

differently. Thus there is a need to define it according to the research and objectives relating 

to the remote sensing of the environment. Land cover change analysis subsection provides 

various studies done to conduct land cover changes and some of the techniques used as a 

detailed format on how the methodology of the study will be conducted. In the same chapter 

a detailed outlook of the various remote sensing techniques, the use of other data such as 

climate, aerial photographs and digital elevation models can be used to do land cover change 

analysis. 

 

2.1 Land Cover 

Land cover is the availability and variability of biophysical and chemical components, on and 

below the earth’s surface (Di Gregorio, 2016). Availability of land cover on the earth surface 

is considered by its spatial extent (Mumby and Edwards, 2002; Li and Yeh, 2004; Myint et 

al., 2011), magnitude coverage (Li and Yeh, 2004; Lasanta and Vicente-Serrano, 2012; 

Badreldin, Frankl and Goossens, 2013) and multi-temporal conditions (Lyle, Lewis and 

Ostendorf, 2013; Hlatywayo and Masvosve, 2015; X. Li et al., 2015; Sakai et al., 2015). One 

also has to consider that land cover terminology has been used interchangeably with land use, 

where land use is the transformation of the land cover for a specific activity at a given 

moment in time (Turner II, Lambin and Reenberg, 2007; Schneider and Woodcock, 2008; 

Hlatywayo and Masvosve, 2015). Land cover generally constitutes natural variables such as 

vegetation, water, soils; and land use terminology can be described through the activities 

conducted on the landscape which include (Latham, 2008; Latham et al., 2014) agriculture, 

mining and urban areas (infrastructure, buildings, transport) (Papers, 2007; Latham, 2008; 

Latham et al., 2014; Di Gregorio, 2016). These two terminologies contribute to the spatial, 

temporal and magnitude aspect of land cover conversions and transformations (Mcgarigal, 

2001; Herold, Scepan and Clarke, 2002; Southworth, Nagendra and Tucker, 2002; Nagendra, 

Munroe and Southworth, 2004; Kennedy et al., 2009; Uuemaa et al., 2009). Anthropogenic 

and natural activities have an influence on the attributes of land cover changes (Peters et al., 
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2002; Kalnay and Cai, 2003; Metternicht, Hurni and Gogu, 2005; Muttitanon and Tripathi, 

2005; Foulds and Macklin, 2006; Jobin et al., 2008; Joyce et al., 2009; Santillan, Makinano 

and Paringit, 2011; Roy et al., 2014). In addition to anthropogenic activities possibly 

affecting land cover in an adverse manner, land use resulting from human activities could 

have a positive impact through socio-economic activities generated from land cover. Socio-

economic activities include; food security (Cleasby et al., 2014), water conservation 

(Blignaut and Van Heerden, 2009; Department of Water and Sanitation, 2009) and energy 

generation (Canadell et al., 2007) just to name a few. There is also an indirect contribution of 

land use to socio-economical welfare. An example is the establishment of scientific research 

institutions such as optical and radio astronomy observatories, for research and knowledge 

generation (Martin and John, 1983; McCray, 2000), which indirectly contribute to economic 

wellbeing through various products and services. 

 

2.2 Land Use and Land Cover 

Nonetheless, if land use and land cover facets are not monitored and evaluated, they could 

lead to irreversible land cover changes, such as depletion in ecosystem services (Raudsepp-

Hearne et al., 2010; Barbero et al., 2016), changes in climate variables (Below et al., 2012; 

Hollmann et al., 2013), transformation of land cover (degradation of forest to forest patches) 

(Buyantuyev and Wu, 2010; Swetnam et al., 2011; Lawrence et al., 2012; Romero-Ruiz et 

al., 2012; Sterling, Ducharne and Polcher, 2013; Barbero et al., 2016) and also to a loss in 

country revenue (Potapov et al., 2012). Apart from anthropogenic activities, land cover can  

also be affected by natural activities such as frequency of veld fires, seismic activities, heavy 

torrential rainfall and floods (Metternicht, Hurni and Gogu, 2005; Joyce et al., 2009; Gitas et 

al., 2012). Veld fires have a positive impact on plant growth as noted within the fynbos and 

grass species for it allows for new seedlings to grow if it is in a controlled environment. 

Uncontrollable veld fires result in species loss (Nyamadzawo et al., 2013). Seismic activities, 

which could include earthquakes, tsunamis, and volcanic activity also contribute to land 

transformation (Metternicht, Hurni and Gogu, 2005; Gillespie et al., 2007; Botai, Combrinck 

and Sivakumar, 2009; Taylor, Pohl and Genderen, 2010, 2010; Yu and Gong, 2012). These 

areas could develop a distinctive pattern, which is usually used as a point of reference in 

studies for researchers and may be a tourist attraction site. Negative impacts of seismic 

activities could lead to a loss in flora and fauna species and richness (Metternicht, Hurni and 

Gogu, 2005; Botai, Combrinck and Sivakumar, 2009). With proper drainage facilities, water 
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from torrential rainfall could be a resolve to drought situations (Meek and Hatfield, 1994; 

Neuenschwander, 2007; Bonan, 2008; Townsend et al., 2009; Bindschadler et al., 2010). 

This water can be stored in dams. A lack of drainage infrastructure could lead to gully and 

soil erosion, crop damage, and destruction of infrastructure (Bian et al., 2010). Therefore 

there is a need to carry out land cover change studies for monitoring, evaluating and decision 

making (Hansen and Loveland, 2012). 

When one considers monitoring land cover changes it is important to note the spatial, 

temporal and magnitude bearing and impacts ( Nagendra et al., 2004; Kuemmerle et al., 

2006). Researchers such as (Bucini and Lambin, 2002; Uuemaa et al., 2009; Dingle 

Robertson and King, 2011; Dupuy et al., 2012)) have investigated landscape fragmentation 

with regards to the spatial extent of the land cover (Sawaya et al., 2003; Schneider et al., 

2008; Butt et al., 2015). Multi-temporal land cover changes such as forest regeneration 

(Wilson and Sader, 2002; Cingolani et al., 2004; Southworth, 2004; Ruelland, Levavasseur 

and Tribotté, 2010);  urban developments (Mahavir, 2000; Ward, Phinn and Murray, 2000; 

Xu, 2007; Nairobi, 2012; Butt et al., 2015; Hlatywayo and Masvosve, 2015); conversion of 

land cover to mining environments (Haibin and Zhenling, 2010; Si et al., 2010; Schueler, 

Kuemmerle and Schröder, 2011); or inter-land use/land cover conversions (Herold, Scepan 

and Clarke, 2002; Dewan and Yamaguchi, 2009b; Lasanta and Vicente-Serrano, 2012; 

Yousefi et al., 2015) have been used to determine land cover changes over years and what 

could be the reasons behind these changes. Magnitude impacts are  described as the extent of 

the effect land use has on the ecosystem resources, human activities and resource generation 

(Duro et al., 2007; Zhou, Li and Kurban, 2008). Environmental and climate change are 

leading drivers which contribute to the magnitude impacts on land cover (Beck et al., 2006; 

Modarres and de Paulo Rodrigues da Silva, 2007; Serra, Pons and Saur, 2008; Vinukollu et 

al., 2011; Nsubuga, Olwoch and Rautenbach, 2014). Altogether, these three aspects go hand 

in hand when monitoring and delineating land cover for change detection. 

2.3 Land Cover Change Analysis 

Along these lines, monitoring land cover through Land Cover Change (LCC) analysis and 

reviews have been documented by many researchers worldwide (Singh, 1989; Coppin et al., 

2004; Kennedy et al., 2009). The analysis of LCC is done through multi-disciplinary 

approaches, where there are consolidation of research techniques and studies (Muñoz-Villers 

and López-Blanco, 2008). Land cover change analysis has resulted in an accumulation of 

information and exploration of land cover information, which provides a driving force into an 
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integrated approach (Singh, 1989; Kennedy et al., 2009; Mercier et al., 2012). Likewise, it is 

important to note that applicability of LCC techniques vary across the globe due to the 

varying topography, intention of the research and significance to the person carrying out the 

study (Ruelland, Levavasseur and Tribotté, 2010; Ruelland et al., 2011; Nutini et al., 2013). 

Therefore the basics of land cover change analysis encompass field-based assessments 

(Pradhan, 2001; Ho, Umitsu and Yamaguchi, 2010; Otunga, Odindi and Mutanga, 2014), the 

use of archived data (Ho, Umitsu and Yamaguchi, 2010; Otunga, Odindi and Mutanga, 2014) 

and LCC detection techniques. Field-based assessments include: ground-truthing (Yan et al., 

2006), validation (Zhu and Blumberg, 2002) and data collection (Wedderburn-bisshop et al., 

2001; Sawaya et al., 2003; Lu and Weng, 2007) for  investigation. Archived data includes 

aerial photographs (Mas, 1999b; Blaschke et al., 2000; Herold, Scepan and Clarke, 2002; 

Calvo, Ciraolo and Loggia, 2003; Xiao and Weng, 2007; Manandhar, Odeh and Ancev, 2009; 

Hlatywayo and Masvosve, 2015), climate data (Easterling, 2000; Feng, Hu and Qian, 2004; 

Gong et al., 2013; Hollmann et al., 2013) and multi-temporal satellite imagery (Coppin et al., 

2004; Ning et al., 2006; Lu et al., 2007; Wulder et al., 2008; Wasige et al., 2012; Rokni et 

al., 2015). Land cover change detection techniques such as earth observation, Geographical 

Information Systems (GIS) and space geodesy play a major role in LCC analysis (Blaschke et 

al., 2000; Xiuwan, 2002; Benz et al., 2004; Hoffmann and Sander, 2006). Earth observation 

includes remote sensing techniques such as image preprocessing, classification and post 

classification (Janzen, Fredeen and Wheate, 2006; Kennedy et al., 2009; Mulder et al., 2011; 

Mercier et al., 2012; Sharma, Pandey and Nathawat, 2012). The use of GIS techniques 

include spatial and multi-temporal LC maps (Domenikiotis et al., 2002; Shalaby and Tateishi, 

2007; Rozenstein and Karnieli, 2011; El-aziz, 2013).  

Examples of field-based assessment using ground-truth estimations are noted in crop growth 

estimations, analysis of high altitude regions and applications for natural resource planning 

for managers (Pradhan, 2001; Quincey et al., 2005; Kennedy et al., 2009). Validation of field 

based data are illustrated in Parker et al., (2003); Kennedy et al., (2009); Foody, (2010); 

Dingle Robertson et al., (2011) with regards to training data sets for classification. The 

collection of ground control points for accuracy assessment (Chen et al., 2002; Gorokhovich 

and Voustianiouk, 2006; Yan et al., 2006; Shalaby and Tateishi, 2007; Dewan and 

Yamaguchi, 2009; Foody, 2010; Ghorbani, Mossivand and Ouri, 2012; Sun et al., 2013; 

Bahari, Ahmad and Aboobaider, 2014; Zhu and Woodcock, 2014; Yousefi et al., 2015) and 

georeferencing is important and this process is also used as a validation method (Foody, 
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2002; Fonji and Taff, 2014). The process of delineating LC classes uses land cover 

classification schemes generated from field analytical methods (Baldyga et al., 2007; Abd El-

Kawy et al., 2011). 

Aerial photographs have also played a major role in LCC mapping (Kamusoko and Aniya, 

2009; Gerard et al., 2010), monitoring, and this is usually conducted on a multi-temporal 

basis, as documented in Baraldi and Parmiggiani (1990); Ridd and Liu, (1998); Hodgson et 

al., (2003); Guindon et al., (2004); Rocchini and Di Rita, (2005); Ruelland et al., (2011); 

Hlatywayo et al., (2015). 

The current combination and use of climate data for LCC analysis has been a driving factor in 

improving remote sensing analysis and approaches (Feddema, 2005; McAlpine et al., 2009; 

Lawrence et al., 2012). Climate data have been used in observational analysis and in depth 

analysis within the climate modelling aspect (Peterson et al., 1998; Lentile et al., 2009; 

Hollmann et al., 2013; Mares et al., 2015; Mellor et al., 2015). Analysis of climate data for 

monitoring land cover changes are noted in Ikeda et al., (1999); Mellor et al., (2015) for 

grassland estimation and machine learning techniques for forest land cover respectively. As 

said initially, the use of climate data in remote sensing has been integrated into the core of 

scientific LCC (Minale and Kameswara Rao, 2012) with basic examples on rainfall and 

temperature variables. Rainfall and temperature affect the land cover in an area which will 

show if there is vegetation growth (Nemani et al., 2003; Pettorelli et al., 2005; Helldén and 

Tottrup, 2008; Nie and Xu, 2013), increase of a dry landscape area, and changes in climate 

variables which can lead to erosion. The presence of built-up features can affect the micro 

climate of the area (Herrmann, Anyamba and Tucker, 2005; Helldén and Tottrup, 2008). The 

use of raw climate data to calculate statistical values assists in determining climatic trends 

and variability of an area, and in this way shows that climate is a contributing factor to land 

cover changes.  

2.4 Remote sensing techniques for land cover change analysis 

Satellite image analysis derives from remote sensing techniques, which is defined as the 

acquisition of images of the earth’s surface through satellite image observation methods 

(İlsever and Ünsalan, 2012). Remote sensing can be used in a range of disciplines where the 

satellite images and sensors are optimally used to analyze the changes on the earth’s surface 

including land use and land cover  changes (Ji et al., 2015). Remote sensing techniques range 

from atmospheric studies to deep sea ocean analysis. This process is used in monitoring 
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(Munyati, 2000, 2004; Collado, Chuvieco and Camarasa, 2002; Metternicht, Hurni and Gogu, 

2005), modelling (Blaschke et al., 2000; Blaschke, 2010), future analysis (Weng, 2002) and 

planning (Bocco, Mendoza and Velázquez, 2001; Li and Yeh, 2004; Martinuzzi, Gould and 

Ramos González, 2007). There are advantages and disadvantages of using remote sensing 

techniques. Advantages include collection of in-situ data where there is no direct contact with 

target area of study (Fingas and Brown, 2014; Jonard et al., 2015; Vander Jagt et al., 2015). 

Another advantage is that collection techniques can be active, such as (Light Imaging, 

Detection and Ranging (LIDAR) and Radio Detection and Ranging (RADAR)) and passive 

(photographic image capture) (Gillespie et al., 2007, 2008; Mulder et al., 2011; Jonard et al., 

2015). Therefore systematic data collection of a certain phenomenon is programmed to be 

acquired by the sensor for a selected period of time (Kim, Evans and Iversen, 2008; Berni et 

al., 2009). Collection of satellite data provides attribute data, such as height (Hyde et al., 

2006), temperature (Small, 2006), moisture (Goward, Xue and Czajkowski, 2002) and 

biomass (Huete et al., 2002; Flanders, Hall-Beyer and Pereverzoff, 2003; Potapov et al., 

2012; Mellor et al., 2015). Satellite image analysis is used to conduct scientific investigations 

such as environmental changes on large areas (Gupta et al., 2006; Kennedy et al., 2009). This 

can be analyzed through variance in temporal data (Stefanov, 2001; Kerr and Ostrovsky, 

2003; Ning et al., 2006; Röder et al., 2008) and seasonal changes (Inoue et al., 2002; Roerink 

et al., 2003; Herrmann, Anyamba and Tucker, 2005; Helldén and Tottrup, 2008).  

Disadvantages of satellite image analysis and systems include their inherent high costs and 

accompanying infrastructure which could be too costly (Baltsavias, 2002; Hoffmann and 

Sander, 2006; Sutton, Elvidge and Ghosh, 2007). Some provided satellite data may not give 

full details of a particular area with regards to temporal, spatial and spectral resolution which 

could be economically beneficial. Powerful satellite sensors such as Synthetic Aperture Radar 

(SAR), RADAR, LIDAR and Sound Navigation and Ranging (SONAR), which emit their 

own active electromagnetic radiation, can lead to information biases, through additional 

spectral data on the target phenomenon (Hyde et al., 2006; Aly, Bonn and Magagi, 2007; 

Marghany and Hashim, 2011; Jia et al., 2012). Considering such sensors, sophisticated 

equipment and design is usually employed for a specific sensor (Sutton, Elvidge and Ghosh, 

2007). There are instances where a sensor system fails to launch, such as Landsat 6, which 

failed to reach orbit. Another example is Landsat 7 ETM+ that experienced a fault in its scan 

line corrector; this has led to missing information within a period of time (Markham et al., 

2004; Chander, Markham and Helder, 2009). The level of skill development due to 
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availability of data to produce better results can be hindered due to data cost especially in 

developing countries (Shevyrnogov, Trefois and Vysotskaya, 2000; Wulder et al., 2008; 

Chander, Markham and Helder, 2009; Abd El-Kawy et al., 2011; Hansen and Loveland, 

2012; Roy et al., 2014; Sakai et al., 2015). 

Nonetheless, for LCC analysis to be carried out using satellite data a researcher needs to 

identify the problem with an area of interest (Weyerhaeuser, Wilkes and Kahrl, 2005; 

Nagendra, Pareeth and Ghate, 2006). Steps in land cover change analysis includes 

identification of problem and site for analysis, determining the concept that will be used to 

carry out the analysis, identifying the satellite data, archived data and field based 

measurements to determine change, a methodological flow of data analysis used and why and 

finally  an output for the result with recommendations ( Lu et al., 2007; Taylor et al., 2010; 

İlsever et al., 2012; Telcan, 2013).   

After the necessary concept note has been developed and relevant field observation 

techniques illustrated, data is collected for image processing and change detection techniques 

to be used to highlight LCC (Almeida-Filho et al., 2002; Lu et al., 2007; Hlavac, 2011; 

Robert A. Schowengerdt, 2012). Conceptually, image processing includes pre-processing as 

noted in Chen et al., (2006), image classification and post-classification in Muttitanon et al., 

(2005). Pre-processing methods include editing satellite data by removing any atmospheric or 

sensor data noise (Munyati, 2000; Weng, Lu and Schubring, 2004; Santillan, Makinano and 

Paringit, 2011; Butt et al., 2015) through a method called radiometric correction (Muller-

karger and Andre, 2001; Weng, 2002; Chander et al., 2006; Xian et al., 2009) and calibration  

(Rozenstein et al., 2011),  and geometric correction (Riaño et al., 2003; Vicente-Serrano et 

al., 2008; Dewan and Yamaguchi, 2009). Image classification methods include classification 

algorithms to delineate LC types (Singh, 1989; Eastman, 2001; Otukei and Blaschke, 2010; 

Faid and Abdulaziz, 2012). This could be through unsupervised (Helmer and Ruefenacht, 

2005; Cleve et al., 2008; Butt et al., 2015), supervised (Muttitanon and Tripathi, 2005; Yuan 

et al., 2005; Zhou, Li and Kurban, 2008; Otukei and Blaschke, 2010) or a hybrid 

classification (Lu et al., 2007; Xiao et al., 2007; Faid et al., 2012; Butt et al., 2015) The 

methods that use parametric and non-parametric classification algorithms  have been 

mentioned in (Serpico et al., 1996; Hubert-Moy et al., 2001; Bruzzone et al., 2002; Keuchel 

et al., 2003; Mondal et al., 2012). Post-classification techniques involve the change detection 

and accuracy assessment through ground-truthing and validation using field based 

assessments according to Weng, (2002); Canty and Nielsen, (2006); Lu et al., (2007); 
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Neuenschwander, (2007); Muñoz-Villers et al., (2008); Wu et al., (2012); Butt et al., (2015). 

Therefore it is important to carry out image pre-processing for satellite image analysis before 

image data processing in order to achieve accurate results.  

2.4.1 Image processing 

The most basic image processing method that provides an overview of LC types is the image 

ratioing technique. Image ratioing is a qualitative relation of two or more spectral bands to 

provide a floating value that ranges from -1 to 1 (Weiss et al., 2004). An example of image 

ratioing is the analysis of vegetation using the vegetation indices; this includes the use of  two 

bands, the red and near infrared (NIR) bands to show changes in land cover through rational 

numbers (Lunetta et al., 2006). Sequentially, this allows one to view the various vegetative 

properties of and provides a way to compare the phenology of the vegetation on the land 

surface (Huete et al., 2002). There are two of the vegetation indices selected for this study; 

the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) 

as illustrated in Jung and Chang (2015). According to Gao et al. (2000) the EVI quickly picks 

up quantities of the vegetative canopy structure such as the canopy type, the leaf area index, 

plant physiognomy and canopy architecture. The EVI index has been used mostly in MODIS 

data (Beck et al., 2006) for satellite imagery for global LCC studies (Jiang et al., 2008). 

Whereas NDVI is more suitable for detecting the level of greenness by being sensitive to 

chlorophyll in the type of vegetation according to Gao et al. (2000). Just like any 

mathematical formula in remote sensing, the performance will vary based on the satellite 

imagery, its spectral and radiometric resolution and the methods that have been used to 

compensate for the spatial component of imagery (Jiang et al., 2006; Sesnie et al., 2011). For 

global LC studies and vegetative studies, EVI and NDVI have proved to be effective tools 

that complement each other especially in analyzing vegetative changes on a landscape and 

extracting canopy biophysical parameters (Jackson et al., 2004). The use of vegetation 

indices has played a major role in monitoring vegetation variations (Pettorelli et al., 2005).  

According to the analysis in  Pettorelli et al. (2005), the use of NDVI is documented for 

ecological studies to determine environmental changes. This method was detailed to monitor 

vegetation and plant responses to environmental changes. It is noted that NDVI values 

increase with healthy vegetation. The NDVI data provides an indication of the spatial 

distribution of an area, carbon dioxide fluxes and bio-zone. A second method was to 

determine trophic interaction; this was used to correlate NDVI data to animal species 

distribution. The third technique was to look at the NDVI method to generate a time series for 
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ecological measures. The end result was to determine if NDVI could successfully be applied 

in multi-temporal and spatial analysis as widely used for the tropic interactions within aspects 

of vegetation dynamics, habitat fragmentation and biodiversity distribution.  

Weiss et al. (2004) evaluated NDVI in a diverse semi-arid setting, where it was reported that 

NDVI is influenced highly by the presence of sparse vegetation, where uncertainties of NDVI 

values can lead to misinterpretation. Results in this document also state the influence of 

climate variability in inter-annual and seasonal vegetation variability. Ground measurements 

and NDVI analysis were used to determine the spectral changes in New Mexico which 

indicated the response to NDVI analysis was higher during spring time and summer, 

corresponding to the new monsoon climate and El Nino-Southern Oscillations. Ground 

measurements correspond to the ground measurements. 

Work done by Villamuelas et al. (2016) evaluated how the EVI can be used as a product to 

assess the nutritional capacity of the Pyrenean chamois and general remote sensing for 

monitoring and herbivorous populations. Therefore, EVI in the analysis was used for 

vegetation activity, where a linear relationship was found between the red-infrared ratio and 

fraction of photosynthetically active radiation intercepted by green vegetation. This was to 

estimate the available energy amount in vegetation for the herbivorous population. By using 

EVI it was noted that there is a strong relation between seasonal habitation and dietary 

components.   

Matsushita et al. (2007) analyzed the sensitivity of NDVI and EVI on the high density of the 

Japanese cypress forest. This study was conducted in the Kochi Prefecture, western Japan, an 

area which is recognized as mountainous. An Airborne Imaging Spectrometer for 

Applications (AISA) and LiDAR were used for data capturing and coefficient variation used 

to determine the differences in topographic effect on EVI and NDVI. The EVI showed that it 

performs better in many applications, but is more sensitive to topographic conditions than 

NDVI as NDVI can eliminate or weaken topographic effects due to the band ratio.  

For land cover changes analysis, it is important to highlight that whenever a landscape 

changes it could be due to natural or anthropogenic forces. Land use activities such as 

agriculture and mining, can lead to infrastructure and developments. These land use activities 

could result in development of urban spaces, such as residential area, farms, houses, 

recreational facilities and highly sophisticated infrastructure such as development of 

observatories for research purposes. The Normalized Difference Built-up Index (NDBI) was 
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developed to determine the spectral reflectivity of built-up areas (Zha et al., 2003; Wu, 2004). 

Built areas include residential and industrial areas, roads and mines (Waqar et al., 2012). 

These areas have highly reflective properties in infrared region compared to vegetation and 

bare soil. Researchers combined bare area and built-up areas due to their similarity in 

reflective properties. This has changed as it will be discussed according to the bare soil index. 

He et al. (2010) investigated NDBI and its limitations in mapping urban built-up areas. This 

approach was to improve NDBI mapping by using the semi-automated segmentation method. 

It involved the use of Landsat ETM+ images of the National Olympic Park in northern 

Beijing for analyzing land over changes and IKONOS imagery for accuracy assessment.  

Continuous NDVI imagery and NDBI was obtained of the Landsat ETM+ imagery and then 

made into a binary image. The binary imagery of the NDVI was subtracted from the binary 

image of NDBI to extract the built-up area binary image. The result of the built-up binary 

image showed positive results of the barren and built-up area. This method eliminates the fact 

that a positive NDBI should certainly mean that the area is built-up, whereas a positive NDVI 

should also indicate vegetation thus using this method allows reduction of errors. 

According to work done by Bhatti and Tripathi (2014), a new method for NDBI was 

proposed when using Landsat-8 OLI for the urban areas of Lahore in Pakistan. A built-up 

extraction method was determined through integration of temperature, NDVI and MNDWI. 

This method and NDBI were analyzed comparatively to improve the accuracy of built-up 

index analysis. 

Apart from focusing on the built-up areas and its index, one has to recognize that at 

construction sites there is typically clearance of land cover. The bare-land index is used to 

calculate the amount of bare-soil exposed on a landscape which depends on the land use 

activity and  the global climatic changes and conditions this bare-land index is known as the 

Normalized Difference Bareness Index (NDBaI) (Brink and Eva, 2009). Global climatic 

conditions with extreme temperatures and relatively low rainfall conditions, appeal to desert-

like conditions according as illustrated in Chen et al. (2006). Changes in the amount of bare-

land within an area can be detected by using the NDBaI technique (Zha, Gao and Ni, 2003; 

Southworth, 2004; Waqar et al., 2012; Li and Chen, 2014). 

According to Zhao and Chen (2005), a quick method was developed to map bare areas in the 

Yellow River delta and to monitor land cover changes in this area. The Yellow River delta 

area is a coastal region, therefore the normalized difference soil index (NDSI) and NDBaI 
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were combined to determine bare-areas along the Yellow River delta. The combined two 

indices produced a higher accuracy with respect to mapping bare-land in the area. 

A combination of NDBaI, NDBI, MNDWI, NDVI  and other spectral indices were used to 

determine the land surface temperature of the Guangzhou LULC distribution (Sun et al., 

2013). These spectral indices were used to determine the LULC classes by setting a threshold 

for indices by using Landsat TM satellite imagery. Six land cover classes were determined. 

The result indicated an increase in bare-land, sparse vegetation and polluted water. Built-up 

areas revealed higher land surface temperature (LST) values. While water bodies had a 

negative correlation to LST as LST values were lower. The NDVI values were negatively 

correlated to LST in areas with high vegetation cover.  

All terrain contains water bodies above or below the land surface. The Normalized Difference 

Water Index (NDWI) was developed to determine the changes in water zones. The purpose of 

this index is to maximize the reflectance of an open delineated water surface (Xu, 2006), in 

relation to areas that show moisture content specifically. This is unlike NDVI which provides 

both moisture and vegetative components as illustrated by Gao (1996). Later on the NDWI 

ratio was modified according to Xu (2006) to enhance the accuracy of the water values by 

computing them to higher values than when using NDWI, and this technique is now known 

as the Modified Normalized Difference Water Index (MNDWI). 

Image ratioing is the most basic classification technique, which leads one to the complexities 

of image processing that involve classification algorithms. Image classification algorithms 

can be used in both pixel and object-based methods and have been widely used by 

researchers depending on the spatial, spectral and radiometric resolutions of satellite imagery 

(Yan et al., 2006). Pixel-based classification is a process where pixels containing spectral 

information are selected to define a phenomenon (Dingle Robertson et al.,2011; Myint et 

al.,2011; Whiteside et al., 2011; Duro et al., 2012). Object-based classification clusters a 

group of pixels emitting a specific spectral reflectance while combining both the spatial and 

spectral similarities and has a higher advantage over pixel-based classification (Darwish, 

Leukert and Reinhardt, 2003; Benz et al., 2004). This encompasses the aggregation of image 

pixels into homogeneous objects that occur in one or more dimensions according to Blaschke, 

(2010). After this process an image segmentation algorithm is used to group the aggregated 

pixels in the satellite imagery (Im, Jensen and Tullis, 2008) and finally categorizes them into 

a land cover class (Mallinis et al., 2008). These two types of classification provide a 
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guideline that further molds the essence of the remote sensing methods applied by an analyst 

and researcher. By using pixel and object-based classification methods, appropriate use of 

supervised and unsupervised means of classifying the data can be used to determine changes. 

2.4.2 Unsupervised and supervised classification 

Unsupervised methods of classification requires minimum involvement of the expert to carry 

out satellite image processing (Canty and Nielsen, 2006). The basic requirement is the 

selecting specific inputs  into a computer interface in order for the computer to learn the data 

and hence process the data with the built in algorithms specifically stated for the 

unsupervised classification methods  (Duda and Canty, 2002). It is usually used to give an 

impression of what the unknown phenomenon or study area would represent (Muttitanon and 

Tripathi, 2005). In the process, the user defines the number of classes that could possibly 

represent the data and then selects a classification algorithm from the software (Giada et al., 

2003). The computer program groups pixels and uniquely clusters them according to the 

mean, standard deviation and probability in which a pixel will be defined into a class (Canty 

and Nielsen, 2006). Clustering of the pixels depends on how well the clusters are sorted and 

the number of clusters represented in the data set (Maulik and Bandyopadhyay, 2002). 

Unsupervised classification can assist in collecting ground reference data in order to acquire 

optimum information for the selection of training data that can be used for supervised 

classification of the satellite imagery. According to Duda et al., (2002) and Maulik et al., 

(2002) the analyst must be able to choose a classification good algorithm and determine how 

relevant the clusters  and the clustering techniques are to the satellite imagery used.   

The main requirement in supervised classification in image processing is the analyst’s 

expertise. This means that the user selectively identifies the training data (training sites) that 

will be used for the analysis and evaluation for a predefined number of classes (Cingolani et 

al., 2004; Rahman et al., 2013). The level of classification is determined by how well the user 

is able to model the target class distribution (Cingolani et al., 2004; Foody et al.,2004; 

Agrawal et al., 2007; Rahman et al., 2013). Prior to the analysis the RS specialist needs to 

have experience in identifying the variables and locating training data on the image that needs 

to be classified (Ahmed et al., 2013). Primary and secondary ground truth data measurements 

are used to compare the training data collected from the satellite image (Hodgson et al., 

2003). Three steps are carried out in supervised classification. Firstly, the user has to define 

the number of classes and the information that needs to be collected to give a representation 

of your training data (Abdulaziz et al.,2009). Secondly, the user must be able to know which 
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statistical or non-statistical parameters are suited for training the data set  (Lu et al., 2007; 

Rogan et al., 2008). Finally, a decision must be made to select the appropriate classification 

(Otukei et al., 2010; Myint et al., 2011; Rahman et al., 2013; Idol et al., 2015). Supervised 

methods are divided into two classes of algorithms; the parametric and non-parametric 

classifiers (Bruzzone et al., 2002; Otukei et al., 2010). 

2.4.3 Parametric and non-parametric classification algorithms 

Parametric classifiers are mostly based on statistical analysis of data that has a normal 

standard probabilistic distribution (Kumar and Sahoo, 2012). This means the satellite imagery 

portrays a  homogeneous type of landscape (Lu et al.,2007). The disadvantage of parametric 

classifiers is that it assumes the Gaussian distribution (normal distribution of spectral data). 

That means if satellite image is provided from a complex or heterogeneous surface the 

classification will produce  “noise” or misclassified information (Lu et al., 2007). Some 

parametric classifiers contain supervised classification algorithms and they include the 

Parallepiped algorithm, Mahalanobis distance, minimum distance and maximum-likelihood 

classification to name a few (Kumar et al., 2012). These algorithms are standard 

representations of what a normal distribution is and hence no need for further additional 

parameters (Kumar and Sahoo, 2012). The parallepiped algorithm uses the Boolean logic 

AND/OR (Foody et al., 2004; Santillan et al., 2011). The performance of this algorithm 

solely depends on the number of spectral bands within satellite imagery, where the 

determining factor is the threshold standard deviation of the mean values of the classification 

belonging in each category (Xu and Wei, 2012). The Mahalanobis distance algorithm uses 

the distance measure of one classifier to influence the closeness of one pixel to a distribution 

cluster (De Maesschalck et al., 2000; Xiang et al., 2008). It has a common factor with the 

parallepiped classification algorithm, which is the variation of the number of standard 

deviations of the classifiers relating to the mean of the class distribution (De Maesschalck, 

Jouan-Rimbaud and Massart, 2000; Carrão, Gonçalves and Caetano, 2008; Xiang, Nie and 

Zhang, 2008; Perumal and Bhaskaran, 2010). 

The minimum distance algorithm belongs to a category called sample classifiers (Toth and 

Aach, 2001; Zhang, Chen and Zhou, 2006). This method uses a group of vectors or pixels 

which are estimated to narrowly look like each other and then categorized together (Zhang, 

Chen and Zhou, 2006).  

The maximum likelihood classification algorithm is widely used in supervised classification 

and displays high accuracy and is widely recommended. This algorithm applies the use of the 
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Gaussian probability density function model for each class that is selected and determined 

(Strahler, 1980; Jia and Richards, 1994; Paola and Schowengerdt, 1995; Erbek, Özkan and 

Taberner, 2004; Shuying, Deren and Jingwen, 2005; Otukei and Blaschke, 2010; Dingle 

Robertson and King, 2011; Liu, Shi and Zhang, 2011; Mondal et al., 2012; Sun et al., 2013).  

It is based on the probability of a pixel belonging  to a certain spectral class that will be 

assigned the highest likelihood and is closely linked to the normal distribution of the spectral 

bands analyzed in a  satellite image (Strahler, 1980; Jia and Richards, 1994; Paola and 

Schowengerdt, 1995; Erbek, Özkan and Taberner, 2004; Shuying, Deren and Jingwen, 2005; 

Otukei and Blaschke, 2010; Dingle Robertson and King, 2011; Liu, Shi and Zhang, 2011; 

Mondal et al., 2012; Sun et al., 2013). 

Apart from the parametric classification algorithms that assume the normal distribution of 

data, the non-parametric classification algorithms are classifiers that do not rely solely on 

assumption of statistical data (Bruzzone, Cossu and Vernazza, 2002; Kumar and Sahoo, 

2012). Likewise the probalistic function of the distribution is also not expected to be normal 

(Lu et al., 2004; Lu et al., 2007). Well known non- parametric classifiers include: random 

forest, neural network and support vector machine. A random forest composed of random 

vectors in a tree classifier are independent of the training set (examples that can be used to fit 

paraemeters) of the input vectors (Breiman, 2001). For the analysis to run a tree classifier 

casts a unit vote for the popular class in which to place a given input vector  (Breiman, 2001; 

Gislason et al., 2006). Its most popular method of data analysis is bagging according to 

Breiman, (1996) and boosting  according to Gislason et al., (2006) . In bagging the method is 

used to collect many classifiers and trains them in a training set to be able to improve 

classification accuracy and avoid over fitting (Breiman, 1996; Gislason, Benediktsson and 

Sveinsson, 2006). Whereas, boosting as suggested by the name helps improve the algorithm 

(Breiman, 2001; McIver and Friedl, 2001; Kim, 2013; Ji et al., 2015) by  re-training a 

component of the random forest. This in turn allows for incorrectly classified samples to be 

given a weight as much as the re-training process continues (Gislason, Benediktsson and 

Sveinsson, 2006). Boosting assists in improving the performance of the algorithm by 

reducing both the variance and bias of a classification and hence promotes the accuracy of an 

algorithm. This process has a slight disadvantage because it can make the analysis slightly 

slower (Breiman, 2001; Gislason et al., 2006). 

The ever-evolving process of the artificial neural network (ANN) is also another non-

parametric classifier in solving pattern recognition problems. The ANN development was 
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motivated by the design of the human brain according to Atkinson and Tatnall, (1997) and 

Mas and Flores, (2008). Same as the Random Forest method, it does not rely on the 

assumption of the statistical distribution (Benediktsson, Swain and Ersoy, 1990; Gopal and 

Woodcock, 1996) of the data, however it works on the performance of how well trained a 

data set is (Pal, Maxwell and Warner, 2013). Artificial neural networks is known as a  

learning machine, where the outputs are independent of the input (Gopal and Woodcock, 

1996). The process involves “ learning” the training the data through recognizing any 

regularities in the data and then builds rules on data that seem to be unknown to the process 

(Pal, Maxwell and Warner, 2013; Kumar et al., 2015). However the architecture of the neural 

network needs a user to define the parameters such as the learning rate and momentum rate in 

order to improve its performance (Atkinson and Tatnall, 1997).  The most common neural 

network fundamental that is used in remote sensing is the multi-layer perceptron (a class of 

feedforward artificial neural network) with back error propagation (Serpico et al., 1996; 

Kavzoglu and Mather, 2003). 

A fairly unexploited non-parametric classification algorithm in remote sensing  is the support 

vector machine (SVM) algorithm as documented in Mountrakis et al., (2011). It is slightly 

different from the rest, because it is based on a statistical learning method (Huang, Davis and 

Townshend, 2002). The SVM method provides decision boundaries that will be used to 

separate different classes as illustrated in Pal and Mather, (2005) and  Mountrakis et al., 

(2011). The decision boundaries for the chosen classes are selected by calculating the 

optimum hyperplane used to separate the classes (Huang et al., 2002; Pal et al., 2005; 

Mountrakis et al., 2011). The SVM method is sensitive to the training data and the dimension 

in which the data is projected (Kumar et al., 2015). It is able to minimize the probability of 

misclassifying a class or pixel from a random or unseen data point (Foody et al., 2004) and 

reduce classification errors (Pal and Mather, 2005) at the same time  solving the RS 

classification problem (Foody et al., 2004). Originally, SVMs were used for binary 

classification problems (Foody and Mathur, 2006) For multi class problems, the analyst must 

generate a number of hyperplanes to be able to optimize the technique for the generation of 

each class categorized (Foody et al., 2004). 

Satellite image processing and change detection techniques entail a wide range of methods 

which include image differencing. Image differencing involves two satellite images, either 

unprocessed or classified, obtained at different times but within the same season to determine 

the change in the area (Ridd and Liu, 1998; Rogerson, 2002; Rosin, 2002; Alphan, 2003; 
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Coppin et al., 2004; Berberoglu and Akin, 2009). It is done through subtracting pixels from 

the latest image to the older one (Bindschadler et al., 2010) The result is a third image that 

consist (as illustrated in Rosin, (2002)) of the numerical difference obtained between the pairs 

of pixels. Another change detection technique is image ratioing, where the ration of two co-

registered images determined pixel by pixel in each band, the smaller the difference the 

closer the ratio is to 1 (Singh, 1989). The coefficient yields a result of numbers ranging from 

-1 to 1. It is an effective method to give a general overview of changes in a study with regards 

to the appearance of surface features mostly used in vegetation, water, impervious surface 

and bare-soil analysis (Singh, 1989). 

These methods serve a different purpose, such as; to create and improve some RS methods, to 

be able to develop new functions, for analysis in earth observation for a multidisciplinary 

purpose such as applied mathematics, computer sciences, geographical sciences, biological, 

physical sciences and social sciences to find solutions to a recurring problem. Land cover 

change analysis is one of the aspects that have applied all these concepts of remote sensing. 
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3 RESEARCH METHODOLOGY 

The research methodology is a breakdown of how the research was conducted. The focal 

point is HartRAO and its environment. There is a small overview of the study area the use 

and significance of type of primary and secondary data used in the study. 

3.1 Study Area 

The Hartebeesthoek Radio Astronomy Observatory (HartRAO) is located north-west of 

Johannesburg, in the heart of Mogale City, Gauteng province, within a valley of the 

Witswatersberg hills. Local vegetation type is a combination of Mixed Bushveld and Rocky 

Highveld. The Doringspruit River flows near the observatory. Radio astronomy, space 

geodesy and science awareness are the current land use activities of the area, while the 

surrounding regions are mainly farmlands and game reserves. The daily maximum summer 

and winter temperatures range from 28°C to 35°C and 20°C to 25°C respectively, and the 

minimum summer and winter temperatures range from 13°C to 20°C and 4°C to 11°C. 

Average summer rainfall is 275 mm and average winter rainfall is 16 mm.  The summer 

season is hot and wet with scattered thunderstorms while winters are cold and dry. Figure 3.1 

provides a topographical aspect of the study area. 
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Figure 3.1: Topographical map of HartRAO and environment. The facility is located in a 

valley, surrounded by hills. 

3.2 Data and Methods used for Analysis of Land Cover Change 

As illustrated in Figure 3.2, the data and methods used for monitoring land cover changes at 

HartRAO and its environment are described. Primary and secondary data were used in the 

land cover change analysis. The primary data involved field work to do land cover validation 

by noting areas that could not provide substantial information of the land cover description 

according to the satellite imagery. Secondary data such as aerial photographs informed which 

land cover was more predominant and which changes occurred in the area over time. Climate 

data included rainfall and temperature that were used to determine the annual trends in 

seasons. The climate data from South Africa Weather Services (SAWS) assisted in pointing 

out the effects of seasonal variability on the land cover type. The use of Landsat imagery and 

digital elevation models assisted in delineating the land cover to develop a land cover map. 

The significance of the use of Landsat imagery to delineate land cover is due to the fact that it 

has been producing satellite images for a long time. It is also important to note that the 

selection of the optical data was to determine the various land cover changes using spectral 

data. Synthetic aperture radar data would be significant when focusing on one land cover type 

dominant in the area whereas in HartRAO there is a variability in land cover type.  
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Figure 3.2: Methodological framework used in the LCC analysis of HartRAO and 

environment. 
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3.2.1 Satellite imagery 

3.2.1.1 Landsat imagery 

The focus of this study was to use optical sensors to delineate land cover. Optical sensors are 

useful when delineating spectral reflectance of land cover through colours. In this study, 

Landsat imagery from the Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land 

Imager and Thermal Infrared Sensor (OLI/TIRS) were the main satellite images used. The 

Landsat TM is a multispectral scanning radiometer, with a whiskbroom instrument, that takes 

multi-spectral images across its ground track (see https://earth.esa.int).  Landsat (OLI) carries 

two push-broom instruments; the Operational Land Imager (OLI) and the Thermal Infrared 

Sensor (TIRS) (see https://landsat.usgs.gov).  When comparing the data quality and 

radiometric quantization of the Landsat 8 (OLI/TIRS) and Landsat 5 (TM), the signal to noise 

ratio is better in Landsat8 (OLI/TIRS) compared to Landsat5 (TM) (see 

https://landsat.usgs.gov).     

Both Landsat satellite images have a spatial resolution of 30 by 30 metres per pixel size    

(http://landsat.usgs.gov/band_designations_landsat_satellites.php). This was useful when 

comparing the different classification methods in addition to knowing the diversification of 

different satellite imagery over the years. The increase in the number of different band 

wavelengths created an improvement in land cover change studies due to better sampling. 

The Landsat satellite imagery selected was according to seasonal basis over a period of 20 

years. This included the peak summer season, which included December, January and 

February and peak winter seasons that are from June, July and August. Table 3.1 contains the 

band designations of Landsat imagery and Table 3.2 provides information on the Landsat 

images used for this study. 

 

 

 

 

 

 

https://earth.esa.int/
https://landsat.usgs.gov/
https://landsat.usgs.gov/
http://landsat.usgs.gov/band_designations_landsat_satellites.php


39 
 

 Table 3.1: Landsat 5 TM and Landsat 8 OLI bands 

    

Bands Wavelength (nm) Bands Wavelength (nm) 

Band 1- Blue 0.45-0.52 Band 1-Coastal 

aerosol 

0.43-0.45 

Band 2- Green 0.52-0.60 Band 2 - Blue 0.45 -0.51 

Band 3- Red 0.63-0.69 Band 3 - Green 0.53-0.59 

Band 4- NIR 0.76-0.90 Band 4 - Red 0.64 – 0.67 

Band 5- MIR 1.55-1.75 Band 5- NIR 0.85-0.88 

Band 6- TIR 10.40-12.50 Band 6 - SWIR 1 1.57-1.65 

Band 7- SWIR 2.08-2.35 Band 7 - SWIR 2 2.11 -2.29 

  Band 8- Panchromatic 0.50 -0.68 

  Band 9 – Cirrus 1.36 – 1.38 

  Band 10- TIRS1 10.60- 11.19 

  Band 11 –TIRS 2 11.50 -12.51 

 

Table 3.2: Landsat images metadata 

    

 Date Path/Row Cloud cover (%) 

Landsat 5 (TM)  28
th 

Feb 1998 171/078 0 

 06
th
 Jul 1998 171/078 0 

 04
th
 Jan 2007 171/078 0 

 31
st
 Jul 2007 171/078 0 

Landsat 8 (OLI) 16
th
 Jan 2014 170/078 1.72 

 02
nd

 Jul 2014 171/078 0.04 

 

3.2.1.2 Digital elevation models 

A digital elevation model (DEM) is a 3D representation of the surface which is created from 

terrain elevation data (see https://lta.cr.usgs.gov/DEMs). A DEM file was used to extract the 

hydrology of the Doringspruit stream, and to detect its flow and tributaries. The data were 

obtained from the Advanced Space borne Thermal Emission and Reflection Radiometer 

(ASTER) from NASA and MET imagery and Shuttle Radar Topography Mission (SRTM). 

Onboard the SRTM shuttle, the C-band Space borne Imaging Radar and X-band Synthetic 

Aperture Radar (X-SAR) are used to collect information of the Earth’s surface (see 

https://lta.cr.usgs.gov/DEMs
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https://lta.cr.usgs.gov/SRTM).  The SRTM 1 Arc Second Global elevation data set provides 

elevation data. The data used was SRTM 1, with latitude (south) of -26 degrees and longitude 

(east) of 27 degrees dated the 25
th

 of September 2014 (see https://earthexplorer.usgs.gov/).  

 

3.2.2 Archived photographs 

 

Archived aerial photographs were used to verify the land cover over the period of the study. 

Aerial images were used through visual interpretation to determine changes over time. 

Provision of this data was from the Department of Rural Development and Land Reform 

(DRDLR) of South Africa, which comprised aerial photographs, orthophotos and 

topographical maps as shown in Table 3.3.  

 

Table 3.3: Archived data for land cover changes for DRDLR 

Type Date 

Aerial Photographs 1963, 1964, 1968, 1985, 

2013 

Analogue 2004 

Topographical  1943, 1968, 1985, 1996, 

2010 

Orthophotos 2004, 2013 

 

3.2.3 Climate data 

Climate data used in the study were obtained from the South African Weather Service 

(SAWS) Kroningspark Station in Krugersdorp, which is the closest station to HartRAO. The 

data set includes the daily rainfall, as well as maximum and minimum temperature from 1960 

to 2014.  

https://lta.cr.usgs.gov/SRTM
https://earthexplorer.usgs.gov/
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3.3 Methodology  

3.3.1 Software 

To carry out the image analysis, satellite images were stored on a hard drive, image 

processing was done in EXELIS (ENVI 5.1) (see http://www.harrisgeospatial.com), and 

some of the outputs were displayed and saved using ENVI 5.1 while the map outputs were 

made using ESRI (ArcGIS 10.2) (see https://www.esri.com/en-us/home).  Analysis of climate 

data was done using TREND, a toolkit (eWater) for hydrological statistical applications (see 

https://toolkit.ewater.org.au/Tools/TREND) and Microsoft Excel 2013.  

3.3.2 Field assessments 

Google Earth PRO was used to identify sites where it was problematic to differentiate sites 

which are difficult to measure. The Global Positioning System (GPS) was utilized for field-

based assessments to identify the mixed land cover locations pointed out from Google Earth. 

A Magellan Meridian Gold GPS (handheld device) and Google Earth PRO were used for 

storage and of verification of the sampled ground control points of some parts of the study 

areas. Images taken during the study period are contained in Figure 3.3 to illustrate the 

method used to take ground control points for the study and the validation process.    

http://www.harrisgeospatial.com/
https://www.esri.com/en-us/home
https://toolkit.ewater.org.au/Tools/TREND
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Figure 3.3 (a, b, c): Field assessment carried out to determine land cover types in the area 

a b

c
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Therefore, as depicted in Figure 3.3a, Figure 3.3b and Figure 3.3c, this process comprised 

data collection, which was used to determine land cover. The GPS coordinates collected and 

data sampled at that point were used to verify mixed pixels in the satellite imagery. 

3.3.3 Image analysis 

Concurrently with field based assessments, Landsat data used were pre-processed through 

radiometric and geometric correction. Pre-processing encompasses removal of any distortions 

and noise caused by the sensor or atmosphere which occurred during the collection phase of 

the satellite imagery (Xiao and Weng, 2007). After pre-processing of the satellite data and 

converting it into land surface reflectance, image classification was used to delineate aspects 

of the land cover. This method is carried out by selecting features through clustering land 

cover which has similar mean spectral reflectance (Foody, 2002). It is also dependent on the 

land cover type, as well as the spectral, spatial and radiometric resolution of the satellite 

imagery (Lu et al., 2007). From image-classification, one must conduct a post-classification 

assessment which encompasses change detection and accuracy assessment (Skelsey et al., 

2003; Muttitanon and Tripathi, 2005). Change detection signifies land cover areal change and 

rate of change per annum. Whilst accuracy assessment is useful to verify how well the 

training data and ground control points perform after image classification. It is used to 

determine how well a classification algorithm is on a specific land cover type (De Roeck et 

al., 2008). 

3.3.3.1 Radiometric calibration 

The Landsat imagery was radiometrically calibrated using the Landsat calibration tool in 

ENVI 5.1. The Metadata file was uploaded into the ENVI 5.1 interface as illustrated in Figure 

3.4, where the “Available Bands List” menu is used to access the Landsat Metadata file 

(MTL).
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Figure 3.4: Radiometric calibration in ENVI 5.1 step 1   

Headers of the images were edited to contain the wavelength of each band before processing 

(for the purpose of recognising the contents of the file directly from the file name). This was 

done by averaging the wavelength range, updating the information into a text file and 

uploading it into the Metadata file as demonstrated in Figure 3.5. 
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Figure 3.5: Radiometric Calibration step 2 

The calibration utility tool was selected and the images were calibrated to radiance values 

using Equation (1), then calibrated to reflectance values as illustrated in Equation (2) as 

documented in Coppin et al., (2004). This whole process for the conversion of radiance 

values to reflectance values is illustrated in Figure 3.6.  

 
LMAX - LMINλ λL = QCAL - QCALMIN + LMINλ λ

QCALMAX - QCALMIN
.

 
 
 

                                           (1) 

Where: 

L   = Spectral Radiance at the sensor’s aperture in Wm
2
ster

-1
 µm

-1
  

QCAL = the quantized calibrated pixel value in DN 

LMINλ = the spectral radiance that is scaled to QCALMIN in Wm
2
ster

-1
µm

-1 

LMAXλ = the spectral radiance that is scaled to QCALMAX in Wm
2
ster

-1
µm

-1 

QCALMIN = the minimum quantized calibrated pixel value (corresponding to LMINλ) in DN  

QCALMAX = the minimum quantized calibrated pixel value (corresponding to LMAXλ) in 

DN. 
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2

0

πd L
ρ =

E cosθ
.  (2) 

 

Where: 

ρ = unit less planetary reflectance at the satellite (this takes values of 0-1) 

π = 3.141593 

L = Spectral reflectance at sensor aperture in mWcm
-2 

ster
-1

µm
-1 

d
2 

= Square of the Earth-Sun distance in astronomical units (au) 

E0 = Mean solar exo-atmosphere irradiance in mWcm
-2

µm
-1 

Cosθ = Sun zenith angle in radians when the scene is recorded 

 

 

Figure 3.6: Conversion from radiance to reflectance. 



47 
 

3.3.3.2 Geometric correction 

After radiometric correction, the data were aligned to the most recent satellite imagery (Yang 

et al., 2002). The method used for geometric correction was Image-to-Image registration 

(Santillan, Makinano and Paringit, 2011). Image-to-Image registration involves having the 

most recent image as a base map, and the older images as warp images (Lu et al., 2007). This 

method is important, because the earth rotates on its own axis and there is a shift in 

geographical location caused by the rotation of the axis. It is also necessary to correct any 

geographical distortion. Using ENVI 5.1,  twenty ground control points were selected to warp 

the images to the base map for this method as documented in  Li et al., (2015). A root-mean-

square error (RMSE) was determined, though nearest neighbourhood, as illustrated in Figure 

3.7 and Table 3.4. Studies indicate that the lower the RMSE is the better the geometric 

correction. For Landsat imagery RMSE values should not exceed 0.5 as supported in Shalaby 

et al., (2007) and  Li et al., (2015). 

 

Figure 3.7: A demonstration of Image-to-Image registration for the Landsat Images for the 

study. 
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Table 3.4: RMSE values after Image-to-Image registration for Landsat images 

Date Path/ row RMSE value 

February 1998 171/078 0.482857 

July 1998 171/078 0.477649 

January 2007 171/078 0.453350 

July 2007 171/078 0.400825 

January 2014 170/078 0.493009 

            

The average of the RMSE for all the images for this study was 0.461538. A higher RMSE 

value shows that the seed points of the imagery do not tie in together, which leaves room for 

geometric distortion, which could affect image classification and post-classification results in 

multi-temporal land cover change analysis. 

3.3.3.3 Image classification 

Image classification entails, collecting information on the satellite imagery through spectral 

and spatial aspects to determine the research interest. It involves a couple of methods such as 

ratioing and the use of classification algorithms. Before image classification takes place, sub-

setting the satellite imagery is necessary to the spatial size of the area desired for study. This 

reduces the time for processing the satellite data and only works with the necessary input. 

Image subsets are either land boundaries developed from shapefiles or one can generate a 

shapefile to create their boundary of desire. The area of interest selected for the land cover 

change analysis of HartRAO, comprised selecting geographical coordinate points from 

Google Earth PRO and it is illustrated in Table 3.5. The points were saved in an excel 

workbook, the uploaded into ArcMap 10.1, and then digitized to create a polygon. The 

polygon was saved as a vector file in the format of an ESRI shapefile. The subset had a radius 

of two kilometres, from the middle point HartRAO location. The shapefile was used to subset 

the satellite imagery, for image classification. 
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Table 3.5: Coordinate points selected from Google Earth used to create a shapefile for the 

study area 

Point Latitude Longitude 

A -25.8823 27.66042 

B -25.8668 27.6979 

C -25.878 27.70631 

D -25.8834 27.70407 

E -25.8864 27.70084 

F -25.8926 27.70294 

G -27.9027 27.70414 

H -25.9059 27.68605 

I -25.9051 27.66653 

J -25.8955 27.65936 

K -25.8836 27.65979 

 

3.3.3.3.1 Image ratioing 

The process of image classification, involves determining the amount of land cover depicted 

in an area. Image ratioing is a method that is used to assist in determining the amount of land 

cover on a satellite image (Coppin et al., 2004; Lu et al., 2004; Hussain et al., 2013). It 

includes the division of bands, which depict the absorption and reflectance bandwidth of a 

land cover type in specific pixels at the time the image was captured (Lu et al., 2004). Image 

ratioing methods formulate spectral indices that provide the simple ratio to complex ratios 

that can extract information of the land cover type, such as the biophysical attributes. Spectral 

indices range from -1 to 1, where -1 depicts the other land cover and 1 strongly agrees that a 

specific pixel contains the land cover studied in Lu et al., (2004).  

To determine the spectral indices used, it encompassed the analysis of aerial photographs, 

Google Earth imagery and field validation. Therefore the result led to four spectral indices 

selected for image ratioing, and they include  Enhanced Vegetation Index (EVI) (Matsushita 

et al., 2007; Jiang et al., 2008; Stroppiana et al., 2012). The Normalized Difference 

Vegetation Index (NDVI) (Wedderburn-bisshop et al., 2001; Li, Jiang and Feng, 2013), 

Normalized Difference Built-up Index (NDBI) (As-syakur et al., 2012) and Normalized 

Difference Bareness Index (NDBaI) (As-syakur et al., 2012). The NDVI and EVI indices 
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were selected due to the presence of tree cover, grass and scattered vegetation. Use of NDBaI 

was due to the occurrence of rocks and bare-soil amongst the vegetation land cover. Analysis 

of the NDBI was to provide information of the presence of the built-up in the area this 

includes HartRAO and facilities enclosed in area, roads, terrain, and demolished households. 

The water index was not used in the area, due to the streams being covered by the trees in the 

area, and some stream channels were currently dry. This also is a factor to consider, the fact 

that Landsat is an optical sensor and digital elevation models were used to extract the river 

profile (Hoffmann and Sander, 2006). Since the area is dominantly mixed bushveld and rocky 

Highveld vegetation, the EVI and NDVI spectral indices were best suited for the area. 

Vegetation indices 

The Normalized Difference Vegetation Index (NDVI) is calculated by the ratio of the 

difference of the NIR and Red and addition of the NIR and Red bands in the visible light of 

the electromagnetic spectrum Liu et al., (2015). The range of values are from the -1 to 1 

where  extreme negative values depict a different land cover, while a higher positive values 

show the presence of vegetation in a study area, NDVI is depicted in Equation (3) . 

 
nir - red

NDVI = .
nir + red

  (3) 

Enhanced Vegetation Index (EVI) was primarily developed from MODIS products to which 

picks up quantities of vegetation canopy structure as supported in Huete et al., (2002) making 

it more advantageous over NDVI which is profound in detecting the level of greenness, 

through its sensitivity to chlorophyll in the type of vegetation as published in Gao et al., 

(2000). Advantage of EVI over NDVI is the inclusion of the  blue band to remove 

atmospheric and moisture interference on the satellite imagery as documented in Miura et al., 

(2001). This is useful when looking at forest and canopy type vegetation, where presence of 

rainfall is dominant in the area. The EVI value ranges are the same as NDVI where negative 

values depict other land cover and the more positive the value the higher the vegetation 

occurrence is on an area. Equation (4) illustrates the calculation of EVI. 

 
 

 

nir - red
EVI = G×

nir + C1×red - C2×blue + L
.   (4) 
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 Built-up area index 

The Normalized Difference Built-up Index (NDBI) was formulated by Zha et al., (2003) and 

advanced by He et al., (2010) and  Waqar et al., (2012) due to an increase of urbanization 

within developed countries. With the same calculation principal as NDVI, the NDBI is the 

ratio of the difference between MIR and NIR and the addition of the MIR and NIR. Built-up 

areas absorb NIR and reflect MIR, the range of NDBI values are -1 to 1, where positive 

values depict high occurrence of built-up and the opposite for the negative values. The NDBI 

is formulated in Equation (5). 

 
mir - nir

NDBI =
mir - nir

.   (5) 

Bare-land index 

The built-up index was used to calculate the area that was not occupied by neither vegetation 

nor water. This index showed a generalization of land cover information because researchers 

realised that land cover types representing bare-land were selected as built-up. This resulted 

in an  error within land cover classification, as bare-land is a different land cover type that 

emits its own spectral values according to (Li et al., (2014). The bare-land cover is 

represented by areas such as:  open fallow lands, uncultivated lands, and desert area. This led 

to the concise effort to develop the Normalized Difference Bareness Index (NDBaI), in order 

to differentiate between the bare-land from the built-up illustrated in Zhao et al., (2005). The 

NDBaI was modified for the Landsat sensor Zhou et al., (2014). It is crucial to note that bare-

land and built-up reflectance is within the middle infrared. However, soils and rocks have a 

higher thermal capacity and depth that leads to absorption in the TIR band, which 

differentiates it from built-up land cover type. Negative values of NDBaI represent index 

values of other land cover types while positive NDBaI values indicate bare-land type. 

Equation (6) can be used for calculating NDBaI. 

 
mir - tir

NDBaI =
mir - tir

.   (6) 

As discussed, spectral indices used in the study provided a general overview of the land cover 

type studied in the area and it was also used as a precursor study for field analysis and image 

classification.  



52 
 

3.3.3.3.2 Supervised classification 

After image ratioing, the training data for supervised classification were selected on the 

satellite images. This process involved carefully selecting satellite image pixels according to 

land cover type as perceived from the field assessment conducted for LCC analysis. Due to 

the spatial pixel size of the Landsat imagery, there were pure and mixed pixels. Selection of 

training data on a satellite image is a manual process, which involves, looking at the different 

colour composites and spectral information of the area from the satellite data. The 

heterogeneity of the terrain allows us to interchange different colour composites to carefully 

selected land cover types. Due to the complexity of the terrain, land cover changes every 10 

meters, we had to categorise the data according to the most prevalent land cover types. 

Through comparison of Google Earth images, photographs taken during the field work to 

verify complex areas that cannot be carefully identified from the satellite images, Google 

Earth images and aerial photographs in some geographical locations. These images also 

contributed well to the selection of the training data. 

3.3.3.3.3 Training sites selection and region of interest statistics 

The training sites were selected by using the region of interest (ROI) tool in ENVI 5.1 classic. 

The study area is small; which resulted in less pixels being selected for some land cover 

types. The regions of interest ranged between 10-15 ROIs per land cover class. Selection of 

these training data was through pixel-based selection method. Likewise, we selected the 

purest pixel to be used as ground truth data. This was done for determining the accuracy for 

the classification algorithms selected for this study. 

3.3.3.4 Pixel-based classification 

3.3.3.4.1 Parametric and non-parametric classification 

After carefully selecting the training data, two classification algorithms were used; the 

maximum likelihood (ML) and support vector machine (SVM) which are in-built algorithms 

in ENVI 5.1. These are parametric and non-parametric classification algorithms respectively 

as documented by  (Erbek, Özkan and Taberner, 2004; Otukei and Blaschke, 2010). 

Parametric classification methods uses the Gaussian method, which takes into account that 

the data has a normal distribution, whereas non-parametric classification methods do not 

imply the use of a normal distribution, and the advantage is using other parameters which 

learns the algorithm. The training data and the ground truth data were run in the ENVI 5.1 

software to determine which one of the algorithms selected produces the best accuracy data, 
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through the Chi-square test has the best accuracy illustrated in Equation (7) The results were 

used to determine the rate of change. 

     

 
 

2

2 i i

c

i
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E



   (7) 

 

Maximum likelihood Algorithm 

The maximum likelihood (ML) classification algorithm uses the Gaussian method for its 

statistical analysis, that assumes that the training data have a normal distribution (Sun et al., 

2013). This classification algorithm has been used by several researchers and is carefully 

explained by Kavzoglu and Colkesen, (2009); Otukei et al., (2010) and the formula in 

Equation (8). 

         D = ln a - 0.5ln cov - 0.5 X - M T cov -1 X - Mc c c cc
.  

   
  (8) 

Support vector machines 

The support vector machine (SVM) algorithm is a statistical based learning algorithm 

originally formulated by Vapnik and Kotz in 1982, as published by Mountrakis et al., (2011). 

This classification algorithm’s main advantage is the use of parameters to determine the best 

accuracy value to classify an image through influence of the type of hyper plane that will be 

used (Huang et al., 2002; Foody and Mathur, 2004; Mountrakis et al., 2011). Playing  around 

with different parameters assists the researcher to determine the level at which the SVM 

learning algorithm can perform best when classifying an satellite image Huang et al., (2002). 

Selecting parameters involves choosing a kernel type that is best for different type of LCC 

studies as illustrated in Kavzoglu et al., (2009), and choosing the type for multi-class change 

detection through multi-class LCC analysis Hsu and Lin, (2002); Foody et al., (2004). 

Support vector machine provides a platform where the hyper-plane selects and groups of 

classes. Unlike most classification algorithms, the SVM has little application in remote 

sensing (Mountrakis et al., 2011) and studies are still being done. Even if there are fewer 

studies conducted using  SVM classification algorithm, this has only been focused on  large 

data sets, and it is usually stated that the advantage of SVM against ML algorithm is that it 

performs better with large data sets Foody et al., (2006). There are some studies that have 
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shown that SVM can perform as better as the ML algorithm with smaller datasets with an 

example from Mantero et al., (2005).  

In this analysis, the radial basis kernel was selected as the best kernel for LCC analysis. This 

was done by from trying out different parameters and it is well documented by Kavzoglu and 

Colkesen, (2009), Otukei and Blaschke, (2010) in their literature. This is also demonstrated in 

Dixon and Candade, (2008)  as the  performances of accuracies of other kernel basis were 

determined from the other kernels to observe their accuracies. Within the ENVI 5.1 software, 

the radial basis kernel illustrates the inverse of the number of bands used in the analysis, and 

this automatically set when the imagery is selected for input. To get the best results for SVM 

classification algorithm, input values were interchanged between the penalty parameter, 

pyramid levels and pyramid reclassification to determine the best accuracy assessment for 

LCC analysis as illustrated in Pal et al., (2005); Gidudu et al., (2007); Mountrakis et al., ( 

2011). The penalty parameter ranged from 100-2000, the pyramid level did not matter during 

the analysis because there was no change within the accuracy therefore level 2 was used. The 

pyramid reclassification parameter, which is the probability factor was selected between the 

0.01 and 0.5 confidence class to determine the best accuracy for satellite image analysis. 

Through classifying using the pyramid level of 0.01 and 0.5, the best pyramid parameter was 

selected at the penalty parameter of 1000. At the end of it all, it was noted that the most 

suitable pyramid reclassification level, was 0.01 confidence which gave the best result. Table 

3.6 indicates the best parameters selected for Landsat 5 (TM) and Landsat 8 (OLI-TIRS) 

analysis.  

Table 3.6: The best selected parameters for SVM 

Imagery Bands Gamma kernel 

calculation 

Penalty 

parameter 

Pyramid 

level 

Pyramid 

reclassification 

Landsat 5 6 0.165 1000 2 0.01 

Landsat 8 7 0.143 1000 2 0.01 
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3.3.4 Post classification 

3.3.4.1 Change detection 

The classified images generated, provided the delineation of the land cover type according to 

the season and the algorithm. This is demonstrated by the areal changes of the land cover 

over the seasons, time, and change detection was used. The change detection images were 

generated from the image-differencing tool from the change detection tab in ENVI 5.1. This 

file generates the areal changes and percentage changes of every land cover class selected in 

the study. The importance of image differencing is to determine changes within classes and 

between classes especially with optical satellite images used for various change detection 

methods Tewkesbury et al., (2015). To carry out change detection analysis, this method 

encompasses the comparison of percentage LCC values within seasons across the years of the 

study. The comparison results from seasonal and year analysis, were then used separately for 

the classification algorithms, to illustrate changes across the season and years. After this, the 

same results generated were compared to determine the performance of the algorithms on the 

individual LC class and across the years. This is discussed in detail in using the change 

detection tables generated from image differencing, which provides support for the best 

classification algorithm suitable for LCC analysis. 

3.3.4.2 Accuracy assessment 

After the change detection was completed, the accuracy assessment for the performance of 

the algorithms on the land cover using ground truth data was determined. Ground truth data 

in this study was describes as purest pixel to that determined the LC type of the area. With 

the help of Google Earth images, aerial photographs and field assessment conducted for the 

validation for the LC type the purest pixels were selected. The accuracy assessment was 

determined using a covariance matrix, which provided the omission, commission errors and 

producer and user accuracy. 

3.3.5 Basic hydrology 

The purpose of using a DEM was to determine the river flow and direction of the 

Doringspruit river which would be used in determining the land cover type dominant around 

the section of the river. Using the Hydrology classification tool in ArcMap, the river profile 

was generated from the DEM file. 

 

3.3.6 Meteorological data analysis 

Data from Kroningspark station were imported into Excel 2013; data were analyzed 

according to the mean annual maximum temperature (MATmax), mean annual minimum 
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temperature (MATmin) and total annual rainfall (TAR). The information was on was split 

into the early 25 years from the time HartRAO started and to the recent 25 years of the study. 

This is demonstrated by using the first (1
st
) and second (2

nd
) normal in the study.  The 1

st
 

Normal ranged from 1960 to 1989 and the 2
nd

 Normal was from 1985 to 2014.  The data 

received from the study was organized and sorted using EXCEL and saved as comma 

delimited files. The CSV files were then used in the TREND software to carry out statistical 

analysis. The statistical test conducted for the climate data was Mann-Kendall test and the 

results of this test provided the various trends.  
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4 RESULTS AND DISCUSSIONS 

The four objectives are reported on and discussed. They include the delineation of the land 

cover type, which means that the land cover types are identified using field based 

assessments, image ratioing, basic hydrology, aerial photographs and satellite image analysis. 

These methods were used for visual and statistical interpretation to determine the dominant 

land cover type.  Climate information is included in the analysis when comparing the land 

cover types as the trends help in telling why there has been a change within and between land 

cover types.  The second and third objective looks at comparison of classification algorithms 

and best classification algorithm in with regards to hilly landscapes with the use of parametric 

and non-parametric classification algorithms.  The discussion brings all the first three 

objectives together and analyses these data sets by identifying trends and changes in land 

cover types. 

4.1 Delineation of Land Cover Types  
 

This section describes the various land cover types noted from the field assessment 

conducted. The images varying differences in the land cover, which is used to determine the 

title of the land cover types for this study. 

4.1.1 Land cover delineation through field based assessment 

4.1.1.1 The forest-land cover type 
 

The forest-land cover type is described as having both deciduous trees, evergreen trees and 

tall grass. The occurrence of this land cover type is generally located along the Doringspruit 

stream and the slopes of the Witswatersberg hills. In the midst of the trees, there is the 

presence of grass as demonstrated from the images in Figure 4.1. As noted in Figure 4.1a, a 

section of the study area depicts a valley that contains a mixture of trees and some tall grass. 

According to Figure 4.1b, this section of the study area includes trees growing on the slopes, 

in general the trees grow on the hilltops as well as the change in elevation is relatively small. 

In between the trees there is the appearance of some patches of long grass. As presented in 

Figure 4.1c, this is an overview of the distribution of the forest-land cover across the slopes 

of the study area. 
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Figure 4.1(a,b,c): Photographs of the various forest-land cover in the study area. 

a

b

c
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4.1.1.2 The grassland cover type 

Figure 4.2  illustrates that the grassland cover type comprises tall grass and pasture grass and 

a few shrubs. The pasture grass indicates that this area is suitable farmland for cattle farming. 

Figure 4.2a  illustrates pasture grass, indicating that within some areas of the HartRAO 

surroundings there is potential for cattle farming as a land use activity. Figure 4.2b illustrates 

tall grass which indicates deeper soils, presence of underground water and trees in the 

distance indicate a river channel. Typically, on site, trees cluster stream banks, this is clearly 

visible in the aerial photographs of the area. According Figure 4.2c, this pictures grassland 

cover type, which is predominantly on level ground and the slopes indicate random 

distribution of trees. 
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Figure 4.2 (a,b,c): Photographs of the various grassland cover in the study area. 

a

b

c
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4.1.1.3 The scattered vegetation land cover type 

According to the images contained in Figure 4.3, these images provide the description of 

scattered vegetation land cover selected for the study. This land cover type composed of, a 

mixture of shrubs, grass and rocks out crop. There was a notable variety of acacia tree species 

was dominant as shrubs. According to Figure 4.3a, the scattered vegetation land cover type is 

illustrated as dry grass, and some shrubs (mainly acacia trees), some patches bare-soils and a 

few shale rocks. The description in Figure 4.3b, provides a different grass type, mainly 

herbaceous and tall grass that can be found in flooded areas. There are some shrubs located in 

the area and smooth shale rocks, usually located on river profiles or flood zones. Overall, the 

shale rocks in these areas seem to be smooth in shape. 

 

Figure 4.3(a,b,c): Photographs of various  scattered vegetation land cover in the study area. 

a

b
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4.1.1.4 The shale rock with scattered vegetation land cover type 

This land cover type falls within bare-soil and bare-rock land cover. This describes some 

sections of the HartRAO environment and its environment depicted more of the shale rock 

type. This land cover type is usually located on the top parts of the Witswatersberg hills. 

Growing in between the shale rock, are grass, shrubs, interspersed with patches of bare-soils 

as shown in Figure 4.4. According to Figure 4.4a, the shale rock is sharp with presence of 

bare-soils and short grass. In Figure 4.4b this land cover type is illustrated with the presence 

of shale rock, thorny shrubs, short grass and patches of bare-soils. 

 

Figure 4.4 (a, b, c):  Photographs of the various shale rocks with scattered vegetation and land 

cover types in the study area. 

a

b
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4.1.1.5 Milky quartz rocks with scattered vegetation land cover type 

This land cover type is described by the occurrence of herbaceous species, which was appears 

to be slightly different from the shale rock with scattered vegetation land cover type. The 

various types are represented in Figure 4.5 images. Figure 4.5a, depicts presence of milky 

quartz rocks with green herbaceous plants. Bordering this land cover are some trees species, 

this land cover type is located towards the top of the hills in this study area. According to 

Figure 4.5b and Figure 4.5c, these images were enlarged to provide a detailed background of 

this land cover type. The last two images illustrate that there are some short thorny shrubs 

growing amongst the milky quartz rocks. There is a huge presence of bare-soil exposed on 

this land cover type.  
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Figure 4.5(a,b,c): Photographs of the various milky quartz rock with scattered vegetation land 

cover in the study area. 

a

b

c
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4.1.1.6 The built-up land cover type 

The built-up land cover description entails any form of construction and demolition. This 

land cover is dominated by the presence of buildings, roads, impervious surfaces as 

illustrated in some images of  

Figure 4.6. This is seen near HartRAO and its facilities. Since much of the land use activities, 

rotate around the radio observatory.  

Figure 4.6a depicts a picture of a water tank on scattered vegetation.  

Figure 4.6b illustrates the 26m dish within HartRAO and buildings within the Observatory. 

The land cover is also predominantly grassland and a few trees. There are a few roads leading 

to HartRAO and some local roads to give way to vehicles used in HartRAO. The image in  

Figure 4.6c depicts an abandoned house structure, this illustrates that apart from HartRAO 

there were people living in the area at least a hundred years ago. The house structure is made 

from a mixture of mud and shale rock. These could be abandoned pastoralists houses.  

Figure 4.6d illustrates a demolished area, with run down cement remains illustrating there 

used to be a shelter that was demolished. 

 

 

Figure 4.6 (a,b,c,d):Photographs of the various built-up land cover type within the study area

a b

c d
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To complete the delineation of the land cover change section, short summary of the land 

cover types and locations are tabulated in Table 4.1. 

Table 4.1: Land cover type and description selected for the analysis and study area 

 Land Cover type 

for the study area 

Group  Description Occurrence on the 

landscape 

1 Forest (F) Mixed 

Forest 

Broadleaf and narrow leaf, 

with thorn tree. 

Middle of the hills near 

stream, and 500 m from 

the valley 

2 Grassland (G) Herbaceous  Grass and pasture  Near stream profile, 

Valley 

3 Sparse Vegetation 

(SV) 

Herbaceous Shrubs and dry grass Near stream profile, 

Valley 

4 Shale rock and 

scattered 

vegetation (SSV) 

Bare-land Low vegetation cover, high 

occurrence of shale rocks with 

brown and red soils 

Top part of the hills 

5 Milk quartz rocks 

and scattered 

vegetation(MSV) 

Bare-land Low vegetation cover, high 

occurrence of milky quartz 

rocks, brown and red soils 

Top parts of the hills  

6 Built-up (BU) Built-up Demolished houses, and 

HartRAO, road and paths 

Within 200m to 500m 

radius of HartRAO 
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4.1.2 Image ratioing 

 

 

Figure 4.7: Graph of maximum and minimum values of the spectral indices used in image 

ratioing. 

 

The results for the spectral indices used in this analysis are demonstrated in Figure 4.7. The 

NDVI and EVI values are greater than 0.25 for all the years as illustrated in Figure 4.7, which 

shows there is presence of high vegetation cover. It is also noted that the NDVI values are 

higher than EVI values for both summer and winter seasons of the years 1998 and 2007. As 

much as the NDVI and EVI values are higher in summer and winter, it is only selected that 

the EVI values are higher than the NDVI values especially in January 2014, which indicates 

highest EVI values recorded on the Landsat images used in the study. Contrary, NDBaI 

values are lower. This is the opposite of EVI and NDVI values as it is also demonstrated from 

the results that the NDBaI. As stated the uses in the literature review, NDVI and EVI spectral 

indices are used to measure the presence of vegetation cover in a landscape, while NDBaI 

measures the exposure of bare-land. In confirming the result, the indices demonstrate that 

vegetation is the dominant land cover type in the study.  

An interesting result was the values of NDBI calculations were higher for this study. The 

built-up infrastructure of HartRAO and its surroundings is lower as this area is prevalently 

free from any atmospheric and built-up interference. As we did the field analysis, since this 

Min Max Min Max Min Max Min Max

NDVI EVI NDBaI NDBI

Feb-98 -0.0113 0.6145 0 0.5515 -0.6516 0.1089 -0.2333 0.3176

Jul-98 -0.2222 0.409 -0.0463 0.3283 -0.8878 0 -0.1111 0.4603

Jan-07 -0.0143 0.6173 0 0.5964 -0.4759 0.2271 -0.2336 0.3191

Jul-07 -0.1 0.4615 -0.0116 0.3275 -0.8305 0.012 -0.1212 0.5058

Jan-14 0 0.49068 0 0.7777 -0.4984 0 -0.2869 0.1098

Jul-14 -0.0105 0.2593 0.0196 0.483 -0.5947 0 -0.1299 0.2288
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was the most dominant issue within the land cover change analysis using Landsat data, the 

study area contains rock out crops of shale and milky quartz rocks. This influenced the values 

of the NDBI, as NDBI can pick up rock formation and interpret it as built-up structures. The 

influence of the thermal band and the reflective properties of the rocks had an influence of the 

NDBI results. Thus, the importance of incorporating the NDBaI spectral index, as it is an 

index that picks up the thermal properties of the bare-soil unlike the NDBI spectral index. 

This section of the results is expanded in the discussion, as to why these indices were selected 

and to demonstrate the rate of change in the area over the period of study. 

 

4.1.3 Basic hydrology 

 

It was necessary to extract the river profile to complete the land cover type. It was also 

important to determine the flow of the river, which also plays a part on the land cover types. 

Extraction of the river profile is illustrated in Figure 4.8 and this was done by analyzing 

SRTM data (DEM file). In studies, river flow towards lower altitude. Presence of vegetation 

and tree cover are dominant in on river profile. Higher altitudes indicate presence of exposed 

bare-rock and lower vegetation due to temperature variability and rainfall.   

 

Figure 4.8: River flow direction and land cover types. 
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The main channel of the river flows from the north-west parts of the study area, and 

tributaries emerge towards the east and south-east areas. Trees growth is closer to the river 

profile. Tall grass and some trees are slightly further away from the river profile. Towards the 

top of the hills is the presence of milky quartz rocks and some herbaceous plants with short 

grass. Towards the south east and east part of the river profile, there is a heavy presence of 

shale rocks, closer to the tributaries, the shale rocks were round and smooth while further 

away from the river profile they were sharp with defined edges. 

 

4.1.4 Aerial image interpretation and climate data analysis for the first normal 
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Figure 4.9 (a,b,c): Aerial photographs depicting land and cover type within the HartRAO 

location in 1963. 

The overview of the position of HartRAO and its surrounding is illustrated from the 1963 

aerial photograph in Figure 4.9a. This demonstrates the demarcation of the farmlands the 

rock pattern of the Witswatersberg. In Figure 4.9b and Figure 4.9c are the zoomed images of 

HartRAO and its surroundings. The light and bright tones indicate that there is presence of 

exposed bare-land. Tree cover is minimal due to an increase in agricultural activity; this is 

demonstrated with bright and dark parcels. Figure 4.9d is zoomed to HartRAO and it depicts 

that there is some tree cover between the slopes of the Witswatersberg hills. Along the 

Doringspruit River flows from northwest to south-east and east, vegetation is dominant as 

illustrated by the dark grains in the picture. This can be noted from Figure 4.9d as there is 

alignment of trees along the rivers course.  The cliffs of the Witswatersberg hills indicate 

sharp rock outcrops. There is a presence of defined roads heading as towards HartRAO 

illustrated in Figure 4.9d, north and north east of HartRAO as illustrated in Figure 4.9c  and 

north to south of HartRAO as indicated in Figure 4.9c. 
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Figure 4.10(a,b,c): Aerial photographs depicting land and cover type within the HartRAO 

location in 1984.

Figure 4.10a provides an overview of HartRAO and its surroundings in the year 1984. The 

image seems brighter and the farmlands appear to be fewer than in the year 1963. This could 

be an indication of an increased in exposed bare-land due to the brighter tones appearing on 

the aerial photographs. The aerial photographs show lighter tones. According to the zoomed 

in aerial photograph of the year 1984 from  Figure 4.10b, the image gives an indication of 

darker tones, demonstrating a presence of vegetation increase in the area as compared to the 

1963 images. There is an increase of vegetation cover on the slopes of the Witswatersberg 

and along the Doringspruit River profile. There is a significant increase in the brighter tones 

on the parcels of land. This indicates exposure of bare-land in these areas because of 

agricultural activities.  This is an indication that there is low presence of crop cover in the 

area. According to Figure 4.10b and Figure 4.10c, there are fewer agricultural land 

demarcations. The other evident change is the decrease of the roads as noted in 1963 aerial 
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photographs, that means there was reduction of movement and an alternative route was 

created for people to pass through.  
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Figure 4.11(a, b, c): Aerial photographs depicting land cover type within the HartRAO 

location in 2004. 
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The overview of the aerial photograph 2004 in Figure 4.11a indicated an increase in larger 

agricultural farms when one compares the size of the parcels of land from the years 1963 and 

1984 of the same area. Another interesting aspect is the increase of roads and visible 

demarcations of the parcels of land this means there was access to areas that were to 

accessible by vehicles. It is also an indication of increase agricultural activity within the 

surrounding areas of HartRAO.  There is an increase in vegetation along the slopes of the 

Witswatersberg hills as illustrated in Figure 4.11b and  Figure 4.11c. The darker pixels in the 

aerial photograph, illustrate vegetation cover and this indicated on the image by the increase 

of the number of trees along the slopes. On the left side of the images in Figure 4.11b and  

Figure 4.11c it is noted that there is a bright undertone indicating presence of a mining 

activity. Bare-soil land has increased within the HartRAO facility because this is a built-up 

area as demonstrated in Figure 4.11b and Figure 4.11c. So far, the only noticeable road that 

heads towards HartRAO, all the roads as described from the 1963 and 1984 aerial 

photographs have disappeared and covered with a different land cover type. Figure 4.11b and 

Figure 4.11c indicate there is an increase in the density of the trees along the Doringspruit 

River. Concentration of tree cover illustrates a mixture of tree types and explained during the 

process of delineation of the land cover types using the field study as what type of forest is 

within HartRAO and its environment. 
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Figure 4.12(a,b,c): Aerial photographs depicting land cover type within HartRAO location in 

2013. 

The coloured aerial photograph of the year 2013 in Figure 4.12a, provides a recent image of 

the area of study. According to Figure 4.12a, the agricultural parcels are larger compared to 

the preceding years. On the top part of Figure 4.12a there is an increase in abandoned areas 

and some have been converted into a mining environment and a notable increase of the roads 

in general. On the top right of Figure 4.12a there is an increase of residential areas compared 

to the farmlands noted in 1963 to 2004.  Figure 4.12b and Figure 4.12c, are zoomed in image, 

which illustrates an increase in vegetation cover and distribution on the slopes of the 

Witswatersberg hills. There are more trees towards the north, while the river profile is not 

visible. The HartRAO facility has expanded and, there road that heads towards HartRAO is 

defined.  

The importance of using these aerial photographs it to demonstrate the reason why the facility 

was built within this area, the impact of land use and to determine land cover changes over 
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the years within HartRAO and its environment. The other important thing was to have a feel 

of the general land cover type that has been within HartRAO and its environment. The aerial 

photographs play a role in delineating the land cover type and confirming what would have 

been the general situation over the years that would affect the land cover within HartRAO. 

This also gave some guidance when conducting image classification. 
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 1
ST

 Normal Climate Data Analysis 1960-1989 

 

 

Figure 4.13: Mean annual maximum temperature from 1960 to 1989  

 

Figure 4.14: Mean annual minimum temperature from 1960 to 1989 
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Figure 4.15: Total annual precipitation from 1960 to 1989. 

 

Table 4.2: Mann-Kendall test for the 1st Normal of the years 1960 to 1985. 

 Mean Total 

Score 

Standard 

Deviation 

z-

statistic 

Result 

MATmax 22.13ᵒC 64 56.051 1.124 Increasing/no stat significance a= 

0.10 

MATmin 9.33ᵒC 205 56.051 3.64 Increasing, stat significance a<0.10 

AR 743mm 49 56.051 0.856 Increasing/no stat significance 

a=0.10 

 

Analysis of the first normal is composed of temperature and rainfall data from 1960 to 1989 

from Figure 4.13 to Figure 4.15. According to Figure 4.13, MATmax has an increasing trend, 

but using the linear trend analysis from the Mann-Kendall test illustrates no significance at 

the 90% confidence level from Table 4.2. For the year 1967, MATmax has the lowest 

recorded value. Towards the end of the first normal, from the years 1985 to 1989, MATmax 

indicates a declining trend. The highest MATmax recorded was in year 1983 with the mean 

MATmax is for the year was 22.13ᵒC. The MATmin values are illustrated in Figure 4.14 and 

points towards an increasing trend. The minimum temperature values recorded keep 

increasing with a new MATmin recorded. At the same time, the highest MATmin recorded 

was in 1983 as the same as MATmax. According to Table 3.1, the Mann-Kendall test results 

y = 2.3935x + 706.07 
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indicate an increasing trend, with statistical significance at the 90% confidence level and the 

average MATmin is 9.33ᵒC. The annual rainfall (AR) values in Figure 4.15, indicate an 

increasing trend with the highest rainfall values in 1971, while the lowest AR was recorded in 

1965. However, from the Mann-Kendall test results in Table 4.2 give the average value of 

743 ml with an increasing trend, but with no statistical significance at 90%. 

 

4.1.5 Satellite image analysis and climate data analysis for the second normal 

Landsat satellite imagery was used to determine the changes in the land cover and the rate of 

change. Two classification algorithms: maximum likelihood (ML) and support vector 

machine (SVM) were used to determine the land cover types. The techniques are: 

classification of land cover types, change detection to determine area changes of the land 

cover types in the study, determining the accuracy of the classification algorithms and 

comparison of these change detection and accuracy of these classification algorithms. The 

importance of the using these methods was to determine the rate of changes and the level of 

classification on a hilly terrain on Landsat TM and Landsat OLI of the area. 

 

4.1.5.1 Change detection 

The importance of land cover changes is useful to delineate the land cover type of the area 

and determine the percentage and areal changes that have occurred over a period. Land cover 

changes can be categorized as: changes between land cover classes and within land cover 

classes. The overall classification results and the change detection results were used to 

determine the various land cover changes. This was used to pin point the land cover 

conversions and shifts. Illustrations from Figure 4.16 to Figure 4.21 depict specific land cover 

changes from the outputs of the image classification. The analysis was dependent on the type 

of classification algorithm, seasonal and yearly climatic changes. 



83 
 

Summer images 

 

Figure 4.16:  ML and SVM classification for February 1998 Landsat imagery. 

In this analysis of the Landsat images for the summer images of the year 1998, the ML and 

SVM image classification depicted in Figure 4.16, illustrated there is an increase of built-up 

areas within the ML classification analysis compared to SVM classification images. This is 

demonstrated by the increase of built-up from the north-west side of the images of the ML 

classification images. Whereas, with the SVM classification image, there are more areas that 

contain scattered vegetation. The grassland cover was dominant from the ML classification 

compared to the SVM classification image. While areas covered with grassland from ML 

classification images are covered by scattered vegetation in SVM classification images. 
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Figure 4.17: ML and SVM classification for January 2007 Landsat imagery. 

According to ML and SVM image classification of the Landsat images of the 2007 in Figure 

4.17, both images indicate there is an increase all the other land covers except for grassland 

and forest land cover. There is a significant built-up land cover is dominant on the ML 

classification compared to the SVM classification image. Areas covered in milky quartz rock 

with scattered vegetation land cover are much more visible from the ML classification 

compared to SVM classification.  
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Figure 4.18: ML and SVM classification for January 2014 Landsat imagery. 

The classification for the January 2014 images in Figure 4.18, depicts there is an increase in 

the grassland, forest and milky quartz rock with scattered vegetation land cover for both 

images. According to the ML classification image, the grassland land cover is much more 

dominant compared to SVM classification. The built-up land cover is also dominant in the 

ML classification image compared to SVM classification image. Milk-quartz rock land cover 

is very dominant on the west side of the ML classification image, while shale-rock with 

scattered vegetation is dominant on the west part side of the SVM classification image. The 

grassland land cover is dominant on the north part of the ML classification image whilst 

scattered vegetation is dominant on the north part of SVM classification image.  
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Winter images 

  

Figure 4.19: ML and SVM classification for July 1998 Landsat imagery. 

Both ML and SVM classification images of July 1998 in Figure 4.19, depict that there is a 

decrease in forest and grassland cover. The shale rocks with scattered vegetation cover type 

appear dominant on the west parts of both ML and SVM classification images. According to 

the ML classification image, the grassland land cover is dominant on the east part of the 

images. Agreeing with the SVM classification image there is a mixture of the scattered 

vegetation and grassland cover type from the north part of both images.  Forest, grassland and 

built-up land cover occupies a bigger percentage of the area in the ML classification image in 

proportion to the SVM classification image. 
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Figure 4.20: ML and SVM classification for July 2007 Landsat imagery. 

Figure 4.20, classification of the Landsat imagery of the year 2007, illustrates there is an 

increase of built-up land cover in ML classification compared to SVM classification imagery. 

Both satellite image classifications demonstrate and increase in compared to the shale rock 

with scattered vegetation land cover in Figure 4.19. The grassland cover occupies the north 

part of the classification images in Figure 4.20. The areas covered by built-up in ML 

classification is represented as milky quartz rocks with scattered vegetation in SVM image 

classification. 
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Figure 4.21: ML and SVM classification for July 2014 Landsat imagery. 

According to the ML and SVM classification, analysis of from Figure 4.21 illustrates that 

grassland cover type covers the west part of the images respectively. In both classification 

images, there is an increase in scattered vegetation. Both images depict less built-up area 

compared to Figure 4.20. In this analysis the forest land cover has increased for both ML and 

SVM classification compared to the images in Figure 4.20. 
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4.1.5.2 2nd Normal climate data analysis 

 

 

Figure 4.22: Mean annual maximum temperature from 1985-2014 

 

 

Figure 4.23: Mean annual minimum temperature from 1985 to 2014 
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Figure 4.24: Total annual precipitation from 1985 to 2014 

 

Table 4.3: Mann-Kendall test for the 2
nd

 normal of the years 1985 to 2014 

 Mean Total 

Score 

Standard 

Deviation 

z-

statistic 

Result 

MATmax 22.55ᵒC 81 56.051 1.47 Increasing/no stat significance 

a=0.10 

MATmin 9.93ᵒC -124 56.051 -2.194 Decreasing/significance a<0.05 

AR 625mm -113 56.051 -1.998 Decreasing/significance a<0.05 

 

In the analysis for the 2
nd

 normal climate data analysis in Figure 4.22 indicates that, the 

MATmax values illustrate an increasing trend. According to the year 1992 and the year 2000, 

the highest and lowest MATmax values were recorded respectively. According to the Mann-

Kendall test results in Table 4.3, states an increasing trend for the MATmax, but with no 

statistical significance at 90% confidence level and an average of 22.52˚C. The MATmin 

chart illustrated in Figure 4.23, suggest that there is a decreasing trend in MATmin values, 

with every year recording lower temperatures. The highest MATmin recorded was in 1992 

and 2005 and the lowest recorded MATmin was in 2003. Another significant note illustrates 

that there is a further decrease in MATmin values from 2005 to 2014. According to the 

Mann-Kendall test results in Table 4.3, the MATmin reported a decreasing trend and it is 

significant at 95% confidence level with a mean is 9.93˚C. The AR for the period of 1985 to 

y = -7.4438x + 767.75 
R² = 0.1576 

0

100

200

300

400

500

600

700

800

900

1000

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

R
ai

n
fa

ll 
(m

m
) 

Year 

Annual Rainfall 

Total Rainfall Linear (Total Rainfall)



91 
 

2014 indicates a decreasing trend according to Figure 4.24 and Table 4.3 respectively. From 

Figure 4.24, dictates that 1987, 1996 and 2001 had the highest rainfall. The years 2003 

recorded the lowest annual rainfall. The Mann- Kendall test results in Table 4.3 indicate a 

decreasing trend in AR with statistical significance at the 95% confidence level and an 

average of 625 mm. 
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4.2 Performance of Maximum likelihood and support vector machine on Landsat  

 

After describing the land cover using aerial photographs and delineating the land cover using 

ML and SVM classification algorithms, the following method, change detection was analysed 

to determine percentage area changes. From change detection techniques, the accuracy 

assessment was used to the categorization of pixels according to spectral data. This study also 

carried out a comparison of ML and SVM algorithm to determine the best pixel-based 

classification algorithm performs better on the Landsat satellite imagery that represents a 

hilly terrain. This was conducted using the Chi-square test. 

 

4.2.1 Maximum likelihood and support vector machine change detection for summer 

images 

 

Table 4.4: Change detection analysis for ML for the summer images of 1998 and 2007 

 F G SV SSV MSV BU Row 

Total 

Class 

Total 

Unclassified 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

F 55.842 4.356 0.875 1.018 0.000 0.052 100.000 100.000 

G 25.687 24.023 7.099 6.327 0.116 0.338 100.000 100.000 

SV 10.137 41.491 35.496 21.091 0.930 2.187 100.000 100.000 

SSV 7.646 10.485 23.526 63.418 0.814 1.562 100.000 100.000 

MSV 0.258 13.224 24.319 6.545 96.686 10.923 100.000 100.000 

BU 0.430 6.421 8.684 1.600 1.453 84.937 100.000 100.000 

Class  

Total 

100.000 100.000 100.000 100.00

0 

100.00

0 

100.000   

Class 

changes 

44.158 75.977 64.504 36.582 3.314 15.063   

Image 

difference 

-21.392 -57.027 -24.220 117.23

6 

170.75

6 

-3.815   

 

The change detection for the summer images of the year 1998 to 2007 are illustrated in Table 

4.4. The bold data illustrates no changes in the area belonging to the land cover class. As 

tabulated in Table 4.4, 55.84% of the forest area had no change, while 25.69% was converted 

to grassland and 10.14% to scattered vegetation. The result of the grassland areas indicates 
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that 24.02% remained the same, a major conversion of 41.94% to scattered vegetation, 

13.22% and 10.49% of the area exposed milk quartz and scattered vegetation and to shale 

rock with scattered vegetation respectively. Areas that were previously scattered vegetation, 

were exposed as the milk-quartz with scattered vegetation by 23.53% and 24.32% as shale 

rock with scattered vegetation, while 35.50% remained the same. Shale rocks with scattered 

vegetation areas remained as 63.49%, with an increase of scattered vegetation by 21.09%. 

Milky quartz rocks with scattered vegetation showed less significant changes because the 

original occurrences of the land cover as the area remained by 96.69%. Just as the milk quartz 

with scattered vegetation areas, the built-up land cover largely also had low change of its 

portion, as the area occupied by the land cover remained at 84.94%. 
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Table 4.5: Change detection analysis for SVM for the summer images of 1998 and 2007 

 F G SV SSV MSV BU Row 

Total 

Class 

Total 

Unclassified 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

F 59.502 5.467 1.031 0.216 0.054 0.275 100.000 100.000 

G 26.661 28.161 6.828 0.977 0.702 3.581 100.000 100.000 

SV 7.749 45.957 43.494 4.049 3.510 16.529 100.000 100.000 

SSV 5.996 6.805 26.926 93.806 1.458 11.570 100.000 100.000 

MSV 0.092 13.297 21.579 0.901 94.222 56.749 100.000 100.000 

BU 0.000 0.313 0.142 0.051 0.054 11.295 100.000 100.000 

Class  

Total 

100.000 100.000 100.000 100.000 100.000 100.000   

Class 

changes 

40.498 71.839 56.506 6.194 5.778 88.705   

Image 

difference 

-13.653 -45.587 -28.910 25.070 124.892 -81.267   

  

Table 4.5 illustrates support vector machine change detection analysis for the year 1998 and 

2007. According to Table 4.5, the forest land cover remained the same by 59.50% and 

26.66% of the original area was converted into grassland. The grassland area mostly changed 

to scattered vegetation by 45.96% and an exposure of milky quartz rocks with scattered 

vegetation by 13.30%, while the 28.16% of previous grassland area unaffected. 

Approximately, 43.49% of the previous area in 1998, remained as scattered vegetation while, 

26.93% and 21.58% of the original area exposed shale rocks with scattered vegetation and 

milk quartz rocks respectively. The shale with scattered vegetation, and milky quartz rocks 

with scattered vegetation show the areas were not largely converted to the other land covers 

in the study because the original areas as these areas remained intact by 93.81% and 94.22% 

respectively. Built-up land cover indicates that only 11.30% of the area remained as it was, 

while there was coverage of 56.75% of milky quartz rocks with scattered vegetation. 

.
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Table 4.6: Change detection analysis for ML for the summer images of 2007 and 2014 

 F G SV SSV MSV BU Row 

Total 

Class 

Total 

Unclassified 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

F 63.060 15.517 3.355 2.913 0.666 0.217 100.000 100.000 

G 25.246 41.797 21.046 12.420 12.218 2.707 100.000 100.000 

SV 9.290 28.997 41.765 24.774 11.875 4.101 100.000 100.000 

SSV 1.639 4.075 15.120 43.622 10.436 2.044 100.000 100.000 

MSV 0.219 5.329 14.793 14.697 54.907 2.558 100.000 100.000 

BU 0.546 4.284 3.922 1.573 9.899 88.373 100.000 100.000 

Class  

Total 

100.000 100.000 100.000 100.000 100.000 100.000   

Class 

changes 

36.940 58.203 58.235 56.378 45.093 11.627   

Image 

difference 

26.995 63.898 -9.521 -8.704 -14.795 -1.137   

 

Referring to Table 4.6, this table illustrates change detection values for the maximum 

likelihood classification algorithms for the years 2007 to 2014. The forest land cover 

remained by 63.06% and decreased to grassland by 25.25% and scattered vegetation by 

9.29%. According to the changes of the Grassland cover, 41.80% unaffected, while there was 

a shift into the scattered vegetation by 29.00% and 15.52% changed to forest land cover. For 

the scattered vegetation 41.77% remained as the original area, but 21.05% of original area 

changed to grassland, 15.12% and 14.79% exposed the shale rocks with scattered vegetation 

and milky quartz rocks with scattered vegetation land cover correspondingly. The shale rocks 

with scattered vegetation land cover result indicated that 43.62% remained the same, while 

there was an increase in the scattered vegetation, milky quartz rock with scattered vegetation 

and grassland respectively. The milky quartz rocks with scattered vegetation designated areas 

were unaffected as 54.91% with an increase of grassland by 12.22%, scattered vegetation by 

11.86% and exposure of 10.44% to shale rocks with scattered vegetation. Built-up land cover 

had 88.37% of the area unchanged. 
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Table 4.7: Change detection analysis for SVM for the summer images of 2007 and 2014 

 F G SV SSV MSV BU Row 

Total 

Class 

Total 

Unclassified 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

F 65.812 17.111 2.791 1.106 0.816 0.000 100.000 100.000 

G 21.047 36.944 15.984 2.091 8.283 11.765 100.000 100.000 

SV 9.829 35.426 46.049 10.890 18.271 5.882 100.000 100.000 

SSV 2.885 4.134 23.487 81.468 11.525 0.000 100.000 100.000 

MSV 0.427 4.814 11.345 4.455 58.343 8.824 100.000 100.000 

BU 0.000 1.570 0.344 0.020 2.761 73.529 100.000 100.000 

Class  

Total 

100.000 100.000 100.000 100.000 100.000 100.000   

Class 

changes 

34.188 63.065 53.951 18.532 41.657 26.471   

Image 

difference 

32.479 22.658 -6.760 0.568 -13.637 217.647   

 

From the SVM change detection analysis of the summer satellite images for the years 2007 

and 2014, Table 4.7 illustrates there is was 65.83% forest class area that was unchanged, 

while 21.05% was converted into the grassland. For the grassland area had 36.94% remains 

unaffected, while 35.43% of it shifted to scattered vegetation and 17.11% into forest land 

cover. Scattered vegetation land cover had 46.05% of the area as it was, while 23.49% was 

exposure to into shale rock with scattered vegetation, another 15.98% into grassland and 

exposure of 11.35% into milky quartz rocks with scattered vegetation. The shale rocks with 

scattered vegetation areas remained by 81.47%, and mostly covered by scattered vegetation. 

For the milky quartz rocks with scattered vegetation areal remained as 58.34% with 18.27% 

of the area was covered in scattered vegetation, 11.53% of the previous area was exposed as 

shale rocks with scattered vegetation and 8.28% covered in grassland. Built-up remained by 

73.53% with the previous area covered by 11.77% grassland, an exposure of milky quartz 

rocks with scattered vegetation by 8.82%. 
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4.2.2 Maximum likelihood and support vector machine change detection for winter 

images. 

 

Table 4.8: Change detection analysis for ML for the winter images of 1998 and 2007 

 F G SV SSV MSV BU Row 

Total 

Class 

Total 

Unclassified 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

F 30.531 4.312 0.213 0.984 0.000 0.000 100.000 100.000 

G 14.915 19.089 5.783 10.823 8.463 15.914 100.000 100.000 

SV 9.109 39.638 74.436 33.716 9.873 17.204 100.000 100.000 

SSV 44.645 22.531 4.543 18.104 0.776 7.527 100.000 100.000 

MSV 0.400 13.108 12.084 27.156 46.921 28.387 100.000 100.000 

BU 0.400 1.321 2.942 9.216 33.968 30.968 100.000 100.000 

Class  

Total 

100.000 100.000 100.000 100.000 100.000 100.000   

Class 

changes 

69.469 80.911 25.564 81.896 53.079 69.032   

Image 

difference 

-51.752 -27.434 -0.037 -27.681 9.144 379.570   

 

The change detection results for the ML of the winter satellite images of the years 1998 to 

2007 are illustrated in Table 4.8. Table 4.8 indicates that the forest land cover area was 

unaffected by 30.53% while there was exposure to shale rock with scattered vegetation by 

44.65% and 14.92% was converted to grassland. Within the grassland class 19.09% of the 

area was unchanged, 39.64% was converted to scattered vegetation. About 22.51% of shale 

rocks with scattered vegetation and 13.11% of milky quartz rocks with scattered vegetation 

was exposed from the original grassland area. For the scattered vegetation 74.44% in its 

previous state, while 12.08% and 5.78% of the area uncovered milky quartz rocks with 

scattered vegetation and shale rocks with scattered vegetation. The remaining 5.78% land 

cover increased as grassland cover. The 18.10% of the shale rocks with scattered vegetation 

remained unchanged, while 33.75% increased to scattered vegetation, Approximately, 

27.16% exposed the milky quartz rock with scattered vegetation, and the rest was converted 

into grassland by 10.82% and 9.22% to built-up. The milky quartz rocks with scattered 

vegetation land cover an unaffected area of about 46.92%, and most of it being converted to 
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33.97% built-up area. Within the built-up land cover class, 30.97% of the area was 

unchanged while, 28.39% of original area exposed the milky quartz rocks with scattered 

vegetation. About 17.20% was converted to scattered vegetation and 15.91% to grassland 

class.
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Table 4.9: Change detection analysis for SVM for the winter images of 1998 and 2007 

 F G SV SSV MSV BU Row 

Total 

Class 

Total 

Unclassifie

d 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

F 3.060 4.104 0.132 0.255 0.00 0.000 100.00

0 

100.00

0 

G 1.665 25.125 8.366 7.849 2.051 2.247 100.00

0 

100.00

0 

SV 0.527 31.932 43.041 29.197 12.380 2.247 100.00

0 

100.00

0 

SSV 94.677 25.976 18.101 22.019 1.706 5.618 100.00

0 

100.00

0 

MSV 0.071 12.763 30.124 40.079 77.597 35.955 100.00

0 

100.00

0 

BU 0.000 0.100 0.237 0.602 6.267 53.933 100.00

0 

100.00

0 

Class  

Total 

100.00

0 

100.00

0 

100.00

0 

100.00

0 

100.00

0 

100.00

0 

  

Class 

changes 

96.940 74.875 56.959 77.81 22.403 46.067   

Image 

difference 

-95.545 -30.681 11.023 106.15

9 

38.310 362.92

1 

  

  

Table 4.9 provides results for the SVM change detection analysis of the winter satellite 

images of the years 1998 and 2007. According to the forest land cover class, approximately 

3.06% of the area was unaffected, while 94.68% was mostly converted into shale rock with 

scattered vegetation. About 25.13% of grassland area was unchanged. Approximately 31.93% 

was converted to scattered vegetation, while 25.98% and 12.76% of the area exposed the 

shale rocks with scattered vegetation and milky quartz rock with scattered vegetation 

respectively. Within the scattered vegetation class, 43.04% of the area was unaffected, but 

30.12% and 18.11% exposed the milk quartz with scattered vegetation and shale rocks with 

scattered vegetation correspondingly. Shale rocks with scattered vegetation area remained 

unaffected by 22.02% as a larger percentage of the area exposed 40.08% as milky quartz rock 

with scattered vegetation and was converted into 29.20% of scattered vegetation. Whereas 

77.60% remained as milky quartz rocks with scattered vegetation and 12.38% was converted 

into scattered vegetation and 6.27% into the built-up land cover class. For the built-up land 

cover class 53.93% remained unchanged, while 35.96% exposed the milky quartz rocks with 

scattered vegetation land cover class. 
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Table 4.10: Change detection analysis of ML for the winter images of 2007 and 2014 

 F G SV SSV MSV BU Row 

Total 

Class 

Total 

Unclassified 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

F 73.859 13.321 0.602 9.977 0.000 0.090 100.000 100.000 

G 7.054 36.080 4.970 5.986 6.052 17.758 100.000 100.000 

SV 6.639 22.760 23.010 50.295 28.236 5.471 100.000 100.000 

SSV 12.448 1.629 61.986 29.977 1.680 2.377 100.000 100.000 

MSV 0.000 24.916 8.904 3.084 60.930 58.879 100.000 100.000 

BU 0.000 1.294 0.528 0.680 3.101 15.426 100.000 100.000 

Class  

Total 

100.000 100.000 100.000 100.000 100.000 100.000   

Class 

changes 

26.141 63.920 76.990 70.023 39.070 84.574   

Image 

difference 

91.079 2.204 -48.769 243.900 22.593 -73.677   

 

Table 4.10 illustrates change detection results for the ML classification of the winter satellite 

images for the years 2007 and 2014. In Table 4.10, 73.86% of the forest land area was 

unaltered, while 12.45% of the original area exposed the shale rocks with scattered 

vegetation. Approximately, 36.08% of the area remained unaffected, although 24.92% of the 

original area exposed milky quartz rocks with scattered vegetation. In the same token, 

22.76% and 13.32% of the area was converted to scattered vegetation and forest land cover 

respectively. While 23.01% of scattered vegetation area remained unaffected, 61.99% of the 

original area exposed the shale rocks with scattered vegetation land cover type. For the shale 

rocks with scattered vegetation class, 29.98% remained as it was originally, 50.30% and 

9.98% was converted into scattered vegetation and forest land cover respectively. Milk quartz 

with scattered vegetation shows that 60.93% remained the same, while 28.24% was 

converted into scattered vegetation. Built-up land cover class illustrates that 15.43% of the 

area was unaffected, while 58.58% exposed the milky quartz rocks with scattered vegetation 

and 17.76% was covered in grassland. 
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Table 4.11: Change detection analysis of SVM for the winter images of 2007 and 2014 

 F G SV SSV MSV BU Row 

Total 

Class 

Total 

Unclassified 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

F 80.831 20.866 0.735 1.831 0.014 0.000 100.000 100.000 

G 3.195 32.708 9.005 1.280 9.436 7.524 100.000 100.000 

SV 5.112 31.986 53.223 15.341 18.678 1.456 100.000 100.000 

SSV 10.863 2.671 8.934 80.649 3.118 1.456 100.000 100.000 

MSV 0.000 11.697 28.033 0.898 66.690 38.350 100.000 100.000 

BU 0.000 0.072 0.071 0.000 2.065 51.214 100.000 100.000 

Class  

Total 

100.000 100.000 100.000 100.000 100.000 100.000   

Class 

changes 

19.169 67.292 46.777 19.351 33.310 48.786   

Image 

difference 

135.463 20.505 28.555 -11.725 -11.376 -11.650   

 

The details in Table 4.11 illustrated the change detection for the SVM classification for the 

winter satellite images of the year 2007 to 2014. According to this analysis, 80.83% of the 

forest area remained as the original area while, 10.86% was exposed shale rock with scattered 

vegetation. Grassland area was unaffected by 32.71% as 31.99% changed to scattered 

vegetation, 20.87% to forest land cover and exposed 11.70% of the area as shale rocks with 

scattered vegetation. According to the results, 53.23% of scattered vegetation area was 

unaffected, while 28.03% of the area exposed the milky quartz rocks with scattered 

vegetation. Shale rocks with scattered vegetation results indicate that 80.65% of the area was 

unchanged, while 15.34% changed to scattered vegetation. About 66.69% of milky quartz 

rocks with scattered vegetation remained as it was while 18.68% and 9.44% was covered in 

scattered vegetation and grassland respectively.  Built-up land cover indicates that 51.21% of 

the area was originally the same, while 38.35% was exposure of milky quartz rocks with 

scattered vegetation. 
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4.2.3 Annual rate of change for satellite image change detection 

The change detection results obtained in ENVI classic provide the percentage changes. The 

annual rate of change outcome calculated using the percentage changes and the difference in 

years. Annual rate of change is important when determining a positive or negative land cover 

change in the area. The Equation (9) used in this study to determine the annual rate of change 

and the results are listed in Table 4.12 to Table 4.15 .  

  1rate = × ln A - A
2 1t - t

2 1
.

 
 
 

  (9) 

Table 4.12: Annual rate of LCC overall percentage areal remain and changes of the summer 

images 1998-2007 

 Maximum likelihood Support vector machines 

Land Cover Type Remain Change △change Remain Change △change 

F 55.842 44.158 -0.065 40.498 59.502 -0.100 

G 24.023 75.977 -0.158 28.161 71.839 -0.141 

SV 35.496 64.504 -0.115 43.494 56.506 -0.093 

SSV 63.418 36.582 -0.051 93.806 6.194 -0.007 

MSV 96.686 3.314 -0.004 94.22 5.778 -0.007 

BU 84.937 15.063 -0.018 11.295 88.705 -0.242 

 

Table 4.12 illustrates the annual rate of changes for the ML and SVM classifications for the 

summer satellite images for the years 1998 and 2007. Both classification algorithms 

demonstrate that there is a negative change in the areas. The grassland and the scattered 

vegetation land cover have the largest change in ML classification.  In SVM classification, it 

is depicted that built-up and grassland had the largest land cover changes in the area. Milky 

quartz rock with scattered vegetation and built-up land cover had the lowest change and the 

lowest annual rate of change in ML classification. While SVM classification results illustrate, 

that shale with scattered vegetation and milk quartz had the lowest percentage areal change 

and lowest annual rate of change.  
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Table 4.13: Annual rate of LCC overall percentage areal remain and changes of the summer 

images 2007-2014 

 Maximum Likelihood Support vector machines 

Land Cover Type Remain Change △change Remain Change △change 

F 63.06 36.94 -0.066 65.812 34.188 -0.060 

G 41.797 58.203 -0.125 36.944 63.056 -0.142 

SV 41.765 58.235 -0.125 46.049 53.951 -0.111 

SSV 43.622 56.378 -0.119 81.468 18.532 -0.029 

MSV 54.907 45.093 -0.086 58.343 41.657 -0.077 

BU 88.373 11.627 -0.018 73.529 26.471 -0.044 

 

The annual rate of change analysis for ML and SVM summer satellite images of years 2007 

and 2014 are in Table 4.13. It illustrates, that both ML and SVM analysis depict negative 

changes. The annual rate of change of the land covers was lower, than the change detection 

results of the years 1998 to 2007. For both ML and SVM classification, the grassland and 

scattered vegetation had the highest percentage areal change. For the shale with scattered 

vegetation, the ML classification had a higher rate of change compared to SVM analysis. 

Table 4.14: Annual rate of LCC, overall percentage areal remain and changes of the winter 

images 1998-2007 

 Maximum likelihood Support vector machines 

Land Cover Type Remain Change △change Remain Change △change 

F 30.531 69.469 -0.132 3.06 96.94 -0.387 

G 19.089 80.911 -0.184 25.125 74.875 -0.153 

SV 74.436 25.564 -0.033 43.041 56.959 -0.094 

SSV 18.104 81.896 -0.190 22.019 77.981 -0.168 

MSV 46.921 53.079 -0.084 77.597 22.403 -0.029 

BU 30.968 69.032 -0.130 53.933 46.067 -0.069 

 

Annual rate of change for the winter satellite images of the years 1998 to 2007 are illustrated 

in Table 4.14.The overall annual changes higher compared to the classifications conducted on 

the summer images. Grassland and shale with scattered vegetation had the highest areal and 

annual rate of change in ML classification. For the SVM classification it is illustrated that 

forest, grassland and shale with scattered vegetation had the highest areal change. 
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Table 4.15: Annual rate of LCC overall percentage areal remain and changes of the winter 

images 2007-2014 

 Maximum likelihood Support vector machines 

Land Cover Type Remain Change △change Remain Change △change 

F 73.859 26.141 -0.043 80.831 19.169 -0.030 

G 36.08 63.92 -0.146 32.708 67.292 -0.160 

SV 23.01 76.99 -0.230 53.223 46.77 -0.090 

SSV 29.977 70.023 -0.172 80.649 19.351 -0.030 

MSV 60.93 39.07 -0.071 66.69 33.31 -0.058 

BU 15.426 84.574 -0.267 51.214 48.786 -0.096 

 

Table 4.15 depicts the results of the annual rate of change analysis for ML and SVM 

classification of the winter satellite images of the years 2007 to 2014. Quite distinguishingly, 

the maximum likelihood shows that most of the land covers had a higher annual rate of 

change per annum compared to SVM classification. Illustrated in this table, built-up and 

scattered vegetation have the highest annual rate of change, while grassland and built-up had 

the highest annual rate of change in SVM classification. 

4.2.4 Post classification results and chi-square test for the best classification algorithm  

 

4.2.4.1 Post classification results 

In post classification analysis, the analysis is dependent on the ground truth pixels. This has 

been used to determine how accurate a pixel is at classifying as the land cover class, a result 

known as the producer accuracy. At the same time, determining the probability a land cover 

class is represented by the pixel in the study at the time of classification at a given time 

period and this is known as the user accuracy. The producer accuracy is calculated as the 

exact pixels representing a land cover class over the total pixels selected for the land cover 

class. The user accuracy is represented as the exact pixels representing the land cover divided 

by the total pixels that are said to represent the land cover class. Examples of Producer and 

User accuracy calculations are represented in Equation (10) and Equation  (11) for the land 

cover classes in the error matrix table for both ML and SVM classification algorithms.  

 producer accuracy 100.
( )

a

c

a

Total a
    (10) 

 
r

user accuracy 100.
Total a

a

a
    (11) 
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Table 4.16: Error matrix for February 1998 ML 

Classes F G SV SSV MSV BU Totals User 

Accuracy 

F 165 4 0 0 0 0 169 97.63 

G 1 145 5 0 0 0 151 96.03 

SV 0 0 77 21 0 0 98 78.57 

SSV 0 0 0 120 0 0 120 100.00 

MSV 0 0 0 0 229 11 240 95.42 

BU 0 0 0 0 19 59 80 73.75 

Total 166 149 82 143 248 70 858  

Producer 

accuracy 

99.40 97.32 93.90 83.92 92.34 84.29   

Percentage 

Accuracy 

92.6573        

Kappa 

Coefficient  

0.9092        

 

Table 4.16 indicates that shale rocks with scattered vegetation and built-up had lower 

producer accuracies, while scattered vegetation and built-up point out low user accuracy 

percentages. Most of the pixels selected to classify shale rocks with scattered vegetation land 

cover had 21 pixels left out and were classified as scattered vegetation in the producer 

accuracy analysis, and for the built-up land cover it said to represent milky quartz rocks with 

scattered vegetation. According to the user accuracy, scattered vegetation had additional 

pixels included to the selected pixels, which represented shale rocks with scattered 

vegetation, and for the built-up class was milky quartz rocks with scattered vegetation. 
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Table 4.17: Error matrix for February 1998 SVM 

Classes F G SV SSV MSV BU Totals User 

Accuracy 

F 166 4 0 0 0 0 170 97.65 

G 0 145 2 0 0 0 149 97.32 

SV 0 0 80 24 1 0 105 76.19 

SSV 0 0 0 119 0 0 119 100.00 

MSV 0 0 0 0 242 12 254 95.28 

BU 0 0 0 0 5 56 61 91.80 

Total 166 149 82 143 248 70 858  

Producer 

accuracy 

100.00 97.32 97.56 83.22 97.58 80.00   

Percentage 

Accuracy 

94.1725        

Kappa 

Coefficient  

0.9276        

 

The error matrix for the SVM classification for the year 1998 in Table 4.17 illustrates that 

shale rock with scattered vegetation and built-up land cover class had the lowest producer 

accuracy. While scattered vegetation had a lower user accuracy for SVM classification. 

Excluded pixels within the shale rocks with scattered vegetation classification for the 

producer accuracy, were misplaced in the scattered vegetation class. For the built-up land 

cover class, the excluded pixels are misplaced in milky quartz rocks with scattered vegetation 

categories. In the user accuracy, some of the scattered vegetation category pixels that were 

incorrectly classified to shale rocks with scattered vegetation and milky quartz rock with 

scattered vegetation categories. 
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Table 4.18: Error matrix for July 1998 ML 

Classes F G SV SSV MSV BU Totals User 

Accuracy 

F 72 24 1 3 0 0 100 72.00 

G 0 60 4 0 0 0 64 93.75 

SV 0 1 51 9 0 0 61 83.61 

SSV 0 0 0 162 0 0 162 100.00 

MSV 0 0 6 0 150 14 170 88.24 

BU 0 0 1 0 1 59 61 96.72 

Total 72 85 63 174 151 73 618  

Producer 

accuracy 

100.00 70.59 80.95 93.10 99.34 80.82   

Percentage 

Accuracy 

89.6440        

Kappa 

Coefficient  

0.8712        

 

For the ML classification of the July 1998 satellite imagery, the error matrix in the categories 

of Table 4.18 indicate that grassland, scattered vegetation and built-up land cover class had 

lower producer accuracies. The forest and scattered vegetation had lower user accuracies. 

Most of the pixels left out in the producer accuracy for the grassland were placed in forest 

land cover category. For the scattered vegetation it was mostly distributed to grassland and 

milky quartz rock with scattered vegetation category. In the built-up producer accuracy, it is 

noted that the pixels left out were placed in the milky quartz rock with scattered vegetation 

category. In the user accuracy, it is noted that the forest land cover class had incorrectly 

classified pixels to grassland and shale rock with scattered vegetation. As for the scattered 

vegetation category it is noted that the incorrectly placed pixels were found in the shale-rock 

with scattered vegetation category. 
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Table 4.19: Error matrix for July 1998 SVM 

Classes F G SV SSV MSV BU Totals User 

Accuracy 

F 70 24 0 1 0 0 95 73.68 

G 2 59 1 0 0 0 62 95.16 

SV 0 0 41 2 0 0 45 91.11 

SSV 0 0 0 171 0 0 171 100.00 

MSV 0 0 21 0 150 17 188 79.79 

BU 0 0 0 0 1 56 57 98.25 

Total 72 85 63 174 151 73 618  

Producer 

accuracy 

97.22 69.41 65.08 98.28 99.34 76.71   

Percentage 

Accuracy 

88.5113        

Kappa 

Coefficient  

0.8560        

 

In the SVM classification accuracy assessment analysis listed in Table 4.19, it is noted that 

grassland, scattered vegetation and built-up land cover class had very low producer 

accuracies, while forest and milky quartz rock and scattered vegetation category had lower 

user accuracies. Producer accuracy for the grassland category suggests that the pixels left out 

in this category were placed in forest category, for the scattered vegetation and built-up 

category the pixels that were left out were grouped into the milky quartz rocks with scattered 

vegetation category. In the user accuracy, pixels which were misclassified for the forest 

category were placed into grassland category, and the milky quartz rocks with scattered 

vegetation category had pixels incorrectly classified as scattered vegetation and built-up land 

cover class. 
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.Table 4.20: Error matrix for January 2007 ML 

Classes F G SV SSV MSV BU Totals User 

Accuracy 

F 156 2 0 0 0 0 158 98.73 

G 6 119 0 0 0 0 125 95.20 

SV 0 0 54 15 0 0 69 78.26 

SSV 0 0 4 164 0 0 168 97.62 

MSV 0 0 0 1 118 5 124 95.16 

BU 0 7 1 0 1 56 65 86.15 

Total 162 128 59 180 119 61 709  

Producer 

accuracy 

96.30 92.97 91.53 91.11 99.16 91.80   

Percentage 

Accuracy 

94.0762        

Kappa 

Coefficient  

0.9270        

 

Maximum likelihood classification accuracy assessment for the January 2007 in Table 4.20, 

displays that all the producer accuracies were above 90% which indicates better accuracy 

assessment compared to the preceding year. The user accuracy however shows that the 

scattered vegetation and built-up up category had lower accuracies. Analysis of the user 

accuracy for scattered vegetation, dictates that most inappropriately classified pixels were 

laced in shale-rock with scattered vegetation group. While for built-up it was grassland 

category.
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Table 4.21: Error matrix for January 2007 SVM 

Classes F G SV SSV MSV BU Totals User 

Accuracy 

F 157 2 0 0 0 0 159 98.74 

G 5 124 1 0 0 0 130 95.38 

SV 0 0 51 17 0 0 68 75.00 

SSV 0 0 7 163 0 0 170 95.88 

MSV 0 0 0 0 119 13 134 88.81 

BU 0 0 0 0 0 48 48 100.00 

Total 162 128 59 180 119 61 709  

Producer 

accuracy 

96.91 96.88 86.44 90.56 100.00 78.69   

Percentage 

Accuracy 

93.3709        

Kappa 

Coefficient  

0.9181        

 

The SVM accuracy assessment analysis for the satellite images for January 2007 indicates 

that scattered vegetation and built-up had lower user accuracies while the user accuracies for 

the scattered vegetation and milky quartz rocks with scattered vegetation are lower as per 

Table 4.21. Most of the scattered vegetation pixels placed some pixels into the shale rocks 

with scattered vegetation category in the producer accuracy. The built-up pixels were 

categorised in the milky quartz rock with scattered vegetation category for the producer 

accuracy. For the user accuracy assessment, the misclassified pixels of the scattered 

vegetation were in shale rocks with scattered vegetation category, as for the milky quartz 

rocks with scattered vegetation category, added pixels were for the built-up category. 
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Table 4.22: Error matrix for July 2007 ML 

Classes F G SV SSV MSV BU Totals User 

Accuracy 

F 94 37 3 3 0 0 137 68.61 

G 5 40 4 5 4 0 58 68.97 

SV 0 0 53 26 4 0 83 63.86 

SSV 0 0 2 145 12 0 159 91.19 

MSV 0 0 0 2 155 5 162 95.68 

BU 0 0 0 0 3 41 44 93.18 

Total 99 77 62 181 178 46 643  

Producer 

accuracy 

94.95 51.95 85.48 80.11 87.08 89.13   

Percentage 

Accuracy 

82.1151        

Kappa 

Coefficient  

0.7764        

 

The ML accuracy assessment for July 2007 imagery in Table 4.22 displays that grassland had 

the lowest accuracy followed by the shale rocks with scattered vegetation. The land cover 

classes with the lowest user accuracies were forest, grassland and scattered vegetation.  Pixels 

left out in the producer accuracy for the grassland category were placed into forest land 

cover, for shale rocks with scattered vegetation were categorized in scattered vegetation and 

for the scattered vegetation class it was the pixels were in grassland and shale rocks with 

scattered vegetation land cover class. The user accuracies for forest shows additional pixels 

into this category were mostly from grassland, in grassland land cover class it was across all 

the land cover classes except for built-up, and for the scattered vegetation class most of them 

were misclassified as shale rocks with scattered vegetation. 
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Table 4.23: Error matrix for July 2007 SVM 

Classes F G SV SSV MSV BU Totals User 

Accuracy 

F 97 29 0 0 0 0 126 76.98 

G 2 48 3 2 5 0 60 80.00 

SV 0 0 45 24 7 0 76 59.21 

SSV 0 0 6 152 8 0 166 91.57 

MSV 0 0 8 3 158 5 174 90.80 

BU 0 0 0 0 0 41 41 100.00 

Total 99 77 62 181 178 0 643  

Producer 

accuracy 

97.98 62.34 72.58 83.98 88.76 89.13   

Percentage 

Accuracy 

84.14%        

Kappa 

Coefficient  

0.8005        

 

The error matrix in Table 4.23 for the SVM July 2007 image notes that the lowest producer 

accuracies were distinguished in the following classes: grassland, scatted vegetation and the 

shale rocks with scattered vegetation class. The lowest user accuracies are from the forest, 

grassland and scattered vegetation, where scattered vegetation provides the lowest of the 

three. Pixels within the producer accuracy for the grassland class were placed added to the 

forest category. In scattered vegetation class the pixels were distributed across all the land 

cover classes, while in the shale rocks with scattered vegetation category, most of them are 

present in the scattered vegetation category. For the forest land cover class in the user 

accuracy analysis, the misrepresented pixels were seen in the grassland land cover class. In 

the grassland category it is across all the land cover types, and in the scattered vegetation 

category it is mostly represented in the shale rocks with scattered vegetation followed by the 

milky quartz with scattered vegetation category. 
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Table 4.24: Error matrix for January 2014 ML 

Classes F G SV SSV MSV BU Totals User 

Accuracy 

F 297 10 0 0 0 0 307 96.74 

G 11 174 17 0 0 0 202 86.14 

SV 0 0 57 4 0 0 61 93.44 

SSV 0 0 0 221 0 0 221 100.00 

MSV 0 0 0 1 225 0 226 99.56 

BU 0 0 0 0 27 53 80 66.25 

Total 308 184 74 226 252 53 1097  

Producer 

accuracy 

96.43 94.57 77.03 97.79 89.29 100.00   

Percentage 

Accuracy 

93.6190        

Kappa 

Coefficient  

0.9197        

 

Maximum likelihood accuracy assessment analysis for January 2014 in Table 4.24 indicates 

that the lowest producer accuracy recorded in for the scattered vegetation category, while 

built-up had the lowest user accuracy. Most of the pixels belonging to the scattered 

vegetation class were placed in the grassland category. For the user accuracy, the 

misrepresented pixels in the built-up category were from the milky quartz rocks with 

scattered vegetation. 
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Table 4.25: Error matrix for January 2014 SVM 

Classes F G SV SSV MSV BU Totals User 

Accuracy 

F 303 33 0 0 0 0 336 90.18 

G 5 151 3 0 0 0 159 94.97 

SV 0 0 70 3 0 0 73 95.89 

SSV 0 0 1 223 0 0 224 99.55 

MSV 0 0 0 0 228 0 228 100.00 

BU 0 0 0 0 24 53 77 68.83 

Total 308 184 74 226 252 53 1097  

Producer 

accuracy 

98.38 82.07 94.59 98.67 90.48 100.00   

Percentage 

Accuracy 

93.7101        

Kappa 

Coefficient  

0.9206        

 

For the SVM machine accuracy assessment for the January 2014 images in Table 4.25, 

indicates that the grassland class had the lower producer accuracy, but it remains the same for 

the built-up class which also represents lower user accuracy as in maximum likelihood 

classification.  Grassland had a lower producer accuracy due to pixels from this group were 

removed and put into the forest category. Built-up had a lower accuracy, because 

misclassified pixels were in the milky quartz rocks with scattered vegetation category. 
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Table 4.26: Error matrix for July 2014 ML 

Classes F G SV SSV MSV BU Totals User 

Accuracy 

F 133 2 0 1 0 0 136 97.79 

G 0 11 2 1 0 0 114 97.37 

SV 0 0 61 79 0 0 140 43.57 

SSV 0 0 0 68 0 0 68 100.00 

MSV 0 0 17 0 162 0 179 90.50 

BU 0 0 0 0 2 50 52 96.15 

Total 133 113 80 149 164 50 689  

Producer 

accuracy 

100.00 98.23 76.25 45.64 98.78 100.00   

Percentage 

Accuracy 

84.9057        

Kappa 

Coefficient  

0.8165        

 

Table 4.26, represents the ML accuracy assessment for July 2014, indicates that shale rocks 

with scattered vegetation category had lower producer accuracy, and scattered vegetation had 

lower producer and user accuracy. Shale rocks with scattered vegetation producer accuracy 

points out that the remaining   pixels were distributed into the scattered vegetation category. 

For the scattered vegetation producer accuracy, they were mostly placed in the milky quartz 

rock with scattered vegetation category. In the user accuracy, most misplaced pixels for the 

scattered vegetation belonged to shale rock with scattered vegetation category. 
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Table 4.27: Error matrix for July 2014 SVM 

Classes F G SV SSV MSV BU Totals User 

Accuracy 

F 133 5 0 0 0 0 138 96.38 

G 0 107 1 0 0 0 108 99.07 

SV 0 1 51 46 0 0 98 52.04 

SSV 0 0 0 102 0 0 102 100.00 

MSV 0 0 28 1 159 1 189 84.13 

BU 0 0 0 0 5 49 54 90.74 

Total 133 113 80 149 164 50 689  

Producer 

accuracy 

100.00 94.69 63.75 68.46 96.95 98.00   

Percentage 

Accuracy 

87.2279        

Kappa 

Coefficient  

0.8435        

 

The SVM accuracy assessment for July 2014 in Table 4.27, indicates that scattered 

vegetation and shale rocks with scattered vegetation classes had the lowest producer 

accuracies.  As for the lowest user accuracies, the scattered vegetation and milky quartz rocks 

with scattered vegetation displayed low results. Scattered vegetation producer accuracy 

indicates most removed pixels were placed in the milky quartz rock with scattered vegetation 

category. Shale rocks with scattered vegetation class, displays that the removed pixels were 

paced in the scattered vegetation category. Scattered vegetation user accuracy shows 

misplaced pixels that represented this class belonged to the shale rocks with scattered 

vegetation class. For the milky quartz rock with scattered vegetation category it is noted that 

the erroneous pixels represented scattered vegetation. 

The overall accuracy percentages and the kappa coefficient are represented in Figure 4.25 

where the summer images display higher overall accuracy percentages than winter images. 

Maximum likelihood classification overall accuracy is higher for the years July 1998, January 

2007, while the other years indicate that support vector machine had a higher overall 

accuracy. 
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Figure 4.25: Graph of overall accuracy percentages and Kappa coefficients 

 

4.2.4.2 Chi-square test for the best classification algorithm  

To determine the best classification algorithm for this study area, the Chi-square test was 

used.  This was conducted using the producer and user accuracy assessment values of the ML 

(parametric) and SVM (non-parametric) classification algorithms for the satellite images 

studied. Calculation was done in Microsoft excel and the Chi-square distribution table was 

used to determine the p-value. This is illustrated in:  

Ho= Non-parametric classification algorithms perform better than parametric classification on 

a hilly landscape. 

Ha= Parametric and non-parametric classification algorithms perform the same on a hill 

terrain. 

Kappa Coefficient Percentage Kappa Coefficient Percentage

Maximum Likelihood Support Vector Machine

Feb-98 0.9092 92.66% 0.9276 94.17%

Jan-07 0.927 94.08% 0.9181 93.37%

Jul-98 0.8712 89.64% 0.856 88.51%

Jul-07 0.7764 82.12% 0.8005 84.14%

Jan-14 0.9197 93.62% 0.9206 93.71%

Jul-14 0.8165 84.91% 0.8435 87.23%
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Table 4.28: Chi-square test results for the producer accuracy for ML and SVM classification 

Producer Accuracy 

    =0.05 Degree of 

freedom=5 

Season Year Chi-square test p-value 

 Feb 1998 0.312928 0.995 

Summer Jan 2007 1.080317 0.975 

 Jan 2014 2.639143 0.20 

Winter July 1998 1.680409 0.20 

 July 2007 2.1149 0.20 

 July 2014 5.774025 0.20 

 

Table 4.29: Chi-square test results for the user accuracy for ML and SVM classification 

User Accuracy 

    =0.05 Degree of 

freedom=5 

Season Year Chi-square test p-value 

 Feb 1998 1.755836 0.20 

Summer Jan 2007 4.085316 0.20 

 Jan 2014 0.695041 0.975 

 July 1998 0.776236 0.975 

Winter July 2007 7.762326 0.975 

 July 2014 1.15557 0.975 

 

 

Table 4.29 show there is no statistical significance in the performance of both ML and SVM 

classification algorithms within HartRAO. That means the overall accuracy illustrates that 

both perform well on the landscape. 
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4.3  Discussion 

 

Figure 4.6 indicates the NDVI results were slightly higher for the 1998 and 2007 summer and 

winter images, while in calculation of the 2014 satellite images suggest EVI values are higher 

for both summer and winter as demonstrated in Figure 4.7. The high NDVI and EVI values 

can be attributed to the increase in above-ground biomass amount of annual rainfall received 

in the area for whole year and the lower MATmax and MATmin. For the vegetation analysis, 

the NDVI and EVI values of winter images are lower than summer values. This is influenced 

by cold dry winters contributes to reduction of above ground biomass. 

Analysis of NDBaI indicates the presence of bare-land across the study area; this provides the 

opposite information to vegetation indices. If NDBaI has lower maximum values vegetation 

indices have higher maximum values. In Figure 4.7, NDBaI values range from 0 to 0.3 

demonstrating presence of scattered vegetation in the area. For the January and July 2014 

imagery NDBaI values of zero, demonstrating the area has presence of vegetation. The 

opposite says for the NDBI value as suggested that there is less built-up then the NDBI 

values will be low. In this study, the NDBI values are greater than to NDBaI and almost as 

close to the values in vegetation indices. After conducting field analysis and assessment, 

some areas were dominated by scattered vegetation, shale and milky quartz rocks. These 

rocks contribute to impervious surfaces in some land cover change studies. The presences of 

these rocks have contributed to the higher NDBI values especially during winter due to their 

reflective properties. In 2007 it is noted that NDBI was highest, this could result to more 

exposed bare-ground due to slow vegetation growth because of a drop in total annual rainfalls 

experienced years prior to the period of study according to Figure 4.24.  

The results of the field assessments, aerial photograph interpretation and image ratioing were 

used to assist in delineating land cover classes in the study and to conduct LCC analysis 

through image classification. The use of supervised image classification was necessary to 

assist in determining the changes of the land cover in the area. The use of two classification 

algorithms and performance within the land cover classes were important for change 

detection. Change detection conducted for both ML and SVM image classification depict that 

most areas were converted to forest, grassland and scattered vegetation. Some change 

detection exposed areas as milky quartz and shale rocks with scattered vegetation land 

covers. While some areas exposed areas as built-up. For the summer images ML 

classification mostly picked up built-up land cover in areas that were represented as scattered 

vegetation, while support vector machine classified most areas with grassland cover as 
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scattered vegetation as illustrated from Figure 4.16 to Figure 4.18. Winter image analysis 

illustrates the ML picked up more forest, grassland cover types. While SVM analysis replaces 

the built-up land cover picked in maximum likelihood with milky quartz rocks with scattered 

vegetation land cover. Shale rocks with scattered vegetation land cover remained consistent 

as illustrated in Figure 4.19 to Figure 4.21.  

 

 

Figure 4.26: Class remains and changes of ML and SVM classification for 1998 to 2007 

summer images 

Change detection of 1998 and 2007 summer images from Table 4.4 , Table 4.5 and Figure 

4.26  of the ML and SVM analysis, points out that the shale rock with scattered vegetation 

land cover, and built-up land cover have a slightly different change detection percentage 

according to the values, compared to the other land covers. It is undeniably that grassland had 

a large change in areal percentage followed by scattered vegetation and milky quartz rocks 

with scattered vegetation. 

F G SV SSV MSV BU

ML Remain 55.842 24.023 35.496 63.418 96.686 84.937

SVM Remain 40.498 28.161 43.494 93.806 94.22 11.295

ML Change 44.158 75.977 64.504 36.582 3.314 15.063

SVM Change 40.498 71.839 56.506 6.194 5.778 88.705
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Figure 4.27: Class remains and changes of ML and SVM classification for 2007 to 2014 

summer images 

It is eminent within ML and SVM from Table 4.6 and Table 4.7, that forest land cover and 

scattered vegetation land cover gave values close to each other in terms of areal remains, 

compared to the rest of the land covers. In terms of land cover shifts from the primarily 

analyzed land covers, changes were similar in terms of percentage the type of land cover 

except for built-up in both classification analysis according to Table 4.6, Table 4.7 and Figure 

4.27. An important aspect is noted for the both classification algorithms for summer season 

satellite imagery used, is that the built-up and shale rocks with scattered vegetation land 

cover classes have a different percentage areal remains within the classification algorithms. 

For ML it shows that the land cover has shifted to a different land cover class for built-up and 

shale rocks with scattered vegetation and scattered vegetation land cover types, while in 

support vector machine it shows a large percentage of the area has remained. 

F G SV SSV MSV BU

ML Remain 63.06 41.797 41.765 43.622 54.907 88.373

SVM Remain 65.812 36.944 46.049 81.468 58.343 73.529

ML Change 36.94 58.203 58.235 56.378 45.093 11.627

SVM Change 34.188 63.056 53.951 18.532 41.657 26.471

0

10

20

30

40

50

60

70

80

90

100
P

e
rc

e
n

ta
ge

 (
%

) 

Change Detection for ML and SVM 2007 and 
2014 summer images  



122 
 

 

Figure 4.28: Class remains and changes of ML and SVM classification for 1998 to 2007 

winter images 

Change detection analysis in Table 4.8 and Table 4.9 for the 1998 and 2007 winter images 

through ML and SVM shows a great difference with the percentage remains depicting forest, 

scattered vegetation, milky quartz rocks with scattered vegetation and built-up classes. The 

classification class changes of the land covers were the same for four land cover classes 

except for the milky quartz rocks with scattered vegetation and built-up land cover classes 

illustrated in Figure 4.28, where the percentage levels were not consistent as the other land 

cover class changes. 

F G SV SSV MSV BU

ML Remain 30.531 19.089 74.436 18.104 46.921 30.968

SVM Remain 3.06 25.125 43.041 22.019 77.597 53.933

ML Change 69.469 80.911 25.564 81.896 53.079 69.032

SVM Change 96.94 74.875 56.959 77.981 22.403 46.067
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Figure 4.29: Class remains and changes of ML and SVM classification for 2007 to 2014 

winter images 

In ML and SVM classification for 2007 and 2014 winter images as displayed in Table 4.10, 

Table 4.11 and Figure 4.29, demonstrates that the scattered vegetation, shale rocks with 

scattered vegetation and built-up land cover classes had differing class remains within the 

percentage scale. All the land covers had the same shift in changes within the land cover 

classes except for scattered vegetation. ML classification indicates that the previously 

scattered vegetation area was mostly converted into shale rocks with scattered vegetation and 

grassland while in SVM classification it was milky quartz rocks with scattered vegetation 

with grassland. For all the years used in change detection study, with both algorithms it 

shows that the scattered vegetation, shale rocks with scattered vegetation, and built-up land 

cover class shows inconsistency when mapping change detection statistics. 

 

 

 

 

 

F G SV SSV MSV BU

ML Remain 73.859 36.08 23.01 29.977 60.93 15.426

SVM Remain 80.831 32.708 53.223 80.649 66.69 51.214

ML Change 26.141 63.92 76.99 70.023 39.07 84.574

SVM Change 19.169 67.292 46.777 19.351 33.31 48.786
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Table 4.30: Omission and Commission error for February 1998 SVM and ML classification 

 Maximum likelihood Support vector machines 

Class Omission Error 

(%) 

Commission Error (%) Omission Error 

(%) 

Commission Error 

(%) F 0.6 2.37 0 2.35 

G 2.68 3.97 2.68 2.68 

SV 6.1 21.43 2.44 23.81 

SSV 16.08 0 16.78 0 

MSV 7.66 4.48 2.42 4.72 

BU 15.71 26.25 20 8.2 

 

Table 4.16, and  

 

 

 

 

Table 4.30 for ML and SVM classification. Scattered vegetation class had a large percentage 

of misplaced pixels for ML and SVM analysis, and built-up for ML classification. 

 

Table 4.31: Omission and Commission error for January 2007 SVM and ML classification 

 Maximum Likelihood Support Vector Machine 

Class Omission Error (%) Commission Error 

(%) 

Omission Error 

(%) 

Commission Error 

(%) F 3.7 1.27 3.09 1.26 

G 7.03 4.8 3.13 4.62 

SV 8.47 21.74 13.56 25 

SSV 8.89 2.38 9.44 4.12 

MSV 0.84 4.84 0 11.19 

BU 8.2 13.85 21.31 0 

 

For the January 2007 post classification analysis, scattered vegetation and built-up pixels 

misclassified as they had a lower user accuracy and higher commission error from .Table 

4.20, Table 4.21 and Table 4.31. Support vector machine analysis demonstrates that scattered 

vegetation had a higher percentage of omitted pixels leading to a lower producer accuracy 

and higher commission error for the built-up, milky quartz rock with scattered vegetation and 

shale rock with scattered vegetation leading to lower user accuracy. 
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Table 4.32: Omission and Commission error for January 2014 SVM and ML classification 

 Maximum likelihood Support vector machines 

Class Omission Error (%) Commission Error 

(%) 

Omission Error 

(%) 

Commission Error 

(%) F 3.57 3.26 1.62 9.82 

G 5.43 13.86 17.93 5.03 

SV 22.97 6.56 5.41 4.11 

SSV 2.21 0 1.33 0.45 

MSV 10.71 0.44 9.52 0 

BU 0 33.75 0 31.17 

 

According to the error matrix tables for Table 4.24 and Table 4.25, and in addition to the 

omission and commission of the Table 4.32 for the January 2014, scattered vegetation and 

built-up illustrates lower producer accuracy and higher omission error in ML classification. 

For the SVM analysis, the grassland had a lower user accuracy and lower producer accuracy. 

Built-up had a lower user accuracy and higher commission error for ML and SVM 

classification. From the post classification of summer images, the classification algorithms 

cannot particularly classify; scattered vegetation and built-up land cover classes correctly. 

 

Table 4.33: Omission and Commission error for July 1998 SVM and ML classification 

 Maximum Likelihood Support Vector Machine 

Class Omission Error 

(%) 

Commission Error (%) Omission Error 

(%) 

Commission Error 

%) F 0 28 2.78 26.32 

G 29.41 6.25 30.59 4.84 

SV 19.05 16.39 34.92 8.89 

SSV 6.9 0 1.72 0 

MSV 0.66 11.76 0.66 20.21 

BU 19.18 3.28 23.29 1.75 

 

Post classification results of ML and SVM for July 1998 imagery in the categories Table 4.18 

and Table 4.19 respectively suggests that grassland scattered vegetation and built-up class 

had lower producer accuracy for ML and SVM classification. This vetoes a higher omission 

error as demonstrated in Table 4.33. Forest and milky quartz rock with scattered vegetation, 

and had a higher commission error and lower user accuracy percentage for ML and SVM. 

While scattered vegetation was poorly classified in ML classification. 
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Table 4.34: Omission and Commission error for July 2007 SVM and ML classification 

 Maximum likelihood Support vector machines 

Class Omission Error 

(%) 

Commission Error 

(%) 

Omission Error 

(%) 

Commission Error 

(%) F 5.05 31.39 2.02 23.02 

G 48.05 31.03 37.66 20 

SV 14.52 36.14 27.42 40.79 

SSV 19.89 8.81 16.02 8.43 

MSV 12.92 4.32 11.24 9.2 

BU 10.87 6.82 10.87 0 

 

July 2007 post classification results in Table 4.23 and Table 4.34 contains values that have a 

higher omission and commission error for grassland cover in ML and SVM analysis. Forest 

and scattered has a higher commission error suggesting misclassified pixels for ML and SVM 

analysis. 

  

Table 4.35: Omission and Commission error for July 2014 SVM and ML classification 

 Maximum Likelihood Support Vector Machine 

Class Omission Error 

(%) 

Commission Error 

(%) 

Omission Error 

(%) 

Commission Error 

(%) F 0 2.21 0 3.6 

G 1.77 2.63 5.31 0.93 

SV 23.75 56.43 36.25 47.96 

SSV 54.36 0 31.54 0 

MSV 1.22 9.5 3.05 15.87 

BU 0 3.85 2 9.26 

 

Scattered vegetation contained a lower producer and user accuracy, while resulted to higher 

omission and commission errors for ML and SVM analysis as demonstrated in Table 4.26 

and Table 4.35. Milky quartz rock with scattered vegetation indicates a higher omission error 

for both ML and SVM analysis according to Table 4.35.With this said, from image 

classification, change detection and post classification analysis, the most misclassified land 

covers were scattered vegetation and built-up in summer. While in winter, the changes noted 

were between forest, grasslands and scattered vegetation. From Table 4.12 to Table 4.15 a 

negative rate of change is portrayed for all land cover types. It depicted from all the tables 

containing annual rate of change that grass and scattered vegetation have a higher annual rate 

of change. Built-up also portrays the negative high values, however this is due to the 

dominance of the rock types and scattered vegetation, thus contributing to a higher annual 

rate of change. 
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Climate influences changes in vegetation type in the area. From the interpretation of the 

aerial photographs, there has been a significant growth of tree and increase in scattered and 

grassland over the years. It is due to a reduction of animal and crop farming as noted from the 

aerial photographs. With time, the area has been able to regenerate in vegetation. However, 

there is a sudden change in vegetation type, where the grass appears yellow and scattered, 

and there are more drought resistant trees, which have thorns to reduce the impact of 

transpiration. Vegetation structure is influenced by the rainfall and temperature patterns. 

Climate data analysis illustrates that the first normal shows an increase in MAtmax, MATmin 

and AR according to Mann-Kendall test results from Table 4.2. This led to an increase in 

vegetation, crop farming and plant growth. In Table 4.3, MATmax values are increasing in 

the area, while MATmin and AR values are decreasing. Vegetation is rejuvenating but the 

agriculture has reduced in the areas, this has resulted in the growth of drought resistant plants 

and trees, and an increase in grassland and scattered vegetation. There is an increase in 

rainfall as towards the end of a 10-year cycle while lower rainfall values are experienced at 

the beginning of a new cycle as demonstrated in Figure 4.15 and Figure 4.24. Analysis of this 

climate data also led to the reason why some areas had milky-quartz and shale-rock land 

cover exposed while some areas changed into scattered vegetation and grassland. 
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5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The aim of this study was to focus on the change in land cover of HartRAO and its 

surroundings.  The study conducted was to look at the impact of HartRAO within the area 

over five decades and its surrounding land cover. The position of HartRAO facility is 

important in the international research community with its primary focus on radio and optical 

astronomy, geodetic studies and other research studies. This study was to look at the impact 

of human interaction from the time of the construction to the area, as this also affects some of 

the facilities input and data collection over the years. Natural phenomenon such a veld fires, 

agricultural activities and climate data provide information on the land cover of the area. At 

the same time, the importance of this to provide a chronological aspect of the climate and the 

various stages of a countries development from the year 1960 to 2014. 

Going through the first objective, delineation of land cover types encompassed the field based 

assessments, where six land cover types were identified. Likewise the use of archived 

information such as climate data, aerial photographs and Google Earth images tell a story of 

the changes in the area. The importance of Landsat satellite images for analysis and field 

assessments provides information of the nature of the landscape and the changes that happen 

within and between land cover types. Thus the results of this objective were to specifically 

delineate the land cover of the area, and to also provide information why HartRAO is 

specifically located in this area. Satellite image analysis provides image classification results 

that look at land cover conversions and exposures at different points in the time line, which 

provides information of the rock structure, the location of tree and vegetation cover and the 

shifts due to climate information.  

The second and third objectives are usually used in land cover change studies to find a 

suitable method to analyse satellite data. This is comparison as some of the areas in the world 

are different and it also depends on the analyst and needs thereof. The study focused on 

parametric and non-parametric analysis in pixel-based classification. This was done with the 

knowledge of the spectral data provided from the satellite images, and the clustering of the 

pixels to different land cover. It also highlighted the advantages and disadvantages of change 

detection and accuracy assessment of the Landsat data. Mapping land cover such as 

grasslands and scattered vegetation were problematic as the values crossed each other. 

Mapping milky-quartz with scattered vegetation and built-up provided problems to the 
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classification algorithms as the data was interchanged. Comparison of the classification 

algorithms was necessary to look at the advantage of one algorithm over the other in a hilly 

area. The performance was similar with SVM being slightly higher. The similarity came 

about the classification of the land cover; ML classified grassland and Forest-land cover well, 

while SVM classified built-up and scattered vegetation well.  

Climate data was combined with delineation of land cover types and analysing the land cover 

changes. Climate variables are useful in identifying the course of changes in land cover 

within an area. This aspect was necessary as an impact factor in the research as this can be 

explored further when looking at the vegetation type in the area, evapotranspiration rates, 

nitrogen level and chlorophyll within various vegetation types. The climate information was 

useful as this indicated that there was a decrease in rainfall. Analysing the data over a ten-

year cycle, the trend showed that there was sharp increase rainfall information at the end of 

the decade and lower rainfalls experienced in the middle of the decade. Maximum 

temperatures were rising over the years, but not significantly. This signified the vegetation 

growth patterns, as there was an increase in grassland and drought resistant tree-species. 

Increase in temperatures are attributed to the increase in large farmlands, residential and 

mining environment as noted in the 2004 to 2013 aerial photographs. The basic overview and 

the use of climate data can be utilised for further studies in geodesy, remote sensing or both 

fields as they are affected by seasonal variability with regards to climate of an area. 

The analysis and rates of changes vary with he complexity of the terrain makes the mapping 

difficult as most of the land cover varies over time. In a good rainy season, the area is mostly 

covered in grassland cover, therefore mapping can prove to be cumbersome. The importance 

of determining the rate of change in the area would be to identify which land cover types are 

affected why is there a change between and within the land cover types. It is noted that during 

the dry season one can collect information of the nature of the area concerning the bedrock, 

rock type and the above-ground biomass of the area. Thus, the generation of the land cover 

classes came about the seasons and time of the year. During the heavy rainy seasons, it is best 

to analyse vegetation type in the area as the bedrock is covered by the grassland type and 

woody vegetation. 
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Limitations in this study were: 

 The use of Synthetic Aperture Radar (SAR) data and optical data can be used to give 

a better description of the area. The SAR data are not freely available to conduct 

studies. 

 A lower production of aerial photographs and satellite imagery for the previous years, 

poses a challenge when conducting multi-temporal and seasonal land cover changes. 

Likewise, cloud cover on some satellite imagery pose a problem when conducting the 

study. 

 Variation of terrain, places a difficult problem when carefully labelling the land cover 

types. 

 The use of hyperspectral imagery especially from UAVs would be helpful; however, 

the influence of Radio waves from UAVs would influence collection of satellite data. 

Cost of Hyperspectral satellite imagery and cost of UAVs also limits the study to 

freely available satellite data. 

5.2 Recommendations 

 More land cover change research is needed for hilly landscapes to monitor land cover 

and climate influence in South Africa, through training and the use of SAR data and 

optical data. 

 Interferometry studies using SAR data to determine elevation, rock structure and 

vegetation heights and cover. 

 There needs to be an increase in LC data for HartRAO and its environment, so that 

monitoring the land cover can provide for conservation purposes due to the position 

of HartRAO in the international research community. 

 Consider further classification of the vegetation type, why there has been an increase 

of drought resistant vegetation especially within HartRAO and it environment and a 

shift within the land cover. 

 Further studies may include using freely available European Space Agency (ESA) 

satellite data Sentinel 1 and 2 data for monitoring land cover and for specifically LC 

studies. The freely available SNAP tool from ESA can be used especially monitoring 

land cover.  
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