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ABSTRACT

The durations of phonemes varies for different speakers. To this end, the correlations between phonemes across different

speakers are studied and a novel approach to predict unknown phoneme durations from the values of known phoneme

durations for a particular speaker are presented, based on the maximum likelihood criterion. Several interesting patterns

are observed. Phonemes from the same broad phonetic class tend to covary most strongly (and therefore intra-class

predictions of unknown phoneme durations are most accurate), but significant cross-class correlations are also present.
Consequently, knowledge of only a few highly-correlated phonemes’ durations is necessary to make a good duration

prediction.
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1 INTRODUCTION

Developing accurate phoneme duration models has
been a topic of discussion for several years, especially
with regard to the potential benefits for automatic
speech recognition (ASR) [5]. In [8],[9] we showed
that accurate phoneme duration models can signifi-
cantly improve state of the art speaker recognition
(SR) systems in a text-dependent environment. For
practical applications of both ASR and speaker recog-
nition, duration models have to be developed for text-
independent speech. This is not a trivial problem
as there are many factors influencing the duration of
phonemes in text-independent speech, such as position
in word, position in sentence, stress, preceding and fol-
lowing phonemes, speech rate etc. Although the work
done in [8] was in a text-dependent environment, it
did confirm earlier findings by [4] that phoneme dura-
tions are also speaker-specific to a large extent, which
adds another dimension to the model estimation. All
these factors contribute to making data scarcity a sig-
nificant obstacle to characterizing phoneme durations
accurately. This obstacle, which was first identified
in 1988 already by Crystal and House [1], remains ar-
guably the most significant one to the more general use
of phoneme durations. An attempt to estimate the in-
dividual contributions of the abovementioned factors
to the total variance was made by [5]. A hierarchical
analysis of variance was performed and it was found
that much of the variance can indeed be explained by
these factors. Because of the type of ANOVA per-
formed, it was not possible to examine interactions
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among the factors, which may omit important infor-
mation.

Duration patterns were also modelled by
[2],[7],[3],[6] in order to improve speaker recognition
performance. It was observed that significant im-
provements in accuracy can be achieved by separately
modelling word durations, single phoneme durations
and state durations using 3-state hidden Markov
models (HMMs). Data sparseness was addressed
in all cases by a back-off technique, though which
word-models would be backed off to triphone models
and the latter to single phoneme models. This ignores
the effect of the specific factor being addressed on the
particular phoneme. Rao Gadde [3] also performed
a simple speech rate normalization. The speech rate
was calculated as the number of phonemes per second.
By applying this simple normalization technique,
a consistent improvement in word recognition was
observed over several databases.

Taken together, these studies are strong evidence
that accurate phoneme duration models can greatly
benefit both ASR and speaker recognition. How-
ever, no sophisticated model exists yet because of data
scarcity (which limits the number of factors that can
be modeled), the many different factors which have
an influence on the duration of phonemes and the fact
that interaction effects between the different factors
are not incorporated into the models.

In this paper we present some introductory work
towards the goal of building a model that accurately
incorporates all of the abovementioned factors and
their interactions. In particular, we have focused on
two of the factors that have been found to be impor-
tant, namely “speaker”, and “phoneme type/class”.
Our objective was to see if it is possible to make bet-
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ter duration predictions of unknown speakers than the
back-off approach, given a model that was trained
from other speakers’ data. We also believe that cer-
tain phonemes are more predictable than others and
that certain classes of phonemes tend to have greater
influence on the durations of others. All of these ex-
periments were conducted on the TIMIT corpus be-
cause of the availability of accurate manual phoneme
segmentations.

2 TIMIT CORPUS

The TIMIT corpus is a speech corpus of 630 speakers
from eight major dialect regions in the United States.
Each speaker spoke 10 utterances resulting in 6300
utterances in TIMIT. The training set consists of 462
speakers, which comprise 326 males and 136 females.
Three types of sentences were read: sz, si and sa. The
sx sentences were read from a list of 450 phonetically
balanced sentences that were designed at MIT, the
st sentences from 1890 phonetically diverse sentences
designed at TT and two dialect sentences designed at
SRI. The test set consists of 168 speakers, which were
selected so that no sentence text appears in both the
training and test set.

3 MODELLING APPROACH

The modelling approach we took was influenced by
two questions. From a theoretical viewpoint we
wanted to know if and how different phonemes’ dura-
tions covary under different conditions such as those
mentioned above. In particular we decided to investi-
gate this question under the “speaker” condition. In
practical terms, we wanted to see whether it is possible
to reduce the data requirements of phoneme duration
predictions by using inter-phoneme information. This
knowledge would be useful for scenarios where data
scarcity is an issue.

As already mentioned, there are several factors
that act together in a complex and as yet unknown
fashion in influencing the durations of the phonemes.
A good understanding of each factor is necessary be-
fore attempting to model them together. In answer-
ing the questions we posed, we wanted to isolate the
“speaker” factor. For that reason, we decided to con-
duct independent experiments where we worked with
mean phoneme durations per speaker in an attempt to
smooth out the other factors. Our first set of measure-
ments therefore consisted of computing the correla-
tions between mean phoneme durations across speak-
ers.

In order to get a perspective of the extent of the
influence of factor on the durations, an eigenvector
analysis was done. The directions and magnitudes of
the principal contributions to variance were obtained
by calculating the eigenvalues and eigenvectors. By
then projecting speaker-specific data onto the eigen-
vectors a good indication is obtained of the speaker
differences for the specific factor. The directions of
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the eigenvectors explain how each of the input factors
contributes to the specific dimension.

The eigenvectors and eigenvalues are obtained
from the covariance matrix of the n x m data where n
is the number of levels of a factor (number of speakers
in our case) and m the number of phonemes. Before
calculating the covariance matrix, the data matrix is
normalized by subtracting the mean values from the
column vectors and then dividing by the standard de-
viation. This ensures that phonemes with a high vari-
ance do not dominate the analysis.

We decided to use a maximum likelihood (ML)
approach for cross-phoneme duration estimation, be-
cause this enabled us to utilize the information pro-
vided by the eigenvectors in a practical model. It
was assumed that the data can be approximated by
a normal distribution with the covariance matrix cal-
culated as described above. Suppose one has a vector
T = {xg...xy } representing normalized phoneme dura-
tions with @,,—, unknown, p < m. The ML approach
will find 2,,,—, such that the probability P(zg...z,) is
maximized. If one defines x to be T = d — mu with
d the original duration, the ML solution given ¥~ !'%
can be found from

0%

OTm—p

=0 M)

The solution to (1) is simply
YT =0 (2)

on condition that T = k with the exception of Tm—p,
with k& being the given data vector. (2) can easily
be solved by simple linear algebra. This method was
then extended by allowing several unknown durations
to be estimated simultaneously using exactly the same

approach as described above.

4 EXPERIMENTAL SETUP

The proposed models were tested using the TIMIT
database as described in section 2. TIMIT contains 52
different phone symbols. This set was reduced to the
well-known ARPABET owing to data scarcity, which
consists of 48 symbols, by combining em, en and eng
into en, hh and hv to h and zh and z to z. ARPABET
was then reduced by one symbol to 47 symbols by
combining [U] and [A].

The training set of 462 speakers was used to es-
timate the covariance matrix, as well as the eigen-
vectors and eigenvalues. The test set of 168 speakers
was then used to test the models by trying to predict
phoneme durations. For every speaker, sample means
of all present phonemes were calculated.

Our initial measurements of the correlations in
phoneme durations across speakers focused on the re-
lationships between phonemes that covary in duration.
Thereafter, we conducted a number of experiments to
investigate duration prediction using the ML method
described above.
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4.1 Experiment 1

An iterative approach was used to estimate every sin-
gle phoneme duration, given all the other phoneme du-
rations. The objective of this experiment was twofold:
to determine if the ML approach can be used to make
better predictions than simply predicting the global
mean of each phoneme and also to determine the rel-
ative predictability of individual phonemes.

4.2 Experiment 2

The same iterative approach was used to estimate
the durations of all phonemes, but this time only
phonemes of the same class as the phoneme in ques-
tion were given as input. The hypothesis that was to
be tested was that phonemes tend to vary in classes.
There were five phoneme classes: stops, fricatives &
affricates, nasals, semivowels & glides and vowels.

4.3 Experiment 3

Experiment 2 was repeated, but instead of using
phoneme durations of the same class, all durations
except the durations of phones of the same class
were given as input. An interesting observation from
the covariance matrix was tested here in that there
seems to be a “cross-class” correlation between cer-
tain phonemes.

4.4 Experiment 4

For every speaker 50 duration estimates were done.
Every estimation entailed three vowels and three con-
sonants to be estimated simultaneously, with the rest
of the observed phonemes given as data to the ML
model estimator.

4.5 Experiment 5

For every speaker, each phoneme was estimated itera-
tively, each time adding phonemes in descending order
according to their correlation with the phoneme to be
estimated.

4.6 Experiment 6

The theoretical minimum of experiment 5 was calcu-
lated by adding phonemes until just before the error
started to increase again.

5 RESULTS

5.1 The correlation of phoneme durations

The correlations across speakers between the dura-
tions of all phonemes were computed; because of the
normalization employed, these are equivalent to Pear-
son correlation coefficients. Some typical results are
shown in figures 11 to 14, which represent the largest
and smallest measured correlation values between four
different phonemes and all other phonemes in our set.
We see that some groups of phonemes (including most
vowels) have high correlations with all other phonemes
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in the same group. Other phonemes have a more di-
verse set of correlations - for example, the duration
of “p” correlates highly not only with other plosives
(“k” and “¢” in Figure 12), but also with the fricatives
“s” “z” and “sh”, the nasal “n”, etc. Similarly, the
duration of “r” in Figure 13 correlates highly with the
expected “1” and “w”, but also with several vowels.
Finally, some phonemes have few strong correlations -
for example, “dx” in Figure 14, which has reasonably
weak correlation with the other flap (“nx”), and no
other notable correlations.

5.2 Eigenvector analysis

We now describe the results obtained in our analysis of
the eigenstructure of the correlation matrix. Firstly,
the magnitudes of the eigenvalues indicate how much
weight or value a particular eigenvector carries.

T T T T T T T T T T
45 -98%

111%

0%
a7 46 45 44 43 42 41 40 39 38

eigenvector number

Figure 1: Pareto chart of the eigenvalues obtained from
the speaker/phoneme covariance matrix.

From Fig. 1 it can be seen that the first eigenvec-
tor contains more than 22% of the total information
and that approximately 65% of the information is con-
tained within the first 10 eigenvectors. This is a strong
indication that a significant amount of information is
contained in a relatively small number of factors.

en

@ Vowels M Consonants

Figure 2: Components of first eigenvector.

As can be seen from Fig. 2, the first eigenvec-
tor corresponds to a simultaneous stretching of all
phonemes - this can therefore be seen as an indication
of speaking rate. The vowels and fricatives are seen
to be the most consistent participants in this change.
The second eigenvector, shown in Fig. 3, corresponds
to a differential lengthening of vowels in comparison
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Figure 3: Components of second eigenvector.

°

=

s
=
=
s

)

2

4

p—

El

m Vowels m Consonants

Figure 4: Components of third eigenvector.

with consonants, whereas the third eigenvector (Fig.
4) seems to indicate a distinction between the rela-
tive lengths of liquids, glides and nasals, on the one
hand, in comparison with plosives, fricatives and cer-
tain vowels, on the other.

5.3 ML analysis

The performance of the ML model in the five experi-
ments described in Section 4 was calculated in terms
of the variance normalized mean squared error (MSE)
between the correct duration and the estimated dura-
tion. A total of 7522 estimations were done for the first
three and also the last experiment and 50400 for the
fourth. The latter will be normalized to the other four
experiments in order to give comparable results. A
baseline against which the results can be tested must
also be established. Two baselines were selected: a
nearest neighbor approach (where the closest training
speaker based on all the known phoneme durations is
calculated, using the Euclidean distance) and simply
using the global mean for the specific phoneme. The
results can be seen in Table 1. Experiment 5 was con-
ducted to evaluate individual phoneme errors and is
thus not presented in the table.

Table 1:  Variance normalized MSE of the ML model,
nearest neighbor and mean model from the four experi-

ments.

| Exp. | ML | Global Mean | Eucl. dist |

1 0.874 1.070 1.601
2 0.871 1.070 1.658
3 1.007 1.070 1.730
4 0.874 1.087 1.606
6 0.815

Several interesting observations can be made from
Table 1. Firstly, we note that the ML approach con-
sistently outperforms the global mean approach. In
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experiment 1 the percentage improvement is approxi-
mately 18.3% and this increases to 18.6% for experi-
ment 2. As could be expected, this percentage drops
significantly for experiment 3 (to only 5.9%). The in-
teresting observation here is that this approach still
performs better than the global mean approach. This
phenomenon confirms that the many non-zero corre-
lations between different classes of phonemes can be
employed usefully. Surprisingly, the average improve-
ment jumps to 19.6% for experiment 4 where six un-
known phoneme durations were estimated simultane-
ously. This is promising, since this experiment is a
better reflection of a practical application than the
other experiments, as one will rarely have all phoneme
examples. It must be noted that the error values
for experiment 4 have a much larger variance, since
phonemes to be estimated were chosen randomly ev-
ery time. The ratios between vowel and consonant
occurrences are also equal, whereas the other experi-
ments have more consonants that are estimated than
vowels. The mean normalized MSE for vowels is also
slightly lower than that of consonants and thus the er-
ror value in experiment 4 will tend to be slightly lower
than if the conditions had been exactly the same as in
the other experiments.

Although there is a slight decrease in the over-
all MSE when only within-class information is used
for duration estimation (Exp. 2), this improvement
is not uniform. A combined analysis of experiments
2 and 3 and the correlation coefficients indicates that
the cross-class correlations are the reason for this be-
haviour. Examples include vowels such as “ae” and
semivowels such as “r” and “1”.

Note that the nearest neighbor approach performs
significantly worse than the other two methods. This
may seem counterintuitive, but if there is limited (or
even negative) correlation between the estimated and
nearest neighbor estimates, one can easily see that
larger error values will be observed in this case. If
we let 21 be the duration we want to estimate and xo
the predictor, the expected value of the MSE can be
expressed as

< (z1 —22)* > (3)

Multiplying out gives
<22 —2mwo + 25 > (4)

Subtracting the mean value from x; and x5 respec-
tively will not change the expected value. It then fol-
lows that

<af >=pi + o} (5)

but p? = 0 since the means are subtracted, giving
< a? >= 02, (5) can be rewritten as

0% —2 < xyx0 > 08 (6)
For the global mean case this is equivalent to
207 — 2 < x119 >, (7)

where we have assumed that the training speakers and
testing speakers all have roughly the same variance per
phoneme (0 & 03).
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From the above analysis it can be seen that for
large correlations the error will tend to zero, but for
small correlations the global mean approach will tend
to have double the error of the nearest neighbor ap-
proach.

The variance-normalized MSE values for all
phonemes in experiment 1 are shown in Fig. 5 and Fig.
6. Fig. 5 shows that there are significant differences in
the relative predictabilities of the different phonemes,
with the vowels “iy”, “eh”, “ae”, the fricatives “s
“sh” and the liquid “1” being most predictable. These
are also the phonemes whose durations correlate most
strongly with those of other phonemes. The least pre-
dictable phonemes are characterized by factors such
as data scarcity (“oy”), phonemic ambiguity (“uw”)
and weak correlation with other phoneme durations
(“nx”). Tt is interesting that the plosives “t”, “k”,
and “d” are fairly predictable, whereas the other three
plosives are less so.

9
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Figure 5:  Variance normalized MSE for the different

phonemes using the ML approach.
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Figure 6:
tance approaches.

The results of experiment 5 are summarized in
Figures 7 to 10. As expected the error value de-
creases rapidly when the phonemes with the high-
est correlation are given as examples. An unex-
pected phenomenon is that even the highly predictable
phonemes’ errors start to increase after a moderate
number of phonemes have been added as examples.
This is probably a result of the Gaussian distribution,
which is assumed during our ML estimation, and de-
serves further attention.

6 DISCUSSION AND CONCLUSIONS

The pareto chart in Fig. 1 is a confirmation of the
claim that much of the variation observed in the dura-
tion of phonemes, as caused by the variable “speaker”,
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Figure 10: Variance normalized MSE for dx vs the num-
ber of known phonemes during estimation, added in de-
scending order of correlation with dx.
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Figure 11: 10 phonemes with the highest and 10 with the
lowest correlation with aa.
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Figure 12: 10 phonemes with the highest and 10 with the
lowest correlation with p.
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Figure 13: 10 phonemes with the highest and 10 with the
lowest correlation with r.

49

0.10 —
0.05 —
ool 0 0 HAHHANHON IEE =

nxldhjhzrnhbdixaowayenuxowehawal

|D 10 Largest correlations B 10 Smallest correlations ‘

Figure 14: 10 phonemes with the highest and 10 with the
lowest correlation with dx.

can be explained by a relatively small number of fac-
tors. Figures 2, 3 and 4 show that a common lengthen-
ing or shortening of all phonemes is the strongest sin-
gle effect, but that differential stretches between and
within phoneme classes also play a significant role.

This knowledge was then applied by estimating
an ML model from the training data in the TIMIT
corpus. The model was tested using the testing data,
also from the TIMIT corpus. From Table 1 and Fig-
ure 6 it can be seen that the ML approach performs
significantly better than the mean phone duration ap-
proach. Thus, the observed intra-speaker correlations
between phoneme durations are practically usable.

High correlations between phonemes in the same
class, but also across classes were observed. It was
found that most phonemes correlate well with only a
few other phonemes (on the order of 10), and that
accurate duration estimation is achieved using only
those phonemes. As can be seen in Table 1, the lowest
achievable error rate when selecting input phonemes in
this fashion is 0.815, approximately 6.5% better than
the result from experiment 2.

Our results also emphasize the importance of com-
bining the various effects that influence the durations
of phonemes. We found that about 15 % to 20 % of
the intra-speaker variability in phoneme durations can
be explained without reference to other factors, which
indicates a significant role for those factors.
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