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Abstract 

In this paper, we focus on the stochastic (chaotic) attributes of the US dollar-based 

exchange rates for Brazil, Russia, India, China and South Africa (BRICS) using  a long-

run monthly dataset covering 1812M01-2017M12, 1814M01-2017M12, 1822M07-

2017M12, 1948M08-2017M12, and 1844M01-2017M12, respectively. For our purpose, 

we consider the Lyapunov exponents, robust to nonlinear and non-stationary systems, in 

both full—samples and  in  rolling windows. For comparative purposes, we also evaluate 

a long-run dataset of a developed currency market, namely British pound over the period 

of 1791M01-2017M12. Our empirical findings detect chaotic behavior only episodically 

for all countries before the dissolution of the Bretton Woods system, with the exception 

of the Russian ruble. Overall, our findings suggest that the establishment of the free 

floating exchange rate system have made the path of exchange rates more predictable, 

and hence, the need for policymakers to intervene in the currency markets for the most 

important emerging market bloc, is not necessarily warranted.  
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1. Introduction 

Exchange rate movements are known to potentially influence many other financial and 

economic variables like interest rates, trade, output, and equity prices (Ruzima and 

Boachie, 2017). Naturally, predicting exchange rate movements is of paramount 

importance to various economic agents, and hence, the literature associate with exchange 

rate predictability is huge, to say the least (see, Balcilar et al., (2016) and Christou et al., 

(forthcoming) for detailed reviews). In this regard, determining whether exchange rate 

behavior is characterized by chaos is of paramount importance. Theoretically, a chaotic 

system is a random-looking nonlinear deterministic process with irregular periodicity and 

sensitivity to initial conditions. In other words, similar shocks in different situations 

create alternative future paths. Thus, the behavior of the series is difficult to predict and 

probably given the complexity of all chaotic systems, any detected causal linkage from 

exchange rate movements to economic variables, should be attributed to chance rather 

than concrete predictive relationships.  

 

Against this backdrop, the objective of this paper is to use the Lyapunov exponent to 

analyze whether the US dollar-based exchange rates for Brazil, Russia, India, China and 

South Africa (i.e., the BRICS) depict chaotic behavior or not using longest possible 

available monthly covering the periods of 1812M01-2017M12, 1814M01-2017M12, 

1822M07-2017M12, 1948M08-2017M12, and 1844M01-2017M12, respectively. For the 

sake of comparison, we also look at the behavior of the British pound over the 1791M01 

to 2017M12. Note that, the decision to look at the BRICS is motivated by its emergence 

as a powerful economic force. In 2010, about 25 percent of global output emanated from 

the BRICS (Government of India, 2012). Also, the contribution to global output from the 

bloc is expected to surpass that of current world economic powers like G7 countries by 

2050 (Wilson and Purushothaman, 2003). Trade by these economies with the rest of the 

world has been growing at a fast rate, with the high economic performance of these 

economies attributed to the high level of foreign direct investment, especially in the 

private sector (Government of India, 2012). Naturally, unpredictable exchange rate 

movements are likely to affect the growth potential of these economies, and with them 

that of the world economy, given the growing dominance of this bloc. Therefore, the 
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significance of an investigation into the chaotic behavior of exchange rates of the BRICS 

cannot be overstated, which in turn, we aim to achieve in this paper, by looking at the 

longest possible spans of data available on the exchange rates of these economies, to try 

and capture the entire historical evolution of the exchange rate dynamics. 

 

The literature on chaos in financial markets in general, is huge (see, Tiwari and Gupta 

(forthcoming) for a review), and this also includes the currency markets (see for example, 

Serletis and Gogas (1997), Cristescu et al., (2009), BenSaïda and Litimi (2013), Lahmiri 

(2017)). While, earlier studies have concentrated primarily on developed markets, given 

the emergence of the BRICS bloc, Kumar and Kamaiah (2016), and Bhattacharya et al., 

(2018) have recently analyzed chaotic dynamics in the exchange rates of these countries. 

While, the former study finds underlying chaotic structure for all the five markets, the 

latter was able to show that the same holds true for Brazil, Russia, India, and China, but 

not South Africa. Given this, our objective is to provide a definitive answer to the 

existence or non-existence of chaotic dynamics in the BRICS exchange rates, using the 

longest spans of data available, and hence, taking out the possibility of the results being 

sample-specific. We build on this argument further, by carrying out a time-varying 

(rolling window) analysis of chaos. While, a full-sample analysis is informative, the final 

results on chaos could be driven by a large sub-sample or sub-samples for which chaos 

exists or does not exist. In addition, the time-varying approach, would also indicate to the 

policy-maker of the current status of the currency market in terms of chaos, and whether 

or not, there is a need for policy intervention to ensure that the future growth paths of the 

BRICS countries dependent on exchange rate movements are predictable or not. To the 

best of our knowledge, this is the first paper to analyze chaotic dynamics in the BRICS 

and the UK dollar-based exchange rates using data, that in some cases spans more than 

two centuries. The remainder of the paper is organized as follows: Section 2 introduces 

the econometric methodology, while Section 3 presents the data and results, with Section 

4 concluding the paper. 
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2. Methodology: Lyapunov Exponent  

 

The basic idea behind the detection of chaos lies with the dependence of chaotic systems 

to initial conditions. The Lyapunov exponent λ measures this difference 
0

(X ,t)x  

between the two paths of the same phenomenon generated in time according to different 

initial conditions. In order to identify a system as chaotic, the corresponding Lyapunov 

exponent should be strictly positive. In this paper, we follow the procedure described in 

BenSaïda and Litimi (2013) in order to estimate the maximum Lyapunov exponent. In 

mathematical notation: 

𝑥𝑡 = 𝑓(𝑥𝑡−𝐿 + 𝑥𝑡−2𝐿 + ⋯+ 𝑥𝑡−𝑚𝐿) + 𝜀𝑡                                (1) 

where L is the time delay, f is an unknown chaotic map, m is the embedding dimension of 

the system and εt represents the added noise. BenSaïda and Litimi (2013) adopt the 

Jacobian based approach to compute λ since the direct approach is inefficient in the 

presence of noise. Briefly, the exponent is given by: 

𝜆̂ =
1

2𝑀
𝑙𝑛𝑣𝑖                                                           (2) 

where M is an arbitrary selected number of observations often approximating the 2 3⁄  of 

the total span and 𝑣𝑖 is the largest eigenvalue of the matrix (𝑇𝑀𝑈𝑜)(𝑇𝑀𝑈𝑜)
′, with  

𝑈0 = (1 0 0 …0)′                                                 (3) 

𝑇𝑀 = ∏ 𝐽𝑀−𝑡
𝑀−1
𝑡=1                                                      (4) 

𝐽𝑡 =

[
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0
⋮
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                                (5) 

In the case of scalar time series the chaotic map f generating the series is usually 

unknown; as a result the Jacobean matrix in (5) cannot be estimated. Thus, we need to 

approximate the chaotic map with a data adapting function that can produce an exact 

approximation of the series. BenSaïda and Litimi (2013) choose to estimate the chaotic 
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map based on a neural network with one hidden layer of neurons and one output layer. In 

mathematical notation the chaotic map f is approximated by the equation: 

𝑥𝑡 ≈ 𝑎0 + ∑ 𝑎𝑗𝑡𝑎𝑛ℎ(𝛽0,𝑗 + ∑ 𝛽𝑖,𝑗𝑥𝑡−𝑖𝐿
𝑚
𝑖=1 ) + 𝜀𝑡

𝑞
𝑗=1                         (6) 

with q declares the hidden layers of the neural network with a tangent activation function. 

The order of (L,m,q) defines the complexity of the system and is selected according to the 

triplet that provides the maximum value of the exponent λ.  

Assuming the existence of chaos as the null hypothesis, we can reject it in favor of the 

non-existence of chaos based on a one-sided statistical test.1 In this way, a system is 

identified as chaotic when both assumptions are met: a) we find a positive Lyapunov 

exponent close to unity and b) we are unable to reject the null hypothesis on the existence 

of chaos. 

 

3. Empirical results 

We compile a dataset of nominal exchange rates for BRICS and the U.K. expressed as 

local currency to U.S. dollar compiled from the Global Financial Database2 and take 

logarithms. We begin our analysis examining both the entire time span and rolling 

windows of 40%, 50% and 60% of the total length with a sliding window of one. With 

this smooth transition in time we uncover time patterns that may exist during distinct 

periods, but are typically hidden during the examination of the entire sample.  

 

As part of an initial analysis, as reported in the Appendix of the paper, we found that 

theHurst exponents of all the six exchange rates for the full-sample tends to be greater 

than 0.5, i.e., suggesting a random walk behaviour, with that of Brazil, Russia and China 

being even close to 1, i.e. the three exchange rates being exceptionally persistent, with the 

possibility of them not returning to equilibrium after a shock. Given this, we proceed in 

examining the chaotic behaviour of all exchange rates  using the Lyapunov exponent. A 

                                                           
1 For more information on the derivation of the test, the interested reader is referred to BenSaïda and Litimi 

(2013). 

2 The descriptive statistics are reported in Table A1 of  Appendix. As can be seen from the Jarque-Bera test 

of normality, the null is overwhelmingly rejected in all cases. 
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Table 1: Lyapunov exponents 
 Entire sample 40% sample 50% sample 60% sample 

Country 

 
𝜆 Obs 

Percentage 

of positive 

𝜆 in the 

window 

Rejections of 

chaos where 𝜆 

is positive 

Window 

Obs 

Percentage 

of positive 

𝜆 in the 

window 

Rejections of 

chaos where 

𝜆 is positive 

Window 

Obs 

Percentage 

of positive 𝜆 

in the 

window 

Rejections 

of chaos 

where 𝜆 is 

positive 

Window 

Obs 

Brazil -0.07* 2479 1.95 0 992 2.75 0 1240 3.52 0 1487 

Russia 0.03 2447 79.65 0 979 100 0 1224   1468 

India -0.32* 2345 0.35 0 938 0.17 0 1173 0 -- 1407 

China 0.13 832 27.49 0 333 0 -- 416 0 -- 499 

South Africa -0.15* 2087 12.93 0 835 3.64 0 1044 0 -- 1252 

UK -0.38* 2723 23.67 0 1089 24.89 0 1362 21.19 0 1634 

Note: * denotes rejection of the null hypothesis about the existence of chaos at the 5% level of statistical significance. The estimation of the eigenvalue for the largest window 

in Russia was not possible.  
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positive Lyapunov exponent indicates the existence of chaotic dynamics in the data 

generating process (Table 1). Given that we are interested in both the sign and the 

statistical significance of our results, we follow a different approach from the Hurst 

exponent results. More specifically, we report the percentage of instances that the 

exponent is positive in all examined windows, instead of its minimum, average and 

maximum value. In those instances that the exponent is positive, we also test the 

statistical significance of the exponent in order to infer whether we can reject the null 

hypothesis about the existence of chaos.  

 

As we observe from Table 1, we detect chaos only episodically and for a limited number 

of cases. More specifically, only Russia and China exhibit chaotic behaviour on the entire 

sample, while the detection rate in the rolling windows is high only for Russia3. In all 

other cases the detection of chaos varies from 3% - 30% of windows. In order to observe 

this, we plot the estimated Lyapunov exponent for all countries and windows in Figure 1.  

 

The Lyapunov exponent for Brazil is positive for the smallest window in the post-Bretton 

Woods period but only for limited number of months, during the 1990s where Brazil 

exhibit high inflationary pressures and in the past 1994 period where the Brazilian real is 

pegged to the U.S. dollar. In contrast, the Russian ruble exhibit a chaotic behaviour with 

consistency in the entire post WWII period. Both the Chinese yuan and the Indian rupee 

have a negative exponent in the entire sample and for all windows, so the hypothesis of 

chaos is strongly rejected. An interesting pattern unveils for the South African rand and 

the British pound. In the former case, the exponent is below zero until the end of WWII 

and the beginning of the Bretton Woods period. In the Bretton Woods period, the rand 

exhibits low chaotic behaviour in a number of instances up to  1971, with a large period 

after the dissolution of the fixed exchange rates system (we mark the beginning of the 

dissolution of the Bretton Woods system at August 1971). In the floating exchange rate 

era, we find a negative exponent for the rand almost consistently for every window. The 

                                                           
3 In the case of Russia the estimation of the largest window was not possible, since we could not estimate 

the eigenvalue of the matrix.  
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Figure 1: Lyapunov exponents for all exchange rates. The continuous (blue) line depicts the small (40%) rolling window results, the dotted (red) 

line depicts the mid (50%) window length and the dashed (green) line depicts the large (60%) window length. The estimation of eigenvalues for 

the largest window in Russia was not possible.  
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case of the U.K. is way more interesting. In the pre-WWII, we find positive exponents 

from the beginning of the 19th century up to WWII, where there is an abrupt change in 

the positive trend and the coefficient turns negative for the entire Bretton Woods period. 

The coefficient turns positive around 0.5 at the dissolution of the fixed exchange rates 

system, reverts to a deterministic system up to the turbulent period of the 1980s for the 

British economy and then reverts back to a non-stochastic system. 

Overall, our examination of chaotic behaviour of the exchange rates of the BRICS reveals  

weak evidence of chaos only in the period before Bretton Woods, while in the modern 

floating exchange rates era only the Russian ruble keeps its chaotic behaviour, something 

specifically observed during the period of transition from the Soviet Union to the Russian 

Federation.  

 

4. Concluding Remarks 

In this paper, we focus on the statistical characteristics of exchange rates series for the 

BRICS and the U.K. in terms of their chaotic behavior using Lyapunov exponents in both 

full-sample and rolling windows. In doing so, we compile a long-run dataset covering 

over two centuries of monthly data in three cases (Brazil, Russia, and the UK), and nearly 

two centuries for India and South Africa, and seventy years for China. The Lyapunov 

exponent is capable of detecting chaotic dynamics in non-linear and non-stationary 

systems. Our empirical findings show that chaos is observed only episodically, unlike 

suggested by earlier studies on the BRICS, and that too mostly for the Russian ruble, and 

in the pre WWII period for the other series. Overall, our findings suggest that the 

establishment of the free floating exchange rate system have made the path of exchange 

rates more predictable, and hence, the need for policymakers to intervene in the currency 

markets for the most important emerging market bloc, barring Russia, and in the 

developed economy of the UK to reduce volatility (uncertainty), are not warranted. Lack 

of chaotic behavior in the BRICS exchange rates in general, suggest that future growth 

prospects of these economies, and the world in general, is likely to be stable. . 
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Appendix 

 

Table A1: Descriptive Statistics 

Country Time Span Mean SD Kurtosis Skewness Jarque-Bera test (p-value) 

Brazil 1812M01-2017M12 1.51 0 25.98 3.42 0 

Russia 1814M01-2017M12 1.05 0 257.94 11.60 0 

India 1822M07-2017M12 0.15 0 255.25 10.04 0 

China 1948M08-2017M12 0.78 0 161.81 11.50 0 

South Africa 1844M01-2017M12 0.17 0 42.54 1.99 0 

UK 1791M01-2017M12 -0.05 0 234.88 -0.42 0 

Note: SD stands for standard deviation. 

Hurst ExponentThe Hurst exponent belongs to the broader category of nonparametric 

analysis methods and was first proposed by Hurst (1951) as a method for analyzing long-

range dependence in the hydrology series. The exponent H (Hurst exponent) takes values 

on the range [0, 1]. Values close to zero indicate an anti-persistent series: the series under 

examination is mean-reverting. Values close to 1 indicate that the series is persistent: the 

series never returns to equilibrium after an exogenous shock. An H = 0.5 indicates a 

Random Walk (RW).  

According to the Detrended Fluctuation Analysis (DFA) in estimating the exponent H by 

Peng et al. (1994), the initial series X of length N is divided into q equally sized parts of 

length 𝑛 = 𝑁
𝑞⁄ . Each of the new segments m=1,2,3……,q is integrated by the cumulative 

sums: 

𝑌𝑖,𝑚
(𝑛)

= ∑ 𝑥𝑗,𝑚
(𝑛)

 ,         𝑖 = 1,2,3, … , 𝑞𝑖
𝑗=1                                (A1) 

We then estimate the OLS line for the points in each segment  𝑌𝑚,𝑖
(𝑛)

= 𝑎𝑚
(𝑛)

𝑖 + 𝑏𝑚
(𝑛)

 and 

calculate the standard deviation residuals: 

𝐹𝑚
(𝑛)

= √1

𝑛
∑ (𝑌𝑚,𝑖

(𝑛)
− 𝑎𝑚,𝑗

(𝑛)
− 𝑏𝑚

(𝑛)
)
2

𝑛
𝑖=1                               (A2) 

The average standard deviation is calculated for all segments of length n: 

𝐹(𝑛) =
1

𝑞
∑ 𝐹𝑚

(𝑛)𝑞
𝑚=1                                            (A3) 

The 𝐹𝑛 values are calculated for every partition and plotted against the partition segment 

size n in a log–log scale. The slope of the linear fit expresses the Hurst exponent H. 
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In Table A2, we report the Hurst exponents for the entire sample and the rolling window 

estimates. 

 

As we observe, in the entire sample the India and the U.K. exhibit almost RW behaviour 

while South Africa is very close to the 0.5 threshold. Brazil, Russia and China exchange 

rates exhibit a highly persistent behaviour with values of the Hurst exponent close to 1. 

The rolling windows estimation exhibit a different pattern, with values of the exponent 

varying from under the 0.5 threshold to values close to 1 for the smaller and the medium 

length windows. As expected, the empirical findings of the rolling windows are close to 

those on the entire sample only for the large window, since most of the variability of the 

exponent is smoothed out in larger windows. Thus, for the cases that the exchange rates 

exhibit high persistence,  a shock to the exchange rate causes a permanent effect on its 

level.  In figure A1, we depict the time evolution of the Hurst exponent for all windows.  

 

The Hurst exponent for all countries is above the 0.5 threshold in the post WWII period. 

Especially for India, in the pre-WWII era there exist several windows that the exponent is 

around 0.5 declaring a stochastic evolution. The exchange rates where the exponents 

move close to 0.5 are those of South Africa and the U.K., showing that these two 

countries could exhibit a quasi-efficient market. In contrast, Russia and China are highly 

persistent exchange rates where effects on their levels have permanent effects, making 

them more sensitive to external shocks. Overall, the persistence of all exchange rates 

seem to rise in the post-Bretton Woods period, denoting open markets that are more 

sensitive to external shocks. 
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Table A2: Hurst exponents 
 Entire sample 40% sample 50% sample 60% sample 

Country 

 
H obs min mean max 

sd 
Obs min mean max sd Obs min mean max sd Obs 

Brazil 0.96 2479 0.53 0.70 1 0.17 990 0.54 0.72 1 0.17 1240 0.53 0.76 1 0.18 1490 

Russia 0.93 2447 0.57 0.91 1 0.14 980 0.59 0.97 1 0.07 1220 0.86 0.97 1 0.03 1470 

India* 0.56 2345 0.41 0.60 0.77 0.10 940 0.45 0.59 0.73 0.08 1170 0.47 0.58 0.70 0.06 1410 

China* 0.97 832 0.43 0.72 1 0.10 330 0.62 0.75 1 0.06 420 0.54 0.73 1 0.10 500 

South Africa* 0.60 2087 0.50 0.63 0.75 0.04 830 0.55 0.64 0.72 0.03 1040 0.56 0.63 0.70 0.03 1250 

UK* 0.51 2723 0.45 0.59 0.70 0.05 1090 0.48 0.56 0.65 0.03 1360 0.49 0.56 0.60 0.02 1630 

Note: * denotes uncertainty indices that show an unstable behaviour with values varying from below 0.5 to above 0.5, i.e., being from anti-persistent to highly 

persistent series. This fact denotes significant changes in the persistence and uncertainty of these exchange rates; sd: stands for standard deviation.
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Figure A1: Hurst exponents for all exchange rates. The continuous (blue) line depicts the small (40%) rolling window results, the 

dotted (red) line depicts the mid (50%) window length and the dashed (green) line depicts the large (60%) window length. 
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