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The use of artemisinin based combination therapies (ACTs), currently the most effective for treatment of malaria, is under threat. 

ACTs are becoming less effective with resistance being reported towards both the artemisinin and non-artemisinin components of ACTs.1,2 

This emphasizes the need for new artemisinin derivatives that cannot be metabolized to the common artemisinin metabolite dihydro-

artemisinin implicated in artemisinin resistance.3-5 This metabolite can be avoided by replacing the oxygen atom attached to C10 of the 

current clinical artemisinins with an amino group.6,7 In addition, by incorporating the ferrocene pharmacophore, a mode of action 

complementary to that of the artemisinin comes into play. Ferrocene (in the Fe2+ state) undergoes facile oxidation to ferrocenium (Fe3+), 

for example by hydrogen peroxide that is thereby reduced to hydroxyl radical in the Fenton reaction.8 The hydroxyl radical is potently 

bioactive.9 In turn, ferrocenium is reduced by NADH and glutathione (GSH) to ferrocene.10-15 The ensuing redox cycling involving 

ferrocene and ferrocenium will greatly enhance hydroxyl radical flux. The most successful ferrocene-containing antimalarial drug is 

ferroquine, based on the chloroquine (CQ) template. The 1,2-disubstituted ferrocene is embedded within the side chain of chloroquine in 

close proximity to the two amino groups that allows the ferrocene to adopt a uniquely exposed configuration.16 Ferroquine is able to 

generate micromolar amounts of hydroxyl radicals from H2O2.
17 The ability of ferrocene to generate hydroxyl radical in principle can be 

exploited further through conjugation to an artemisinin derivative, wherein the latter is able to induce oxidative stress by oxidizing reduced 

flavin cofactors that normally modulate levels of endogenous thiols required for expunging reactive oxygen species (ROS).7,18 If redox 

cycling of the embedded ferrocene in the artemisinin-ferrocene hybrid can indeed maintain the reactive oxygen source, the additional 

oxidative stress would greatly amplify intracellular damage. Artemisinin-ferrocene hybrids were first prepared some time ago,19,20 

although the original rationalization of their antimalarial activities in terms of binding to ferroprotoporphyrin IX is open to question.21,22 

More recently, artemisinin-acyl ferrocene hybrids prepared from DHA were reported to display antimalarial activities against CQ-

AB ST R ACT  

Artemisinin-ferrocene conjugates incorporating a 1,2-disubstituted ferrocene analogous to that 
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stage gametocytes. The data portends transmission blocking activity. Cytotoxicity was 

determined against human embryonic kidney cells (Hek293), while human malignant melanoma 

cells (A375) were used to assess their antitumor activity 

Keywords: 

Amino-artemisinin 

Ferrocene 

Hybrid drug 

Malaria 

Cytotoxicity 



4 

 

sensitive Pf 3D7 ranging from 7.2 - 30.2 nM that were inferior to those of the parent artemisinin; however, the compounds were notably 

cytotoxic towards multidrug-resistant leukemia cell lines.23  Similarly an artemisinin acyl ferrocene hybrid intriguingly incorporating the 

redox-active thymoquinone unit was active against leukemia cell lines, but less active than artemisinin control compounds against 

malaria.24 As aminoartemisinins appear to display optimal antimalarial activities,7 we used the C10 piperazino artemisinin derivative 225 

to prepare hybrids bearing a terminal acyl ferrocene or alkyl ferrocene that elicited IC50 activities against CQ-sensitive and –resistant Pf 

of 2.9-24.1 nM.22  We now describe the use of the artemisinin 2 for preparation of new hybrids incorporating the 1,2-disubstituted 

ferrocene moiety according to the precept for ferroquine outlined above.  The methods are presented in Scheme 1a.  The terminal alkyl 

ferrocene hybrid 6 (Scheme 1b) prepared as previously described22 is included here for comparative purposes. 

The synthesis of the ferrocene derivatives was carried out in two steps. Ferrocene carboxaldehyde was submitted to reductive amination 

with sodium triacetoxyborohydride26 in the presence of the secondary cyclic amine (thiomorpholine, piperidine and morpholine)  to give 

the corresponding aminoferrocenes in yields above 80%.  The aminoferrocene derivatives were then treated with n-butyllithium-potassium 

tert-butoxide to give the lithiated intermediate.27,28 Treatment of the lithiated intermediate with N,N-dimethyl formamide (DMF) provided 

the corresponding amino-ferrocenealdehydes in yields after purification of 30%. The foregoing products were then coupled through 

reductive amination with the 10-piperazino artemisinin 2 by using sodium triacetoxyborohydride to deliver the amino-artemisinin-1,2-

disubstituted ferrocene derivatives (Scheme 1a). 

 
 

Scheme 1. a. Preparation of the amino-artemisinin-1,2-disubstituted ferrocene derivatives i. Ferrocene carboxaldehyde (1.1 eq.), secondary amine (1.2 

eq.), sodium triacetoxyborohydride (2 eq.), dichloromethane, N2, room temperature, 4 h. ii. Aminoferrocene (1 eq.), potassium tert-butoxide (0.1 eq.), n-

BuLi (1.1 eq.), Et2O, Ar, room temperature, 16 h, then addition of DMF (3 eq.), 4 h. iii. 2 (3 eq.), aminoferrocenealdehyde (1.0 eq.), sodium triacetoxy-

borohydride (3 eq.), THF, N2, room temperature, overnight; b. Compound 6 prepared from 2 according to the previously published procedure (ref. 22). 

 

Biological activities for the artemisinin-ferrocene conjugates are given in Tables 1 and 2. In vitro antimalarial activities were 

determined against the asexual blood stages of three Pf strains – the drug sensitive NF54, and drug-resistant K1 and W2 strains.29 The 

resistance index RI is the ratio of the IC50 values of the resistant to sensitive strains IC50 K1/IC50 NF54 and IC50 W2/IC50 NF54, and was 

used as an indication of potential for cross resistance formation for each drug resistant strain (Table 1). The gametocytocidal activities 

were determined with Pf NF54 early and late stage gametocytes at two concentrations, 1 µM and 100 nM (Table 2).30 The cytotoxicities 

of the derivatives were evaluated in vitro with human embryonic kidney cells Hek293 while anti-tumor screening was carried out with 

the human malignant melanoma cell line (A375) (Table 1).31 The selectivity indexes (SI) indicate the selectivity of the compounds towards 

parasitized cells or cancer cells with respect to the non-proliferating mammalian cell line. Details are given in the Supplementary Material.  

The activities of derivatives 4 and 5 against asexual blood stage parasites were better than those of dihydroartemisinin (DHA), 

artesunate (AS) and artemether (AM) towards the resistant K1 and W2 strains but were less active towards the sensitive NF54 (Table 1). 

In general, however, activities of the 1,2-disubstituted ferrocene hybrids here are superior to those described previously for the acyl and 

alkyl ferrocene hybrids;22 activities of the best of the latter, namely compound 6, are included for comparison in Table 1. Although the SI 

value of the morpholino ferrocene derivative 5 indicates that it is more selective towards parasites than mammalian cells, this SI value is 

lower than that of DHA, possibly indicative of generalized toxicity. In this respect, it is intriguing that the amino artemisinin derivative 

bearing the morpholino group attached directly to the C10 position (cf. compound 2) exhibited acute toxicity.6 While compound 3 did not 
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have the same antimalarial potency as the other derivatives, it was relatively quite active towards the A375 melanoma cell line with 

respect to non-proliferating mammalian cells. The RI values of ferrocene hybrids 3-5 indicate a lower potential for resistance formation 

than compound 6 and the clinically used DHA, AS and AM.  

 

Table 1.  In vitro anti-malarial activities against Pf asexual blood stage parasites determined by SYBR Green I fluorescence 

proliferation readout, cytotoxicities and selectivity indices of amino-artemisinin ferrocene derivativesa 

Compd. Antimalarial activity IC50 (± SEM) nM 
Cytotoxicity 

IC50  (µM) 

Antitumour 

IC50  (µM) 

 NF54 K1 RIb W2 RIc
 Hek293 SId A375 SIe 

CQ 10.0 (3.0) 154.0 (14.0) 15.4 233.0 (49.0) 23.3 nd nd nd nd 

DHA 2.5 (0.1) 1.5 (0.3) 0.6 1.7 (0.2) 0.6 4.0f 1593 1.0f 0.3 

AS 3.0 (0.2) 4.0 (1.0) 1.3 2.4 (0.4) 0.8 nd nd nd nd 

AM 1.8 (0.1) 9.0 (2.0) 4.8 7.0 (1.0) 3.8 nd nd nd nd 

3 7.5 (2.5) 2.9 (0.3) 0.3 3.4 (1.1) 0.4 43.0 5733 11.0 3.9 

4 3.8 (1.4) 1.1 (1.1) 0.2 1.7 (0.6) 0.4 60.0 15424 65.0 0.9 

5 3.3 (1.3) 0.8 (0.2) 0.2 1.4 (0.7) 0.4 1.0 300 1.0 1.0 

6g 4.5 (0.6) 2.7 (0.7) 0.6 3.2 (1.0) 0.7 53.0 11597 19.0 2.7 
aData are from at least three independent biological replicates, n=3, each performed in technical triplicates; CQ chloroquine; DHA 

dihydroartemisinin; AS artesunate; AM artemether; nd not determined; Hek293 human embryonic kidney cells, A375 human 

malignant melanoma cells; bResistance Index = IC50 K1/IC50 NF54; cResistance Index = IC50 W2/IC50 NF54; dSelectivity Index = IC50 

Hek293/ IC50 NF54; eSelectivity Index = IC50 Hek293/ IC50 A375; fhistorical cytotoxicity and antitumour values for DHA (refs. 

32,33); ghistorical values for compound 6 (ref. 22). 

 

The activities of the ferrocene derivatives against early (stages I-III) and late stage gametocytes (IV-V) are noteworthy.  When each 

were applied at a concentration of 1 µM, they were approximately equipotent with methylene blue and DHA against early stage, but were 

appreciably more active against late stage gametocytes (Table 2).  This is the first time gametocytocidal activity is reported for ferrocene-

artemisinin hybrids; this is significant, as activity against late-stage gametocytes in particular portends transmission-blocking capability. 

For any new drug development programme, it is important that drugs have the ability to block transmission to the mosquito, in particular 

of resistant parasites.  

 

Table 2. % Inhibition in vitro of Pf NF54 gametocytes by amino-artemisinin  

ferrocene derivatives at 1 µM and 100 nM against early (I-III) and late stage (IV-

V) gametocytes as determined with the luciferase reporter gene assay.a   

Compound 
Early stage (I-III)  

gametocytes 

Late stage (IV-V)  

gametocytes 

concentration 1 µM 100 nM 1µM 100 nM 

MB 95.0±1.7 nd 57.3±3.96 nd 

DHA 97.1±0.5 nd 72.0±6.7 nd 

3 95.7±0.33 93.8±0.7 86.5±3.56 84.8±0.5 

4 95.8±0.21 95.9±0.3 88.7±2.04 87.0±0.4 

5 96.1±0.37 99.1±0.2 88.4±0.96 87.6±0.8 
asee ref. 30; MB Methylene Blue, DHA dihydroartemisinin; data are from a single 

biological replicate (n=1) performed in technical triplicates, ±SD. 

 

Overall, the data obtained for these derivatives strongly encourages further investigation of these ferrocene-artemisinin linked 

derivatives, including the accessible derivative 6 described earlier,22 with attention to be focussed on conducting assays in vivo so as to 

establish the role of the ferrocene group in carrying cytotoxic mode of action, on improving the synthetic routes, and on generating related 

derivatives wherein polarity of the amino group attached to the ferrocene is modulated so as to enhance drug uptake.  
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