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The control of an inventory where spare parts demand is infrequent has always been 

complex to manage because of the randomness of the demand, as well as the existence 

of a large proportion of zero values in the demand pattern. However, considering the 

importance of spare parts demand forecasting in production manufacturing and 

inventory management, several forecasting methods have been developed over the years 

to allow decision makers in industry to optimize the management of inventory where 

the demand pattern is infrequent. The Croston method is one of the traditional 

forecasting method, known because of its ability to take into consideration periods with 

zero demands. Yet, despite the Croston method’s advantage over other traditional 

methods, there are still shortcomings in the method because it does not consider the 

condition of the components to be replaced. 

This dissertation proposes an alternative forecasting method to the traditional methods, 

by means of condition monitoring. This method overcomes the Croston method’s 

shortcomings by considering the condition information of the component under 

operation. A statistical model, the so-called proportional hazards model (PHM), which 

is a regression model, blending event and condition monitoring data, is used to estimate 

the risk of failure for the component under analysis, while subjected to condition 

monitoring. To obtain optimal decision making on spare parts demand, a blending of the 

hazard or risk with the economics is performed, and an optimal risk point is specified. 

The optimal risk point guides optimal decision making on spare parts policy for the 

component under analysis. 

To generate the data needed to construct the proportional hazards model, a numerical 

investigation was performed on a fan axial bade where a crack was inserted and 
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propagated to estimate the fatigue crack life and corresponding natural frequencies. The 

simulation was run using MSC.MARC/MENTAT 2016 software. To validate the finite 

element model, an experiment was run by using a 50kN Spectral Dynamics 

electrodynamics shaker to apply base excitation to the fan axial blade specimens. The 

treatment and computation of data generated from experimental and numerical 

approaches allowed the construction of the proportional hazards model, with the fatigue 

lifetime as event data and the blade natural frequencies as covariates or condition 

monitoring information. The baseline Weibull parameters were estimated by 

maximizing the likelihood function using the Newton Raphson method and the 

MATLAB package. This allowed the computation of an objective function to determine 

the shape, scale and location parameters. Instead of defining the covariate behaviour 

needed to build the cost function by means of the Markov process, a simulation 

procedure was utilized to define the cost function and determine the optimal risk which 

minimizes the cost. Furthermore, as the proportional hazards model depends on both, 

time and covariates, it was also shown how the PHM behaves when time or covariates 

carry more weight. 

The added value of the proportional hazard model as forecasting spare parts method lies 

in the fact that it allows one to proactively gather failure information which enables a 

‘just in time’ supply of spare parts as well as an optimal maintenance plan. 

Forecasting spare parts demand, using condition information, performs better than 

traditional methods because it reduces an overly large spare parts stock pile. By 

allowing a ‘just in time’ part availability, the spare parts management becomes more 

related to the condition of the asset. Additionally, the supply chain management and 

maintenance cost are optimized, and the preventive replacement of components is 

optimized compared to the time-based method where a component can be replaced 

while still having a useful life. 
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ADI Average inter- demand interval 

AHM   Additive hazards model 

ARL Applied research laboratory 

AFTM Accelerated failure time models 
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CMS Condition monitoring system 

CV Coefficient of variation 
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ℎ(𝑡, 𝑍(𝑡)) Instantaneous conditional probability of failure at time t, given the 

value of the covariate. 

IMS Intelligent maintenance system 

IPDSS Intelligent prediction decision support system 

K Stress intensity factor 

K-S test Kolmogorov Smirnov test 

L Likelihood 

ML Maximum likelihood 

MDTB Mechanical diagnostic test bed 

PHM    Proportional hazards model 

POM Proportional odds model 

𝑃𝑡                          Time inter demand interval 
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𝑄(𝑑)                     Probability that failure replacement will occur 

R (𝑇𝑖) Reliability of the component function of time 

𝑅(𝑇, 𝑍(𝑡)) Reliability at time 𝑇𝑖 considering the time dependent covariate 

RNN    Recurrent neural network 

RUL Remaining useful life 

SBA   Syntetos Boylan approximation 

SES Single exponential smoothing (SES) 

TPM Transition probability matrix 

𝑊(𝑑) Expected time until replacement 

𝜙(𝑑) Expected average cost per unit time 

𝑋𝑡 Actual demand at a given time  

𝑍𝑡 Magnitude of the demand 

𝜶 Smoothing constant 

𝛽 Weibull shape parameter 

𝛾   Weibull location parameter 

𝜂    Weibull scale parameter 

𝜇   Mean of historical demand 
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Chapter 1 Introduction 

1.1 Problem statement 

Nowadays, the management of assets is becoming a point of central interest for the 

competitiveness of organizations. One of the most important life-cycle phases in asset 

management is the operation and maintenance of the asset. An efficient maintenance 

program also assumes proper management of spare parts inventory. 

When managing an asset, it is critical to plan and control the spare parts inventory to 

avoid premature part replacement and overstocking of unnecessary spare parts (Yam, et 

al., 2001). That is why forecasting the demand of spare parts is important. In fact, 

forecasting is vital to every business organization and for every spare parts inventory, for 

it enables estimating the spare parts stock as accurately as possible. A better forecasting 

technique might allow a more efficient spare parts management policy, as well as cost 

optimization. 

However, several traditional forecasting methods, applied for spare parts management, 

are inefficient for intermittent demand patterns and cannot accomplish reliable 

forecasting results. This includes methods such as the time series method, the Croston 

method and the exponential smoothing method. 

Instead of using the classical methods to forecast spare parts demand, recent research 

proposes an integrated method that combines condition monitoring information with 

event data associated with the spare parts. The advantage related to this integrated 

method is the precision estimation of parts failure, and it also avoids downtime of 

machinery and stock-out. It detects potentially broken parts sufficiently early and allow a 

just-in-time maintenance and spare parts availability when managing a supply system 

(Hellingrath & Cordes, 2014). 

The aim of this dissertation is to propose an alternative forecasting method based on 

condition-based maintenance instead of using the traditional methods. The proposed 

alternative method will be mixing both, event and condition monitoring data by means of 

a statistical model called the proportional hazards model which is a prognostic model, 

able to estimate the risk of failing for a component subject to condition monitoring. 
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The added value brought by this alternative method is that it improves the shortcomings 

and bridges the gap present in the traditional approach method, for the condition 

monitoring will track the progressive advance of failure in the component. 

Afterward, as soon as the prognostics result from the proportional hazards model is 

available, the result will serve as input to effectively forecast the spare parts demand. The 

proactive failure information received through the condition monitoring model allows 

just-in-time maintenance and spare parts availability to be regulated in such a way that 

the inventory management avoids premature part replacement and overstocking of 

unnecessary spare parts. 

1.2 Literature review 

1.2.1 Spare parts forecasting overview 

During the life cycles of equipment, they are used and eventually become obsolete, or fail 

because of age related failure mechanisms such as fatigue, which necessitates component 

replacement (Callegaro, 2010). Nowadays, with the growth of technology in industry, the 

problem of spare parts management is becoming important in maintenance, not only from 

a technical perspective but also from financial and economic points of view. 

Companies where capital goods are made or used, typically have large inventories 

(Dekker, et al., 2011). In the aerospace and automotive industries, a wide range of service 

parts are held in stock, and the implication of holding spare parts in the inventory is 

important for the equipment performance. Wang and Syntetos (2011), reported that in the 

United States Air Force (USAF), the cost of recoverable spare parts amounted billions of 

dollars in the past years, which represents 52 percent of the total cost inventory. 

The interest in forecasting spare parts demand is therefore growing at an unprecedented 

rate. Given that insufficient inventory stock lead to the extension of the equipment 

downtime, and excessive inventory stocks lead to the immobilization of money, it is 

important to determine an optimal level of spare parts to keep the equipment operating 

profitably. This makes forecasting spare parts demand a crucial field for researchers. 

1.2.2 Spare parts features, demand pattern and classifications 

a. Spare parts features 
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There are characteristics that distinguish spare parts from all other materials in the 

industries or service system (Callegaro, 2010). The main characteristic resides in the 

consumption aspect: the demands of spare parts in a company can follow very different 

patterns. One of the patterns described by the demand of spare parts is intermittency (it 

means the demand takes place irregularly with variable quantity). Another distinctive 

characteristic of spare parts concerns the specificity of their use. They must be used only 

for the use of the function for which they have been acquired. This exposes one to the 

risk of obsolescence which is faced when decisions are made on replacement of capital 

equipment. Very often a set of spare parts cannot be re-used on newly acquired 

equipment (Callegaro, 2010). 

b. Spare part demand and classification 

Service spare parts are complex in modern companies. According to the type of 

maintenance which is performed (i.e. preventive or corrective maintenance) it is 

important to highlight that the demand which arises from preventive maintenance can be 

scheduled, but remains stochastic in terms of size, whereas demand arising from 

corrective maintenance is stochastic in terms of failure occurrence but deterministic in 

size (Wang & Syntetos, 2011). However, both preventive and corrective maintenance 

imply the intermittent nature of the demand. 

Often, spare parts forecasting is complicated because the demand takes place with 

irregular times, as well as the number of spare parts also vary with every instance. Such 

type of demand is also intermittent, meaning that the demand occurs infrequently with 

long periods of time without demand at all. 

In the study of spare parts forecasting, intermittent demand patterns are very complex to 

deal with because of the dual sources of variation, namely, demand arrival and demand 

size (Wang & Syntetos, 2011). In the following paragraph, attention will be paid to 

determine parameters which affect the spare parts demand pattern. 

To evaluate and classify the two main sources of variation, namely demand arrival and 

demand size causing the complexity of dealing with the intermittent demand, two 

parameters are generally used: 
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• The average inter-demand interval (𝐴𝐷𝐼): As the name indicates, it is the 

average time interval between two spare part demands. 
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In the average inter-demand interval (𝐴𝐷𝐼) formula, the denominator 𝑁 expresses the 

number of periods with non-zero demand whereas 𝑁 in the 𝐶𝑉 formula expresses the 

total number of periods, 𝜀𝑖 the consumption of spare parts and 𝑡𝑖 the interval for two 

consecutive demands. 

Ghobbar and Friend (2003) state that there are cut-off values of 𝐶𝑉 and 𝐴𝐷𝐼 that allow 

the categorization of the spare parts demand pattern. Wang and Syntetos (2011) 

suggested 𝐴𝐷𝐼 =1.32 and 𝐶𝑉=0.49 for cut-off values. In addition, Synthetos et al. 

suggested that: 

• For ADI less than or equal to 1.32 and 𝐶𝑉 greater than 0.49 the demand is said 

to be erratic ( 49.0,32.1  CVADI ). Erratic demand is characterized by a high 

quantity of demand but a constant demand in terms of distribution over time. 
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• For 𝐴𝐷𝐼 strictly greater than 1.32 and 𝐶𝑉 strictly greater than 0.49 the demand is 

said lumpy ( 49.0,32.1  CVADI ), lumpy demand is one of the more complex 

demand patterns to control because of many intervals with zero demand as well 

as great change in the quantity. 

• For 𝐴𝐷𝐼 less than or equal to 1.32 and 𝐶𝑉 less than or equal to 0.49 

)49.0,32.1(  CVADI  the demand pattern is said to be smooth moving which 

is characterized by low rotation of the system. 

• For ADI, strictly greater than 1.32 and CV less than or equal to 0.49 

)49.0,32.1(  CVADI ) the demand pattern is said to be intermittent. The 

categorization of the demand pattern will be based on the characteristics of 

demand data derived from the CV and ADI parameters. 

 

Source: From thesis: “Forecasting method for spare part demand” (Callegaro, 2010). 

1.2.3 Traditional forecasting method 

Forecasting can be classified into four basic types: Causal relationship, qualitative, time 

series and simulation (Jacobs & Chaise, 2013). 

When considering the future demand of spare parts in the production industries, decision 

makers use classical statistical methods to forecast future spare parts demand. Some of 

the well-known forecasting methods are exponential smoothing and regression analysis. 

However, it is crucial to highlight the uncertainty in forecasting spare parts because of the 
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long period with zero demand. The Croston method is one of the common methods to 

address the intermittent demand pattern problem. 

Croston (1972) found shortcomings in the single exponential smoothing methods. He 

showed that a bias related to putting the most weight on the most recent demand, led to 

the highest demand estimates just after the occurrence of the demand and lowest before 

one (Callegaro, 2010). Croston proposed a solution to the problem by using the average 

interval between demand and the average size of non-zero demand. Johnston and Boylan 

(1996) worked on a revision of the Croston method by establishing that the ADI must be 

greater than 1.25 for seeing the benefit of Croston over exponential smoothing. 

Furthermore Syntetos & Boylan (2005) highlighted an error in the derivation done by 

Croston and introduced a factor to correct the Croston formula. The modified Croston 

method by Syntetos and Boylan is known as Syntetos Boylan approximation (SBA). 

The focus of the following section is the time series which is a type of forecasting that is 

based on data relating to past demand. Several methods belong to the time series class, 

such as: simple moving average, weighted moving average, and exponential smoothing. 

The following section addresses only the Croston method which is used for intermittent 

demand of spare parts. 

Croston Method 

The single exponential smoothing method (SES) did not explicitly consider the important 

parameter of the period with zero demands, whereas this is most common for spare parts 

(Dekker, et al., 2011). The Croston method proposes a solution to cope with this problem 

by using an alternative approach that considers both demand size and inter-arrival time 

between demands. The Croston method is today well-known in industry and is 

incorporated in several forecasting software packages (Teunter & Sani, 2009). 

Several authors have assessed the Croston method since 1972. In 1973 Rao corrected 

some expressions in the Croston paper but this did not affect the conclusion. Syntetos and 

Boylan (2005) found that Croston method is biased. In 2005 they proposed an improved 

version of Croston’s method, the SBA. A new Croston type method was proposed by 

Teunter and Sani (2009) but did not affect considerably the conclusion of the original 

one. 
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The Croston method consists of two steps: firstly, the calculation of the time inter 

demand 𝑃𝑡 and the magnitude of the demand 𝑍𝑡. 

 

𝑍𝑡 = 𝛼 × 𝑋𝑡 + (1 − 𝛼) × 𝑍𝑡−1 

 

                

(1.5) 

 

 

𝑃𝑡 = 𝛼 × 𝐺𝑡 + (1 − 𝛼) × 𝑃𝑡−1 

 

 

  (1.6) 

 

 

 

where 𝑋𝑡 is the actual demand at the time t, 𝐺𝑡 Time inter demand at time t, 𝛼, is a 

smoothing constant between 0 and 1. 

Therefore, the relationship of the forecast demand per period at time t is: 

 

𝐹𝑡−1 =
𝑍𝑡

𝑃𝑡
 

 

            (1.7) 

 

The above formulas show two main factors when forecasting spare parts demand by 

means of the Croston method: the average time inter demand interval and the magnitude 

of the demand. This means that the Croston method is easily implemented where there is 

a significant set of failure data. However, when there is not enough historical failure data 

the implementation could become more difficult. A certain number of shortcomings are 

identified when dealing with Croston method and other traditional methods: 

• They are based on historical failure and usage trends and do not adequately 

consider the condition of components in use. 

• They do not allow to make decision with high precision when it is applied 

under certain condition such that for data with very high coefficient of variation 

(CV). 

To overcome these weaknesses, methods have been considered that combine the use of 

historical failure trends and condition monitoring data.  Before describing these methods, 

the next two sections introduce the concept of condition monitoring, as well as one of the 

models that has been developed to achieve this combination, namely the proportional 

hazards model (PHM).  
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Time series methods 

The focus of the following section is the time series which is a type of forecasting that is 

based on data relating to past demand. Time series forecasting predict the future using 

past data. A certain number of methods belong to time series, such as: simple moving 

average, weighted moving average, exponential smoothing etc. The following section 

addresses only methods used for intermittent demand for spare parts. 

Single exponential smoothing (SES) 

When forecasting the future by the mean of the SES method, the most recent occurrences are 

more important than the distant past data (Jacob et al., 2014). 

Concerning spare parts forecasting, SES is particularly suited for low period forecast and uses a 

series of weights, where the values of the weights are decreasing in an exponential manner.  

1.2.4 Condition monitoring 

Condition monitoring can be described as using external parameters such as vibration, 

acoustics, oil analysis, temperature, pressure, moisture, humidity, weather, or 

environmental data to measure the condition of a system (Hellingrath & Cordes, 2014) 

Considering the present growth of competitiveness in the industrial environment, most 

organizations plan to increase their performance and productivity. However, for them to 

reach the set goal and deliver the intended service required by customers, attention must 

be focused on the condition of assets in the organization. To better assess the condition of 

the asset or component, condition monitoring is viewed as the most effective tactic. Over 

the past few decades condition monitoring became popular because of its efficient role in 

detecting potential failures, and the use of condition monitoring results in the 

improvement of the availability of the plant production as well as the decrease of the cost 

of downtime. 

Condition monitoring is a cornerstone of condition-based maintenance. When dealing 

with condition-based maintenance, which is a proactive maintenance strategy, two 

aspects should be considered: diagnostics and prognostics. Diagnostics uses recorded 

condition information to identify, detect and isolate a fault condition whereas prognostics 

consists of predicting the occurrence of the failure and estimate the remaining useful life 
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of the asset or component to make a suitable decision concerning the optimal replacement 

time of the component. 

In this dissertation, a case study is presented that focuses on constructing a prognostic 

model for fan axial blades, prone to fatigue failure.  

1.2.5 Introduction to the proportional hazards model 

(Cox, 1972) presented a model to estimate mortality risk, called the proportional hazards 

model (PHM).  The PHM incorporates the effects of covariates or explanatory variables 

on the distribution of the lifetimes. Covariates are any measured parameters that are 

thought to be related to the lifetimes of components.  For each given time, the covariate 

provides an increase or decrease in the hazard. proportional to the baseline hazard rate. 

The model proposed by Cox (1972), was first applied for biomedical data. Some years    

later the model was considered as a revolution in reliability engineering.  In this context 

PHM is defined as a statistical procedure for the estimation of the risk for a component to 

fail when its condition is monitored (Jardine & Tsang, 2013). 

The PHM is now one of the most popular statistical models used for survival analysis. Its 

popularity arises from the fact that the proportional hazards model is part of a broader 

class of survival analysis which provides information on the duration of time between the 

identifiable start and the occurrence of an event (Leclere, 2005). A key feature when 

using a proportional hazards model is that it can utilize time series variation in the 

covariates. The information can be provided based on the change in explanatory variables 

over time, that influence the probability of the event occurring. 

The PHM is often presented in terms of the hazard model formula: 

 

ℎ(𝑡, 𝑍(𝑡)) = ℎ0(𝑡)𝑒∑ 𝛾𝑖𝑍𝑖(𝑡)
𝑝
𝑖=1  

 

(2.1) 

where )(tZ i  is the explanatory or predictor variable expressing the hazard at time t  for 

an item or a component with a given specification of a set of predictor variables denoted 

by covariate. The ℎ0(𝑡) part is the baseline hazard; it includes time but not covariates, the 

second part 𝑒∑ 𝛾𝑖𝑍𝑖
𝑝

 which is the exponential part includes covariates but not time, 

therefore the Cox model equation says that the hazard at a given time is the product of 
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two important quantities whose the baseline hazard function and the exponential 

expresses  the linear sum of 𝛾𝑖𝑍𝑖. 

The PHM formulation assumes that: 

• The renewal times (event times) are iid (independent and identically distributed. 

• All the significant covariates must be part of the model. 

The PHM provides the possibility of incorporating condition monitoring results into the 

calculation of failure risk, where the condition parameters will be considered as 

covariates.  As discussed in the next section, it is considered as one of the possible 

techniques that may be used to integrate the use of condition monitoring data into spare 

parts forecasting. 

1.2.6 Integrating condition monitoring and spare parts forecasting 

To overcome the shortcomings of the traditional spares forecasting methods, (Hellingrath 

& Cordes, 2014) explored the conceptualization of an approach for integrating condition 

monitoring information and spare part forecasting methods. In this work it was first 

shown that progress has been made in maintenance by forecasting the occurrence of 

failure for a component or a technical system, estimating the remaining useful life (RUL) 

using models such as the Proportional hazards models, neutral networks, etc. In addition, 

it was shown that the main problem today lies on forecasting spare part demand. In fact, 

several classical forecasting methods exist and are used, such as the time series, 

explanatory variable and hybrid methods; but these methods present a certain number of 

limitations which reduce the quality and accuracy of forecasting, to solve the problem 

related to the accuracy of the spare parts demand. Hellingrath and Cordes (2014) in their 

work decided to integrate condition monitoring information captured from the intelligent 

maintenance system (IMS) with the “traditional” forecasting methods. 

To be able to implement the integrated model, many factors should be considered 

(Hellingrath & Cordes, 2014): 

• The category of spare parts (for each category, different forecasting methods 

are used) 

• The type of output data from the IMS (it affects the modality) 

• Identification of the parameters that must be adapted 



11 

 

Regarding the above, it is important to notice that for each forecasting method, numerous 

requirements and parameters can be identified, independent of the type of the IMS output 

data. This implies that it is difficult to establish a guideline or general approach for the 

integration needed (Hellingrath & Cordes, 2014). 

Nevertheless, the spare parts demand forecasting can be addressed in different ways 

(Hellingrath & Cordes, 2014): 

• The first, which is the focus of this dissertation, consists of building a 

proportional hazards model from the condition-based information, then 

determine from there the ordering decision for spare parts when the related 

component is monitored by a condition monitoring system (CMS).  

• The second way, which was the aim of Hellingraph and Cordes (2014) consists 

of integrating CM data with the classical forecasting model. This approach is 

called CBMF and follows a sequence of steps proposed by Bacchetti & 

Saccani (2011).  

Pre-processing is performed to categorize of the spare parts as slow moving, intermittent, 

erratic or lumpy. In addition, the main idea in this step consists of integrating CM 

information and forecasting methods to generate a hybrid two step estimation 

(Hellingrath & Cordes, 2014). The first step refers to the determination of the forecasting 

parameters. The CM information is analysed regarding the distribution parameter of 

potential breakdowns, for the second step, a Bayesian approach is used to provide a 

probability function of the spare parts demand. 

Wang and Aris (2011) worked on linking forecasting to equipment maintenance. Their 

approach consisted of answering two main questions: 

• Why is the demand for spare parts intermittent? 

• How can we use models developed in maintenance research to forecast such 

demand? 

Furthermore, it was shown in their work that it is difficult to forecast intermittent demand 

patterns because of the dual source of variation (demand arrival and demand size). In 

addition, their work attempts to answer the second question by comparing demand 

forecast methods and maintenance-based method (time delay forecasting methods). 
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Forecasting spare parts demand is becoming a huge area of research in maintenance, the 

main purpose in this work is to improve quality of the spare parts forecasting by making 

it as accurate as possible. 

Considering the weaknesses related to the usual traditional methods, Romeijnders et al. 

(2012) proposed a method called two step forecast method. The advantages related to this 

method is first the fact that it considers the type of component repaired, moreover 

contrary to other methods, the two-step method can use information on planned 

maintenance and repair operations to reduce forecast error by up to 20 % Romeijnders et 

al. (2012). The first step of the method it is all about forecasting, for each type of 

component the number of repairs per time unit and the number of spare part needed per 

repair. Secondly these forecasts are combined to forecast demand of the spare part 

Romeijnders et al. (2012). 

Real data from Fokker Services (which is a company that maintains and repairs aircraft 

components) captured for a period of 10 years was used to compare the two-step method 

with several traditional methods. 

Even though the two-step method offers better results than the Croston forecasting 

method and the Syntetos Boylan approximation, which are among the best, the two- step 

method still does not consider the actual condition of the component (condition 

information) but it uses the historical data set. 

Bacchetti and Saccani (2011) explored spare parts classification and demand forecasting 

for stock control. Finally, they concluded that a gap still exists between research and 

practice concerning the field addressed in this work. In their investigation, they recognize 

that several aspects concur in making demand and inventory management for spare parts 

a complex matter. Some of these aspects are the high number of parts managed, and the 

presence of intermittent or lumpy demand patterns. 

It is important to highlight that little progress has been made to date in terms of 

integrating condition monitoring information into spare parts management. Bacchetti and 

Saccani (2011) report that there still exists a gap between research and practice in spare 

parts management. Integrating condition monitoring information captured from a 

computerised maintenance management system with the traditional forecasting method, 

promises possible improvement of the traditional forecasting method. The following table 
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displays the classification of forecasting methods for sporadic demand referring to 

Hellingrath and Cordes (2014). 
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Table 1.1: Classification of forecasting methods for sporadic demand 

(Hellingrath & Cordes, 2014) 

Forecasting 
method 

Classification 
 

Consideration of 
the sporadic 
characteristic of 
spare parts demand 

Usage of condition 
related 
information T E H O 

SMA, SES ×    No No 

EWMA ×    No No 

Holt and Holt-
Winters 

×    Yes No 

Croston and its 
modifications 

×    Yes No 

Bootstrapping ×    Yes No 

Filtering 
/clustering 

×    Yes No 

Advance 
demand 
information 

   × No No 

Failure rate 
analysis 

 ×   Yes Utilizing historical 
data of the 
installed base of 
technical systems 

Operating 
condition 
analysis 

 ×   Yes Considering 
influence of the 
environment (e.g. 
temperature) 

Regression   ×  Yes No 

Neural 
networks 

  ×  No No 

Bayesian 
approaches 

  ×  Yes Condition 
information is 
used to adjust to 
the demand value 

Proportional 
hazards model 

  ×  Yes Condition 
information is 
used to adjust the 
demand value 

Installed base 
forecasting 

× × × × Yes Utilizing data 
about the 
condition of the 
installed base of 
technical systems 

 

Forecasting methods in table 1.1 are classified in time series (T), explanatory (E), hybrid 

(H), and other methods (O), (Bacchetti & Saccani, 2011). The proportional hazards 

model is the focus in this research, for reasons outlined below. 
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1.2.7 Selection of the proportional hazards model for this work 

Several traditional forecasting methods applied to spare parts management are inaccurate 

and cannot accomplish appropriate forecasting results. Methods such as Croston, 

exponential smoothing, moving average and single exponential smoothing are traditional 

time series method and still the most commonly used in business practice. However, the 

issue with these methods is that they overestimate the mean level of intermittent demand 

if applied immediately after a demand occurrence. The aim of the present study is to 

develop an integrated method that combines condition monitoring information and spare 

parts forecasting methods by means of PHM, as per the highlighted forecasting method 

shown in Table 1.1 above. The advantages of such an integrated model would be the 

precise estimation of part failure because it considers the condition of the component, 

thereby avoiding downtime of machinery and stock out, by sufficiently early detection of 

potential failures and allowing a just in time maintenance and spare parts availability.  

1.3 Scope of the work 

The demand for spare parts in industry can follow different patterns. Forecasting 

intermittent demand patterns with a long period of zero demand remains particularly 

challenging. One of the traditional forecasting methods which manages to address the 

matter properly is the Croston method, but the shortcoming of the Croston method is that 

it does not consider the condition of the component. To deal with this weakness, the 

present dissertation proposes an alternative method to overcome the problem. 

The approach developed in this study consists of integrating condition monitoring data 

with event data by means of a proportional hazard model (PHM), to estimate the risk of 

failure occurring for a component subject to condition monitoring. The statistical model 

called PHM serves to forecast the spare parts demand and define spare parts management 

policy. 

Knowing that building a PHM requires event and condition data, both experimental and 

numerical investigations were run to generate the data needed to build a PHM. 

Optimal decision making is performed by means of the cost function built and based on 

the PHM. It is important to highlight at this point that this dissertation does not address 

aspects of the spare parts management, such as lead time, stock holding etc. It only serves 



16 

 

to give to the inventory management the best information possible, required to make 

optimal decisions.  

 

The following approach is adopted in this dissertation: 

• A numerical investigation was conducted which consisted of a modal analysis 

performed with MSC.MARC2015.0 nonlinear finite element software, to 

determine the coupling between natural frequency and mode shape for a 30 and 

40-degree axial fan blade. A 2mm crack was initiated in the blade, then 

propagated to failure. Information such as natural frequencies and mode shapes 

were recorded as the crack propagated into the axial fan blade. For the purposes 

of this dissertation only the natural frequency was considered as a covariate to 

build the PHM. 

• An experimental investigation run in the laboratory consisted of estimating the 

lifetime and Paris law material constants. The setup was designed in such a way 

that an initiated crack in the axial fan blade was propagated and measurements 

were performed using digital image correlation (DIC). The stress intensity 

factor was calculated analytically, and the measured crack length was used to 

determine the Paris law constants. Furthermore, a statistical analysis was 

performed on the determined material constants and lifetimes. This study was 

done as a separate master’s degree study by (Brits, 2016). The experiment 

served not only for validation of the finite element model (FEM) but also to 

determine the Paris material constants and lifetimes which served as event data 

to build the PHM. 

•  Both the natural frequencies generated by the FEM and the lifetimes from the 

experimental investigation served as covariates and event data respectively in 

the PHM. 

•  Instead of establishing the covariate behaviour and specifying the probability 

of shifting from one state to another by means of the transition probability 

matrix (TPM), a simulation procedure was performed to determine the cost 

function. 

• Optimal decision making is performed by means of the cost function built and 

based on the PHM. An optimal risk point d was set up and served as input to 

define a spare parts demand policy. It is important to highlight at this point that 
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this dissertation does not address aspects of spare parts management which deal 

with the lead time, stock holding etc. It only provides the inventory manager 

information needed to make right demand of the component in a right time.  

 

When the process described above is properly performed, it results in reduction of the 

overestimation of spare parts demand, compared to the traditional forecasting methods 

and a just in time spare parts management and maintenance policy is established. 

Moreover, an early indication of failure provides more time for proper maintenance 

planning and scheduling. 

  1.4 Document overview 

     Traditional forecasting methods as well as limitations related to these methods are 

discussed in chapter 1. The advantages that these methods offer is also discussed in the 

chapter. The proportional hazard model (PHM) is subsequently introduced in chapter 2 as 

an appropriate statistical model to allow the integration of condition information to the 

spare parts forecasting method. Chapter 2 also describes the proposed forecasting method 

based on the PHM and its economics approach. 

In chapter 3, an overview of a case study is presented focused on the generation of data 

by means of numerical and experimental investigation. Condition monitoring data are 

generated by means of the MSC.MARC/MENTAT 2016.0 software package. As the 

PHM requires two types of data to be built, the event data in this work was supplied by 

the experiment which is the number of loading cycles, whereas condition monitoring 

data, which comprise natural frequencies, are generated by running 30-degree axial fan 

blades with a 2mm initial crack inserted in the FEM. 

Both event and condition monitoring data being available, in chapter 4, the 

implementation of the proposed method on the case study is described. Chapter 4 also 

deals with the important matter of the construction of the PHM, and the goodness of fit 

testing, using the K.S test. 

After constructing the PHM in chapter 4, an estimate of the risk of failure for the case 

study components (fan blades) is known. Chapter 5 then discusses how to use 

information from the PHM to obtain economic benefits which will lead one to define a 

suitable policy for the demand or the replacement of the blades. 
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The work is concluded in chapter 6 by showing how to use the PHM outcome for the 

need of component replacement (spare parts demand). Recommendations for future work 

are also made in this chapter. 
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Chapter 2   An integrated spare parts forecasting 

method using condition monitoring 

  2.1 Introduction 

Over the past few decades, preventive maintenance decisions have been optimized by 

means of statistical analysis of failure data, while condition-based maintenance has been 

optimized by utilizing sophisticated methods such as vibration and oil analysis. The 

present research consists of building a mixed model which combines event and condition 

monitoring data into a mathematical model to predict the risk of failure occurrence for an 

asset, and then use the outcome from the prediction model to forecast spare parts demand. 

Reliability analysis is known as the analysis of event data only, which consists of fitting 

event data to a time between probability distribution, and the fitted distribution can be 

utilized for further analysis (Vlok, 1999). However, it is beneficial to combine event data 

and condition monitoring data by building a mathematical model that allows maintenance 

decision support (diagnostics or prognostics). In this dissertation a time dependent 

proportional hazard model (PHM), which is a popular regression model is described and 

utilized as a tool to forecast spare parts demand. 

 

Renewal theory consist of estimating the reliability of a component using the recorded 

time to failure and computing the renewal time that minimize the mean life cycle cost of 

the future components (Vlok, 1999). When dealing with renewal theory the reliability 

concepts such as failure density, cumulative failure density, reliability function and the 

instantaneous failure rate are important to model the history of data in possession. 

To model the reliability function of a renewable system, several approaches are used: 

• A probabilistic modelling approach; 

• A non-probabilistic modelling approach; 

• A regression modelling approach. 

The following paragraph addresses the regression modelling and particularly the 

proportional hazard model. 
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2.1.1 Regression modelling approach 

Regression modelling entails merging probabilistic and non-probabilistic modelling 

approaches. The following properties define the regression modelling approach: 

• Like non-probabilistic models the regression models directly recognize the 

existence of the survivor function or hazard rate but do not utilize the existence 

of an underlying failure distribution as primary assumption. 

• The regression models are not only the primary use parameter modelled but 

also the concomitant information surrounding failure or covariates. 

Several regressions models were identified in the literature for renewal theory: 

• Accelerated failure time models (AFTM) during 1966; 

• Proportional hazard model (PHM) during 1972; 

• Prentice William Peterson model (PWP model) during 1981; 

• Proportional Odds model (POM) during 1983; 

• Additive hazard model (AHM) during 1990. 

Literature shows that all the five named regression models have the same structure. The 

baseline function first which is a time-based part estimated either as parametric or non-

parametric techniques, secondly an explanatory part, this part has a direct influence on 

the baseline function to estimate the overall reliability of the system. 

(Vlok, 1999) presented a decision matrix showing that the proportional hazard model is 

the most suitable out of all the named regressions models. The criteria of evaluation were: 

(1) Theoretical foundation; (2) Previous practical success in reliability modelling; (3) 

Potential to lead to the dissertation objective; (4) Achievability of numerical 

implementation; (5) Future potential in reliability modelling. 

2.2 Proportional hazards model (PHM) 

2.2.1 Development of the proportional hazards model 

a. Cox proportional hazards model 

The PHM is a regression model for survival time that allows for covariates, but he did not 

impose a parametric form for the distribution of survival times (Crumer, 2008). Cox 

(1972) assumed that the survival distribution satisfies the condition given by the formula 

(2.1).  
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b. Extension of the Cox proportional hazards model for time dependent variables 

With the extended Cox proportional hazards model, covariate Z is considered as time 

dependent variable. Time dependent variables are defined as variables whose values may 

differ over time t , whereas time independent variables are variables which remain 

constant over time.  

When modelling the hazard function ℎ(𝑡), the baseline hazard function ℎ0(𝑡) can be 

represented in parametric or non-parametric form. A commonly used parametric baseline 

hazard function is the Weibull hazard function. To model the PHM is like the process of 

regression analysis. A set of significant covariates is needed and only the significant 

covariates are inserted in the models. 

For a given PHM, the choice of the type of covariate to be used depend on the theoretical 

assumption about the relationship between the covariate value and the hazard function 

(Leclere, 2005). When the hazard function is mostly dependent on the value of the 

covariates at time zero or some fixed time point, then time independent covariates are the 

right choice. But when the covariates change over time and the hazard function depends 

more on the current values of the covariates, then the time dependent covariates are the 

right choice. 

Considering errors yielded by the situation where covariates change over time, many 

studies ignore the time dependence and deal with time dependent covariates as time 

independent, by fixing its value at a given point in time or setting the value of the 

covariate to an average value for the period that is studied.  Likely problems when using 

time dependent covariates as time independent or time invariant covariates are: 

• As several covariates are likely to change before the advent of the event, the 

variation is eliminated, and important information is lost. 

• Several phenomena are generated by dynamic, longitudinal processes, because 

the value of a covariate along the time path affects the probable event 

happening. 

• The model does not include the value of the covariate observed at the time of 

event occurrence, although it may be this actual value that generate the event. 

        A few notes are relevant: 
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• With the availability of software today, there are some which directly deal with 

time dependent variables and the need for considering time dependent variables 

as time independent is reduced. 

• For the purposes of this research, event and covariate data are generated by 

laboratory experiments because of the difficult access to industry data. This is 

dealt with in Chapter 3. 

For this dissertation, the covariates are considered time dependent and the PHM will be 

addressed as follows: 

• First determine the Weibull parameters (𝛽, 𝜂, 𝛾) constituting the baseline 

function. This computation is done by applying the maximum likelihood 

estimation method. 

• Secondly the changes in the measurements of the covariate characteristics in 

the explanatory part will not be modelled according to the semi–Markov 

process, but through a simulation procedure. 

• The third step deals with the economics - it is all about specifying the optimal 

inspection time that minimizes the cost. 

In the parametric PHM one of the most important operations to be done is to estimate the 

𝛾′𝑠 to access the effect of explanatory variable, the corresponding estimate parameters are 

determined by means of the maximization of the likelihood function Kleinbaum (1999). 

2.2.3 The fully parametric PHM and maximum likelihood 

Before addressing the maximum likelihood method, it is important to first understand the 

notion of fully parametric. The PHM is totally parametrized by assuming a continuous 

distribution for the baseline (Vlok, 1999). For the purpose of this work the Weibull 

distribution is considered. This is given by the expression: 

 

ℎ[𝑡, 𝑍(𝑡)] =
𝛽

𝜂
(

𝑡

𝜂
)𝛽−1exp {∑ 𝛾𝑖𝑍𝑖(𝑡)

𝑚

𝑖=1

} 

 

(2.2) 
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a. Statistical Model 

(Vlok, 1999) highlighted that fewer numerical issues arise when dealing with Weibull 

PHM to determine the baseline parameters. However, the following steps present Vlok’s 

approach to determine the three Weibull parameters: 

Consider the general Weibull distribution formula for time dependence 

 

𝑓(𝑡) =
𝛽

𝜂
(

𝑡

𝜂
)𝛽−1exp [−(𝑡/𝜂)𝛽] 

 

(2.3) 

 

The hazard rate function corresponding to the probability density function (pdf) given by 

(2.3) is: 

 

ℎ(𝑡) =
𝛽

𝜂
(

𝑡

𝜂
)𝛽−1 

 

(2.3) 

 

with beta (𝛽) and eta (𝜂) being the shape and scale parameters of the distribution 

respectively. By using the Weibull distribution as the baseline hazard rate of the PHM 

according to (2.1), the formula becomes: 

 

ℎ(𝑡, 𝑍(𝑡)̅̅ ̅̅ ̅̅ ) =
𝛽

𝜂
(

𝑡

𝜂
)𝛽−1exp (𝛾̅ × 𝑍(𝑡)̅̅ ̅̅ ̅̅ ) 

 

(2.4) 

 

Considering the reliability theory, it is stated that the reliability of a component under the 

influence of ageing only, before renewal at time 𝑇𝑖 is given by: 

 

𝑅(𝑇𝑖) = exp (− ∫ ℎ(𝑡)𝑑𝑡
𝑇𝑖

0
)=exp (−(

𝑇𝑖

𝜂
)𝛽) 

 

(2.5) 
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If 𝑈𝑖 = (
𝑇𝑖

𝜂
)𝛽, 𝑈𝑖 has a unit negative exponential distribution. As for (2.5), at time 𝑇𝑖 the 

reliability of the component under the influence of time independent covariates according 

to the PHM is estimated by: 

𝑅(𝑡, 𝑍̅)=𝑒𝑥𝑝 [− ∫
𝛽

𝜂

𝑇𝑖

0
(

𝑡

𝜂
)𝛽−1dt exp (𝛾̅ × 𝑍)̅̅ ̅]  

(2.6) 

By solving (2.6) it gives: 

 

𝑅(𝑡, 𝑍̅)=𝑒𝑥𝑝 [−(
𝑇𝑖

𝜂
)𝛽exp (𝛾̅ × 𝑍̅] 

 

 

(2.7) 

Equation (2.6) is about the time independent covariate. For the time dependent 𝑈𝑖 =

(
𝑇

𝜂
)𝛽exp (𝛾,̅ 𝑍𝑖̅), again with unit exponential distribution. When dealing with this case with 

time dependent covariates, the reliability at time 𝑇𝑖 for the component, considering the 

time dependent covariate will be: 

 

𝑅(𝑡, 𝑍(𝑡)̅̅ ̅̅ ̅̅ =𝑒𝑥𝑝 [− ∫
𝛽

𝜂

𝑇𝑖

0
(

𝑡

𝜂
)𝛽−1exp (𝛾̅ × 𝑍(𝑡)̅̅ ̅̅ ̅̅ 𝑑𝑡] 

 

(2.8) 

   Equation (2.8) gives:  

 

𝑅(𝑡, 𝑍(𝑡)̅̅ ̅̅ ̅̅ =𝑒𝑥𝑝 [− ∫ exp (𝛾̅
𝑇𝑖

0
× 𝑍̅𝑖 (𝑡)𝑑(

𝑡

𝜂
)𝛽] 

 

(2.8) 

 

Considering 𝑈𝑖= ∫ exp (𝛾̅
𝑇𝑖

0
× 𝑍̅𝑖 (𝑡)𝑑(

𝑡

𝜂
)𝛽, with unit negative exponential distribution. In 

practice (2.8) and (2.9) are approximated by: 

 

𝑅(𝑡, 𝑍(𝑡)̅̅ ̅̅ ̅̅ =𝑒𝑥𝑝 {∑ exp (𝛾 ̅𝑖
𝑘=1 × 𝑍𝑖

∗̅̅ ̅(𝑡𝑘)) × [(
𝑡𝑘+1

𝜂
)𝛽 − (

𝑡𝑘

𝜂
)𝛽]} 

 

(2.9) 

 

with 0=𝑡0 < 𝑡𝑖 < ⋯ < 𝑇𝑖 inspection points where covariate measurement was performed 

and  𝑍𝑖
∗ = 0.5 × (𝑍𝑖 (𝑡𝑘

̅̅ ̅̅ ̅̅ ̅) + 𝑍𝑖 (𝑡𝑘+1)).̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
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a. Maximum likelihood (Parameter estimation) 

As indicated in the literature, the maximum likelihood of the Cox model parameters is 

found by maximizing a likelihood function. The likelihood function is a mathematical 

expression which describes the joint probability of obtaining the data observed on the 

subjects in the study as a function of the unknown parameters (the 𝛾′𝑠) in the model 

being considered (Kleinbaum, 2000). Some literature such as, (Vlok, 1999), addressed 

the optimization of the likelihood equation to determine the Weibull parameters. 

The Weibull parameters are estimated by maximizing the likelihood equation given by: 

 

𝐿(𝛽, 𝜂, 𝛾̅)=∏ ℎ(𝑇𝑖, 𝑍𝑖 (𝑇𝑖
̅̅ ̅̅ ̅̅ ̅

𝑖 ) × ∏ 𝑅(𝑇𝑗, 𝑍𝑗(𝑡))̅̅ ̅̅ ̅̅ ̅̅
𝑗  

 

(2.10) 

 

with the 𝑖 index referring to failure times and where 𝑗 = 1,2 … … … . . 𝑛 indicate failure       

and suspension times. It is important to highlight that for the aim of this dissertation it 

deals with complete data.  

The Weibull parameters 𝛽, 𝜂, 𝛾 which maximize (2.19), can also maximize   

log (𝐿(𝛽, 𝜂, 𝛾) or 𝑙(𝛽, 𝜂, 𝛾). It is numerically appropriate to maximize 𝑙(𝛽, 𝜂, 𝛾) which is 

given by: 

 

𝑙(𝛽, 𝜂, 𝛾 ̅) = 𝑟𝑙𝑛 (
𝛽

𝜂⁄ ) + ∑ 𝑙𝑛 [(
𝑇𝑖

𝜂⁄ )𝛽−1] + ∑ 𝛾̅

𝑖𝑖

× 𝑍𝑖 (̅̅ ̅̅ 𝑇𝑖) − ∑ ∫ exp (𝛾̅

𝑇𝑗

0𝑗

× 𝑍  ̅̅
𝑗̅(𝑡) 𝑑(𝑡

𝜂⁄ )𝛽 

 

 

(2.11) 

 

where r is the number of failure renewals. 

In this dissertation, equation (2.11) or (2.12) are solved numerically using a Newton-

Raphson optimization procedure. 

 

𝑙(𝛽, 𝜂, 𝛾 ̅) = 𝑟(−𝛽𝑙𝑛𝜂) + 𝑟𝑙𝑛𝛽 + (𝛽 − 1) × ∑ 𝑙𝑛𝑡𝑖 + ∑ 𝛾𝑏𝐵𝑏 − [exp(𝑎) × (∑ 𝛾𝑔𝑍𝑗𝑔
𝑖 ) × (𝑡𝑖(𝑗+1)

𝛽
− 𝑡𝑖𝑗   

𝛽

𝑛

𝑖=1

)]
𝑚

𝑏=1

𝑟

𝑖=1
 

 

 

(2.12) 
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To maximize equation (2.12) and estimate the three Weibull parameters, a number of 

techniques have been tested successfully. Among these are:  

• A Nelder-Mead method 

• A BFGS Quasi-Newton method 

• Snyman’s dynamic trajectory method 

• A modified Newton-Raphson method 

The performance of the above-mentioned methods was assessed regarding their economy, 

which means according to the number of iterations needed to converge, the number of 

objective function evaluations and the number of partial derivative evaluations, as well as 

robustness. The outcome from the evaluation of the above-mentioned methods was such 

that the Newton Raphson method was found more suitable and economic for optimization 

of the maximum likelihood function. This dissertation uses the Newton Raphson method 

to optimize the equation (2.12).  

b.1 Newton Raphson method for a 3 parameters Weibull 

Vlok (1999) proposed a template to simplify the computation of the Newton Raphson 

optimization technique for vibration monitoring data. Referring to the suggested 

template, 𝑛 expresses the number of histories, which is seven for this dissertation, and i  

indicates the history number such that: 𝑖 = 1,2 … . . 𝑛. 

The time to failure or suspension in each history, as expressed by 𝑇𝑖, and 𝐶𝑖, are used as 

indications making the difference between failure and suspension. For 𝐶𝑖=1, 𝑇𝑖 is a failure 

and for 𝐶𝑖 = 0, 𝑇𝑖 is a suspension. For the aim of this dissertation, data are complete, 

means without suspensions. 

The number of inspections 𝑘𝑖 must be set to be able to model the scenario associated to 

the time dependent covariate which is the natural frequency. For the aim of this 

dissertation a 50000 cycle is set as interval between inspection to build the proposed 

templates. 

Below in table 2.1 at the sample of the template associated to our data is given. 
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Table 2.1: Template of inspection time and covariate corresponding 

 

Inspection Time 

 

Covariate 

𝑡𝑖0 

𝑡𝑖1 

. 

. 

. 

 

𝑡𝑖𝑘𝑖 

𝑍01
𝑖  

𝑍11
𝑖  

. 

. 

. 

 

𝑍𝑘𝑖1
𝑖  

 

The above template is adjusted according to our data which deals with a unique covariate 

as it is the case in this dissertation. The Weibull parameters are estimated by optimizing 

the objective function (2.12), considering the complexity of the objective function, a 

MATLAB algorithm called fmincon is used to optimize and compute the objective 

function in the dissertation. 

b.2 Maximum likelihood for a simple Weibull (2 parameters) 

This section is all about determining the shape and scale parameters related to the axial 

fan blade data. Firstly, it is important to notice that the Weibull parameter estimates can 

be defined using different methods such as the graphical method, by means of probability 

plotting paper, or the analytical method, using either least squares or maximum likelihood 

(Tan, 2009). The probability plotting method requires less mathematics and is suitable for 

a small sample size. Furthermore, Tan et al. (2009) present many advantages making the 

maximum likelihood method more attractive. Among its properties could be mentioned: 

• It is asymptotically consistent, efficient and unbiased. 

• There is the possibility to handle survival and interval data better than rank 

regression. 
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Considering that the lifetime T of the axial fan blades follows a Weibull distribution with 

𝛽 and 𝜂 parameters, the probability density function could be given by: 

 

𝑓(𝑡) =
𝛽

𝜂
(

𝑡

𝜂
)𝛽−1𝑒

−(
𝑡
𝜂

)𝛽

 

 

(2.13) 

 

with t , the failure time, beta the shape parameter strictly greater than zero and eta the 

scale parameter. Considering 7=N  failures as shown in the data, the log likelihood 

function is given by: 

Λ = 𝑁𝑙𝑛(𝛽) − 𝑁𝛽 ln(𝜂) + (𝛽 − 1) ∑ ln(𝑡𝑖) − ∑(
𝑡𝑖

𝜂
)𝛽

𝑁

𝑖=1

𝑁

𝑖=1

 

 

(2.14) 

 

Referring to the Newton Raphson method, the above (2.14) log likelihood function 

maximization, gives: 

 

1

𝛽
=

∑ 𝑡𝑖
𝛽

𝑙𝑛𝑡𝑖
𝑁
𝑖=1

∑ 𝑡𝑖
𝛽𝑁

𝑖=1

−
1

𝑁
∑ 𝑙𝑛𝑡𝑖

𝑁

𝑖=1

 

 

(2.15) 

 

 

As the log likelihood function maximization is dealt with numerically, a MATLAB 

optimization code is used to solve (2.15). 

The estimated parameters obtained from the likelihood function maximization are utilized 

to build the PHM. The PHM obtained is tested to know how well it fits the data, therefore 

the goodness of fit is applied to assess the constructed model.  

2.2.4 Economical approach with the PHM 

The PHM provides us with the approximate risk of failing for the component based on 

the age and covariates (the natural frequency for the case study in this dissertation). The 

information which is made available by the PHM should be utilized to obtain economic 

benefits 
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a. How to use PHM outcome for economic benefit? 

Vlok (1999) states: “Economical benefits from a statistical failure analysis can be 

guaranteed with a high confidence level if the minimum long-term life cycle cost LCC of 

a component is determined and pursued’’. 

Long term life cycle cost (LCC) concept 

The LCC in renewal analysis arise from two important quantities in practice: 

• The cost of unexpected renewal (failure cost 𝐶𝑓) 

• The cost of preventive replacement (𝐶𝑝) 

 

Equilibrium must be obtained between the risk of having to spend 𝐶𝑓 and the advantages 

in the cost difference between 𝐶𝑓 and 𝐶𝑝 without wasting useful life of a component. The 

optimum economic preventive renewal time will be at this balance point. 

  b. LCC for Weibull PHM 

For optimal decision making with the PHM in reliability, Makis and Jardine (2013) made 

a model available. The model specifies the optimal renewal policy in terms of an optimal 

hazard leading to the minimum LCC. To be able to determine the hazard rate which leads 

to the minimum LCC it is needed to predict the behaviour of covariates. 

 

Makis and Jardine’s model assumes the covariate behaviour to be stochastic and 

approximating it by a non - homogeneous Markov chain in a finite space. Referring to 

that model, the expected average cost per unit time is a function of the threshold risk level 

given by:  

 

∅(𝑑) =
𝐶𝑝 + 𝐾𝑄(𝑑)

𝑊(𝑑)
 

 

(2.16) 

 

 

where, 𝑄(𝑑) = 𝑃(𝑇𝑑 ≥ 𝑇) represents the probability that failure replacement will occur 

and 𝑊(𝑑) the expected time until replacement  and 𝐾 = 𝐶𝑓 − 𝐶𝑝. 

Jardine et al. (1997) state that the calculation of the functions defined by the probability 

that failure replacement will occur Q(d) and the expected time until replacement W(d), 
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can sometimes take a long time, due to the covariates quantity and structure, sometimes a 

simulation procedure could be used to determine the cost function, in this project such a 

simulation procedure is used to determine the cost function and the optimal risk point 

which minimizes the risk. 

2.2.5 Goodness of fit for the PHM 

The assumptions characterizing PHM are well defined for the time independent 

covariates: (1) Renewal times are iid (identically distributed); (2) The influential 

covariates are inserted in the model building; (3) the ratio of two hazard rates for given 

covariates should be constant over time. 

Several approaches can be used to evaluate the goodness of fit for the PHM, more often 

residual analysis using graphical methods as well as statistical tests are used to assess at 

which point the PHM fits the data. 

The advantage of the analytical method is that it provides statistical tests with a 

corresponding p-value to assess the PHM assumptions for covariates. It also gives the 

ability to make a correct and clear decision (Kleinbaum, 2000). 

a. Graphical methods 

To test the assumptions of the PHM, several graphical methods can be used. These 

include: 

• Cumulative hazard plots 

• Average hazard plots  

• Residual plots 

Out of the three mentioned categories of graphical methods mentioned, residual plots are 

the more common. To construct these residual plots, the Cox- generalized residuals for 

PHM are used. 

Several methods are performed to calculate the residual in Cox regression model, among 

them are (1) Schoenfeld; (2) score residuals; (3) Martingale and (4) deviance. Each of 

these has a specific utilization, such as goodness of fit, which serves to identify possible 

outliers and the influential observations (Jin, 2014).  

In survival analysis the diagnostics procedure for the model checking is focused on 

residuals. In this dissertation graphical techniques will not be used to assess the goodness 
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of fit for the PHM even though in many publications residual plots are often used under 

different ways such as: (1) the residual against order of appearance; (2) ordered residuals 

against expectation etc. 

a. Analytical methods 

The use of graphical tests is often mixed with the analytical or statistical test as it is the 

case with the EXAKT software which uses the graphical residual analysis and the K-S 

test. However, because of the diversity of interpretation from analysts, the analytical 

approach seems more advantageous for decision making. Several statistical tests can be 

used, below are discussed some: 

b.1 Wald test 

The Wald test allows one to assess the quality of the parameters obtained from the 

maximum likelihood. Therefore, for the PHM, this method can test the values of 𝛽, 𝜂 and 

𝛾 that are obtained. The Wald test statistic for a given coefficient is given by: 

 

𝑊𝑖 =
𝑛(𝜃𝑖)2

𝑣𝑎𝑟(𝜃𝑖)
 

 

(2.17) 

 

𝑣𝑎𝑟(𝜃𝑖) being the variance of the regression coefficient for a sample size expressed by n. 

The calculation of the p-value is made from the 𝜒2 distribution. 

b.2 K-S test (Kolmogorov Smirnov) 

The K-S test is a statistical hypothesis test. It is a non-parametric method used to 

generally compare the actual data to a normal distribution; the cumulative probability 

function of the data is compared with the cumulative probability function of a theoretical 

normal distribution. 

However, in the context of the PHM this test is applied on the residual of the PHM. As it 

is known that the residual of the proportional hazard model must have an exponential 

distribution, the K-S test is then used to compare the cumulative distribution function of 

the PHM, residuals and the cumulative distribution function of an exponential 

distribution. 
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The null hypothesis: The cumulative distribution function of the PHM residuals is equal 

to the cumulative distribution function of an exponential distribution fitted on the 

residuals. 

The null hypothesis testing is made by checking whether the critical value 𝐷𝛼, which is 

found in the K-S table according to the level of significance, set is less or greater than 𝐷 

which is the calculated (𝐷-statistic). 

The  𝐷 − statistics is defined as the largest absolute difference between the PHM 

residuals cumulative distribution function and the cumulative exponential distribution. 

The 𝑝 − value is the probability of obtaining a sample more extreme than the ones 

observed. 

Acceptance criteria: If 𝐷 < 𝐷𝛼 for a given significance level, the null hypothesis should 

be accepted; 

Rejection criteria: If 𝐷 > 𝐷𝛼 the null hypothesis should be rejected. 

2.3 Flowchart illustration of the integrated method 

The following diagram expresses the use of PHM to forecast spare parts demands: 

PHM BUILDING 

  

 

ECONOMIC APPROACH  

 

  

  

 

 

Step 1: It consists of building the PHM with the outcome from the maximum likelihood 

function, in this dissertation a MATLAB algorithm allowed the computation of the 

Newton Raphson objective function. 

GOODNESS OF FIT TEST 

SELECT THE SUITABLE ‘d’ 

         DECISION MAKING 

JIT SPARE DEMAND 
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Step 2: The goodness of fit testing is performed to assess how well the PHM fits the data, 

the Kolmogorov Smirnov is the statistical test used in this dissertation. 

Step 3: The blending of the PHM and economic consideration is performed at this level. 

The outcome from this step is the optimal risk point that minimizes the cost during the 

simulation procedure d. 

Step 4: The selected d point allows gives the critical number of loading cycle 

corresponding to each component. 

Step5: The information obtained from the previous step is used to make decisions about 

the right time to make the component replacement. 

Step 6: The replacement is performed according to the critical point pre-defined, which 

means there is no need of stocking too much spares because the right time for 

replacement is known, means JIT (just-in-time) spare parts demand. 

The integrated forecasting method being proposed in this chapter, before the 

implementation of the given method in a case study in chapter 4, the following chapter 

introduces the case study and describes the generation of data needed to implement the 

new method on the case study. 
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 Chapter 3 Case study description 

3.1 Introduction 

This chapter addresses the numerical and experimental investigation carried out to make 

available event and condition monitoring (CM) data needed to build the PHM. The case 

study focuses on a turbomachinery 30-degree fan axial blade. 

The reason for considering the turbomachine blade failure case in this study, was simply 

to capitalise on the numerical models and experimental results that were already available 

from a prior study conducted by Brits (2016). In his work Brits worked on estimating the 

fatigue crack life (FCL) of turbomachine blades by means of a fatigue tests in the 

laboratory. As part of this study Brits conducted extensive numerical investigations and a 

very comprehensive experimental study. Because of the dearth of results of this nature in 

the open literature, these results were used for the current investigation. The author of this 

dissertation also assisted Brits in executing the experiments described here, to make sure 

that he has a full understanding of the intricacies of the data. 

However, unlike the work by Brits where the main goal was to estimate the fatigue crack 

life of turbomachinery blades, here the same blades were considered with a focus on 

updating the finite element model to get the natural frequencies corresponding to the 

FCL. Then both the FCL and natural frequencies obtained were used as inputs to build a 

PHM prognostic model. The choice of natural frequency as covariate is since it is easy to 

measure, compared to the actual crack size which is difficult to directly measure in 

practice. The numerical investigation which was conducted by the current author, using 

the models generated by Brits, allowed calculation of the natural frequencies related to 

the crack propagation.  

It is important to note that blade lifetime was not obtained from the finite element model 

(FEM). Only the stress intensity factors were used as input to the Paris Law model and a 

modal analysis was run by means of MSC.MARC/MENTAT 2016.  

The experimental investigation by Brits was carried out in the C-AIM Labs at the 

University of Pretoria and entailed the use of a 50 kN spectral dynamics electrodynamics 

shaker to apply base excitation to the axial fan blade specimens. The fatigue lifetime 

recorded from the experimental approach served as event data required to build the PHM. 



35 

 

After having obtained the outcomes from both numerical and experimental investigations, 

the PHM could be constructed from both types of data made available through numerical 

and experimental investigations.  

Tables and curves associated with both the numerical and experimental approaches are 

provided in this dissertation. The CM and event data generated are computed as a 

’likelihood’. The outcome from the likelihood function are Weibull estimate parameters      

needed to build the PHM. 

  3.2 Numerical investigation 

(Brits, 2016) followed a FEM approach to identify the natural frequencies corresponding 

to the crack growth. Furthermore, from the FEM, he calculated the stress intensity factor 

(SIF) that correlate to specific surface crack lengths. The calculated SIF and material 

constant obtained after the experiment served as input to a Paris law growth model to 

specify the crack growth rate. The number of loading cycles were correlated to the crack 

propagation. Figure 3.1 shows the mains steps characterizing the numerical investigation: 

• FEM set up 

• Crack insertion 

• SIF calculation 

• Growth rate  

• Life prediction 

 

 

Figure3.1: Numerical investigation approach (Brits, 2016) 

This dissertation utilized the FEM designed by Brits (2016), the FEM was performed to 

estimate the fatigue crack life of an axial fan blade. However, for the aim of this 

dissertation the mentioned FEM was extended to obtain the natural frequency 



36 

 

corresponding to the propagation of the crack, then the obtained natural frequencies 

served as covariate to the PHM. 

   3.2.1 FEM set up 

Two types of the axial fan blade specimen are considered in this dissertation: the 30 and 

40-degree but only the 30-degree is used for building the PHM at the end of the work. 

Considering the computational cost, a static structural analysis was run with a set periodic 

tip displacement of ±10mm. The base of the blade was clamped in all directions at the 

attachment point, whereas a single point displacement is utilized at the extreme tip of the 

blade. The location of that point is selected similarly as the laser displacement transducer 

was in the experiments. 

Table 3.1 shows the material properties, and figure 3.2 the model of a 40-degree blade, 

including the boundary condition. 

 

 

 

Figure 3.2: Finite Element Model of a 40-degree blade with boundary conditions (Brits, 

2016) 

The table below gives the material properties for the finite element model 

Table3.1: Material properties chosen for FE model  

Structural Property Values 
Elasticity Modulus E 69 GPa 

Tensile Strength 220 MPa 
Yield Stress 165 MPa 

Density 2830 kg/m3 
Poisson Ratio 0.33 
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The following flowchart shows systematic process to build the finite element model for 

an axial fan blade using MSC.MARC/MENTAT2015.0 with an initiated and propagated 

crack. 

 

 

 

 

 

 

 

 

 

Figure 3.3: Flowchart of model set up in MSC.MARC/ MENTAT 2016 (Brits, 2016). 

The validation of the boundary conditions and material properties were done by means of 

mesh convergence and modal analysis. To establish the maximum size of 4-nodded 

tetrahedral elements for having an accurate result within a reasonable computational time, 

a mesh convergence study was performed. 

The result of the finite element and experimental modal analysis was that the first three 

modes and their natural frequencies are similar. The FEM natural frequency result shows 

a maximum error of 7.92% on the second mode compared to the experimental modal 

analysis result, which is the mean between the test specimens. 

Table 3.2 results indicate that the modelling parameters selected approach those of the 

real blades, thus, it is used further in the study. 
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Table 3.2: Natural Frequency results for 40-degree blades 

 

Experiment 
(Hz) FEM (Hz) 

Error  
(%) 

Mode 1 105,3 104,92 3,19 
Mode 2 428,5 462,44 7,92 
Mode 3 667,5 674,82 1,1 

 

For final validation, the experimental and numerical strains at 10mm tip displacement are 

compared. Figure 3.4 to Figure 3.7 below respectively show the strain field before the 

initiation of the crack for the experimental and numerical approaches. 

When there is no load applied, the noise floor of the readings is measured, since it is an 

offset in the strain readings. Considering figure 3.4 the determination of the strain noise 

gives +0.0793 percent and –0.0042 percent. The maximum strain of 0.274 percent was 

measured on the base of the blade as shown at figure 3.5. 

The major strain field was obtained from the numerical approach, where the base of the 

blade gives a maximum strain of 0.2078 percent. Regarding the noise floor, the 

experimental and numerical strain fields for the test specimen differ by 6.73 percent for 

the maximum major strain. The results in our possession shows that the finite element 

model set up is right and can accurately represent the axial fan blades. 

 

 

 

 

 

 

 

 

Figure 3.4: Experimental maximum principal strain fields of a 40-degree blade at (a) Zero 

load and at (b) 10mm tip displacement. 
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Figure 3.5: Experimental maximum principal strain fields of a 30-degree blade at (a) Zero 

load and at (b) -10mm tip displacement. 

 

 

Figure3.6: Numerically computed major strain field of a 40-degree blade at -10mm tip 

displacement (Brits, 2016). 
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Figure 3.7: Numerically computed major strain field of a 30-degree blade at -10mm tip 

displacement (Brits, 2016). 

  3.2.2 Crack insertion 

The MSC.MARC/ MENTAT software gives the user the ability to freely add cracks into 

the model, the size and shape of the crack to be added are arbitrary. Regarding the model 

under analysis in this dissertation, a crack with a surface length of 2 mm was seeded. The 

crack propagation was used to obtain the natural frequencies and was not used to obtain 

lifetime information. 

After each load cycle at an increment of 1 mm, the crack propagates from the initial seed. 

The crack growth is done by the means of a scaling function which scales the crack by 

taking the relationship of the stress intensity factor (MSC software, 2016, pp.158-162). 
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Where d is the scaled crack growth size, and 𝑑0 is the user defined crack growth size per 

increment. 

The software automatically does the remeshing, while the crack is propagating. The 

remeshing works along with the global meshing and focuses on the mesh at and around 

the crack front. 

The cracked finite element axial fan blade showing an extended crack with its meshes 

shown below. 

 

Figure 3.8: Cracked FE model axial fan blade showing extended crack with mesh. (Brits, 

2016) To reduce errors when remeshing, the direction of the crack growth was chosen 

only as mode 1. Same results were obtained when the maximum hoop stress theory was 

used to determine the crack growth. 

  3.2.3 Summary of the results from Brits (2016) dissertation 

With the propagation of the crack in the blade, the stress intensity factors are computed at 

distinct points in the crack front for each crack size by the means of 3D VCCT. 

 

𝑑 = 𝑑0(
∆𝐾𝐼

∆𝐾𝑀𝐴𝑋
)𝑚 

 

 (3.1) 
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The meeting point for the free surface and the crack front with the highest stress intensity 

factor is used as the stress intensity for a given size. 

Figure 3.9 below shows a comparison between the analytical and numerical stress 

intensity factor at the corresponding surface crack lengths. Because of the difference 

between the experimental and numerical crack front shapes, small differences are seen 

between the two methods. The FEM crack front deviates from a semi–elliptical shape as 

the surface crack length increases. For 2𝑐 > 33, the Raju-Newman and FEM stress 

intensity factors start to move away from one another. During the computation of the 

stress intensity factor using the Raju-Newman method, an assumption was made that the 

semi–elliptical crack is in the centre of the plate, while the crack of the FEM is not in the 

centre of the blade, there is a difference of stress path. The different stress paths from the 

base to the root and crack front shapes could justify the difference between the stress 

intensity factors calculated. 

 

Figure 3.9: Stress Intensity factor at associated crack length of the numerical simulation 

and analytical calculated results for 40-degree blades (Brits, 2016). 

With the stress intensity factor along the propagated surface crack being known. it is then 

possible to determine the crack growth rate using a growth model and material constants. 

By means of the Paris law, the growth rate associated with the stress intensity factor is 

determined. Since the crack lengths between steps are known, the number of loading 

cycles needed to grow the crack size can be calculated at each step. The life of the blade 

is estimated by the addition of the cumulative amount of load cycles needed to increase 

the crack size in between steps. 
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The surface crack length at the number of load cycles predicted using the mean values of 

𝑚 and 𝐵 from the 40- degree test specimens as shown in figure 3.11. 

Finally, the predicted FCL (fatigue crack length) correlates well with the mean of the 

experimental FCL result. Thus, the determined Paris law material constants are valid and 

the approach to predict FCL shows real promise. 

 

 

 

 

 

 

 

Figure 3.10: Predicted fatigue crack length vs number of load cycles compared to 

experimental results for a 30-degree blade (Brits, 2016). 

 

 

 

 

 

 

 

Figure 3.11: Predicted fatigue crack length vs number of load cycles compared to 

experimental Results for a 40-degree blade (Brits, 2016). 
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  3.2.4 Method validation 

For the reason of validation, the 30-degree blade geometry was used with the same model 

parameters as the 40-degree blade, with the only difference in the validation model the 

geometry. Boundary conditions, material properties as well as the mesh configuration 

being the same for the 30 and 40-degree model. This would allow us to determine the 

model sensitivity for changes in geometry.  

Furthermore, this would also provide insight in why the 30-degree test specimen had a 

longer FCL than the 40-degree test specimens. 

  a. Natural frequencies 

A modal analysis was performed to ensure that the material properties and modelling 

constraints have been chosen correctly so that the model represents the real blade. 

Table 3.3 shows the numerical and the average experimental natural frequencies. A 

maximum error of 5.8 percent exists between the two, and it can be concluded that the 

parameters chosen are close enough. 

Table 3.3: Natural frequency result for the 30-degree blades 

 

Experiment 

(Hz) FEM (Hz) 

Error 

(percent) 

Mode 1 107.2 107.86 4.79 

Mode 2 506.3 483.7 4.46 

Mode 3 768.8 724.2 5.8 

 

a. Strain 

Considering the 30-degree blade, the major strain fields from the FEM and the 

experiments as shown in Fig 3.4 and 3.5 respectively, the noise floor during the test is + 

0.0833 percent and -0.0006 percent. The maximum strain at -10 mm tip displacement is 

0.2292 percent at the base of the blade. The maximum computed strain is 0.158 percent, 

also present at the base of the blade, which means that the numerical strain values differ 

by 8.5 percent from that of the experiment. 

The errors values being small, it can be concluded that the physics-based model of the 

30-degree blade does indeed approximate a real 30-degree axial fan blade. 
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The major strain in the 30-degree test specimens is lower than the 40-degree test 

specimens, it implies a lower stress and a longer fatigue crack life. In the figure 3.8 is 

shown the bending stress results for the 30-degree blade, as well as the maximum stress is 

123.1MPa, 31.4MPa less than the stress experienced by the 40-degree blade. 

c. Life prediction 

Similarly, for the 40-degree blade, the stress intensity factor calculates as function of 

surface crack length and the FCL estimation was done for the 30-degree blade. Figure 

3.10 and 3.11 shows the predicted crack growth using FEM and the mean material 

constant values is obtained in the experimental investigation. 

3.3 Experimental investigation 

Lifetime and Paris law material constants are obtained by means of the experimental 

investigation. In this section an experimental setup is designed and utilized for the 

initiation and propagation of the crack. Figure 3.12 shows an overview of steps undertook 

to obtain lifetime: 

•  Experimental set up 

•  Crack growth measurement 

•  Stress intensity calculation  

•  Material constant determination 

•  Statistical analysis 

3.3.1 Experimental set up 

 

 

 

 

 

Figure 3.12: Experimental investigation overview (Brits, 2016) 

During the experiment, to apply the base excitation to the test specimens, a 50 kN 

Spectral dynamics electrodynamics shaker was used. The advantage of the chosen shaker 

is that it has a larger displacement at high frequencies compare to other available 
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equipment in the laboratory. The acquisition of data during the experiment was 

performed by means of a 4M DIC system from Gesellschaft fur Optische Messtechnik 

(GOM) by taking images of the test specimens before and during loading. Figure 3.13 

shows the experimental setup. 

 

Figure 3.13: Experimental setup showing (a) Right side view, (b) Left side view, (c) The 

mounted test specimen. (Brits, 2016) 

3.3.2 Tables of results generated from finite element model and experiment  

In this section the data generated from the experiment performed by Brits (2016) and the 

natural frequency results were generated by the reviewed finite element model. It is 

important to highlight that the finite element analysis was extended to allow for the 
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calculation of the natural frequencies for the first mode from the initiated crack to the 

failure for 30-degree and 40-degree axial fan blade, because this was not included in Brits 

(2016) study. 

Table of experimental and numerical data 

Figure 3.12 presents an overview of the steps taken to determine the constants used in the 

Paris Law to obtain the lifetime. Figure 3.8 shows that the design of the experimental set 

up was such that a crack initiates and propagates in an axial fan blade. The use of DIC 

(digital image correlation) allowed the measurement of the crack during a post processing 

procedure. The measured crack growth and the analytically determined stress intensity 

factors were then used to determine the material constants for the Paris Law. Several 

experiments with the same loading parameters were conducted, after which a statistical 

analysis on lifetime and Paris Law material constant was possible. Tables below represent 

the results from section 3.2.3 and the extended FEM that was performed in this 

dissertation to generate natural frequency related to the crack propagation. 

Table 3.4: Outcome results from the FEM and experiment for blade 1 

Crack 

length(mm) 

Number 

of cycles 

Natural 

frequencies 

Remaining 

life 

    2 0 107.9 169700 

2.5 21400 107.86 148300 

4 43200 107.59 125800 

6 59400 107.53 110300 

9 75700 107.071 94000 

11 91200 106.7 78500 

18 108200 105.05 61500 

24 121900 102.9 47800 

27 128200 100.6 41500 

31 141900 98.4 27800 

38 148900 91.9 20800 

45 162890 81.7 6810 

53 169700 73.1 0 
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Table 3.5: Outcome results from the FEM and experiment for blade 2 

Crack 

length(mm) 

Number 

of cycles 

Natural 

frequencies 

Remaining 

life 

    2 0 107.9 185000 

2.6 16000 107.85 169000 

3.5 39000 107.6 146000 

5 67000 107.56 118000 

6 75000 107.53 110000 

10 91000 106.9 94000 

13 97000 106.1 88000 

15 112000 105.6 73000 

19 127000 104.5 58000 

25 142000 102.3 43000 

31 157000 98.4 28000 

39 179000 91.4 6000 

52.9 185000 73.1 0 

 

Table 3.6: Outcome results from the FEM and experiment for blade 3 

Crack 

length(mm) 

Number 

of cycles 

Natural 

frequencies 

Remaining 

life 

2 0 107.9 240000 

2.3 12000 107.86 228000 

3 35000 107.79 205000 

4 45000 107.59 195000 

7 80000 107.4 160000 

9 95000 107.071 145000 

12 113000 106.53 127000 

15 128000 105.6 112000 

19 167000 104.5 73000 

25 198000 102.3 42000 

30 205000 98.8 35000 

40 230000 89.8 10000 

53.1 240000 73.1 0 
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Table 3.7: Outcome results from the FEM and experiment for blade 4 

Crack 

length(mm) 

Number 

of cycles 

Natural 

frequencies 

Remaining 

life 

2 0 107.9 257000 

3 35000 107.19 222000 

5 91000 107.5 166000 

7 112000 107.4 145000 

9 143500 107.071 113500 

13 176000 106.1 81000 

17 187000 105.1 70000 

21 210000 103.8 47000 

25 214000 102.3 43000 

31 236000 98.4 21000 

40 246000 89.8 11000 

52.8 257000 73 0 

 

   Table:3.8: Outcome results from the FEM and experiment for blade 5 

Crack 

length(mm) 

Number 

of cycles 

Natural 

frequencies 

Remaining 

life 

2 0 107.9 343000 

2.5 17000 107.86 326000 

3 28500 107.79 314500 

5 81000 107.5 262000 

7 105000 107.4 238000 

9 150000 107.071 193000 

12 200000 106.53 143000 

18 230000 105.05 113000 

24 280000 102.9 63000 

30 310000 98.8 33000 

38 323520 91.9 19480 

42 331500 86.6 11500 

53 343000 73 0 
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Table 3.9: Outcome results from the FEM and experiment for blade 6 

Crack 

length(mm) 

Number 

of cycles 

Natural 

frequencies 

Remaining 

life 

2 0 107.9 402000 

3 12500 107.79 389500 

5 89000 107.5 313000 

7 134000 107.4 268000 

10 209000 106.9 193000 

13 239000 106.1 163000 

20 303000 104.1 99000 

26 339000 101.6 63000 

32 374000 97.9 28000 

40 389000 89.8 13000 

46 397000 79.5 5000 

49 399500 75.1 2500 

53.05 402000 73 0 

 

Table 3.10: Outcome results from the FEM and experiment for blade 7 

Crack 

length(mm) 

Number 

of cycles 

Natural 

frequencies 

Remaining 

life 

2 0 107.9 665000 

3 50000 107.79 615000 

5 130000 107.56 535000 

7 180000 107.4 485000 

9 254000 107.071 411000 

13 330000 106.1 335000 

17 430000 105.1 235000 

21 500000 103.9 165000 

25 550000 102.3 115000 

33 600000 97.4 65000 

38 630000 91.9 35000 

44 654000 82.7 11000 

52.95 665000 73 0 

 

Tables 3.11 and 3.12 document the natural frequencies as functions of crack lengths that 

were not included in the analyses performed by Brits (2016). He did not focus on 

presenting the natural frequencies trend as the crack was propagating. However, this 

project needs two types of data, namely event data (lifetime of the blades) and condition 

monitoring data (natural frequencies). 
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Table 3.11: Natural frequencies and corresponding crack length for 30- degree fan axial 

blade 

Increment 

Crack Length 

(mm) 

Natural 

Frequencies (Hz) 

1 0.0020 107.900 

2 0.0037 107.649 

3 0.0057 107.595 

4 0.0075 107.449 

5 0.0093 107.071 

6 0.0109 106.938 

7 0.0126 106.532 

8 0.0141 106.101 

9 0.016 105.601 

10 0.0177 105.050 

11 0.0195 104.525 

12 0.0212 103.917 

13 0.0229 103.181 

14 0.0245 102.389 

15 0.0261 101.592 

16 0.0278 100.644 

17 0.029 99.723 

18 0.0304 98.874 

19 0.032 97.910 

20 0.0347 95.576 

21 0.0357 94.228 

22 0.0372 92.949 

23 0.0386 91.438 

24 0.0401 89.892 

25 0.0406 87.934 

26 0.0423 86.027 

27 0.0436 83.935 

28 0,0454 81.685 

29 0.0469 79.117 

30 0.0473 76.446 

31 0.0530 73.000 
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Table3.12: Natural frequencies and corresponding crack length for 40-degree fan axial 

blade 

Increment Crack Length (mm) 

Natural Frequency 

(Hz) 

1 4.194 104.923 

2 7.963 103.36 

3 11.413 101.774 

4 15.197 100.142 

5 18.757 97.157 

6 21.979 94.560 

7 25.075 91.973 

8 27.876 89.476 

9 30.603 87.06 

10 33.437 84.329 

11 35.839 80.601 

12 38.879 76.832 

13 42 73.180 

 

  3.8 Conclusion 

Having the event data from the experiment and the condition monitoring data available 

from the FEM, all inputs required to build the PHM are now available. The following 

chapter therefore deals with the implementation of the PHM for the case study presented 

in chapter 3. 

The choice of natural frequency as covariate is justified by the fact that it is relatively 

easy to measure (i.e can be measured at different points on the structure without affecting 

the results). Natural frequency is a global parameter of a structure, as opposed to a local 

parameter such as mode shape. It is further uniquely related to the stiffness of the 

structure if one may assume that mass is essentially constant - which is for practical 

purposes the case except in erosive or very dirty environments. Natural frequency can 

therefore be indicative of change of stiffness, which may again be assumed to indicate 

damage. 
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Chapter 4 Case study implementation of the 

proposed method 

4.1 Introduction 

This chapter covers the implementation of the integrated forecasting method by following 

steps described in section 2.3.2 expressing the use of the PHM to forecast the spare parts 

demand. The chapter commences by estimating the parameters required to build the 

proportional hazard model (PHM), after conducting statistical tests to evaluate how well 

the PHM fits the data. Parameter estimates are determined by maximizing the likelihood 

function by means of the Newton Raphson method. Risks are then blended with the 

economics to optimize the decision making with the proportional hazards model, by 

setting a threshold point which is referred to as the ‘d’ point. This point may finally be 

used by decision makers in inventory to forecast spare parts demand and do a just in time 

spare parts management. 

The failure of the 30-degree blade as was described in chapter 3 is used as the case study 

to demonstrate the proposed method to forecast spare parts demand. 

4.2 Maximum likelihood estimate 

As described in section 2.2.3 b, maximum likelihood estimation is a well-known method 

to allow estimation of the regression coefficients needed to build a PHM. Having event 

and condition data available from the numerical and experimental investigation, the 

Weibull parameters of equation (2.2) may be estimated by maximization of equation 

(2.10). 

  4.2.1 Maximum likelihood for a simple Weibull (2 parameters) 

In section 2.2.3, the maximum likelihood of the log function (2.14) gives the following 

equation: 

1

𝛽
=

∑ 𝑡𝑖
𝛽

𝑙𝑛𝑡𝑖
𝑁
𝑖=1

∑ 𝑡𝑖
𝛽𝑁

𝑖=1

−
1

𝑁
∑ 𝑙𝑛𝑡𝑖

𝑁

𝑖=1

 

To determine the shape parameter 𝛽 in the above equation requires the log likelihood 

function maximization. As the equation is dealt numerically, a MATLAB code was 
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written related to the above formula to determine the shape parameter, the output from 

the MATLAB code gave a shape parameter 𝛽 = 2.17. 

   The differentiation of the equation (4.5) with respect to 𝜂 gives: 

𝜂 = (
1

𝑁
∑ 𝑡𝑖

𝛽𝑁
𝑖=1 )

1
𝛽⁄

=
1

7
∑ 𝑡𝑖

2.177
𝑖=1 = 366700.8 cycles 

The following steps are required to determine the simple (2 parameters) Weibull model: 

Step 1: With 𝛽 = 2.17 and 𝜂 = 366700.8 cycles the hazard function for the fan axial 

blades are given by: 

ℎ(𝑡) =
2.17

366700.8
(

𝑡

366700.8
)1.17 

 

Step 2: Economical approach for 2 Weibull parameters (Application on the axial fan 

blade data). 

In this section, a time-based approach is presented that can be used to optimize the axial 

fan blade replacement decision making and the economic implications. 

Referring to Jardine et al. (2013), the optimal preventive replacement age of an item 

subject to breakdown is given by: 

 

𝐶(𝑡𝑝) =
𝐶𝑝 × 𝑅(𝑡𝑝) + 𝐶𝑓 × (1 − 𝑅(𝑡𝑝))

𝑡𝑝 × 𝑅(𝑡𝑝) + 𝑀(𝑡𝑝)(1 − 𝑅(𝑡𝑝))
 

 

(4.1) 

 

Considering 3/1 cost ratio which describes such that the failure cost 𝐶𝑓 in South African 

Rands (ZAR) is three times the preventive cost 𝐶𝑝 with 𝐶𝑝 = 20000 𝑍𝐴𝑅  and 𝐶𝑓 =

60000 𝑍𝐴𝑅, below is given a sample of results table for blade 7. 
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  Table 4.1: Table of result for blade 7 (time-based approach) 

 

Time 
(cycles) 

Reliability 
R(t) 

Cumulative 
distribution 

F(t) 

Cost per 
unit Time 

C(tp) 

1 0 1 0 Inf 

2 50000 0,9868 0,0132 0,4151 

3 130000 0,9 0,1 0,2026 

4 180000 0,8078 0,1922 0,1815 

5 254000 0,6372 0,3628 0,1902 

6 330000 0,4514 0,5486 0,2185 

7 430000 0,2435 0,7565 0,3574 

8 500000 0,1409 0,8591 0,5819 

9 550000 0,0898 0,9102 0,8319 

10 600000 0,0544 0,9456 1,3957 

11 630000 0,3993 0,9607 1,9113 

12 654000 0,0299 0,9701 2,6871 

13 665000 0,0263 0,9737 2,7521 
 

The cost curve corresponding to the above blade is given by: 

                     Cost 

 

 

 

 

Figure 4.1: Curve of cost versus Time for blade 7 

For 2 Weibull parameters or the time-based approach the optimal time which minimizes 

the cost is 0.1889 ZAR per unit. 

The table below 4.2 is the summary of all blade results, showing the optimal replacement 

time, which minimizes the cost. 

 

 

 

 

Time

e 0.1889 
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         Table 4.2: Table of results for all blades (time-based approach) 

 
 Optimal Time Reliability 

Minimal Cost 
per Unit time 

Blade1 169700 0.8 0.18 

Blade 2 185000 0.79 0.18 

Blade 3 167000 0.83 0.1886 

Blade 4 187000 0.79 0.188 

Blade 5 200000 0.76 0.188 

Blade 6 239000 0.67 0.1889 

Blade 7 180000 0.81 0.1815 

Average 189571 0.78 0.185 
 

Considering the time-based result presented in table 4.4, it is important to highlight that 

the simple Weibull calculation, which is a time-based approach, shows that the optimal 

replacement time for the blades which minimizes the cost varies between 169700 to 

239000 cycles, with an average of 189571 cycles. The surprise in the above table is that 

most of the blades are still reliable at the indicated replacement time. The following 

section will consider the use of a proportional hazard model. 

   4.2.2 Maximum likelihood Estimate for 3 Weibull parameters using Newton method 

Section 2.2.3 illustrate a template proposed by (Vlok, 1999) adjusting the inspection time 

to the corresponding covariate. These templates are arranged in such way that they can be 

easily computed in the objective function given by formula (2.12).  Below is given the 

summary of data for all histories in the proposed template.  
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History 1: Table of inspection time with corresponding natural frequency 

(with natural frequency as covariate) 

𝑡𝑖 𝑍𝑘
1 ∑ 𝑡𝑖 ∑ 𝑍𝑘

1 

𝑡𝑖(𝑗𝑚)

− 𝑡𝑖𝑗 

 

0 107.9   50000 

50000 107.56   50000 

100000 105.875   50000 

150000 86.8 150000 300.235 50000 

 

History 1: Table of inspection time with corresponding crack size 

                              (with crack size as covariate) 

𝑡𝑖 𝑍𝑘
1 ∑ 𝑡𝑖 ∑ 𝑍𝑘

1 

𝑡𝑖(𝑗𝑚)

− 𝑡𝑖𝑗 

 

0 2   50000 

50000 5   50000 

100000 14.5   50000 

150000 41.5 150000 61 50000 
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History 2: Table of inspection time with corresponding natural frequency 

                              (with natural frequency as covariate) 

𝑡𝑖 𝑍𝑘
2 ∑ 𝑡𝑖 ∑ 𝑍𝑘

2 

𝑡𝑖(𝑗𝑚)

− 𝑡𝑖𝑗 

 

0 107.9   50000 

50.000 107.58   50000 

100.000 105   50000 

150.000 100.35 150.000 312.93 50000 

 

History 3: Table of inspection time with corresponding natural frequency 

                              (with natural frequency as covariate) 

𝑡𝑖 𝑍𝑘
3 ∑ 𝑡𝑖 ∑ 𝑍𝑘

3 

𝑡𝑖(𝑗𝑚)

− 𝑡𝑖𝑗 

 

0 107.9   50000 

50.000 107.5   50000 

100.000 106.8   50000 

150.000 105.05   50000 

200000 100 200000 419..35 50000 
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History 4: Table of inspection time with corresponding natural frequency 

                              (with natural frequency as covariate) 

𝑡𝑖 𝑍𝑘
3 ∑ 𝑡𝑖 ∑ 𝑍𝑘

3 

𝑡𝑖(𝑗𝑚)

− 𝑡𝑖𝑗 

 

0 107.9   50000 

50.000 107.6   50000 

100.000 107.45   50000 

150.000 106.5   50000 

200000 104.45 200000 426 50000 

 

History 5: Table of inspection time with corresponding natural frequency 

                              (with natural frequency as covariate) 

𝑡𝑖 𝑍𝑘
3 ∑ 𝑡𝑖 ∑ 𝑍𝑘

3 

𝑡𝑖(𝑗𝑚)

− 𝑡𝑖𝑗 

 

0 107.9   50000 

50.000 107.70   50000 

100.000 107.4   50000 

150.000 107.071   50000 

200000 106.53   50000 

250000 103.975   50000 

300000 100 300000 632.976 50000 
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History 6: Table of inspection time with corresponding natural frequency 

                              (with natural frequency as covariate) 

𝑡𝑖 𝑍𝑘
3 ∑ 𝑡𝑖 ∑ 𝑍𝑘

3 

𝑡𝑖(𝑗𝑚)

− 𝑡𝑖𝑗 

 

0 107.9   50000 

50.000 107.3   50000 

100.000 107.2   50000 

150.000 107   50000 

200000 106.5   50000 

250000 105.9   50000 

300000 104   50000 

350000 101   50000 

400000 73 400000 811.9 50000 

 

History 7: Table of inspection time with corresponding natural frequency 

                              (with natural frequency as covariate) 

𝑡𝑖 𝑍𝑘
3 ∑ 𝑡𝑖 ∑ 𝑍𝑘

3 

𝑡𝑖(𝑗𝑚)

− 𝑡𝑖𝑗 

 

0 107.9   50000 

50.000 107.59   50000 

100.000 107.56   50000 
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150.000 107.52   50000 

200000 107.1   50000 

250000 107.071   50000 

300000 106.1   50000 

350000 106   50000 

400000 106   50000 

450000 104.5   50000 

500000 103.9   50000 

550000 102.3   50000 

600000 97.4   50000 

650000 73 650000 1110.5 50000 

 

The computation of all histories in the objective function (2.12) is performed by means of 

MATLAB package using the fmincon algorithm. 

  4.2.3 Computation of the data using fmincon algorithm under MATLAB 

To determine the Weibull parameters 𝛽, 𝜂, 𝛾 needed to construct the PHM, the likelihood 

equation (2.11) is solved numerically using Newton Raphson method which gives the 

equation (2.12) which is the objective function that has been solved with the algorithm 

fmincon. 

fmincon algorithm is a nonlinear programming solver which allows finding the 

minimum of constrained nonlinear multivariable function. 

For the aim of this dissertation, the objective function given by the equation (2.12) was 

minimized using the syntax: 𝑥 = 𝑓𝑚𝑖𝑛𝑐𝑜𝑛(𝑓𝑢𝑛, 𝑥0, 𝐴, 𝑏, 𝐴𝑒𝑞, 𝑏𝑒𝑞, 𝑙𝑏, 𝑢𝑏). The results 

from the simulation gives: (1) 𝛽 = 1.0012 ; (2) 𝜂 = 7.10𝑒 + 05; (3) 𝛾 = 0.0293. 

The PHM construction obtained from the maximum likelihood output is: 
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ℎ(𝑡, 𝑧(𝑡)) =
1.0012

7.1004𝑒 + 05
(

𝑡

7.1004𝑒 + 05
)(1.0012−1)exp [0.0293 × 𝑧(𝑡)] 

In this dissertation, only the K-S test is performed on the residual of the data for a 30- 

degree blade in the software R to evaluate how well the PHM fit the data, the output 

results obtained from R was:       

𝐷 = 0.49659 , 𝑝 − value = 0.06873 

The above result shows that at 5 percent level of significance the null hypothesis is 

accepted for 𝐷 is less than  𝐷𝛼 which is 0.565, and the 𝑝 − value   being greater than 0.05, 

the null hypothesis is accepted which means that the PHM fit well the data. 

  4.2.4 Optimal decision making with the PHM   

It was specified in section 2.2.4 that after receiving the outcome from PHM which 

presents the risk that the component will fail based on the integration of age and 

covariate, this outcome from the PHM could only serves when using it for an economical 

benefit, this introduces the notion of blending the PHM with economics addressed by 

Jardine and Makis (2013). However, in this dissertation does not address the TPM 

approach but a simulation approach as shown in section 4.2.5. 

   4.2.5 Application of the optimal decision making using simulation procedure 

a. Tables of the resulting proportional hazard values for the seven experimental 

blades 

Table 4.3: Risk versus loading cycles for blade 1 

   

 

N(cycles) PHM (Risk) 

1 0 0 

2 21400 1.51E-06 

3 43200 1.58E-06 

4 56400 1.68E-06 

5 75700 1.83E-06 

6 91200 1.94E-06 

7 108200 2.38E-06 

8 121900 2,84E-06 

9 128200 3.10E-06 

10 141900 3.49E-06 
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Table 4.4: Risk versus loading cycle for blade 2 

 N(cycles) PHM(Risk) 

1 0 0 

2 16000 1.52E-06 

3 39000 1.56E-06 

4 67000 1.63E-06 

5 75000 1.68E-06 

6 91000 1.89E-06 

7 97000 2.06E-06 

8 112000 2.18E-06 

9 127000 2.46E-06 

10 142000 2.93E-06 

11 157000 3.49E-06 

12 179000 4.41E-06 

13 185000 6.63E-06 

 

Table 4.5: Risk versus loading cycle for blade 3 

 

N(cycles) PHM (Risk) 

1 0 0 

2 12000 1.50E-06 

3 35000 1.53E-06 

4 45000 1.58E-06 

5 80000 1.73E-06 

6 95000 1.83E-06 

7 113000 2.00E-06 

8 128000 2.18E-06 

9 167000 2.46E-06 

10 198000 2.93E-06 

11 205000 3.39E-06 

12 230000 4.55E-06 

13 240000 6.67E-06 

 

 

 

11 148900 4.29E-06 

12 162890 5.26E-06 

13 169700 6.65E-06 
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Table 4.6: Risk versus loading cycle for blade 4 

   

 

N(cycles) PHM (Risk) 

1 0 0 

2 35000 1.53E-06 

3 91000 1.63E-06 

4 112000 1.73E-06 

5 143500 1.83E-06 

6 176000 2.06E-06 

7 187000 2.32E-06 

8 210000 2.61E-06 

9 214000 2.93E-06 

10 236000 3.49E-06 

11 246000 4.55E-06 

12 257000 6.62E-06 

 

Table 4.7: Risk versus loading cycle for blade 5 

   

 

N(cycles) PHM(Risk) 

1 0 0 

2 17000 1.51E-06 

3 28500 1.53E-06 

4 81000 1.63E-06 

5 105000 1.73E-06 

6 150000 1.83E-06 

7 200000 2.00E-06 

8 230000 2.39E-06 

9 280000 2.85E-06 

10 310000 3.39E-06 

11 323520 4.29E-06 

12 331500 4.82E-06 

13 3433000 6.66E-06 
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Table 4.8: Risk versus loading cycle for blade 6 

   

 

N(cycles) PHM(Risk) 

1 0 0 

2 12500 1.53E-06 

3 89000 1.63E-06 

4 134000 1.73E-06 

5 209000 1.89E-06 

6 239000 2.06E-06 

7 303000 2.53E-06 

8 339000 3.02E-06 

9 374000 3.60E-06 

10 389000 4.55E-06 

11 397000 5.42E-06 

12 399500 5.92E-06 

13 402000 6.67E-06 

 

Table 4.9: Risk versus loading cycle for blade 7 

   

 

N(cycles) PHM (Risk) 

1 0 0 

2 50000 1.54E-06 

3 130000 1.63E-06 

4 180000 1.73E-06 

5 254000 1.83E-06 

6 330000 2.06E-06 

7 430000 2.32E-06 

8 500000 2.61E-06 

9 550000 2.93E-06 

10 600000 3.31E-06 

11 630000 4.29E-06 

12 654000 5.12E-06 

13 665000 6.65E-06 

 

By fitting time and the corresponding covariate to the constructed PHM we get tables 4.3 

to 4.9, these tables represent the risk of failing for all the blades and the corresponding 

time expressed in term of number of loading cycle. 
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b. Plotting of the resulting proportional hazard values for the seven experimental 

blades 

The risk ℎ(𝑡, 𝑧(𝑡)) is an instantaneous conditional probability of failure for the blade at 

time 𝑡, given the value 𝑍(𝑡). Figure 4.2 indicates the plotting of risk versus the number of 

loading cycles for the obtained PHM represented in section 4.2.3. Tables 4.3 to 4.9 show 

the fitting of the PHM to the corresponding data which are time and covariate for all 

blades: 

 

Figure 4.2 Risk versus loading cycles for all the blades. 

After determining the PHM and plotting it as shown in Figure 4.2 for all the 30- degree 

axial fan blades, the following step is to establish optimal replacement decisions, 

including economic considerations, based to the PHM values, where these values would 

be a function of both age of the components, as well as the condition parameter.  This 

basically entails finding an optimum PHM risk value at which components would be 

replaced.  It is normally expected that such optimisation would be achieved by balancing 

the risk of expensive failures (when the replacement PHM value is chosen at a too high a 

level and some components may fail before reaching this value) and wasting remaining 

useful life of components (when the replacement PHM value is chosen at a low level).   

The trends of the PHM shown in Figure 4.2, however, show that, in this case, the 

optimisation problem seems to be trivial and that the optimal replacement PHM level 

would be at almost the constant PHM failure value (with some small safety factor) and 
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that this result seems to be independent of age. With such PHM trend, the application of 

PHM for spare part demand becomes useless because time does not have influence and 

the forecast could be performed straight with covariate trending. In Figure 4.2 all the 

blades have the risk of failing at almost the same PHM level. Table 3.4 to Table 3.10 

confirm the PHM trend because the outcome from the experiment and FEM is showing 

that all the blades failed at almost equal crack length 52 to 53mm and the natural 

frequency at that failure point was around 72 to 73 Hz, independent of age.  This is 

discussed further in the next chapter. 
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 Chapter 5 Interpretation of results 

The event and condition monitoring data generated in Chapter 3 for the axial flow fan by 

means of the experiment and numerical simulations were processed in Chapter 4.  The 

Weibull parameters were obtained by minimizing the objective function given by 

equation (2.12). The optimal Weibull parameters are: (1) the shape parameter 𝛽 =

1.0012 ,  (2) the scale parameter 𝜂 = 7.1004𝑒 + 05 and the location parameter 𝛾 =

0.0293. The mentioned Weibull parameters results served as input to construct the PHM 

shown in Chapter 4, section 4.2.3. 

 

ℎ(𝑡, 𝑧(𝑡)) =
1.0012

7.1004𝑒 + 05
(

𝑡

7.1004𝑒 + 05
)(1.0012−1)exp (0.0293

× 𝑧(𝑡)) 

 

(5.1) 

 

The model presented in equation (5.1) was tested to see how well it represents the data. 

For this the K-S test served to verify how well the PHM fits the data. At 5% significance 

level with 𝐷∞ = 0.565, the calculated 𝐷-statistic was equal to 0.49659 with a 

corresponding 𝑝 −value of 0.06873. The following paragraph proposes results 

interpretation starting by the K-S test. 

   5.1 Interpretation of the results 

   5.1.1 Interpretation of the K-S test results 

The test statistic 𝐷 applied is simply the maximum absolute difference between two 

cumulative distributions, and the p-value the area under the cumulative distribution. For 

the PHM in this dissertation the null hypothesis is that the cumulative distribution 

function of the PHM residuals is equal to the cumulative distribution function of an 

exponential distribution. The inferences on the goodness of fit for the model (5.1) is made 

on the 𝐷-statistic an 𝑝 −value. The following is the meaning of the results: 

The calculated 𝐷-statistic obtained is 0.49659 and at 5% significance level the 𝐷∞ =

0.565, the corresponding p-value obtained is 0.06873. The calculated 𝐷-statistic being 

less than 0.565 implies that the null hypothesis should not be rejected, moreover the p- 

value obtained also goes in the same direction than the 𝐷-statistic test. By not rejecting 

the null hypothesis, it means that the cdf of the PHM residuals is equal to the cumulative 
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distribution function of the exponential distribution; therefore, the PHM constructed fits 

the data well. 

  5.1.2 Interpretation of the obtained PHM curve 

Figure 4.2 expresses the resulting PHM curves for the seven experimental blades, the 

implication of the characteristics of the PHM displayed in that figure is that time has no 

influence, only the covariate has influence in the obtained model. This means that the 

decisions can be made based only on the covariate. In this case it would be sufficient to 

advice that spare parts must be ordered when the covariate reaches a critical value. The 

following curve in figure 5.1 demonstrate that the baseline of the obtained PHM is a 

constant. 

 

Figure 5.1 Hazard curve, without considering the covariate (Only baseline of the PHM). 

Figure 5.1 indicates how the baseline of the PHM behaves, and since the baseline of the 

Weibull PHM is essentially time based, it can be concluded that time does not have 

influence on the PHM, only the covariate has an influence. Therefore, the economical 

optimisation will be trivial, for the decision can be made only based by the observation of 

the covariate. It is important to highlight that this situation where age does not have an 

influence, would lead to the most economical replacement strategy, since replacement 

decisions are then based on a highly predictive covariate measurement, with little risk of 

failure or wasted life. 

This result does demonstrate the universality of the PHM method for a wide range of 

situations where, on the one extreme, the predictive capability of the covariate is very 
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high (implying that the mathematics reduces the influence of age in the parameter 

solution, by solving to 𝛽= 1), towards the other extreme, where the predictive capability 

of the covariate is very low (and the parameter solution would yield 𝛽 >1 and 𝛾 very 

small, to reduce the influence of the covariate on the age-based hazard rate). 

In practice, it may be expected that to have a condition measurement which would be so 

accurate in predicting the failure (which in the present case was done in laboratory 

conditions), would not be common.  To be able to demonstrate the application of the 

PHM method (where both condition monitoring results and age plays a role) for decision-

making with economical consideration, it was decided to introduce noise or randomness 

progressively in the PHM so that the risk for the seven blades is different.  Two methods 

were considered, namely to introduce noise on the covariate (simulating inaccurate (real-

life) measurements and secondly, to randomise the failure points (the crack size at which 

failure would take place).  

5.1.3 Introduction of noise in the covariate of the PHM 

To introduce the noise in the covariate, we assumed the data subjected to a Gaussian 

process with each of the covariate taken singularly as mean, and the standard deviation 

being the product of each mean by the value which expresses the percentage. For 

example, given, if the natural frequency equals 72Hz or the crack size equal to 52 mm, 

the noise levels are defined as follows: 

• Mean = 72 and the standard deviation = 72 × 0.1 means 10 % noise; 

• Mean = 52 and the standard deviation = 52 × 0.3 means 30 % noise. 

The expected outcome of the investigation is to see that as the covariate is randomised, it 

would lose its influence on the PHM by a relative reduction of the covariate weight 

parameter and the shape parameter increasing progressively from the initial value. 

In a first attempt, the noise level as defined in the previous section was varied between 

0.1 and 0.9 percent. Figure 5.2 is a sample for 0.2% of noise, table 5.1 expresses the 

corresponding shape, weight and scale parameters corresponding to the noise level. 
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Figure 5.2: Risk versus loading cycles for data expressing 0.2% noise level. 

Table 5.1 below displays the result of all the Weibull parameters corresponding to each 

level of noise, from 0.1 to 0.9 percent. 

Table 5.1: Level of noise results 

Noise 

(%) Beta (𝜷) Eta (𝜼) 

Gamma 

(𝜸) 

Initial 1.0012 7.10E+05 0.0293 

0.1 1.0016 6.23E+05 -0.0582 

0.2 1.0014 6.45E+05 0.0357 

0.3 1.0201 8.32E+05 0.1523 

0.4 1.0188 8.36E+05 0.1535 

0.5 1.0014 6.07E+05 -0.0748 

0.6 1.0014 6.53E+05 -0.0265 

0.7 1.0014 6.88E+05 0.0109 

0.8 1.0014 6.45E+05 0.0407 

0.9 1.0016 6.32E+05 -0,0501 

 

As may be observed, the weak noise introduction did not make any significant difference 

to the PHM results.  Higher noise levels caused instabilities in the PHM parameter 

solving algorithms, which could not be solved. 

   5.1.4 Randomising the failure level 

As the final purpose of this work is to use the PHM as a tool to make optimal decision for 

axial fan blades replacement when managing spare parts, it is at least important to present 
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a scenario which better approaches a practical scenario. Significant differences in the 

failure time of the blades are required and therefore we randomised the failure levels 

(critical crack sizes).  This was done in a similar way than with the introduction of noise 

on the covariate (using the typical failure level as a mean and introducing a variance of a 

percentage of this mean.  For each blade, the failure level is then randomly sampled from 

the arising normal distribution. 

The result with 10% randomisation is illustrated by figure 5.4 below. 

 

Figure 5.4: PHM at 10% failure level randomisation            

Compared to Figure 4.2 and Figure 5.2, Figure 5.4 represents a situation where the PHM 

is no longer based on the covariate only with time being constant. In contrast it shows a 

situation where there is an influence of time and the covariate. This situation requires the 

economic approach to determine the optimal risk point because the blades are failing at 

different risk levels. If we set the replacement risk level (d) at 4E-06 all blades will be 

replaced before failure, but there will be some blades with significant remaining life.  If 

we set the risk point at 6.5 E-06, blade 2, blade 4 and blade 7 will fail before reaching the 

risk point that has been set, which will be expensive.   The purpose is then to find an 

optimal choice for (d). 

Optimal decision policy with PHM using simulation procedure (with randomised 

failure data). 

Makis and Jardine, (2013) addressed the optimal decision making with PHM 

successfully. To build the cost function, they stated that the determination of the risk 



73 

 

value which will lead to an optimal cost requires the prediction of the covariate 

behaviour. Their model was constructed based on the hypothesis that the covariate 

behaviour was stochastic and approximating a non-homogeneous Markov chain in a finite 

state space. The covariate behaviour was demonstrated using a Transition Probability 

Matrix (TPM). 

Instead of using the approach that track the covariate behaviour using a Markov Chain, a 

simulation approach is utilized. Referring to Figure 5.6, the approach consisted of: 

• Selecting from the lowest to the highest a given value of risk expressed by ‘d’ 

• Draw a straight line passing through the selected ‘d’ 

• Interpolate in the x-axis the intercession of ‘d’ to the risk curve to find either 

the number of cycle (time) for preventive replacement or for failure 

replacement. 

• Apply the following formula to calculate the cost per unit time 

 

𝐶𝑜𝑠𝑡/𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒 =
(𝐴 × 𝐶𝑝) + (𝐵 × 𝐶𝑓)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡
 

 

(5.2) 

 

 

In this equation A is the number of blades falling under the preventive replacement time, 

B is the number of blades falling under the failure time, and 𝐶𝑝  and 𝐶𝑓  respectively are 

the preventive replacement cost and failure cost. 

Among the set of risk values selected, choose the optimal, means the one that is 

minimizing the cost.  Below is given an illustration applying the simulation procedure on 

the 0.2 % noise level data. 

The risk of failing at a time t given the covariate is expressed by d. 

After doing the computation, the following results were obtained: 
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Figure 5.5 Cost per unit time versus risk point for 10% noise level.  

Figure 5.5 above shows that the optimum Risk level for replacement can be obtained 

between 4.5E-06 and  6.76E-06 because in that region the values of the optimal cost are 

almost the same, however, for less wasted life 6.76E-06 better. 

For the sample of data that was treated for 10 % level of randomisation, the optimal risk 

point which minimizes the cost per unit time was found to be at 6.76e-06.  Referring to 

the set risk point in terms of each blade, the following results are obtained: 

• For blade 1 the optimal risk level corresponds to the crack length varying 

between 50 to 58.332 mm crack length and 165650 loading cycles. This implies 

less wasted life. The decision maker could adjust the replacement of the blade 

accordingly, then the management of the spare parts can be done efficiently. 

• For blade 2, the optimal risk level corresponds to the crack length varying 

between 42.6 and 54.168 mm, 184620 loading cycles, therefore less wasted life. 

• For blade 3 it failed before reaching the optimal risk level. 

• For blade 4 it failed before reaching the optimal risk level. 

• For blade 5 the optimal risk level corresponds to the crack length varying 

between 60 to 64.5 mm, 336870 loading cycles. 

• For blade 6 it failed before reaching the optimal risk. 
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• For blade 7 the optimal risk level corresponds to the crack length between 55 to 

60 mm, 660680 loading cycles.  

These results illustrate the replacement policy for each of the blades taken individually 

the decision maker managing the demand of the blades, can use these results and 

optimize the spare parts (blades) demand. As soon as the crack size which is linked to the 

natural frequency, or the number of cycles reach the mentioned value for each of the 

blades it will be known that replacement should be performed which is related to the 

demand of the blades. Figure 5.6 presents the PHM curves with a cutting line at 6.76E-06 

optimal risk value. 

 

Figure 5.6 PHM curves with optimal cost per unit cut off line. 
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 Chapter 6 Conclusion and recommendations 

  6.1 Conclusion 

This dissertation originated from an inventory management challenge, where the demand 

for spare parts is infrequent. The randomness of the demand when managing the 

inventory makes it difficult to forecast spare parts. Several forecasting methods have been 

developed over the years aiming to address the challenge. One of the more efficient 

traditional forecasting methods that tries to address the challenge is the Croston method. 

However, despite its performance, it does not consider the condition of the component to 

be replaced which is inefficient. 

The purpose of this dissertation was to develop an alternative forecasting method to the 

traditional method. To reach this goal, a PHM approach was suggested that integrates 

condition-based maintenance with to the spare parts forecasting method, so that the 

condition of the component is also considered to motivate the demand. A PHM was used 

with condition monitoring data to calculate the risk of failure for the component under 

monitoring. The added value of this new method is that it tracks the failure arrival and 

makes the forecasting more accurate because of the condition of the component which is 

well known but also it is suitable for critical component where there is not enough 

historical data to forecast.   

To demonstrate the expected solution from the PHM and to be able to determine the 

optimal risk point used to forecast the spare parts, an investigation was performed to 

calculate the demand for 30-degree fan axial blades from Fatigue Crack Life (FCL) data. 

Fatigue tests was performed by Brits (2016) on the 30-degree fan axial blades which 

resulted in cracks to develop and to grow until the blades failed. FCL data, consisting of 

crack length over the number of loading cycles, were acquired during the tests. In this 

work, a finite element model is used to estimate the natural frequencies of the blades over 

crack length and time from the FCL data. Both FCL data and natural frequency data 

served as inputs in a PHM to predict the failure arrival which is essential for forecasting 

spare parts. 

The procedure used in this dissertation on the 30-degree fan axial blades and the benefits 

of using it, are summarized as follows:  
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• Estimate the parameters needed to construct the PHM by means of maximizing 

the likelihood function. The maximization was performed with the Newton-

Raphson method. 

• To test how well the PHM fits the data, the K-S test was used with a 5% level 

of significance. the obtained 𝐷- statistic and 𝑝 −value obtained with the R 

package confirmed that the PHM fits the data well.  

• The economic approach was investigated because the outcome from the PHM 

could be useless when applied without the context of economic considerations. 

A blending of the PHM with the economics allows one to determine the optimal 

risk level which minimizes the cost. The optimal risk point found was the main 

tool to define a spare parts management policy. 

• The proposed procedure has the benefit that it uses natural frequency data as 

opposed to the Paris law parameters used in the work by (Brits, 2016) to predict 

fatigue crack life. Another contribution of this work is that in the previous work 

by Brits (2016) the optimal point to replace a blade was not investigated. 

• The benefits of this proposed alternative forecasting method is that it gives the 

ability to proactively have information which can allow a ‘just- in- time’ supply 

of spare parts. This implies that a component can be replaced without wasting 

useful life because the component replacement is no longer time- based only, 

but also condition - based. 

  6.2 Recommendations 

From the observations and experiences obtained during this dissertation, the following 

recommendations are made for future investigation: 

• As the spare parts approach in this dissertation was oriented to a single 

component replacement, it is required to extend the application to more than 

one component because most of the machines in the industry have more than 

one critical component.  Parameters such as lead time, stock holding, and cost 

related needs to be considered as well. 

• Compare the PHM outcome with other regression models which also consider 

the condition of the component. An example is the Prentice William Peterson 

model (PWP) model which has additional benefits to the PHM because it 
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considers also the previous replacement of the item under analysis as well. 

Vlok, (2006) briefly presented the benefits of this model in his work.  

• Investigate on the influence of increasing the noise in the covariate and evaluate 

its impact on the three Weibull parameters and give physical meaning related to 

that. Because we assume that the noisy data are closer to the real situation than 

the experimental data which can be submitted to some constraint due to the 

measurement condition. 
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