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Operational discharges of oil from vessels, whether accidental or deliberate, are a growing concern as

the levels of maritime traffic increase. Oil tankers and other kinds of ships are among the suspected

offenders of illegal discharges. The international legislation contains minor and well-defined exceptions

related to ocean areas (internal waters, marine protected areas, MARPOL “special” areas, territorial

seas or exclusive economic zones). These areas often determine whether an action is considered legal

or not and define the rights and obligations, including law enforcement obligations.

Synthetic aperture radar (SAR) is the most used remote sensing tool for monitoring oil pollution over

vast ocean areas. SAR is an active microwave RS sensor capable of taking measurements day or night

and almost independently from atmospheric conditions. Manual oil spill detection in a SAR image is

ordinarily done by a trained human interpreter who visually inspects SAR images for any possible

spills. However, manual inspection can be time-consuming, biased, inconsistent and subjective. A

faster and more robust alternative is to use automated image processing and machine learning methods.

The current automated oil detection methods, however, are still not ideal and there is still a need for

improvement. Also, data costs have resulted in limited studies on oil spill detection in African oceans.

The launch of several Sentinel missions with SAR sensors has considerably improved coverage and



accessibility of data over African oceans. The goal of the study is to develop an automated detection

of oil spill discharges from vessels in African seas using the freely available Sentinel SAR data.

A novel oil spill detection framework that can detect possible oil spill candidates and remove unwanted

detections (i.e., false positives) was proposed. The framework used a novel linear dark spot detection

algorithm and an improved oil spill discrimination process. The linear detection process used a

segmentation-based algorithm to isolate linear dark spots (potential oil spills) from other features in

the image. The process involved a more efficient feature selection and classification process. The

proposed linear detection algorithm was evaluated for detection accuracy and compared to other

segmentation-based oil spill detection algorithms, including state-of-the-art oil spill detection methods.

The results demonstrated the proposed approach to be a more efficient and robust linear dark spot

detection method. An improved discrimination process was presented to reduce false detections

from a segmentation-based algorithm. The selection of relevant oil spill features depends on many

factors which could influence the accuracy of the classification task. Automated features selection

methods were thus considered to improve the discrimination process. Using feature selection, the most

significant oil spill features with minimum variations were determined. The significant features were

used as input vectors to classify oil spill events from moving vessels. An optimised Gradient Boosting

Tree Classifier (GBT) was used for the classification task.

The proposed novel framework showed promising results for monitoring oil spill from moving vessels

using SAR in African oceans on a regular basis. Future work includes adding a confidence measure

and alert level estimation. The system will incorporate ancillary information such as the oil spill source

and the sensitivity of the polluted area to measure environmental impact.
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CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

Petroleum products play an essential role in the transportation, plastics and fertiliser industries [1].

Liquid petroleum hydrocarbon (oil) products consist of various unrefined and refined liquid components.

Unrefined petroleum (crude oil) are dense hydrocarbon compounds that from small volatile to large

non-valotile compounds [2]. Petroleum products are mixtures of fewer hydrocarbon compounds that

are more specific and less variable. Examples of petroleum products include gasoline and diesel fuel.

Crude oil and other oil products are predominantly (about 90% [3]) are transported across the ocean

using oil-tankers. The massive oil quantities carried by ships often results in an almost inevitable risk

of oil pollution. There can be as many as 10–15 transfers involved in the moving of oil [1]. Oil spills

can happen in water, ice or on land during oil shipping or storage [4]. Once the oil is spilt, it soon

spreads to create a thin oil film on the ocean surface, known as an oil-slick, see example in Fig. 1.1. In

this thesis, the terms oil spill, oil slick and bilge dumps refer to maritime oil pollution released due to

human activity into the ocean environment.

Oil spills are a result of the intentional or unintentional release of oil to the ocean environment, see

Fig. 1.2. Accidental oil spills are mainly caused by oil tankers or on offshore oil platforms and can

result in massive quantities spills which often attract a lot of media attention. Deliberated oil spill

are often caused by vessels illegally discharging oily waste during cleaning operations. A vessel’s oil

leaking from the engine and other debris is stored in a vessel storage area called a bilge. A bilge (also

known as a bilge well) is found in the bottom of part of a ship and is used to store water waste from

the daily routine operations of vessels. Bilge waste includes lubricating oil, cleaning diesel oil, oily
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Figure 1.1. Oil slick floating (dark substance) on the ocean surface. Taken from [5], with permission.

sludge, spills from the engine room, water leaks from internal pipes and seawater filtrations. The law

requires the retrieval of oily bilge waste-water to be in the harbours. However, vessels often dump

bilge waste before entering a port in efforts to save costs and time spent at the port [6, 7]. Commonly

fewer quantities of oil are spilt during illegal bilge dumping. However, it happens so frequently that

bilge dumping is the highest contributor to ocean oil spills. In fact, discharges of bilge and fuel oil

are comparable to about five Exxon-Valdez oil spills (one of the most significant recorded oil spills in

the United States) yearly [8, 9]. The rate of oil pollution from ships is expected to rise as the levels of

maritime activities increase [7].

Oil spill over the sea surface often results in significant damage to the ocean environment, plants

and animals. The impact depends on the location, season, amount, toxicity, oceanic conditions and

the length of exposure to the oil. The consequences on the environment of the marine ecosystem is

especially destructive after a massive oil spill caused by a marine accident. The plants and animals

that come into contact with the oil contaminated ocean surface are the most at risk [3], see Fig. 1.3. In

addition to the impact on the maritime ecosystem, oil spills can also have a damaging effect on the

economic, social and natural resources in the coastal and marine protected areas [11]. Tourism and

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Figure 1.2. Image showing oil spill (brown substance) caused by a vessels. Taken from [10], with

permission.

recreation activities may be affected by an oil spill that drifts to coastal areas. Oil-tainted seafood may

be toxic to humans and can also affect their economic value. Cleaning up processes can be very costly

(ranging from 40 to 400 US dollars per litre) depending on the type and location (shorelines are the

most expensive) of the oil spill [12]. A rapid response to all oil spill events is required to minimise the

ecological impact produced.

The harmful impact of oil spills on the maritime ecosystem led to the creation of the International

Convention for the Prevention of Pollution of the Sea by Oil in 1954 [13]. The convention defined

international laws that prohibited any oil spill at the ocean. The rules were able to decrease the number

of vessels that are illegally dumping bilge waste at sea. However, there is still sufficient evidence of

numerous and repeated illegal bilge dumping offences. Most illegal bilge dump events usually occur

offshore, prior to a ship arriving at a port, where surveillance is limited. Advancements in remote

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

3
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Figure 1.3. Dead fish due to an oil spill incident. Taken from [14], with permission.

sensing technology can assist operators to detect oil spills before they cause widespread damage.

Remote sensing uses imaging sensors aboard airborne or spaceborne platforms to capture large areas

over the Earth’s surface at a high altitude. Spaceborne platforms can cover larger areas at a lower cost

than airborne and they are mostly used to find potential oil spills before sending airborne platforms

to confirm the spill. Remote sensing consists of various imaging sensors across the electromagnetic

spectrum.

Synthetic aperture radar (SAR) has been demonstrated to be the key sensor for oil slick observation [15,

16, 17]. SAR is the most used remote sensing (RS) tool for monitoring oil pollution over vast ocean

areas. It is an active microwave RS sensor capable of making measurements day or night and almost

independently from atmospheric conditions [18, 19, 20, 21]. The ocean’s short gravity waves reflect

radar energy, resulting in a bright SAR image. The presence of an oil spill dampens the gravity

waves and reduces the energy returning to the radar sensor, resulting in a darker patches (denoted as a

darkspots). The dampening effect allows oil spills to be detected from a SAR image. However, the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

4
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Figure 1.4. SAR image showing dark region caused by look-alike.

dampening effect is not unique to oil spills; other natural phenomena exhibit a similar effect which

introduces false alarms in the detection chain which can be a challenge, see Fig. 1.4. False alarms

mostly consist of naturally occurring phenomena known as oil spill look-alikes which can resemble oil

spills (e.g., natural seepage). Despite the limitations, trained operators are often able to discriminate

between natural phenomena and discharges from vessels by analysing spill candidate shape, the ocean

conditions and the proximity of the vessel responsible. Key features from SAR images include a

linear dark region with a bright spot at the end, representing the vessel responsible, see illustration in

Fig. 1.5.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Figure 1.5. SAR image captured in Morocco showing oil spill (red line) and possible vessel spill

sources (red circles within the orange box).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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1.1.2 Research gap

SAR imagery may be regularly acquired over the ocean, but the images still need to be inspected

and analysed for any potential oil spill. This step is usually time sensitive as the offender is normally

moving and the oil samples are required for prosecution. Thus oil spill monitoring agencies need to

inspect SAR images for oil spills as soon as possible. Manual or automatic techniques can be used to

detect and quantify ocean oil spills using SAR imagery. Manual inspection involves a human operator,

usually an expert in the field, to analyse all the images visually. The limitations of manual inspection

are that it depends on the knowledge of the operator and can be a biased, non-repeatable process.

SAR images can be huge and thus time-consuming to analyse, particularly the small illegal oil spills

from bilge dumping. Oil spill discharges from ships can also be monitored automatically using image

processing methods on SAR images. Usually, a semi-automated approach is adopted where an image

processing algorithm is used to detect potential oil spills and the operator verifies the detections to

reduce false alarms. A lower rate of false alarms is essential as law enforcement needs to dispatch a

team to confirm and apprehend the offender. An ideal system is a fully-automated approach where

image processing with a machine learning algorithm is used to detect potential oil spills and remove

false targets. This information can help operators and air patrols to plan countermeasures to lessen the

pollution effects efficiently.

Ocean pollution monitoring application has shown automated methods to be faster and more robust

when compared to manual inspection by an expert and thus can be used to supplement manual

inspection. However, designing an automated oil spill detection system is no small feat. The ocean is

too vast to monitor all oil spill events, particularly when the area has limited SAR satellite coverage.

Many SAR images or oil spill examples are often required to develop a robust algorithm as it needs to

be trained on a more extensive set of possible examples of oil spill events. The second issue is that

natural phenomena that look like oil spill events (known as look-alikes) appear much more frequently

than the actual oil spill events. Because of this issue, further manual analysis is recommended to verify

each automated detection. Lastly, oil spill events mostly appear in batches, that is, all oil spills extracted

from a single image constitute a single batch. The issue here is that similarities and dissimilarities

between batches (e.g., difference in image quality and ocean conditions) can influence the training of

automated methods. However, even with the outlined challenges above, SAR’s capability to detect oil

spills is vital for maritime pollution surveillance, particularly for monitoring large areas, day or night,

under any weather condition.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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The detection of oil spills caused by vessels using SAR can be a challenging task that requires an

accurate representation of potential oil spill events. There have been many studies of ocean pollution

detection, however, only a few studies have been done on oil slick monitoring using SAR data for

Africa’s oceans. The limited studies are mainly due to the lack of data in these areas. However, these

areas can now be monitored because of the increase in free global SAR data. Also, more work is

needed on developing an automated oil spill detection approach that is accurate enough to discern

between real and false targets. Especially since the detection of oil spills in SAR is highly susceptible

to these look-alikes, particularly at low and high wind speed.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

The primary objective is to detect oil spills from vessels from SAR imagery using image processing

and machine learning methods. This research will answer the following questions:

• What are the current state-of-the-art methods for oil spill monitoring using SAR?

• Can automated detection of the oil spill caused by vessels using SAR imagery be improved?

• What are the limitations, given the data availability of Africa’s oceans?

1.3 HYPOTHESIS AND APPROACH

The study propose an improved oil spill detection system. The main hypothesis is: Automated

detection of oil spill caused by vessels using SAR imagery can be improved. The system is

developed using the following approach:

• The current state-of-the-art methods for automated oil spill detection is established from a

comprehensive review of literature.

• Darkspot detection is regarded as the most critical step for a successful oil spill detection system.

Therefore, the first step is to develop an improved darkspot detection method.

• A discrimination step is required to separate man-made oil spill from false targets (i.e., oil spill

look-alikes). The study further improves the proposed system by developing a more robust

discrimination step.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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1.4 RESEARCH GOALS AND CONTRIBUTION

Oil spill detection using SAR has been successfully demonstrated since the early 90’s. The current

automated methods, however, are still not ideal and there is still a need for improvement. Also, there

have been limited studies on oil spill detection in the African oceans. Even though the current oil

spill detection methods are expected to work for any ocean, it is still necessary to test them in African

oceans.

Illegal operational oil discharges from vessels have been demonstrated to exceed that of large-scale

tanker accidents. The goal of this study to develop an automated detection system of oil spill discharges

from vessels using SAR data. The second goal is to demonstrate the use of a SAR based automated

oil spill monitoring system in an African context and encourage the operational use of SAR data to

monitor these oceans.

The contribution of the study is towards the development of a novel automated oil spill detection

system based on SAR data. The work also contributes to the lack of an automated system for ocean

pollution monitoring in Africa’s coastal areas. As part of the research, the original contributes were

published to a high-ranking peer-reviewed journal (IEEE J-STARS) and were discussed in remote

sensing conferences (IEEE IGARSS Conference).

1.5 OVERVIEW OF STUDY

The study is divided into several chapters that follow five main categories.

Introduction chapter

The scope, objectives and contribution of the work is presented in the Introduction chapter, see

chapter (1 on page 1). The chapter also discusses the context of the study by clearly stating the research

gap, formulating several research questions and approaches to solve them.
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Background chapters

The background, theory and current state-of-the-art methods relevant to oil spill detection using SAR

data are presented. The study split the background into four chapters with topics discussing:

• Maritime Oil Pollution (chapter 2, page 12): presenting an overview of the ocean pollution

sources, impact and response.

• Oil Spill Remote Sensing (chapter 3, page 28): presenting monitoring efforts using remote

sensing.

• Oil Spill Imaging using SAR (chapter 4, page 40): presented a technical description of oil spill

imaging using SAR.

• Oil Spill Detection using SAR (chapter 5, page 58): presented a literature review on automated

image processing techniques.

Methodology chapter

The methodology chapter presents the description of the proposed novel oil detection framework,

see chapter 6 on page 71. The chapter presents the mathematical formulation and implementation

of The novel segmentation-based linear dark-spot detection algorithms and the improved oil spill

discrimination algorithms.

Results and discussion chapter

This chapter presents the results and analysis of the proposed segmentation-based algorithm methods

and the improvement of using the proposed discrimination process, see chapter 7 on page 91. The

chapter also presents a dataset description section describing the study area, SAR dataset and the

preprocessing chain.
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Conclusion chapter

The conclusion chapter presents final remarks and future recommendations for similar work, see

chapter 8, page 120. Final remarks present a recap of the noteworthy details of the study.
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CHAPTER 2 MARITIME OIL POLLUTION

2.1 OIL SPILL SOURCE

According to the United Nations Convention on the Law of the Sea, 1982:

Marine pollution is the introduction by man, directly or indirectly, of substances or energy

into the marine environment, including estuaries, which results or is likely to result in

such deleterious effects as harm to living resources and marine life, hazards to human

health, hindrance to marine activities, including fishing and other legitimate uses of the

sea, impairment of quality for use of sea water and reduction of amenities [22].

Oil spills occur because of natural and man-made sources, see Table 2.1. There are two types of

oils, that is, biogenic oils and mineral oils [23]. Biogenic oils occur because of ocean plants and

animal growth. Biogenic oil spills appear as a thin layer of oil over the sea surface [24]. Mineral oils

appear as a thick layer that consists of different mixtures of refined petroleum products including crude

oil [2].

2.1.1 Natural oil spill

Not all oil spills originate from man-made activities. Natural geological sources, named oil seeps,

can release a natural oil spill into the marine environment [2]. They appear as a thin layer of oil over

the ocean surface and occur because of ocean plants and animal growth. Natural oil spills are not

very soluble in water and have lower toxicity compared to petroleum products and have a little impact

on the marine life [25]. The most notable effect on marine ecosystem is smothering. The Woods
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Table 2.1. Oil products found on the ocean surface.

Natural Spill Man-made Spill

Biogenic Oil Surfactants
Fish and Vegetable oil

products

Mineral Oil Oil Seeps
Crude oil and

petroleum products

Hole Oceanographic Institution declares that natural seeps of oil and gas contribute as much as one

half of the oil in the ocean [26, 27]. Gas bubbles coated with oil are released into the atmosphere

through faults and fractures in the seabed to form a natural oil slick on the sea surface. Natural oil

spills evaporate at a rate, do not disperse or mix with water through emulsions and are more persistent

than crude oil.

2.1.2 Man-made oil spill

Ship accidents (collisions and groundings), illegal operational discharges and offshore production are

the prominent sources of maritime oil pollution [28]. These are due to human error, negligence or

equipment malfunction or failure. Accidental oil spill occurs in large quantities and are mainly due

to accidents or equipment failures. They can be caused by both vessels and oil platforms and often

attract media attention. Deliberate bilge dumping may occur in fewer quantities, but they appear more

frequently than ship accidents. Operational discharges from tankers cause 45%, where the bulk of

observed oil spills correlate with vessel traffic routes. In the last decade, maritime transportation has

been steadily growing which increases the potential number of illegal bilge waste discharges. About

90% of the world’s oil is transported across the ocean using oil-tankers. Oil is also used as fuel to

power the engines and as a lubricant for machines to run smoothly. Vessels transporting massive oil

quantities, or using oil as fuel as well as large oil platforms in the ocean, often pose in an almost

inevitable risk of oil pollution, see Fig. 2.1.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

13



CHAPTER 2 MARITIME OIL POLLUTION

Figure 2.1. Image showing oil spill caused by Exxon Valdez tanker incident. (Taken from [29], with

permission).

2.1.2.1 Large oil spill accidents

The Prestige tanker sunk off the coast of Galicia in 2002 and resulted in an oil leak that spanned over

thousands of kilometres’ of the coastline. The most massive accidental oil spill in history occurred in

2010 when the British Petrol’s drilling rig Deepwater Horizon (DWH) exploded in the Mexico Gulf.

The oil leaked for 87 days and released approximately 780000 m3 of oil in the Atlantic Ocean. Oil

spill can also be caused by submarines. In 2011, an oil spill was caused by the crack of a submarine

fault in the Bohai Sea, China. The accident resulted in approximately 4400 m3 of crude oil leaking

into the sea and about 15700 m3 of mineral oil leaking into the seabed [30], see top 20 oil spills list in

Table 2.2.
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Table 2.2. A summary of the top 20 major spills that have occurred globally since 1967 [31].

Ship name Year Location Spill Size (tonnes)

ATLANTIC EMPRESS 1979 Off Tobago, West Indies 287,000

ABT SUMMER 1991 Off Angola 260,000

CASTILLO DE BELLVER 1983 Off Saldanha Bay, South Africa 252,000

AMOCO CADIZ 1978 Off Brittany, France 223,000

HAVEN 1991 Genoa, Italy 144,000

ODYSSEY 1988 Off Nova Scotia, Canada 132,000

TORREY CANYON 1967 Scilly Isles, UK 119,000

SEA STAR 1972 Gulf of Oman 115,000

IRENES SERENADE 1980 Navarino Bay, Greece 100,000

URQUIOLA 1976 La Coruna, Spain 100,000

HAWAIIAN PATRIOT 1977 Off Honolulu 95,000

INDEPENDENTA 1979 Bosphorus, Turkey 94,000

JAKOB MAERSK 1975 Oporto, Portugal 88,000

BRAER 1993 Shetland Islands, UK 85,000

AEGEAN SEA 1992 La Coruna, Spain 74,000

SEA EMPRESS 1996 Milford Haven, UK 72000

KHARK 5 1989 Off Atlantic coast of Morocco 70,000

NOVA 1985 Off Kharg Island, Gulf of Iran 70,000

KATINA P 1992 Off Maputo, Mozambique 67,000

PRESTIGE 2002 Off Galicia, Spain 63,000

EXXON VALDEZ 1989 Prince William Sound, Alaska, USA 37,000

HEBEI SPIRIT 2007 South Korea 11,000
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Figure 2.2. Image showing an oil spill caused by a vessel on the blue ocean surface. (Taken from [35],

with permission).

2.1.2.2 Oil spill from vessel discharges

Oil tankers and other kinds of vessels are among the suspected offenders of unlawful discharges [32].

Oil spills can occur from inland, coastal and ocean facilities and during transportation. Oil facilities

include oil productions, oil refineries and bulk oil storage in above and below ground storage tanks.

Oil transportation spills can be caused by oil pipeline ruptures, tank spills and road transportation [33,

34].

Even though the public is more aware of severe accidental oil spills, a significant proportion of oil spills

are caused by deliberate discharges in the form of bilge and fuel oil from tankers or cargos [3, 30], see

Fig. 2.2. Studies have reported that the cumulative impact of small spills can add up to about 10 million

gallons (≈ 30.000 m3) per year worldwide [8]. Illegal oil spills involve intentional discharging of oily

substances over the limit prescribed by MARPOL (discussed in section 2.3.1), or in restricted areas.

An oil spill that violates MARPOL limits due to intentional, reckless or negligent actions are absolute
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and strict liability offences. Ships can illegally dump oily waste in two ways [11]. They can use the

Oily Water Separator (OWS) or using a bypass pipe (called the “magic pipe”) to directly dump waste

directly overboard. Oil spill violations also indicate other illegal implications such as falsified records

or withholding of information in ship records (e.g., Oil Record Book). Illegal discharges occur because

of two reasons. First reason is that vessel operatives find a financial advantage in dumping bilge prior

arriving at a port. Second reason for oil spill is that, there is a low chance of being discovered and

thus can avoid prosecution. To save costs, operators neglect the proper training and maintenance of

equipment such as pipes, pumps and OWS, making the pollution prevention system ineffective. Other

costs associated with illegal discharges include the direct cost of using port reception facilities (PRF)

and the potential indirect cost if the ship must stay for a length of time in port to use PRF [11].

Illegal ship operations accumulate from smaller but recurrent oil discharges which results in a higher

volume of oil into the ocean. The amount of oil generated and stored on a vessel depends on the

type, age and size of the vessel. The amount and components produced from bilge waste water differ

significantly from vessels to vessel. Five general discharges are as follows [11, 36]:

Oily bilge water: as defined in MARPOL Annex I, is water polluted by oily products entering the

bilge wells and bilge pipes.

Oil residue (sludge): as defined in MARPOL Annex I, is residual waste from oil products generated

during the normal operation of a ship. These include residual waste from fuel purification,

lubricating oil, oil filtering machinery and waste oil collected in drip trays.

Cargo residue waste: is waste emanating from tanker vessels that carry different types of cargo,

ranging from petroleum products to chemicals and food products.

Crude oil cargo residue waste: is the unpumpable quantities of cargo residue that remains after a

complete crude oil discharge operation from a tanker. The amount of crude oil cargo residue

depend on size and nature of the cargo tankers.

Oily waste tanks: is waste collected by oil tanks in large vessels. That is, all ships over 400 gross

tonnage (gt) are required to have containers for collecting oily residues.

The type of vessel is an essential component in the investigation to identify the kind of substance

discharges.
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Figure 2.3. Burning BURMAH AGATE tanker incident, Texas, November 1979. (Taken from [5],

with permission).

2.2 OIL IN THE OCEAN

The oil spill processes are determined by the type of oil and the environmental conditions at the time

of the oil spill. Oil is made up of many components with various properties that affect their behaviour

and environmental effect. Oil spill models depend on the successful prediction of oil spill behaviour on

the ocean surface. Also, maritime oil pollution responders need to know the current status and ultimate

fate of the oil to take measures to minimise the overall impact of the spill. A detailed discussion of oil

spill components, behaviour and fate is presented in the next section.

2.2.1 Oil slick properties

The properties of oil discussed here are viscosity, density and flash point. Viscosity measures the

resistance of an oil spill to flow in water, where lighter oil spills have lower viscosity and thus flow

rapidly at sea. The viscosity is also affected by temperature such that oils that flow readily at high
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temperatures can become a slow-moving, viscous mass at low temperatures. Density (volume of oil) is

also significant as it indicates whether a particular oil will float or sink in water. Most oils float because

they have a lower density than water. However, after a long time, oil spill density increases due to

evaporation on lighter oil components. The flash point is the lowest temperature at which vapours

of the oil spill will ignite when exposed to an open flame, see Fig. 2.3. There is a broad spectrum

of flash-points for petroleum products, many of which are considered ignitable, mainly when newly

produced. Crude oils may be ignitable for up to 24 hours till the most of the volatile components have

evaporated [12].

2.2.2 Oil slick behaviour

Oil slick behaviour refers to the specific oil spill processes that occur after an oil spill and determines

the fate and effects of a particular spill on the environment. Oil released into the ocean surface is

affected by two essential transformation processes. The first process is due to weathering and a second

transformation is due to a group of processes (including spreading, movement of oil slicks and sinking

and over washing) related to the flow of the oil spill. The “weathering” term combines a wide variety

of physical, chemical and biological processes that spilt oil undergoes in the environment. These events

mainly modify the spreading of the slick and its persistence, see illustration in Fig. 2.4.

The weathering process includes evaporation, emulsification, natural dispersion, dissolution, microbial

degradation, photo-oxidation and other processes such as sedimentation and oil suspended particle

interactions [37]. There is overlap in the weathering and spreading processes, with weathering changing

the oil movements in the sea and the spreading can affect the weathering process. Spreading is where

an oil slick physically expands to maximise its surface area. Wind speed, slick surface tension and

slick thickness are the primary indicators of how rapidly and to what extent oil will spread on water.

However, surface tension alone does not account for spreading behaviour. Also affecting the asymmetry

is the wind stress change as the wind passes from oil-free waters to the oil slick. A difference in wind

direction often leads the asymmetric or irregular shaped oil slicks.

After an oil spill, among the potential chemical, physical and biological weathering processes, evapor-

ation is usually the dominant weathering process. The evaporation effect is particularly significant on
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Land
sea

wind

Evaporation

Spreading

Biodegradation
Dissolution

Dispersion

Oxidation

Emulsification oil

Figure 2.4. Oil spill weathering process.

the oil remaining on land or water after a spill. For example, if oil evaporates rapidly, cleanup is less

intense, but the hydrocarbons in the oil enter the atmosphere and cause air pollution.

Oil slicks dampen capillary and short gravity waves, lessening surface roughness. The dampening effect

decreases wind-ocean momentum transfer, forming thick oil spills. An oil spill, before it weathers out,

may persist on the sea surface for a while. In general, light refined products (e.g., gasoline, diesel)

and light crude oils do not persist on the surface of the sea for any considerable length of time due

to rapid evaporation of the volatile components and they are more likely to disperse and dissipate

naturally, especially in rough seas. Such oils tend to be more toxic and a significant threat to marine

plants and animals if sufficient concentrations of oil enter the water column through wave action and

are not rapidly diluted by natural sea movements. In contrast, heavy crude oil and heavy fuel oils,

while lower in toxicity, are considerably more persistent in the marine environment due to the lesser

volatile compound content. Hence, they do not readily evaporate, disperse or dissipate naturally and

rough sea conditions are more likely to accelerate the emulsification process.
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Figure 2.5. Image showing the impact of an oil spill on the ecosystem, tourism and environment.

Taken from [5], with permission.

2.2.3 Oil spill impact

Oil spill events are one of the major marine ecological disasters that often result in a detrimental

outcome to the ocean ecosystem and human beings [30, 38, 39]. Oil pollution can enter the marine

organisms’ food chain, impacting health and population dynamics, see illustrations in Fig. 2.5. It

can also have a severe economic impact due to drastic reduction of tourism, closure of fisheries and

clean-up costs [40]. The impact of oil spills on the ocean environment depends heavily upon the type,

viscosity, toxicity, amount, the length of exposure and the sensitivity of the local organisms. It also

depends on location, season, ocean depth, meteorological and oceanic conditions. Wind, waves and

surface currents can scatter a large oil spill over a wide area within a few hours in the open sea [12].

Oil spill events can present a long term impact to the marine environment. Even after the oil spill has

disappeared or been cleaned up, the recovery of the ecosystem can take upto five years [41].
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Figure 2.6. Image showing a seabird covered in oil. Taken from [29], with permission.

The animals and plants that come into contact with the contaminated sea surface are most susceptible

to oil spills. Examples include marine mammals, reptiles and some bird species and plants/animals in

aquatic agriculture facilities [42], as shown in Fig. 2.6 and Fig. 2.7. A high seabirds’ mortality rate

correlates with busy shipping routes [43, 44]. Between 1998 and 2008, approximately 350,000 to

390,000 seabirds were killed annually off the Grand Banks (Canada) as a result of illegal discharges of

oil from ships [45]. In Alaska about 250,000 seabirds were killed after the Exxon Valdez 41000 m3,

oil spill on March 24, 1989 [46]. All marine mammals are susceptible to oil pollution when they ingest

contaminated food. In the event of a massive oil spill, most fish will swim away, however, if the oil

coats their gills, they can die from asphyxiation. When dolphins surface to breathe, oil can restrict

their blowholes and airways. After the Deepwater Horizon oil spill, studies found that Barataria Bay

dolphins were more likely to have moderate to severe lung disease, commonly described by significant

alveolar interstitial syndrome, lung masses and pulmonary consolidation [47].
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Figure 2.7. Image showing a turtle covered in oil. Taken from [5], with permission.

2.3 OIL SPILL RESPONSE

An early warning of oil spill accidents and illegal discharges is crucial for coastal environmental

protection and reduction of economic losses [17, 48, 1], see Fig. 2.8. Four key actions need to be

undertaken to prevent and limit oil spill damages: prevention, monitoring, warning and damage

quantification. To minimise a potential oil spill all political and technical measures to be taken at an

international level well in advance of the polluting event. Prevention includes periodic certification of

oil tankers. Monitoring action is related to all efforts to continuously and efficiently observe illegal

discharges and accidents. A combination of an automatic system based on remote sensing images and

expert input is ideal. Once the oil is detected, a warning action with risk assessment is launched to

establish response actions on the field. The monitoring action is continued to observe oil spill evolution

and dynamics with emphasis to the source of the warning. Damage quantification is an after-event

action which aims to predict future oil spills and supports protection action.
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Figure 2.8. Cleaning up of oil spill on Korean beaches following the HEBEI SPIRIT oil spill in 2007.

(Taken from [5], with permission).

2.3.1 Oil spill prevention laws

Strict international rules (Annexes) have been agreed to in order to prevent illegal oil spills in marine

environments. The International Convention for the Prevention of Pollution from Ships (MARPOL

73/78 Annex I), adopted at the International Maritime Organisation (IMO) in 1973 and modified by

the Protocol of 1978, defined international regulations that specifically deal with prevention of oil

pollution by ships in a maritime environment. MARPOL Annex I regulations state that “any discharge

into the sea of oil or oily mixtures from ships shall be prohibited” [49, 11, 50].

The international legislation contains explicit laws related to ocean areas (internal waters, marine

protected areas, MARPOL special areas, territorial seas or exclusive economic zones) [11]. These

areas often determine whether an action is considered legal or not and define the rights and obligations,
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including law enforcement obligations. For example, all oil discharges from ships are entirely prohib-

ited in particular areas unless the oil spill is not visible on or below the surface of the water [11]. A

discharge outside these areas is possible if certain conditions are satisfied, for example, the oil content

does not originate from bilge waste. Ships must report any oil spill incidents above authorised levels.

However, the expected risk of fines is less than the cost of compliance especially when the chance of

being caught is small [51]. As a result, some vessels do not report incidents and continue to discharge

oil in forbidden areas illegally [6].

Proving a MARPOL infringement requires gathering evidence to delineate the spill with regards to

the type of oil, the concentration of oil, the distance from shore and speed of the vessel [11, 36].

Further information such as the size of the spill and its impact on the natural ecosystem may be

used to determine the level of punishment. The enforcement process involves, but is not limited

to, operational authorities, vessel inspection authorities and administrative and judicial enforcement

authorities. Operational authorities are responsible for monitoring the marine environment. The illegal

discharge enforcement chain involves two steps: Step 1 is to check initial indications of a possible

violation using three primary sources of information, including detection at sea, inspection in port

and information received. Step 2 is further investigation and collecting evidence to be used for four

primary purposes, including characterising the spill, determining the source of the spill, proving intent

(recklessness or negligence) and gathering information that could later support the case. The collection,

sharing and organising of evidence is critical from all authorities involved even before a formal request

for judicial assistance has been made. The evidence is collected with care to ensure that it is acceptable

in the courts of the State building the case. For evidence to be collected promptly, coastal stations

need to have proper authorisation to take critical decisions such as dispatching a ship to investigate

the site. They should be well informed of the enforcement chain to guide them about when to involve

administrative or judicial authorities to start an investigation formally [11].

2.3.2 Oil spill monitoring

Although the oil industry is entirely informed of the international laws and the risks related to marine

pollution, there is still evidence of numerous and repeated oil spill offences [1]. Oil spill surveillance

is thus a critical part of oil spill disaster management. The knowledge of oil slick location, size and

dynamics are starting points to plan countermeasures to minimise the effects of pollution [3] effectively.
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There are mainly two techniques for oil spill detection:

1. In-Situ: In the in-situ technique, researchers need to travel to the place with sensors and collect

the data. Autonomous underwater vehicles (AUV) are used for travelling purposes.

2. Remote Sensing: In remote sensing, the sensors (e.g., optical and microwaves) are mounted on

the satellite and capture the Earth’s surface (discussed in chapter 3).

Spaceborne and airborne remote sensing are complementary monitoring instruments that should be used

in combination to achieve maximum coverage. Spaceborne remote sensing can cover much broader

areas at a lower cost but also at a lower resolution. Airborne remote sensing has a smaller coverage

but can be immediately dispatched to start further on-site investigations. Satellite surveillance is thus

useful for monitoring a large area and providing an initial indication of a spill. Aerial surveillance can

then be used to collect evidence which can help to prosecute the offenders successfully [11].

2.4 SUMMARY

According to the United Nations Convention on the Law of the Sea, oil spills (biogenic and mineral

oils) are a form of marine pollution. Ship accidents and illegal operational discharges are the prominent

sources of maritime oil pollution. The law (MARPOL) requires the retrieval of oil from vessels to be

performed in the harbours. However, a significant proportion of oil spills are caused by deliberate

discharges in the form of bilge and fuel oil from tankers or cargo vessels. Marine oil spills can be

highly dangerous and may result in the destruction of the ecology of the coastal and marine ecosystems

and the species that inhabit them. Thus, a rapid response to all oil spills are required to minimise the

environmental impact.

Oil spills in the marine environment weather out quickly, thus a timely collection of evidence is critical.

All response operators need to work together, from identifying the oil spill to collecting the evidence,

for a successful prosecution. Remote sensing surveillance through satellite and aircraft instruments

should be readily available to check the possible pollution sites with the shortest possible time delay.

Consequently, satellite acquisition preparation and flight plans should be organised to optimise both the

use of satellite and aerial monitoring. A successful operational surveillance system depends on a rapid

and reliable warning capability. Using remote sensing (RS) and AIS data (ships positioning system),
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the oil spill and ship responsible for pollution at sea can be identified [52, 53]. The RS data from the

satellite is a useful tool in combination with standard observation techniques to ensure successful oil

spill monitoring. The use of satellite RS data has significant advantages such as broad area (global)

coverage and costs less compared to aircraft monitoring. The next chapter discusses using remote

sensing tools for oil spill detection and discusses their advantages and limitations.
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3.1 RS OVERVIEW

Imaging in remote sensing (RS) can be conducted from both satellite and aircraft platforms. In many

ways, the sensors have similar characteristics, but the platform differences in altitude and stability can

lead to very different image properties. The use of RS data in combination with standard observation

is essential to ensure a successful oil spill surveillance system. RS provides a timely means to map

out the locations and approximate concentrations of oil spill events in many conditions. Also, RS can

determine the oil spill’s properties, its degree of weathering, its source and its potential impact on the

environment. However, the cost of sending a surveillance aircraft to check a possible oil spill location

is high. Thus automatic detection should be followed with operator inspection of the reported possible

oil spill locations before sending a surveillance aircraft.

RS measurements are made using either passive or active sensors mounted on an aircraft or spacecraft

platform. Passive RS measures the sun’s energy emanating from the earth’s surface, while active RS

measures the return energy radiated from a platform onto the earth’s surface. Active sensors provide

their energy and can operate during day or night. The measurements are used to construct an image of

the landscape beneath the platform. The energy is transmitted from the sensor/sun to the Earth’s surface

where it is scattered or emitted back to the sensor and then processed into image products ready for

application by the user, see illustration in Fig. 3.1. RS image properties are described by the sensor’s

spectral bands, spatial resolution, radiometric resolution, temporal resolution and swath. Spectral bands

provide the number and location of the spectral measurements given by a particular sensor. Spatial

resolution describes the amount of ground detail presented by pixel size, where the higher the spatial

resolution, the smaller the details that can be recognised in the images. The radiometric resolution

represents the range and a discernible number of discrete brightness values in the image. The temporal



CHAPTER 3 OIL SPILL REMOTE SENSING

Figure 3.1. Schematic depicting remote sensing processes including digital image description, i.e.,

bands, resolution and swath.
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Figure 3.2. Types of Active and Passive Remote Sensing Sensors Electromagnetic energy range chart.

resolution represents the sensor imaging frequency of the same scene. Finally, swath describes the

frame size of an image in equivalent ground kilometres. All the properties together determine the

application and data volume generated by a particular sensor.
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Table 3.1. Subregions of the spectrum for the optical wavelengths and microwave frequen-

cies [54].

Optical Wavelengths Microwave Frequencies

Name Wavelength Band Frequency

Ultraviolet (UV) 10 – 400 nm Ka 25 – 40 GHz

Ultraviolet-B (UV-B) 280 – 320 nm Ku 12 – 18 GHz

Visible (V) 400 – 700 nm X 8 – 12 GHz

Near infrared (NIR) 0.7 – 3.5 µm C 4 – 8 GHz

Visible/near infrared (VNIR) 0.4 – 3.5 µm S 2 – 4 GHz

Thermal infrared (TIR) 3.5 – 20 µm L 1 – 2 GHz

Visible/infrared (VIR) 0.4 – 20 µm P 0.3 – 1 GHz

RS sensors measure electromagnetic energy in the optical, thermal and microwave regions. Possibly

the most notable aspect of the image data in a remote sensing system is the spectrum of wavelengths

used in the image acquisition sensors [54]. In principle, RS systems can measure energy emanating

from the earth’s surface in any reasonable range of wavelengths, see sensor frequency and wavelength

chart in Fig. 3.2. Wavelength λ (in metres) is related to the frequency f (in Hz) by

λ =
c
f

(3.1)

where c is the speed of light in vacuum. The significance of the different wavelength ranges lies in

the interaction mechanism between the electromagnetic radiation and the examined materials. The

relevant ranges utilised for oil spill RS are between about 0.4 and 12 µm (the visible/infrared range)

and between about 30 to 300 mm (the microwave range), see Table 3.1. Frequency is commonly used

to describe microwave wavelength ranges, that is, 1 GHz and 10 GHz is used to for microwave range

of 30 to 300 mm. Radar frequencies were described with letters (frequency bands) for purposes of

secrecy during the World War II [55] and were set as the universal standard after that, as shown in

Table 3.1.
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Each region of wavelength has its benefits concerning the data it can provide to the remote sensing

method. Depending on the wavelength or frequency range utilised by the sensor, different features can

be mapped [54]. Sensors at the visible and infrared regions of the EM spectrum can estimate:

• soil moister and mineral content,

• level of sedimentation of water,

• vegetation pigmentation, moisture content and cellular structure.

Sensors at the thermal infrared region of the EM spectrum can measure radiation emitted from target

to estimate thermal characteristics for [56]:

• vegetation in agriculture and forestry,

• soil moister studies,

• forest fires.

Sensors at the microwave region of the EM spectrum use active imaging based on radar systems to

measure surface the roughness to estimate [57]:

• vegetation type,

• oil spill detection,

• soil moister content.

Radar systems can further use the magnitude of the returned signal to map highly reflective targets

such as vessels.

3.2 OIL SPILL RS EFFORTS

It is necessary to set up broad area surveillance systems capable of monitoring oil spill at regular

intervals, especially at night, in ice or among seaweeds. Specialised instruments are sometimes required

to detect oil spills. Remote sensing (RS) of oil involves the use of sensors other than human vision to

detect or map oil spills. The oil slick is detected and tracked using instruments on-board aircraft or

satellites platforms. This section provides a review of monitoring systems using various remote sensing
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Remote sensing image
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-Weather and wind
data
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- Natural seepage
- Oil installation

Figure 3.3. Flow diagram for oil spill detection using remote sensing images.

tools, including their strengths and weaknesses for oil spill monitoring. The study did not go into

detail on remote sensing technical description of the sensors but focused on their oil spill monitoring

capabilities. A general hierarchy for oil spill detection techniques using remote sensing is presented in

Fig. 3.3.
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3.2.1 Optical sensors

Optical techniques are the most common means of remote sensing. Most optical RS systems acquire

data using sensors from visible through the mid-infrared range of the EM spectrum [54]. Different

wavelengths emitted by the Earth’s surface can be resolved to help understand the properties of the

imaged earth surface region. Optical sensors are, however, affected by cloud cover, aerosols and fog.

Optical sensor wavelength bands are within and adjacent to the visible/infrared (VIR), see Table 3.1.

The ultraviolet (UV) band occurs at shorter wavelengths than the visible. The near-infrared (NIR)

band occurs at longer wavelengths than the visible and like the visible is dominated by reflected solar

radiation. The thermal-infrared (TIR) band includes those wavelengths dominated by thermal emission

from the Earth’s surface.

3.2.1.1 Visible

In the visible region of the electromagnetic spectrum (approximately 400 – 700 nm), oil has a higher

surface reflectance than water but also shows limited nonspecific absorption tendencies. Thin oil slick

(also denoted as sheen) shows up silvery and reflects light over a broad spectral region down to the

blue giving it a rainbow like appearance, see example in Fig. 3.4. As there is no substantial information

in the 500 – 600 nm region, this region is often filtered out to improve contrast. Overall, however,

oil has no specific characteristics that distinguish it from the background. Therefore, methods that

separate particular EM spectral regions do not improve detection ability. Visible RS methods are not

ideal for oil spill detection as there are many obstructions and false alarms. Obstruction such caused

by clouds can limit the visibility of the oil spill. Sunglint, wind sheens and biogenic material (such as

surface seaweeds or sunken kelp beds) can be mistaken for oil and generate false alerts. Further, it is

challenging to detect oil spill on shorelines due to seaweeds false alarms and dark shores. Visible RS

is thus mainly used to document already identified discharges.

In summary, visible sensors are subject to the same restraints as visual surveillance since their

usefulness for oil detection is limited. Nevertheless, visible RS is an effective way to document oil

spills and provide baseline data on shorelines or relative locations.
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Figure 3.4. Sheen in waters near Cebu City, Philippines. The thinnest oil Sheen (0.05 – 0.2 µm

thickness) appear silvery; followed by a iridescent (or rainbow) oil sheen (0.3 – 3 µm); and thicker oil

sheen (>3 µm) have a metallic or brown to black appearance. (Taken from [5], with permission).

3.2.1.2 Infrared

Thick oil slick absorbs infrared (IR) radiation from the sun and re-emits a portion of this radiation as

thermal energy, primarily in the 8 µm to 14 µm region. In IR images, thick oil appears hot on a cold

ocean surface. Intermediate thicknesses of oil appear cool and thin slicks are not detected. IR imagery

may detect oil spill at night when it looks ‘colder’ than the surrounding sea. At a certain thickness

evaporative cooling of the slick exceeds its radiative heating causing the slick to appear cold compared

to the surrounding water [58]. Moderately thin oil slick can also reduce the of thermal radiation

emitted by the water and cause the slick to appear colder compared the surrounding water. The oil slick

thickness transitions are not fully understood. Studies suggest that the minimum detectable thickness

is between 10 µm and 70 µm and the shifts are within the hot and cold layer extends within 50 µm and
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150 µm and [17].

A high spatial resolution IR system and low water-in-oil emulsions are essential for a successful IR

oil spill detection [58]. The relevant thickness data in the thermal IR can be used to guide response

operators where to place cleaning equipment at the thicker parts of the slick.

In summary, the advantage of infrared RS over visible RS s that they provide information regarding

relative thickness since only thicker slicks can be detected. However, IR is not perfect as several false

targets, such as seaweeds, oceanic front and shoreline, can interfere

3.2.1.3 Ultraviolet

Oil slicks exhibit a high reflectivity of Ultraviolet (UV) radiation. UV sensors can be utilised to

detect oil sheens, including thin layers (<0.01 µm). A combination of UV and IR sensors are usually

employed together to identify oil spills and provide their corresponding thickness information [59, 58].

Similar to visible sensors, UV systems are also subject to several obstructions and false alarms (wind

slicks, sun glints and biogenic material). Using UV together with IR can improve interferences and

false alarms and provide a more accurate indication of oil than using either technique alone. Since

these interferences are often different than those for IR sensing, combining IR and UV can provide

better detection accuracy of oil spills than using each system separately. However, overlaying UV data

with IR is often complicated and thus are not commonly used together.

3.2.2 Laser fluorosensors

Laser fluorosensors use a laser in the ultraviolet spectrum to trigger the fluorescing phenomenon and

can detect oil spill from the visible light. Aromatic compounds in oils absorb ultraviolet light and

become electronically excited. The process of fluorescence emission quickly removes the excitation,

primarily in the visible region of the spectrum. Because very few other compounds show this tendency,

fluorescence is a strong indication of the presence of oil. Natural fluorescing materials, such as

chlorophyll, fluoresce at sufficiently different wavelengths than oil. Various classes of oil yield slightly

different fluorescent intensities and spectral signatures. It is thus possible, under ideal conditions,
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to discriminate between types of oil [12]. Further, data in the visible light return can be utilised to

determine the oil spill type and thickness.

In summary, laser fluorosensors have significant potential as they are subject to very few interferences

and can discriminate oil from look-alikes not only on the sea but also in ice and snow. Disadvantages

of laser fluorosensors include the high cost of these sensors and their large size and weight [12].

3.2.3 Microwave sensors

3.2.3.1 Radiometers

Oil spills emit greater microwave radiation than the surrounding water and thus appear as bright

targets on a darker ocean surface [7]. A microwave radiometer is a passive sensor that can detect

oil spills by distinguishing the difference in emissivity between water (emissivity factor = 0.4) and

oil slick (emissivity factor = 0.8). The sensor signal return is influenced by the amount of oil and

can be employed to estimate the slick thickness. Microwave radiometers methods that use multiple

polarizations to measure oil slick thickness have been proposed [60]. However, the dependence on

the oil slick thickness also means certain oil thickness cannot be detected. Other challenges of using

the microwave radiation sensor include the difficulty in obtaining high spatial resolution, the low

signal-to-noise ratio and the interference from biogenic materials [58].

In summary, passive microwave radiometers may have potential as all-weather oil sensors. Hower, the

number of environmental and oil specific parameters that are required to detect oil spills successfully

makes the sensor less reliable.

3.2.3.2 Radar

RADAR is an acronym for Radio Detection and Ranging. It transmits an electromagnetic signal to a

target and measures its distance using the time delay from the return signal reflected from the target.

Radars provide their own signal (active remote-sensing) to detect the presence of objects. This allows

them to operate during day or night and they can penetrate clouds and rain. Therefore radar images can

be acquired not only during the day or night but also under (almost) all weather conditions. Imaging,
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Figure 3.5. SAR image with an oil spill (dark region) and ship (bright spot).

remote sensing radars, such as SAR, produce high-resolution images of surfaces [18, 19, 20, 21, 61].

Synthetic Aperture Radar (SAR) and Side-Looking Airborne Radar (SLAR) are the two fundamental

types of radar that can be used to detect oil spills and for environmental RS applications. SLAR is an

older, but less expensive technology, which uses a long antenna to achieve spatial resolution. SAR

is a system which applies signal processing to increase the resolution exceeding the constraint of the

physical antenna aperture [62, 63, 64].

Capillary waves on the ocean surface reflect radar energy, generating a bright image called sea clutter.

The presence of an oil spill on the sea surface causes a dampening effect on the capillary waves which

then reduces radar energy. The appearance of an oil slick is thus detected as a dark region on the sea

clutter, see Fig. 3.5. The source of the oil spill (e.g., vessel) can also be detected as bright spots from

the same SAR image [65, 66]. Unfortunately, there are many false targets, including calm winds, wave
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Table 3.2. Strengths and weaknesses of different remote sensing tools used for oil spill surveillance,

adapted from [12].

RS Sensor

Cleanup Night Fog/Cloud Shoreline Spill Discharge Coverage

Support Operation Visibilty Survey Mapping Surveillance Width

Visible 3 1 1 3 2 3 4

Infrared 4 3 2 2 3 4 3

Ultraviolet 3 1 1 2 3 3 3

Laser fluorosensor 5 4 4 5 1 5 2

Radiometers 2 4 4 2 2 3 3

Radar 2 5 5 2 4 4 5

Suitability scale: from poorly = 2 to ideally = 5 suitable, and 1 = not suitable/applicable.

shadows behind land or structures, seaweed beds that calm the water just above them and biogenic oils.

As a result, radar can be ineffective in locations where there are a lot of islands, fresh water inflows,

ice and other features which produce hundreds of such false targets.

In summary, SAR is intrinsically the only viable and practical imaging radar technique to achieve high

spatial resolution, also from space platforms. Radar optimised for oil spills is useful in oil spill remote

sensing, particularly for searches of large areas (on satellite platform), during the day or night and

under most weather conditions. However, the technique is highly prone to false targets and is limited

to a narrow range of wind speeds.

3.3 SUMMARY

No single sensor was able to provide all the information required for oil spill contingency planning.

Hence, a combination of sensors is recommended, if available, for oil spill surveillance. However, the

user may not have multiple RS tools. This section examined the characteristics and applications of

different RS sensors to better understand the strengths and weaknesses of each for oil spill surveillance.

Several RS tools can be used to detect oil spill. However, the advantages of each sensor significantly
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differ, see Table 3.2. From the table we can see that the laser flourosensor is the most useful sensor for

detecting the type and thickness of oil spill. The SAR based microwave sensor is the most practical

sensor, however, as it can cover a much larger area at a lower cost when compared to laser flourosensors.

SAR can thus be used as an early detection sensor and a laser flourosensor (if available) can be used to

verify the oil spill.

The main aim of the study is to detect and monitor oil spills over a large area, day and night, under

most weather conditions. SAR has proven to be the most appropriate sensor and provides easy

accessible (freely available) data for this study. Also, SAR is the most used remote sensing (RS)

tool for monitoring oil pollution in literature [18, 19, 20, 21, 15, 16, 17]. The next chapter discusses

using synthetic aperture radar (SAR) oil spill imaging processes, including SAR missions, variants,

interaction with the ocean, interaction with the oil spill and SAR limitation.
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4.1 SAR SYSTEMS OVERVIEW

SAR is a system which employs signal processing to increase the resolution beyond the restriction

of physical antenna aperture. It uses an active microwave EM sensor to image Earth in both day

and night and for almost all weather conditions. In SAR, a forward motion of actual antenna is used

to “synthesize” a very long antenna [55]. SAR allows the possibility of using longer wavelengths

while still achieving good resolution with antenna structures of reasonable size. The potential of

SAR in a diverse range of applications led to the development of many airborne and spaceborne SAR

systems.

4.1.1 SAR variants

SAR sensors retrieve information of a target from the amplitude and phase characteristics of scattering

target [67]. Each SAR system has its own configuration in terms of frequency, polarization, resolution

and swath width. The electromagnetic waves generated by radars are generally plane-polarized. For

Earth remote sensing, the radars transmit and receive in either the vertical (V) or the horizontal (H)

plane. Antennas that both broadcast and receive in either V or H are called co-polarized (VV or HH)

or cross-polarized (VH or HV) antennas. The transmitted pulse interacts with the Earth’s surface in

four possible ways. It can be transmitted through the target, absorbed by it, scattered away from it,

or backscattered toward the receiving antenna. The amplitude and phase of the backscattered signal

depend on the physical (i.e., geometry, roughness) and electrical properties (i.e., permittivity) of the

imaged object.
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Figure 4.1. An example of SAR modes and their respective to Swath Coverage.

Current SAR systems are capable of operating in different imaging modes by controlling the antenna

radiation pattern [68, 69], see illustration in Fig. 4.1. For a planar antenna this is done by dividing

the antenna into sub-apertures and controlling the phase and amplitude of each sub-aperture through

transmit/receive modules (TRM). Typically a few hundred TRMs are employed, with their settings

controlled by software. The most fundamental mode is the Stripmap operation, where the pattern is

fixed to one swath, thus imaging a single continuous strip. If a wider swath is required, the system

can be operated in the ScanSAR mode. Here the antenna elevation pattern is successively steered

to different elevation angles corresponding to multiple sub-swaths. Each sub-swath is illuminated

by multiple pulses but for a shorter time than in the Stripmap case. The timing is adjusted such that

the time-varying elevation patterns repeat cyclically the imaging of multiple continuous sub-swaths.

After appropriate processing this yields a wide-swath SAR image, however, the azimuth resolution is

degraded when compared to the Stripmap mode. The ScanSAR mode has a swath width of 350 km –

500 km and a resolution of 75 m – 150 m.

Spotlight mode is used to achieve a better resolution in the azimuth direction. In Spotlight mode, the
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antenna pattern is steered in azimuth towards a fixed point to illuminate a given region. A prolonged

illumination time over the area is used to improve the synthetic aperture length, therefore achieving

a higher resolution. However, the Spotlight mode is limited to imaging patches, that is, it cannot

continually image large regions along the radar flight path. More imaging modes have been proposed

to improve SAR imaging, for example, TOPS or the wave modes. However, the attained improvements

are the expense of other features [70].

4.1.2 SAR missions

Imaging radar has proved itself as an essential and competent Earth remote sensing instrument since

1978 with the successful launch of SeaSat satellite. SeaSat was the first nonmilitary Earth-orbiting

satellite carrying a SAR wide swath remote sensing sensor intended for oceans and sea ice applications.

The SeaSat mission, however, also showed SAR capability for land applications such as terrain

discrimination and target detection. The SeaSat SAR operated at L-band with a single HH polarization

channel [71]. SeaSat SAR only imaged Earth for only 105 days due to a massive electric system failure,

but the data was enough to encourage further advancements in SAR development. Within the short

lifespan, SeaSat observed the ocean surface and internal waves by revealing additional features such

as current boundaries, eddies and a number of atmospheric patterns. After SeaSat, several satellites

carrying SAR systems have been launched by different countries. The Shuttle Imaging Radar missions

SIR-A and SIR-B were launched in 1981 and 1984, respectively. The satellites were extensively used

for the validation of wave imaging models developed from SeaSat data [72]. The European Space

Agency (ESA) then launched the ERS-1 and ERS-2 satellites in 1991 and 1995, respectively. In 1994,

the first multifrequency and multi-polarized spaceborne data launched through the SIR-C/X-SAR

mission . In 1995, the first mission with multiple beam modes, varying resolutions and look angles

was launched by the Canadian Space Agency (CSA) through the Radarsat-1 mission. In 2002, the first

satellite to acquire dual polarized beam mode on a regular basis was launched from ESA’s Envisat

mission. A fully polarimetric mode satellite was realised in 2006 with the launch of the ALOS satellite

by JAXA in 2006. The German Aerospace Center (DLR) launched the first X-band sensor on a

satellite in space through the TerraSAR-X mission in 2007. There are many other countries that also

contributed to further milestones in spaceborne SAR development (e.g., Italy and Korea). An overview

of spaceborne SAR missions is presented in Table 4.1. Numerous oceanographic applications were

developed using SAR satellites [73, 74, 75, 44, 76]. However, not all SAR satellite missions focus on
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marine observation, some satellites (such as TerraSAR-X, TanDEM-X and COSMO-SKYMED) are

mainly used for land applications [77, 78, 79].

SAR system developments (e.g., digital beamforming, MIMO, bistatic and multistatic, large reflector

antennas) are focused on achieving increased information content SAR images. The increased inform-

ation includes [80]:

• multichannel operation (polarimetry and multifrequency),

• improved range and azimuth resolution,

• time series (a frequent revisiting of the same area) and

• observation angle diversity (interferometry and tomography).

The end goal of spaceborne SAR systems is to provide continuous monitoring of Earth’s surface using

high temporal, high resolution, wide-swath, in a quasi-continuous way.
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Table 4.1. An overview of spaceborne SAR sensors.

Satellite Operation Operator, Country Band (Polarisation) Resolution (m) Swath (km)

SeaSat 1978 NASA/JPL, USA L (HH) 25 100

ERS-1 1991 - 2000 ESA, Europe C (VV) 25 100

JERS-1 1992 - 1998 JAXA, Japan L (HH) 18 75

SIR-C 1994 NASA/JPL, USA L & C (quad) 30 15 - 90

ERS-2 1995 - 2011 ESA, Europe C (VV) 25 100

RADARSAT-1 1995 CSA, Canada C (HH) 10 - 100 50 - 500

EnviSat 2002 - 2012 ESA, Europe C (dual) 25 - 1000 100 - 400

ALOS/PalSAR 2006 - 2011 JAXA, Japan L (quad) 10 - 100 70 - 360

COSMO-Skymed-1/4 2007. . . 2010 - present ASI/MiD, Italy X (dual) 1 - 16 10 - 200

RADARSAT-2 2008 - present CSA, Canada C (quad) 3 - 100 10 - 500

TerraSAR-X/Tandem-X 2007/2010 - present DLR, German X (quad) 1 - 16 10 - 100

Kompsat-5 2013 KARI, Korea X (dual) 1 - 20 5 - 10

ALOS-2 2013 JAXA, Japan L (quad) 3 - 100 25 - 350

Sentinel-1A/1B 2014/2016 - present ESA C (dual) 5 - 50 20 - 400
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Figure 4.2. SAR imaging geometry and footprint.

4.2 SAR PRINCIPLES

The geometry for a typical radar and its footprint are illustrated in Fig. 4.2. SAR systems have a

side-looking imaging geometry and are based on a pulsed radar mounted on a platform moving with

velocity V at altitude H. The illuminated ground area is called the radar “antenna footprint”. Radar

images are typically acquired in strips as the satellite or aircraft carrying the radar system moves

along its flight path. The strips, also referred to as “radar swath” or “tracks”, varies typically from

a few kilometres to 20 km in the airborne case and from 30 to 500 km in the spaceborne case. To

separate objects in the cross-track direction (x) and the along-track direction (y) within a radar image,

two different methods must be implemented. The along-track, also known as “azimuth direction”, is

parallel to the movement of the imaging platform direction. The cross-track, also known as “ground

range direction”, is perpendicular to the along-track direction. The radial axis or range along the

line-of-sight is referred to as “slant-range” (r). The slant range is often a more convenient parameter

than the ground range because it is directly measured along the line connecting the radar and the object
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Figure 4.3. Azimuth and Range broadside geometry.

being imaged, often called the target or the scatterer [21], see Fig. 4.3.

A typical radar system consists of the transmitter, switch, antenna, receiver and data recorder. The

transmitter generates a high power of electromagnetic wave at radio wavelengths. The antenna transmits

the EM pulse or “radar pulse” towards the area to be imaged and collects returned echoes, see Fig. 4.3.

The physical antenna (“radar antenna”) is rectangular with width and length dimensions (Dx×Dy).

These dimensions are significant because they determine the area or “antenna footprint”, illuminated by

the antenna. The dimension of the antenna footprint (∆X×∆Y ) is defined from the antenna beamwidths

(θx,θy), given by

θx ≈
λ

Dx
and θy ≈

λ

Dy
, (4.1)

where λ is the transmitted wavelength corresponding to the carrier frequency ( fc = c/λ ) and c is the

speed of light [71, 64]. While the radar beam sweeps over a fixed “target” (also called a scatterer), the

distance R between the scatterer and the platform will vary symmetrically about its minimum value R0.

From Fig. 4.3, the approximated expressions of the range swath (∆X) and the azimuth swath (∆Y ) can

be derived as
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∆X ≈ R0θx

cosθ
and ∆Y ≈ R0θy, (4.2)

where R0 is the distance between the radar and the antenna footprint centre. The minimum and

maximum ranges (referred to as “near range” and “’far range”) determined by the time between the

pulse transmission and the start and end of the reception period.

4.2.1 SAR resolution

Spatial resolution is one of the essential properties in a SAR imaging system [71]. It represents the

capability of the imaging system to separate between two adjacent scatterers that can still be resolved

in the final image. To achieve high resolution in range, very short pulse duration with high energy is

necessary, however, it is difficult to be achieved with practical transmitters [55]. A “pulse compression”

method is adopted to achieve the range resolution similar to the use of short pulses [64]. That is, the

radar emits linearly modulated pulses called a “chirp” that are in frequency for a duration of time

∆t. The pulse length (τ) is compressed to a sufficient duration equal to 1/B using signal processing

methods such as the matched filter [81]. The slant range resolution is then given by

δr =
cτ

2
, (4.3)

where c is the speed of light. The ground range resolution δx is the change in ground range associated

with a slant range of δr, with

δx =
cτ

2sinθ
, (4.4)

where θ is the angle of incidence. So, the ground range resolution varies non-linearly across the swath.

The ground range resolution is equal to half the footprint of the radar pulse on the surface and is

different for different incidence angles.

A high resolution in azimuth thus requires large antennas. The solution to achieve high resolution

without the use of a large antenna is given by the concept of “synthetic aperture” [82, 19, 83, 84].

This larger aperture network does not physically exist but is synthesised by sequentially gathering

data (using the small single antenna) at different positions which collectively define the antenna array.

The antenna is sequentially positioned along the flight direction in a straight line for each transmit,
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receive and store operation [19, 55]. The maximum length for the synthetic aperture is the length of

the flight path from which a scatterer is illuminated and is equal to the size of the antenna footprint

on the ground (∆Y ) [55, 64]. When a scatterer, at a given range R0, is coherently integrated along the

flight track, the azimuth resolution is then equal to

δy =
DY

2
. (4.5)

Equation (4.5) shows that SAR is independent of the distance between the ground and sensor, and is

equal to half the size of the physical antenna length (DY ) [85].

For a conventional single-channel SAR a higher azimuth resolution cannot be achieved for wide swath.

Improving the azimuth resolution results in a greater Doppler bandwidth of the received echo signal

and thus increasing the PRF due to higher sampling. The echo window length is then reduced which

restricts the time accessible for receiving the echoes and thus decreasing swath width [64]. The

difference between these ranges (the swath-width) is always selected to lie within the main lobe of the

elevation beam. Since transmission and reception cannot overlap, the swath-width is restricted by the

PRF and the condition

swath <
c

2∗PRF
(4.6)

must hold. Disrupting these limits will cause image ambiguities such as target appearing at multiple

or incorrect positions in the image. Methods such as multichannel digital beamforming have been

developed to overcome these constraints [86].

4.2.2 SAR signal processing

The objective of SAR processing is to reconstruct the imaged scene from the many pulses reflected by

every single target, received by the antenna and registered at all positions along the flight path [87].

The returned signal is converted to the digital number by the receiver and the function of the data

recorder is to store data values for later processing and display [55, 71, 88, 86]. Some procedures have

been developed to efficiently process SAR data from its raw signals into well-focused images [64].

The most straightforward and accurate technique to achieve image formation is the 2-D matched

filter or “Range-Doppler” algorithm [89, 55]. Once raw data have been processed in terms of range
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(pulse compression) and azimuth (SAR synthesis), a two-dimensional table of complex data (antenna

direction, satellite track) physically related to the sensor is obtained and can now be described as an

image.

4.2.2.1 SAR complex image

A SAR image describes the Earth’s surface as a 2-D array divided into small areas represented as pixels

formed by columns and rows. The SAR system properties determine the pixel size (area covered) [71].

The image is in a multiplex format where a single pixel comprised of amplitude (intensity squared) and

phase (angle) information. Each pixel is considered to be the equivalent size as a separate resolution

cell. However, this assumption is not always valid for a processed complex SAR image where the

pixel size depends on the sampling interval [90, 67]. The amplitudes of each pixel are proportional to

the magnitude of radar backscatter and they depend on the SAR system properties (i.e., wavelength,

polarization) and scattering objects physical (i.e., geometry, roughness) and electrical properties (i.e.,

permittivity) [91, 64]. Phases of a complex SAR image are randomly distributed over the interval

(0,2π], granted that there are more than 4–8 randomly distributed primary scatterers within a resolution

cell [67]. Thus, phase does not provide information on the scattering objects. This type of SAR data is

also referred to as Single-Look Complex (SLC). The advantage SLC data is the phase information

which is the foundation of interferometric techniques. However, SLC images are very speckled and

can be visually challenging to interpret due to the rectangular pixel geometry (e.g., Sentinel-1 SLC

EW mode image pixel geometry dimensions are 5.9 m × 34.7 m in range and azimuth direction,

respectively [69]).

4.2.2.2 SAR multilook image

A way to improve the estimation of the mean intensity (σ ) is to average L independent intensity values

related to the same position. Multilooking is a process that maintains σ but reduces the estimator

variance to σ2/L. Multilooking provides easily usable images with square pixels based on ground

geometry. Sub-sampling (in azimuth) and over-sampling (in range) filtering is done on the data in

terms of nominal resolution, such that speckle reduction and look angle variation along the swath can

be noted. The final image is displayed regarding intensity values so that each image pixel indicates the

reflectivity of the corresponding point on the ground. This involves two additional steps applied to the
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output of the processor: calibration and geocoding. The calibration ensures that the intensity value

represents the sigma zero (σ0) value of the reflectivity, i.e., the normalised radar cross section (NRCS)

to the area. Conventional calibration is a non-trivial task requiring both internal instrument calibration

as well as external SAR calibration using targets of known reflectivity or fixed corner reflectors [90]. In

contrast, geocoding assures that the location of any pixel in the SAR image is directly correlated with

the position on the Earth’s surface. The data are over-sampled in range and sub-sampled in azimuth.

For a Sentinel 1 GRD EW mode (high resolution) image, the pixel size is 25 m × 25 m (compared

with the 5.9 m × 34.7 m SLC pixel size) [69]. However, the cost for the improved estimation accuracy

is spatial resolution loss (by a factor L) and the loss of complex values.

4.2.2.3 SAR speckle

Speckle, usually referred to as noise, is a physical measurement of the resolution cell structure at

sub-resolution level. Several randomly distributed elemental scatterers within a small area of the

imaged scene (resolution cell) cause an adverse effect called speckle effect [55]. The coherent sum of

randomly distributed elemental scatterers amplitudes and phases,

Ae jφ = ∑
i

Aie jφi . (4.7)

Equation (4.7) results in strong variations of the backscattering from multiple neighbouring resolution

cells [92], see illustration in Fig. 4.4. The amplitudes (Ai) and phases (φi) for each ith elemental

scatterer within each resolution cell results from several factors, including propagation attenuation,

scattering of the illuminated targets and antenna direction [93]. Consequently, the power or intensity

(I =
√

A) and the phase in the final image are no longer deterministic, but follow instead an exponential

and uniform distribution, respectively.

Speckle is regarded as multiplicative noise, i.e., its variance increases with its intensity and cannot

be reduced by increasing the transmit signal power [93]. To mitigate speckle a technique known as

multilook is utilised, which is basically a non-coherent averaging of the intensity image. Independent

looks of a target resolution cell are obtained by averaging L spatial observations. Multilooking can

significantly decrease speckle effect and consequently the interpretability of the SAR image. However,

the improved interpretability comes at a loss to image resolution. Furthermore, using very high-
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Figure 4.4. Typical speckle pattern.

resolution modes reduces the impact of speckle due to the decreased number of scatterer objects within

each resolution cell.

4.3 SAR IMAGING OIL SPILL

The radar backscatter measures surface scattering and volume scattering from the ocean surface and

man-made objects such as vessels, respectively. The ocean surface roughness and dielectric constant

are the main properties for ocean radar imaging. The wavelengths of the small-scale wave (also called

short-gravity waves) of the ocean surface must satisfy the Bragg resonance condition,

LBragg = λ/(2sinθi), (4.8)

where LBragg is the wavelength of small-scale waves, λ is the radar wavelength and θi is the incidence

angle [94, 95, 96]. The radar backscatter is emphasised by temporal and spatial variations of the

Bragg waves created by maritime features such as ocean waves, internal waves and ocean wind. The

above mentioned maritime features determine surface roughness, see examples of surface roughness in

Fig.4.5. Whether a surface is rough or smooth is also subject to the radar wavelength and incidence

angle [67]. The SAR response to Bragg scattering means that the instrument can view any large-scale

ocean or atmospheric feature that generates, dampens or modulates these waves. These features include
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not ideal condition: oil 
spill mixed in the sea.

III. very rough sea:
strong wind.

high
backscatter

low
backscatter

ideal condition: oil spill 
darker than the sea.

II. slightly rough sea: 
medium wind.

not ideal condition: 
oil spill is not visible.

I. calm sea: low wind.

oil slick

radar
energy

Figure 4.5. Example of SAR backscatter variations on different ocean surfaces.

surface slicks, ocean currents, long-period surface waves and internal waves. The atmospheric features

include rain, wind bursts and weather fronts. Other than in topographic applications, microwave signals

do not penetrate the surface of the ocean beyond a few millimetres. The SAR image represents a

two-dimensional radar backscatter map of the ocean surface roughness.

SAR generates electromagnetic pulses that “illuminate” the ocean surface. Radar pulses are reflected

by capillary waves that the wind creates at the surface of the sea (sea clutter). Without Bragg waves,

the surface is “mirror-like” and most of the incident microwave is reflected away in the specular

direction. Oil and other natural phenomena (surface current patterns, i.e. and biological activity)

has a larger surface tension than water and they suppress capillary waves and reduce the level of the

signal returned to the emitter. The suppressed regions appear as darkspots on a SAR image due to the

low energy returned. In general, oil slicks can be classified based on characteristics of the shape of

darkspot [97, 98], see Fig. 4.6:

1. Thin, linear dark patches might be oil spills caused by a moving ship or a stationary object,

such as an oil platform, releasing a small amount of oil under certain wind and surface current

conditions. Because of spreading and wind, older oil spills may appear wider than fresh spills.

2. Thin, piece-wise linear slicks caused by a moving ship changing directions, or a thin slick altered

by wind or changes in surface current affecting oil released from a stationary object.

A stationary source releasing a larger amount of oil is identified by a wide dark patches. Spills captured
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Figure 4.6. Examples of different shaped oil slicks (linear darkspots) caused by moving vessels. Bright

spots on the top left of the top left image represent vessels. (Red boundaries separate the images).

early appear regular while older spills are more irregular due to the wind and surface current effects.

Specular reflectors such as ships, offshore structures and icebergs are also visible [99]. Physical objects

such as oil platforms and ships increase the level of the signal returned to the emitter and are seen as

very bright spots on a SAR image [100, 101], see Fig. 4.6 top left image. The presence of vessels or a

platform near a dark object increases the probability that the detected darkspot is an oil spill. If there

is not a bright spot, then the darkspot tails can be due to a wind sheltering action caused by natural

profiles, such as island bays. This makes SAR a critical sensor to detect an oil spill event with its

source at sea.

4.3.1 Oil spill look-alikes

SAR provides a variety of information about oceanographic and sea ice processes [102]. For the

ice-free ocean, SAR is used in the study of internal waves [103], surface waves [104] and ocean eddies

[105]. Other phenomena visible in SAR include shallow-bottom topography, ocean currents, surface

patterns of rain and wind and the presence of oil and other surface-modifying substances [106].

The main problem in the detection of oil slick features is to separate the dark features caused by oil

slick from other look-alikes such as calm sea surfaces, rain cells, upwelling and biogenic slicks, see
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Figure 4.7. SAR image with multiple non-oil darkspots (i.e., oil spill look-alikes).

Fig. 4.7. If oil is discharged from a moving ship, a linear dark oil trail appears in SAR images, but

the shapes of slicks become complex if the oil is discharged from a manoeuvring ship and strong

non-uniform surface currents are present.
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4.3.2 SAR parameters

To successfully detect oil spill from SAR, a set of particular conditions are required. These include

internal SAR instrument requirements and external environmental conditions. The SAR viewing

geometry along with the wavelength and polarization of the radar signal is the fundamental factor

that influences the normalised radar cross section (NRCS). As discussed, radar images describe the

backscatter return from the ocean surface roughness at the scale of the radar wavelength. The radar

backscatter is also a function of the viewing geometry and incidence angle of the SAR where high

incidence angles can decrease the backscatter. SAR polarization of the incoming radar signal influences

the scattering properties of a material. The ability to detect oil spills from SAR is dependent on these

parameters [17].

4.3.2.1 SAR sensor parameters

The backscatter of the ocean surface rapidly decreases with increasing radar incidence angle. Since

oil spill damping of the Bragg resonant wave is more efficient at shorter wavelengths, frequency

bands such X-band (2.4 cm to 3.75 cm) and C-band (3.75 cm to 7.5cm) are most used since they have

approximately the same scale as the Bragg waves [107]. Experimental work on oil spills has shown that

vertical antenna polarizations for both transmission and reception (VV) yield better contrast between

oil slick and ocean surface than other configurations [67, 95]. According to radar theory, the radar

backscatter is higher when using VV polarization because of the larger dielectric constant of the ocean

surface [82]. Cross-polarized (VH or HV) images are generally not used due to weaker backscatter

than co-polarized images [108]. Polarimetric data, especially when acquired as fully polarimetric

data, can yield more information than single polarization data, thus potentially improve detection

accuracy and assist classification of oil spills [109, 110, 15]. SAR sensors cannot achieve high spatial

resolution and broad swath coverage simultaneously. Application requirements thus determine the

choice between using high resolution or large swath. Because of the vast area covered by the ocean,

typically large swath width is recommended for monitoring oil spill.
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4.3.2.2 Ocean conditions

Oil spill detection by SAR is considerably affected by the sea state linked with wind speed, see

illustration in Fig. 4.5. In fact, the low sea state does not produce sufficient surface roughness in

the surrounding sea area, while high sea state generates homogeneous backscattering. Generally,

depending on the oil spill type and thickness, the critical low wind speed level is in the range 2 –

4 ms−1, while the critical high wind speed level is in the range of 12 – 14 ms−1 [3]. Where at low wind,

an oil slick is impossible to detect since the contrast between an oil spill and the low backscatter (due to

limited sea surface roughness) is very small making discrimination very difficult, see Fig. 4.8. At high

wind speeds, the oil spill will rapidly spread and mix with sea water; the ocean surface becomes very

rough, such that the damping effect becomes negligible. Oil dispersion is also caused by dissolution,

oxidisation and bio-degradation. Thus, with increasing time from the oil discharge and with increasing

wind speed, oil slicks become nearly impossible to detect. The time it takes oil to disperse varies

from a day to weeks, depending on several factors such as the type of oil, amount of discharge and

meteorological conditions, see section 2.2.2.

4.4 SUMMARY

SAR allows high-resolution imagery from a small size physical antenna while using longer wavelengths.

Surface roughness and permittivity are the fundamental properties that govern microwave EM wave

interaction with the elementary scatterers. The ocean, at wind speeds greater than 2 – 4 ms−1, creates

small gravity and capillary waves (or sea clutter) which increase radar backscatter returning a brighter

image. For a calm sea state (i.e., at low wind speed), the ocean surface deflects the radar signal,

returning a darker image. Marine oil spill simulates similar conditions by damping ocean capillary

waves, which creates a reflective surface. Possible oil spills can then be detected by analysing the

darkspots from SAR imagery. The damping effect is not unique to oil, other phenomena (denoted as

look-alikes) can dampen ocean capillary waves and can be confused with an actual oil spill. Specular

reflectors such as ships and offshore structures highly reflect radar backscatter, returning very bright

spots in the image. SAR can detect not only possible oil spills but also the source of the spill. For this

reason, SAR is the most used remote sensing tool for oil spill monitoring.

There are important factors to consider when imaging oil spills, including sensor parameters and
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Low wind area

Figure 4.8. SAR image with dark region caused by low wind in the area.

ocean conditions. The most suitable SAR configuration for slick detection is C-band (3.75 – 7.5 cm)

single-polarized VV SAR at incidence angles in the range of 20◦ to 45◦. For an oil spill to be detectable,

wind speeds must be between 2 – 14 ms−1.
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5.1 BACKGROUND

Digital grey-tones represent SAR backscattered signal for each resolution cell. The grey-tones are

related to the backscatter of the scattering object where a dark (pixel value= 0) represents a low

backscatter return and bright (high pixel value) represents a high backscatter return.

Manual oil spill detection in a SAR image is usually done by a trained human interpreter who visually

inspects SAR images for any possible spills [44]. The operator assigns confidence levels on the

detected possible oil spills based on multiple indicators from the images and external information

concerning location, weather conditions, wind speed, correlating responsible source, natural slicks

or low-wind areas nearby, and oil slick features, see section 4.3. Extracting the information can be a

time-consuming task, particularly when many images must be examined [32, 38]. Furthermore, there

is no guarantee of consistency between analysts or a measure of the performance they achieve [111].

These limitations motivate the search for automatic algorithms to derive the relevant information more

quickly, or, in some circumstances, more sensitively, and in a reproducible manner.

It is more feasible to use automatic oil detection approaches as the number of SAR scenes to be

analysed and their complexity increases [16]. Numerous image processing methods have been used for

oil spill detection from SAR images [32, 7, 112]. The detection process can be broadly divided into

four broad categories, see flowchart in Fig. 5.1 [97, 32, 38, 44]. Preprocessing refers to any processing

done prior to darkspot detection, these include image enhancement processes or the removal of land

areas. Darkspot detection involves identifying all dark regions (low value pixels) caused by damping
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Detected Output:
-Oil Spill Events Map

SAR Image

Darkspot Detection:
-Automated/Manual 
Segmentation

Feature Extraction
-SAR features
-Anxillary information

Classification:
-Oil spill or Look-alike?

PreProcessing:
-Improve image quality

Figure 5.1. Typical automated oil spill detection process with SAR imagery.

effects due to the presence of oil slicks, see section 4.3. Discrimination involves two steps: feature

extraction and classification. Feature extraction refers to the calculating of various features from the

detected darkspot, such as geometry and mean intensity, to be used as input for further analysis [113].

The classification uses machine learning algorithms, which analyse the extracted features to classify

the detected darkspot as oil pollutants or natural features [17, 114].

5.2 PREPROCESSING

However, oil spill detection can be challenging, especially when there is a presence of intensity

inhomogeneity, speckle noise, wind speeds, and weak oil spill boundaries in an image [17, 113, 95].

Intensity inhomogeneity and speckle noise may cause unwanted effects during segmentation. Low

winds result in decreased Bragg waves resulting in darker regions that may limit oil spill visibility [95,

106]. High winds may split or disperse oil spill and decrease the chances of detecting them [17,

113].

The main drawback of all SAR images is the presence of speckle. Speckle is a signal dependent
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granular noise that visually degrades the appearance of SAR images, refer to section 4.2.2.3. Speckle

may severely diminish the performances of automated image analysis. It has been observed that

segmentation and classification can be improved if speckle is reduced [32]. Speckle reduction through

speckle filtering techniques is thus regarded as an essential SAR preprocessing step [115]. SAR speckle

is usually modelled as a multiplicative noise, and as a consequence, a number of filtering algorithms

dealing with multiplicative noise have been proposed and used in the SAR image processing [116, 117,

118, 119, 120]. The most used methods for single polarization SAR data, include the Lee filter [121, 71],

Frost filter [122] and Kuan filter [123]. The ideal speckle filter should adaptively reduce the standard

deviation while preserving the mean, object edges and textural information [124, 115].

Wind velocity information is essential for a successful oil spill detection system. Espedal and Wahl

developed a procedure to use wind history information for SAR oil spill detection [125]. Solberg et al.

proposed a threshold-based oil spill detected algorithm that used wind as input [16]. Wind velocity

can be obtained from external sources (e.g., weather stations) or derived directly from a SAR image.

Wind direction retrieval and wind speed retrieval from SAR are performed to produce 180◦ ambiguous

wind velocity vectors. The resolution of the ambiguity in the wind direction is resolved by comparing

with coarser wind directions from a numerical weather model. The output of the algorithm is the

wind velocity vectors for the SAR image location. Salvatori et al. estimate the wind speed from the

SAR image by applying an inverted CMOD4 model (developed by ESA for wind vector evaluation of

C-band scatterometer) [126].

5.3 DARKSPOT DETECTION

In a SAR image, an oil spill appears as a dark object (denoted as darkspot) when compared to the

brighter ocean surface. Other darkspots include low wind areas, organic film, fronts, areas sheltered by

land, rain cells, current shear zones, grease i.e., internal waves, upwelling zones, downwelling zones

and eddies, see section 4.3.1. Potential oil spills can be detected by isolating, contouring and cropping

the border area of all dark signatures, through appropriate threshold and segmentation processing of

the image.

Darkspot detection is a two-class classification problem where each pixel is assigned to either a

darkspot class or a surrounding sea class. Typically, darkspot detection can be performed either in

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

60



CHAPTER 5 OIL SPILL DETECTION USING SAR: A REVIEW

Figure 5.2. Example of a Sentinel-1A Extra Wide mode SAR sub-image (left) and segmented sub-

image (right) with oil spills.

manually or automatically. Manual darkspot detection involves an operator that investigates the images

and selects regions with the probable oil slicks. Automatic darkspot detection suggests using a fully-

automated or semi-automated oil spill detection system to select regions with the probable oil slicks [3].

Several image processing algorithms have been presented for darkspot detection using SAR images.

The algorithms can be grouped as, but are not limited to, adaptive thresholding methods [16, 127],

hysteresis thresholding [128], mathematical morphological thresholding [129, 130], edge detection

methods [131], region-based methods [132, 133] and neural networks based methods [134].

Threshold methods are darkspot detection methods based on the image grey-tone histogram analysis.

The threshold value is an essential parameter for threshold methods as it determines the division of

darkspots from the surrounding sea. In 1999, Solberg et al. [16] presented an adaptive threshold

algorithm to detect darkspots from SAR images. The authors calculated a threshold value k dB set

below local mean backscatter values across a moving window that adaptively changed according to the

region wind speed information. The method was tested using 84 images and was able to detect all oil

spills from the test set. The shortcomings of Threshold-based methods is the high dependence on the

threshold value which can also lead to over-segmentation [133].

Edge detection methods suffer from over-segmentation and split edges and they extract all abrupt

changes in image intensities [133]. This is not ideal for SAR images due to the presence of speckle

noise. Edge detectors are sensitive to the rough sea state noise, which results in lots of false alarms that
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can be difficult to eliminate [135]. In addition, detected edge points need to be linked into a continuous

edge, which is difficult to implement in most cases because of the split darkspot [132].

In comparison with the conventional intensity thresholding and edge detection methods, the ACM and

level set approach can directly extract features from noisy images, allowing an extraction of smooth and

ideal boundaries. Oil spill events in rough seas or strong ocean surface currents can also be detected,

including all other darkspot present in the image. However, it is not trivial to discriminate the oil spill

from look-alikes caused by natural phenomena (e.g., natural oil spills, surface currents and eddies) [32].

These algorithms are also not ideal, however, as they tend to be computationally expensive, sensitive

to initialisation and are also limited by weak edge boundaries [133].

Artificial Neural Networks (ANNs) have also been proposed for darkspot segmentation [136, 137].

They have been reported to outperform the established edge detection and adaptive thresholding

approaches [136]. However, to accurately detect ocean pollution with neural network algorithms, the

user requires a large dataset with many ocean pollution samples for training [134].

5.4 FEATURE EXTRACTION

Feature extraction involves the extraction of a vector of features that quantitatively describe relevant

characteristics of the object. Extracted features should exhibit a clear relationship between the value of

the selected feature and the probability of it being an oil spill [136]. The most common features of

darkspots and a limited area outside the darkspot (oil spill free area) were extracted from the sub-images.

These features can be categorised as geometric, physical and texture features. Geometric features

describe the geometry and shape of the segmented darkspots. A wide range of geometrical features

have been proposed, where some features have been found more useful than others [138]. Physical

features describe the backscatter values of the darkspot and its surroundings. These are considered

as the most important features for discriminating oil spills from look-alikes [136]. Textural features

describe the underlying texture of the darkspot and the region around it. These have been shown to

be the least important features for oil slick discrimination [138, 136]. However, some studies have

shown that Haralick textures [139], can be useful to a certain extent [140]. A detailed description can

be found in Table 5.1 and from literature [141] and [138]. Feature extraction is a very important task

as it is input for classification, it helps the system to discriminate the oil spills from look-alikes.
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Table 5.1. Common oil spill discrimination features.

Object Geometry Features:

Area (A), Perimeter (P)

Perimeter to Area ratio (P/A)

Complexity (C)

Shape factor 1 and 2 (SP1, SP2)

Physical Features:

Object: Mean, Std deviation, Power to mean ratio (OMe, OSd, Opm)

Background: Mean, Std deviation, Power to mean ratio (BMe, BSd, Bpm)

Object/Background: Mean, Std deviation, Power to mean ratio (RaMe, RaSd, Opm/Bpm)

Border gradient: Mean, Std deviation, Power to mean ratio (GMe, GSd, Gpm)

Contrast ratio: Mean, Std deviation, Local area (ConRaMe, ConRaSd, ConLa)

Border gradient: Min, Max (Gmin, Gmax)

Contrast: Mean, Max (ConMe, ConMax)

Mean difference to neighbours (NDm)

Object Texture Features:

Obejct: Spectral, Shape and Mean Haralick textures (TSp, TSh, THm)

5.4.1 Oil spill features

Once a possible oil slick (darkspot) has been detected from the SAR image, a set of objective meas-

urements which are meant to separate a real oil slick from a look-alike is accomplished. There are

three main groups of features that can be measured from darkspots, namely, geometry, physical, and

texture information. The features are extracted from all detected darkspots and a limited area outside

the darkspot (oil spill free area) in the SAR image.
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5.4.1.1 Geometrical features

Geometrical features involve the analysis of the object’s geometry and shape features. The shape

of the slick is essential regarding discriminating between oil spills and look-alikes. The shape can

also determine the cause of pollution. Oil spills ordinarily have a more regular form than look-alikes,

especially, fresh oil spills from moving vessels [7]. The regular form refers to oil slicks that are

linearly shaped due to vessel movements. The orientation and complexity of the oil slick can assist

in distinguishing between oil and look-alikes [142]. The most common features are reported in

Table 5.1.

5.4.1.2 Physical features

Physical features are based on the backscatter values of the segmented darkspot and its surroundings.

These are considered as the most important features for oil spill discrimination from look-alikes.

Similar to geometrical features, a wide range of physical features have been proposed. The most

common features are reported in Table 5.1.

5.4.1.3 Texture features

Texture features are considered the least important for oil slick discrimination [32]. However, some

studies have shown that textures based on the GLCM measure can be useful to a certain extent [143,

137] These are textures based on shape, spectral information and the mean Haralick textures. The

challenge with texture features is that they are highly affected by the GLCM parameters, i.e., window

size, angle and distance. The most common features are reported in Table 5.1.

5.4.2 Contextual features

In some cases it may not be possible to discriminate oil spills from natural/man-made look-alikes

using only darkspot features [44]. The discrimination is particularly difficult in presence of natural oil

slicks or areas with low wind speeds [32]. In these situations more information is necessary, critical

information include the sea state (wind speed and direction), nearby source (automatic information
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system (AIS) ship tracking, location of oil rigs, pipeline), location of spill for impact analysis (national

territory borders and coastlines). Espedal et al. successfully developed an oil spill detection procedure

that used wind history information for SAR [125]. The authors were able to determine the age of the

spill by analysing the wind history together with the oil slick shape to approximate the oil spill start

and end time.

5.4.2.1 Ships information

Usually a bright spot can be seen in the vicinity, representing a ship or platform. The presence of

vessels or a platform near a darkspot increases the probability that the detected darkspot is an oil spill. If

there is not a bright spot, then the darkspot tails can be due to a wind sheltering action caused by natural

profiles, such as island bays. Ships are assumed to be the source of the pollution, and the presence of a

vessel is therefore regarded as a significant characteristic of an illicit discharge [52].

5.4.2.2 Wind information

The information of wind speeds can considerably improve the discrimination of oil spills from look-

alikes [52]. The wind speed history information is also essential for analysing the shape, size and age

of the oil slick. The life-span of the oil spill and wind speeds can be used to determine how persistent

is the slick and consequently help determine the oil spill type [3].

5.4.2.3 Geolocation information

Geographic location is a necessary feature for improving oil spill discrimination. Knowledge of coastal

lines can help reduce false alarms caused by the sudden changes from a region wind is blowing

to low wind region (sheltering action). Additional geographic features such as the location of the

natural oil slick, marine protected areas and oil platform locations can be especially useful for oil spill

detection [3].
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5.4.2.4 Multiple images and polarisation

Multiple images may be required to examine adjacent scenes along the same pass and other scenes

from different dates of the same location. Images from other sensors such as optical data can also be

used with SAR to improve results. Multifrequency and multi-polarization SAR is often preferred for

oil spill discrimination. Images from other satellites (e.g., optical imagery) can also be used to reduce

false detections.

However, contextual features may not always be available/visible in the image. For example, multiple

images over the same area are particularly difficult to obtain from the same source. Because of the

lower revisit time of spaceborne sensors, the associated ship of a detected linear darkspot can be outside

the captured scene. Adjacent scenes depend on the spill alignment to the path of acquisition, and

different dates depend on the satellite temporal resolution and spill life span. Another challenge is the

computational cost of processing and interpreting large quantities of images rapidly and accurately

during an emergency.

5.5 OIL SPILL DISCRIMINATION

As a number of phenomena can create dark patches in a SAR image (see section 4.3.1), it can be

challenging to accurately discriminate the real oil spill features from look-alikes. The last discrimin-

ation step usually involves a classification process based on machine learning algorithms [17, 114].

Classification differentiates between oil spills and look-alikes. It includes testing of the selected

features against predefined values that describe oil spills. Generally, statistical methods are used to

compute probabilities to decide an unknown object class category. That is, darkspots that are above a

given probability threshold are considered to be oil spills or not oil spills based on its features.

Kubat et al. [144], provided a comprehensive overview of the issues of developing a machine learning

system related to oil spill detection. The author examined common issues such as problem formulation,

selection of evaluation measures, imbalanced class distribution and data preparation. An accuracy test

is required to compare the number of correctly classified dumps over falsely classified targets. However,

the large number of false targets over the actual oil spill presents a problem (that is, an image can
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have two oil spill events and hundreds of false alarms). This is a big challenge when evaluating bilge

detection algorithms, thus more effective methods are required over traditional methods [144].

5.5.1 Feature selection

The use of all the features described in section 5.4 may not be a feasible choice due to the curse of

dimensionality. In fact, not all oil spill features have the same discriminating power, some of the

features may be correlated, some are not always consistent. Much work has been done on oil spill

feature selection and feature ranking to determine features that yield the highest classification. Also,

the capability of the selected features is measured using various evaluation measures. The feature

selection method is terminated when the most significant features have been determined or when the

highest value of the evaluation measure is accomplished [145].

A feature selection method, based on genetic algorithm optimisation, that concurrently searches for

the best feature combinations has been shown to achieve higher classification accuracy than standard

sequential selection methods [141, 32]. The main drawback of the genetic based algorithm is the

increased demand in computational resources. Fiscella et al. identified several features that contributed

significantly in the discrimination process [146]. The features were based on ocean conditions (wind

speed) and the source of the oil spill (described by darkspot form factor). Statistical methods such

as the one-way analysis of variance (ANOVA) have been successfully used to select the effective

feature variables [98]. The ANOVA uses probability values to determine if a variable is statistically

significant [147].

Topouzelis et al. [148] in a 2012 study concluded that there was not a single optimum feature combin-

ation out of the 25 most common combinations considered but several sets of combinations existed

which contained at least some critical features. Lui et al. only found five features to be important for

identification of ocean oil spills in SAR imagery. Oil spill and look-alike darkspot features that have

high variance (e.g., perimeter and area features) or lack of variance (e.g., minimum border gradient

feature) between them are regarded as least important features and are usually discarded. High variance

features included the darkspot size [136].
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5.5.2 Oil spill classification

A variety of classification approaches have been used to distinguish oil spills and look-alikes from

vectors of feature descriptors [148, 140, 149, 150, 16, 146, 136, 151]. Most classification algorithms

are based on probability theory [142, 44, 145]. The methods use statistical information obtained

from previous measurements of physical and geometrical characteristics for both oil spills and natural

features. The probability approach uses statistical information obtained from extracted features to

discriminate between oil spills and other natural phenomena. Detected oil slicks are usually classified

into probability categories, that is, either low, medium or high probability. As per conventional

method, first a training dataset is used as input for a classification algorithm and then test datasets

are checked. Accuracy and efficiency of classification depend on the chosen algorithm. Rather than

using the traditional two-class approach of oil spills and look-alikes classes, Gambardella et al. [152]

proposed a one-class classification paradigm where the classifier was trained using only instances of

oil spills.

The most common approaches include a Mahalanobis classifier [146], a statistical classifier [16, 142,

97], a neural network approach [136], a fuzzy logic classifier [153, 151, 98, 154], and a combination

of a statistical classifier and a rule-based approach [51]. Fuzzy logic simulates the ways in which

humans granulate information and reason with it [155]. The system uses a set of conditions based on

known oil features which are used to classify oil spills from look-alikes. In certain cases fuzzy logic

systems can yield higher detection accuracy and a lower false alarm rate (FAR) over statistical, neural

network and other methods [98]. Keramitsologou et al. developed a fully automated system based on

artificial intelligence fuzzy logic for the identification of possible oil spills present on SAR satellite

images [151]. The system identified darkspots from SAR images and assigned a probability for each

darkspot to be an oil spill. Solberg et al. [16] presented a method based on a combination of using

prior knowledge, Gaussian densities and rule-based density corrections. The proposed algorithms

achieved a classification accuracy of 94%, detecting 67 out of 71 oil spills, and a 1% false alarm rate,

that is, only 75 out of 6980 look-alikes were wrongly classified. Singha et al. [136] developed an oil

spill detection approach that used Artificial Neural Networks (ANN) to segment and classify oil spills

from look-alikes. The authors correctly identified 91.6% of reported oil spills and 98.3% of look-alike

phenomena found from 97 ERS-2 SAR and ENVISAT ASAR.
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5.6 SUMMARY

Oil spill in SAR images appear as dark regions (termed darkspots) due to a dampening effect on

the short gravity waves and thus can be detected on SAR images. Automated methods have been

demonstrated as the more practical approach for oil slick monitoring from SAR images.

Darkspot detection is regarded as the most important for a successful oil spill detection system. Low

winds, intensity inhomogeneity and speckle noise may cause unwanted effects during segmentation [95,

106]. High winds may split or disperse oil slick and decrease the chances of detecting it [17, 113]. The

first step is to improve SAR image quality and remove unwanted features such as land in the image.

This step is known as a preprocessing step and has been shown to improve the detection accuracy. The

following step is to isolate darkspots, using segmentation methods, identifying all pixels caused by

damping effects all possible oil spill objects. The segmentation process (or darkspot detection) can

be achieved in numerous ways, where most methods are based on thresholding, edge detection and

object detection. Not all darkspots in a SAR image are oil slicks, other non-oil slick objects have a

similar dampening effect on capillary waves and can be incorrectly identified as oil spills. To limit

the incorrect detections (false alarms) more processing is required. When all darkspots have been

identified, the last step is to discriminate real oil spills from look-alikes. The discrimination uses

machine learning algorithms, which use darkspot characteristics (extracted features) to classify the

detected darkspots as oil pollutants or natural features. Extracted features include geometry, physical,

textural and contextual information from each darkspot object. Statistical classifiers are the most used

classifiers as they are rather simple, reliable and can be easily reproduced [32].

Darkspot detection is traditionally a time-consuming process [32]. An efficient and effective darkspot

detection approach is essential for developing an automated oil slick detection system. Current methods

based on thresholding, edge detection and object detection may be effective in detecting darkspots

but are still not ideal. Region-based algorithms such as active contour models (ACM) and level set

methods have been demonstrated to outperform earlier efforts that are based on adaptive thresholds or

edge detection techniques [135, 132, 156]. However, region-based methods are computationally costly

which can be a major limitation when a large number of SAR images need to be processed. Thus, a

new efficient and effective darkspot detection approach is essential for developing an automated oil

slick detection system.
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Using all available features as input for a given classifier classification is computationally impractical.

The selection of features that yield the highest discrimination of oil spills from look-alikes is still a

challenge. The main difficulty is defining the features that will yield consistent performance. Thus, a

reliable set of features is required for optimal discrimination. The main challenge is to identify a set of

good features that can be used to discriminate between oil slicks and look-alikes. Also, the difference

in classifiers and datasets make it difficult to directly compare classification and different detection

approaches in terms of classification accuracy [51].

Considering the current oil spill detection challenges, particularly the segmentation and feature selection

step, the study propose a novel oil spill detection framework. The proposed framework improves the

current segmentation limitations and also improve the discrimination of illegal oil spill discharges

from look-alikes. The next chapter presents the methodology of the proposed novel framework which

includes a linear darkspot detection algorithms with improved discrimination process.
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6.1 INTRODUCTION

Oil slick over the sea surface formed as a result of oil-tanker accidents or illegal bilge dumping of

tankers can cause significant environmental damage depending on the location and amount. A rapid

response is required to minimise the ecological impact caused. Oil slick discharges from ships can

be monitored automatically using image processing methods on SAR images. However, this can be

challenging when there is a presence of intensity inhomogeneity, speckle noise, wind speeds, and weak

oil slick boundaries in an image. Intensity inhomogeneity and speckle noise may cause unwanted

effects during segmentation. Low winds result in decreased Bragg waves resulting in darker regions

that may limit oil slick visibility. High winds may split or disperse oil slick and decrease the chances

of detecting it. Even with these challenges, numerous image processing methods have been used for

oil slick detection from SAR images. However, these are still not ideal.

The oil spills from vessel discharges are regarded as a primary source of oil slicks and are estimated

to be higher than accidental oil spills [157]. The study focused on the task of detecting oil spills

from moving vessels using only the most critical features derived from a SAR image. The proposed

framework consists of three main steps, that is, the preprocessing, the linear darkspot detection and the

oil spill discrimination, see flowchart in Fig. 6.1. The framework uses a novel linear darkspot detection

and an improved discrimination process. The linear detection process uses a segmentation-based

algorithm to isolate linear darkspots from other features in the image. The improved discrimination

process was accomplished by investigating the most relevant oil spill features to be used as input in a

classification algorithm.
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Figure 6.1. The flowchart of the proposed novel framework for monitoring oil spills from moving

vessels using SAR.
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6.2 PREPROCESSING

The SAR data were downloaded as 16bit (unsigned) images that needed to be preprocessed for oil spill

detection. The preprocessing steps includes an 8-bit rescaled image and a calibrated dB scale sigma

nought (σ0) image, as shown in Fig. 6.1.

6.2.1 Image calibration

After removing land, the 16-bit SAR images were radiometrically corrected using a calibration

algorithm. The calibration uses a look-up table [158] to create a sigma nought image (given in decibels

(dB)). Calibrated pixel values are directly related to the radar backscatter of the scene and are used to

calculate physical features (backscatter values). Sigma nought, also termed normalised radar cross

section (NRCS), is a dimensionless quantity given in decibels (dB). The calibration was done using a

look-up table provided in the metadata.

6.2.2 Reprojection and land masking

All images were reprojected (geo-referenced) by converting all pixel coordinates (x,y) to geographic

(latitude, longitude) using WGS84 global geodetic ellipsoid reference from the tie point grids of the

source product. A land masking operation was then applied to remove land areas and isolate ocean

areas, any pixel on land was assigned a null value using a world land shapefile as mask.

6.2.3 Rescaling to 8-bit gray image

The NRCS images were converted to 8-bit values using a re-scale algorithm. A min–max re-scale

algorithm was used, with the maximum value set equal to the mean value plus three times the standard

deviation value. The 8-bit image was used to produce a segmented image and to calculate gradient and

texture features.
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6.2.4 Speckle filtering

The 8-bit and NRCS images were enhanced using a refined Lee filter to reduce speckle noise, intensity

inhomogeneity and preserve edges [121, 159], see Fig. 6.2 (details in section 6.2.4.1). The enhanced

Lee filter uses a fixed (7×7) sliding window to detect an edge and its orientation (using a local gradient

estimate).

6.2.4.1 Lee speckle filter description

The Lee speckle filter, known as Lee sigma filter, is based on the concept that 95.5% of pixels are

distributed within the two-sigma range from its mean [121]. The filter reduces speckle noise using

by replacing the centre pixel with a moving window with the average of the pixels within two-sigma

range of the centre pixel. Pixels farther from the two-sigma range are regarded as outliers and are

excluded from the calculation of the mean. The despeckling is performed by separating homogeneous

areas with high-contrasting distributed scatterers. The filter combines the uncorrelated multiplicative

speckle model [159]:

I(t) = R(t) ·u(t), (6.1)

where t = (x,y) is the spatial coordinate, I(t) represent the intensity or amplitude of a SAR image,

R(t) is the reflectance (noise free), and u(t) is a speckle noise [160]. R(t) and u(t) are assumed to be

statistically independent and the local statistics of the ideal image R(t) can be replaced as a function of

the observed local statistics. Given the observation I(t), the original signal R(t) is estimated so that the

minimum mean square error (MMSE) is achieved. The linear MMSE filter estimate can be written as a

weighted sum of the observed and local mean values (Î and û):

R̂(t) = Î(t)+w(t)[I(t)− Î], (6.2)

where w is the weighting function given by

w(t) = 1− C2
u

C2
I (t)

. (6.3)

CI = σI/Î is the observed coefficient of variation and Cu = σu/û is the noise variation coefficient.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

74



CHAPTER 6 A NOVEL FRAMEWORK FOR OIL SPILL DETECTION USING SAR

Figure 6.2. An example of a SAR image before speckle filtering (top image) and after speckle

filtering (bottom image).
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6.3 LINEAR DARKSPOT DETECTION

The study proposed a novel image segmentation method that focused on detecting possible oil slick

(location and full extent) from SAR images, see Fig. 6.1. The proposed method solves both the

threshold-based and region-based algorithm limitations by using a two-step approach. First, a threshold-

based method was used to detect all linear darkspots (areas with a high oil slick probability). Second, a

region-based approach was used to extract the full extent of the identified linear darkspot area. Details

of the proposed linear darkspot detection process with reference to Fig. 6.1 follow.

6.3.1 Threshold-based segmentation

The proposed threshold-based algorithm uses a histogram-based algorithm known as Otsu’s

method [161]. The method automatically computes an optimal threshold (TOtsu) and segments dark-

spots (with levels [1, . . . ,T ]) from the surrounding sea (with levels [T + 1, . . . ,L]). T is the chosen

threshold value and L is the maximum gray-level value.

6.3.1.1 Otsu method description

Suppose µ,σ2
ds(T ), σ2

ss(T ) represent the mean level of the image, the darkspot class variance and

surrounding sea class variance, respectively:

µ =
L

∑
i=1

gi pi = P0(T )µ0(T )+P1(T )µ1(T ), (6.4)

σ
2
ds(T ) = P0(T )(µ0(T )−µ)2 +P1(T )(µ1(T )−µ)2, (6.5)

σ
2
ss(T ) = P0(T )σ2

0 (T )+P1(T )σ2
1 (T ). (6.6)

Where

• gi and pi respectively denote gray-value i and the corresponding empirical probability value;

• P0(T ) = ∑
T
i=1 pi and P1(T ) = ∑

L
i=T+1 pi denote the cumulative probabilities;

• µ0 = ∑
T
i=1 gi pi and µ1 = ∑

L
i=T+1 gi pi denote the mean levels;

• σ2
0 (T ) and σ2

1 (T ) denote the variances of the classes C0 and C1.
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II IIII

Figure 6.3. SEN1 enhanced image (I); Segmentation using the normal Otsu threshold algorithm (II)

versus using Proposed Iterative Otsu algorithm (III).

According to [161], the threshold TOtsu is decided by maximising the between-class variance:

TOtsu = argmax
1≤T<L

{σ2
ds(T )}, (6.7)

which is also equivalent to minimising the within-class variance:

TOtsu = argmin
1≤T<L

{σ2
ss(T )}. (6.8)

An optimal threshold (or set of thresholds) was selected by maximising the measure of separability

between the darkspots and non-darkspot (sea) classes in grey intensity levels, see (6.7).

6.3.1.2 Iterative Otsu method description

SAR images, however, can have dark regions caused by a calm sea state which can reduce the visibility

of small oil slick events [113]. These dark regions and high variations within the image made the

selection of optimal threshold value difficult for the Otsu method, see illustration in Fig. (6.3:II). In

order for the proposed framework to be robust to these challenges, a new threshold-based algorithm was

proposed. The proposed threshold-based component, iteratively segmented darkspots while extracting

potential oil slicks (linear darkspots), as shown in Fig. 6.4.
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ITERATIVE OTSU THRESHOLD-BASED DARKSPOT SEGMENTATION 

CHECK IF COMPLETE
UNPROCESSED REGION > MINIMUM AREA
THRESHOLD VALUE > MINIMUM THRESHOLD

UPDATE INPUT IMAGE
REMOVE PROCESSED REGIONS

I. GET OTSU THRESHOLD
II. SEGMENT DARKSPOTS
III. APPLY MOPHOLOGICAL FILTERING

SEGMENTATION PROCESS

SAVE DARKSPOT WITH
LENGTH/WIDTH RATIO > 2
TO TEMP IMAGE

GET LINEAR FEATURES

INPUT SAR IMAGE

RESCALED 8bit IMAGE

FINAL IMAGE
MERGE TEMP IMAGES

YES NO

Figure 6.4. Detailed flowchart of the proposed iterative Otsu threshold linear darkspot segmentation

algorithm.

Linear features were extracted using geometrical features (length, width and length to width ratio)

from the detected darkspots. The length, width and aspect ratio were calculated automatically by fitting

a rectangle around the detected darkspots. All detected linear features for each iteration are stored as

temporal images until all regions of the input image have been processed or when the threshold value

reaches zero or was no longer changing. A rectangle with an extended length was fitted around the

detected linear features to merge nearby darkspots. A large square box was fit around the detected

linear darkspots to extract the regions of interest. The region-based algorithm was then applied to

these areas. The proposed iterative Otsu method showed improved detection of linear darkspots when

compared to the normal Otsu threshold algorithm, Fig. (6.3:III).
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6.3.2 Region-based segmentation

Threshold-based algorithms do not always detect the full extent of oil slick events as they can be split or

oversegmented due to the limitations of the threshold-based algorithms [16]. The proposed framework

used a region-based method that used an active contour model (ACM) and level set algorithm to

overcome the shortcomings of threshold-based methods by detecting the full extent of oil slick events,

see flowchart in Fig. 6.1. The ACM is based on a new region-based signed pressure force (SPF)

function [162]. It utilises the statistical information inside and outside the contour to control the

contour evolution. This property allowed the method to efficiently stop the contours at weak or

blurred edges and thus can automatically detect the exterior and interior boundaries of potential oil

slicks.

6.3.2.1 Active contour model description

Active contour model (ACM) methods represent a contour using a zero level (initial contour) of a

function called the level set function (φ ), and the image was segmented by evolving the level set

formulation. The evolution equation was obtained by minimising an energy function of the signed

pressure force (SPF) function [162]:

∂φ

∂ t
= sp f (I(x,y)) ·α|5φ |, x,y ∈Ω, (6.9)

where α is the balloon force, and Ω is a bounded subset of I(x,y ∈ ℜ2) in the given image. The

balloon force parameter controls the shrinkage/expanding of the contour evolution. A high α may

cause the contour to pass weak edges while a low α may cause the contour not to pass narrow parts of

the object.

Initialisation of the level set function (φ(x, t = 0)) is zero at the boundary, negative inside and positive

outside the contour:

φ(x, t = 0) =


−ρ x ∈Ω0−∂Ω0,

0 x ∈ ∂Ω0,

ρ x ∈Ω−Ω0,

(6.10)
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Figure 6.5. The level set formulation: the signs of the SPF function inside and outside the object.

where ρ > 0 is a constant, Ω0 is a subset in the image domain Ω and ∂Ω0 is the boundary of Ω0.

The proposed framework used the linear darkspot detected from the threshold-based algorithm as the

initial contour ρ . The initial contour size determined the limited subset size. The signed pressure

function (sp f ) has values in the range [-1, 1] and is defined as:

sp f (I(x,y)) =
I(x,y)− c1+c2

2

max(|I(x,y)− c1+c2
2 |)

, x,y ∈Ω, (6.11)

where the two constants, c1 and c2, are the average intensities inside and outside the contour, respect-

ively. Constants c1(φ) and c2(φ) are defined by

c1(φ) =

∫
Ω

I(x) ·H(φ)dx∫
Ω

H(φ)dx
, (6.12)

c2(φ) =

∫
Ω

I(x) · (1−H(φ))dx∫
Ω
(1−H(φ))dx

. (6.13)

H(φ) is the Heaviside function and is generally selected as:

Hε(z) =
1
2
(1+

2
π

arctan(
z
ε
)). (6.14)
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The level set function φ is then evolved according to (6.9). The SPF modulates the signs of the pressure

forces inside and outside the region of interest so that the contour shrinks when outside the object or

expands when inside the object, see Fig. 6.5. A Gaussian filter was used to regularise the level set to

keep it stable and control its sensitivity to noise, that is: φ = φ ∗Gσ . The level set function φ evolved

until converged. The standard deviation (σ ) of the Gaussian filter is an essential parameters that are

highly dependent on the image. Setting σ too low may cause the contour to be sensitive to noise while

a high σ may smooth the images too much and cause edge leakage to occur.

The algorithm had both global and selective segmentation properties. The selective segmentation

procedure is achieved by making the deviation ∆φ that is far from the interface of level set function φ

close to zero, and only the φ(x) near the interface will evolve [162]. Thus the level set function can

start the contour near the object of interest to obtain the desired segmentation by setting φ = 1 if φ > 0;

otherwise, φ =−1. Using the selective property the initial contour can be placed contiguous to the

object of interest.
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6.4 OIL SPILL DISCRIMINATION

To reduce the number of false detections (i.e., look-alike detections) from a segmentation algorithm,

the study proposed an improved discrimination process. The process involved three steps: firstly,

identify the frequently used features in literature, secondly, identify the best features for our dataset,

and lastly, classify oil spill events using the selected features.

6.4.1 Oil spill features

Several features need to be extracted to successfully discriminate oil spill events from look-alikes

from a SAR image [141]. The first step was to determine all available (or the most relevant) darkspot

features in literature, see Table 5.1 in section 5.4. A detailed description and calculations of the features

reported in Table 5.1 are as follows [138, 141]:

• Area (A): the number of pixels of the darkspot objects.

• Perimeter (P): the length of the border pixels of the darkspot objects.

• Complexity (C = P/2
√

πA): describes how complex or simple the geometry of the darkspot

objects are.

• Shape factor 1 (SP1): describes how long and thin the darkspot objects are. It is also referred to

as spreading and as length to width ratio.

• Shape factor 2 (SP2): describes the general shape of the darkspot objects. It has also been

referred to as first invariant planar moment, form factor and asymmetry.

• Mean (OMe or BMe): the mean of the intensity values of the darkspot objects or ocean back-

ground pixels.

• Std deviation (OSd or BSd): the standard deviation of the intensity values of the darkspot objects

or ocean background pixels.

• Power to mean ratio (Opm or Bpm): the ratio between the standard deviation and mean values

of the darkspot objects or ocean background pixels.

• Contrast local area (ConLa): the ratio between the mean value of the darkspot object (OMe) and

the the mean of the intensity value of a window centred inside the darkspot object.
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• Mean contrast (ConMe): the difference between the ocean background mean value (BMe) and

the darkspot objects mean value (OMe).

• Mean border gradient (GMe): the mean of the magnitude of the gradient values of the region

border area. It describes how dark the border gradient of the darkspot objects are. The Sobel

operator [163, 164], is used to compute the gradients, see Fig. 6.6.

• Mean Haralick textures (THm) [139]: they are calculated as the average of the grey level co-

occurrence values matrices of the sub-objects. The probability of the grey level co-occurrence

values is defined as

p(i, j) =
P(i, j;θ ,d)

∑i=1 ∑ j=1 P(i, j;θ ,d)
,

where P(i, j;θ ,d) represents the number of occurrences of grey level i and j, which is separated

by an offset d in direction θ .

The features were extracted from the calibrated and segmented SAR images, see experiment flowchart

in Fig. 6.1. In the context of the oil-spill detection problem, the present state-of-the-art methods

suggest to use features belonging to four classes, as presented in section 5.4.2. Features belonging

to the fourth class include isolating the bright spots (ship candidates) from the image or using AIS

information which may not always be visible in the image. The interest of the study is assessing the

effectiveness of the proposed framework with regard to the quality of SAR data. As a consequence no

contextual information could be derived. However, using ancillary information such as the knowledge

of traffic routes, oil rigs and pipeline locations is critical for an operational oil spill detection monitoring

system [17, 3, 76, 7].

6.4.2 Feature selection methods

Oil spill events can be related to different events, and depending on those, have different geometries

which could influence which features are extracted/selected for the classification task. An important

feature is one that enables the highest possible discrimination accuracy. The simple approach of

selecting the best individual features is not trivial. It is therefore useful to employ feature selection

techniques that take into account both the individual class separation capability and the dependencies

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

83



CHAPTER 6 A NOVEL FRAMEWORK FOR OIL SPILL DETECTION USING SAR

Figure 6.6. SAR subimages with darkspot gradients computed using the Sobel operator.
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between the features. To select a small subset of very effective features, the study proposed a feature

significance ranking system that evaluates the effectiveness of each feature using several feature

selection algorithms.

6.4.2.1 Feature significance

Before describing the feature selection algorithms formally, the following definition of feature

significance is introduced. Let Xk = {xi : 1 ≤ i ≤ k,xi ∈ Y} be the set of k features from the set

Y = {yi : 1≤ i≤ D} of D available features. The individual significance S0(yi) is the significance of

the ith feature in yi, i = 1,2, . . . ,D according to a feature selection criterion function J(yi) [165]. The

significance Sk−1(x j) of the feature x j, j = 1,2, . . . ,k, in the set Xk is defined by

Sk−1(x j) = J(Xk)− J(Xk− x j), (6.15)

where J(·) is the feature selection criterion function. Note that for k = 1, the term feature significance

is equivalent to individual significance. The significance Sk+1(y j) of the feature y j from the set

Y −Xk = {yi : i = 1,2, . . . ,D− k,yi ∈ Y,yi 6= xi for all xi ∈ Xk} with respect to the set Xk is defined

by [165]:

Sk+1(yi) = J(Xk + yi)− J(Xk). (6.16)

Using the above definitions, feature significance can be defined as follows [152, 165]:

• Feature x j from the set Xk is:

i) the most significant (best) feature in the set Xk if

Sk−1(x j) = argmax
1≤i≤k

Sk−1(xi) (6.17)

⇒ J(Xk− x j) = argmin
1≤i≤k

J(Xk− xi). (6.18)

ii) the least significant (worst) feature in the set Xk if
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Sk−1(x j) = argmin
1≤i≤k

Sk−1(xi) (6.19)

⇒ J(Xk− x j) = argmax
1≤i≤k

J(Xk− xi). (6.20)

• Feature y j from the set Y −Xk is

i) the most significant (best) feature in the set Xk if

Sk+1(y j) = argmax
1≤i≤D−k

Sk+1(yi) (6.21)

⇒ J(Xk + y j) = argmax
1≤i≤D−k

J(Xk + yi). (6.22)

ii) the least significant (worst) feature in the set Xk if

Sk+1(y j) = argmin
1≤i≤D−k

Sk+1(yi) (6.23)

⇒ J(Xk + y j) = argmin
1≤i≤D−k

J(Xk + yi). (6.24)

That is, a feature has significance if the accuracy measure is increased when it is removed as described

in (6.18) or added as described in (6.22) in a feature set.

6.4.2.2 Feature ranking

In order to combine the results attained by different feature selection mechanisms, a heuristic approach

is used [152]. Let m be the number of the feature selection techniques that should be combined. For

each feature selection technique, a score based on the significance of each feature was measured.

Feature ranking can be defined using a score system to each feature fi as follows [152]:

score( fi,k) =
m

∑
j=1

rank( fi,sel j,k), (6.25)

where the function rank( fi,sel j,k) is defined as

=


1 if fi is ranked among the first k values by sel j

0 otherwise,
(6.26)
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where fi is the ith feature (with 1≤ i≤ D), and sel j is the jth selection technique (with 1≤ j ≤ m).

Then, we select the features fi that satisfy

fi(k) = argmax
i

(score( fi,k)). (6.27)

Significant features are those that frequently rank high from the feature selection algorithms. Different

values of k produced different subsets of features which were combined by considering the union of

the subsets produced by different values of k. Features that satisfy (6.27) for different values of k can

be considered to have a large discriminating capability [152]. A global score for each feature fi, was

measured for different values of k which satisfied (6.27). The study computed mean significance value

assigned by the selection algorithms based on the majority voting criterion. In order to select a subset

of features, the thresholds were chosen from low, medium and high rank features.

6.4.2.3 Feature selection procedure

The selection of the optimal subset of features for a given classification problem requires the evaluation

of all the possible subsets with regard to some predefined evaluation criteria [152]. The feature selection

process is stopped when a predefined maximum number of features (k) is selected, or the desired value

of the evaluation criterion is attained. A number of evaluation criteria have been devised to estimate

the effectiveness of the selected features [138, 141, 152].

In order to exploit the complementary of different selection algorithms and evaluation criteria, the

study proposes to perform feature selection by combining four selection algorithms widely adopted

in the literature, namely Recursive Feature Elimination, Forward Feature Selection and Analysis of

Variance. The Gradient Boosted Tree (GBT) classifier was used as evaluation criteria to measure the

effectiveness of each feature selection method.

Recursive Feature Elimination (RFE): The RFE method first considers all available features and

then removes the remaining features one at a time, so that the next feature set is the one that

provides the largest improvement of the evaluation criterion employed. Consider a set of features

(xk) at iteration k. Feature x− is removed at iteration (k−1) if the remaining features produce

the largest improvement of the evaluation criterion GBT (·), that is
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GBT (xk− x−)≥ GBT (xk− x) for all x 6= x−. (6.28)

Forward Feature Selection (FFS): The FFS method does the opposite of the RFE procedure. It first

considers the most discriminating feature according to an evaluation criterion, and then adds

the remaining features once at a time, so that the next added feature is the one that provides the

largest improvement of the evaluation criterion employed. In other words, let Yk be the set of

features at iteration k. Feature x+ is added at iteration (k+1) if this addition produces the largest

improvement of the evaluation criterion J(·), that is

J(Yk + x+)≥ J(Yk + x) for all x 6= x+. (6.29)

Statistical Analysis: A one way ANOVA is used to compare two means from two independent groups

using the F-distribution. A one-way analysis of variance (ANOVA) was used to select the

effective feature variables. ANOVA determines whether there were any statistically significant

features using differences between the means of two or more independent features. That is, for

each feature the sample mean and sample variance was estimated and compared using the F-test

taken from Snedecor F-Table [166].

6.4.3 Gradient boosted tree classifier

Boosting refers to applying multiple weak estimators to produce a more powerful estimator. Gradient

Boosted Tree (GBT) classifier builds an estimator by sequentially adding new tree learners to the

expansion model. GBT sequence of tree expansions are of the form:

Fm =
M

∑
m=1

T (x,Θm), (6.30)

where T (x;Θ) is the weak tree estimator of the input variables x, characterised by parameters Θm. For

regression tree, the parameters Θm are the splitting variables, split locations and the terminal node of

the individual trees [167].

Equation (6.30) is a minimisation problem that can be solved numerically using the steepest descent

direction method [168]. The steepest descent direction is the negative gradient of the loss function

evaluated at the current model (Fm−1):

Fm(x) = Fm−1(x)+ γmT (x,Θm), (6.31)
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where γm is the step length chosen using line search:

γm = argmin
γ

N

∑
i=1

L(yi,Fm−1(xi)+ γT (xi,Θm)).

Equation (6.31) can be calculated for any differentiable loss function. For classification, the negative

binomial log-likelihood (also known as deviance) is the commonly used loss function L(y,F):

log(1+ e2yF) for y ∈ {−1,1}.

6.4.3.1 GBT parameters

The GBT classifier has the following critical parameters:

Number of Trees: This parameter controls the number of boosting stages to perform. GBT is relat-

ively robust to over-fitting so a large number can be used without losing performance. However,

oversized trees can substantially degrade performance and increase computation.

Shrinkage or Learning Rate: Shrinkage controls how strongly each tree tries to correct the mistakes

of the previous trees and is dependent on the number of trees. Shrinkage is implemented by

scaling the contribution of each tree by a factor α when it is added to the current approxima-

tion (6.31):

Fm(x) = Fm−1(x)+αγmT (x,Θm).

Sub-sampling: This parameter controls the number of samples to be used for fitting the individual

base learners. Not only does the sampling reduce the computing time, but can also produce a

more accurate model.

Feature Ranking: GBT measures the importance of each feature by averaging feature ranking over

several trees. It provides a more stable measure of feature importance by reducing the variance

of feature selection methods.

6.5 SUMMARY

The chapter presented a detailed description of the proposed framework for detecting oil spills from

moving vessels from a SAR image. The proposed framework involved three main processes, including
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preprocessing, linear darkspot detection and oil spill discrimination process. The preprocessing used

suitable methods based on literature review. A novel segmentation-based linear darkspot detection

method was proposed. The method used a combination of threshold-based and region-based algorithms

to detect all possible oil slicks in a SAR image. The detected darkspot also included oil slick look-

alikes. The study propose an improves discrimination process to remove the unwanted look-alikes.

The discrimination process comprised of three steps. The first task was to identify commonly used

features, based on literature, for oil spill detection. The second task was identifying significant features,

using feature selection techniques, for the dataset. The final task is to use the identified significant

features for classifying oil spills from look-alikes.
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7.1 DATA DESCRIPTION

7.1.1 Real SAR data

The primary goal is to develop an automated system that detects oil spill events caused by ships (bilge

dumping) using SAR data. A large number of SAR images with oil spill examples are critical in

developing and evaluating an automated oil spill monitoring system. Numerous oil spill studies have

been published. Oil spills in the ocean are expected to behave the same regardless of location, however,

only a few studies test their methods in African oceans. The lack of studies in Africa, however,

introduces a big problem as the oil spills (particularly illegal discharges) that occur in these areas

are not documented. The limited studies in African areas are mainly due to inadequate data over

these ocean areas. However, more data is now available with the sentinel missions [69], see Fig. 7.1.

More SAR data may be available in the African coastal regions, but the lack of operational systems

result in limited verified oil slick examples. For reasons mentioned above, the study covered oceans

surrounding three African countries: A) Morocco, B) Mozambique and C) South Africa, as shown in

Fig. 7.2.

Large swath SAR imagery has been used successfully to detect oil spill activities at sea. The study

used C-band co-polarisation images for the study due to the stronger backscattering properties in oil

spill studies, see section 4.3. The data consisted of historical and present data, see details in Table 7.1.

The historical data had co-polarised Envisat Advanced SAR (ASAR) Wide Swath Medium (WSM)

resolution images captured in South Africa’s ocean from 2011 to 2012. The present data consisted of

Sentinel-1 (SEN1) wide swath ground range data (GRD) with extra wide (EW) and interferometric

wide (IW) modes captured in South Africa’s, Mozambique’s and Morocco’s oceans from 2014 to 2017.
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Figure 7.1. An example of the SENTINEL-1A observation scenario for September 2016. (Taken

from [169], with permission).

The study also used Radarsat-2 OSVN mode image, captured on 10/10/2016 near Saint Pierre in the

North Atlantic ocean, with a verified oil slick to evaluate the proposed methods outside African oceans,

see descriptions in Table 7.1. Radarsat-2 (RS2) Maritime Satellite Surveillance Radar (MSSR) modes

have been developed to further improve ocean surveillance [170]. The Ocean Surveillance Very-wide

Near (OSVN) mode can monitor large areas, over 500 km, with a finer resolution.
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Figure 7.2. A map showing the locations for the study including Morocco (marked A), Mozambique

(marked B), and South Africa (marked C) coastal areas.
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Table 7.1. A description of the SAR data used for testing the proposed novel oil spill detection

framework

Satellite EnviSat RADARSAT-2 Sentinel-1A

Product ASAR-WSM OSVN EW-GRDH EW-GRDM IW-GRDH IW-GRDM

Dates 2011-2012 2016 2014-2017 2014-2017 2014-2017 2014-2017

Polarisation HH HH VV VV VV VV

Resolution (m) 93 x 87 50 x 50 93 x 87 20 x 22 88 x 87 93 x 87

Pixel Spacing (m) 75 x 75 35 x 25 40 x 40 10 x 10 40 x 40 40 x 40

Swath (km) 400 x 400 530 x 500 400 400 250 250

No. of Images 10 1 9 6 33 42

No. of Oil Spills∗ 14 1 0∗∗ 12 88 0

Notes: a) All images were C-band.
b) The Radarsat image was captured on 10/10/2016 near Saint Pierre in the North Atlantic ocean.
c) The ENVISAT images were captured in South Africa’s ocean only.
d) The SENTINEL images were captured in South Africa, Mozambique and Morocco’s oceans.
∗ this number counts split oil slick, the actual number of oil spill events is lower.
∗∗ These images did not show any oil spills but contained several look-alike examples.
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Figure 7.3. An example of the Sentinel-1A wide swath SAR image with oil spills.
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Figure 7.4. Sentinel-1A SAR images that did not have oil spills but had numerous possible look-alikes.
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Figure 7.5. An oil spill event split in multiple parts.

An experienced operator was needed to visually validate oil slick events by taking into consideration

the sea state (sea conditions, in this case, referring to wind and currents), the oil slick geometry as well

as the occurrence of a vessel near the potential oil slick event, see oil spill example in Fig. 7.3. All the

images had either oil spills, look-alikes or both as examples. Pixels containing oil spills were manually

selected to create a mask for baseline results. The number of look-alikes was not reported in Table 7.1

because it was calculated as the number of false alarms detected by the proposed algorithms. That is,

any detections that were not labelled as oil spills were counted as look-alike detections (false alarms).

To test the proposed algorithms robustness, 51 Sentinel-1A SAR images that did not have oil spills but

had numerous possible look-alikes were used to evaluate the robustness of the proposed discrimination

process, see example in Fig. 7.4.

An oil slick database was then created from the verified oil slick events by calculating various statistics

from each slick, see Table 7.2. Split oil slicks statistics were calculated individually and not summed

up, such that, the total length of a long oil slick that was split to multiple parts was not used but only

the length of split parts, see illustration in Fig. 7.5. The number oil slicks reported in Table 7.1 are the

split oil slicks, and the number of oil spill events was fairly lower.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

97



CHAPTER 7 RESULTS AND DISCUSSION

Table 7.2. Oil slick features database.

Minimum Maximum Average Stddeva

SNRb -30.65 6.47 -13.28 10.13

Intensity (dB) -27.35 -10.46 -17.61 2.28

Length (pixels) 84.01 1883.53 508.94 531.90

Width (pixels) 10.08 93.32 44.33 26.07

Length to width ratio 4.36 31.54 11.30 7.32

a Standard deviation.
b Signal to noise ratio.

7.1.2 Synthetic SAR data

The number of available oil slick examples, including historic data, was not enough to evaluate the

proposed framework. Synthetic SAR data was therefore generated to test the robustness of the proposed

framework. To simulate real SAR oil slicks, the synthetic SAR images were simulated according to

parameters reported Table 7.2 as follows:

1. Generate a 2000×2000 image. The size was chosen based on the size of the linear darkspots

features in Table 7.2.

2. Add a random linear darkspot that resembles an oil slick. The backscatter, length, width and

length to width ratio values were randomly generated from minimum to maximum values

reported in Table 7.2.

3. For fully developed speckles, the amplitude of the returns follow the Rayleigh distribution [71,

64, 171]. Thus the images were corrupted with Rayleigh distributed noise.

Steps 1 and 2 were repeated 200 times for each noise level to ensure nearly all possible oil slicks

configurations were evaluated. The noise levels were varied high to low noise values, that is, from

-36 to 12 in steps of 0.5. A total of 19200 synthetic SAR images were generated so that they were

statistically similar to the actual SAR images.
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Table 7.3. A two-by-two confusion matrix.

Verified

Oil Spill Look-alike

Predicted
Oil Spill True Positive (TP) False Positive (FP)

Look-alike False Negative (FN) True Negative (TN)

7.2 EVALUATION PARAMETERS

Oil spill events from moving vessels were detected (classified) using a novel framework as presented

in chapter 6. The performance of the proposed oil spill detection framework was evaluated using the

receiver operating characteristics (ROC) evaluation metrics [172]. That is, given a classifier and a set of

instances, a two-by-two confusion matrix (also known as error matrix) can be constructed representing

the quantities of correctly classified and the errors of each class, see Table 7.3. The numbers along

the major diagonal represent the correct decisions made (i.e., true detections), and the numbers of this

diagonal represent the errors between the various classes (i.e., false detections). To compare the results

of the algorithms analytically, reference images were manually segmented by an expert where potential

oil slick darkspots were identified. The reference images were used to create ground truth data and

was assumed to be 100% accurate. The study used a two class system, as illustrated in Table 7.3,

where the positive class represents oil spill events and the negative class was look-alike samples. Using

the ROC system, multiple accuracy and error measures were used to evaluate to the discrimination

process:

• Detection Accuracy (DA): measured the accuracy of detected oil slick events,

DA =
∑detected oil slick events
∑known oil slick events

×100%, (7.1)

where known oil slick events were visually verified and segmented from the SAR images.

• True Positive Rate (TPR): measured the accuracy of correctly detected oil slick pixels. TPR

was calculated as the number of detected oil spill pixels divided by the number of known oil

spill pixels:
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TPR =
∑TP

∑TP+∑FN
. (7.2)

• True Negative Rate (TNR): measured the accuracy of correctly classified look-alikes. TNR

was calculated as the number of detected look-alikes pixels divided by the number of known

look-alike pixels:

TNR =
∑TN

∑TN+∑FP
. (7.3)

• False Negative Rate (FNR): measured the missed rate of oil spill pixels. FNR is also known as

the error of exclusion and was calculated as the number of incorrectly detected look-alike pixels

divided by the number of known oil spill pixels:

FNR =
∑FN

∑TP+∑FN
. (7.4)

• False Positive Rate (FPR): measured the incorrectly included pixels to the oil spill class. FPR

is also known as the error of inclusion or false alarm rate (FAR). It is calculated as the number

of incorrectly detected oil spill pixels divided by the number of known look-alike pixels:

FPR =
∑FP

∑TP+∑FN
. (7.5)

7.3 LINEAR DARKSPOT DETECTION EVALUATION

Real and synthetic SAR images were used to evaluate the performance of the proposed framework

and the comparison methods. For all the experiments, the input images were preprocessed as de-

scribed in section 6.2. The preprocessed images were used to evaluate multiple segmentation-based

algorithms.
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7.3.1 Linear darkspot detection evaluation parameters

7.3.1.1 Proposed threshold-based segmentation (TSO)

TSO used the iterative Otsu segmentation without the region-based algorithm, as described in

section 6.3.1. For each iteration, the input image was masked with the segmented image and reprocessed

until there were no regions to segment or the threshold value was zero or no longer changing. An

average of 5–8 iterations was observed. The threshold-based algorithm may split or oversegment

darkspots and output small linear features. To ensure all linear features are detected, darkspots with

length to width ratio greater than three were considered as linear darkspots. This was less than the

minimum ratio from the oil slick features database in Table 7.2.

7.3.1.2 Proposed region-based segmentation (RSO)

RSO used the active contour model and level set segmentation without the threshold algorithm

input, as described in section 6.3.2. The region-based component had two critical parameters, balloon

force (α) and standard deviation (σ ), that were dependent on the image. An optimal parameter search

was conducted, and the algorithms were evaluated for optimal α and σ parameters.

7.3.1.3 Proposed linear darkspot detection (LDD)

LDD used a combination of threshold-based and region-based techniques to segment possible oil spills,

see description in section 6.3. The region-based component was used to detect the full extent of the

split or shorter linear darkspots detected from threshold-based segmentation. Only linear darkspots

with a length to width ratio greater than four were labelled as potential oil slicks. These parameters

were chosen according to the oil slick features database in Table 7.2.

7.3.1.4 Chaudhuri’s curvilinear segmentation (CCS)

A segmentation-based algorithm proposed by Chaudhuri et al. [173] was considered for comparison.

The authors proposed a threshold-based technique, based on the Otsu method [161], to detect dark
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curvilinear features due to ocean disturbances caused by the wind, movements of surface or underwater

objects and oil spills from SAR images. This made the method very comparable with the proposed

threshold-based method used to segment dark linear features due to oil slick events from a moving

vessel.

7.3.2 Linear darkspot detection evaluation results

The segmentation algorithms were evaluated for DA, TPR and FPR, where the results TPR and FPR

were reported in Table 7.4 with the best average performance shown in bold. The results of the

segmentation-based linear darkspot detection algorithms were compared and analysed.
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Table 7.4. Algorithms evaluation on real SAR images.

Sub-image
TPR accuracy measure (FPR error measure) %

TSOa RSOb LDDc CCSd

1 87.97 (0×10+00) 100.0 (4×10−02) 100.0 (0×10+00) 88.72 (2×10+00)

2 77.55 (0×10+00) 100.0 (2×10−01) 100.0 (3×10−03) 64.33 (3×10+00)

3 99.64 (5×10−04) 100.0 (5×10−02) 100.0 (2×10−04) 97.92 (2×10+00)

4 100.0 (4×10−02) 100.0 (9×10−02) 100.0 (0×10+00) 98.20 (2×10+00)

5 100.0 (0×10+00) 100.0 (3×10−01) 100.0 (3×10−02) 87.89 (5×10+00)

6 88.29 (4×10−02) 100.0 (2×10−01) 100.0 (7×10−02) 67.20 (2×10−01)

7 22.92 (0×10+00) 63.90 (1×10−01) 96.38 (6×10−02) 40.51 (3×10+00)

8 31.60 (0×10+00) 79.99 (2×10−01) 100.0 (2×10−02) 50.87 (3×10+00)

9 94.96 (0×10+00) 100.0 (2×10−01) 100.0 (4×10−04) 82.97 (2×10−01)

10 100.0 (2×10+00) 100.0 (7×10−01) 100.0 (9×10−02) 79.93 (3×10+00)

11 27.43 (0×10+00) 86.15 (4×10−02) 100.0 (7×10−02) 49.34 (3×10+00)

12 100.0 (4×10−01) 100.0 (1×10−02) 97.60 (7×10−03) 76.86 (2×10+00)

13 100.0 (1×10−01) 100.0 (5×10−02) 100.0 (1×10−02) 89.72 (5×10+00)

14 78.24 (4×10−01) 100.0 (2×10−02) 100.0 (1×10−02) 87.19 (2×10+00)

AVERAGE 83.58 (2×10−01) 95.00 (2×10−01) 99.57 (3×10-02) 75.83 (3×10+00)

STD DEV 27.29 (5×10−01) 10.90 (2×10−01) 1.12 (3×10-02) 18.54 (1×10+00)

aProposed threshold-based segmentation only.
bProposed region-based segmentation only.
cProposed linear darkspot detection.
dChaudhuri’s curvilinear segmentation [173].
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Figure 7.6. DA and TPR detections (%) plot on synthetic SAR data (SNR: -42 to 6 in steps of 0.1)

using proposed threshold-based segmentation (TSO) (marked as “Proposed”) and the comparison

method proposed by Chaudhuri’s curvilinear segmentation (CCS) [173] (marked as “Comparison”).

7.3.2.1 Threshold-based methods segmentation

Both threshold-based methods (proposed threshold-based component and comparison threshold-based

method by Chaudhuri et al. [173]) were able to detect all the oil slick events considered (i.e., DA was

100% across all images). However, the TPR and FPR results showed the proposed threshold-based

method to have slightly better TPR performance (8% more) with less error (FPR) than the comparison

method, see Table 7.4. The propose threshold-based algorithm showed promising results for linear

darkspot segmentation.

The results of the framework are dependent on the performance of the threshold-based component,

thus its effectiveness needs to be evaluated fully. The real SAR images test was unable to separate the
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performance of the proposed and a threshold-based method proposed by Chaudhuri et al. [173]. To

evaluate the robustness of the proposed threshold-based algorithm synthetic SAR data were used, see

synthetic SAR details in section (7.1.2). The average DA and TPR results of the simulated images

for each noise level were evaluated, see Fig. (7.6). The algorithms were not evaluated for FPR as

look-alikes were not included in the simulations.

For each noise level, the proposed algorithm showed improved performance as both DA and TPR

results were higher than the method by Chaudhuri et al. [173], see Fig. (7.6). The proposed algorithm

was able to detect more oil slick events and also identified the oil slick’s full extent as the noise

level decreased. In contrast, the algorithm by Chaudhuri et al. [173] was unable to detect all the

potential oil slick pixels accurately, particularly at high noise levels. The results showed the proposed

threshold-based component to be sufficient in the detection of possible oil slicks, thus can be used with

high confidence in the proposed framework.

7.3.2.2 Threshold-based vs region-based segmentation

The region-based algorithms showed a significant increase in TPR performance, with about 16%

and 25% increase, when compared to the proposed threshold-based segmentation and Chaudhuri’s

curvilinear segmentation, respectively. This result is in agreement with the literature where region-

based algorithms have been shown to outperform earlier efforts of threshold-based techniques [135,

132, 133, 174, 156, 175, 176], refer to section 5.3.

7.3.2.3 Proposed linear darkspot segmentation

The proposed linear darkspot detection and region-based component (without threshold input) al-

gorithms were evaluated for the average DA performance over various (α and σ ) combinations (α

values from 4 – 12 in steps of 0.5 and σ values from 0.5 – 1.9 in steps of 0.1). The results showed the

proposed framework results to be better across the different images where the DA was 87.76% while

the comparison algorithm only achieved 54.46%. This result showed that the proposed framework was

less dependent on (α and σ ) parameters and a better algorithm overall.
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A CB D E

Figure 7.7. Linear darkspot and full extent extraction results. A) Envisat SAR image with oil spill

(captured on 2007, Durban, South Africa); B) Image after preprocessing; C) Darkspots as potential oil

slicks; D) Extracted linear darkspots; E) Final Linear Darkspot Detection.

Figure 7.8. Proposed framework’s experimental results for Radasat SAR image. Left: Large SAR

image that covers more than 500km swath; Middle: A verified oil spill; Right: Oil spill segmentation

result using proposed Linear Darkspot Detection algorithm.

Figs. 7.9, 7.7, 7.8, shows real SAR images’ final segmentation output of potential oil slick events using

the proposed linear darkspot detection algorithm. The proposed linear darkspot detection method

worked well in detecting oil slicks from real SAR images. However, two of the sub-images showed

TPR values less than 100% (the proposed method did not detect the full extent of the oil slicks), see

Table 7.4. These images had multiple oil slicks from the same source, see example in Fig. (7.9, right

most sub-image). Segments that were large enough were successfully detected while shorter slicks

were discarded in the linear darkspot extraction process as they did not meet the minimum length or

length to width ratio criterion.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

106



CHAPTER 7 RESULTS AND DISCUSSION

Figure 7.9. Proposed framework experimental results for Envisat (rows 1 and 2) and Sentinel (rows 3

to 5) SAR images. left column: Regions with potential oil slicks. Middle column: Threshold-based

initial contours. Third column: Linear darkspot detections.
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7.3.2.4 Proposed linear darkspot segmentation computation cost

The region-based algorithm used an active contour model and level sets algorithm that used an initial

contour as input. The LDD algorithm used the output from the proposed threshold-based segmentation

as the initial contours. The study investigates the computation performance cost of using the LDD

algorithm over the standard region-based methods (with arbitrary initial contour).

The computation performance was measured by calculating the number of iterations (contour evolu-

tions) needed by each region-based algorithm to detect the full extent (TPR) of a potential oil slick.

An initial contour based on the proposed framework versus a rectangular initial contour (placed at the

centre of an oil slick event in an image) was used to detect the full extent of potential oil slick events.

The experiments (using optimal parameters) calculated the number of contour evolutions/iterations

needed to detect all the oil slick pixels in a synthetic image with noise (SNR = 0). The results showed

that the proposed framework was able to detect all the pixels of the region of interest with significantly

fewer iterations (less than 100 iterations), see Fig. 7.10. In contrast, the region-based algorithm with

rectangle shaped initial contour could not detect all the pixels after 400 iterations. The less iteration

showed that the proposed framework was more efficient in computation performance than using the

region-based algorithm with an arbitrary initial contour. Fig. 7.11 shows the number of iterations

(contour evolutions) needed to detect the full extent using a real SAR image.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

108



CHAPTER 7 RESULTS AND DISCUSSION

0 100 200 300 400

20

40

60

80

100

rectangle placed 
on darkspot 

Initial Contour: 

TPR versus Number of ACM iterations based on initial contour

TP
R

 (
%

)

Number of iterations

proposed threshold 
segmentation

Figure 7.10. Oil spill detection rate for proposed (threshold segmentation as ACM input) initial contour

versus generic rectangle initial contour using optimal parameters on a synthetic SAR image.
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Initial Contour

Figure 7.11. Region-based darkspot segmentation from a SAR image using a circle as initial contour.
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7.4 OIL SPILL DISCRIMINATION EVALUATION

The highest possible detection accuracy is essential. The proposed novel segmentation-based Linear

Darkspot Detection algorithm was demonstrated to be successful. However, the method did not separate

look-alike from real oil spill events, see section 7.3. Verification of an oil spill can be costly and

time-consuming. Therefore, the study proposed an oil spill discrimination process that will reduce the

number of false detections (i.e., look-alike detections) from a segmentation algorithm. The improved

discrimination process was accomplished using three steps. Firstly, the study identified the frequently

used features in literature. Secondly, the study determined significant features using proposed Africa

dataset and ranked them by significance. Lastly, the study distinguished possible oil spills from

look-alikes using the selected features, see section 6.4.

7.4.1 Discrimination process data

The input dataset comprised all the linear darkspot detections, as discussed in section 6.3. The images

were in binary format, that is, darkspots had a pixel value of 1 and the surroundings had a pixel value of

0, see example in Fig. 7.9. The binary image was used to extract geometric features. The dataset also

included the calibrated NRCS (dB) images to calculate texture and physical features, please refer to the

experiment flowchart in Fig. 6.1. Using the detected linear darkspots, the dataset was separated into

two classes: oil slicks and look-alikes. The oil spill darkspots were visually verified by an expert and

look-alikes were all the non-verified darkspots. Sentinel (EW and IW) imagery was used to evaluate

the discrimination process. The data had a total of 149 look-alike samples and 100 oil spill samples.

All considered features were extracted from the detected linear darkspots and a limited area outside the

darkspot (oil spill free area), see example in Fig. 7.12.

7.4.2 Feature significance and ranking evaluation

The commonly used oil spill features in literature were investigated and found that the studies often

did not use the same number of features. The disparity in the number of features was because the

features were not of equal significance. That is, a particular feature may be critical in one study but

removing the same feature improves the results of another study. The study determined significant

features according to previous studies and feature selection methods using study dataset. However, the
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Figure 7.12. SAR subimages showing the darkspot and limited area (shown in yellow) used to extract

physical features.

features were not of equal significance, each set of significant features had a different ranking. The

study measured feature rankings based on how significant each feature was compared to other features

in a given feature set, as described in section 6.4.2.2. All the measurements were normalised and

divided into very low, low, medium and high feature significance and feature ranking, see Tables 7.5

and 7.6.
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Table 7.5. Comparison of feature significance and feature rankings measured from literature and

proposed feature selection methods.

Description Code
Feature Significancea Feature Rankinga

Literatureb Study Literature Study

Geometry Features:

1 Area A ◦ ◦ ◦ ◦

2 Perimeter P ◦◦ ••• ◦◦ ◦◦

3 Perimeter to Area ratio P/A ◦◦ ◦◦ ◦◦ ◦◦

4 Complexity C ••• ◦◦ ◦◦ •••

5 Shape Factor 1 SP1 ◦◦ •••• ••• •••

6 Shape Factor 2 SP2 •••• •••• •••• ••••

Texture Features:

7 Spectral texture Tsp ◦ ◦ ◦ ◦

8 Shape Texture TSh ◦ ◦ ◦ ◦

9 Mean Haralick Texture THm ◦◦ ◦◦ ◦◦ •••

aMeasure symbols: Very low (◦), Low (◦◦), Medium (•••), High (••••).
bLiterates studies: [141, 146, 16, 136, 177, 138, 148, 130, 142, 17].
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Table 7.6. Comparison of feature significance and feature rankings measured from literature and

proposed feature selection methods.

Description Code
Feature Significancea Feature Rankinga

Literatureb Study Literature Study

Physical Features:

10 Object Mean OMe ••• •••• ◦◦ •••

11 Background Mean BMe ••• •••• ••• •••

12 Object Standard Deviation OSd •••• ••• •••• ••••

13 Background Standard Deviation BSd •••• ••• •••• ••••

14 Object Power to Mean Ratio Opm •••• ••• •••• ••••

15 Background Power to Mean Ratio Bpm •••• ••• •••• •••

16 Ratio of Standard Deviation RaSd ••• ◦◦ ••• ••••

17 Ratio of Means RaMe ◦◦ •••• ••• •••

18 Ratio of Power to Mean Ratios Opm/Bpm ••• ◦◦ ••• •••

19 Max Contrast ConMax ◦ ◦ ◦ ◦

20 Mean Contrast ConMean ◦ ◦ ◦◦ ◦◦

21 Mean Contrast Ratio ConRaMe ◦◦ ◦ ◦ ◦

22 Standard Deviation Contrast Ratio ConRaSd ◦◦ ◦ ◦ ◦

23 Local Area Contrast Ratio ConLa ••• •••• ••• ••••

24 Mean Border Gradient GMe ••• ◦◦ •••• •••

25 Standard Deviation Border Gradient GSd ••• •••• •••• ••••

26 Max Border Gradient Gmax ◦◦ ◦ ◦◦ ◦◦

27 Min Border Gradient Gmin ◦ ◦ ◦ ◦

28 Power to Mean Border Gradient Gpm ◦◦ ◦ ◦◦ ◦◦

29 Mean Difference to Neighbours Ndm ◦◦ ◦ ◦ ◦

aMeasure symbols: Very low (◦), Low (◦◦), Medium (•••), High (••••).
bLiterates studies: [141, 146, 16, 136, 177, 138, 148, 130, 142, 17].
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7.4.2.1 Literature feature significance and ranking

Numerous studies have presented essential features using SAR, these features vary in importance

and rankings. An average ranking of each feature was determined based on previous studies in

literature [141, 146, 16, 136, 177, 138, 148, 130, 142, 17], see Tables 7.5 and 7.6. The study measured

how often features were selected as significant to determine a general feature set of significant features

based on the literature studies. A total of 29 features were considered based on Table 5.1. From

the literature studies, 13 features were found with medium significance while 5 features had high

significance in oil spill discrimination, see Tables 7.5 and 7.6. The literature feature rankings showed

that 7 of the 29 standard features were of high rank, these include SP2, OSd, BSd, Opm, Bpm, GMe

and GSd features.

7.4.2.2 Proposed study feature significance and ranking

A feature significance measure was done using the study dataset and ANOVA and RFE feature selection

methods, see descriptions in section 6.4.2. From the study, 12 features were found with medium

significance while 7 features had high significance in oil spill discrimination, see Tables 7.5 and 7.6.

Gradient boosted tree (GBT) was used to measure feature rankings for all significant features (very low

to high significance). GBT can reduce the variance of feature selection methods by averaging them

over several trees and was thus considered a reliable measure. The study feature rankings showed that

5 of the 29 standard features were of high rank, these include SP2, OSd, BSd, Opm, Conla and GSd

features.

7.4.3 Oil spill classification evaluation

A supervised GBT classifier with optimised parameters was used to distinguish oil spills from look-

alikes from the selected features. A k-fold cross-validation method (k = 5) was used to split training

and testing set and to evaluate the overall classification accuracy of each feature set considered. To

measure how well a classifier was able to distinguish between two or more classes, the area under

the ROC curve (AUC) was also calculated. The AUC was calculated for the 5 ROC curves and then

averaged, giving an estimate of the true area and an estimate of its standard error, calculated from

the standard deviation of the 5 areas. This was done using different number of features as input, see
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Table 7.7. Cross-validation Accuracy Scores.

Feature Selection No. of Features Mean Acca (+/- Stdb) Min Max TPRc TNRd

GBT∗ All 77.4 (13.8) 61.9 98.4 78 63

GBT∗∗ 6 91.6 (6.36) 82.5 99.2 84 80

9 93.9 (5.02) 87.7 99.6 81 80

15 85.7 (11.3) 70.2 100 79 76

RFE 6 83.1 (7.37) 72.6 95.2 77 70

9 81.0 (9.95) 69.4 96.4 74 60

15 75.8 (11.53) 64.5 95.6 77 63

ANOVA 4 87.8 (9.89) 75.0 99.6 84 77

9 87.1 (7.58) 72.2 92.9 81 66

15 83.6 (12.3) 69.4 99.2 78 67

aMean Accuracy Score.
bStandard Deviation.
cTrue Positive Rate.
dTrue Negative Rate.

section 6.4.2.1, where the true detection rates for both oil spill and look-alikes was evaluated. The

mean, standard deviation, minimum and maximum classification accuracy score were also evaluated

and the number of features that had the most significant changes in the mean classification accuracy

score are reported in Table 7.7.

GBT∗: All the 29 features were used as input and were evaluated with the GBT classifier. The GBT∗

without any feature optimisation showed the lowest accuracy (77.4%).

GBT∗∗: The ranked significant features found in the study (please refer to Tables 7.5 and 7.6) were

used as input using the FFS method and evaluated with the GBT classifier. Starting with the

most significant feature based on the feature ranking, features were sequentially added to a

feature set and then re-evaluated. For each feature added, a classification (GBT∗∗) accuracy was

determined and the smallest feature set with the highest accuracy was 93.9% with nine features.

RFE: Significant features that were in RFE results were evaluated with the GBT classifier. The least

important features were sequentially removed, and features that remained were evaluated. For

each feature removed, a classification accuracy was determined and the smallest feature set with
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the highest accuracy was 83.1% with nine features.

ANOVA: Significant features that were in ANOVA results were evaluated with the GBT classifier.

Input features were then ranked statistically according to their significance using F-test. The

least important features were sequentially removed, and features that remained were evaluated

with GBT classifier. For each feature removed a classification accuracy was determined and the

smallest feature set with the highest accuracy was 87.8% using six features.

7.5 SUMMARY

An oil spill detection framework that focused on the task of detecting oil from moving vessels using

SAR imagery was proposed and evaluated. The proposed framework consists of three main steps,

that is, the preprocessing, the linear darkspot detection, and the oil spill discrimination, see flowchart

in Fig. 6.1. The framework used a novel linear darkspot detection and an improved discrimination

process.

The linear detection process used a segmentation-based algorithm to isolate linear darkspots from

other features in the image, see illustration in Fig. 7.13. The proposed linear darkspot algorithm also

aimed to solve both the threshold-based and region-based algorithm limitations by combining them to

form a more efficient framework. Threshold-based algorithms are limited by choice of a threshold

value, which can result in split oil slicks or partial detection of the oil slick extent. Region-based

algorithms overcome the latter by detecting the full size of the split or partially detected potential oil

slick. The region-based algorithm may be superior in identifying the full extent of oil slicks, but it was

not ideal for large SAR images due to its high computation cost. Using the threshold-based algorithm

results as input to the region-based method improved the ACM contour initialisation problem and the

computation performance. The proposed framework used a threshold-based algorithm to quickly scan

for areas with potential bilge events and only used the region-based algorithm to detect the full extent of

oil slicks from those regions. The proposed framework was tested on both real SAR and synthetic SAR

images and was robust to intensity variations, weak boundaries and was also more computationally

efficient when compared to the region-based method without the threshold-based input. The threshold

component significantly reduced computation time while the region-based component improves the

final segmentation result. The proposed segmentation framework showed to be more efficient when

compared to each component (i.e., the threshold-based and region-based framework components) and
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Figure 7.13. SAR subimages with segmented linear darkspots image (binary images).

the method by Chaudhuri et al. [173] in oil slick detection from SAR images. The proposed linear

darkspot detection method worked well in detecting oil slicks from real SAR images, with the highest

true positive rate of 99.6% and lowest standard deviation of 1.1%.

The proposed linear darkspot algorithm was successfully demonstrated, however, had a high num-

ber of false detection (look-alike detections). The results were further improved upon by using a

discrimination process that identified the most relevant oil spill features for separating oil spills and

look-alikes. Oil spill feature selection depends on many factors which could influence which features

were extracted and selected for the classification task. In this study, we classified oil spill events from

moving vessels, and the most important features were determined. The classification task used an

optimised Gradient Boosting Tree Classifier (GBT). The most important features were determined
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Figure 7.14. Input image (left), segmented linear darkspots image (middle) and final discrimination

image (right).

using multiple feature selection methods, including ANOVA and RFE. The study also used significant

features from various literature studies. The results showed that using all available features is not the

most efficient way to distinguish oil spills from look-alikes. Only half of the commonly used features

was needed for acceptable results. The study ranked critical features with a high selection frequency

and less critical features in high accuracy discrimination tasks. Using a feature selection step showed

the notable improvement in the results, from 77% to 94% on average classification score. Seven

features were determined as the most important with five being consistent across methods and two

being less consistent. The five features included one geometry feature based on object shape (SP2), the

rest were physical features (OSd, BSd, Opm, GSd) and no texture features. The shape factor (SP2) was

measured as the general shape of the object. The OSd and BSd measured the standard deviation of the

intensity values of the pixels belonging to the object and background. The object power to mean ratio

(Opm) measured the ratio between the standard deviation (OSd) and the mean (OMe) values of the

object. The last significant feature, standard deviation border gradient (GSd) measured the backscatter

values spreading of the border gradient of the object. The results showed that significant feature can

determined across literature and the proposed study with minimum variation. The identified features

and the discrimination process was showed successful in classifying oil spills and look-alikes, as shown

in Fig. 7.14.
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8.1 FINAL REMARKS

An oil spill is a form of pollution that is due to the intentional or unintentional release of oil to the ocean

environment. Ship accidents and illegal operational discharges are the prominent sources of maritime

oil pollution. Oil spill events often result in severe environmental costs and pose significant threats

to wildlife, human beings, and the natural ecological system. The impact of oil spills on the coastal

environment depends heavily upon the type, viscosity, toxicity, amount, as well as to the sensitivity of

the local organisms and the length of exposure. The law requires the retrieval of oily bilge wastewater

to be in the harbours. However, ships find an economic advantage in illegally discharging bilge waste.

Operational discharges of oil from vessels, whether accidental or deliberate, is a growing concern as

the levels of maritime traffic increase. Oil tankers and other kinds of ships are among the suspected

offenders of illegal discharges. The international legislation contains minor and well-defined exceptions

related to ocean areas (internal waters, marine protected areas, MARPOL “special” areas, territorial

seas or exclusive economic zones). These areas often determine whether an action is considered legal

or not, and define the rights and obligations, including law enforcement obligations.

The study focused on the task of detecting oil spills from moving vessels using only the most critical

features derived from a SAR image. A novel oil spill detection framework from SAR imagery was

proposed. The framework used a novel linear darkspot detection algorithm and an improved oil spill

discrimination process. The linear detection process used a segmentation-based algorithm to isolate

linear darkspots (potential oil spills) from other features in the image. The process involved a more

efficient feature selection and classification process. The results demonstrated the proposed linear

darkspot segmentation approach to be robust to intensity variations, weak boundaries and more efficient

when compared to the state-the-art segmentation methods.
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To reduce false alarms from the segmentation-based algorithm, the study further improved upon the

segmentation results by improving the discrimination process. Oil spill feature selection depends on

many factors which could influence which features are used for the classification task. The improved

discrimination process identified the significant feature that would yield the highest classification

accuracy. Consistently high valued features include shape description, the object and background

standard deviation measure, the ratio object standard deviation and mean values and the object border

standard deviation. The less essential features include contrast, area and texture features. Using

relevant features, the study showed an improved segmentation-based linear darkspot detection and an

improved discrimination process that achieved a mean classification score above 90%.

8.2 FUTURE WORK

Future work includes developing an alert system will detect potential oil spill events and classify them

according to confidence and alert levels. Feature selection and classification of oil spill events from

look-alikes using only SAR data can be a difficult task. Therefore, the alert system will incorporate

contextual information such as oil spill source. The confidence levels will describe the quality of the

detected oil spill (based on the probability measures of the observed darkspot feature). The alert level

will describe the risk of the oil spill based on contextual information and confidence level. The system

will also automatically extract contextual features such as ship/platform locations, ship traffic lane

information and the position of environmentally sensitive areas. More SAR data will be analysed by

expanding the study area.
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